Triple positive solutions for semipositone fractional differential equations \(m\)-point boundary value problems with singularities and \(p-q\)-order derivatives

Xingqiu Zhang\(^{1,2}\), Zhuyan Shao\(^{1}\), Qiuyan Zhong\(^{1}\), Zengqin Zhao\(^{3}\)

\(^{1}\)School of Medical Information Engineering, Jining Medical College, Rizhao 276826, Shandong, China
zhxq197508@163.com; 317096018@qq.com
\(^{2}\)Center for Information Technology, Jining Medical College, Jining 272067, Shandong, China
zhqy197308@163.com
\(^{3}\)School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China
zqzhaoy@163.com

Received: February 12, 2018 / Revised: June 8, 2018 / Published online: October 31, 2018

Abstract. In this paper, by means of Leggett–Williams and Guo–Krasnosel’skii fixed point theorems, together with height functions of the nonlinearity on different bounded sets, triple positive solutions are obtained for some fractional differential equations with \(p-q\)-order derivatives involved in multi-point boundary value conditions. The nonlinearity may not only take negative infinity but also may permit singularities on both the time and the space variables.

Keywords: fractional differential equations, semipositone, triple positive solution, singularity on space variable, multi-point BVP.

1 Introduction

The purpose of this paper is to obtain the existence result of triple positive solutions for the following fractional differential equation (FDE for short):

\[
\begin{align*}
D_{0+}^{\alpha} u(t) + f(t, u(t)) &= 0, \quad 0 < t < 1, \\
u(0) &= u'(0) = \cdots = u^{(n-2)}(0) = 0, \\
D_{0+}^{p} u(1) &= \sum_{i=1}^{m} a_i D_{0+}^{q} u(\xi_i),
\end{align*}
\]

\(^*\)This research was supported by a Project of Shandong Province Higher Educational Science and Technology Program (J18KA217), the National Natural Science Foundation of China (11571197, 11571296, 11871302), the Foundation for NSFC cultivation project of Jining Medical University (2016-05), the Natural Science Foundation of Jining Medical University (JY2015BS07, 2017JQD22) and the Natural Science Foundation of Shandong Province of China (ZR2015AL002).

\(^1\)Corresponding author.

© Vilnius University, 2018
where D^α_0 represents Riemann–Liouville derivative of order α, $n-1 < \alpha \leq n$ ($n \geq 3$), $a_i \geq 0$ ($i = 1, 2, \ldots, m$, $m \in \mathbb{N}^+$), $0 < \xi_1 < \xi_2 < \cdots < \xi_m < 1$, $p, q \in \mathbb{R}$, $1 \leq p \leq n-2$, $0 \leq q \leq p$ with $\Delta = \Gamma(\alpha)/\Gamma(\alpha-p) - (\Gamma(\alpha)/\Gamma(\alpha-q)) \sum_{i=1}^m a_i \xi_i^{\alpha-q-1} > 0$. The nonlinearity allows to take negative value and be unbounded below, that is, the problems considered here are so called semipositone problems. In addition, $f(t, u)$ may be singular both at $t = 0$, 1 and/or $u = 0$.

Recently, great efforts have been made to investigate FDEs nonlocal problems for their better effect in describing important phenomena in science, engineering, biology, economics and so on. Many excellent works can be found in the literature (see [1–4, 6–13, 15–40] and the references therein). In a recent paper, when f permits singularity on t and is semipositone, Henderson and Luca [9] gave an existence result of at least one positive solution for fractional differential equation eigenvalue problems subject to the boundary conditions given in (1). The main tool is the famous Guo–Krasnosel’skii fixed point theorem. In another paper [10], under the assumption that f is either nonsingular or singular on t, by means of fixed point index theory, they established an existence result of at least one positive solution for some system of nonlinear ordinary fractional differential equations with some coupled multi-point boundary conditions. By virtue of height functions on some special bounded sets, Pu et al. [21] considered existence and multiplicity of positive solutions for BVP (1) on the premise that the nonlinearity is semipositone and permits singularity with respect to space variable. Very recently, Zhang and Zhong [36] obtained an existence result of triple positive solutions for some fractional differential equations integral boundary value problems.

This paper is a continuation of our paper [36]. We concentrate on investigating triple positive solutions for semipositone BVP (1) by Leggett–Williams and Guo–Krasnosel’skii fixed point theorems. Compared with the existing works, this paper admits some new features. Firstly, the notable difference with the traditional results on triple solutions (see [1,4,19,37] for instance) lies in that the nonlinearity f possesses singularities with respect the space variable. At present, there are relatively few results on triple solutions for integer-order differential equations when Leggett–Williams fixed point theorem is used under this circumstance, not to mention fractional differential equations. Secondly, not only the method exploited here is different in essence from that in reference [21], but also the bounded sets and height functions constructed in this paper are quite different from those in [21]. Finally, the problem discussed in this paper is different from that in [36]. The nonlinearity permits taking negative infinity. Thus, the problem studied in this paper is so called semipositone problem.

2 Preliminaries and several lemmas

Two typical Banach spaces $E = C[0, 1]$ and $L^1(0, 1)$ are involved in this article, where $E = C[0, 1]$ and $L^1(0, 1)$ represent the spaces of the continuous functions and Lebesgue integrable functions equipped with the norms $\|u\| = \max_{0 \leq t \leq 1} |u(t)|$ and $\|u\|_1 = \int_0^1 |u(t)| \, dt$, respectively.
Definition 1. (See [14].) A functional \(\zeta : P \to [0, +\infty) \) is called a concave positive functional on a cone \(P \) if
\[
\zeta(tx + (1 - t)y) \geq t\zeta(x) + (1 - t)\zeta(y) \quad \forall x, y \in P, \; 0 \leq t \leq 1.
\]

Lemma 1. (See [9].) Let \(\Delta \neq 0 \). Given \(y \in C(0, 1) \cap L^1(0, 1) \), the solution of the following differential equation
\[
D_0^\alpha u(t) + y(t) = 0, \quad 0 < t < 1,
\]
\[
u(0) = u'(0) = \cdots = u^{(n-2)}(0) = 0, \quad D^p_{0^+} u(1) = \sum_{i=1}^m a_i D^\alpha_{0^+} u(\xi_i),
\]
can be written as
\[
u(t) = \int_0^1 G(t, s) y(s) \, ds, \quad t \in [0, 1],
\]
where
\[
G(t, s) = G_1(t, s) + \frac{t^{\alpha-1}}{\Delta} \sum_{i=1}^m a_i G_2(\xi_i, s),
\]
\[
G_1(t, s) = \begin{cases}
\frac{t^{\alpha-1}(1-s)^{\alpha-p-1} - (t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1, \\
\frac{(t-s)^{\alpha-p-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1,
\end{cases}
\]
\[
G_2(t, s) = \frac{1}{\Gamma(\alpha-q)} \begin{cases}
\frac{t^{\alpha-q-1}(1-s)^{\alpha-p-1} - (t-s)^{\alpha-q-1}}{\Gamma(\alpha-q)}, & 0 \leq s \leq t \leq 1, \\
\frac{(t-s)^{\alpha-q-1}(1-s)^{\alpha-p-1}}{\Gamma(\alpha-q)}, & 0 \leq t \leq s \leq 1.
\end{cases}
\]

Lemma 2. (See [9].) Assume that \(a_i > 0 \) (\(i = 1, 2, \ldots, m \)) and \(\Delta > 0 \). Then the Green function \(G \) of (2) given by (3) is a continuous function on \([0, 1] \times [0, 1]\) and satisfies the inequalities:

(i) \(G(t, s) \leq J(s) \), for all \(t, s \in [0, 1], \) where \(J(s) = h_1(s) + \sum_{i=1}^m a_i G_2(\xi_i, s) / \Delta, \)
\[
h_1(s) = (1-s)^{\alpha-p-1}(1-(1-s)\rho) / \Gamma(\alpha), \quad s \in [0, 1];
\]
(ii) \(G(t, s) \geq t^{\alpha-1} J(s) \) for all \(t, s \in [0, 1]; \)
(iii) \(G(t, s) \leq \sigma t^{\alpha-1} \) for all \(t, s \in [0, 1], \) where \(\sigma = 1 / \Gamma(\alpha) + \sum_{i=1}^m a_i \xi_i^{\alpha-q-1} / (\Delta \Gamma(\alpha - q)). \)

Lemma 3. (See [21].) Suppose that \(w(t) \in C[0, 1] \) be the solution of
\[
D_0^\alpha u(t) + k(t) = 0, \quad 0 < t < 1,
\]
\[
u(0) = u'(0) = \cdots = u^{(n-2)}(0) = 0, \quad D^p_{0^+} u(1) = \sum_{i=1}^m a_i D^\alpha_{0^+} u(\xi_i),
\]
where \(k \in L^1(0, 1), \) \(k(t) > 0. \) Then \(w(t) \leq \sigma \| k \|_1 t^{\alpha-1}, \) \(0 \leq t \leq 1. \)
In this paper, let
\[K = \{ u \in E : u(t) \geq t^{\alpha-1} \|u\|, \ t \in [0,1] \}. \]

Obviously, \(K \) is a cone in \(E \). For simplicity, denote
\[K_r = \{ u \in K : \|u\| < r \} \]
and
\[K(\zeta, a, b) = \{ u \in K : a \leq \zeta(u), \|u\| \leq b \}, \]
\[\hat{K}(\zeta, a, b) = \{ u \in K : a < \zeta(u), \|u\| \leq b \}. \]

We make the following assumptions throughout this paper:

(H1) \(f \in C((0,1) \times (0, +\infty), (-\infty, +\infty)) \), there exists a function \(k \in L^1(0,1) \), \(k(t) > 0 \), such that
\[f(t,u) \geq -k(t) \]
for all \(t \in (0,1) \), \(u > 0 \).

(H2) For any positive numbers \(r_1 < r_2 \), there exists a nonnegative continuous function \(\gamma_{r_1, r_2} \in L^1(0,1) \) such that
\[\left| f(t,u) \right| \leq \gamma_{r_1, r_2}(t), \ 0 < t < 1, \ r_1 t^{\alpha-1} \leq u \leq r_2, \]
with
\[\int_0^1 (1-s)^{\alpha-p-1} \gamma_{r_1, r_2}(s) \, ds < +\infty. \]

Lemma 4. (See [14].) Suppose that \(T : \overline{K}_c \rightarrow K \) is completely continuous and there exist a concave positive functional \(\zeta \) with \(\zeta(u) \leq \|u\| (u \in K) \) and numbers \(b > a > 0 \) \((b \leq c)\) satisfying the following conditions:

(i) \(\{ u \in K(\zeta, a, b) : \zeta(u) > a \} \neq \emptyset \), and \(\zeta(Tu) > a \) if \(u \in K(\zeta, a, b) \);
(ii) \(Tu \in \overline{K}_c \) if \(u \in K(\zeta, a, c) \);
(iii) \(\zeta(Tu) > a \) for all \(u \in K(\zeta, a, c) \) with \(\|Tu\| > b \).

Then \(i(T, \hat{K}(\zeta, a, c), \overline{K}_c) = 1 \).

Lemma 5. (See [5].) Let \(K \) be a cone in Banach space \(X \), and \(T : K \rightarrow K \) be a completely continuous operator. Let \(a, b, c \) be three positive numbers with \(a < b < c \).

(i) If \(\|Tu\| > \|u\| \) for \(u \in \partial(K_a) \) and \(\|Tu\| < \|u\| \) for \(u \in \partial(K_b) \), then
\[i(T, \overline{K}_b \setminus \overline{K}_a, \overline{K}_b) = 1, \]
(ii) If \(\|Tu\| > \|u\| \) for \(u \in \partial(K_a) \) and \(\|Tu\| < \|u\| \) for \(u \in \partial(K_b) \), then
\[i(T, K_b \setminus \overline{K}_a, \overline{K}_c) = 1. \]
3 Main result

Suppose that $0 < a^* < b^* < 1$. In applications, a^* and b^* can be chosen according to the
properties of $f(t, u)$. Denote $\sigma^* = \min_{a^* \leq u \leq b^*} t^{\alpha-1}$. For any $r, r_1, r_2 > 0$ with $r_1 < r_2$,
define the height functions as follows:

\[
\tilde{\varphi}(t, r) = \max \{ f(t, u): (r - \sigma\|k\|_1)^{\alpha-1} \leq u \leq r \} + k(t),
\]
\[
\tilde{\psi}(t, r) = \min \{ f(t, u): (r - \sigma\|k\|_1)^{\alpha-1} \leq u \leq r \} + k(t),
\]
\[
\tilde{\varphi}(t, r_1, r_2) = \max \{ f(t, u): (r_1 - \sigma\|k\|_1)^{\alpha-1} \leq u \leq r_2 \} + k(t),
\]
\[
\tilde{\psi}(t, r_1, r_2) = \min \{ f(t, u): (r_1 - \sigma\|k\|_1)^{\alpha-1} \leq u \leq r_2 \} + k(t).
\]

Theorem 1. Suppose that (H1) and (H2) hold. In addition, there exist five positive numbers $\sigma\|k\|_1 < e_1 < e_2 < e_3 < e_4 \leq e_5$ with $e_4 \geq e_3 \sigma^{* - 1}$ satisfying

(A1) $\int_0^1 J(s)\tilde{\varphi}(s, e_2) \, ds < e_2$;

(A2) $\int_0^1 J(s)\tilde{\psi}(s, e_1) \, ds \geq e_1$;

(A3) $\int_0^1 J(s)\tilde{\varphi}(s, e_3, e_5) \, ds \geq e_5$;

(A4) $\int_0^1 J(s)\tilde{\psi}(s, e_3, e_4) \, ds > \sigma^{* - 1} e_3$.

Then, BVP (1) has at least three positive solutions $\hat{u}_1, \hat{u}_2, \hat{u}_3$ with $e_1 - \sigma\|k\|_1 \leq \|\hat{u}_1\| \leq e_2, e_3 - \sigma\|k\|_1 \leq \|\hat{u}_2\| \leq e_5, e_2 - \sigma\|k\|_1 \leq \|\hat{u}_3\| \leq e_5$ and

\[
\min_{t \in [a^*, b^*]} \hat{u}_2(t) \geq e_3 - \sigma\|k\|_1, \quad \min_{t \in [a^*, b^*]} \hat{u}_3(t) \leq e_3.
\]

Proof. First, consider the following modified approximating BVP (MABVP for short):

\[
D_{0+}^\alpha u(t) + f(t, \chi_n(u - w)(t)) + k(t) = 0, \quad 0 < t < 1,
\]
\[
u(0) = u'(0) = \cdots = u^{(n-2)}(0) = 0, \quad D_{0+}^\beta 1 = \sum_{i=1}^m a_i D_{0+}^\beta u(\xi_i),
\]

where

\[
\chi_n(u) = \begin{cases} u, & u \geq \frac{1}{n}, \\ \frac{1}{n}, & u < \frac{1}{n}. \end{cases}
\]

Define operators $T_n (n \in \mathbb{N}^+)$ as follows:

\[
(T_n u)(t) = \int_0^t G(t, s) \left[f(s, \chi_n(u - w)(s)) + k(s) \right] \, ds, \quad 0 \leq t \leq 1, \quad n \in \mathbb{N}^+.
\]

In the sequel, we will give the proof by the following three steps.

(I) We show that for any $\sigma\|k\|_1 < r_1 < r_2$ and sufficiently large n, operators $T_n : (K_{r_2} \setminus K_{r_1}) \rightarrow K$ is completely continuous.
The proof is as the same as the first part of Theorem 6 in [3], we omit it here. Thus, for sufficiently large \(n \), the same conclusion is valid for \(T_n : K_{e_3} \setminus K_{e_5} \rightarrow K \). Define \(\zeta(u) = \min_{t \in [a^*, b^*]} u(t) \) for any \(u \in K \). In the following, \(K(\zeta, e_3, e_4) \), \(K(\zeta, e_3, e_5) \), \(K(\zeta, e_3, e_5) \) have the same meaning as those in (4).

(I) We demonstrate that for sufficiently large \(n \), \(T_n \) has three fixed points. (See Fig. 1 for better comprehension.)

First, we are in position to show that for sufficiently large \(n \),

\[i(T_n, K(\zeta, e_3, e_5), K_{e_5}) = 1. \tag{5} \]

Set \(u_0(t) \equiv (e_3 + e_4)/2 \). Then \(u_0 \in K(\zeta, e_3, e_4) \), which means that \(K(\zeta, e_3, e_4) \neq \emptyset \). If \(u \in K(\zeta, e_3, e_4) \), we have

\[e_3 \leq \min_{t \in [a^*, b^*]} u(t) \leq \max_{t \in [0, 1]} u(t) = \| u \| \leq e_4. \]

By the construction of cone \(K \) and Lemma 3 we know that \(0 < (e_3 - \sigma \| k \|_1) t^{\alpha - 1} \leq u(t) - w(t) \leq e_4, \ t \in [0, 1], \) and

\[(e_3 - \sigma \| k \|_1) t^{\alpha - 1} \leq \max \left\{ u(t) - w(t), \frac{1}{n} \right\} \leq e_4, \ \ n > N_1 = \left\lceil \frac{1}{e_3} \right\rceil + 1, \]

which means

\[(e_3 - \sigma \| k \|_1) t^{\alpha - 1} \leq \chi_n(u - w)(t) \leq e_4, \ \ 0 < t < 1, \ n > N_1. \tag{6} \]

It follows from Lemma 2 and (A4) that

\[\zeta(T_n u) = \min_{t \in [a^*, b^*]} (T_n u)(t) \geq \min_{t \in [a^*, b^*]} t^{\alpha - 1}\| T_n u \| = \sigma^* \| T_n u \| \]

\[= \sigma^* \max_{t \in [0, 1]} \int_0^1 G(t, s) \left[f(s, \chi_n(u - w)(s)) + k(s) \right] ds \]

\[\geq \sigma^* \max_{t \in [0, 1]} t^{\alpha - 1} \int_0^1 J(s) \left[f(s, \chi_n(u - w)(s)) + k(s) \right] ds \]

\[\geq \sigma^* \int_{a^*}^{b^*} J(s) \psi(s, e_3, e_4) ds > e_3. \]

If \(u \in K(\zeta, e_3, e_5) \), then

\[e_3 \leq \min_{t \in [a^*, b^*]} u(t) \leq \max_{t \in [0, 1]} u(t) = \| u \| \leq e_5. \]

Hence, \(e_3 t^{\alpha - 1} \leq u(t) \leq e_5 \) for \(t \in [0, 1] \). Similar to (6), one has

\[(e_3 - \sigma \| k \|_1) t^{\alpha - 1} \leq \chi_n(u - w)(t) \leq e_5, \ \ 0 < t < 1, \ n > N_1. \tag{7} \]
This, together with Lemma 2 and (A3), means that
\[
\|T_n u\| = \max_{t \in [0,1]} \int_0^1 G(t, s) \left[f(s, \chi_n(u - w)(s)) + k(s) \right] \, ds \\
\leq \int_0^1 J(s) \left[f(s, \chi_n(u - w)(s)) + k(s) \right] \, ds \\
\leq \int_0^1 J(s) \hat{\varphi}(s, e_3, e_5) \, ds \leq e_5, \quad n > N_1.
\]
Consequently, \(T_n u \in K_{e_5} \).

For \(u \in K(\zeta, e_3, e_5) \) with \(\|T_n u\| > e_4 \), noticing that \(e_4 \geq e_3 \sigma^* - 1 \), we have \(\|T_n u\| > e_3 \sigma^* - 1 \). Therefore,
\[
\zeta(T_n u) = \min_{t \in [a^*, b^*]} (T_n u)(t) \geq \sigma^* \|T_n u\| > \sigma^* e_3 \sigma^* - 1 = e_3.
\]
Thus, for \(n > N_1 \), we know from Lemma 4 that (5) holds.

If \(u \in \partial(K_{e_5}) \), then \(\|u\| = e_5 \) and \(e_3 \sigma^* - 1 \leq u(t) \leq e_5 \), \(t \in [0, 1] \). Thus, (7) holds. By (7), (A3) and Lemma 2, similar to the proof of (8), for any \(n > N_1 \), one gets
\[
\|T_n u\| = \max_{t \in [0,1]} \int_0^1 G(t, s) \left[f(s, \chi_n(u - w)(s)) + k(s) \right] \, ds \\
\leq \int_0^1 J(s) \left[f(s, \chi_n(u - w)(s)) + k(s) \right] \, ds \\
\leq \int_0^1 J(s) \hat{\varphi}(s, e_3, e_5) \, ds \leq e_5, \quad \forall u \in \partial(K_{e_5}).
\]
It is clear, (A1) implies that $T_n u = e_2$ and $e_2 t^{a-1} \leq u(t) \leq e_2$, $t \in [0, 1]$. Thus, we have

$$0 < (e_2 - \sigma \| k \|_1) t^{a-1} \leq u(t) - w(t) \leq e_2$$

for $t \in [0, 1]$ and

$$(e_2 - \sigma \| k \|_1) t^{a-1} \leq \max \left\{ u(t) - w(t), \frac{1}{n} \right\} \leq e_2, \quad n > N_2 = \left[\frac{1}{e_2} \right] + 1,$$

i.e.,

$$(e_2 - \sigma \| k \|_1) t^{a-1} \leq \chi_n(u - w)(t) \leq e_2, \quad 0 < t < 1, \quad n > N_2.$$

By (A1) and Lemma 2, for any $n > N_2$, one has

$$\| T_n u \| = \max_{t \in [0, 1]} \int_0^1 G(t, s) [f(s, \chi_n(u - w)(s)) + k(s)] \, ds$$

\[
\leq \int_0^1 J(s) \hat{\varphi}(s, e_2) \, ds < e_2 \quad \forall u \in \partial(K_{e_2}). \tag{10}
\]

If $u \in \partial(K_{e_3})$, then $e_1 t^{a-1} \leq u(t) \leq e_1$, $t \in [0, 1]$. Thus, we have $0 < (e_1 - \sigma \| k \|_1) t^{a-1} \leq u(t) - w(t) \leq e_1$ for $t \in [0, 1]$ and

$$(e_1 - \sigma \| k \|_1) t^{a-1} \leq \max \left\{ u(t) - w(t), \frac{1}{n} \right\} \leq e_1, \quad n > N_3 = \left[\frac{1}{e_1} \right] + 1,$$

i.e.,

$$(e_1 - \sigma \| k \|_1) t^{a-1} \leq \chi_n(u - w)(t) \leq e_1, \quad 0 < t < 1, \quad n > N_3.$$

By (A2) and Lemma 2, for any $n > N_3$, one gets

$$\| T_n u \| = \max_{t \in [0, 1]} \int_0^1 G(t, s) [f(s, \chi_n(u - w)(s)) + k(s)] \, ds$$

\[
\geq \max_{t \in [0, 1]} t^{a-1} \int_0^1 J(s) [f(s, \chi_n(u - w)(s)) + k(s)] \, ds
\]

\[
\geq \int_0^1 J(s) \hat{\varphi}(s, e_1) \, ds \geq e_1 \quad \forall u \in \partial(K_{e_1}). \tag{11}
\]

By (9), (10), (11) and Lemma 5, for any $n > N = \max\{N_1, N_2, N_3\}$, we both have (5) and the following two equalities:

$$i(T_n, K_{e_3} \setminus K_{e_1}, K_{e_3}) = 1, \quad i(T_n, K_{e_2} \setminus K_{e_1}, K_{e_2}) = 1. \tag{12}$$

It is clear, (A1) implies that $T_n u$ has no fixed point on $\partial(K_{e_2})$. In addition, for $u \in K(\zeta, e_3, e_4)$, we have that $\zeta(T_n u) > e_3$, and for $u \in K(\zeta, e_3, e_5)$ with $\| T_n u \| > e_4$,
we also have that \(\zeta(T_n, u) > e_3 \). This is to say, \(T_n \) has no fixed point on \(K(\zeta, e_3, e_5) \). Thus, for \(n > N \), it follows from (5), (12) and the addition property of the topological degree that

\[
i(T_n, K_{e_3}) = i(T_n, K_{e_3} \setminus (K(\zeta, e_3, e_5) \cup K_{e_3})) = i(T_n, K_{e_2} \setminus K_{e_1}, K_{e_3}) = -1.
\]

As a consequence, for \(n > N \), \(T_n \) has at least three fixed points \(u^*_n \in K_{e_2} \setminus K_{e_1}, u^*_n \in K(\zeta, e_3, e_5) \), \(u^*_n \in K_{e_3} \setminus (K(\zeta, e_3, e_5) \cup K_{e_3}) \) satisfying \(e_1 < \|u^*_n\| < e_2, e_3 < \|u^*_n\| \leq e_5 \) with

\[
\min_{t \in [a^*, b^*]} u^*_n(t) > e_3, \quad \min_{t \in [a^*, b^*]} u^*_n(t) < e_3.
\]

(III) We prove that BVP (1) has triple positive solutions.

Taking into account the construction of the cone \(K \), one has that, for \(n > N \) and \(i = 1, 2, 3 \),

\[
u^*_n(t) \geq \|u^*_n\| t^{\alpha-1} \geq e_1 t^{\alpha-1} \geq \sigma \|k\| t^{\alpha-1} > w(t), \quad t \in [0, 1], \quad (13)
\]

and

\[
u^*_n(t) = \int_0^1 G(t, s) \left[f(s, \chi_n(u^*_n - w)(s)) + k(s) \right] ds, \quad t \in [0, 1]. \quad (14)
\]

It is easy to know from (H2) that \(\{u^*_n: n > N\} (i = 1, 2, 3) \) are bounded and equicontinuous on \([0, 1]\). Thus, Arzelà–Ascoli theorem implies that there exist a subsequence \(N_0 \) of \(N \) and corresponding continuous functions \(u^*_i (i = 1, 2, 3) \) such that \(u^*_n \) converges to \(u^*_i \) \((i = 1, 2, 3) \) uniformly on \([0, 1]\) as \(n \to \infty \) through \(N_0 \). Let \(n \to \infty \) on both sides of (14), one has

\[
u^*_i(t) = \int_0^1 G(t, s) \left[f(s, \chi(u^*_i - w)(s)) + k(s) \right] ds, \quad t \in [0, 1], \quad i = 1, 2, 3, \quad (15)
\]

and

\[e_1 \leq \|u^*_i\| \leq e_2, e_3 \leq \|u^*_2\| \leq e_5, e_2 \leq \|u^*_3\| \leq e_5\] (16)

with \(\min_{t \in [a^*, b^*]} u^*_2(t) \geq e_3, \min_{t \in [a^*, b^*]} u^*_3(t) \leq e_3 \). It can be easily seen from (13) that \(u^*_i(t) \geq t^{\alpha-1} \|u^*_i\| \geq e_1 t^{\alpha-1} \geq \sigma \|k\| t^{\alpha-1} \geq w(t) (i = 1, 2, 3) \). Let \(\tilde{u}_i(t) = u^*_i(t) - w(t) \), then we know from (15) that \(\tilde{u}_i(t) \) \((i = 1, 2, 3) \) are positive solutions for BVP (1). This, together with (16) and Lemma 3, implies that \(e_1 - \sigma \|k\| \leq \tilde{u}_i(t) \leq e_2, e_3 - \sigma \|k\| \leq \tilde{u}_2(t) \leq e_5, e_2 - \sigma \|k\| \leq \tilde{u}_3 \leq e_5 \) and \(\min_{t \in [a^*, b^*]} \tilde{u}_2(t) \geq e_3 - \sigma \|k\| \leq \min_{t \in [a^*, b^*]} \tilde{u}_3(t) \leq e_3 \).
4 An example

Consider the following singular fractional differential equations:

\[D^{1/3}_{0+} u(t) + f(t, u(t)) - \frac{1}{10^4 \sqrt{t}} = 0, \quad 0 < t < 1, \]
\[u(0) = u'(0) = u''(0) = 0, \]
\[D^{3/2}_{0+} u(1) = \frac{1}{2} D^{4/3}_{0+} u \left(\frac{1}{4} \right) + \frac{2}{3} D^{4/3}_{0+} u \left(\frac{1}{2} \right) + \frac{1}{4} D^{4/3}_{0+} u \left(\frac{4}{5} \right), \]

where \(f(t, u(t)) = \theta(u(t)) / (30 \sqrt{t(1-t)^2}) \) and
\[\theta(u) = \begin{cases} u^{1/3} + u^{-1/5}, & 0 < u \leq 1, \\ u^8 + 1, & 1 < u \leq 5, \\ u^{1/3} + 390626 - 5^{1/3}, & u > 5. \end{cases} \]

Clearly, \(\alpha = 11/3, n = 4, p = 3/2, q = 4/3, m = 3, \xi_1 = 1/4, \xi_2 = 1/2, \xi_3 = 4/5, a_1 = 1/2, a_2 = 2/3, a_3 = 1/4 \). It is easy to see that (H1) holds for \(k(t) = 1/(10^4 \sqrt{t}) \) and (H2) is valid for \(\gamma_1, r_2(t) = (1/(30 \sqrt{t(1-t)^2})) \).\(\big| r_1 \big|^{\epsilon/3} + (r_1^{8/3})^{-1/5} + r_2^{1/3} + 390627 - 5^{1/3} \). After direct calculation, we have \(\alpha - p - 1 = 7/6, \alpha - q - 1 = 4/3, \Gamma(\alpha) = 4.0122, \Gamma(\alpha - p) = 1.0823, \Gamma(\alpha - q) = 1.1906, \sum_{i=1}^{3} a_i \xi_i^{\alpha - q - 1} = 0.5290, \Delta = 1.9244, \sigma = 0.4801, \| k \|_1 = 1.5 \cdot 10^{-4}, \sigma \| k \|_1 = 7.202 \cdot 10^{-5} \). Take \(\alpha^* = 2/3, b^* = 1, e_1 = 10^{-4}, e_2 = 1/2, e_3 = 5, e_4 = 20, e_5 = 10^5 \). Then \(\sigma^* = (2/3)^{8/3} = 0.3392, \sigma^{\epsilon - 1} = 2.9481, e_4 > \sigma^{\epsilon - 1} e_3 \). We have
\[
\int_0^1 J(s) \hat{\varphi}(s, e_2) \, ds \\
\leq \int_0^1 \left[(1 - s)^{\alpha - p - 1}(1 - (1 - s)^p) + \sum_{i=1}^{m} a_i \xi_i^{\alpha - q - 1}(1 - s)^{\alpha - p - 1} \right] \frac{\Gamma(\alpha)}{\Delta \Gamma(\alpha - q)} \\
\times \frac{1}{30 \sqrt{s(1-s)^2}} \max \left\{ (u^{1/3} + u^{-1/5}): e_2 - \sigma \| k \|_1 s^{\alpha - 1} \leq u \leq e_2 \right\} \, ds \\
= \int_0^1 \left[(1 - s)^{7/6}(1 - (1 - s)^{3/2}) + \sum_{i=1}^{3} a_i \xi_i^{4/3} \right] \frac{\Gamma(\alpha)}{\Delta \Gamma(\alpha - q)} \left(1 - s \right)^{7/6} \\
\times \frac{1}{30 \sqrt{s(1-s)^2}} \max \left\{ (u^{1/3} + u^{-1/5}): 0.4999 s^{8/3} \leq u \leq 2^{-1} \right\} \, ds \\
\leq \frac{1}{30} \int_0^1 \left[0.2492(1 - s)^{7/6} - 0.2492(1 - s)^{8/3} + 0.2309(1 - s)^{7/6} \right] \\
\times \left[2^{-1/3} + (0.4999 s^{8/3})^{-1/5} \right] \, ds
\]
Hence, (A1) is satisfied. By Lemma 2 we have

\[
\int_{0}^{1} J(s) \tilde{\psi}(s, e_1) \, ds
\]

\[
= \int_{0}^{1} \left[\frac{(1-s)^{\alpha-1} (1-(1-s)^{p})}{\Gamma(\alpha)} + \sum_{i=1}^{m} \frac{a_i \xi_i^{\alpha-q-1} (1-s)^{\alpha-p-1}}{\Delta \Gamma(\alpha-q)} \right] \tilde{\psi}(s, e_1) \, ds
\]

\[
= \int_{0}^{1} \left[\frac{(1-s)^{7/6} (1-(1-s)^{3/2})}{\Gamma(\alpha)} + \sum_{i=1}^{3} \frac{a_i \xi_i^{4/3} (1-s)^{7/6}}{\Delta \Gamma(\alpha-q)} \right] \frac{1}{30 \sqrt{s(1-s)^2}}
\]

\[
\times \min \left\{ (u^{1/3} + u^{-1/3}) : 9.2798 \cdot s^{8/3} \cdot 10^{-4} \leq u \leq 10^{-3} \right\} \, ds
\]

\[
= \frac{1}{30} \int_{0}^{1} \frac{0.2492 (1-s)^{7/6} - 0.2492 (1-s)^{8/3} + 0.2309 \cdot (1-s)^{7/6}}{s^{1/3} (1-s)^{2/3}}
\]

\[
\times \left[(0.2798 \cdot s^{8/3} \cdot 10^{-4})^{1/3} + (10^{-3})^{-1/5} \right] \, ds
\]

\[
\geq \frac{1}{30} \left(0.4801 \int_{0}^{1} \frac{(1-s)^{1/2}}{s^{1/3}} \, ds - 0.2492 \int_{0}^{1} \frac{(1-s)^2}{s^{1/3}} \, ds \right) \cdot 10^{3/5}
\]

\[
= \frac{1}{30} (0.4801 \cdot 1.1088 - 0.2492 \cdot 0.6750) \cdot 3.9811
\]

\[
= 0.0483 > \frac{1}{10^3} = e_1.
\]
Thus, (A2) is verified. On the other hand,

\[\int_0^1 J(s) \hat{\varphi}(s, e_3, e_5) \, ds = \frac{1}{30} \int_0^1 \left[\frac{(1-s)^{\alpha-1}(1-(1-s)^p)}{\Gamma(\alpha)} + \sum_{i=1}^m a_i \xi_i^{\alpha-q-1}(1-s)^{\alpha-1} \right] \]

\[\times \frac{1}{\sqrt[3]{s(1-s)^2}} \left(10^{5/3} + 390626 - 5^{1/3} \right) \, ds \]

\[< \frac{1}{30} \int_0^1 \left[0.4801(1-s)^{7/6} - 0.2492(1-s)^{8/3} \right] \frac{s^{1/3}(1-s)^{2/3}}{\Gamma(\alpha)} + \sum_{i=1}^3 a_i \xi_i^{\alpha-q-1}(1-s)^{\alpha-1} \, ds \cdot 3.9067 \cdot 10^5 \]

\[= 4.7418 \cdot 10^3 < 10^5 = e_5. \]

As a result, (A3) is valid. We also have

\[\int_{2/3}^1 J(s) \hat{\psi}(s, e_3, e_4) \, ds \]

\[= \frac{1}{\sqrt[3]{s(1-s)^2}} \left(5^8 + 1 \right) ds \]

\[> \frac{1}{30} \sum_{i=1}^3 \frac{a_i \xi_i^{4/3}}{\Delta \Gamma(\alpha)} (1-s)^{7/6} s^{-1/3} (1-s)^{-2/3} \, ds \]

\[> \frac{1}{30} \cdot 390626 \int_{2/3}^1 \frac{\sum_{i=1}^3 a_i \xi_i^{4/3}}{\Delta \Gamma(\alpha)} (1-s)^{7/6} (1-s)^{-2/3} \, ds \]

\[= \frac{1}{30} \cdot 390626 \cdot 0.2309 \int_{2/3}^1 (1-s)^{1/2} \, ds \]

\[= \frac{1}{30} \cdot 390626 \cdot 0.2309 \cdot 0.1283 \]

\[= 385.7363 > 14.7405 = \sigma^{-1} e_3. \]

https://www.mii.vu.lt/NA
This is to say that (A4) is checked. Thus, Theorem 1 guarantees that BVP (17) has at least three positive solutions \(\hat{u}_1, \hat{u}_2, \hat{u}_3 \) satisfying

\[
4.9999 \leq \| \hat{u}_2 \| \leq 10^5, \quad 0.4999 \leq \| \hat{u}_3 \| \leq 10^5 \quad \text{with} \quad \min_{t \in [a^*, b^*]} \hat{u}_2(t) \geq 4.9999, \min_{t \in [a^*, b^*]} \hat{u}_3(t) \leq 5.
\]

Acknowledgment. The authors would like to thank the referee for his/her valuable comments and suggestions.

References

https://www.mii.vu.lt/NA

