Fixed points of multivalued nonlinear F-contractions on complete metric spaces

Ishak Altuna, Gülhan Minaka, Murat Olgunb

aDepartment of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
ishakaltun@yahoo.com; g.minak.28@gmail.com

bDepartment of Mathematics, Faculty of Science, Ankara University, 06100 Tandogan, Ankara, Turkey
olgun@ankara.edu.tr

Received: May 13, 2014 / Revised: December 11, 2014 / Published online: December 15, 2015

Abstract. We introduce a new concept for multivalued maps, also called multivalued nonlinear F-contraction, and give a fixed point result. Our result is a proper generalization of some recent fixed point theorems including the famous theorem of Klim and Wardowski [D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334(1):132–139, 2007].

Keywords: fixed point, multivalued maps, nonlinear F-contraction, complete metric space.

1 Introduction and preliminaries

Let (X, d) be a metric space. $P(X)$ denotes the family of all nonempty subsets of X, $C(X)$ denotes the family of all nonempty, closed subsets of X, $CB(X)$ denotes the family of all nonempty, closed, and bounded subsets of X, and $K(X)$ denotes the family of all nonempty compact subsets of X. It is clear that, $K(X) \subseteq CB(X) \subseteq C(X) \subseteq P(X)$. For $A, B \in C(X)$, let

$$H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \sup_{y \in B} d(y, A) \right\},$$

where $d(x, B) = \inf \{d(x, y) : y \in B\}$. Then H is called generalized Pompeiu–Hausdorff distance on $C(X)$. It is well known that H is a metric on $CB(X)$, which is called Pompeiu–Hausdorff metric induced by d. We can find detailed information about the Pompeiu–Hausdorff metric in [1, 5, 9]. Let $T : X \rightarrow CB(X)$ be a map, then T is called multivalued contraction (see [14]) if for all $x, y \in X$, there exists $L \in [0, 1)$ such that

$$H(Tx, Ty) \leq Ld(x, y).$$
In 1969, Nadler [14] proved that every multivalued contraction on complete metric space has a fixed point.

Nadler’s fixed point theorem has been extended in many directions [4, 6, 7, 10, 13, 16, 17]. The following generalization of it is given by Feng and Liu [8].

Theorem 1. (See [8].) Let \((X, d)\) be a complete metric space and \(T : X \to C(X)\). Assume that the following conditions hold:

(i) the map \(x \mapsto d(x, Tx)\) is lower semi-continuous;
(ii) there exist \(b, c \in (0, 1)\) with \(b < c\) such that for any \(x \in X\), there is \(y \in I^x_b\) satisfying

\[
d(y, Ty) \leq cd(x, y),
\]

where

\[
I^x_b = \{ y \in Tx : bd(x, y) \leq d(x, Tx) \}.
\]

Then \(T\) has a fixed point.

Recently, another interesting result have been obtained by Klim and Wardowski [11]. They proved the following theorem.

Theorem 2. (See [11].) Let \((X, d)\) be a complete metric space and \(T : X \to C(X)\). Assume that the following conditions hold:

(i) the map \(x \mapsto d(x, Tx)\) is lower semi-continuous;
(ii) there exists \(b \in (0, 1)\) and a function \(\varphi : [0, \infty) \to [0, b)\) satisfying

\[
\limsup_{t \to s^+} \varphi(t) < b \quad \text{for} \quad s \geq 0
\]

and for any \(x \in X\), there is \(y \in I^x_b\) satisfying

\[
d(y, Ty) \leq \varphi(d(x, y))d(x, y).
\]

Then \(T\) has a fixed point.

In this paper, we introduce a new class of multivalued maps and give a fixed point result, which extend and generalize many fixed point theorems including Theorems 1 and 2. Our results are based on \(F\)-contraction which is a new approach to contraction mapping. The concept of \(F\)-contraction for single valued maps on complete metric space was introduced by Wardowski [18]. First, we recall this new concept and some related results.

Let \(F : (0, \infty) \to \mathbb{R}\) be a function. For the sake of completeness, we will consider the following conditions:

\(F1\) \(F\) is strictly increasing, i.e., for all \(\alpha, \beta \in (0, \infty)\) such that \(\alpha < \beta\), \(F(\alpha) < F(\beta)\).

\(F2\) For each sequence \(\{\alpha_n\}\) of positive numbers,

\[
\lim_{n \to \infty} \alpha_n = 0 \quad \text{if and only if} \quad \lim_{n \to \infty} F(\alpha_n) = -\infty.
\]

http://www.mii.lt/NA
Fixed points of multivalued nonlinear F-contractions

Thus, every ordinary contraction is also an F-contraction. Thus, $x, y \in X$, it is clear that for $d(x, y) = 0$.

If we define $F_3(\alpha) = \ln \alpha$ for $\alpha \leq 1$ and $F_3(\alpha) = 2\alpha$ for $\alpha > 1$, then $F_3 \in F \setminus F_\tau$.

Remark 1. If F satisfies (F1), then it satisfies (F4) if and only if it is right continuous.

Definition 1. (See [18].) Let (X, d) be a metric space and $T : X \to X$ be a mapping. Then T is an F-contraction if $F \in F$ and there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx, Ty) > 0 \iff \tau + F(d(Tx, Ty)) \leq F(d(x, y)). \quad (1)$$

If we take $F(\alpha) = \ln \alpha$ in Definition 1, inequality (1) turns into

$$d(Tx, Ty) \leq e^{-\tau} d(x, y) \quad \text{for all } x, y \in X, Tx \neq Ty. \quad (2)$$

It is clear that for $x, y \in X$ such that $Tx = Ty$, the inequality $d(Tx, Ty) \leq e^{-\tau} d(x, y)$ also holds. Thus, T is an ordinary contraction with contractive constant $e^{-\tau}$. Therefore, every ordinary contraction is also an F-contraction with $F(\alpha) = \ln \alpha$, but the converse may not be true as shown in Example 2.5 of [18]. If we choose $F(\alpha) = \alpha + \ln \alpha$, inequality (1) turns into

$$d(Tx, Ty) e^{d(Tx, Ty) - d(x, y)} \leq e^{-\tau} \quad \text{for all } x, y \in X, Tx \neq Ty. \quad (3)$$

In addition, Wardowski showed that every F-contraction T is a contractive mapping, i.e.,

$$d(Tx, Ty) < d(x, y) \quad \text{for all } x, y \in X, Tx \neq Ty.$$

Thus, every F-contraction is a continuous map. Also, Wardowski concluded that if $F_1, F_2 \in F$ with $F_1(\alpha) \leq F_2(\alpha)$ for all $\alpha > 0$ and $G = F_2 - F_1$ is nondecreasing, then every F_1-contraction T is an F_2-contraction. He noted that for the mappings $F_1(\alpha) = \ln \alpha$ and $F_2(\alpha) = \alpha + \ln \alpha$, $F_1 < F_2$ and the mapping $F_2 - F_1$ is strictly increasing. Hence, every Banach contraction satisfies the contractive condition (3). On the other hand, Example 2.5 in [18] shows that the mapping T is not F_1-contraction (Banach contraction), but still is an F_2-contraction. Thus, the following theorem is a proper generalization of Banach contraction principle.

Theorem 3. (See [18].) Let (X, d) be a complete metric space and $T : X \to X$ be an F-contraction. Then T has a unique fixed point in X.

By combining the ideas of Wardowski’s and Nadler’s, Altun et al. [3] introduced the concept of multivalued F-contractions and obtained some fixed point results for these type mappings on complete metric space.

Definition 2. (See [3].) Let \((X, d)\) be a metric space and \(T : X \to \mathcal{CB}(X)\) be a mapping. Then \(T\) is a multivalued \(F\)-contraction if \(F \in \mathcal{F}\) and there exists \(\tau > 0\) such that for all \(x, y \in X\),

\[
H(Tx, Ty) > 0 \implies \tau + F(H(Tx, Ty)) \leq F(d(x, y)).
\]

By considering \(F(\alpha) = \ln \alpha\), every multivalued contraction in the sense of Nadler is also a multivalued \(F\)-contraction.

Theorem 4. (See [3].) Let \((X, d)\) be a complete metric space and \(T : X \to \mathcal{K}(X)\) be a multivalued \(F\)-contraction, then \(T\) has a fixed point in \(X\).

At this point, one can ask if \(\mathcal{CB}(X)\) can be used instead of \(\mathcal{K}(X)\) in Theorem 4. As shown in Example 1 of [2], the answer is negative. But, by adding condition (F4) on \(F\), we can take \(\mathcal{CB}(X)\) instead of \(\mathcal{K}(X)\).

Theorem 5. (See [3].) Let \((X, d)\) be a complete metric space and \(T : X \to \mathcal{CB}(X)\) be a multivalued \(F\)-contraction. Suppose \(F \in \mathcal{F}^*\), then \(T\) has a fixed point in \(X\).

On the other hand, Olgun et al. [15] proved the following theorems. Theorem 7 is a generalization of famous Mizoguchi–Takahashi’s fixed point theorem for multivalued contraction maps. These results are nonlinear cases of Theorems 4 and 5, respectively.

Theorem 6. (See [15].) Let \((X, d)\) be a complete metric space and \(T : X \to \mathcal{K}(X)\). If there exists \(F \in \mathcal{F}\) and \(\tau : (0, \infty) \to (0, \infty)\) such that

\[
\liminf_{t \to s^+} \tau(t) > 0 \quad \text{for all } s \geq 0
\]

and for all \(x, y \in X\),

\[
H(Tx, Ty) > 0 \implies \tau(d(x, y)) + F(H(Tx, Ty)) \leq F(d(x, y)),
\]

then \(T\) has a fixed point in \(X\).

Theorem 7. (See [15].) Let \((X, d)\) be a complete metric space and \(T : X \to \mathcal{CB}(X)\). If there exists \(F \in \mathcal{F}^*\) and \(\tau : (0, \infty) \to (0, \infty)\) such that

\[
\liminf_{t \to s^+} \tau(t) > 0 \quad \text{for all } s \geq 0
\]

and for all \(x, y \in X\),

\[
H(Tx, Ty) > 0 \implies \tau(d(x, y)) + F(H(Tx, Ty)) \leq F(d(x, y)),
\]

then \(T\) has a fixed point in \(X\).

2 Main results

Let \(T : X \to \mathcal{P}(X)\) be a multivalued map, \(F \in \mathcal{F}\) and \(\sigma \geq 0\). For \(x \in X\) with \(d(x, Tx) > 0\), define a set \(F^x_\sigma \subseteq X\) as

\[
F^x_\sigma = \{ y \in Tx : F(d(x, y)) \leq F(d(x, Tx)) + \sigma \}.
\]
We need to consider the following cases.

Case 1. If $T : X \to K(X)$, then for all $\sigma > 0$ and $x \in X$ with $d(x, Tx) > 0$, we have $F^x_\sigma \neq \emptyset$. Indeed, since Tx is compact, for every $x \in X$, we have $y \in Tx$ such that $d(x, y) = d(x, Tx)$. Therefore, for every $x \in X$ with $d(x, Tx) > 0$, we have $F(d(x, y)) = F(d(x, Tx))$. Thus, $y \in F^x_\sigma$ for all $\sigma > 0$.

Case 2. If $T : X \to C(X)$, then F^x_σ may be empty for some $x \in X$ and $\sigma \geq 0$. For example, let $F(\alpha) = \ln \alpha$ for $\alpha \leq 1$ and $F(\alpha) = 2\alpha$ for $\alpha > 1$ and let $X = \{0\} \cup (1, 2)$ with the usual metric. Define $T : X \to C(X)$ by $T(0) = (1, 2)$ and $Tx = \{0\}$ for $x \in (1, 2)$. Then for $x = 0$, we have (note that $d(0, T0) = 1 > 0$)

$$F^0_\sigma = \{y \in T0 : F(d(0, y)) \leq F(d(0, T0)) + 1\} = \{y \in (1, 2) : F(y) \leq F(1) + 1\} = \{y \in (1, 2) : 2y \leq 1\} = \emptyset.$$

Case 3. If $T : X \to C(X)$ (even if $T : X \to P(X)$) and $F \in \mathcal{F}_\alpha$, then for all $\sigma > 0$ and $x \in X$ with $d(x, Tx) > 0$, we have $F^x_\sigma \neq \emptyset$. Indeed, by (F4), we have

$$F^x_\sigma = \{y \in Tx : F(d(x, y)) \leq F(d(x, Tx)) + \sigma\} = \{y \in Tx : F(d(x, y)) \leq \inf\{F(d(x, y)) : y \in Tx\} + \sigma\} \neq \emptyset.$$

Mnak et al. [12] proved the following fixed point theorems. Note that Theorem 1 is a special case of Theorem 9.

Theorem 8. Let (X, d) be a complete metric space, $T : X \to K(X)$ and $F \in \mathcal{F}$. If there exists $\tau > 0$ such that for any $x \in X$ with $d(x, Tx) > 0$, there exists $y \in F^x_\sigma$ satisfying

$$\tau + F(d(y, Ty)) \leq F(d(x, y)),$$

where

$$F^x_\sigma = \{y \in Tx : F(d(x, y)) \leq F(d(x, Tx)) + \sigma\},$$

then T has a fixed point in X provided $\sigma < \tau$ and $x \to d(x, Tx)$ is lower semi-continuous.

Theorem 9. Let (X, d) be a complete metric space, $T : X \to C(X)$ and $F \in \mathcal{F}_\alpha$. If there exists $\tau > 0$ such that for any $x \in X$ with $d(x, Tx) > 0$, there exists $y \in F^x_\sigma$ satisfying

$$\tau + F(d(y, Ty)) \leq F(d(x, y)),$$

then T has a fixed point in X provided $\sigma < \tau$ and $x \to d(x, Tx)$ is lower semi-continuous.

By considering the above facts, we give the following theorems, which are nonlinear form of Theorems 8 and 9. Note that Theorem 10 is a proper generalization of Theorem 2.
Theorem 10. Let \((X, d)\) be a complete metric space, \(T : X \to C(X)\) and \(F \in \mathcal{F}_*\). Assume that the following conditions hold:

(i) the map \(x \to d(x, Tx)\) is lower semi-continuous;
(ii) there exist \(\sigma > 0\) and a function \(\tau : (0, \infty) \to (\sigma, \infty)\) such that

\[
\liminf_{t \to s^+} \tau(t) > \sigma \quad \text{for all } s \geq 0
\]

and for any \(x \in X\) with \(d(x, Tx) > 0\), there exists \(y \in F^x_\sigma\) satisfying

\[
\tau(d(x, y)) + F(d(y, Ty)) \leq F(d(x, y)).
\]

Then \(T\) has a fixed point.

Proof. Suppose that \(T\) has no fixed point. Then for all \(x \in X\), we have \(d(x, Tx) > 0\). Since \(Tx \in C(X)\) for every \(x \in X\), the set \(F^x_\sigma\) is nonempty for any \(\sigma > 0\). Let \(x_0 \in X\) be any initial point, then there exists \(x_1 \in F^x_{\sigma_1}\) such that

\[
\tau(d(x_0, x_1)) + F(d(x_1, Tx_1)) \leq F(d(x_0, x_1))
\]

and for \(x_1 \in X\), there exists \(x_2 \in F^x_{\sigma_2}\) satisfying

\[
\tau(d(x_1, x_2)) + F(d(x_2, Tx_2)) \leq F(d(x_1, x_2)).
\]

Continuing this process, we get an iterative sequence \(\{x_n\}\), where \(x_{n+1} \in F^x_{\sigma_n}\) and

\[
\tau(d(x_n, x_{n+1})) + F(d(x_{n+1}, Tx_{n+1})) \leq F(d(x_n, x_{n+1})). \tag{4}
\]

We will verify that \(\{x_n\}\) is a Cauchy sequence. Since \(x_{n+1} \in F^x_{\sigma_n}\), we have

\[
F(d(x_n, x_{n+1})) \leq F(d(x_n, Tx_n)) + \sigma. \tag{5}
\]

From (4) and (5) we have

\[
F(d(x_{n+1}, Tx_{n+1})) \leq F(d(x_n, Tx_n)) + \sigma - \tau(d(x_n, x_{n+1})) \tag{6}
\]

and

\[
F(d(x_{n+1}, x_{n+2})) \leq F(d(x_n, x_{n+1})) + \sigma - \tau(d(x_n, x_{n+1})). \tag{7}
\]

Let \(a_n = d(x_n, x_{n+1})\) for \(n \in \mathbb{N}\), then \(a_n > 0\) and from (7) \(\{a_n\}\) is decreasing. Therefore, there exists \(\delta \geq 0\) such that \(\lim_{n \to \infty} a_n = \delta\). Now let \(\delta > 0\). Using (7), the following holds:

\[
F(a_{n+1}) \leq F(a_n) + \sigma - \tau(a_n)
\]

\[
\leq F(a_{n-1}) + 2\sigma - \tau(a_n) - \tau(a_{n-1})
\]

\[\vdots\]

\[
\leq F(a_0) + n\sigma - \tau(a_n) - \tau(a_{n-1}) - \cdots - \tau(a_0). \tag{8}
\]

http://www.mii.lt/NA
Let $\tau(a_{p_n}) = \min\{\tau(a_0), \tau(a_1), \ldots, \tau(a_n)\}$ for all $n \in \mathbb{N}$. From (8) we get
\[
F(a_n) \leq F(a_0) + n(\sigma - \tau(a_{p_n})).
\] (9)

In a similar way, from (6) we can obtain
\[
F(d(x_{n+1}, Tx_{n+1})) \leq F(d(x_0, Tx_0)) + n(\sigma - \tau(a_{p_n})).
\] (10)

Now consider the sequence $\{\tau(a_{p_n})\}$. We distinguish two cases.

Case 1. For each $n \in \mathbb{N}$, there is $m > n$ such that $\tau(a_{p_n}) > \tau(a_{p_m})$. Then we obtain a subsequence $\{a_{p_{n_k}}\}$ of $\{a_{p_n}\}$ with $\tau(a_{p_{n_k}}) > \tau(a_{p_{n_k+1}})$ for all k. Since $a_{p_{n_k}} \to \delta^+$, we deduce that
\[
\liminf_{k \to \infty} \tau(a_{p_{n_k}}) > \sigma.
\]

Hence, $F(a_{n_k}) \leq F(a_0) + n_k(\sigma - \tau(a_{p_{n_k}}))$ for all k. Consequently, $\lim_{k \to \infty} F(a_{n_k}) = -\infty$, and by (F2), $\lim_{k \to \infty} a_{p_{n_k}} = 0$, which contradicts that $\lim_{n \to \infty} a_n > 0$.

Case 2. There is $n_0 \in \mathbb{N}$ such that $\tau(a_{p_{n_0}}) = \tau(a_{p_{m}})$ for all $m > n_0$. Then $F(a_{m}) \leq F(a_0) + m(\sigma - \tau(a_{p_{n_0}}))$ for all $m > n_0$. Hence, $\lim_{m \to \infty} F(a_{m}) = -\infty$, so $\lim_{m \to \infty} a_{m} = 0$, which contradicts that $\lim_{n \to \infty} a_n > 0$. Thus, $\lim_{n \to \infty} a_n = 0$. From (F3) there exists $k \in (0, 1)$ such that
\[
\lim_{n \to \infty} a_{n}^k F(a_n) = 0.
\]

By (9), the following holds for all $n \in \mathbb{N}$:
\[
a_{n}^k F(a_n) - a_{n}^k F(a_0) \leq a_{n}^k n(\sigma - \tau(a_{p_n})) \leq 0.
\] (11)

Letting $n \to \infty$ in (11), we obtain that
\[
\lim_{n \to \infty} a_{n}^k = 0.
\] (12)

From (12) there exits $n_0 \in \mathbb{N}$ such that $n_0 a_{n}^k \leq 1$ for all $n \geq n_0$. So, for all $n \geq n_0$, we have
\[
a_n \leq \frac{1}{n^{1/k}}.
\] (13)

In order to show that $\{x_n\}$ is a Cauchy sequence, consider $m, n \in \mathbb{N}$ such that $m > n \geq n_1$. Using the triangular inequality for the metric and from (13) we have
\[
d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \cdots + d(x_{m-1}, x_m)
\]
\[
= \sum_{i=n}^{m-1} d(x_i, x_{i+1}) \leq \sum_{i=n}^{\infty} d(x_i, x_{i+1}) \leq \sum_{i=n}^{\infty} \frac{1}{i^{1/k}}.
\]

By the convergence of the series $\sum_{i=1}^{\infty} (i^{-1/k})$, passing to limit $n, m \to \infty$, we get $d(x_n, x_m) \to 0$. This yields that $\{x_n\}$ is a Cauchy sequence in (X, d). Since (X, d) is

a complete metric space, the sequence \(\{x_n\} \) converges to some point \(z \in X \), that is,
\[
\lim_{n \to \infty} x_n = z.
\]
On the other hand, from (10) and (F2) we have
\[
\lim_{n \to \infty} d(x_n, Tx_n) = 0.
\]
Since \(x \to d(x, Tx) \) is lower semi-continuous, then
\[
0 \leq d(z, Tz) \leq \lim \inf_{n \to \infty} d(x_n, Tx_n) = 0.
\]
This is a contradiction. Hence, \(T \) has a fixed point.

In the following example, we show that there are some multivalued maps such that our result can be applied, but Theorem 2 can not.

Example 1. Let \(X = \{x_n = n(n + 1)/2, n \in \mathbb{N}\} \) and \(d(x, y) = |x - y| \). Then \((X, d) \) is a complete metric space. Define a mapping \(T : X \to C(X) \) as
\[
Tx = \begin{cases} \{x_1\}, & x = x_1, \\ \{x_1, x_{n-1}\}, & x = x_n. \end{cases}
\]
Then, since \(\tau_d \) is discrete topology, the map \(x \to d(x, Tx) \) is continuous. Now we claim that condition (ii) of Theorem 2.1 of [11] is not satisfied. Indeed, let \(x = x_n \) for \(n > 1 \), then \(Tx = \{x_1, x_{n-1}\} \). In this case, for all \(b \in (0, 1) \), there exists \(n_0(b) \in \mathbb{N} \) such that for all \(n \geq n_0(b) \), \(T_{n_0} = \{x_{n-1}\} \). Thus, for \(n \geq n_0(b) \), we have
\[
d(y, Ty) = n - 1, \quad d(x, y) = n.
\]
Therefore, since \(d(y, Ty)/d(x, y) = (n - 1)/n \), we can not find a function \(\varphi : [0, \infty) \to [0, b) \) satisfying
\[
d(y, Ty) \leq \varphi(d(x, y))d(x, y).
\]
Now we show that condition (ii) of Theorem 10 is satisfied with \(F(\alpha) = \alpha + \ln \alpha \), \(\sigma = 1/2 \) and \(\tau(t) = 1/t + 1/2 \). Note that if \(d(x, Tx) > 0 \), then \(x = x_n \) for \(n > 1 \). In this case, \(d(x_n, Tx_n) = n \). Therefore, for \(y = x_{n-1} \in Tx_n \), we have \(y \in F_{1/2}^{x_n} \) and
\[
\tau(d(x, y)) + F(d(y, Ty)) = \tau(n) + F(n - 1) \\
= \frac{n}{n} + \frac{1}{2} + n - 1 + \ln(n - 1) \\
\leq n + \ln n = F(n) = F(d(x, Tx)).
\]

Remark 2. If we take \(K(X) \) instead of \(C(X) \) in Theorem 10, we can remove condition (F4) on \(F \). Further, by taking into account Case 1, we can take \(\sigma \geq 0 \). Therefore, the proof of the following theorem is obvious.

Theorem 11. Let \((X, d)\) be a complete metric space and \(T : X \to K(X) \). Assume that the following conditions hold:
(i) the map $x \mapsto d(x, Tx)$ is lower semi-continuous;
(ii) there exists $\sigma \geq 0$, $F \in \mathcal{F}$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that
\[
\lim \inf_{t \to s^+} \tau(t) > \sigma \quad \text{for all } s \geq 0
\]
and for any $x \in X$ with $d(x, Tx) > 0$, there exists $y \in F^x_\sigma$ satisfying
\[
\tau(d(x, y)) + F(d(y, Ty)) \leq F(d(x, y)).
\]
Then T has a fixed point.

Acknowledgment. The authors are grateful to the referees because their suggestions contributed to improve the paper.

References

