Random convolution of \mathcal{O}-exponential distributions

Svetlana Danilenko, Jonas Šiaulys

aFaculty of Fundamental Sciences, Vilnius Gediminas Technical University
Saulėtekio ave. 11, LT-10223 Vilnius, Lithuania
svetlana.danilenko@vgtu.lt

bFaculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
jonas.siaulys@mif.vu.lt

Received: October 15, 2014 / Revised: February 12, 2015 / Published online: March 31, 2015

Abstract. Assume that ξ_1, ξ_2, \ldots are independent and identically distributed non-negative random variables having the \mathcal{O}-exponential distribution. Suppose that η is a nonnegative non-degenerate at zero integer-valued random variable independent of ξ_1, ξ_2, \ldots. In this paper, we consider the conditions for η under which the distribution of random sum $\xi_1 + \xi_2 + \cdots + \xi_\eta$ remains in the class of \mathcal{O}-exponential distributions.

Keywords: long tail, random sum, closure property, \mathcal{O}-exponential distribution.

1 Introduction

Let ξ_1, ξ_2, \ldots be independent copies of a random variable (r.v.) ξ with distribution function (d.f.) F_ξ. Let η be a nonnegative non-degenerate at zero integer-valued r.v. independent of $\{\xi_1, \xi_2, \ldots\}$. We suppose that F_ξ is \mathcal{O}-exponential and we find minimal conditions under which the d.f.

$$F_{S_\eta}(x) := \mathbb{P}(\xi_1 + \xi_2 + \cdots + \xi_\eta \leq x)$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(\eta = n) \mathbb{P}(\xi_1 + \xi_2 + \cdots + \xi_n \leq x)$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(\eta = n) F_\xi^{*n}(x)$$

belongs to the class of \mathcal{O}-exponential distributions as well. Here and elsewhere in this paper, F_ξ^{*n} denotes the n-fold convolution of d.f. F. Theorem 1 below is the main result of this paper. Before the exact formulation of this theorem, we recall the definition of \mathcal{O}-exponential and some related d.f.’s classes. In all definitions below, we assume that $F(x) = 1 - F(x) > 0$ for all $x \in \mathbb{R}$.

*The authors are supported by a grant (No. MIP-13079) from the Research Council of Lithuania.

© Vilnius University, 2015
Definition 1. For $\gamma > 0$, by $L(\gamma)$ we denote the class of exponential d.f.s, i.e. $F \in L(\gamma)$ if for any fixed real y,
\[
\lim_{x \to \infty} \frac{F(x + y)}{F(x)} = e^{-\gamma y}.
\]
In the case $\gamma = 0$, class $L(0)$ is called the long-tailed distribution class and is denoted by L.

Definition 2. A d.f. F belongs to the dominated varying-tailed class ($F \in D$) if for any fixed $y \in (0, 1)$,
\[
\limsup_{x \to \infty} \frac{F(xy)}{F(x)} < \infty.
\]

Definition 3. A d.f. F is O-exponential ($F \in OL$) if for any fixed $y \in \mathbb{R}$,
\[
0 < \liminf_{x \to \infty} \frac{F(x + y)}{F(x)} \leq \limsup_{x \to \infty} \frac{F(x + y)}{F(x)} < \infty.
\]

It is easy to see that the following inclusions hold:
\[
\mathcal{D} \subset OL, \quad L \subset OL, \quad \bigcup_{\gamma \geq 0} L(\gamma) \subset OL.
\]

In [2, 3], Cline claimed that d.f. $F_{\xi_1 + \xi_2 + \cdots + \xi_\eta}$ remains in the class $L(\gamma)$ if $F_\xi \in L(\gamma)$ and η is any nonnegative non-degenerate at zero integer-valued r.v. Albin [1] observed that Cline’s result is false in general. He obtained that d.f. $F_{\xi_1 + \xi_2 + \cdots + \xi_\eta}$ remains in the class $L(\gamma)$ and $Ee^{\delta \eta} < \infty$ for each $\delta > 0$. In order to prove this claim, author used the upper estimate
\[
\frac{F_{\xi_1 + \xi_2 + \cdots + \xi_\eta}(x - t)}{F_{\xi_1 + \xi_2 + \cdots + \xi_\eta}(x)} \leq (1 + \varepsilon)e^{\delta t}, \quad (1)
\]
provided that $\varepsilon > 0$, $t \in \mathbb{R}$, $F \in L(\gamma)$, $x \geq n(c_1 - t) + t$ and $c_1 = c_1(\varepsilon, t)$ is sufficiently large such that
\[
\frac{F(x - t)}{F(x)} \leq (1 + \varepsilon)e^{\delta t}
\]
for $x \geq c_1$ (see [1, Lemma 1]). Unfortunately, the obtained estimate holds for positive t only. If t is negative, then the above estimate is incorrect in general. This fact was shown by Watanabe and Yamamuro (see [8, Remark 6.1]). Thus, the Cline proposition that $P(\xi_1 + \xi_2 + \cdots + \xi_\eta \leq x)$ belongs to the class $L(\gamma)$ remains not proved.

In this paper, we investigate a wider class, OL, instead of the class $L(\gamma)$. We show that the d.f. of the sum $\xi_1 + \xi_2 + \cdots + \xi_\eta$ remains in the class OL, if r.v. η satisfies the conditions similar to that in [1]. The following theorem is the main statement in this paper.

Theorem 1. Let ξ_1, ξ_2, \ldots be independent copies of a nonnegative r.v. ξ with d.f. F_ξ. Let η be a nonnegative, non-degenerate at zero, integer-valued and independent of $\{\xi_1, \xi_2, \ldots\}$ r.v. with d.f. F_η. If F_ξ belongs to the class OL and $\overline{F_\eta}(\delta x) = O(\sqrt{x}F_\xi(x))$ for each $\delta \in (0, 1)$, then $F_{\sigma_1 + \sigma_2 + \cdots + \sigma_\eta} \in OL$.

http://www.mii.lt/NA
A detailed proof of Theorem 1 is presented in Section 3. Note that the proof is similar to that of Theorem 6 in [5].

The following assertion actually shows that Albin’s conditions for the counting r.v. \(\eta \) are sufficient for d.f. \(F_{S_n} \) to remain in the class \(\mathcal{OL} \). The proof of the following corollary is also presented in Section 3.

Corollary 1. Let \(\xi_1, \xi_2, \ldots \) be a sequence of independent nonnegative r.v.s with common d.f. \(F_\xi \in \mathcal{OL} \).

(i) D.f. \(P(\xi_1 + \cdots + \xi_n \leq x) \) belongs to the class \(\mathcal{OL} \) for each fixed \(n \in \mathbb{N} \).

(ii) Let \(\eta \) be a r.v. which is nonnegative, non-degenerate at zero, integer-valued and independent of \(\{\xi_1, \xi_2, \ldots\} \). If \(\mathbb{E}e^{\varepsilon \eta} < \infty \) for each \(\varepsilon > 0 \), then \(F_{S_n} \in \mathcal{OL} \).

2 Auxiliary lemmas

Before proving our main results, we give three auxiliary lemmas. The first lemma is well known classical estimate for the concentration function of a sum of independent and identically distributed r.v.s. The proof of Lemma 1 can be found in [6] (see Theorem 2.22), for instance.

Lemma 1. Let \(X_1, X_2, \ldots, \) be a sequence of independent r.v.s with a common non-degenerate d.f. Then there exists a constant \(c_2 \), independent of \(\lambda \) and \(n \), such that

\[
\sup_{x \in \mathbb{R}} P(x \leq X_1 + X_2 + \cdots + X_n \leq x + \lambda) \leq c_2(\lambda + 1)n^{-1/2}
\]

for all \(\lambda \geq 0 \) and all \(n \in \mathbb{N} \).

The second auxiliary lemma is due to Shimura and Watanabe (see [7, Prop. 2.2]). The lemma describes an important property of a d.f. from the class \(\mathcal{OL} \).

Lemma 2. Let \(F \) be a d.f. from the class \(\mathcal{OL} \). Then there exists positive \(\Delta \) such that

\[
\lim_{x \to \infty} e^{\Delta x} F(x) = \infty.
\]

The last auxiliary lemma is crucial in the proof of Theorem 1. The elements of the statement below can be found in [4] (see the proof of Theorem 3(b)). Inequality (1), which is a particular case of the statement below, is proved in [1] (see Lemma 2.1). Leipus and Šiaulys [5] generalized Albin’s inequality (1) for an arbitrary d.f. with unbounded support. The analytical proof of Lemma 3 is given in [5] (see proof of Lemma 4). In this paper, we present another, completely probabilistic proof of the lemma below having in mind the importance of the statement.

Lemma 3. Let d.f. \(F \) be such that \(F(x) > 0 \) for all \(x \in \mathbb{R} \). Suppose that

\[
\sup_{x \geq d_2} \frac{F(x - t)}{F(x)} \leq d_1
\]
for some positive constants \(t, d_1 \) and \(d_2 > t \). Then, for all \(n = 1, 2, \ldots \), we have:

\[
\sup_{x \geq n(d_2 - t) + t} \frac{F^{n+1}(x - t)}{F^n(x)} \leq d_1.
\]

Proof of Lemma 3. Let \(X \) be a r.v. with d.f. \(F \). Then the condition of Lemma 3 says that

\[
\sup_{x \geq d_2} \frac{P(X > x - t)}{P(X > x)} \leq d_1
\]

for some positive \(t, d_1, d_2 > t \), and we need to prove that

\[
\sup_{x \geq (nd_2 - t) + t} \frac{P(S_n^X > x - t)}{P(S_n^X > x)} \leq d_1
\]

for all \(n \in \mathbb{N} \), where \(S_n^X = X_1 + \cdots + X_n \), and \(X_1, X_2, \ldots \) are independent copies of \(X \).

The proof is proceeded by induction on \(n \). According to condition (2), inequality (3) holds for \(n = 1 \). Suppose now that \(N \geq 1 \). For arbitrary real \(x, z \) and \(t > 0 \), we obtain

\[
P(S_{N+1}^X > x) = P(S_N^X + X_{N+1} > x, X_{N+1} \leq x - z) + P(S_N^X + X_{N+1} > x, S_N^X \leq z) + P(X_{N+1} > x - z) P(S_N^X > z) \
\geq P(S_N^X > x - X_{N+1}, x - X_{N+1} \geq z) + P(X_{N+1} > x - S_N^X, x - S_N^X \geq x - z + t) + P(X_{N+1} > x - z) P(S_N^X > z).
\]

If we replace \(x \) by \(x - t \) and \(z \) by \(z - t \) then we get

\[
P(S_{N+1}^X > x - t) = P(S_N^X + X_{N+1} > x - t, X_{N+1} \leq x - z) + P(S_N^X + X_{N+1} > x - t, S_N^X \leq z - t) + P(X_{N+1} > x - z) P(S_N^X > z - t) \
= P(S_N^X > x - X_{N+1} - t, x - X_{N+1} \geq z) + P(X_{N+1} > x - S_N^X - t, x - S_N^X \geq x - z + t) + P(X_{N+1} > x - z) P(S_N^X > z - t).
\]

R.v.s \(X_1, X_2, \ldots \) are independent. Therefore,

\[
P(S_N^X > x - X_{N+1} - t, x - X_{N+1} \geq z) \
= E(E(1_{\{S_N^X > x - X_{N+1} - t\}} 1_{\{x - X_{N+1} = y\}} | x - X_{N+1} = y)) \
= E(1_{\{y \geq z\}} E(1_{\{S_N^X > y - t\}} | x - X_{N+1} = y)) \
= E(1_{\{y \geq z\}} P(S_N^X > y - t))
\]

http://www.mii.lt/NA
Random convolution of O-exponential distributions

\[\leq \sup_{y \geq z} \frac{\mathbb{P}(S_N^X > y - t)}{\mathbb{P}(S_N^X > y)} \mathbb{E}(1_{(y \geq z)} \mathbb{P}(S_N^X > y)) \]

\[= \sup_{y \geq z} \frac{\mathbb{P}(S_N^X > y - t)}{\mathbb{P}(S_N^X > y)} \mathbb{P}(S_N^X > x - X_{N+1}, x - X_{N+1} \geq z), \quad (6) \]

where \(1_A\) denotes the indicator function of an event \(A\). Similarly,

\[\mathbb{P}(X_{N+1} > x - S_N^X - t, x - S_N^X \geq x - z + t) \]

\[\leq \sup_{y \geq x - z + t} \frac{\mathbb{P}(X_{N+1} > y - t)}{\mathbb{P}(X_{N+1} > y)} \mathbb{P}(X_{N+1} > x - S_N^X, x - S_N^X \geq x - z + t). \quad (7) \]

Using estimates (4)–(7), we obtain

\[\frac{\mathbb{P}(S_N^X_{N+1} > x - t)}{\mathbb{P}(S_N^X_{N+1} > x)} \leq \max \left\{ \sup_{y \geq z} \frac{\mathbb{P}(S_N^X > y - t)}{\mathbb{P}(S_N^X > y)}, \sup_{y \geq x - z + t} \frac{\mathbb{P}(X > y - t)}{\mathbb{P}(X > y)} \right\} \quad (8) \]

if \(x, z \in \mathbb{R}, t > 0\) and \(N \geq 1\).

Suppose now that (3) is satisfied for \(n = N\). We will show that (3) holds for \(n = N + 1\).

Condition (2) and estimate (8) imply, taking \(z = z_N = Nx/(N+1) + t/(N+1)\) and \(w_N = x - z_N + t = x/(N+1) + Nt/(N+1),\) that

\[\frac{\mathbb{P}(S_N^X_{N+1} > x - t)}{\mathbb{P}(S_N^X_{N+1} > x)} \leq \max \left\{ \sup_{y \geq z_N} \frac{\mathbb{P}(S_N^X > y - t)}{\mathbb{P}(S_N^X > y)}, \sup_{y \geq w_N} \frac{\mathbb{P}(X > y - t)}{\mathbb{P}(X > y)} \right\} \leq d_1 \]

if \(x \geq (N + 1)(d_2 - t) + t,\) because, in this case,

\[z_N \geq N(d_2 - t) + t \quad \text{and} \quad w_N \geq d_2. \]

So, estimate (3) holds for \(n = N + 1\) and the validity of (3) for all \(n\) follows by induction.

\[\square \]

3 Proofs of main results

In this section, we present detailed proofs of our main results.

Proof of Theorem 1. First, we show that

\[\limsup_{x \to \infty} \frac{F_{S_a}(x - a)}{F_{S_a}(x)} = \limsup_{x \to \infty} \frac{\mathbb{P}(S_a > x - a)}{\mathbb{P}(S_a > x)} < \infty \quad (9) \]

for each \(a \in \mathbb{R}\).

If \(a \leq 0\), then \(\mathbb{P}(S_a > x - a) \leq \mathbb{P}(S_a > x)\) for all \(x \in \mathbb{R},\) and estimate (9) is obvious.

Suppose now that $a > 0$. Since $F_\xi \in OL$, we derive that
\[
\limsup_{x \to \infty} \frac{F_\xi(x-a)}{F_\xi(x)} = c_3
\]
for some finite positive quantity c_3 maybe depending on a. So, there exists some $K = K_a > a + 1$ such that
\[
\sup_{x \geq K} \frac{F_\xi(x-a)}{F_\xi(x)} \leq 2c_3.
\]
Applying Lemma 3, we obtain that
\[
\sup_{x > n(K-a)+a} \frac{P(S_n > x-a)}{P(S_n > x)} = \sup_{x > n (K-a)+a} \frac{F_{\eta n}(x-a)}{F_{\eta n}(x)} \leq 2c_3,
\]
where and below $S_n = \xi_1 + \xi_2 + \cdots + \xi_n$ if $n \in \mathbb{N}$.

For an arbitrarily chosen positive x, we have
\[
P(S_\eta > x) = \sum_{n=1}^{\infty} P(S_n > x)P(\eta = n) \geq \sum_{n=1}^{\infty} P(\xi_1 > x)P(\eta = n)
= F_\xi(x)P(\eta \geq 1).
\]
If $x \geq K$, then, using (12), we get:
\[
P(S_\eta > x-a) = P\left(S_\eta > x-a, \eta \leq \frac{x-a}{K-a}\right) + P\left(S_\eta > x-a, \eta > \frac{x-a}{K-a}\right)
\leq 2c_3 \sum_{n \leq (x-a)/(K-a)} P(S_n > x)P(\eta = n)
+ \sum_{n > (x-a)/(K-a)} P(S_n > x-a)P(\eta = n).
\]
Random convolution of O-exponential distributions

\[\leq c_4 \sum_{n=1}^{\infty} P(S_n > x)P(\eta = n) \]

\[+ \sum_{n>(x-a)/(K-a)} P(x-a < S_n \leq x)P(\eta = n) \] \hspace{1cm} (14)

with $c_4 = \max\{2c_3, 1\}$.

According to Lemma 1, we obtain

\[\sup_{x \in \mathbb{R}} P(x-a < S_n \leq x) \leq c_5(a+1) \frac{1}{\sqrt{n}}, \]

where the constant c_5 is independent of a and n. Thus, inequality (14) implies

\[P(S_\eta > x-a) \leq c_4P(S_\eta > x) + c_5(a+1) \sum_{n>(x-a)/(K-a)} \frac{P(\eta = n)}{\sqrt{n}} \]

\[\leq c_4P(S_\eta > x) + c_5\sqrt{\frac{K-a}{x-a}}(a+1)P(\eta > \frac{x-a}{K-a}) \] \hspace{1cm} (15)

provided that $x \geq K$.

Inequalities (13) and (15) imply that, for $x \geq K$, it holds

\[\frac{P(S_\eta > x-a)}{P(S_\eta > x)} \leq c_4 + \frac{c_5\sqrt{K-a}(a+1)}{\sqrt{x-a}P(\eta \geq 1)F_\xi(x)} \]

Consequently,

\[\limsup_{x \to \infty} \frac{P(S_\eta > x-a)}{P(S_\eta > x)} \]

\[\leq c_4 + c_5 \frac{(a+1)\sqrt{K-a}}{P(\eta \geq 1)} \limsup_{x \to \infty} \frac{F_\eta((x-a)/(K-a))}{\sqrt{x-a}F_\xi(x-a)} \limsup_{x \to \infty} \frac{F_\xi(x-a)}{F_\xi(x)} \]

\[= c_4 + c_3c_5 \frac{(a+1)\sqrt{K-a}}{P(\eta \geq 1)} \limsup_{x \to \infty} \frac{F_\eta(x/(K-a))}{\sqrt{F_\xi(x)} < \infty} \]

due to equality (10) and requirement $F_\eta(\delta x) = O(\sqrt{x}F_\xi(x))$ which holds for arbitrary $\delta \in (0, 1)$. Therefore, relation (9) is satisfied for all $a \in \mathbb{R}$.

It remains to prove that

\[\liminf_{x \to \infty} \frac{F_{S_\eta}(x-a)}{F_{S_\eta}(x)} = \liminf_{x \to \infty} \frac{P(S_\eta > x-a)}{P(S_\eta > x)} > 0, \]

where a is an arbitrarily chosen real number. But this relation follows from the proved estimate (9), because

\[P(S_\eta > x) \geq F_\xi(x)P(\eta \geq 1) > 0 \]

for each positive number x, and so
\[
\liminf_{x \to \infty} \frac{P(S_n > x - a)}{P(S_n > x)} = \left(\limsup_{x \to \infty} \frac{P(S_n > x + a)}{P(S_n > x)} \right)^{-1} > 0.
\]
The last inequality, together with estimate (9), implies that d.f. F_{S_n} belongs to the class \mathcal{OL}. Theorem 1 is proved.

Proof of Corollary 1. Part (i) of Corollary 1 is evident. So we only prove part (ii). Let $\delta \in (0, 1)$. According to the Markov inequality, we have
\[
\mathcal{F}_\eta(\delta x) = P(\eta > \delta x) = P(e^{y\eta} > e^{y\delta x}) \leq e^{-\delta y x} E e^{y\eta}
\]
for each $y > 0$. The d.f. F_ξ belongs to the class \mathcal{OL}. Therefore, Lemma 2 implies that $e^{\Delta x} \mathcal{F}_\xi(x) \to \infty$ as $x \to \infty$, for some positive Δ.

Choosing $y = \Delta/\delta > 0$ in (16), we obtain:
\[
\frac{\mathcal{F}_\eta(\delta x)}{\sqrt{x} \mathcal{F}_\xi(x)} \leq \frac{E e^{y\eta}}{\sqrt{e^{\delta y x} \mathcal{F}_\xi(x)}} = \frac{1}{\sqrt{e^{\Delta x} \mathcal{F}_\xi(x)}} e^{(\Delta/\delta) \eta} \quad x \to \infty
\]
because $E e^{\varepsilon \eta}$ is finite for an arbitrarily positive ε according to the main condition of Corollary 1. The statement of Corollary 1 follows now from Theorem 1.

Acknowledgment. We would like to thank anonymous referees for the detailed and helpful comments.

References

http://www.mii.lt/NA