Ring Line Mapping and Rotation Inertial for Fingerprint Identification

Ching-Liang SU
Department of Industrial Engineering and Technology Management, Da Yeh University
168 University Road, Dacun, Chang-Hua 51505, Taiwan
e-mail: cls2@mail.dyu.edu.tw

Received: March 2009; accepted: October 2010

Abstract. This study uses the r-theta transformation technique to map a fingerprint image to the straight-line signals. Subsequently, the “vector magnitude invariant transform” technique is applied to them to generate an invariant magnitude for person identification. This technique can solve the image rotation problem. Various vertical magnitude strips are generated to deal with the image-shifting problem. The algorithm developed in this study can precisely classify the fingerprint images.

Keywords: ring line mapping, rotation invariant, and fingerprint identification.

1. Introduction

In the past thirty years, researchers have devoted much attention to the identification of fingerprints. The techniques used have included directional histogram equalization (Bouchaffra and Amira, 2008), binary image stream angle (Cappelli et al., 2007; Lee and Choi, 2007; Nandakumar et al., 2007; Bartkuté-Norkūnienė, 2009; Ross et al., 2007), principal component analysis (Dagher and Nachar, 2006; Zuo and David Zhang, 2006), bright indicator (Fernandez and Fierrez, 2007), sine component mapping (Lipeika, 2010), the IFFT filter, minutia location shape matching (Galy et al., 2007; Jea and Govindaraju, 2005), fine binary (Ji and Yi, 2007), orientation estimation (Jiang, 2005), the Gabor filter (Fernandez and Fierrez, 2007; Lee and Choi, 2007), feature learning (Bastys et al., 2010; Tan et al., 2005), wavelet transform, phase correlation (Ito et al., 2005), singular point detection (Bartkutė-Norkūnienė, 2009; Jea and Govindaraju, 2005), wavelet, FFT, log polar transform, quad tree (Krašnjak and Krivec, 2005), directional detection (Fernandez and Fierrez, 2007; Park and Park, 2005), sub band decomposition, dilate enhancement, feature extraction, ridge tracing, and linear discriminate analysis (Zuo and David Zhang, 2006).

In the aforementioned research, the researchers used a very complicated mathematical mode, e.g., image phase, to solve the image rotation problem. The wavelet transform does not work well for filtering the noises plaguing a fingerprint image. The popular techniques to recognize fingerprint images were image subtraction, wherein there are two images:
one was called the “sample image” and another, “unknown image”, by the subtraction of the former to the latter to recognize different fingerprints.

For comparison between the method proposed in this study and other image rotation approach, to the minutia image, for dealing with the image-shifting problem, the other method needs to locate the bifurcation point(s) of minutia image; next, the algorithm can use it as the centroid by which to extract the fingerprint image; subsequently, image rotation and comparison can be conducted to identify different images. However, in some minutia image there is no bifurcation point and/or they are very obscure, to which one cannot precisely locate them. Furthermore, the bifurcation point might locate near the end of the image frame, to which only small region of the fingerprint image can be extracted; thereby, resulting in poor comparison result. Moreover, fingerprint image might rotate to other directions with sub-pixel, greater than 15 degree, or more severe rotations. To this, sub-pixel level comparisons are required to obtain the correct comparison result; subsequently, huge amount of computation time are needed to complete the job. In addition, various number of the bifurcation points might be presented in one image, to which a image might posses its unique database to record the bifurcation sub-patterns; furthermore, one-to-many comparison technique is required to obtain the correct comparison result. To this, the system is more complicated.

The method proposed in the study can accomplish the aforementioned approach in a more efficient way. First it locates the centroid of the image; then, it performs the circle signal extraction technique which extracting the fingerprint signals and it can extract a greater region than the aforementioned method; next, it performs the rotation invariant transform which can deal with the sub-pixel and/or more than 15 degree or severe rotation problem and it only requires one computation time which is a time saving technique. For managing the image-shifting problem, the neighboring 8 pixels of the centroid are selected to run the aforementioned procedure by the try-and-error approach. To this, it is a fix-point model which can be easier to be implemented comparing to the aforementioned method.

In the present study, the image-scaling problem is ignored, i.e., the “sample image” and “unknown image” possess the same image size; however, for the image comparison the following two problem must be solved: (1) image shifting, and (2) rotation problems. Solving these two problems by the brutal method is a NP-Hard problem. In this study, the image used is a 128 by 128 image. Since two fingerprints need to be compared to find the differences, they need to be aligned to the same position. Suppose a sample image is located in the center of a 128 by 128 image and its orientation is in a straight position. For comparison, a unknown image needs to be shifted and rotated to the center and straight position. For accurate comparison, during the fine-tuning steps, the unknown image must be shifted up or down or rotated counter- or clock-wise to match the sample image. This approach is a time consuming process and the correct result might not be obtained.

In this study, the centroid of the image was located manually, by which one cannot exactly find the precise location of the centroid of the fingerprint image. After the image shifting, this study suppose the centroid of the unknown image is located in one of the following locations: (64, 64), (63, 63), (63, 65), (65, 65), (65, 63), (62, 64), (64, 66), (66, 64),
and (64, 62). Fine-tuning is needed to shift this image to its proper position to obtain the better result. The follow steps are taken to fine-tune the position of the unknown image.

In this study, (1) the centroid of the “sample” and “unknown” images are supposed in position (64, 64) and the ring to line signal-mapping technique is used to map both images. Subsequently, the “vector magnitude invariant transform” technique is used to transfer the sample and unknown images to an invariant vector magnitude; by comparing the differences of them, the algorithm can determine whether the sample and unknown images are the identical image; by examining the final experimental result, it can be observed that this approach can yield good recognition rate.

Thus, the approximation method to match the centroids of the “sample” and “unknown” images can solve the image-shifting problem and the “ring-line mapping” and “vector magnitude invariant transform” techniques are used to solve the image-rotation problem.

In the previous discussion, the centroid position of a fingerprint image was found manually. In the future, other more reliable technique to detect the centroids of the fingerprint images might be developed.

The ring-line signal mapping technique is the interpolation of an image from the polar coordinate system to the \(x-y\) coordinate system. The “vector magnitude invariant transform” technique is used to transfer an image to an invariant vector magnitude, whereby to generate the signal vectors in the complex number domain.

This report consists of five sections. Section 2 shows the mechanism of the “vector magnitude invariant transform”. Section 3 employs the r-theta transformation to extract the fingerprint image. Section 4 extracts the fingerprint signals by various locations and performs the signal comparison. Section 5 concludes this report.

2. Vector Magnitude Invariant Transform

In this study, signals are extracted by following a sampling circle, whereby the strengths of extracted ring signals generate emanated vectors. Next summing these vectors generates a single vector. Subsequently, the magnitude of this single vector can be determined, whereby is used to identify different persons. This ring can rotate to various orientations. However, no matter where the ring rotates, the aforementioned magnitude is unique. This indicates that although the fingerprint is rotated, after the transformation, the vector magnitude is invariant.

Figure 1 shows the ring-signals \(x_0, x_1, x_2, \ldots, x_{127}\), wherein circle-centroid and signals \(x_0, x_1\) generates an angle \(\angle x_0\text{Centroid} x_1\), wherein the angle is 2.81°. Similarly, signals \(x_1, x_2\), and centroid also generate an angle \(\angle x_1\text{Centroid} x_2\) with angle 2.81° too, \ldots. Similarly, every two signals and centroid generate an angle with 2.81°. Figure 2
shows the ring-signals of $x_{0+n}, x_{1+n}, x_{2+n}, \ldots, x_{127+n}$, to which every two signals and centroid also generates the angle of 2.81°. Figures 1 and 2 present the same ring. However, the ring in Fig. 1 is rotated $n \cdot 2.81^\circ$ clock-wisely, whereby to generate the ring of Fig. 2, wherein n is a positive integer number. Equation (1) shows the “vector magnitude invariant transform”, by which to transform the signals $x_0, x_1, x_2, \ldots, x_{127}$ in Fig. 1 to vectors $f(x_0), f(x_1), f(x_2), \ldots, f(x_{127})$. Furthermore, the terms of the follows are generated: $F(u_0), F(u_1), F(u_2), \ldots, F(u_{127})$. In (1) and (2), the parameter ρ is set to 2.81, since the rings in Figs. 1 and 2 contain 128 signals. The ring signals in Figs. 1 and 2 are fed to the first equation in (1) and (2) respectively, whereby $F_1(u_0)$ and $F_2(u_0)$ are generated respectively. As mentioned in the beginning of this section, the magnitudes of $F_1(u_0)$ and $F_2(u_0)$ should be equal. Therefore, $\|F_1(u_0)\|$ and $\|F_2(u_0)\|$ present the same value. Furthermore, the conclusions of follows could also be reached: $\|F_1(u_1)\| = \|F_2(u_1)\|, \ldots, \|F_1(u_{127})\| = \|F_2(u_{127})\|$. By this property, the image can be recognized, as shown in Fig. 3, whereby the orientations of them are somewhat different.
3. Signal Mapping and Image Shifting Problem

Figure 4 shows mapping the ring signals to straight-line signals, wherein the radius of this ring is 58. This figure shows one ring generates one straight-line signal. In this study, in order to obtain more fingerprint image, various ring with different radii are used to extract fingerprint, as 13, 16, 19, 22, . . . , 58. Figure 5 shows the result of multiple extracted straight-lines.

Furthermore, as examining the left-picture in Fig. 4, it can be observed that the circle-center is located in position (64, 64) of a 128 by 128 image, whereby the mapping straight-line signals reside in the left area in the right picture. As aforementioned, various radii are set to extract the fingerprint, as 13, 16, 19, 22, . . . , 58. Subsequently, the extracted results are resided in the left area, as shown in right image of Fig. 5.

\[
\begin{align*}
F_1(u_0) &= f(x_0)e^{-jp^{0,0}} + f(x_1)e^{-jp^{0,1}} + f(x_2)e^{-jp^{0,2}} + \cdots + f(x_{127})e^{-jp^{0,127}}, \\
F_1(u_1) &= f(x_0)e^{-jp^{1,0}} + f(x_1)e^{-jp^{1,1}} + f(x_2)e^{-jp^{1,2}} + \cdots + f(x_{127})e^{-jp^{1,127}}, \\
F_1(u_2) &= f(x_0)e^{-jp^{2,0}} + f(x_1)e^{-jp^{2,1}} + f(x_2)e^{-jp^{2,2}} + \cdots + f(x_{127})e^{-jp^{2,127}}, \\
& \vdots \quad \vdots \quad \vdots \\
F_1(u_{127}) &= f(x_0)e^{-jp^{127,0}} + f(x_1)e^{-jp^{127,1}} + \cdots + f(x_{127})e^{-jp^{127,127}}, \\
F_2(u_0) &= f(x_{0+n})e^{-jp^{0,(0+n)}} + f(x_{1+n})e^{-jp^{0,(1+n)}} + f(x_{2+n})e^{-jp^{0,(2+n)}} + \cdots + f(x_{127+n})e^{-jp^{0,(127+n)}}, \\
F_2(u_1) &= f(x_{0+n})e^{-jp^{1,(0+n)}} + f(x_{1+n})e^{-jp^{1,(1+n)}} + f(x_{2+n})e^{-jp^{1,(2+n)}} + \cdots + f(x_{127+n})e^{-jp^{1,(127+n)}}, \\
F_2(u_2) &= f(x_{0+n})e^{-jp^{2,(0+n)}} + f(x_{1+n})e^{-jp^{2,(1+n)}} + f(x_{2+n})e^{-jp^{2,(2+n)}} + \cdots + f(x_{127+n})e^{-jp^{2,(127+n)}}, \\
& \vdots \quad \vdots \quad \vdots \\
F_2(u_{127}) &= f(x_{0+n})e^{-jp^{127,(0+n)}} + f(x_{1+n})e^{-jp^{127,(1+n)}} + f(x_{2+n})e^{-jp^{127,(2+n)}} + \cdots + f(x_{127+n})e^{-jp^{127,(127+n)}}.
\end{align*}
\]
It can be observed that Figs. 4 and 5 use location (64,64) as the circle-center to extract signals. For dealing with the image-shifting problem, various locations are used as the circle-centers to extract the image, as (64, 64), (63, 63), (63, 65), (65, 65), (63, 63), (62, 64), (64, 66), (66, 64), and (64, 62). For each of them, the extracted signals are saved in different positions, as Figs. 6 and 7. Furthermore, for each of them, circle-radii of 13, 16, 19, 22, ... , 58 are used to extract the signals. The center column pictures in Fig. 7 show the image-space is divided as the strips 0, 1, 2, ... , and 8, wherein the aforementioned extracted strips from different circle-centers are saved. Equations (1) and (2) are applied to them to generate the results, as shown in the right column in Fig. 7.

Figure 8 shows the vertical strip comparison to identify an image. To locate the maximum matching of two images, every vertical strip in one image is compared to all of the
strips in the counter one. The left picture in Fig. 8 show the subtracted-results of strip 4 of “person one” and strip 1 of “person two”; right, strip 0, 7.

4. Results and Conclusion

In this study, three fingerprint images are taken for each person, wherein the orientations are somewhat different, and totally forty persons joining in this study for fingerprinting. The fingerprint images used in this study are 120. Considering the 120 fingerprints altogether and running them in one batch would require a very long processing time. There
is also the possibility of malfunctioning software and/or insufficient memory to accommodate the database. Therefore, the 40 participants were divided into eight groups of five persons each for testing. Since three different fingerprints were taken for each participant, 15 images were tested in each step. Thus, the system ran eight different batches.

In each group, one fingerprint was compared with the other 14 fingerprints. Altogether, 105 comparisons were conducted to test the accuracy rate. Within these comparisons, 15 were conducted for genuine comparison, since three different fingerprints were taken for each person. The other 90 comparisons were conducted to identify imposters among different fingerprints. Among the eight different test batches, there were 120 genuine tests and 720 imposter tests.

Figure 9 shows the original images. Table 1 shows partial comparison data. The data inside the rectangular boxes were the results of subtraction of two genuine fingerprints; the others, impostor. Table 2 presents the summarized results of Table 1, showing the ranges of imposter and genuine comparisons for five different persons, wherein the imposter comparison is 41 794 250–28 431 905 and the correct and error ratio is 840 : 8; for genuine, 33 704 838–11 429 809, 840 : 16.

Figure 10 shows the fine tuned binary images. As the aforementioned, Table 3 shows the partial comparison data, whereby Table 4 present the summarized results. For imposter comparisons, the range is 98 418 108–72 385 069; the correct and error ratio is 840 : 8; for genuine, 80 497 780–42 857 454 840 : 8.

![Fig. 9. Original fingerprint images.](image)

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Experiment results for original fingerprint images

<table>
<thead>
<tr>
<th></th>
<th>Range of comparison-values</th>
<th>Error range of subtracted-values</th>
<th>Error (times)</th>
<th>Error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different source comparisons</td>
<td>41 794 250–28 431 905</td>
<td>28 900 000–28 431 905</td>
<td>8</td>
<td>840 : 8</td>
</tr>
<tr>
<td>Identical source comparisons</td>
<td>33 704 938–11 429 809</td>
<td>33 704 838–28 900 000</td>
<td>16</td>
<td>840 : 16</td>
</tr>
</tbody>
</table>

120 different fingerprints; 840 comparisons; 28 900 000 as threshold

Table 3
Comparison data of binary fingerprint images

Table 4
Experiment results for binary fingerprint images

<table>
<thead>
<tr>
<th></th>
<th>Range of comparison-values</th>
<th>Error range of subtracted-values</th>
<th>Error (times)</th>
<th>Error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different source comparisons</td>
<td>98 418 108–72 385 069</td>
<td>74 300 000–72 385 069</td>
<td>8</td>
<td>840 : 8</td>
</tr>
<tr>
<td>Identical source comparisons</td>
<td>80 497 780–42 857 454</td>
<td>80 497 780–74 300 000</td>
<td>16</td>
<td>840 : 8</td>
</tr>
</tbody>
</table>

120 different fingerprints; 840 comparisons; 74 300 000 as threshold
References

C.-L. Su in 1995 and 1993 respectively received his PhD and MS degrees in computer engineering from the University of Louisiana at Lafayette, USA. He received his MS degree in electrical computer engineering in 1989 from the University of Louisville at Kentucky, USA. In June 1982, he graduated from National Taipei University of Technology with a major in electronic engineering. From August 1995 to July 2000, he was working for the Department of Information Management, Oversea Chinese Institute of Technology, in Taiwan. From August 2000 up to now, he works in the Department of Industrial Engineering and Technology Management, Da Yeh University, in Taiwan. From April to September 2010, he visited Electrical Engineering Department, Stanford University USA, as a visiting professor. His research interest is image processing and pattern recognition.

Pirštu atspaudu identifikavimas žiediniu liniju ir rotacijos transformacija
