A Note about Total Stability of a Class of Hybrid Systems

Manuel De la SEN

Departamento de Electricidad y Electronica
Instituto de Investigación y Desarrollo de Procesos IIDP
Facultad de Ciencias, Universidad del País Vasco
Campus de Leioa (Bizkaia), Aptdo. 644 de Bilbao, 48080-Bilbao, Spain
e-mail: msen@we.lc.ehu.es

Received: December 2005

Abstract. Robust stability results for nominally linear hybrid systems are obtained from total stability theorems for purely continuous-time and discrete-time systems. The class of hybrid systems dealt with consists of, in general, coupled continuous-time and digital systems subject to state perturbations whose nominal (i.e., unperturbed) parts are linear and time-varying, in general. The obtained sufficient conditions on robust stability are dependent on the values of the parameters defining the over-bounding functions of the uncertainties and the weakness of the coupling between the analog and digital sub-states provided that the corresponding uncoupled nominal subsystems are both exponentially stable.

Key words: dynamic hybrid systems, stability, total stability.

1. Introduction

Stability of both continuous-time and discrete-time singularly perturbed systems has received much attention in the last years (Kafri and Abed, 1996; Kolev, 1993; Shieh et al., 1986; Oppenheimer and Michel, 1988). Also, stability analysis of discrete-time singularly perturbed systems with calculations of parameter bounds has been reported in (Kolev, 1993; Shieh et al., 1986). An assumption used in previous work to carry out the stability analysis of singularly perturbed systems is relaxed in (Kafri and Abed, 1996) where an upper-bound on the singular perturbation parameters is included to derive such an analysis. On the other hand, the so-called hybrid models are a very important tool for analysis in the modern computers and control technologies since they describe usual situations where continuous-time and either discrete-time and/or digital systems are coupled (De la Sen, 1996; Kabamba and Hara, 1993). A usual example, very common in practice, is the case when a digital controller operates over a continuous-time plant to stabilize it or to improve its performance. The systems described in (De la Sen, 1996; Kabamba and Hara, 1993) are more general since the controlled plant can also possess an hybrid nature since all the continuous-time and digital state-variables can be mutually coupled and to possess internal delays (De la Sen and Alastruey, 2004; De la Sen, 2004; De la Sen and
Luo, 2004). Other studies and development concerned with hybrid systems in the contexts of presence of delays in their dynamics, fundamental properties of dynamic systems and manufacturing systems have been recently performed in (De la Sen, 2006; Bargelis et al., 2004; Chaib et al., 2005; Marchenko and Poddubnaya, 2005). In this brief paper, stability results are obtained for a wide class of such systems whose nominal (i.e., unperturbed) parts are linear and, in general, time-varying while the state perturbations are allowed to be, in general, non-linear, time-varying and of a dynamic nature. The results about robust stability are obtained by firstly deriving sufficient stability conditions related to total stability for an extended discrete system which describes the overall state trajectory at sampling instants via the discretization of the continuous-time sub-state. Subsequently, a result about total stability of the continuous-time sub-state is carried out to ensure the system’s stability during the inter-sample intervals. Some links with the results given in (Kafri and Abed, 1996) about singularly perturbed systems are also given for a special hybrid system within the given class.

Notation. $\lambda_{\text{max}}(M)$ and $\det(M)$ denote, respectively the maximum eigenvalue and determinant of the square matrix $M = (M^{(i,j)})$. The symbol \otimes denotes the direct Kronecker product of matrices. Particular norms for functions, sequences or matrices are denoted by the appropriate subscript. In the expressions being valid for any norms, those subscripts are omitted.

2. Problem Statement

A) Plant Description Σ

System Σ:

\[
\begin{align*}
\dot{x}_c(t) &= A_c(t)x_c(t) + A_{ca}(t)x_d[k] + \delta_c(t), \\
x_d[k+1] &= A_d[k]x_d[k] + A_{dc}[k]x_c[k] + \delta_d[k], \\
\delta_c(t) &= f_{cc}(t, x_c(t)) + f_{cd}(t, x_d[k]) + g_{cc}(t, x_c(t)) + g_{cd}(t, x_d[k]), \\
\delta_d[k] &= f_{dc}(k, x_c[k]) + f_{dd}(k, x_d[k]) + g_{dc}(k, x_c[k]) + g_{dd}(k, x_d[k])
\end{align*}
\]

for all time $t \in [kT, (k+1)T)$ and discrete time integer index $k \geq 0$ for sampling period T where $x_c(t)$ and $x_d[k]$ are, respectively, the n_c continuous-time (or analog) substate and n_d discrete-time (or digital) substate. The continuous-time and discrete-time variables are denoted by (t) and $[k]$, respectively. The discretized analog substate at sampling instances is denoted as a digital signal; i.e., $x_c(kT) = x_c[k]$. The matrix functions $A_c(t)$, $A_{ca}(t)$, $A_d[k]$ and $A_{dc}[k]$ are of dimensions being compatible with the corresponding vectors in (1)–(2). $\delta_c(t)$ and $\delta_d[k]$ are disturbances being, in general, nonlinear and time-varying subject to the following set of constraints on the functions $f(\cdot)$ and $g(\cdot)$.

Constraints C:

- **C1:** $A_d[k]$, $A_{dc}[k]$, $f_{dc}(k, x_c[k])$, $f_{dd}(k, x_d[k])$, $g_{dc}(k, x_c(t))$, $g_{dd}(k, x_d[k])$ matrix and vector sequences of k of bounded entries. The entries of $A_c(t)$, $A_{ca}(t)$, $f_{cc}(t, x_c(t))$, $g_{cc}(t, x_c(t))$, $g_{cd}(t, x_d[k])$.
The robust stability of Σ under the knowledge of the constants $\beta^{(i)}$ is now investigated. The results on robust stability are useful for both local and global stability in the sense that stability is ensured for initial conditions of (1)–(4) being constrained to the balls $\|x_c(0)\| \leq r$, $\|x_d(0)\| \leq r$ where the radius r is arbitrary but compatible with the validity of the constraints C on Σ.

3. Main Results

The robust stability of Σ subject to the constraints C under the knowledge of the constants $\beta^{(i)}$ is now investigated. The results on robust stability are useful for both local and global stability in the sense that stability is ensured for initial conditions of (1)–(4) being constrained to the balls $\|x_c(0)\| \leq r$, $\|x_d(0)\| \leq r$ where the radius r is arbitrary but compatible with the validity of the constraints C on Σ.

\[
\begin{align*}
\text{C2) } f_{cc}(t, x_c[k]), f_{dc}(t, x_c(t)) \text{ and } g_{cd}(t, x_d[k]) \text{ are locally integrable functions of } t \text{ for each } \\
\text{fixed } x \text{ in the ball } \max (\|x_c\| \leq r, \|x_d\| \leq r) \text{ and all integer } k \geq 0 \text{ and all } t \geq 0. \\
\text{C3) } &\|h_{cc}(t, x_c) - h_{cc}(t, x_{c2})\| \leq \beta_{cc}^b \|x_{c1} - x_{c2}\|, \\
&\|h_{cd}(t, x_c) - h_{cd}(t, x_{d2})\| \leq \beta_{cd}^b \|x_{c1} - x_{c2}\|, \\
&\|h_{dc}(k, x_{d1}) - h_{dc}(k, x_{d2})\| \leq \beta_{dc}^b \|x_{d1} - x_{d2}\|, \\
&\|h_{dd}(k, x_{d1}) - h_{dd}(k, x_{d2})\| \leq \beta_{dd}^b \|x_{d1} - x_{d2}\|, \\
\text{C4) } &\|g_{cc}(t, x_c)\| \leq \beta^a_{cc} r, \quad \|g_{cd}(t, x_d)\| \leq \beta^a_{cd} r, \\
&\|g_{dc}(t, x_c)\| \leq \beta^a_{dc} r, \quad \|g_{dd}(t, x_d)\| \leq \beta^a_{dd} r,
\end{align*}
\]
A) Exponential Stability of the Nominal Extended System Σ^*_d

The nominal Σ is defined by zeroing $\delta_c(t)$ and $\delta_d[k]$ in (1)-(2). This results into the nominal version Σ^*_d of Σ_d in (10)-(12) satisfying $x^*[k+1] = A[k]x^*[k]$ with $x^*[0] = (x^T_0, x^T_d[0])^T$. The following assumption is given:

Assumption 1. The nominal uncoupled continuous-time and digital subsystems $\dot{x}_c^*(t) = A_c(t)x_c^*(t)$ and $x_d^*[k+1] = A_d[k]x_d^*[k]$ are both exponentially stable, i.e., there exist norm-dependent real constants $K_c \geq 1$ and $K_d \geq 1$ such that $\|\Psi_c(t_i, t_j)\| \leq K_c e^{-\alpha_c(t_j-t_i)}$ and $\|\Psi_d(k_2, k_1)\| \leq K_d a_d^{k_2-k_1}$ for some real constants $\alpha_c > 0$ and $\alpha_d \in [0,1)$ where $\Psi_c(., .)$ and $\Psi_d(., .)$ are the state-transition matrices of the uncoupled continuous-time and digital subsystems in Σ (i.e., $\Psi_c(t_0, 0) = I_{n_c}$, with $\Psi_c(k_2T, k_1T) = \prod_{j=k_1}^{k_2-1} \Phi[j]$ between two sampling instants and $\Psi_d[k_2, k_1] = \prod_{j=k_1}^{k_2-1} A_d[j]$ with $\Psi_d[0, 0] = I_{n_d}$ for all $t \geq 0$, any real $t_2 \geq t_1 \geq 0$ and any integers $k_2 \geq k_1 \geq 0$.

The following stability result holds for the nominal extended system (i.e., $\delta \equiv 0$ in (10)).

Proposition 1. Define

$$
\rho_k = \max \left(\max_{1 \leq j \leq n_c} \left(\sum_{j=1}^{n_c} \left(\sum_{i=1}^{n_d} |A_{d}^{(ij)}[k]| \right)^T \right),
\max_{1 \leq i \leq n_d} \left(\sum_{j=1}^{n_d} |A_{d}^{(ij)}[k]| \right) \right)
$$

(13)

Thus, the nominal extended discrete system is exponentially stable if Assumption 1 holds and $\rho_k < 1 - \max(e^{-\alpha_c T}, \alpha_d)$ for all integer $k \geq 0$.

Proof. Decompose $A[k] = A_0[k] + \bar{A}[k]$ in (11) with $A_0[k] = \text{Block Diag}(\Phi_c[k], A_d[k])$, $\Phi_c[k] = \Psi_c((k+1)T, kT)$ and $A_d[k] = \Psi_d((k+1)T, kT)$ being the one sampling period kth transition matrices. Thus, $x^*[k+1] = A[k]x^*[k]$ is exponentially stable if there exist real constants $\overline{K} \geq 1$ (being norm-dependent) and $\overline{\pi} \in [0,1)$ such that its state transition matrix $\Psi[k_2, k_1] = \prod_{j=k_1}^{k_2-1} A[j]$ satisfies $\|\Psi[k_2, k_1]\| \leq \overline{K} \overline{\pi}^{k_2-k_1}$, $\overline{K} = 1$ for the l_2-matrix norm given by the maximum modulus within the whole set of eigenvalues. Also, $\rho_k = \|\bar{A}[k]\|_2$, from the definition of ρ_k and $\bar{A}[k] = A[k] - A_0[k]$, lies in the union $\bigcup_{i=1}^{n_c} R_i$ of the discs $R_i = \{z: |z| \leq \sum_{j=1}^{n_c+n_d} |\bar{A}^{(ij)}[k]| \}$ from Gershgorin’s circle theorem (Kincaid and Cheney, 1991). Therefore, $\|A[k]\|_2 \leq \max(e^{-\alpha_c T}, \alpha_d) + \rho_k \leq \overline{\pi} < 1$ for all integer $k \geq 0$ if Assumption 1 and (13) hold. Thus, the nominal extended system is exponentially stable and the result has been proved.

B) Stability of the Discrete Disturbed Extended System Σ_d

The following result gives sufficient conditions for stability of the extended discrete system (10) within a closed ball of the extended state $x[,]$.

PROPOSITION 2. Assume that Proposition 1 holds under Assumption 1 (i.e., the nominal extended system (10) is exponentially stable) under the stronger condition \(\|A[k]\|_2 \leq \bar{\pi} < 1 - \frac{\bar{\pi}_d}{\bar{\pi}_c} < 1 \) where the real constants \(\bar{\pi}_c \) and \(\bar{\pi}_d \) are related to the state transition matrix of \(\Sigma_d \). Eq. 10 and defined in the proof of Proposition 1, and

\[
\bar{\pi}_d = K_c \alpha_c^{-1} \beta_c + K_d \beta_d, \tag{14}
\]

\[
\beta_h = \gamma_h^f + \gamma_h^d + \beta_h^f + \beta_h^d \tag{15}
\]

for \(h = c, d \); and \(\bar{\pi}_d < 1 \). Thus, the state vector is uniformly bounded according to

\[
\|x[k]\| \leq \left(\bar{\pi}_c + \bar{\pi}_d \frac{1 - \bar{\pi}_c}{1 - \bar{\pi}_d} \right) r < r \tag{16}
\]

for all integer \(k \geq 0 \) provided that \(\text{Max} \{\|x_c[0]\|, \|x_d[0]\|\} < \frac{r}{2 \bar{\pi}_c} < \frac{r}{2} \).

Proof. First, note from direct calculus from (6)–(9) that the disturbance signal \(\delta[k] \) in (10) satisfies

\[
\|\delta[k]\| \leq \|\delta[k]\| + \|\delta_d[k]\| \leq \bar{\pi}_d r \tag{17}
\]

provided that \(\text{Max} \{\|x_c[k]\|, \|x_d[k]\|\} < r/2 \) for all integer \(k \geq 0 \) since \(\bar{\pi}_c > 1 \) and \(\bar{\pi}_d < 1 - \frac{\bar{\pi}_c}{\bar{\pi}_d} \) imply \(\bar{\pi}_c + \bar{\pi}_d < 1 \). Consider the set of sequences \(\{y[k], k \geq 0\} \) equipped with the \(\ell_\infty \) norm for sequences \(\|y\|_\infty = \text{Max}_{0 \leq k < \infty} (\|y[k]\|) \). Thus, the operator \(T_d \) defined by \((T_d y)[k] = A[k]y[k] + \delta[k] \) is a contraction on the closed subset \(R_d \) of bounded \(n_d \)-vector sequences \(\{y[k], k \geq 0\} \) such that \(\|y\|_\infty \leq r \). By the contraction mapping theorem (Hale, 1980; Kincaid and Cheney, 1991) there is a unique solution \(y[k+1] = (T_d y)[k] \) (fixed point) with sequences in \(R_d \), and

\[
\|x[k]\| = \|\Psi(k, 0)x[0] + \sum_{i=0}^{k-1} \Psi(k, i + 1)\delta[i]\| \leq \bar{\pi}_c \|x[0]\| + \bar{\pi}_c \bar{\pi}_d r \sum_{i=0}^{k-1} \bar{\pi}_c \tag{18}
\]

which leads directly to (16) since \(\bar{\pi}_c < 1 - \frac{\bar{\pi}_c}{\bar{\pi}_d} < 1 \) implies

\[
\sum_{i=0}^{k-1} \bar{\pi}_c = \frac{1 - \bar{\pi}_c}{1 - \bar{\pi}_d} \leq 1 + \bar{\pi}_c - \bar{\pi}_c = 1. \tag{19}
\]

C) Stability of the Continuous-Time Substate Inbetween Sampling Instants

Now, the solution to (1) subject to (2)–(3) is analyzed by taking into account that \(\|x[k]\| \leq r \) provided that Proposition 2 holds. A total stability argument is used as main tool for the proof of stability of the continuous-time subsystem.

PROPOSITION 3. Assume that Proposition 2 holds, \(\text{Sup}_{0 \leq t < \infty} (\|A_{cd}(t)\|) \leq a_{cd} \), \(\|x_c(0)\| \leq \frac{r}{2 \bar{\pi}_c} \) and \(\frac{K_c}{a_{cd}} < 1 \), where

\[
K_c = K_c^f + K_c^g; \quad K_c^f = \beta_c^f + \beta_c^d; \quad K_c^g = \alpha_c^f + \beta_c^g + \beta_c^d. \tag{20}
\]
Thus, there is a unique solution $x_c(t)$ to (1) such that for all $t \geq 0$:

$$
\|x_c(t)\| \leq K_c e^{-(a_c - K_c t) t} \|x_0\| + \frac{K_c K_d}{a_c - K_c K_d} r (1 - e^{-(a_c - K_c t) t}) \leq r. \quad (21)
$$

Proof. One gets directly from (1),

$$
x_c(t) = \Psi_c(t, 0) x_0 + \int_0^t \Psi_c(t - \tau) \delta_c^0(\tau) \, d\tau
$$

with $x_c(0) = x_c[0]$ and $\delta_c^0(t) = A_c(t)x_d[k] + \delta_c(t)$. Under the set of constraints C, $\|\delta_c^0(t)\| \leq \overline{K}_c r$ for all $t \geq 0$ subject to (20). Using similar arguments as in the proof of Proposition 2, consider the Banach space $B_c = C[0, \infty]$ of continuous, bounded n_c-vector sequences defined on $[0, \infty)$ and equipped with the L_∞-norm $\|y\|_\infty = \text{Sup}_{0 \leq t \leq \infty}(|y(t)|)$. The operator T_c is defined via

$$
(T_c y)(t) = \Psi_c(t, 0) x_0 + \int_0^t \Psi_c(t - \tau) \delta_c^0(\tau) \, d\tau
$$

is a contraction of the closed subset $R_c = \{y \in \varepsilon B_c: \|y\|_\infty \leq r\}$ of B_c, because for $\|y_i\|_\infty \leq r (i = 1, 2)$, one gets from (20) and (23)

$$
\|(T_c y_1) - (T_c y_2)\| \leq K_c \left\{ e^{-a_c \cdot 1} \|x_0\| + \frac{\overline{K}_c}{a_c} (1 - e^{-a_c \cdot 1}) r \right\} \leq r
$$

$$
\Rightarrow \|(T_c y_1) - (T_c y_2)\| \leq \overline{K}_c a_c^{-1} \|y_1 - y_2\| \leq \|y_1 - y_2\| \quad (24)
$$

for $\|x_c(0)\| = \|x_c[0]\| \leq \frac{r}{2\overline{K}_c} \leq \frac{r}{2\overline{K}_c} \leq \frac{r}{2\overline{K}_c} \leq \frac{r}{2\overline{K}_c}$ since $\|x_d[k]\| \leq \frac{r}{2\overline{K}_c} \leq \frac{r}{2\overline{K}_c} \leq \frac{r}{2\overline{K}_c}$ for all $k \geq 0$ from Proposition 2. By the contraction mapping theorem, (Hale, 1980; Kincaid and Cheney, 1991), there exists a unique solution of (23) in R_c, the fixed point of T_c. Thus, one gets from (23) that

$$
\|x(t)\| \leq K_c \left\{ e^{-a_c t} \|x_0\| + K_d \int_0^t e^{-a_c (t - \tau)} \|x_c(\tau)\| \, d\tau + \frac{K_c K_d}{a_c - K_c K_d} r \right\} \quad (25)
$$

which leads to (21) from Bellman–Gronwall Lemma (Hale, 1980).

Remark 1 (combined interpretation of Propositions 1–3). Assumption 1 and Propositions 1–3 yield the following robust stability conditions for the system Σ by using l_2 vector and matrix norms, i.e., $K_c = K_d = 1$, provided that $\|x_c[0]\| \leq \frac{r}{2}$ and $\|x_d[0]\| \leq \frac{r}{2}$:

$$
\rho^* + \rho + \beta_d a_c^{-1} + \beta_d < 1, \quad \overline{K}_c a_c^{-1} < 1, \quad \rho^* = \text{Max}_{0 \leq k \leq \infty} (e^{-a_c T_k}, a_d), \quad \rho = \text{Max}_{0 \leq k \leq \infty} (\rho_k)
$$

(26) (27)

with β_c and β_d being real constants defined in (15) related to the set of constraints C, ρ_k and \overline{K}_c defined in (12) and (20). In particular: (a) $\rho^* < 1$ guarantees the exponential
stability of the uncoupled nominal continuous-time and digital subsystems (i.e., \(\delta_c \equiv 0 \), \(\delta_d \equiv 0 \)). (b) \(\rho^* + \rho < 1 \) guarantees that the exponential stability is not destroyed in the nominal extended system \(\Sigma_d^* \) by the existence of linear couplings between the continuous-time and digital subsystems. (c) The first inequality in (26) guarantees that the state disturbances in \(\Sigma \) are sufficiently small in terms of the real constants defining their overbounding functions while satisfying \(C \) so that the extended discrete system \(\Sigma_d \) maintains the stability of its nominal description \(\Sigma_d^* \). If, furthermore, the second constraint of (26) holds then the signal boundedness is kept in-between sampling instants according to (21) and the overall hybrid system \(\Sigma \) is robustly stable.

D) Links With Singular Perturbation Theory

In some particular descriptions within the class \(\Sigma \), the perturbation theory can be combined with the above analysis. Assume, for instance that the linear dynamics of \(\Sigma \) is subject to variations defined by a small parameter \(\varepsilon \), \(A_{dc} \) and \(A_{dd} \) are time-invariant and \(A_c(t) = \varepsilon A_c \) for all \(t \geq 0 \) and \(A_{cd}(t) = \rho(\varepsilon)e^{\varepsilon A_c t} \) with \(\rho(\varepsilon) \leq \eta < \infty \) for all \(\varepsilon \in [0, \varepsilon^*] \). Thus, a direct series expansion around \(\varepsilon T \) of the state transition matrix of the continuous subsystem yields

\[
\Psi_c((k+1)T, kT) = e^{\varepsilon A_c T} = \int_{kT}^{(k+1)T} \Psi_c((k+1)T) A_{cd}(\tau) d\tau
\]

\[
= \left(I_{n_c} + \varepsilon A_c T + \Delta(\varepsilon, \epsilon_c, T) \right) \int_{kT}^{(k+1)T} e^{-\varepsilon A_c \tau} A_{cd}(\tau) d\tau
\]

\[
= \left(\varepsilon A_c + \rho(\varepsilon) \left[I_{n_c} + \Delta(\varepsilon, \epsilon_c, T) \right] \right) T.
\]

Note that \(\| \Delta(\varepsilon, \epsilon_c, T) \|_2 \leq 1 + \varepsilon A_c T + \varepsilon T \lambda_{\text{max}}(A_c) = \delta(\varepsilon) \leq \bar{\delta} < \infty \) for all \(\varepsilon \in [0, \varepsilon^*] \) and \(\rho(\varepsilon) \leq \bar{\eta} < \infty \) for all \(\varepsilon \in [0, \varepsilon^*] \). Thus,

\[
A(\varepsilon) = A^*(\varepsilon) + \Delta A(\varepsilon),
\]

\[
A^*(\varepsilon) = \begin{bmatrix}
I_{n_c} + \varepsilon A_c T & \varepsilon A_c T \\
A_{dc} & A_{dd}
\end{bmatrix},
\]

\[
\Delta A(\varepsilon) = \begin{bmatrix}
\Delta(\varepsilon, \epsilon_c, T) & \rho(\varepsilon) T(I_{n_c} + \Delta(\varepsilon, \epsilon_c, A_c)) \\
0 & 0
\end{bmatrix}
\]

is time-invariant in (10). Thus, the discrete system \(\Sigma_d \) of (10) satisfies equivalently,

\[
z[k + 1] = \hat{A}^*(\varepsilon)z[k] + (\delta[k] + \Delta A(\varepsilon)z[k])
\]

by defining (see (Kafri and Abed, 1996))

\[
\hat{A}^*(\varepsilon) = \hat{I} + \hat{A}_{21} + \hat{A}_{22} + \varepsilon(\hat{A}_{11} + \hat{A}_{12}) \text{ for } \varepsilon \in [0, \varepsilon^*]
\]
through the extended \(n = n_c + n_d \)-matrices

\[
\hat{A}_{11} = \begin{bmatrix} TA_c & 0 \\ 0 & 0 \end{bmatrix}, \quad \hat{A}_{12} = \begin{bmatrix} 0 & TA_c \\ 0 & 0 \end{bmatrix}, \quad \hat{I} = \begin{bmatrix} I_{n_c} & 0 \\ 0 & 0 \end{bmatrix},
\]

\[
\hat{A}_{21} = \begin{bmatrix} 0 & 0 \\ A_{dc} & 0 \end{bmatrix}, \quad \hat{A}_{22} = \begin{bmatrix} 0 & 0 \\ 0 & A_d \end{bmatrix}.
\]

Note that Schur’ s stability of \(\hat{A}^*(\varepsilon) \) is equivalent to exponential stability of the unforced time-invariant system \(\Sigma^*_d \): \(z^*[k + 1] = \hat{A}^*(\varepsilon)z^*[k] \) since \(\hat{A}^*(\varepsilon) \) has its eigenvalues in \(|z| < 1 \) for all \(\varepsilon \in [0, \varepsilon^*]. \) Thus, the subsequent result follows directly from Proposition 2 by using a previous result in (Kafri and Abed, 1996):

PROPOSITION 4. Define \(\nu(\varepsilon) := \nu(\hat{A}(\varepsilon)) = \det(\hat{A}(\varepsilon) \otimes \hat{A}(\varepsilon) - I \otimes I) \) where \(\otimes \) denotes the direct Kronecker product of matrices which is a matrix of dimension \((n + m)^2 \times (n + m)^2 \). Thus, the following items hold:

(i) If \(\nu(\varepsilon) \) has no positive zeros, then either \(\hat{A}(\varepsilon) \) is Schur stable for all \(\varepsilon > 0 \) or it is not Schur stable for any \(\varepsilon > 0 \).

(ii) If \(\nu(\varepsilon) \) has positive zeros, let \(\varepsilon \) be the smallest such zero. If \(\hat{A}(\varepsilon_1) \) is Schur stable for any \(\varepsilon_1 \in (0, \varepsilon) \) then \(\varepsilon^* = \varepsilon. \) Otherwise, \(\hat{A}(\varepsilon) \) is not Schur stable for all sufficiently small and positive values of \(\varepsilon. \)

(iii) The extended discrete system \(\Sigma_d(\varepsilon) \) is stable for all \(\varepsilon \in [0, \varepsilon^*] \) satisfying \(\Max(\|[x_\varepsilon[0], x_d[0]\|_2) \leq \frac{1}{2\kappa} \) and \(\|[A^*(\varepsilon)]\|_2 + \kappa_d + \Max_{0 \leq \varepsilon \leq \varepsilon^*}(\|[A(\varepsilon)]\|_2) < 1 \) with \(\kappa_d \) defined in (14).

4. Simulated Example

The following third-order system, whose state-space description lie within the class of hybrid plants (1), is considered:

\[
\ddot{y}(t) + a_1 \dot{y}(t) + a_2 y(t) + a_3 y[k] + 4y[k - 1] = b_1 u(t) + b_2 u(t) + b_3 u[k] + 3u[k - 1] + 0.3(z[k] + \delta(t)),
\]

\[
z[k + 1] = 0.2z[k] + 1.1u[k] + 1.3y[k], \quad \delta(t) = -7\delta(t) + 8.5u(t)
\]

for all \(t \in [kT, (k + 1)T) \) and any integer \(k \geq 0. \) The signal \(u(t) \) is a stabilizing output-feedback control signal generated from an hybrid controller as follows:

\[
u(t) = \frac{G_1(D, q)}{L(D, q)} a(t) + \frac{G_2(D, q)}{L(D, q)} y(t),
\]

\[
G_1(D, q) = D^2q^2 - q^2D + D^2q + 1.25q^2 - Dq + 0.25q - 1.44187D^3 + 0.206426D - 2.54251,
\]

\[
G_2(D, q) = 1.12792(D^2q^2 - 0.269774q^2D + 1.10629),
\]

\[
L(D, q) = (D - 0.5)^2(q + 0.5)^2
\]
where q is the discrete one-step advance operator and D is the time-derivative operator. After substituting the control law in the plant description, the resulting closed-loop system is of the general form given while driven only by the disturbance $\delta(t)$. The signal $\delta(t) = \delta_c(t)$ is a perturbation which satisfies the general assumptions – constraints C of the theory of total stability. There are six parameters to be estimated by the estimation schemes are $a_1 = -1$, $a_2 = 2$, $a_3 = 3$, $b_0 = 1$, $b_1 = b_2 = 2$ and $b_3 = 3$. The sampling period is $T = 0.4$. Finally, the reference model is a third-order highly damped one of discrete regulation. The plant output is shown in Fig. 1.

Note that both the extended discrete system and the continuous one are stable since the output is bounded for all time. Remark 1, which is a combined interpretation of Propositions 1–3, holds with all the signals in the loop being uniformly bounded for all time, i.e., “at” and “in-between” sampling instants. If the disturbance $\delta(t)$ is zeroed then the closed-loop system is globally asymptotically stable.

5. Concluding Remarks

The robust stability of a class of linear and time-varying hybrid systems has been investigated. The obtained sufficient conditions on robust stability are obtained by ensuring the total stability of the overall discretized system (whose state includes the digital sub-state plus the sampled continuous-time sub-state) at sampling instants and that of the continuous-time sub-state in-between sampling instants. The obtained sufficient conditions on total stability require the exponential stability of the uncoupled nominal continuous-time and digital subsystems, the sufficient weakness of the couplings between the linear parts of both sub-states and the sufficient smallness of the over-bounding functions of the state perturbations. Some links with previous work have been established for a special case of hybrid description through a combination of the obtained results with Schur’s-type stability criteria for singularly perturbed systems.
References

M. De la Sen was born in Arrigorriaga, Bizkaia in the Spanish Basque Country. He obtained the MSc degree with honors from the Basque Country University in 1975, the PhD degree in applied physics with high honors from the same University in 1979 and the degree of Docteur-d’Etat-ès-Sciences Physiques (specialité Automatique et Traitement du Signal) from the Université de Grenoble, France with "mention trés honorable" in 1987. He has had several teaching and research positions in the University of the Basque Country in Bilbao (Spain) where he is currently professor of systems and control engineering in the Department of Systems and Control Engineering and head of the Institute of Research and Development of Processes IIDP. He has also had positions of visiting professor in the University of Grenoble (France), the University of Newcastle (New South Wales, Australia) and the Australian National University ANU (Canberra, Australia). He has been associate editor of the Electrosoft Journal (CML Mechanical and Computational Engineering publications) and he is currently associate editor of the journals Discrete Dynamics in Nature and Society (Hindawi Publishing Corporation), Applied Mathematical Sciences (Hikari Ltd.) and Nonlinear Analysis: Modelling and Control (Lithuanian Association of Nonlinear Analysts). He has been author or coauthor of a number of papers in the fields of adaptive systems, mathematical systems theory, time-delay systems and ordinary differential equations, which are his main research interest subjects. He acts and has acted as reviewer for several international journals and conferences of control theory and engineering and applied mathematics.
Apie totalų vienos hibridinių sistemos klasės stabilumą

Manuel De la SEN

Taikant totalinio stabilumo teoremas, sukurtas tolydžiojo bei diskrečiojo laiko sistemoms, gauti patvariojo stabilitumo rezultatai nominaliai tiesinėms hibridinėms sistemoms. Išnagrinėta hibridinių sistemų klasė, susidedanti iš tolydžiojo laiko ir skaitmeninių sistemų junginio su perturbacijomis, kurių nominalios t.y. neperturbuotos dalys, bendru atveju, esti tiesinės bei besikeičiančios laiko atžvilgiu. Gautos pakankamos patvariojo stabilumo sąlygos priklauso nuo parametrų verčių, apibrėžiančių neapibrėžtumų funkcijas bei analoginės ir skaitmeninės posistemų junginio taikymo pagrinduma, numatant iš anksto, kad atitinkamos nesujungtos nominalios posistemos esti eksponentiškai stablios.