Informatica Logo

International Journal

Main Page
Editorial Board
Instructions to Authors
Subscription Information

Author Index
Papers in Production

INFORMATICA, 2012, Vol. 23, No. 4, 521-536
© Institute of Mathematics and Informatics,

ISSN 0868-4952

Learning Process Termination Criteria

Bostjan BRUMEN, Marko HOLBL, Katja HAREJ PULKO, Tatjana WELZER, Marjan HERICKO, Matjaz B. JURIC, Hannu JAAKKOLA

University of Maribor, Faculty of Electrical Engineering, Computer Science and Informatics Smetanova 17, SI-2000 Maribor, Slovenia University of Ljubljana, Faculty of Computer and Information Science Trzaska cesta 25, SI-1000 Ljubljana, Slovenia Tampere University of Technology Pori, Pohjoisranta 11, FIN-28101 Pori, Finland E-mail:,


In a supervised learning, the relationship between the available data and the performance (what is learnt) is not well understood. How much data to use, or when to stop the learning process, are the key questions.

In the paper, we present an approach for an early assessment of the extracted knowledge (classification models) in the terms of performance (accuracy). The key questions are answered by detecting the point of convergence, i.e., where the classification model's performance does not improve any more even when adding more data items to the learning set. For the learning process termination criteria we developed a set of equations for detection of the convergence that follow the basic principles of the learning curve. The developed solution was evaluated on real datasets. The results of the experiment prove that the solution is well-designed: the learning process stopping criteria are not subjected to local variance and the convergence is detected where it actually has occurred.


learning curve, learning process, classification, accuracy, assessment, data mining

To preview Lithuanian abstract see full article text

PDFTo preview full article text in PDF format click here

Get Free ReaderYou could obtain free Acrobat Reader from Adobe

TopTop Copyright © INFORMATICA, Vilnius University Institute of Mathematics and Informatics, 2010