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Abstract

Given an assignment of real weights to the ground elements of a matroid, the
min-max weight of an element e is the minimum, over all circuits containing e, of the
maximum weight of an element in that circuit with the element e removed. We use
this concept to establish structural results for the minimum weight basis problem:
detecting the persistence of single elements, determining the new optimal value after
the weight of a single element is arbitrarily perturbed, as well as when an element is
contracted or deleted. This latter result gives us a tropical (min, +,−) analogue of the
classical arithmetic (+,×, /) Kirchhoff’s effective conductance formula for electrical
networks.

1 Introduction
Let M = (E, I) be an arbitrary loopless matroid; being loopless means that no single-
element set is dependent and no single element belongs to all bases. The minimum weight
basis problem is, given an assignment of real weights to the ground elements, to compute
the minimum weight of a basis, the latter being the sum of weights of the basis elements.
Thank classical results of Rado [14], Gale [7] and Edmonds [6], the algorithmic aspect
of this problem is well understood: the minimum weight of a basis can be computed by
the standard greedy algorithm. In this paper, we contribute three results concerning the
structural aspects of this problem, the intriguing one being the relation to the classical
Kirchhoff’s effective conductance formula from 1847.

All three results are based on the concept of the “min-max weight” of a ground element.
Given a weighting x : E → R, the min-max weight of a ground element e ∈ E, which we
denote by x[e], is the minimum over all circuits containing e, of the maximum weight of an
element in this circuit after the element e is removed.

Our first result concerns the so-called persistence problem: given a weighting of ground
elements, decide whether a given ground element belongs to some, to none, or to all optimal
bases (see, for example, [9, 10, 5, 3, 4]). An element is persistent if it either belongs to all
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optimal bases, or is avoided by all optimal bases. Theorem 1 solves this problem in terms
of min-max weights of ground elements.

Persistence An element e is contained in some optimal basis if and only if x[e] > x(e),
and is avoided by some optimal basis if and only if x[e] 6 x(e). Hence, an element e
is not persistent if and only if x[e] = x(e) holds.

Our second result concerns the postoptimality analysis problem in optimization (see, for
example, [8, 15, 12]) in the case of the minimum weight basis problem in matroids: if the
weight of a single ground element is altered, by how much the optimal value (the minimum
weight of a basis) changes? Theorem 2 gives an answer.

Postoptimality Let x : E → R be a weighting, and θ ∈ R an arbitrary real number.
If the weight of a ground element e is changed from x(e) to θ, then the difference
between the new optimal value and the old one is max{0, x[e]− x(e)} if θ > x[e], and
is θ −min{x[e], x(e)} if θ 6 x[e].

Given a matroid M = (E, I) on a ground set E and a ground element e ∈ E, the
independent sets of the matroid M − e obtained by deleting the element e are all sets I ∈ I
with e 6∈ I. The independent sets of the matroid M/e obtained by contracting the element
e are all sets I − e with I ∈ I and e 6∈ I (we recall these operations in Section 3.4). Given
a weighting x : E → R of ground elements, how are the minimum weights of bases in the
resulting submatroids related to the minimum weight of a basis in the matroid M itself?
Theorem 3 answers this question in terms of the min-max weight x[e] of the element e.

Contraction/deletion: If the element e is contracted, then the minimum weight of a basis
decreases by exactly min{x(e), x[e]}. If the element e is deleted, then the minimum
weight of a basis increases by exactly max {0, x[e]− x(e)}.

In the special case of graphic matroids, the first claim (which actually motivated the
title of this paper) gives us the tropical version of the classical arithmetic (+,×, /) effective
conductance formula for electrical networks proved by Kirchhoff [11]. This formula expresses
the effective conductance between the endpoints of any edge e in an electrical network G as
a ratio κG(x)/κG/e(x) of the spanning tree polynomial of the network itself, divided by the
spanning tree polynomial of the network G/e obtained by contracting the edge e.

In the tropical semiring1 (R+,min,+), the spanning tree polynomial of a graph turns
into the minimum weight spanning tree problem, and the ratio of polynomials turns into the
difference between their tropical versions. We thus have a tropical analogue of the Kirchhoff’s
formula for arbitrary matroids. The tropical analogue of the “effective conductance” of an
element e is then min{x(e), x[e]}; see Section 3.5 for details.

1The difference between the arithmetic (R+, +,×) and the tropical (R+, min, +) semirings is that, in
the latter, “addition” means taking the minimum, and “multiplication” means adding the numbers. In
particular, tropical polynomials solve minimization problems.
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2 Preliminaries
We use the standard matroid terminology as, for example, in Oxley’s book [13]. A matroid
on a finite set E of ground elements is a pair M = (E, I), where I ⊆ 2E is a nonempty
downwards closed collection of subsets of E, called independent sets, with the augmentation
property: whenever I and J are independent sets of cardinalities |I| < |J |, there is an
element e ∈ J \ I such that the set I + e is independent; as customary, we abbreviate
I ∪ {e} to I + e, and we write J − e for J \ {e}.

Maximal under the set inclusion independent sets are bases. The augmentation property
yields the basis exchange axiom: if A and B are bases, then for every element e ∈ A there
is an element f ∈ B such that A − e + f is also a basis. The following two important
refinements of this axiom are known as the symmetric basis exchange and the bijective basis
exchange.

Fact 1 (Brualdi [1], Brylawski [2]). Let A and B be bases.
(1) For every e ∈ A there is an f ∈ B such that A− e+ f and B − f + e are both bases.
(2) There is a bijection φ : A→ B such that, for every e ∈ A, the set A− e+ φ(e) is a

basis.

A subset of E is dependent if it is not independent. Minimal under the set inclusion
dependent sets are circuits. For a ground element e, an e-circuit is just a circuit containing
this element e. An element e is a loop if the set {e} is dependent, and is a coloop if e
belongs to all bases. To avoid “pathological” situations, we will assume that our matroid is
loopless: no ground element is a loop or a coloop. We will need this assumption to ensure
two properties: every circuit has at least two elements, and at least one e-circuit exists for
each ground element e.

An important property of circuits is given by the following fact known as the unique
circuit property (see, for example, Brualdi [1, Lemma 1] or Oxley [13, Proposition 1.1.4]): if
B is a basis and e 6∈ B, then B + e contains a unique circuit C, and for every f ∈ B, the
set B − f + e is a basis if and only if f ∈ C. Since B is independent, this circuit C is an
e-circuit.

The unique circuit C = C(B, e) given by this property is known as the fundamental
circuit of e relative to B. We will call the independent set Path(e, B) := C(e, B)− e ⊆ B
the fundamental path of e relative to B. For an element f ∈ B, the set Cut(f,B) := {e 6∈
B : f ∈ C(e, B)} is known as the fundamental cut of f relative to B. Note the duality:
e ∈ Cut(f,B) if and only if f ∈ Path(e, B). The unique circuit property immediately yields
the following property of fundamental paths and cuts.

Fact 2. Let B be a basis, f ∈ B and e 6∈ B. Then B − f + e is a basis if and only if
e ∈ Cut(f,B), which happens if and only if f ∈ Path(e, B).

Let x : E → R be a weighting of the ground elements; here and throughout, R stands
for the set of all real numbers, and R+ for the set of nonnegative real numbers. The weight
of a set F ⊆ E is the sum x(F ) := ∑

f∈F x(f) of the weights of its elements. The minimal
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basis problem in a matroid M = (E, I) on E is, given an input weighting x : E → R, to
compute the minimum weight of a basis:

τM(x) := min
B basis

∑
f∈B

x(f) .

We will call a basis B x-optimal (or just optimal, if the weighting is clear from the context)
if x(B) = τM(x) holds, that is, if the basis B is of minimal x-weight.

Given a weighting x : E → R of the ground elements, the min-max weight of an element
e ∈ E, which we will denote by x[e], is the minimum, over all e-circuits C, of the maximum
weight of an element in the independent set C − e:

x[e] := min
C e-circuit

max
f∈C−e

x(f) .

Since e is not a loop (the set {e} is independent), the set C − e is nonempty for every
e-circuit C. Moreover, since e is not a coloop, at least one e-circuit C exists. So, the
min-max weight is well-defined. Note that the min-max weight x[e] of e does not depend
on the weight x(e) of the element e itself: it only depends on the weights of the remaining
elements. So, all three relations x[e] < x(e), x[e] = x(e) and x[e] > x(e) are possible. And,
as we will see soon, these relations are decisive for the minimum weight basis problem:
they tell us whether the element e is in some, in all or in none of the optimal bases (see
Theorem 1). The accumulated weight of the element e is

x{e} := min {x(e), x[e]} .

That is, the accumulated weight x{e} of an element e is the minimum of the weight x(e)
of e itself and of the maximum weight of an element in an e-circuit with the element e
removed, whichever of these two numbers is smaller. Note that we always have x{e} 6 x(e),
while x[e] 6 x(e) does not need to hold.
Example 1. Recall that the graphic matroid (or the cycle matroid) M(G) determined by an
undirected connected graph G = (V,E) has edges of G as its ground elements. Independent
sets are forests, bases are spanning trees of G, and circuits are simple cycles in G. A loop is
an edge with equal endpoints, and a coloop is an edge whose deletion increases the number
of connected components; such edges are also called bridges. The min-max weight x[e] of
an edge e ∈ E is the minimum, over all simple paths in G of length at least two between
the endpoints of e, of the maximum weight of an edge in this path. If T is a spanning
tree of G, and e 6∈ T an edge of G, then Path(e, T ) consists of all edges of the unique path
in T between the endpoints of e. If f ∈ T , then Cut(e, T ) consists of all edges of G − e
lying between the two trees of T − e. The accumulated weight x{e} is also known as the
bottleneck distance between the endpoints of e.

3 Results
Throughout this section, let M = (E, I) be an arbitrary loopless matroid.
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e p0
e

Cut(e, B)

x-optimal basis B

Path(e, B)

x{e} = x(e) 6 x(c0) = x[e]
c0 lightest element in Cut(e, B)

B − e + c0 is the next best basis

x{e} = x[e] = x(p0) 6 x(e)
p0 heaviest element in Path(e, B)

B − p0 + e is the next best basis

Case: e ∈ B Case: e 6∈ B

Figure 1: A schematic summary of Lemma 1 depending on whether our element e belongs
to an optimal basis B or not.

3.1 Min-max weight and optimal bases
Our main technical result (Lemma 1 below) relates min-max weights of single ground
elements with their fundamental paths and cuts relative to any optimal basis.

Lemma 1 (Main lemma). Let x : E → R be a weighting, e ∈ E a ground element, and B
an optimal basis.

(1) If e ∈ B, then

(a) x(e) 6 x[e] = the minimum weight of an element in Cut(e, B);
(b) the minimum weight of a basis avoiding the element e is x(B)− x(e) + x[e].

(2) If e 6∈ B, then

(a) x(e) > x[e] = the maximum weight of an element in Path(e, B);
(b) the minimum weight of a basis containing the element e is x(B)− x[e] + x(e).

Proof. Postponed to Section 4.

Remark 1 (From optimal bases to accumulated weights). Having an optimal basis B, we can
compute the accumulated weights x{e} = min{x(e), x[e]} of all ground elements e ∈ E by
just looking at the weights of elements of B: if e ∈ B, then x{e} = x(e) (by Lemma 1(1)),
and if e 6∈ B, then x{e} = x[e] is the weight of a heaviest element in Path(e, B) (by
Lemma 1(2)).

The following simple corollary of Lemma 1 shows how such a heaviest element in
Path(e, B) can be found.
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Corollary 1. Let x : E → R be a weighting and B = {f1, . . . , fr} be an optimal basis with
x(f1) 6 . . . 6 x(fr). If e 6∈ B, then x[e] = x(fi), where i is the smallest index for which the
set {f1, . . . , fi, e} is dependent.

Proof. For j = 1, . . . , r, let Bj = {f1, . . . , fj} be the set of the j lightest elements of B; let
also B0 = ∅. The set B0 + e = {e} is independent because e is not a loop, and the set
Br + e = B + e is dependent, because B is a basis and e 6∈ B. So, there is a unique index
i ∈ {1, . . . , r} such that the set Bi−1 + e is independent but Bi + e is dependent. Our goal
is to show that x[e] = x(fi) holds for this i.

Since Bi is independent but Bi + e is dependent, the set Bi + e contains an e-circuit C.
Since C ⊆ Bi + e ⊆ B + e, the uniqueness of the fundamental circuits yields C = C(e, B);
hence, Path(e, B) = C(e, B)−e ⊆ Bi. Since the set Bi−1 +e is independent, the last element
fi of Bi must be contained in Path(e, B). Thus, fi is a heaviest element of Path(e, B), and
Lemma 1(2) gives x[e] = x(fi).

3.2 Persistency of ground elements
Every weighing x : E → R splits the set E of ground elements into three disjoint subsets:

E1(x) = elements belonging to all optimal bases;
E0(x) = elements not belonging to any optimal basis;
E∗(x) = elements that belong to some but not to all optimal bases.

Elements of E1(x) ∪ E0(x) are usually called persistent elements: they either belong to all
optimal solutions, or to none of them. The notion of persistency of elements in combinatorial
optimization was apparently first introduced by Hammer, Hansen and Simeone [9, 10],
and was further considered in different settings, for example, in [5, 3, 4, 16]. In particular,
Cechlárova and Lacko [4] characterized the sets E1(x) and E0(x) in terms of the rank
function of the underlying matroid. On the other hand, Lemma 1 gives the following
characterization of these sets in terms of min-max weights of individual elements.

Theorem 1 (Persistency). Let x : E → R be a weighting, and e ∈ E be a ground element.
Then

(1) e ∈ E1(x) if and only if x[e] > x(e);

(2) e ∈ E0(x) if and only if x[e] < x(e);

(3) e ∈ E∗(x) if and only if x[e] = x(e).

If all weights are distinct, then B = {e ∈ E : x[e] > x(e)} is the unique optimal basis.

Proof. (1) To show the direction (⇒), let e ∈ E1(x) and take any optimal basis B; hence,
e ∈ B. By Lemma 1(1), we then have x(e) 6 x[e] = x(c0), where c0 is a lightest element
in Cut(e, B). By Fact 2, the set A = B − e+ c0 is a basis. Held the equality x(e) = x[e],
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then this basis would be also optimal. But e 6∈ A, a contradiction with e ∈ E1(x). Hence
x[e] > x(e) holds. The converse direction (⇐) follows directly from Lemma 1(2).

(2) The proof of this claim is dual. To show the direction (⇒), let e ∈ E0(x) and take
any optimal basis B; hence, e 6∈ B. By Lemma 1(2), we then have x(e) > x[e] = x(p0),
where p0 ∈ B is a heaviest element in Path(e, B). By Fact 2, the set A = B − p0 + e is a
basis. Held the equality x(e) = x[e], then this basis would be also optimal. But e ∈ A, a
contradiction with e ∈ E0(x). Hence, x[e] < x(e) holds. The converse direction (⇐) in (2)
follows directly from Lemma 1(1).

The third clam (3) follows directly from claims (1) and (2).
Finally, assume that all weights are distinct. Then the optimal basis B is unique: had

we two distinct optimal bases, then (by the basis exchange axiom) a heaviest element, lying
in one basis but not in the other, could be replaced by a (strictly) lighter element of the
other basis, contradicting the optimality of the former basis. Since the basis B is unique,
we have B = E1(x) and, hence, B = {e ∈ E : x[e] > x(e)}, as desired.

Recall that the rank rk(F ) of a set F ⊆ E is the maximum cardinality of an independent
subset of F . That is, rk(F ) is the maximum of |F ∩B| over all bases B.

Corollary 2. Let x : E → R be a weighting. For every element e ∈ E the following holds.

(1) x[e] > x(e) if and only if rk(F1) > rk(F1 − e), where F1 = {f ∈ E : x(f) 6 x(e)}.

(2) x[e] < x(e) if and only if rk(F0 + e) = rk(F0), where F0 = {f ∈ E : x(f) < x(e)}.

Proof. This follows directly from Theorem 1 and the following result of Cechlárova and
Lacko [4, Lemmas 2 and 3]: e ∈ E1(x) if and only if rk(F1 − e) < rk(F1), and e ∈ E0(x) if
and only if rk(F0 + e) = rk(F0).

3.3 Postoptimality
Let x : E → R be a weighting of ground elements, and e ∈ E a fixed ground element. For
a real number θ ∈ R, let xθ : E → R be the weighting which gives weight θ to the element
e, and leaves the weights of other elements unchanged.

The following lemma gives new optimal values depending on how the (old) min-max
weight of the element e is related to its (old) weight.

Lemma 2. The difference τ(xθ)− τ(x) between the new optimal value and the old one is
min{θ, x[e]} − x(e) if x(e) 6 x[e], and is min{0, θ − x[e]} if x(e) > x[e].

Proof. Postponed to Section 5.

The following consequence of Lemma 2 gives the new optimal values in dependence of
the new weight θ ∈ R given to the element e.

Theorem 2 (Postoptimality). For every θ ∈ R, the difference τ(xθ)− τ(x) between the new
optimal value and the old one is max{0, x[e]− x(e)} if θ > x[e], and is θ −min{x[e], x(e)}
if θ 6 x[e].
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Note that the difference is constant in the first case (0 or x[e]−x(e), whichever is larger),
while in the second case, the difference is negative as long as the new weight θ given to the
element e is smaller than both x[e] and x(e) (the optimal value then decreases).

Proof. Suppose first that θ > x[e]; hence, θ− x[e] > 0. By Lemma 2, the difference τ(xθ)−
τ(x) is min{θ, x[e]}−x(e) = x[e]−x(e) > 0 if x[e]−x(e) > 0, and is min{0, θ−x[e]} = 0
if x[e]− x(e) 6 0. That is, τ(xθ)− τ(x) = max{0, x[e]− x(e)}, as claimed.

Suppose now that θ 6 x[e]; hence, θ−x[e] 6 0. By Lemma 2, the difference τ(xθ)− τ(x)
is min{θ, x[e]} − x(e) = θ − x(e) if x(e) 6 x[e], and is min{0, θ − x[e]} = θ − x[e] if
x(e) > x[e]. In both cases, the difference is θ −min{x[e], x(e)}, as claimed.

Recall that the accumulated weight of a ground element e ∈ E under a given weighting
a weighting x : E → R is the minimum x{e} = min{x(e), x[e]} of the weight and the
min-max weight of this element.

Corollary 3. If the weights are nonnegative, and if the weight of a single element is dropped
down to zero, then the minimum weight of a basis decreases by exactly the accumulated
weight of this element.

Proof. Let x : E → R+ be a weighting giving nonnegative weights to the ground elements,
and let e ∈ E be a ground element. We apply Theorem 2 with θ := 0. Since the weights
are nonnegative, θ 6 x[e] holds. So, Theorem 2 implies that the minimum weight of a basis
decreases by exactly τ(x)− τ(xθ) = min{x[e], x(e)} − θ = min{x[e], x(e)}.

By Lemma 1, every basis of minimal weight determines the accumulated weights of all
ground elements e (see Remark 1). The following corollary does a converse reduction: the
minimum weight of a basis is determined by the accumulated weights of single elements.

Corollary 4. Let B = {e1, . . . , er} be a basis. Given a weighting x : E → R+, consider the
sequence of weightings x0, x1, . . . , xr, where x0 = x, and each next weighting xi is obtained
from x by setting the weights of the elements e1, . . . , ei to zero. Then

τM(x) = x0{e1}+ x1{e2}+ · · ·+ xr−1{er} .

Let us stress that B is any fixed in advance basis independent of arriving input weightings.

Proof. Corollary 3 gives us the recursion τM (xi) = τM (xi+1) + xi{ei+1} which rolls out into

τM(x) = τM(xr) + xr−1{er}+ · · ·+ x1{e2}+ x0{e1} .

Since the weighting xr gives zero weight to all elements e1, . . . , er of the basis B, we have
xr(B) = 0. Since the weights are nonnegative, B is a basis of minimal xr-weight. Hence,
τM(xr) = xr(B) = 0.
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3.4 Tropical Kirchhoff’s effective conductance formula
Let M = (E, I) a loopless matroid. We can obtain new matroids by “contracting” or by
“deleting” a ground element e ∈ E. Namely, we can think about all of the independent sets
of the matroid M being partitioned into two families: those independent sets that do not
contain the element e and those that do. The sets of the former family are independent
sets of the matroid M − e obtained by deleting the element, while the sets of the latter
family, with the element e removed, are independent sets of the matroid M/e obtained by
contracting the element e. That is, the independent sets of M − e are all sets I ∈ I with
e 6∈ I, while those of M/e are all sets I − e with I ∈ I and e ∈ I. Since the matroid M is
loopless, each of these two matroids contains at least one nonempty independent set. Note
that e is a ground element in none of these two matroids.

For every basis B, either B − e is a basis of M/e (if e ∈ B), or B is a basis of M − e (if
e 6∈ B). This simple observation gives us a recursion

τM(x) = min
{
τM/e(x) + x(e), τM−e(x)

}
.

Using Lemma 1 and Theorem 2, we obtain the following relations between the optimal bases
of the original matroid M and of the reduced matroids M − e and M/e, where the first
equation Eq. (1) is the tropical analogue of the Kirchhoff’s effective conductance formula
for electrical networks; see Section 3.5 for details. Recall that the accumulated weight of
a ground element is the minimum x{e} = min{x(e), x[e]} of the weight and the min-max
weight of this element.

Theorem 3 (Tropical Kirchhoff’s formula). Let M = (E, I) be a loopless matroid, and
e ∈ E be a ground element. Then for every weighting x : E → R, we have

τM(x)− τM/e(x) = x{e} ; (1)
τM−e(x)− τM(x) = max {0, x[e]− x(e)} ; (2)

τM−e(x)− τM/e(x) = x[e] . (3)

In particular, knowing the weight x(e) and the min-max weight x[e] of the element e,
we can compute the optimal solution τM(x) over the entire matroid M from the optimal
solutions over any of the sub-matroids M − e of M/e.

Proof. (1) By Theorem 1, we have x{e} = x(e) if e belongs to some optimal basis B of M ,
and x{e} = x[e] otherwise. In the former case, B − e is an optimal basis of M/e, and its
weight is τM/e(x) = x(B)− x(e) = τM(x)− x(e). Hence, τM(x)− τM/e(x) = x(e) = x{e}
in this case. Suppose now that the element e belongs to none of the optimal bases of M ,
and let A be a lightest basis of M among all bases of M containing the element e. Hence,
τM/e(x) = x(A− e). By Lemma 1(2), we have x[e] 6 x(e) and x(A) = x(B)− x[e] + x(e),
and we obtain τM(x)− τM/e(x) = x(B)− x(A− e) = x[e] = x{e} also in this case.
(2) If x[e] 6 x(e), then Theorem 1 implies that the element e is avoided by at least one
optimal basis B of M . Since this basis remains optimal also in M − e, we have the equality
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τM−e(x) = τM(x) in this case. If x[e] > x(e), then (by Theorem 1) the element e is in
all optimal bases B of M . Hence, τM−e(x) is a minimum weight x(A) of a basis A of M
avoiding the element e. By Lemma 1(1), we have x(A) = x(B)−x(e) +x[e] > x(B). Hence,
τM−e(x)− τM(x) = x(A)− x(B) = x[e]− x(e) holds in this case.
(3) By Eqs. (1) and (2), we have

τM/e(x) + min {x(e), x[e]} = τM(x) = τM−e(x) + min {0, x(e)− x[e]} .

This gives τM/e(x) + x[e] = τM−e(x) + 0 if x(e) > x[e], and τM/e(x) + x(e) = τM−e(x) +
x(e)− x[e] if x(e) 6 x[e]. In both cases, we have τM/e(x) = τM−e(x)− x[e], as desired.

3.5 Relation to the Kirchhoff’s formula
In 1847 Kirchhoff [11] showed that the effective conductance between any pair of vertices
in an electrical network can be expressed as a combinatorial formula consisting of a ratio
of spanning tree polynomials. We will now show that, when applied to graphic matroids,
Theorem 3 is exactly the tropical (min,+,−) analogue of this arithmetic (+,×, /) Kirchhoff’s
formula.

Let G = (V,E) be an undirected connected n-vertex multi-graph (no loops, but parallel
edges are allowed). Every edge e ∈ E has its associated variable xe, the “weight” of e.
The spanning tree polynomial (or Kirchhoff polynomial) of G is the following multilinear,
homogeneous polynomial

κG(x) =
∑
T

∏
e∈T

xe

of degree n− 1, where the summation is over all spanning trees T of G. In particular, for
x = ~1 (the all-1 vector), the value κG(x) is the number of spanning trees of G. For an edge
e ∈ E, let G/e be the graph obtained by contracting the edge e, that is, by merging the
endpoints of e, and removing the resulting loop; since loops cannot contribute to a spanning
tree, we can throw them away without altering κG/e(x).

When the edges are interpreted as electrical resistors, and their weights as electrical
conductances (reciprocals of electrical resistances), the Kirchhoff’s effective conductance
formula [11] (see also [17, Theorem 8] for a detailed exposition) states that

κG(x)
κG/e(x) = effective conductance between the endpoints of e. (4)

Over the tropical semifield (R,min,+,−), min corresponds to the arithmetic addition
(+), addition to the arithmetic multiplication, and subtraction (−) to arithmetic division
(see Table 1). In particular, the spanning tree polynomial κG(x) then turns into the well-
known minimum weight spanning tree problem τG(x) = minT

∑
e∈T x(e) on the graph G.

Also, the ratio κG(x)/κG/e(x) in Eq. (4) turns into the difference τG(x)− τG/e(x).
So, when applied to the graphic matroid M = M(G) defined by the graph G, the first

equation Eq. (1) of Theorem 3 gives us the tropical analogue τG(x)− τG/e(x) = x{e} of the

10



Table 1: Correspondences between arithmetic and tropical effective conductances in electrical
networks. By Ohm’s and Kirchhoff’s laws, the conductance is additive for resistors in
parallel, and the resistance is additive for resistors in series. In the tropical case, this turns
to taking the minimum for resistors in parallel, and taking the maximum for resistors in
series.

Arithmetic Tropical
Operations x+ y min(x, y)

x · y x+ y
x/y x− y

Conductances of resistors:

in parallel •
x

•
y

x+ y min(x, y)

in series • x • y • 1
1
x

+ 1
y

= x · y
x+ y

x+ y −min(x, y) = max(x, y)

Kirchhoff’s formula Eq. (4) with the tropical “effective conductance” between the endpoints
of the edge e being the accumulated weight x{e} = min{x(e), x[e]} of this edge. Theorem 3
holds as it is, but an intuitive explanation of why accumulated weights in electrical networks
(at least in the series-parallel networks) play the role of effective conductances is given in
Table 1.

4 Proof of Lemma 1
We will need the following consequence of Facts 1 and 2.

Lemma 3. Let B be a basis, and e ∈ B. For every e-circuit C there is an element f ∈ C−e
such that B − e+ f is a basis.

By Fact 2, this means that (C − e) ∩ Cut(e, B) 6= ∅ holds for all e-circuits C.

Proof. Let C be an e-circuit. Since the set I = C − e is independent, it lies in some
basis A, and e 6∈ A holds since I + e = C is already dependent. By Fact 1(1), there is
an f ∈ A such that B − e + f and A − f + e are both bases. In view of Fact 2, this is
equivalent to f ∈ Cut(e, B) and f ∈ Path(e, A). Since A is a basis, and both circuits C and
Path(e, A) + e lie in A+ e, the uniqueness of fundamental circuits yields Path(e, A) = C− e.
Hence, Cut(e, B) ∩ (C − e) 6= ∅, as claimed.

Let x : E → R be a weighting of the ground elements. Recall that the accumulated
weight x[e] of e is the minimum, over all e-circuits C, of the maximum weight of an element

11



in the independent set C − e:

x[e] = min
C e-circuit

max
f∈C−e

x(f) ,

The min-max weight of e is x{e} = min{x(e), x[e]}. By an e-circuit witnessing the min-max
weight x[e] of an element e we will mean an e-circuit C such that max{x(f) : f ∈ C − e} =
x[e]. Recall that a basis B is optimal if its weight x(B) = ∑

f∈B x(f) is smallest among all
bases.

Proof of Lemma 1. Fix a ground element e ∈ E, and let B be an optimal basis. Lemma 1
determines the min-max weight x[e] of the element e depending on whether this element
belongs to the basis B or not.
Case 1: e ∈ B. Let c0 be a lightest element in Cut(e, B). Our goal is to show that then

x(e) 6 x[e] = x(c0) ,

and that B − e+ c0 is a lightest basis among all bases avoiding the element e.
To show the inequality x(e) 6 x(c0), suppose contrariwise that x(c0) < x(e) holds. Since

c0 ∈ Cut(e, B), Fact 2 implies that the set B − e + c0 is a basis. But its weight is then
smaller than that of B, contradicting the optimality of B.

To show the inequality x[e] > x(c0), let C be an e-circuit witnessing the min-max
weight x[e] of the element e. By Lemma 3, there is an element g in the intersection
(C − e) ∩ Cut(e, B). Then x(g) 6 x[e] because g ∈ C − e, and x(g) > x(c0) because
g ∈ Cut(e, B). Hence, x[e] > x(c0).

To show the converse inequality x[e] 6 x(c0), consider the fundamental circuit C =
Path(c0, B) + c0 of the element c0 relative to the basis B. Since c0 ∈ Cut(e, B), we have
e ∈ Path(c0, B). Thus, both e and c0 belong to the same circuit C. Let p0 be a heaviest
element in C − e = Path(c0, B) + c0 − e. Since in the definition of the min-max weight x[e]
we take the minimum over all circuits containing e, we have x[e] 6 x(p0). So, it remains
to show that x(p0) 6 x(c0) holds. Suppose contrariwise that x(p0) > x(c0). Then p0 6= c0
and, hence, p0 ∈ Path(c0, B). By Fact 2, the set A = B − p0 + c0 is a basis. But the weight
of this basis is x(A) = x(B) − x(p0) + x(c0) < x(B), contradicting the optimality of the
basis B. Thus, x[e] 6 x(c0), as desired.

It remains to show that B − e + c0 is a lightest basis among all bases avoiding the
element e. To show this, let B′ be a lightest basis avoiding the element e; hence, e 6∈ B′.
Take a bijection φ : B → B′ ensured by Fact 1(2). Hence, B − g + φ(g) is a basis for every
element g ∈ B. Let c := φ(e) ∈ B′.

Since B − e + c is a basis, Fact 2 implies that c ∈ Cut(e, B). Since B is optimal, we
have x(g) 6 x(φ(g)) for all g ∈ B. In particular, x(B − e) 6 x(B′ − φ(e)) = x(B′ − c).
The basis A = B − e+ c avoids the element e, and its weight is x(A) = x(B − e) + x(c) 6
x(B′ − c) + x(c) = x(B′) . Hence, the basis A is a lightest basis avoiding the element e.
Since c0 is a lightest element of Cut(e, B), we have x(c0) 6 x(c). Thus, the set B − e+ c0
is also a lightest basis avoiding the element e.
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Case 2: e 6∈ B. Let p0 be a heaviest element in Path(e, B). Our goal is to show that then

x(e) > x[e] = x(p0) ,

and that B − p0 + e is a lightest basis among all bases containing the element e. The proof
in this case is dual to that in Case 1.

To show the inequality x(e) > x(p0), suppose contrariwise that x(e) < x(p0). Since
p0 ∈ Path(e, B), Fact 2 implies that the set B − p0 + e is a basis. But its weight is then
smaller than that of B, contradicting the optimality of B.

The inequality x[e] 6 x(p0) holds just because Path(e, B) + e is an e-circuit, and x[e]
takes the minimum (of the maximum weights) over all e-circuits.

To show the converse inequality x[e] > x(p0), Suppose contrariwise that we have a strict
inequality x[e] < x(p0), and let C be an e-circuit witnessing x[e]. Hence, x(f) < x(p0) holds
for all f ∈ P := C − e. Since p0 ∈ Path(e, B), Fact 2 implies that A = B − p0 + e is also
a basis. Since e ∈ A, Lemma 3 implies that some element f ∈ P ∩ Cut(e, A) can replace
e in A, that is, A′ = A− e+ f = B − p0 + f is a basis. But since x(f) < x(p0), we have
x(A′) < x(B), contradicting the optimality of B.

So, it remains to show that B − p0 + e is a lightest basis among all bases containing the
element e. To show this, let B′ be a lightest basis containing the element e; hence, e ∈ B′.
Take a bijection φ : B → B′ ensured by Fact 1(2). Hence, B − φ−1(g) + g is a basis for
every element g ∈ B′. Let p := φ−1(e) ∈ B.

Since B−p+e is a basis, Fact 2 implies that p ∈ Path(e, B). Since the basis B is optimal,
we have x(φ−1(g)) 6 x(g) for all g ∈ B′. In particular, x(B−p) = x(B−φ−1(e)) 6 x(B′−e).
The basis A = B− p+ e contains the element e, and its weight is x(A) = x(B− p) +x(e) 6
x(B′−e)+x(e) = x(B′) . Hence, the basis A is also a lightest basis containing the element e.
Since p0 is a heaviest element of Path(e, B), the set B − p0 + e is also a lightest basis
containing the element e.

5 Proof of Lemma 2
Let x : E → R be a weighting, and e ∈ E be an arbitrary ground element. For a real
number θ ∈ R, let xθ : E → R be the weighting which gives weight θ ∈ R to the element e
and leaves other weights unchanged. Our goal is to prove the following two assertions.

(1) If x(e) 6 x[e], then τ(xθ) = τ(x) + min{θ, x[e]} − x(e) .

(2) If x(e) > x[e], then τ(xθ) = τ(x) + min{0, θ − x[e]} .

Proof. (1) Suppose that x(e) 6 x[e]. Theorem 1 implies that then e belongs to some
x-optimal basis B. There are two possibilities: either B is xθ-optimal or not.
Claim 1. If B is not xθ-optimal, then the element e is avoided by all xθ-optimal bases.
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Proof. Assume that B is not xθ-optimal, and take an arbitrary xθ-optimal basis B′. Suppose
contrariwise that e ∈ B′. Since B is not xθ-optimal, xθ(B) > xθ(B′) holds. Since the
element e belongs to both bases B and B′, we have xθ(B′) = xθ(e) + x(B′ − e) and
xθ(B) = xθ(e) + x(B − e). But x(B′ − e) > x(B − e), since B is x-optimal. We thus have
xθ(B′) > xθ(B), a contradiction with xθ(B) > xθ(B′). Thus, e 6∈ B′, as desired.

Now, if the basis B is xθ-optimal, then (since e ∈ B) we have

τ(xθ) = xθ(B) = x(B − e) + xθ(e) = x(B) + θ − x(e) = τ(x) + θ − x(e) .

If B is not xθ-optimal, then Claim 1 tells us that the element e is avoided by all xθ-optimal
bases. Since xθ(B′) = x(B′) holds for every such basis B′, we have that τ(xθ) is the
minimum x-weight of a basis avoiding the element e, and Lemma 1(1) yields

τ(xθ) = x(B) + x[e]− x(e) = τ(x) + x[e]− x(e) .

So, regardless of whether the basis B is xθ-optimal or not, we have that τ(xθ) is either
τ(x) + θ − x(e) or τ(x) + x[e]− x(e), whichever of these two numbers is smaller.

(2) Suppose that x(e) > x[e]. Then, by Theorem 1, the element e is avoided by some
x-optimal basis B. We again have two possibilities: either B is xθ-optimal or not.
Claim 2. If B is not xθ-optimal, then the element e is contained in all xθ-optimal bases.

Proof. Assume that B is not xθ-optimal, and take an arbitrary xθ-optimal basis B′. Suppose
contrariwise that e 6∈ B′. Since B is not xθ-optimal, xθ(B) > xθ(B′) holds. Since e 6∈ B′,
we have xθ(B′) = x(B′), and since e 6∈ B, we also have xθ(B) = x(B). So, the inequality
xθ(B′) < xθ(B) yields x(B′) < x(B), contradicting the x-optimality of B.

Now, if B is xθ-optimal, then (since e 6∈ B) we have τ(xθ) = xθ(B) = x(B) = τ(x). If B
is not xθ-optimal, then Claim 2 tells us that the element e is contained in all xθ-optimal bases.
Thus, τ(xθ) in this case is the minimum xθ-weight of a basis containing e. By Lemma 1(2),
if p0 is an element of Path(e, B) of smallest x-weight, then the basis A = B − p0 + e has
the smallest x-weight among all bases containing the element e. By Lemma 1(2), we also
have that x(p0) = x[e]. Since e 6∈ B and p0 6= e, we have

τ(xθ) = xθ(A) = x(B)− x(p0) + θ = τ(x)− x[e] + θ .

So, regardless of whether the basis B is xθ-optimal or not, we have that τ(xθ) is either τ(x)
or τ(x) + θ − x[e], whichever of these two numbers is smaller.
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