
VILNIUS UNIVERSITY

Andrius

VALATAVIČIUS

ENTERPRISE APPLICATION
INTEROPERABILITY EVALUATION
USING AUTONOMIC COMPUTING

SUMMARY OF DOCTORAL DISERTATION

Natural Sciences,
Informatics N 009P

VILNIUS 2019

This dissertation was prepared during 2014-2018 years at Vilnius
university at Institute of data sciencie and digital technologies.

Academic supervisor:

Prof. Dr. Saulius Gudas (Vilnius university, Natural Sciences,
Informatics Engineering – T 007)

Academic consultant:

Prof. Dr. Audrius Lopata (Vilnius University, Natural Sciences,
Informatics Engineering – T 007)

The doctoral dissertation will be defended at the public meeting of
the Dissertation Defence Panel:

Chairman:

Members:

The dissertation will be defended at the publc meeting of the
Dissertation Defence Panel at on the of , 2019 in the
auditorium of the Institute of Data Science and Digital
Technologies of Vilnius University.

Address : Akademijos street 4, LT-04812 Vilnius, Lithuania.

The summary of the doctoral dissertation was distributed on the
of , 2009.

VILNIAUS UNIVERSITETAS

Andrius

VALATAVIČIUS

TAIKOMŲJŲ PROGRAMŲ
SĄVEIKUMO VERTINIMAS TAIKANT
AUTONOMINIO SKAIČIAVIMO
ECHNOLOGIJAS

DAKTARO DISERTACIJOS SANTRAUKA

Natural Sciences,
Informatics N 009P

VILNIUS 2019

Disertacija rengta 2014-2018 metais Vilniaus universitete.

Mokslinis vadovas:

Prof. Dr. Saulius Gudas (Vilniaus universitetas, gamtos mokslai,
informatikos inžinerija – T 007)

Mokslinis konsultantas:

Prof. Dr. Audrius Lopata (Vilniaus universitetas, gamtos mokslai,
informatikos inžinerija – T 007)

Gynimo taryba:

Pirmininkas:

Nariai:

Disertacija ginama viešame Gynimo tarybos posėdyje 2019 m.
mėn. d. val. Vilniaus universiteto Duomenų mokslo ir
skaitmentinių technologijų instituto auditorijoje.

Adresas: Akademijos g. 4, LT-08412 Vilnius, Lietuva.

Disertacijos santrauka išnagrinėta m. mėn. d.

Disertaciją galima peržiūrėti Vilniaus universiteto bibliotekoje ir
Vilniaus universiteto interneto svetainėje adresu:
https://www.vu.lt/naujienos/ivykiu-kalendorius.

SUMMARY

1. INTRODUCTION

1.1. Research area

Application interoperability evaluation is required for gaining
knowledge on whether different software applications could be able
to exchange data between one another. Application services describe
the data structure of these applications. Analysis of such application
service descriptions allow to infer whether different applications have
some common ground, from data perspective. Syntactical and
semantical application web service description documents were
analyzed in this research. Similarity information between operations,
objects, field names and field types was retrieved from web services
and analyzed using edit distance, bag of words and latent semantic
analysis methods. The autonomic computing in theoretical part of the
research plays a role to paint broader picture of possibilities of the
implemented research. Experiment results only cover three
components of autonomic component: monitoring, analysis, and
knowledge. The autonomic computing component was introduced for
analysis of possibility of automating interoperability process within
dynamic business environment.

1.2. Relevance of the problem

Application interoperability becomes essential part for dynamic
business, growing IOT usage and ever growing complexity and
variety of enterprise applications. Enterprise applications are now
used in almost all medium to large sized companies, and
interoperability projects are becoming relevant because of the need to
optimize business process, reduce redundand work, increase
efficiency of data maintenance along different applications within an
enterprise. The challenge is that the knowledge requirements for
integrating different systems is great and there is high risk for failure
of integration and interoperability projects. To measure the potential
of applications to be interoperable it is first needed to evaluate their
capability of interoperability.

In informatics field, the interoperability subject is quite old and
stem from requirement that devices, satellites or other military or civil
equipment would be able to exchange data. For example, for the
NASA (Di & Kobler, 2000) it was important to have the satellites that
are able to communicate with the ground stations and exchange
important telemetry data. Application integration and interoperability
projects have tendency to fail at marked almost 70% (Trotta, 2003;
van der Bosch, et al., 2010), mainly due to lack of knowledge of
application, growing complexity and dynamic nature of business. The
interoperability process is analyzed and architectured on different
levels: syntactic, semantic, cross domain (Chen, et al., 2008). Each
level concerns different issues with interoperability solution.
According to research by (Rezaei, et al., 2014) there are different
granularity issues for interoperability, researchers review complexity
of the subject and techniques until 2014.

1.3. The aim and Tasks of the Research

The goal of this research is to create a method for enterprise
application interoperability evaluation, based on causal relationships
extracted by comparing architectures.

The object of this research is an enterprise which business process
is dynamic (changing) and that use applications from more than one
provider, that might face interoperability issues such as: data
redundancy, duplication of business processes.

To realize the aim of research the main tasks where established:
1. Analyze problems of a enterprise application integration and

interoperability solutions, used methods and their principals.
2. Analyze enterprise application interoperability evaluation

methods, their advantages and flaws, underline principles of
the proposed method.

3. Create enterprise application capability of interoperability
evaluation method using business process architecture (CIM
– computation independend models) and enterprise
application architecture (PIM – platform indipendend
models).

4. Create an experiment using proving that enterprise
applications interoperability can be avaluated using proposed

text analysis methods for interoperability capability
evaluations.

1.4. Scientific Novelty

1. Established theory of possibilities to computationaly evaluate
enterprise applications interoperability by using multiple data
source domains, such as: business process models, autonomic
computing, deep knowledge extraction from application web
service architecture descriptions.

2. Proposed the text processing method for enterprise
application interoperability capability evaluation; capability
evaluation depend on text processing methods such as edit-
distance, latent semantic analysis, bag of words.

3. Applied edit-distance methods: Levenshtein, Jaro-Winkler,
Jaccard, and Longest Common Subsequence, gathered results
showing each application capability to interoperate with
another application.

4. Applied latent semantic analysis for beter semantic extraction
capabilities from application web service architecture to
better evaluate capability of applications to be interoperable.

1.5. Statements to be Defended

1. Enterprise architecture (EA) frameworks and model driven
architecture (MDA) can be applied when solving enterprise
application interoperability issues, by visualizing and
identifying relationships between application components and
business process causal relationships.

2. Proposed enterprise applications interoperability capability
evaluation solution is sufficient to evaluate similarities
between applications in syntactic and semantic level.

3. It is possible to use CIM and PIM models to evaluate
applications interoperability by extracting causal
dependencies between business processes and their
counterparts, that are transformed to match application
processes.

5. Enterprise application interoperability evaluation solution
based on autonomic computing technologies enables

detection changes in dynamic business processes and show
the changes affecting enterprise application interoperability.

1.6. Approbation of the Research

The results of the research were published in two peer-reviewed
journals, in seven peer-reviewed conference proceedings and were
presented and discussed in four national and international conferences.
Intermediary results and discussions were presented in two national
workshops.

1.7. Outline of the Dissertation

The dissertation consists of seven chapters and references. The
chapters of the dissertation are as follows: Introduction; Review of
enterpise application interoperability solutions; Measures of
enterprise application interoperability; Application interoperability
evaluation experiment description; Results of application
interoperability evaluation experiment; Conclusions and
recommendations. This work contains 83 pages that include 28 figures
and 8 tables, list of references consist of 55 sources.

2. REVIEW OF ENTERPISE APPLICATION
INTEROPERABILITY SOLUTIONS

In this chapter enterprise application interoperability and
integration solutions are reviewed. Methods that solve interoperability
and integration problems are uncovered. List of main interoperability
problems is established. These problems and methods are used to
make applications integrated or interoperable within a business
domain, but they pose a problem of high maintenance and high
knowledge requirement that is sometimes too difficult that most
integration projects fail (Trotta, 2003), thus new solutions should be
discovered.

It is known that integration and interoperability of applications
differ by goal business: to create a single holistic system to cover all
processes, or to effectively use multiple applications that would
efficiently exchange data and would not be limited to a single

application provider. In other words integration encompasses all
domain, while interoperability focuses on parts of the same domain
that should effectively exchange data and functionality (Chen, et al.,
2008).

In a dynamic organization, there could be multiple obstacles that
do not allow legacy and new applications to interoperate
automatically. Mainly these obstacles are (Fig. 1):

 Business processes change when new applications are
introduced – this causes dependent process failures, data
errors, time delays and has overall demanding requirements
for organization adaptability.

 Applications are dynamic; their schema might be changed
over time – this causes failures in schema matching,
interoperability and integration solution failures, dependend
business process failures and time delays.

 Multiple applications are used in a single domain – this causes
data ambiguity and duplication between application, new
processes appear to solve these issues, causing higher human
resource requirements.

 There are no common methods to describe collaboration
among multiple different applications – this causes ambiguity,
different application architecture strategies, new integration
protocols development or requirement for heightened
maintenance.

 Application changes usually impact business process.
Therefore, previous business process models become invalid
and cannot be used for knowledge extraction – this is caused
by one time modeling, and therefore after some time model
could not represent the current status of an enterprise.

 To ensure interoperability, the integration expert needs to
perform the following tasks:
o Perform schema alignment (Hophe & Woolf, 2004),

(McCann, et al., 2005) (Peukert, et al., 2012), (Rahm &
Bernstein, 2001), (Silverston, et al., 1997), (Silverston,
2011);

o Ensure record linkage and data fusion (Dzemydienė &
Naujikienė, 2009), (Kasunic, 2001)

o Ensure orchestration – the timing of each data migration;

o The choreography of application services and data objects
– sequence and order in which applications would share
data.

 Lack of skills and knowledge – this causes integration and
interoperability project delays and failures.

Fig. 1 Tree of interoperability obstacles.

Lack of necessary skills is a barrier to implementing
interoperability solutions. Lack of necessary knowledge on used
applications is also a barrier to implementing interoperability
solutions. The full tree of interoperability obstacles is represented in
Tree of interoperability obstacles figure (Fig. 1). Previously
interoperability layers were called barriers in earlier documents of EIF
(IDABC, 2008). Data from one system cannot be interoperable with
similar data in another system without passing these barriers . The five
layers of interoperability:

• Governance layer – decisions on interoperability structures, roles,
responsibilities policies, and agreements.

• Organizational layer – these barriers relate to the structure of the
organization and how an organization is dealing with constant and
rapid changes. Usually, a structure of organizations and especially
its processes must be discovered and evaluated. Some integration

solution can help improve business processes and therefore, get over
the organizational barriers (Valatavičius & Gudas, 2015).

• Legal layer – ensure that the data will not be abused or leaked to the
public during the interoperability operations. This layer also might
include, for example, new general data protection regulation
(GDPR) that allow people to get all related data from business
applications.

• Semantic layer - Semantic or conceptual layers cover semantic
differences of information, for example, the use of different
software systems leads to the semantic differences.

• Technical layer – is a layer in which interface specifications,
communication medium, interconnection services, data integration
services, and other aspects are analyzed.

Interoperability area describes the object of the interoperability
solution. As there could be multiple layers of interoperability, a
different aggregation and granularity of data are taken into
perspective. Interoperability areas investigated by other researchers
are as follows (Chen, et al., 2008): data, services, processes, and
business. The interoperability of data covers different issues of the
complex data integration from diverse sources with different schemas.
The interoperability of services covers different issues of the
heterogeneous data enveloped to the shell of web-services of
applications that designed and implemented independently. In this
level of interoperability, it might be easier to deal with different
schemas and solve semantic issues. The interoperability of processes
solves the problem of process sharing or optimizing a value chain for
a company. Processes are optimized by developing good
interoperability of services/data that are used in these processes.
Recent research showed that it might be possible to get internal models
from the business process and apply it as knowledge in integration
solutions (Valatavičius & Gudas, 2015). The interoperability of
business cover B2B integration problems and focuses on issues of data
sharing between businesses, but all previous interoperability options
must be assured to have a successful business.

3. MEASURES OF ENTERPRISE APPLICATION
INTEROPERABILITY

Various application interoperability methods are applied to create
and maintain the interoperability of enterprise applications. The
research varies among layers (e.g., organizational, legal, semantic and
technical) and levels (system specific, documented data, aligned static
data, aligned dynamic data, harmonized data) of conceptual
interoperability model (Tolk & Muguira, 2003). Most researchers of
integration subject use advanced methods such as agent technologies
(Cintuglu, et al., 2016; Overeinder & Verkaik, 2008) which usually
cover self-describing services which cannot be applied in RESTful
protocol in applications. Moreover, as RESTful protocol becomes
increasingly popular API protocol in business applications, this
provides a difficulty to create automated bindings between different
systems. Although even with good protocol description usually, lack
of semantics could also be a blocking point for successful
interoperability. Ontology-based technologies (Li, et al., 2005;
Shvaiko & Euzenat, 2011). However, sophisticated methods of the
process integration already exist, just not being applied in the
application area (El-Halwagi, 2007). In a dynamic environment,
business processes often need optimizing, similar the examples of
business process integration (El-Halwagi, 2007; Pavlin, et al., 2009).

Some researchers underline the guidelines of measurements and
give propositions of what methods should be used, but they are not
presented in such a way that could be easily replicated. One of the
favorite inspirers for this research Kasunic (Kasunic, 2001) proposed
to evaluate systems interoperability using three views: Technical,
Operational, and Systems. A similar approach to the business and
information systems alignment measurement introduced in
(Morkevičius, 2013).

 a) Technical view,
Technical interoperability
scorecard.

b) Systems view,
Systems
interoperability
scorecard

Source Compliance to standards S1 S2 S3 S4

S1 ExactOnline Y Y Y G

S2 PrestaShop Y Y G Y

S3 SuiteCRM Y Y G Y

S4 NMBRS G G Y Y

Table 1. Selected systems interoperability capability measure
by LISI method

Technical view table indicates that it needs more effort than

anticipated to extract meta-data (Kasunic, 2001). Colors represent the
usage of standards in Table 1 above inadequate (R), marginal (Y), or
adequate (G). Conclusions: Such evaluation method could be biased
by ones understanding on whether the system is standardized, and on
thought how easily it could integrate providing interoperability.

The enterprise application (EA) interoperability measurement
(between services) is the basis for improving interoperability methods.
Some interoperability evaluation methods are known: Scorecard –
DoD in (Kasunic, 2001), I – Score in (Ford, et al., 2008), and
Comparison by functionality in (Dzemydienė & Naujikienė, 2009).

These EA interoperability evaluation methods are not enough
because of the assessments obtained through questionnaires and
expert judgment. We strive to develop a method that evaluates the
characteristics of the systems being integrated - without using personal
opinion or tests/questionnaires/ experiences. We aim to use only
characteristics of software: metadata and systems network service
architectures. It is reasonable to use structured (internal) models of
systems than to fill out questionnaires. We are looking for a
deterministic method that can evaluate or measure the capability of
interoperability.

The principles of the second order cybernetics provide the
methodological basis for the internal viewpoint and aim to disclose
internal causal relationships of the domain. In our case, we need to
explore the causal relationships between application software, and no
access to use the questionnaires as stated by (Kasunic, 2001).

1.1. Interoperability evaluation using MDA, EA approach

Our study is based on a few assumptions. First, internal modeling
with the MDA approach help determines the influence of domain
causality to the interoperability of applications (Fig. 2). Second, it is
possible to create an architecture of interoperable enterprise
applications using only the enterprise architecture model and data for
each service for enterprise software. Another assumption is as follows:
interoperability should be evaluated by comparing web service
operation names using edit distance calculations. The measurement of
EAS interoperability capability serves as a basis for improving
interoperability methods. In case that interoperability is required
between these applications, how one should know whether these
systems can have interoperability at all? The capability of
interoperability of applications can be evaluated using their
architectural design by comparing web service operation names using
edit distance calculations.

Fig. 2. Analysis of models from MDA cycle to produce
interoperability capability score.

Levenshtein calculates edit distance by a minimum number of
single character edits required to change one word into the other.
Levenshtein algorithm was the first known method developed to
compare string distances in 1965 (Левенштейн, 1965). For a given
two strings b and a with a total character count of m and n. For each
character pair from two strings if they not equal take the minimum
amount of changes required to make them similar. Jaro-Winkler
algorithm uses a formula out of 4 values that calculate similarity.
Longest common subsequence edit distance, as the name suggests
calculates edit distance removing characters, and counting how many
characters removed to leave longest common subsequence. Jaccard
edit distance calculates how many similar attributes are in both
compared sets for an n-gram. For a given character sequence of each

string, a character matrix is formed where characters for each set
represent the total number of characters have of the same value
(matched).

Although string distance algorithms only provide syntactic
similarity evaluation capabilities. For semantic evaluation
capabilities, we have developed an ontology library describing data
structure with semantic meaning. The steps to calculate
interoperability capability (potentiality): 1) locate web-service
reference documentation; 2) extract and parse meta-data of web
service reference files; 3) categorize parsed metadata into operations,
methods, objects, field names, and field types; 4) select operations and
create meta-data for each operation: a) get source same; b) get service
name; c) extract method GET, POST, PUT, DELETE, PATCH,
HEAD); d) extract operation to the related method; e) Strip redundant
information from operation (repeating meaningless keywords; 5) Save
operation meta-data to Microsoft SQL Server database; 6) Using
master data services and prepared SQL procedure scan through
operations in the database table and compare it with other operations
from different source; 7) Save each comparison for different method
in a new table; 8) Visualize and explore results.

For the following systems (OpenCart, PrestaShop, LemonStand,
NMBRS_ReportService, NMBRS_DebtorService, Zen Cart,
NMBRS_CompanyService, NMBRS_Employees, SuiteCRM,
KonaKart_StoreFront, KonaKart_Administration, MIVA,
ExactOnline) used in the experiment, we describe its web-service
interface protocol and complexity to extract data automatically ().
According to the documentation SOAP and REST, development
should follow design recommendations, but there are already many
systems developed without SOA approach. Once a system implements
web services, it is required to have an API which is not always created
using common recommendations. Therefore, it is harder to automate
data extraction. Additional steps are needed to get to the objects of
web services - it is not enough to get the initial structure described in
web-service for meta-data analysis. During the experiment, additional
steps were carried invoking web service – for returning list of objects
related to the operations described in SOAP WSDL files. REST web
service meta-data description is not standardized, and it is more
challenging to extract meta-data. A lack of common pattern following
the description of objects exists, therefore need additional procedures

to extract and parse meta-data from API. The web service meta-data
for each system data extracted to the database using a custom written
C# algorithm and manual data entry from web service reference
documentation. Data storage was setup using the Microsoft SQL
Server database. From the database, data was analyzed, cleaned, and
formed in such a way that it is usable with edit distance measurement
algorithms. Edit distance algorithms were executed using Microsoft
SQL Server Master Data Services to produce enterprise software
system compatibility for interoperability result. Further results and
data described in section six.

1.2. Interoperability evaluation and autonomic computing

Autonomic computing technology was presented by IBM
researcher Jeff Kephart (Kephart & Chess, 2003). The purpose of
autonomic computing technology is to raise automation level of
computing solutions. With the intention to apply automomic
computing technology to enterprise application integration and
interoperability solution it was discovered that there ave big
similarities between autonomic computing and elementary
management cycle from business process modeling (Gudas, 2012).
The IBM automomic computing component consists of components:

 Touchpoints – in this research domain it is URL addresses
to application API reference source

 Knowledge – in this research domain it is application
web-service description documents, business process
diagrams and ontology models representing domain

 Autonomic manager – in this research domain it is the
solution for interoperability evaluation

 Managed resourses – in this research domain it is
applications that should be interoperable

Autonomic Manager consists of five main components:
 Monitor action – which is covered in experiment by

scanning data sources in a scheduled fashion
 Analyse action – which is covered in experiment by

determining interoperability score
 Plan action – is not covered in this research
 Execute action – is not covered in this research

 Knowledge storage – which is covered in experiment by
storing intermediary results from edit-distance
calculations, latent semantic analysis, etc.

Autonomic computing solution is usually depicted in similar view
as applied IBM autonomic computing component architecture (Fig.
3). Monitor (M) reads data sources and analyze their structure, then
analyze (A) evaluates interoperability. Plan (P) step, reads evaluation
of object interoperability value and determines actions how to
exchange data. Execute (E) step would initiatie another autonomic
component capable of initiating data transfer between two or more
applications, which in turn affects the application by migrating data.

Fig. 3. IBM autonomic computing component architecture

The idea behind this solution is only valid on certain conditions:

 Application is developed with service oriented
architecture in mind

 Application has API that is properly described regarding
standards and agreements (such as SOAP, REST
protocols)

 User can provide details about the endpoint to the
interoperability solution.

Autonomic Manager

Managed element (enterprise application)

Execute
(E)

Analyze (A)
Determine similarity
between objects score

Monitor (M)
Collect API
description
documents

Element
(application API interface)

Set information
(s)

L

J

Get information
(g)

Knowledge
Transaction

(K)

Knowledge
 transaction

(K)

Knowledge
Transaction

(K)

Sensors
(endpoints)

Effectors

Plan
(P)

K

Knowledge
Transaction

(K)

Knowledge
(IM)

The items described in autonomic computing component
architecture (Fig. 3) only partially described in the dissertation and
covers part of it since it was out of scope of this research.

4. APPLICATION INTEROPERABILITY EVALUATION
EXPERIMENT DESCRIPTION

This research is limited to enterprise applications developed using
service-oriented architecture and mostly focus on software that uses
web services and SOAP and RESTful protocol for data transfer, which
meta-data is usually described using standardized documents. Web
service operations compared to multiple software system applications
for the enterprise shows the difference in similarity scoring. Randomly
picked applications presented in the table below (Table 2). Each
application has some different roles and aspects of an enterprise.
Although this research is limited to a few applications, the intention is
to expand the research to involve more applications. The core set of
applications are On-site e-commerce applications and some on-site
accounting applications.

Software Application API protocol Objects Description

OpenCart REST 24 On-site e-commerce application

PrestaShop REST 49 On-site e-commerce application

LemonStand REST 76 On-site e-commerce application

NMBRS_ReportService SOAP 80 On-site accounting application

NMBRS_DebtorService SOAP 106 On-site accounting application

Zen Cart REST 208 On-site e-commerce application

NMBRS_CompanyService SOAP 444 On-site accounting application

NMBRS_Employees SOAP 1107 On-site accounting application

SuiteCRM SOAP 1426 On-site CRM application

KonaKart_StoreFront SOAP 1644 On-site e-commerce application

KonaKart_Administration SOAP 2425 On-site e-commerce application

MIVA REST 4322 Cloud e-commerce application

ExactOnline REST 6043 Cloud accounting application

Table 2. Randomly picked software applications for analysis

For these applications and their services (Table 2), API reference
data is collected and parsed to evaluate interoperability. Microsoft
SQL Server, PostgreSQL, R, Microsoft Visual Studio, and Tableau
was used to acquire data from web services. We used Microsoft SQL
Server to for collecting initial data from C# script written to extract
and parse API reference descriptions. C# reference parser was good
for a limited amount of applications, but more time needed to expand
to enable it to work with a more extensive data set. C# script loaded
meta-data from API, parsed and stored in Microsoft SQL server. Later
for edit distance analysis, R script was used to determine similarities
between operations, objects, and fields of sets between multiple
applications. Data stored into the PostgreSQL server. Data was finally
analyzed and represented using Tableau software. Activity diagram
below depicts a proposed solution of interoperability capability
analysis tool (Fig. 4).

Fig. 4. Activity diagram of a proposed solution of interoperability
capability analysis and interoperability tool.

From the figure above (Fig. 4 b) – a simple process of analysis
agent depicted. This agent takes part in the job done manually by data
integration specialist. It reads endpoint data from the endpoint URL,
acquires reference file then parse it and runs evaluation scripts, then

repeats all the process for more endpoints. In the holistic view for
software interoperability, there should be three steps: Analysis,
Monitoring and Action (interoperability) hence, the three blocks in
activity diagram (Fig. 4). The interrelation between activity diagrams
in a) and b) in figure file is that subactivities of analysis agent might
be running independently from any other agent activity, such as
monitoring or interoperability.

5. RESULTS OF APPLICATION INTEROPERABILITY
EVALUATION EXPERIMENT

For each enterprise application, it is possible to gather meta-data
of web service and API descriptions. Some meta-data automatically
extracted from these services (therefore can be automated), others EA
require more efforts to do the extraction, but with careful rethinking,
the meta-data extraction can be automated as well. Section 5 describes
the interoperability capability (potentiality) evaluation experiment of
9 different enterprise software applications (see Section 5). Some of
the applications are repeated in the list (Table 2) because web services
have several descriptions for different packages with different
endpoints. Using the meta-data of web services, we counted for each
system how many operations can be carried out using its web services
(Fig. 5).

The largest analyzed enterprise application is MIVA – a cloud
computing based e-commerce application. Automated parsing
determined 3908 data related operations for this specific application.
For “ExactOnline” and NMBRS (employees related web service)
counted operations 293 and 265 respectively. KonaKart, ZenCart,
SuiteCRM contained the smaller number of web service operations
below 150.

Fig. 5. The number of distinct operations in EA packages.

Additionally the number of distinct operations in EA packages list
included an additional collection of meta-data from Schema.org added
background knowledge and semantics for other applications (Fig. 5).

Considering only the number of operations can be carried out by
EA packages, some conclusions can be drawn:

• MIVA – the most extensive software package from a test set;
• MIVA – contains more modules and data management points

than other systems;
• Other systems are smaller, or their web services are limited or

split (e.g., NMBRS).
There are 5323 distinct operations overall EA used in the

experiment. On average EA has 116 operations per system provided
by their web service (excluding SchemaOrg and MIVA). The
experiment results are the analysis of similarity for each operation
name in each enterprise application. If the edit distance for each
operation name is high enough, this indicates that most operations are
similar in that pair of EAS packages. Results in Figure 5 summarize
the outcome of the edit distance calculations for e-commerce
packages. The heatmap of possible interoperability (Fig. 6) shows the
edit distance score of operations. Consider the “Prestashop” to
“KonaKart_StoreFront” interoperability comparison. Red spots
indicate < 50 % operation similarity as opposed to other operations
(green), the white area indicates around 50% similarity. Red spots also

indicate a higher probability of operations being similar. For example,
“PrestaShop” operation „categories“ matches “KonaKart_StoreFront”
operation „category“ by 75% using an ensemble of edit distance
calculation.

Fig. 6. Operation interoperability scoring - a heat map using the
average ensembled score of edit distance algorithms, green spots
indicate above 50% similarities.

In operation interoperability scoring figure (Fig. 6) is apparent
similarity of operations of e-commerce products presented. In this
example, syntactic overlap can compare and evaluate syntactic
overlap of operations between software applications. Results from
multiple edit distance methods (Levenshtein, Jaccard, Jaro-Winkler,
Longest Common Subsequence) presented further in text. An average
score of all selected methods taken as it was not in the scope of this
research to evaluate edit distance methods, but rather provide an
overview of the capability of evaluation.

1.3. Interoperability evaluation using ensemble method

Evaluation of the next results is presented using the ensemble method.
Ensemble method is the average of all similarity scores from the edit
distance algorithms. After looking at the results from the operation
level, we see that operations of web services are similar to each

application: accounts; absences, addresses (Fig. 7). The results of the
operations interoperability scoring leads to conclusions as follows: In
ExactOnline (E) and NMBRS (N) there exist operations that are
similar: E Addresses – N Address (85%); E BankAccounts – N
BankAccount (91%); E Cost centers – N CostCenter (90%); E Cost
units – N CostUnit (88%); E Departments – N Department (90%); E
Employees – N Employee (88%); E Schedules – N Schedule (88 %).

Fig. 7. Similarity results greater than or equal to 65 % (Exact Online,
NMBRS).

In Exact Online (E) and NMBRS (N) there exist operations that
are confused: E Contacts – N Contract (76%); E Contacts – N

ContractPerson (72%) – these share some similar data, but need to
evaluate from data structure perspective for this operation; E Contacts
– N ContractV2 (70%);

Exact Online with NMBRS has 20 operations with a result higher
than 65%. We can analyze and determine thresholds by semantic
meaning trying to avoid mismatching. As can be seen, Exact Online
285 NMBRS 130 operations have only 20 operations possible
interoperability with score > 65%. Further, compared Exact Online
(E) and PrestaShop (P) where similarity results are above or equal to
70 %. In research results exist cases with full similarity (100%)
between a few objects: Addresses; Contacts; Currencies; Employees;
Warehouses. However, the algorithms are not precise, so some
confusion can be found, for example, at (74%): E Projects – P products
(74%)..

Exact online with PrestaShop has 18 operations with a result
higher than 70 %. As can be seen, Exact Online 285 PrestaShop 72
operations have only 18 operations possible interoperability with
score > 70 %. Other results are overviewed as follows and presented
in Table 3. The experiment confirms that it is possible to evaluate the
interoperability capability, i.e., identify the pairs of specific operations
that potentially can be interoperable.

 Similarity >= 100 %

 60% 70%

E
nseble

L
evenshtein

Jaro-W
inkler

Jaccard

L
ongest C

om
m

on
S

ubsequence

ExactOnline X NMBRS 40 20 - - - - -

ExactOnline X Prestashop 54 18 5 5 5 5 5

ExactOnline X SuiteCRM 48 12 - - - 8 -

NMBRS X Prestashop 11 6 1 1 1 1 1

MMBRS X SuiteCRM 7 - - - - - -

SuiteCRM X Prestashop 13 6 1 1 1 5 1

Table 3. Count of Operations with a given score for each
software interoperability combination.

In the similarity of sources using edit distance calculations a)

Levenshtein, b) Jaro-Winkler, c) Jaccard, d) Longest common
subsequence, e) ensemble the similarity of applications using different
edit distance calculations is depicted (Fig. 8). All edit distance
algorithms determine the same similarity between the EAS (Fig. 8).

Fig. 8. The similarity of applications using edit distance calculations
a) Levenshtein, b) Jaro-Winkler, c) Jaccard, d) Longest common
subsequence, e) ensemble.

The scoring amplitudes are somewhat shifted (a – [13;21], b –
[46;53], c - [2;10], d - [23;33], e – [21;29]) because of the difference
of the edit distance calculation methods. The method can compare the
different amount of procedures. The lower the percentage - the more
procedures tried to compare, but the score was lower because of the
different amounts. It is still more important to check per each
comparison method rather than looking for a difference in each of
them.

1.4. Interoperability evaluation using bag of words

Bag of words is a good model to simplify visualisations of data
that was used in the experiment. In this research bag of words method
for data visualization and further decision making on experiment
steps. We also used bag-of-words solution to split addative words such
as “sendInvoice” so we could analyze separate words for example

“send” and “invoice” separately. This helps determine that “send” is a
verb and is used in action to the noun “invoice” which is an object in
the application that is being analyzed. Determining and displaying bag
of words helps visualyy see the application similarity results. An
example is given using “KonaKart”, “Zen Cart” and “Suite CRM”
application analysis in text analysis figures A, B and C (Fig. 9).

Fig. 9. Textual analysis comparison between applications using bag-
of-words method.

From the textual analysis comparison with bag-of words method
we see the biggest words expressed that have most of related
operations (Fig. 9). The operations, that are verbs impact objects that
are nouns, and we can clearly see that KonaKart (A) and Zen Cart (B)
has product object that is possibly related. We can certainly say that
(A) and (B) share same objects and therefore can be interoperable
because we know that both applications are E-Commerce solutions,
and the method above gives us calculatable, objective view of the
latter statement.

1.5. Interoperability evaluation using latent semantic analysis

The assumption, that words in applications are semanticaly
similar if they repeat in the similar places of text – also known as
distributed semantics. Based on this assumption, we can use Latent
Semantic Indexing (LSI) method to improve edit-distance method
experiment results and improve the monitoring and analysis actions of
autonomic computing component. For latent semantic analysis we
used R language version 3.5.1 and these libraries:

 RODBC – data reading and writing
 tm – text mining tool

 quanteda – text analysis tool with latent semantic analysis
capability.

Experiment tests are carried out using Latent Semantic Analysis tool
from Quanteda library pacakage. Latent semantic analysis is described
in Information Retrieval, Algorithms and Heuristics book (Grossman
& Ophir, 2012).

In the first experiment we compare ExactOnline and SuiteCRM
applications, for only operations that are 100 match and try to see if
they are similar by adding Objects, Fields, and Field Type
information, hence the semantic knowledge about operation. We can
clearly see that ExactOnline objects are more separate from SuiteCRM
package objects (Fig. 10)

Fig. 10 ExactOnline comparison to SuiteCRM structural similarity
using LSI method.

From ExactOnline comparison to SuiteCRM figure it is seen that
vectors V1 and V2 reflect objects positions in a plane (Fig. 10). The
closer are the objects in this plain then more related semanticaly they
are, hence increasing a total possibility for applications to have
interoperability.

6. CONCLUSIONS AND RECOMMENDATIONS

1. Most common problems of application integration and
interoperability were listed and compared showing that most
important problems are schema matching, orchestration and
choreography in interoperability solutions.

2. Review of currently existing interoperability evaluation
methods show that they mostly rely on manual analysis,
questionairs and there are no automated approaches to
derermine whether multiple applications can be interoperable.

3. Main analyzed interoperability evaluation methods LISI, I-
Score, Comparison by functionality. LISI and Comparison by
functionality methods are quire similar, but LISI is more
developed for multiple business layer, and comparison by
functionality deeply depends on the observer subjective view
on the domain. I-score method is more technical and closer to
the topic of his research but it does cover only very low
technical level and does not deal with schema matching
orchestration and choreography problems.

4. The proposed solution for autonomic interoperability
evaluation was laid in dissertation theoretical part. In the
proposition it was argued that multiple knowledge sources of
business domain can be used to add to evaluation of
interoperability. The proposed method suggest that
knowledge can be gathered from business process, application
architecture description files, and other ontology sources that
could be added to the existing experiment and compared with
target application, which would allow to determine coverage
of business layer to application layer and how well CIM
represents software architecture PIM models in enterprise
architecture domain.

5. The presented experiment defends the statement proposed
method is able to autonomically detect similarity between
applications by the highest level using web service description
documents and edit-distance, latent semantic analysis
methods to get the quantative evaluation of interoperability.

6. Enterprise applications where analyzed and evaluated the
level of capability to be interoperable. The goal to asses
interoperability through the knowledge available by
automated algorithms has not yet been covered in the
available solutions.

7. This research opens a possibility for a machine to machine
interaction evaluation, helping people that work on
integration projects.

8. Current research results might be helpful as decision support
to gain knowledge of compatibility between systems quickly.

9. In the experiment, 13 software systems were compared by
difference edit-distance methods and give the output of
evaluation of the capability of interoperability in the form of
similarity score.

10. The negative side of such scoring is that the summary of API
operation similarity score does not provide a full picture of
similar objects and operation count difference in all
applications and might affect this scoring method.

11. Jaccard, Jaro-Winkler, Levenshtein, and Longest Common
Subsequence methods show the same separation of
interoperability measure. Methods have a different level of
precision estimating not such similar strings (below 60%).

12. This research could be expanded on the topic how autonomic
component can evaluate interoperability when its managed
application systems are not designed using service oriented
architecture (SOA).

This research provides the basis for supporting Business Process
alignment to Application Processes and may impact the quality of
application interoperability when using business process models.
The idea is that after measuring whether software systems are
interoperable, it is possible to measure the alignment to business
processes and see which operation fall outside of the business
process model.

LIST OF REFERENCES

Chen, D., Doumeingts, G. & Vernadat, F., 2008. Architectures for
enterprise integration and interoperability: Past, present and future.
Computers in industry, 59(7), pp. 647-659.

Cintuglu, M. H., Youssef, T. & Mohammed, O. A., 2016.
Development and application of a real-time testbed for multiagent
system interoperability: A case study on hierarchical microgrid
control. IEEE Transactions on Smart Grid, 9(3), pp. 1759-1768.

David, C., 2006. Enterprise Interoperability Framework. s.l.,
EMOI-INTEROP.

Dijkman, R. et al., 20144. Similarity of business process models:
Metrics and evaluation.. Information Systems, 36(2), pp. 498-516.

Di, L. & Kobler, B., 2000. NASA standards for earth remote
sensing data. International Archives of Photogrammetry and Remote
Sensing, 33(B2; PART 2), pp. 147-155.

Dzemydienė, D. & Naujikienė, R., 2009. Elektroninių viešųjų
paslaugų naudojimo ir informacinių sistemų sąveikumo vertinimas.
Informacijos mokslai, Issue 50, pp. 267-273.

El-Halwagi, M. M., 2007. Process integration. Elsevier, Volume
7.

Fielding, R. T. & Taylor, R. N., 2000. Architectural styles and the
design of network-based software architectures. Irvine: University of
California.

Ford, T., Colombi, J., Graham, S. & Jacques, D., 2008. Measuring
system interoperability. s.l., Proceeding Cser.

Gates, B., 2013. Measuring progress. Annual Letter, Gates
Foundation. [Online]
Available at: https://www.gatesfoundation.org/Who-We-
Are/Resources-and-Media/Annual-Letters-List/Annual-Letter-2013
[Accessed 25 September 2018].

Gediminas, G., 2015. Daugiaagentinių sistemų kūrimo metodų
išvystymas nedidelio našumo įterptinių sistemų integravimui, Vilnius:
Vilnius University.

Gonzalo, N., 2001. A guided tour to approximate string matching..
ACM computing surveys (CSUR), 1(33), pp. 31-88.

Grossman, D. A. & Ophir, F., 2012. Information retrieval:
Algorithms and heuristics. pringer Science & Business Media,
Volume 15.

Hophe, G. & Woolf, B., 2004. Enterprise integration patterns:
Designing, building, and deploying messaging solutions. s.l.:Addison-
Wesley Professional.

Jackob, B., Lanyon-Hogg, R., Nadgir, D. & Yassin, A., 2004. A
practical guide to the IBM autonomic computing toolkit. IBM,
Durham: International Technical Support Organization.

Kasunic, M., 2001. Measuring systems interoperability:
Challenges and opportunities. s.l.:Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst.

Kephart, J. O. & Chess, D. M., 2003. The vision of autonomic
computing. Computer, Volume 1, pp. 41-50.

Krajicek, J. & Krajíček, J., 1995. Bounded arithmetic,
propositional logic and complexity theory, Cambridge: Cambridge
University Press.

Li, L., Wu, B. & Yang, Y., 2005. Agent-based Ontology
Integration for Ontology-based Applications. Proceedings of the 2005
Australasian Ontology Workshop-Volume 58, Australian Computer
Society, Inc..

McCann, R. et al., 2005. Mapping maintenance for data
integration systems. s.l., VLDB Endowment, pp. 1018-1029.

Morkevičius, A., 2013. Business and information systems
alignment method based on enterprise architecture models, Kaunas:
KAUNAS UNIVERSITY OF TECHNOLOGY.

Overeinder, B. J. & Verkaik, P. D. B. F. M., 2008. Web service
access management for integration with agent systems. Proceedings
of the 2008 ACM symposium on Applied computing, pp. 1854-1860.

Pavlin, G., Kamermans, M. & Scafeş, M., 2009. Dynamic process
integration framework: Toward efficient information processing in
complex distributed systems. Intelligent Distributed Computing III,
pp. 161-174.

Peukert, E., Eberius, J. & Rahm, E., 2012. A self-configuring
schema matching system. s.l., In 2012 IEEE 28th International
Conference on Data Engineering, pp. 306-317.

Rahm, E. & Bernstein, P. A., 2001. A survey of approaches to
automatic schema matching. The VLDB Journal, 4(10), pp. 334-350.

Rezaei, R., Chiew, T. K. & Lee, S. P., 2014. A review on E-
business Interoperability Frameworks. Journal of Systems and
Software, Volume 93, pp. 199-216.

Shvaiko, P. & Euzenat, J., 2011. Ontology matching: state of the
art and future challenges. IEEE Transactions on knowledge and data
engineering, 1(25), pp. 158-176.

Silverston, L., 2011. The data model resource book, Volume 1: A
library of universal data models for all enterprises.. s.l.:John Wiley &
Sons.

Silverston, L., Inmon, W. H. & Graziano, K., 1997. he data model
resource book: a library of logical data models and data warehouse
designs. s.l.:John Wiley & Sons, Inc.

Tolk, A. & Muguira, J. A., 2003. The levels of conceptual
interoperability model. s.l., Citeseer, pp. 1-11.

Trotta, G., 2003. Dancing around EAI 'bear traps'. Business
Process Management (BPM) Best Practices.

Valatavičius, A. & Gudas, S., 2015. Enterprise software system
integration using autonomic computing. CEUR-WS, Issue 1420, pp.
156-163.

Valatavičius, A. & Gudas, S., 2018. Measuring Enterprise
Application Software Interoperability Capability. CEUR Workshop
Proceedings, Volume 2158, pp. 104-113.

van der Bosch, M. A., van Steenbergen, M. E., Lamaitre, M. &
Bos, R., 2010. A selection-method for Enterprise Application
Integration solutions.. nternational Conference on Business
Informatics Research, pp. 176-187.

Zinnikus, I., Hahn, C. & Fischer, K., 2008. A model-driven, agent-
based approach for the integration of services into a collaborative
business process.. International Foundation for Autonomous Agents
and Multiagent Systems, Volume 1, pp. 241-248.

Левенштейн, В. И., 1965. Двоичные коды с исправлением
выпадений, вставок и замещений символов. Доклады Академии
наук, 163(4), pp. 845-848.

LIST OF PUBLICATIONS ON THE TOPIC OF DISSERTATION

The results of the research were published in two peer-reviewed
journals:

1. Valatavičius, A., Gudas, S., Apie taikomųjų programų
sąveikumo metodologiją, grindžiamą giluminėmis žiniomis.
Informacijos mokslai, 79(79), pp.83-113.

2. Publikuotas straipsnis: Gudas, S., Valatavicius, A., 2017.
Normalization of Domain Modeling in Enterprise Software
Development. Baltic Journal of Modern Computing, 5(4),
pp.329-350.

The results of the research were punlished in six peer-reviewed
conference proceeding journals:

1. Valatavičius, Andrius & Gudas, Saulius, 2015. Towards
business process integration using autonomic computing.
Informacinės technologijos 2015: Konferencijos pranešimų
medžiaga, pp.81–84.

2. Valatavičius, A. and Gudas, S., Apie taikomųjų programų
sąveikumo metodologiją, grindžiamą giluminėmis žiniomis.
Informacijos mokslai, 79(79), pp.83-113.

3. Valatavičius, A. and Gudas, S., 2018. Measuring Enterprise
Application Software Interoperability Capability.

4. Valatavičius, A. and Gudas, S., 2015. Enterprise software
system integration using autonomic computing. CEUR-WS.
org, 1420, pp.156-163.

5. Valatavičius, Andrius & Gudas, Saulius, 2016. Modeling
environment to maintain interoperability of enterprise
applications. Data analysis methods for software systems : 8th
international workshop on data analysis methods for software
systems, Druskininkai, December 1-3, 2016, pp.63–64.

6. Valatavičius, Andrius & Gudas, Saulius, 2017. Advanced
evaluation methods of multiple application software
interoperability. 9th International workshop on Data Analysis
Methods for Software Systems (DAMSS), Druskininkai,
Lithuania, November 30 - December 2, 2017, p.52.

7. Valatavičius, Andrius & Gudas, Saulius, 2018. Advanced
evaluation methods of multiple application software
interoperability. 10th International workshop on Data
Analysis Methods for Software Systems (DAMSS),

Druskininkai, Lithuania, November 29 - December 1, 2018,
p.87.

The resulst of the research were presented at six national and

international conferences:
1. Tarptautinė konferencija: Dalyvauta Doktorantų konsorciume

BIR 2015 Estijoje tema: “Enterprise Software System
Integration using Autonomic Computing“;

2. Tarptautinė konferencija: DB&IS 2016 Latvijoje tema:
“Modelling Dynamic Enterprise Environment to Maintain
Interoperability of Applications“;

3. Tarptautinė konferencija: DAMSS „Data Analysis Methods
for Software Systems“ 2016;

4. Konferencija: XVIII tarptautinėje kompiuterininkų
konferencijoje LIKS 2017, tema: Towards deep knowledge
based interoperability of applications. Straipsnis priimtas
publikacijai žurnale „Informacijos Mokslai“;

ABOUT THE AUTHOR

Andrius Valatavičius obtained BSc degree in 2012 in the field of
Business Informatics and MCs degree in 2014 in the field of Business
Informatics, both at Vilnius University, Kaunas faculty of humanities.
He was a PhD student at Vilnius University Institute of Data Science
and Digital Technologies from 2014 to 2018. Currently he is
freelancing data architecture specialist working on multiple projects
with UAB “Kvantas” and UAB “Intellerts”. His interests include
enteprise application integration and interoperability methods and
tools.

Vilniaus universiteto leidykla
Universiteto g. 1, LT-01513 Vilnius

El. p. info@leidykla.vu.lt,
www.leidykla.vu.lt

Tiražas __ egz.

