
VILNIUS UNIVERSITY

AUDRIUS ŠAIKŪNAS

EXTENSIBLE PARSINGWITH EARLEYVIRTUALMACHINES

Doctoral dissertation

Technological Sciences, Informatics Engineering (07 T)

Vilnius, 2019

The dissertation work was carried out at Vilnius University from 2015 to 2019.

Scientific Supervisor:

prof. habil. dr. Albertas Čaplinskas (Vilnius University, Technological Sciences, Infor-

matics Engineering – 07 T)

VILNIAUS UNIVERSITETAS

AUDRIUS ŠAIKŪNAS

EARLEYVIRTUALIŲ MAŠINŲ PANAUDOJIMAS PLEČIAMAI

PROGRAMAVIMO KALBŲ SINTAKSINEI ANALIZEI

Daktaro disertacija

Technologijos mokslai, informatikos inžinerija (07 T)

Vilnius, 2019

Disertacija rengta 2015-2019 metais Vilniaus universitete.

Mokslinis vadovas:

prof. habil. dr. Albertas Čaplinskas (Vilniaus universitetas, technologijos mokslai,

informatikos inžinerija – 07 T)

Abstract

Almost every programming language implementation contains a parser: it is the soft-

ware component that takes program source code and builds a data structure that can be

used further to process and translate the input programs.

One recent category of programming languages is extensible programming lan-

guages: these are languages whose syntax (and possibly semantics) can be extended

without having to modify the compiler. Because the syntax of the language can be

changed dynamically, special parsing algorithms that support dynamically changing

grammars are needed to analyse such languages.

After carrying out detailed analysis of existing parsing algorithms, we found that no

single parsing algorithm (as of the time of writing this work) fully satisfies our require-

ments for parsing extensible languages. Therefore, we set on creating a new parsing

method what would be suitable for parsing such languages.

Earley Virtual Machines (EVM) is the first iteration of such a parsing method: it

is a generalized context-free parsing algorithm that can parse dynamically changing

grammars. We carefully describe how such an algorithm was constructed. To ensure

that EVM can parse languages with acceptable performance, a successor to EVM was

created: Scannerless Earley Virtual Machines (SEVM).

SEVM is an enhanced version of EVM with focus on optimizations and parsing

performance. Finally, to ensure that SEVM can be used for practical applications, an

implementation of SEVM was developed and compared against various existing parser

implementations.

Keywords: adaptive grammars, extensible programming language, extensible pars-

ing, Earley parser, generalized parsing, just-in-time compiler, reflective parsing, scan-

nerless parsing.

iii

Contents

Abstract iii

Contents iv

List of Figures viii

List of Tables x

Glossary xi

Acronyms xi

1 Research context 1

1.1 Introduction and motivation . 1

1.2 Problem statement . 3

1.3 Research goal, objectives and tasks . 4

1.4 Scientific contribution of the research 5

1.5 Practical significance of results . 6

1.6 Defended claims . 7

1.7 Approbation and publications . 8

1.8 Outline . 8

2 Basic concepts 10

2.1 Compilers and programming languages 10

2.2 Compiler architecture . 12

2.3 Lexing and parsing . 13

2.4 Code generation . 14

2.5 Extensibility . 15

3 State of art 18

3.1 Parsing methods . 18

3.1.1 Requirements for a REP language parser 18

3.1.2 LR(k) parsers . 20

3.1.3 GLR-family parsers . 22

3.1.4 Recursive decent parser . 23

iv

3.1.5 Packrat parser . 25

3.1.6 Adaptable Parsing Expression Grammars (APEG) 27

3.1.7 Specificity parser . 28

3.1.8 Earley parser . 29

3.1.9 Parsing reflective grammars 31

3.1.10 Efficient Earley parsing . 32

3.1.11 Yakker parser . 34

3.2 Related tools and languages . 37

3.2.1 Katahdin . 37

3.2.2 SugarJ . 39

3.2.3 Neverlang . 41

3.3 Conclusions . 41

4 Extensible parsing with Earley Virtual Machines 42

4.1 Earley Virtual Machines . 42

4.1.1 Introduction to Earley Virtual Machines 42

4.1.2 EVM grammars . 43

4.1.3 EVM states . 44

4.1.4 EVM fibers . 45

4.1.5 EVM interpreter . 45

4.2 Compiling basic EVM grammars . 48

4.3 General purpose computation in EVM 49

4.4 Improving source grammar flexibility 50

4.4.1 Regular right hand sides in production rules 50

4.4.2 Rule and operator precedence 50

4.4.3 Specifying operator associativity 52

4.5 Parsing with regular lookahead . 54

4.5.1 Fixed length lookahead . 54

4.5.2 Variable length lookahead . 55

4.6 Parsing with data dependant constraints 56

4.6.1 EVM grammar language . 56

4.6.2 Matching input against dynamic content 57

4.7 Abstract syntax tree construction . 59

4.7.1 Automatic AST construction 59

4.7.2 Manual AST construction . 62

4.7.3 Delayed semantic actions . 64

4.8 Parsing reflective grammars . 69

4.8.1 Dynamic grammar composition 70

4.8.2 Extensions of EVM grammar language 71

4.8.3 Compiling EVM grammars with domains 71

4.8.4 Loading multiple grammar modules in EVM 73

4.8.5 Parsing reflective grammars in EVM 74

4.9 EVM performance improvements . 74

4.9.1 Garbage collection of suspended fibers 74

v

4.10 Eliminating dynamic non-terminal call indirection 75

4.10.1 On-demand instruction subset construction 76

4.11 Conclusions . 81

5 Implementation of Scannerless EVM 83

5.1 Scannerless EVM . 83

5.1.1 Flaws of the original EVM . 83

5.1.2 Overview of the internal structure of SEVM 85

5.2 Improving grammar expressiveness 88

5.2.1 Abstract grammar rules . 88

5.2.2 Named precedence groups . 89

5.2.3 Dominating terminals . 92

5.3 Ambiguity elimination . 94

5.3.1 Negative reductions . 94

5.3.2 Strict execution ordering in SEVM runtime 96

5.3.3 Negative matches . 98

5.3.4 Greedy non-terminal repetition 100

5.3.5 Strict execution ordering in SEVM optimizer 100

5.3.6 Token level ambiguity elimination 102

5.4 Parser optimizations . 105

5.4.1 Profiling EVM . 105

5.4.2 Just-in-time grammar compilation 106

5.4.3 DFA extraction . 107

5.4.4 Partially incorporated reductions 114

5.4.5 Garbage collection . 118

5.5 Avoiding exponential complexity . 119

5.6 Parse-tree construction . 121

6 Evaluation of SEVM 123

6.1 Overview of evaluation process . 123

6.2 Language selection . 123

6.3 Implementation selection . 124

6.4 Comparison method . 125

6.5 Test environment . 126

6.6 Test data . 126

6.7 Test results . 127

6.7.1 Relative performance comparison 127

6.7.2 Performance influence of garbage collector 128

6.7.3 Performance influence of incorporated reductions 129

6.7.4 Performance influence of recursion type 131

6.8 Validity . 133

6.8.1 Internal validity . 133

6.8.2 External validity . 134

6.9 Conclusions . 136

vi

7 General conclusions 137

Appendices 139

A bench_parsers utility . 139

B north_cli utility . 139

References 140

vii

List of Figures

1 Naive extensible parsing algorithm . 19

2 LR(0) parser algorithm . 21

3 A grammar for a language that supports +, * operators and 23

4 A corresponding Ruby program that parses the provided grammar with

the help of accept() and expect() functions 24

5 Two example PEGs that define conditional expressions and their unions 27

6 Earley parser algorithm . 30

7 Modified Earley’s algorithm . 31

8 An example expression that uses reflective capabilities of the modifier

Earley parser to add binary infix + operator 31

9 An example of a grammar that supports infix + and * operators with

appropriate operator precedence . 33

10 Earley items for expanding non-terminal E in position j with the gram-
mar from the expression grammar . 33

11 Earley DFAs for production rules from the expression grammar 35

12 Interconnected Earley DFAs for production rules from the expression

grammar . 35

13 An example Yakker grammar that allows parsing fixed-length numbers . 36

14 An example Katahdin program that uses fortran and python language

extensions . 37

15 An example Katahdin extension that implements unary suffix increment

operator ++ . 38

16 An example SugarJ extension that implements unary suffix increment

operator ++ . 40

17 A grammar that defines simple expressions with binary operators 51

18 Rewritten grammar that defines simple expressions with binary operators 53

19 Grammar rule that defines identifier using fixed length lookahead . . . 54

20 Simplified XML tag grammar rule . 59

21 Grammar rule for parsing argument list separated by commas 64

22 The replay function for binary addition in Ruby programming language 69

23 The replay function for binary addition in C programming language . . 70

24 Example domain usage . 72

viii

25 Abstract grammar rule example . 89

26 A simplified fragment of C99 grammar 90

27 A fragment of C99 grammar rewritten in north 91

28 A north grammar rule for parsing ANSI C multi-line comments (at-

tempt 1) . 92

29 A north grammar rule for parsing ANSI C multi-line comments (at-

tempt 2) . 92

30 A north grammar rule for parsing ANSI C multi-line comments (at-

tempt 3) . 93

31 Unoptimized MIR for the ANSI-C multi-line comment rule 93

32 A grammar rule that defines an identifier followed by a space 95

33 Unoptimized MIR for grammar rule that defines an identifier 96

34 A grammar for parsing identifiers and keywords 103

35 Amodified grammar for parsing identifiers and keywords 103

36 Agrammar that uses token groups to disambiguate keywords from iden-

tifiers . 103

37 A north grammar for matching 3 keywords 109

38 Optimized MIR for matching 3 keywords 110

39 Traditional DFA for matching 3 keywords 110

40 Optimized MIR for matching 3 keywords (with DFA extraction enabled) 110

41 SEVM DFA for matching 3 keywords 111

42 A north grammar for parsing . and ... operators 113

43 SEVM DFA for the triple dot grammar 113

44 A simple north grammar . 115

45 Optimized MIR for ABCD grammar rule 116

46 Optimized MIR for ABCD grammar rule (with partial reduction incorpo-

ration) . 117

47 Left-recursive test north grammar . 131

48 Right-recursive test north grammar 132

ix

List of Tables

1 Terminal symbol sequence parsing example 46

2 Non-terminal symbol sequence parsing example 47

3 Basic source grammar compilation rules 48

4 Regular operator compilation rules . 51

5 Updated non-terminal symbol compilation rules 53

6 Fixed length lookahead example . 54

7 Fixed length lookahead compilation rules 55

8 Variable length lookahead compilation rules 55

9 Extended grammar language elements and their compilation rules . . . 58

10 Parsing fixed length fields . 59

11 Rules for compiling capturing and dynamic match grammar expressions 59

12 Grammar rule for parsing and AST node construction of binary addition 63

13 Rules for compiling grammars with delayed semantic actions 67

14 Grammar rule and the corresponding instruction sequence for binary

addition when delayed semantic actions are used 69

15 Additional grammar language elements to support reflective grammars . 72

16 Rule for compiling domain activation statement 73

17 Rules for computing instruction closures 79

18 Rules for computing instruction merger keys 79

19 Subset construction example . 81

20 Reduction kind values . 95

21 Rules for computing SEVM ε-closures 101

22 Identifier-keyword disambiguation performance cost comparison 104

23 A chart showing the median time needed to parse sample inputs 127

24 Table showing themedian time needed to parse input_gcc_470k.iwith

and without garbage collection in north 128

25 Table showing the median time needed to parse input_rust_650k.rs

with and without garbage collection in north 128

26 Table showing the time needed to parse input_gcc_470k.i with and

without reduction incorporation in north 130

27 Table showing the time needed to parse input_rust_650k.rs with and

without reduction incorporation in north 130

x

28 Table showing the benchmark results for parsing input_a_1k.txt with

left and right recursive grammars . 131

29 Table showing the benchmark results for parsing input_5a_10k.txt

with left and right recursive grammars 132

xi

Acronyms

APEG Adaptable parsing expression grammars. 27

API Application programming interface. 16

AST Abstract syntax tree. 12, 14

BNF Backus-Naur form. 13

DFA Deterministic finite automaton. 34

ETS Execution trace set. 44

EVM Earley virtual machines. 8, 42

GLR Generalized LR. 22

GSS Graph structured stack. 22

IR Intermediate representation. 14, 15

JIT Just-in-time (compile/compiler). 128

MIR Medium-level intermediate representation. 85

NFA Nondeterministic finite automaton. 34

PEG Parsing expression grammars. 27

REP Reflectively extensible programming (language). 8, 17

RIGLR Reduction incorporated generalized LR. 23

RNGLR Right-nulled generalized LR. 23

SEVM Scannerless Earley virtual machines. 3, 9, 85

SGLR Scannerless generalized LR. 94

SPPF Shared packed parse forest. 31, 60, 121, 128

xii

1 Research context

1.1 Introduction and motivation

Programming languages is one of the earliest topics of computer science. Over the last

70 years this field arose from non-existence to the abundance and variety of program-

ming languages we have today. This is arguably one of the most important topics of

computer science even today: a good programming language enables the programmer

to avoid mistakes, while making the process of programming and maintaining existing

projects easier and cheaper. This is becomes even more apparent when considering the

current direction of where computing is headed: bigger and more complicated systems,

the internet of things, more distributed and parallel systems unlike anything seen in our

history before. Even a tiniest home appliance may have a microprocessor that runs a

fragment of computer code written in one programming language or another.

Much like everything else relating to computer science, programming languages

are subject to constant change and evolution. It is worthwhile to remember that even

ideas which are taken for granted today, like structural programming, procedures or

even variables were a novelty at one point or another in computing history. However,

updating an existing programming language to support new features is often difficult

and time consuming endeavour.

C++, which is one of the most popular and widely used programming languages,

has seen 4 standards over last two decades: C++98, C++11, C++14 and C++17 (not

counting the upcoming C++20). Hundreds of people from all around the world partici-

pated in creation of each of those 4 standards. Every proposal had to be submitted in a

specific format and had to be reviewed by a committee composed out of experts from

various technology corporations, like Microsoft, Google and Red Hat. To many people

this process may appear even daunting and off-putting, which may push potential par-

ticipants away from developing a future version of this language. While it may appear

that it is certainly possible for a user to modify one of several existing open-source C++

1

compilers and implement personalized changes, however practically it is just infeasible,

as often advanced knowledge of poorly documented compilers internals is required to

implement the desired changes. Furthermore it is even more difficult to maintain these

changes, as compiler fixes and updates are created hourly for a language as large and

complex as C++.

This is one of the reasons why new programming languages are created every year:

many developers find it just easier to develop a new programming language rather than

to adapt an existing one to suit the particular needs. While this inherently is not an issue,

as specialized programming languages are often better suited to solve more particular

problems, it does present itself with its own unique set of challenges.

With larger and more complex projects being created every day, it is not unusual for

a project to use multiple programming languages at the same time. Sometimes snippets

of one computer language are embedded into another. Even a website of moderate

complexity may use 5 or more computer languages at the same time: HTML for data

structuring, CSS for page appearance, JavaScript for defining client-side behaviours,

Ruby for page generation, SQL for data lookup and so on. Because of this, the aspect

of integrating different computer languages becomes more and more important.

Often, the code of one programming language is represented as character string lit-

erals in another. This is particularly common when using SQL from another general

purpose programming language to access databases. When processing text, regular ex-

pressions are used in a similar fashion. This approach of different computer language

integration is neither convenient, nor error-proof, as errors in an embedded language

code can only be detected during runtime and special symbols used in these ”second

class” languages often have to be manually escaped.

But what if one language could be properly embedded into another? What if some

desired functionality could just be added to a target programming language without

having to modify the source code of the compiler? These questions are a few of the

primary motivators in researching a class of programming languages called extensible

programming languages. The core idea behind such languages is that language design-

ers and implementers will never be able to conceive all the possible use cases of their

programming language. As such, the extensible language or its implementation should

provide means for the user to adapt and extend it without having to understand every

aspect of the language or its implementation, and without having to modify the source

code of the languages compiler.

Depending on the level of extensibility provided, extensible languages allow users

2

to define new linguistic features. Some of these features may contain completely new

syntax and semantics not present in the base programming language. More powerful

extensibility methods may even allow definition of a new programming language within

an existing one, thus enabling composition of programming languages that was previ-

ously impossible.

Unfortunately, the topic of extensible programming languages is fairly new one and

as a result, very few extensible programming languages exist. One of the reason for this

is the lack of suitable parsing algorithms for such languages.

As a result, the focus of this work is first part of implementing such a language:

parsing. It’s a process, which gives structure and meaning to otherwise seemingly ran-

dom sequence of characters. Because extensible languages can change while they are

being used, parsing them requires specialized parsing algorithms.

In this thesis Scannerless Earley Virtual Machines (SEVM for short) are presented.

It is a new parsing method that is scannerless, can parse all context-free languages and

supports dynamically changing (adaptable) grammars all while maintaining acceptable

parsing performance. Furthermore, the grammar definition language for SEVM is de-

signed with extensibility in mind and offers constructs that enable to extend and reuse

existing grammars without requiring manual modifications to the original grammars.

All these featuresmake SEVMas the perfect candidate for parsing extensible languages.

1.2 Problem statement

We wish the following:

• It would be possible to implement a reflectively extensible programming lan-

guage.

• There was a parsing method that allowed easy grammar extension and reuse.

However, as discovered during this research:

• No parsing method suitable for parsing a reflectively extensible programming

language exists, which prevents implementing REP languages.

• Most available parsing methods do not allow reusing and extending grammars.

To make matters even worse, grammars are often specified using 2 separate lan-

guages: one for tokens and another for the rest of the grammar.

3

Because of this:

• Very few extensible programming languages exist. Whenever additional lan-

guage extensions are needed, users typically resort to: 1) unwieldy boilerplate

code that is difficult to maintain; 2) preprocessors, which further complicate the

development process; 3) creation of new computer languages that attempt to solve

the problem in a more direct fashion.

• Grammars typically have to be reimplemented from scratch each time they are

needed and the implementations are tightly coupled with the external environ-

ment. This restricts how such grammars could be reused.

We propose:

• Creating a new parsing method (possibly based on existing parsing methods) that

is both suitable for using in REP languages and that supports reusing/extending

grammars.

1.3 Research goal, objectives and tasks

Goal:

• Creation of new parsing method that would be suitable for parsing extensible

programming languages.

Objectives:

• Create new parsing method for parsing extensible programming languages.

• Define a grammar definition language for this parser.

• Evaluate the new parsing method.

Tasks:

• Analyse all available parsing algorithms that are generalized, scannerless or sup-

port parsing adaptable/extensible/reflective grammars.

• Identify which algorithms could be used as a basis for implementing a REP lan-

guage parser.

4

• Construct the main parsing algorithm.

• Define a grammar language for this parser that allows extending and reusing

grammars.

• Implement a prototype for this parsing algorithm.

• Identify the flaws and limitations of this parsing method.

• Construct the improved version of the main parsing method.

• Define the improved grammar language for this method.

• Implement the improved parser in such a way that the implementation would be

suitable for performance evaluation.

• Implement several sample grammars with this parsing method.

• Implement several sample grammars with other parsing methods.

• Construct representative parse inputs for parser evaluation.

• Test and evaluate the newly created parsing algorithm in relation to other existing

parsing methods.

1.4 Scientific contribution of the research

This research contains several important scientific contributions:

• Extensible programming languages is still fairly new and unexplored scientific

topic. The SEVM generalized context-free parsing algorithm that supports adap-

tive grammars can be used to research, implement and test such languages.

• SEVM is a virtual-machine based parsing method. While virtual-machine based

parsing methods have existed before, this is the first instance where a virtual-

machine is used to parse as complex grammars as C or Rust. In virtual-machine

based parsing approaches, grammars internally are represented by a low-level

computer language. These grammars can then be subjected to domain-specific

optimizations and transformations that would allow to increase parsing expres-

siveness or performance (for example, by inlining grammar rule call targets).

5

• The DFA-extraction method that is used to speed-up SEVM grammars may be

adapted to other parsing methods (in particular: GLR) to enable performance-

wise cheaper token-level disambiguation (however, more research in this topic is

needed to be certain).

1.5 Practical significance of results

The key practical result of this research is the SEVM parsing method, which has signif-

icant benefits over existing parsing methods:

• Good parsing performance (as shown in section 6.7.1).

• Generalized context-free parsing. This enables writing grammars in a more con-

cise way, because the grammar developers no longer need to abide by arbitrary

parser limitations (such as no left-recursion in recursive descent parsers thatmakes

defining infix and postfix operators needlessly cumbersome).

• Because it is a scannerless parser, the entirety of input grammar can be defined

by using a single language (unlike commonly used LEX/YACC approach, where

tokens are defined in one language and then grammars that use these tokens are

defined using a separate language), thus further simplifying grammar implemen-

tation.

• SEVM grammar language allows defining grammars in a modular fashion: base

grammars can be extended by adding additional abstract rule implementations

(for example, by defining additional statement types and expression types sep-

arately from the main grammar). This would enable easier language extension

development, as users no longer need to rewrite the entirety of the grammars they

are trying to extend. Such grammar definition approach could be used already in

compilers that support procedural macros (for example, Rust programming lan-

guage allows implementing macros in external modules; these modules could use

SEVM to parse their input, which then can be transformed to valid Rust code).

• SEVM parser supports dynamically changing grammars. Using SEVM in a new

programming language (or existing one) would at very least allow more flexible

macro systems, where the syntax of each macro can be defined by the user. More

importantly, SEVM is one of the few available parsing methods than can be used

to implement extensible programming languages.

6

• Using virtual machines to represent grammars offers an additional benefit: it

is possible to include general purpose computations within grammar bytecode,

which enables to manually drive the parsing process using user-written procedu-

ral code, thus further extending the recognized grammar class.

Some parts or ideas of SEVM may be used independently of SEVM itself:

• DFAextractionmethodmay be used to speed-up (or expand the recognized classes

of grammars) existing parsing algorithms by allowing simpler token-level disam-

biguation scheme.

• Using virtual machine instructions to represent grammars internally allows using

domain specific optimizations to further optimize grammars (possibly even by

mixing different parsing algorithms and selecting the one most appropriate for

each situation).

• SEVM implementation proves that it is feasible to use just-in-time compilers to

transform grammars into native-machine code for increased parsing performance.

1.6 Defended claims

1. No existing parsing algorithm matches the criteria needed to implement general

reflectively extensible programming (REP) language.

2. Earley parser or its derivatives can be extended to support parsing reflectively

extensible programming languages.

3. The Scannerless Earley Virtual Machines parser offers acceptable parsing perfor-

mance for practical use.

The requirements for a REP language parser are presented in section 3.1.1.

The parsing performance is considered acceptable if the parse-time is within one or-

der of magnitude of similar parser parse-times. In SEVM case, the parsing performance

for SEVM would be considered acceptable if SEVM can parse inputs at a similar speed

(within one order of magnitude) as other generalized context-free parsing methods.

7

1.7 Approbation and publications

The main results of this dissertation were published in the following papers:

• Šaikūnas A. (2017). Critical Analysis of Extensible Parsing Tools and Tech-

niques. Baltic J. Modern Computing, Vol. 5 (2017), No. 1, pp. 136–145.

• Šaikūnas A. (2019). Parsing with Scannerless Earley Virtual Machines. Baltic J.

Modern Computing, Vol. 7 (2019), No. 2, pp. 171–189.

The results of this dissertation were presented at the following international confer-

ences:

• FedCSIS 2017, 6thWorkshop onAdvances in ProgrammingLanguages (WAPL’17),

Prague, Czech Republic, 2017.09.03–07.

1.8 Outline

This thesis is split into 7 main chapters:

• In chapter 1 the research context is given: introduction, motivation, research goal,

etc.

• In chapter 2 the basic concepts for understanding this work are presented. Further-

more, the term reflectively extensible programming (REP) language is defined.

• In chapter 3 the current state of art is provided: firstly, the requirements for a REP

language parser are formulated. Then various existing parsing methods and re-

lated tools are analysed to find the closest one capable of parsing a REP language.

After an exhaustive search we conclude that no single parsing method satisfies

our requirements, however two main candidates (Earley and Yakker parsers) are

found that can be used as a basis for building a more suitable parsing method.

• In chapter 4 we incrementally construct a new parsing method, called Earley Vir-

tual Machines (EVM) that is based on Earley/Yakker parsers and that satisfies our

requirements for parsing REP languages. Furthermore, EVM grammar language

for defining new (extensible) languages, EVM optimizations and other consider-

ations are presented in this chapter as well.

8

• In chapter 5 we use the observations made by testing EVM prototype and the

knowledge learned by constructing the original EVM to create a successor to

EVM called Scannerless Earley Virtual Machines (SEVM). One of the primary

goals of SEVM is practical parsing performance (while maintaining previous

requirements for parsing REP languages). To achieve this performance, addi-

tional optimizations and changes are implemented (most notably, DFAextraction,

token-level disambiguation and grammar JIT) that enable SEVM to achieve this

practical performance.

• In chapter 6 we evaluate an implementation of SEVM parser called north: the

performance influence of various described and implemented optimizations is

measured and the SEVM parser implementation is compared with other pars-

ing methods. Additionally, arguments for internal and external validity of the

achieved results are given there as well.

• Finally, in chapter 7 general conclusions of this thesis are presented.

9

2 Basic concepts

In this chapter we present basic concepts required to understand the rest of this work.

Additionally, the term reflectively extensible programming language is introduced in

this chapter as well.

2.1 Compilers and programming languages

In early days of computers, computer programs were written in machine languages that

directly corresponded to underlying hardware. Such programs were read from punched

cards, magnetic tape or even physical hardware switches that encoded the underlying

program in binary form. Such languages are now called first generation programming

languages.

As computers got more advanced, so did the programming languages that were used

to program them. Because writing programs in binary (or similar) formwas difficult and

error-prone, the idea of a compiler was introduced: a compiler is a program that reads a

program written in a human readable text-form and produces the corresponding binary

code that then can be executed by computer’s hardware. This was the principle behind

the second generation programming languages. Languages from this generation still

closely mimicked the underlying computer architecture and were called assembly lan-

guages. Assembly languages primarily consist of instructions that directly manipulate

computer processor registers, memory and other devices. Most of assembly instructions

when compiled are directly translated into corresponding binary code. Because of this

1 to 1 correspondence from assembly instruction to binary code, assembly languages

are used even today in compiler code generators and to visualise binary code in a more

readable form.

As computer memory and processing power got more abundant, computer programs

became larger and more complex and as such it becamemuchmore difficult to write and

maintain these kind of programs. Additionally, competing computer architectures, each

10

with their own assembly languages, emerged. So in order to make a program that was

written in a 2nd generation programming language work on a different computer archi-

tecture, such a program had to be rewritten in a different assembly language, often from

scratch. To solve these issues, third generation programming languages were created.

Languages from this generation often mimicked mathematical notation and provided

features that didn’t exist in underlying computer hardware: variables, subroutines, data

structures are all abstract elements that had no direct-to hardware correspondents. In-

stead, they exist only as abstract constructs in third generation programming languages

that would essentially disappear into a sea of instructions when compiled into binary

programs.

Almost all programming languages that are in use today are third generation pro-

gramming languages. However, not all languages that are currently in use are classified

as programming languages. As computers became more capable of solving more and

more advanced problems, new computer languages were created to ease the solution of

these problems. For example, computer language CSS is used to describe appearance of

web pages. Another language called JSON is used structure, transfer and store arbitrary

information that can be then manipulated within other programming languages. Yet an-

other language, Markdown is used to describe formatted text. It is not uncommon for a

specialised language (such as JSON, XML, etc) or even several of such languages to be

used within a program or system written in one or more programming languages. Spe-

cialised languages that are used to encode or describe information concerning a specific

problem or a domain are called domain specific languages.

Most of all programming languages can be split into two categories: interpreted

programming languages and compiled programming languages:

• Compiled programming languages, as the name implies, are translated from hu-

man readable text into low-level machine or binary code. Most of all early third

generation programming languages were compiled into machine code. However,

later on new languages appeared that were compiled into a kind of binary code

called bytecode, which was then either interpreted or further translated into ma-

chine code within a program called a virtual machine. Java and C# are two well

known examples of such languages. The primary advantage that these languages

provide is portability: ability to run the same program across different computer

architectures/platforms without having to recompile the program itself.

• Interpreted programming languages on the other hand instead of compiling the

11

source code of a program into binary or machine code attempt to directly execute

it instead. A program that executes or interprets such programs is called an in-

terpreter. Some interpreters still use compilation to bytecode or machine code to

execute the source programs, but this process is hidden away from the user. In-

terpreted programming languages also tend to provide additional liberties (such

as dynamic typing) not found in traditional compiled programming languages.

This and lack of a separate compilation step makes it faster to develop programs

written in interpreted programming languages, although often with a significant

runtime performance penalty, as interpreted programs tend to be much slower

compared to their compiled alternatives.

2.2 Compiler architecture

Over the years many new programming languages have been created. The actual num-

ber is difficult to estimate, but Wikipedia (as of the time of writing this) lists at least

700 that are publicly available. Many of these languages have several compilers or im-

plementations. Naturally, during the development of these languages, some common

patterns emerged. Usually, a compiler of a programming language is split into 4 major

parts:

• Lexer is a compiler component that converts the source code of a program (a string

of characters) into a sequence of tokens. This process is called tokenization. A

token is essentially a word of a programming language. Common token types

include, but are not limited to: identifiers, numeric constants, string constants,

operators. Lexers are also responsible for removing comments and whitespace

(all characters that do not represent a visible symbol, such as spaces, tabs and

etc) from the source code that is being analysed.

• Parser takes the sequence of tokens and produces an abstract syntax tree orAST.

AST, as the name suggests, is a tree that structurally represents the current pro-

gram. Each node within this tree corresponds to a basic element of the language

within the input program. Common examples of AST nodes are nodes that rep-

resent constants, variables, function calls, declaration and so on.

• Semantic analyser is primarily used in preparation for code generation: it adds

enough information to the AST that it would be suitable for code generation.

12

Commonly, during semantic analysis variable references and function calls are

resolved, types are checked (in statically typed programming languages). Also,

this is where semantic errors are detected (such as attempts to use a variable or a

function that doesn’t exist).

• Code generator traverses the final AST and, if no errors were found, produces

the corresponding binary code for the source code that is being compiled.

2.3 Lexing and parsing

Formal languages are defined using formal grammars. A formal grammar primarily

consists of production rules for strings in a input language. While formal grammars

are widely in formal language theory to analyse formal languages and algorithms that

deal with formal languages, they are not convenient enough to use in practice to define

computer languages. Instead, special grammar languages are used to define computer

languages, which resemble formal grammars, but provide additional features that make

language definition easier.

Many of existing parsing (and lexing) algorithms during analysis rely on special

data which is derived from the language grammar. Because writing lexers and parsers

(and creating the respective parser data) manually is difficult and error prone, parser

(and lexer) generators are used to generate the source code of a parser (or a lexer).

Parser/lexer generators read the language grammar specified in a grammar language

and produce the source code used to compile the resulting parser/lexer. Lexer and

parser grammar languages generally are distinct: lexer tokens typically are defined us-

ing regular expressions, whereas parser productions are defined using a variant of BNF

language.

Even though most computer languages are analysed using both with a lexer and

a parser, a dedicated lexer is not really required, as tokens used within a lexer can be

expressed in terms of parser productions. Most lexers usually run in linear-time and can

recognise only regular languages, which is enough to define tokens of most languages.

Parsers generally recognise a subset of context-free languages, but often have much

higher algorithmic complexity. This is one of the reasons why distinction between lexer

and parser exists: by offloading some of more trivial syntactic analysis steps to lexer,

the overall parsing and compiler performance is increased.

However, in more modern times with advent of more powerful computers, new

parsing algorithms emerged that no longer require a separate lexer step and instead

13

tokenization is merged into the parser. Such parsers are called scannerless. Removal

of the lexer reduces overall compiler complexity and increases the variety of possible

input grammars, however at a cost of reduced parsing performance.

Most of existing parsing algorithms can be divided into the following three cate-

gories:

• Top-down parsers attempt to perform input recognition from the top of the parse

tree by using rewriting rules of a language grammar. Essentially, the goal of a

top-down parser is to find a sequence of rewrite rule applications, which starts

with a single non-terminal symbol that represents the whole program and ends

with the terminal symbol sequence that represents the initial source code.

• Bottom-up parsers work in opposite way compared to top-down parsers. The

algorithms start with a sequence of terminal symbols that represent the initial

source code and attempt to merge (or reduce) a subsequence of these symbols

into a single non-terminal symbol. The process repeats until there is only a single

non-terminal symbol left that represents the whole program.

• Hybrid parsers try to combine both of these approaches.

In other words, one of the jobs of a parser is to recognise whether or not the input

source code matches the specified grammar. But to make use of such a parser within

a compiler, it also needs to construct the AST for the parsed input. Parsers that do not

construct the AST and only perform recognition are called recognisers.

2.4 Code generation

Each compiler has at least one target architecture for which it generates bytecode or

machine code. Early compilers were very specialized supported only a single target ar-

chitecture. However, with multiple competing processor architectures becoming promi-

nent, rewriting the whole compiler just to support some new processor architecture or

even rewriting the code generator portion of the compiler was becoming increasingly

difficult. To make it easier to port compilers to new platforms, intermediate represen-

tation (IR) languages were created.

Instead of supporting multiple different architectures, compilers would only have to

support a single low level intermediate language to which all of the source code would

be compiled. Then the code generator for a specific target would translate the generated

14

intermediate code into the final machine code. The use of IR code not only eases design

and porting of compilers, but also makes it easier to perform optimizations of compiled

code. Currently the most prominent IR language/code generation framework is LLVM

toolchain, which provides a custom IR language and libraries that allow optimization

of this code, generation of equivalent machine code, debugging tools and etc. Many

new languages and compilers are based on this toolchain, such as the new C++ com-

piler, clang, Apple’s general purpose language Swift, Mozilla’s systems programming

language Rust and others.

2.5 Extensibility

Most of existing programming languages have fixed syntax and semantics. The syntax

of a programming language is usually defined using grammar languages when generat-

ing a parser for that language’s compiler and semantics are expressed as arbitrary code

that performs checks and transformations on theAST of a compiled program. This lim-

itation of having a fixed syntax and semantics was understood even in the early days

of third generation programming languages. Attempting to use a language that is ill-

equipped to solve a specific problem usually ends up in sometimes trivial, but repeating

and difficult to modify and maintain code that is sometimes referred as boilerplate code.

In order to avoid having to manually write this boilerplate code, several solutions are

used in practise:

• Specialized/domain specific languages. General purpose languages such as

C/C++ are ill-suited for defining computer language grammars. This is why

grammar languages and parser generators are used to create lexers and parsers.

String pattern matching is difficult to perform in general purpose languages as

well, so to ease this task, regular expressions are used instead that make it easier

to define the structure of a string pattern that is being searched/matched. Query

languages, such as SQL, make it more convenient to access and extract specific

information from databases.

• Macros allow definition of rule (or pattern) and replacement pairs, which are then

applied to compiled source code. When a compiler detects macro invocation by

finding matching pattern, it replaces (expands) the found code sequence into ap-

propriate body of a macro. This allows to reduce amount of repeating code in

the source files, as commonly used patterns can be defined as macros. There ex-

15

ist multiple variations of macro systems: for example, C programming language

performs macro substitution only on a textual level, while Rust programming lan-

guage allows to define patterns that operate directly on the AST of the compiled

program.

• Templates in a way can be considered a more advanced version of macros, which

also have access to type information. They allow parametrized definition of var-

ious language objects (such as functions and structures), which then can be in-

stantiated by invoking a template and providing parameter values which then get

inserted into original objects’ definition. This way each template invocation may

result in creation of a new language object, which in language without macros or

templates would have to be defined manually. Templates allow further reduction

of code duplication, but often result in additional code complexity.

• Metaprogramming is a method that allows to treat computer programs as their

data. There exist multiple types of metaprogramming, but in this work we refer

to metaprogramming as an ability for a code fragment (metaprogram) to write a

new program. Some languages, such as Haskell, have built-in support for compile

time metaprogramming, which allows programmers to invoke metaprograms that

generate parts of the program that is currently being compiled. Many scripting

languages provide a function called eval(), which allows dynamic evaluation of

language code in provided text strings. This way a metaprogram can construct a

code fragment of a program in a string and then pass it to the eval() function,

which then could include the provided code fragment into the currently running

program. This approach of metaprogramming is also referred to as generative

programming.

• Compiler plugins allow evenmore free-form changes to the language syntax and

semantics. Compilers that support compiler plugins typically provide an API that

could be used to implement these plugins. The power and flexibility of a plugin

is directly determined by the API, which differs on a compiler to compiler basis.

Then there are extensible programming languages. Some early third generation lan-

guages were considered to be extensible if they supported even one of the previously

listed features (most notably macros). Even languages that supported procedures at one

time were considered to be extensible back when procedural programming was a nov-

elty. One of the first definitions of an extensible programming language was provided

16

by Standish [26], who states that an extensible language simply allows users to define

new language features. However such a general definition is not that useful, and as such,

several new terms have been created to differentiate between languages with varying

degree of extensibility.

Extensible syntax programming languages are languages, which allow their syntax

to be extended, often by using a specialised grammar language. Languages which allow

their syntax extensions to be specified within the normal code and inside external files/-

plugins both fall into this category. However, in this work we primarily focus on former

type of the languages. To further differentiate between these two types of languages we

introduce a new term: reflectively extensible programming languages.

Reflectively extensible programming (REP) languages are languages, whose syn-

tax and semantics can be modified at the compile time by providing syntactic and se-

mantic extensions that are mixed in with the regular code.

17

3 State of art

3.1 Parsing methods

In this chapter we investigate various existing parsing methods to determine if any can

be used (or be extended) to parse reflectively extensible programming languages.

3.1.1 Requirements for a REP language parser

It is fairly obvious a REP language requires a specialized parser. Firstly, a REP language

parser has to support mutable grammars. This requirement arises from our definition

of REP languages. Theoretically, it is possible to adapt any existing parsing method

to support partially mutable grammars by using algorithm displayed in fig. 1. This

algorithm simply divides the input source code into blocks and then uses a separate

parser to parse each block. In practise, however, there are several challenges to using

this algorithm:

• Poor grammar mutation performance. Many parsing algorithms rely on data

that is derived from the original language grammar. For example, LR parsers

use transition tables that are generated from initial grammar productions. In most

cases, this table generation is performed by parser generators, however it is pos-

sible to embed the algorithm that computes the required parser data into the REP

language parser itself. But this means that every time the language’s grammar is

updated, then the whole parser data has to be regenerated. Even trivial syntactic

additions to the initial language would result in having to re-analyse the whole

input grammar. Furthermore, several successive grammar modifications even in

the same source file would result in equal amount of parser data regenerations.

This would make adding syntactic extensions to the base language prohibitively

expensive and thus would defeat the purpose of using a REP language.

18

1 . Le t G0 be t h e i n i t i a l grammar and A0 t h e r e s p e c t i v e p a r s e r

d a t a (e . g . , such as t r a n s i t i o n t a b l e s used i n LR p a r s e r s) .

2 . D iv ide i n p u t s o u r c e i n t o n t op l e v e l b l o c k s B0 − Bn−1 (such as

t op l e v e l d e c l a r a t i o n s i n C /C++) .

3 . P a r s e and s em a n t i c a l l y a n a l y s e Bi wi th c u r r e n t p a r s e r d a t a Ai .

I f t h e c u r r e n t b l ock c o n t a i n s a new s y n t a c t i c e x t e n s i o n , t h en

produce a new grammar compos i t i o n Gi+1 based on Gi and t h e

e x t e n s i o n . Update t h e new p a r s e r d a t a Ai+1 based on grammar

Gi+1 .

4 . P a r s e t h e s ub s e qu en t b l ock Bi+1 u s i ng p a r s e r d a t a Ai+1 .

5 . Repea t s t e p s 2−4 u n t i l c omp l e t i o n .

Figure 1: Naive extensible parsing algorithm

• Requirement for clear block boundaries. In order for the naive parsing algo-

rithm to be able to transition from one grammar to the next, it has to be able to

identify where the scope of the first grammar ends and where the scope of an up-

dated grammar begins. In other words, there needs to be a clear and unambiguous

boundary between the original and updated language segments within the initial

source code.

• Limited support for scoped grammar mutations. In some cases it may be

necessary to enable a syntactic extension only for a limited portion of the AST.

For example, user may wish to enable a specific grammar extension only for

the next statement within the initial program. Such grammar mutation would

be impossible in the native extensible parsing algorithm, because it only allows

grammar modifications between top level AST nodes.

• Limited local ambiguity support. In the event that the chosen base parsing algo-

rithm supports ambiguities within the selected language, all of these ambiguities

would need to be resolved before the current top level block terminates. This

requirements arises from the fact that every top level block could be parsed with

an updated grammar and therefore internal structure of the original parser that

represents the ambiguity would be lost when transitioning from one grammar to

the next.

Secondly, we wish for the parsing algorithm to support scannerless parsing. The

elimination of a dedicated lexer allows the use of a single unified language to define

both tokens and regular grammar productions. This makes it easier and more concise

to specify new syntactic extensions.

19

While having a separate lexer does have some advantages, the primary of which

is increased performance, introduction of syntactic extensions with lexical ambiguities

would mean that all of the ambiguities would have to be propagated towards the parser,

which would have to be specially modified to support such ambiguous tokens. This

would result in increased lexer and parser performance.

Thirdly, we require for the REP language parsing algorithm to support unrestricted

context-free grammars. One of the primary reasons for restricting the allowed input

grammars is yet again increased performance. Generalized parsing algorithms, such

as GLR and Earley’s used to be just too slow to be used practically. However, with

both improvements to computer hardware and further refinement parsing algorithms, we

believe that historical performance motivations for restricting allowed input grammars

no longer apply. Additionally, the users of the REP language may not be parser experts

and they shouldn’t be forced to understand inner workings of the used parsing algorithm

just so they could write a syntactic extension.

To summarise, we propose the following requirements for a REP language parser:

1. Support for dynamically changing grammars.

2. Scannerless parsing.

3. Unrestricted context-free grammar support.

4. Support for local (temporary) grammar extensions.

5. Reasonable performance.

3.1.2 LR(k) parsers

LR(k) is a family of table-based, bottom-up parsers. It’s one of earlier parsing algo-

rithms that is indirectly still widely used even today. It was first described in [17]. It

runs in linear time when parsing deterministic context-free languages.

The algorithm starts the parse in an initial state. Then it reads a single symbol from

the input and looks up the appropriate action from the action table ATs. There are 3

possible actions that can be taken:

• Shift action, denoted by S(n), indicates that the current symbol a must be pushed

on to the stack, a new symbol must be read from the input and that the parser must

move to state n.

20

a← read_sym()

s← 0
loop

action← ATs(a)
if S(s1)← action then . Shift

push(a)
s← s1
a← read_sym()

else if R(r)← action then . Reduce

(lhs→ rhs)← ruler
pop(sizeof(rhs))
push(lhs)
s← GTs(lhs) . Accept

else if A()← action then

return

else

error()

end if

end loop

Figure 2: LR(0) parser algorithm

• Reduce action, denoted by R(r), indicates that the reduction based on grammar

rule r must be performed. If the rule is denoted by lhs← rhs, then top |rhs| stack
symbols must be replaced with a single non-terminal product lhs. Additionally,

the parser must move to a state indicated by GTs(lhs), where GTs is the goto table

for state s.

• Accept action, denoted by A(), indicates that the input has been successfully

recognised and the parsing algorithm must terminate.

The tables ATs and GTs used in the parsing algorithm can be constructed from DFA

built from initial grammar. There exists an algorithm that allows do dynamically grow

or shrink these tables, described in [6], thus making it possible to mutate the grammar

that is used during parsing.

The letter k in LR(k) determines how many symbols the algorithm can lookahead

before making a decision on which action to take. LR(0) parsers perform no lookahead

and select the action to be taken immediately based on the current input symbol. This

makes LR(0) in most cases practically not applicable as the algorithm cannot distinguish

input x + y from x (when + is right-associative), because in order to determine which

action to take (reduce x as an expression or attempt to read next symbol) the parser has

to lookahead a single symbol. This situation when a single action table cell has both a

shift and a reduce action is called a shift/reduce conflict.

Therefore in practise LR(1) or LALR(1) parsers are used instead. LALR(1) is a

21

modified version of LR(1) that accepts smaller class of grammars compared to LR(1),

but uses significantly smaller parse tables. Because the size of the parse tables increases

exponentially with k, any value higher than 1 is generally not used. Even though k = 1
for some existing languages is enough, there are plenty of languages that require higher

or even unbounded k values.

Another limitation to LR(k) parsers is that they cannot be used for scannerless pars-

ing: the LR(k) parser cannot differentiate conditional if(a) from a function call if(a)

as there is no simple way to reject identifiers that overlap with reserved keywords. As a

result of this, if scannerless parsing is required, more general parsing algorithms (such

as GLR) are used.

Because of the fixed lookahead and inability to use the algorithm for scannerless

parsing, LR(k) does not meet our criteria for REP language parsing.

3.1.3 GLR-family parsers

Generalized LR (or GLR) parser is an extension to LR parser that allows parsing most

non-nullable context-free languages. It was first described by Masaru Tomita in [28]

and intended to be used for natural language parsing, but since then it was also adapted

and used to parse computer languages.

GLR parsers share most of the key ideas with LR parsers: they are still table based,

which is used to select an action to be performed based on current input symbol, ta-

bles also contain shift, reduce and accept actions, tables for GLR parsers are generated

almost exactly the same as LR(0) tables.

The primary difference between LR(k) and GLR parsers is how they treat conflicts:

a single GLR action table item may contain a single shift and several reduce actions,

all of which are executed when an appropriate symbol is found. This means that GLR

parser is no longer deterministic and may be in multiple states at once. Additionally,

GLR parsers use a graph structured stack (GSS) instead of regular stack to represent

alternative parse paths.

Because of this change, the parser no longer requires lookahead to operate correctly

(even though LR(1)/LALR(1) parse tables with conflicts may still be used to reduce

parsing ambiguity for performance reasons). This also means that the parser is now

suitable for scannerless parsing.

Unfortunately, the original GLR algorithm contains a flaw that prevents algorithm

from terminating when the initial grammar contains hidden left-recursion. This was dis-

22

E→ F + E | F
F→ I * F | I
I→ a

Figure 3: A grammar for a language that supports +, * operators and

covered in [24] and a modification of GLRwas proposed (called RNGLR) that correctly

handles hidden left-recursion and supports more effective handling of ε-reductions.

However, the modified parser uses a different variation of LR tables, which means that

incremental LR table generation approach that was described in [6] is no longer directly

applicable to RNGLR parsing. So, in order to support mutable grammars that are re-

quired for REP language parsing, the algorithm for incremental LR table generation

would need to be modified first to allow dynamic generation of RN parse tables.

RNGLR parser’s authors also present even more radical modification of RNGLR

called RIGLR [23], which incorporates additional information into RNGLR parser that

reduces parser stack activity to further boost parsing performance. But in our opinion

the performance gains observed while testing RIGLR do not warrant the significant

increase of parse table size. As such, the only viable candidate from LR/GLR parser

family for REP language parsing is the RNGLR parser.

3.1.4 Recursive decent parser

Recursive descent parser [5] is a top-down parser. The parser for a specific grammar

is split into several mutually recursive functions, where each function parses one non-

terminal symbol from the grammar. To parse the whole input, a function corresponding

to the initial grammar symbol is invoked, which in turn calls other functions that cor-

respond to other non-terminal symbols, which consume terminal symbols from input

upon encountering them.

See figure 3 for an example grammar and 4 for the corresponding recursive decent

parser implementation. The function accept(a) used by the parser consumes the next

non-terminal symbol if it matches the provided symbol a. The function expect(b)

consumes the next input symbol and fails if it doesn’t match the provided symbol b.

Because of the simplistic nature of the implementation, the recursive descent parsers

are often implemented manually by hand, without resorting to using a parser generator.

The provided parser example is called predictive recursive decent parser, because it

does not use backtracking and thus it executes in linear time. However, in cases of

more complex grammars the use of backtracking may be necessary and would result

23

def E()
F()
if accept('+'); E(); end

end

def F()
I()
if accept('*'); F(); end

end

def I()
expect('0')

end

Figure 4: A corresponding Ruby program that parses the provided grammar with the

help of accept() and expect() functions

in exponential execution time, because some fragments of the code may be analysed

multiple times with the same function.

It is also possible to use the backtracking recursive decent parser to implement mu-

table grammars. This can be achieved by using single parsing function with three ar-

guments: first for the current grammar, the second for the current parsing position and

the third to indicate the non-terminal symbol that has to be parsed next. A positive re-

turn value of this function would indicate the current parsing position after the provided

symbol has been parsed. The parsing would start by calling the function with the initial

grammar, initial grammar’s symbol and position 0. Then this function would call itself

to parse other non-terminals from the current grammar, while consuming all terminal

symbols. Failure to consume an expected terminal symbol would lead to backtracking.

Such parsing algorithm is not only easy to implement, but also allows parsing lan-

guages where grammar extensions are applied to specific scopes. Furthermore, it can

be used without a dedicated lexer and operate directly with characters from the initial

source code, thus fulfilling 2 out of 4 requirements for a REP language parser. Unfor-

tunately, that’s where advantages of the recursive decent parser end.

Backtracking, as mentioned before, leads to exponential performance. Furthermore,

because the parser is implemented as a series of mutually-recursive functions (or a sin-

gle function in the mutable grammar case), it doesn’t support left recursion: attempting

to use left-recursion in grammars would cause the corresponding parse functions to

infinitely recurse themselves, eventually exhausting the stack memory and thus termi-

nating the parser program.

Another issue is ambiguous grammars. With the current parsing algorithm it is im-

24

possible to support ambiguous parses, because each function for the corresponding non-

terminal always has to terminate after a fixed amount of input characters (even if that

number is 0). However, with ambiguous grammars that may not be the case, because

depending on the selected production rule alternative, the parse for the specified non-

terminal symbol may terminate at differing positions.

As a result, the recursive decent parser even with mutable grammar support is not

applicable for REP language implementation, as it doesn’t provide reasonable perfor-

mance and restricts the allowed class of grammars to severely.

3.1.5 Packrat parser

The primary problem that all context-free language parsing algorithms attempt to solve

is the production rule selection. Context-free languages are defined using context-free

grammars, which are composed out of production rules. Depending on the grammar,

some non-terminals may have multiple production rules. Selecting the correct one (or

multiple ones in the case of ambiguous grammars) is the key context-free language pars-

ing problem. Different parsing algorithms attempt to solve it differently: LR algorithms

build a table that lists all possible terminal symbols that may be encountered at any given

moment and use it to perform reductions, backtracking recursive decent parser tries each

production in succession, essentially brute-forcing the possible solution, Earley parser

tries to mix those two approaches together.

However, it has been noted that using context-free grammars to define computer

languages may not be the most intuitive way to do it. So a new grammar definition for-

malism was created called parsing expression grammars or PEGs [11]. PEGs eliminate

the source of context-free grammar ambiguity by replacing the choice operator | with

ordered choice operator \. That means that in the production A← B\C\D, the non-
terminal B is matched first. If B matches successfully, then the remaining production

alternatives are ignored. Otherwise C is matched next.

It is fairly easy to spot the correspondence between the ordered choice operator and

the way the recursive decent parser works. As a result, backtracking recursive decent

parsers can be used to parse all PEGs. However, there is a modification of the recursive

descent parser called Packrat parser that allows parsing PEGs in linear time, which is

one of the reasons of why PEGs became so popular in recent years.

The Packrat parser [10] is a modification of the recursive decent parser that memo-

izes all intermediate results of non-terminal parser functions. Because of this the same

25

source location using the same parsing rule may be parsed only once in the Packrat

parser, which is one of the reasons why the algorithm runs in linear time.

Unfortunately, simple implementation of the parser and good performance comes at

a price:

• No left-recursion support. Because Packrat parser is essentially a recursive de-

scent parser, left recursive rules (including indirect or transitive left-recursion)

would cause it to recurse infinitely. This restriction requires that some

• High memory usage. Because Packrat parser has to memoize all intermediate

parsing results, this causes fairly high memory usage. There do exist some vari-

ations of the parser that attempt to optimize memory management of the Packrat

parser, such as [12].

• No ambiguity support. PEGs by definition are unambiguous and it’s impossible

to represent ambiguous languages using them. As a result, parsing a language

such as C++ using just PEGs alone is impossible.

• No true grammar union. Consider grammars G0 and G1 displayed in fig. 5.

Both grammars are valid and describe their respective languages correctly. What

happens when both grammars are combined into one? Depending on the order

of union we get different results. If we combine G0 and G1, then the resulting

grammar G2 is identical to G0, as the newly appended rule is a duplicate of an

existing one in G0. However, if G1 is combined with G0, then we get G3, which

breaks all if-else conditionals in the G0 language, because the newly prepended

rule from G1 will consume all the input and thus the "else" E part will never

get matched. This issue is explored in more detail in [16]. That means, that the

extension designer has to be aware of all existing definitions of the target non-

terminal and upon extension has to correctly specify the order in which existing

and new non-terminal production rules are to be applied. Failure to do so may

result in breakage of base language grammar.

Because of these issues, we find PEGs and Packrat parser insufficient for REP lan-

guage parser implementation.

26

G0:
E → "if" E "then" E "else" E
/ "if" E "then" E

G1:
E → "if" E "then" E

G2 = G0∪G1:
E → "if" E "then" E "else" E
/ "if" E "then" E
/ "if" E "then" E

G3 = G1∪G0:
E → "if" E "then" E
/ "if" E "then" E "else" E
/ "if" E "then" E

Figure 5: Two example PEGs that define conditional expressions and their unions

3.1.6 Adaptable Parsing Expression Grammars (APEG)

Adaptable Parsing Expression Grammars (APEG) [21] is an extension to PEG that al-

lows parsing mutable or adaptable grammars. These are grammars, whose production

rules can be added, removed or modified mid-parse. As a result, such grammars can

be used to specify the syntax of extensible languages. Furthermore, APEG contains

additional extensions that enable specification of context-dependent constraints:

• Binding expressions that allow saving context-dependant information during parse.

• Update expressions that allow updating existing attribute bindings.

• Constrain expressions that use other attribute bindings to restrict specific parse

paths.

Article’s authors present an interesting approach regardingAPEG parser implemen-

tation. Firstly, a modified Packrat parser is generated that is capable of parsing the base

grammar of the language. This generated parser also contains hooks that then can be

used to invoke dynamically defined rules during parsing. This mixture of statically gen-

erated base language and dynamically interpreted grammar extensions allows the parser

to very efficiently recognize the base language, while also recognising the extensions

to the base language at somewhat reduced performance. Because of this, such parsing

model is applicable to languages that contain fairly large base language and possibly

several smaller language extensions. However, it is not so well suited where the base

27

language is minimal and the majority of the language is defined through extensions that

(possibly) reside in external libraries or modules.

While APEG parser presents a viable option for implementing a REP language,

APEG model is still based on original PEGs, and thus inherits most of it’s restrictions,

namely:

• No left recursion support.

• No support for ambiguous languages.

• No true grammar union.

3.1.7 Specificity parser

The Metafront system [3] is a tool for program transformation that also supports exten-

sible parsing. It employs a novel method for parsing, called specificity parser.

The specificity parser is a scannerless top-down parser. At any point during analysis,

the parser keeps track of the remainder of the input that hasn’t been parsed yet and a

set of candidates, which are remainders (tails) of production rules. The parsing process

is divided into challenge rounds, during each the most lexically specific candidate is

selected and then it is used to advance the parser, which consumes some of the input

and the matching parts of the current production tails. The process is repeated until the

remaining string becomes empty.

Because the current candidate production tail set is maintained at any given moment

during parsing, this information allows generating informative error messages in the

event of parsing error.

This parsing method also prohibits ambiguities, which are resolved whenever new

productions are added. If an ambiguity is found during declaration of a new production

that depends on exiting one, an error is generated forcing the user to adjust the newly

defined grammar. While this way of handling ambiguities is convenient for defining

fully deterministic languages, not all languages (and thus possible language extensions)

that are used in practise are context-free and deterministic. As a result, we inability to

support ambiguous grammars as a shortcoming.

Furthermore, the specificity parser has additional difficulties when parsing binary

operators with matching prefixes, but with different precedences, such as C++’s logic

&& and binary &. For example, the parser fails to recognise input x && y. Because the

operator & has higher precedence than &&, it is parsed first and consumes the & symbol

28

from the input, leaving & y, which then fails to parse. To resolve this issue, the parser’s

authors introduce special form of lookahead called traps, which are then used to restrict

parsing of operator &, by ensuring that it is not followed by an additional & terminal

symbol. This issue becomes even more relevant, when considering the scenario, when

lower-precedence operator && is added in an extension. Then, to make sure that this op-

erator parsers correctly, the original rule for binary operator &would have to bemodified

with an appropriate trap.

Because of lack of ambiguous language parsing support, requirement for mandatory

lookahead in certain situations and no left-recursion support, we do not believe that this

parsing method is a viable candidate for REP language parsing.

3.1.8 Earley parser

The Earley parser [7] is a top-down chart parser. The original algorithm can parse all

non-nullable context-free grammars. There also exists a modified version of the Earley

parser that supports nullable grammars as well, but with reduced performance.

The parsing algorithm has two inputs: the source code that is meant to be parsed

and a list of grammar production rules G that are used for parsing. Unlike most other

parsing algorithms, these productions aren’t preprocessed in any way before parsing.

Earley parser maintains a state S(i) for every terminal input symbol ai. The list of

states for every input symbol is called a chart. Each state S(i) contains one or more

items in form (X → α •β , j). Each item contains a production rule, the current parsing

position within that rule (represented by •) and origin state j. Initially, S(0) contains
only the starting production (S→ •α,0). After executing the Earley’s algorithm (see

fig. 6), the chart S has enough information to construct the parse tree for the provided

input.

The algorithm is split into 3 logical steps that are repeated in sequence for every

input symbol:

• Prediction step finds all items in the current state in form (X→α •Y, j), whereY

is a non-terminal symbol, and adds every production rulewith productY to current

state. This is where top-down nature of Earley’s algorithm becomes apparent. If

we view this algorithm from a procedural point of view, then this step may be

considered as a rule call, where the caller rule gets suspended in order to complete

the callee productions.

29

for all input symbols a do

for all (X → α •Y β , j) ∈ S(k) do . Prediction

for all (Y → γ) ∈ G do

add (Y →•γ,k) to S(k)

end for

end for

for all (X → α •aβ , j) ∈ S(k) do . Scanning

add (X → αa•β , j) to S(k + 1)

end for

for all (X → γ•, j) ∈ S(k) do . Completion

for all (Y → α •Xβ , i) ∈ S(j) do

add (Y → αX •β , i) to S(k)

end for

end for

end for

Figure 6: Earley parser algorithm

• Scanning step finds all items in the current state in form (X → α •aβ , j), where

a is current input symbol, and after advancing adds those items to the following

state. In other words, this is the step where terminal symbols are matched with

the appropriate production parts.

• Completion step finds all production rules that have been fully parsed in the

current state and resumes the parsing of the caller productions that have been

previously suspended in the prediction step.

Based on the steps that the algorithm performs, it becomes apparent, that it is very

easy to modify the list of production rules that are used for parsing. The grammar is

accessed only in the prediction step when looking for appropriate product right hand

sides. By modifying the list of the production rules used while parsing, it is possible to

augment the syntax of parsed language mid-parse. This property of the Earley parser

makes it very suitable for implementing a REP language parser. However, this flexibil-

ity comes at a cost of low overall parsing performance, because the grammar and the

production rules it contains have to be traversed by the algorithm many times during

parsing.

The Earley’s algorithm makes no assumptions about the nature of the input sym-

bols. These symbols can be both characters of the original language, or lexer’s tokens.

However, when using Earley’s parser as a scannerless parser, the performance consid-

erations of using unprocessed grammar productions within the prediction step become

even more important, as defining language’s tokens as productions would further in-

crease the depth of the AST and cause dramatically reduced performance. This makes

the algorithm practically unsuitable for scannerless parsing.

30

for all input symbols a do

for all (X → α •Y β , j,G) ∈ S(k) do . Prediction

for all (Y → γ) ∈ G do

add (Y →•γ,k,G) to S(k)

end for

end for

for all (X → α •aβ , j,G) ∈ S(k) do . Scanning

add (X → αa•β , j,G) to S(k + 1)

end for

for all (X → γ•, j,G0) ∈ S(k) do . Completion

for all (Y → α •Xβ , i,G) ∈ S(j) do

add (Y → αX •β , i,G) to S(k)

end for

end for

end for

Figure 7: Modified Earley’s algorithm

plus(4, plus(5,
{{ grammar <Expr>

<Expr> ::= <SimpleExpr> "+" <Expr> ;
end

6 + plus(1, 2 + 3) }}
), 7)

Figure 8: An example expression that uses reflective capabilities of the modifier Earley

parser to add binary infix + operator

Additionally, because the Earley’s parser supports all non-nullable context-free gram-

mars, it means that it is possible to provide a grammar that results in parsing ambiguities.

This means, that just like in the case of GLR parsers, a single AST is not sufficient to

express the structure of an ambiguous parse and that more sophisticated data structures

(like SPPFs) are required. However, the original paper in which the parser was first de-

scribed doesn’t address this issue in enough detail. This discrepancy was first observed

by [22], where a modified version of the algorithm is provided, which produces SPPF

for ambiguous parses.

3.1.9 Parsing reflective grammars

The idea that Earley’s parsing algorithm can be extended to support mutable grammars

was noticed by [27]. The paper’s authors present a modified version of Earley’s recog-

niser, which supports parsing reflective grammars.

Reflective grammars are a type of grammars, which can modify themselves by

adding additional productions mid-parse from recognised symbols within the parsed

input. This is achieved by adding the following modifications to the original parsing

31

algorithm:

• State items now have an additional element that represents the current grammar.

If the original Earley parser uses items in form (X → α •β , j), then the modified

recogniser uses items in form (X→ α •β , j,G), where G is the current grammar.

• The prediction step instead of using a single global grammar for the whole input,

now uses the grammar from the current item. This enables the algorithm to use

multiple grammars at the same time.

• Aspecialmeta-grammar for defining grammars is introduced. Thismeta-grammar,

among other things, provides a production rule that can be used to both define an

extension and invoke it with a specified starting symbol. The non-terminal prod-

uct for this production can be included in user-defined grammars, thus giving

users the ability to control where the within the initial language syntax extensions

can be placed. Fig. 8 shows an example of using this non-terminal to introduce

a binary addition operator to the initial language.

Some important observations:

• The parsing algorithm handles even cases where the user defined grammar over-

laps with extension grammar. In this case ambiguities may arise, but the parsing

algorithm would continue to work correctly.

• Even though themodified algorithm based on it’s definition requires the extension

grammars to be provided together with their invocations, it is possible to further

modify the algorithm and separate the extension definition from their invocation.

• The modified algorithm performance-wise is almost identical to the original Ear-

ley parser. Because of this, the same considerations for using this algorithm as

a scannerless parser apply, thus making the reflective and scannerless version of

Earley parser just as unusable as the original in any practical environment.

3.1.10 Efficient Earley parsing

The primary reason for not using the original Earley parser in practise it it’s lower un-

ambiguous language parsing performance. Consider the grammar provided in fig. 9.

Every time an expression E is to be parsed at input position j, the items shown in fig.

32

(1) E→ E + F
(2) E→ F
(3) F→ F * I
(4) F→ I
(5) I→ 0

Figure 9: An example of a grammar that supports infix + and * operators with appro-

priate operator precedence

E→•E + F, j
E→•F, j
F→•F * I, j
F→•I, j
I→•0, j

Figure 10: Earley items for expanding non-terminal E in position j with the grammar
from the expression grammar

10 have to be added to the current state. In other words, the whole expression hierarchy

has to be expanded every time there is a possibility to encounter an expression in the

current input position. The similar situation arises when attempting to parse statements

as well. It is not uncommon for a programming language to have more than 20 differ-

ent operators, productions for each of which would have to be expanded every time an

expression may begin.

When using Earley parser for scannerless parser, the performance decrease would

be even more grim. Because the parser doesn’t have any mechanism to perform looka-

head, when parsing an identifier which is part of a larger expression, it has to prepared

both to continue parsing the current identifier, and to attempt parse the operator that

comes after the identifier ends. As a result on every parsed character of a identifier or

numeric constant, it has to reduce the current identifier (or a constant) to an expression

and to advance all the previous productions that depend on that expression. In case

of parsing C++, which has 16 different operator precedences, the Earley parser would

have to perform at least 16 reductions and 16 completions for every identifier expres-

sion or constant expression in the whole input file. Obviously, such an implementation

is simply infeasible.

Several modifications to the original Earley parser have been proposed to increase

it’s performance. The first one [2] makes an observation that Earley sets closely corre-

spond to LR(0) DFAs. By using DFAs computed out of grammar productions instead

raw grammar productions to perform recognition, the parser no longer needs to traverse

the entire expression/statement hierarchy when encountering such non-terminals. As a

result, Earley item now contains (q, j), where q is the state number of the corresponding

33

DFA node and j is origin state, or, in other words, the position in which parsing of the

current non-terminal began.

While such optimization massively boosts Earley parser performance, it also elimi-

nates the simplicity of adding new grammar productions. Because the efficient variation

of the Earley parser uses DFAs to internally represent the grammar structure, incremen-

tal construction for generating these DFAs on-demand would have to be applied if the

modified parser were to be used for REP language parsing.

3.1.11 Yakker parser

Another parsing algorithm that attempts to make Earley parsing more efficient is de-

scribed in [13]. Authors of this paper make an observation that each production rule

can be represented by a non-deterministic finite automaton (NFA) like displayed in fig.

11. Additionally, treating production rules as automatons enables the use of regular

expression operators in these productions to make their definition more convenient.

Furthermore, these productions can be interconnected by call edges, which eliminate

the need to dynamically lookup productions of a specific non-terminal in the prediction

step (see fig. 12). Because now the parser is represented by a single NFA, it is possible

to optimize it by performing specialized minimization, which treats Sa
call−−→ Sb

call−−→ Sc

as Sa
call−−→ Sb

ε−→ Sc. After applying such optimization, all items in fig. 10 would be

merged into a single state, thus solving the previously described problem of having to

traverse entire expression hierarchy each time a possible expression is encountered.

At this point the optimized DFAresembles the LR(0) DFAused by optimized Earley

parser described in 3.1.10. The same authors then use this new parsing algorithm as a

basis for theYakker parser [15], which introduces new features not present in original or

modified Earley parser, the primary of which is the ability to recognise data-dependent

grammars. In order to support such grammars, new grammar definition primitives are

introduced:

• Attribute bindings in form x = e, where x is a variable and e is an expression.

• Non-terminal symbol invocations with bindings in form x = A(e), where A is

a non-terminal symbol. This grammar construct allows to not only parse non-

terminal symbols by supplying them arguments, but also to store the result of

a parse in a variable that may be later used to form a semantic data-dependant

constraint.

34

F

7

1start 2 3 E

4start

8start

F

9start I

E

65start

+

F

F

*

I

E

0

IF

Figure 11: Earley DFAs for production rules from the expression grammar

F

7

1start

5

3 E

4

8

F

9 I

E

6

2

call

call

+

call

F

*

call

I

E

F

0

call

call

I

call

F

Figure 12: Interconnected Earley DFAs for production rules from the expression gram-

mar

35

int(n) = [n = 0] | ([n > 0] digit int(n - 1))

Figure 13: An example Yakker grammar that allows parsing fixed-length numbers

• Constraints in form [e], which can be considered as ε symbols, which get accepted

only if expression e is true.

To support such grammar primitives, corresponding additional Yakker automaton

nodes are introduced. Additionally, Earley item is extended to hold environment E

with stores all local variable bindings, which results in items in form (q, j,E).

An example Yakker grammar that describes fixed-length digits is provided in fig.

13.

Yakker is themost general and flexible out of all analysed parsing algorithms. It sup-

ports regular right hand sides (ability to use regular expression operators to define gram-

mar productions). The parser exhibits acceptable performance even when used without

a lexer and can parse all context-free languages even without using data-dependant con-

straints. Using data-dependant constraints allows it to parse even wider class of gram-

mars: for example, the parser may be used to recognise well-formed XML files without

using external automatons to match opening and closing tags of this language.

A common task that is performed during parsing is AST construction. In case of

LR/GLR parsers, AST nodes for some parsed input are constructed either automatically

during reduction execution, or manually, by invoking a user-defined semantic action

during reduction process. In case of Earley or Yakker parsers, this can be done in the

same way during completion step. However, in case of ambiguous grammars or no

lookahead, many intermediate parse results might be constructed and then immediately

discarded after entering invalid parse path. Depending on the type of semantic action,

this operation may be memory intensive and could be a resource drain, thus slowing the

overall parsing process. To combat this, delayed semantic actions are introduced to the

Yakker parser in [14], which can be executed to construct the AST after successfully

parsing some of or the whole input, thus eliminating the unnecessary construction of

invalid AST nodes.

This parsing algorithm fulfils all the requirements for a REP language parser ex-

cept one: mutable grammar support. To support mutable grammars, the automatons

of Yakker would have to be generated incrementally. Furthermore, new grammar con-

structs would have to be introduced similar to the ones described in [27] to support

parsing reflective grammars. Even despite the required effort to implement such func-

tionality, Yakker parser is a good candidate for implementing REP language parser, be-

36

import "fortran.kat";
import "python.kat";

fortran {
SUBROUTINE ADD(A, B)
INTEGER A
INTEGER B
A = A + B
RETURN

END
}

python {
total = 0
for i in range(10):
ADD(total, i)
print total

}

Figure 14: An example Katahdin program that uses fortran and python language ex-

tensions

cause the provided feature-set, generality and parsing performance combination cannot

be matched by any other parsing algorithm.

3.2 Related tools and languages

3.2.1 Katahdin

Katahdin [25] is one of the very few REP languages that exist. It is dynamically typed

language that allows mutation of base language’s syntax and semantics. The dynamic

nature of the language also allows definition of extensions in external libraries. Asimple

Katahdin program that uses multiple language extensions is provided in fig. 14.

Every language extension within Katahdin is composed out of two elements: syntax

definition and and evaluation rules, which are both placed within a class that represents

the AST node for the newly defined construct. Syntactic extensions are defined using

parsing expression grammars, which are later used by a backtracking recursive descent

parser. Evaluation rules are defined as series of methods with direct access to the parse

tree that allow interpretation of the current AST node. For example, all expressions in

the base language and in it’s extensions have a Get() method that evaluates the current

node and returns the value for that node. Similarly, all statements have a Run()method

that executes the provided statement. An example for implementing a simple extension

37

class IncrementExpression: Expression
{
pattern
{
option recursive = false;
expression:Expression "++"

}

method Get()
{
value = this.expression.Get...() + 1;
this.expression.Set...(value);
return value;

}
}

Figure 15: An example Katahdin extension that implements unary suffix increment

operator ++

is provided in fig. 15.

While such method for defining language extensions is very intuitive to use, it has

quite a few limitations as well:

• Katahdin uses PEGs to define syntax for new language constructs. This results in

no support for left-recursion, no local ambiguity support, no true language union

support. The limitations of PEGs in relation to REP languages are explored in

more detail in section 3.1.5

• The choice of recursive decent parser is questionable as well. Recursive decent

parser with backtracking, while easy to implement, is notorious for exhibiting

poor performance, because backtracking may to exponential time to execute.

• Syntax extensions are global. It is not possible to activate an extension for a

selected scope only, like it can be done by using other parsing methods, such as

the one described in section 3.1.9.

• Katahdin is fully dynamically typed. Language’s author claims that this choice

allows the language to support both dynamically and statically typed extensions,

because dynamically typed extensions provide more generality. However it may

not be true: it is entirely possible to mix static typing with dynamic typing by

introducing dynamic types within a statically typed language. The choice of dy-

namic typing, besides having poorer performance, defeats one on the key moti-

vators for using a REP language - compile-time error checking that ensures that

two code fragments from two different languages integrate correctly.

38

• Poor performance. Because Katahdin is a dynamic programming language, it’s

libraries are provided in a textual (non-binary) format. That means that each

time a language library is imported, it has to be parsed with a fairly inefficient

parsing method. After imported libraries are parsed and the constructs within

them are evaluated, only then the actual user program may begin execution. With

the current Katahdin’s implementation it takes several seconds just to parse the

standard library. In addition, the performance of user programs even after parsing

them is low due to the fact that Katahdin uses AST interpretation to execute it’s

programs.

Because of these restrictions, we do not believe that Katahdin is a true contender for

a practical REP language.

3.2.2 SugarJ

SugarJ [9] is a programming language that supports library-based syntactic language

extensibility. The language’s authors introduce a new type of libraries, called sugar

libraries, which in addition to exporting classes and functions, also export syntactic

extensions. Even though the authors claim that sugar libraries is a novel concept, a less

formal variation of sugar libraries was also implemented previously in Katahdin.

Unlike Katahdin, which uses interpretation to execute it’s programs, SugarJ trans-

forms all of it’s programs into Java code than then can be compiled by a regular Java

compiler. Syntax extensions in SugarJ are defined using new language constructs called

sugars.

A sugar in SugarJ is a declaration (just like a class in Java), which defines the syn-

tax of an extension using context free grammars and provides desugaring rules, which

rewrite AST nodes of new constructs to mostly Java AST nodes (see fig. 16 for an

example of a sugar declaration). This allows adding only paraphrase extensions to the

base language.

SugarJ is implemented by dividing the translation process into the following steps:

1. Parsing. The translator parses a single top-level declaration using Stratego/SDF

with the current grammar. Stratego [4] is a language transformation framework

that allows grammar definition using context-free grammars. It also provides

capability to define rewrite rules, which are used directly in SugarJ to transform

ASTs. The actual parsing process within Stratego is done using a scannerless

GLR parser [8].

39

package pair;
import org.sugarj.languages.Java;
import concretesyntax.Java;
public sugar Sugar {
context-free syntax
"(" JavaType "," JavaType ")" -> JavaType{cons("PType")}
"(" JavaExpr "," JavaExpr ")" -> JavaExpr{cons("PExpr")}

desugarings
desugar-pair-expr
desugar-pair-type

rules
desugar-pair-expr:
PExpr(e1, e2) -> |[pair.Pair.create(~e1, ~e2)]|

desugar-pair-type:
PType(t1, t2) -> |[pair.Pair<~t1, ~t2>]|

}

Figure 16: An example SugarJ extension that implements unary suffix increment op-

erator ++

2. Desugaring. This is the transformation step, where all sugar AST nodes within

the previously parsed declaration are replaced to appropriate SugarJ nodes based

transformation rules in sugar definitions.

3. Splitting. At this point theAST contains only SugarJ nodes. TheAST is then split

into fragments of Java, import statements and sugar declarations. Fragments of

Java contribute to the final translated Java program, import statements are used

load external sugar libraries, while sugar declarations get passed to Stratego.

4. Adaptation. During this step new sugar declarations are merged with current

desugaring rules. In the same fashion newly defined production rules get com-

posed with the current grammar to form a new grammar that is capable of recog-

nising newly defined sugars. This new grammar and new sugars are then used to

parse the subsequent top-level declaration.

In other words, SugarJ uses naive extensible parsing in conjunction with a scanner-

less GLR parser. This means that sugars are applied globally to all subsequent top-level

blocks. This prohibits creation of extensions that only work in specific scopes. Further-

more, the performance of such parsing method is not ideal (see section 3.1.1 for more

details). As such, there is room for improvements regarding syntactic extensibility.

Also, because SugarJ supports only syntax extensions, it is not a true REP language.

However, the AST transformation method used in this language is rather general and

thus applicable to REP languages as well. Unfortunately, the same cannot be said about

40

the SugarJ’s parsing method.

3.2.3 Neverlang

Neverlang [29] is a framework for sectional compiler construction. It introduces the

concept of splitting the definition of a compiler into slices, where each slice defines

a single feature for the target language. Each slice contains syntax definition, type

checking rules and evaluation rules. Eventually multiple named slices are composed

into a single language and the compiler for that language is generated.

Neverlang uses a dedicated lexer with incrementally generated LALR(1) parser to

parse the target language, which means that it doesn’t support scannerless parsers and

arbitrary context-free grammars, as such it doesn’t meed out criteria for REP language

parsing.

However, the idea of dividing the definition of a language into mostly self-contained

slices provides a cleanway tomanage different extensions that may exist within the REP

language and should be eventually investigated with more detail in regards to using

slices in a REP language compiler.

3.3 Conclusions

In this chapter we defined requirements for a REP language parser and investigated

various parsing algorithms in regards to these requirements.

We found no single parsing algorithm that fully satisfies our requirements, but sev-

eral were almost satisfactory. The closest algorithm tomeet our criteria isYakker, which

we believe would serve as a good basis for constructing a modified version of the algo-

rithm that would fully satisfy all the requirements for parsing REP languages.

41

4 Extensible parsing with Earley Virtual Ma-

chines

4.1 Earley Virtual Machines

4.1.1 Introduction to Earley Virtual Machines

Earley Virtual Machines (or EVM for short) is a new approach to parsing that is based

on virtual machines and is heavily inspired by Earley parser.

The core idea behind EVM is to separate the two grammar representations used

by the parser: the user writers source grammars in a plain-text format which are then

parsed an compiled into compiled grammars that are then executed by the parser.

EVM consists of the following elements, each of which will be described in more

detail in future chapters:

• Source grammars are parser grammars in plain text format. These grammars

are written by the user of the parser and describe the parsed language in terms of

grammar rules. Additionally, source grammars may contain the abstract syntax

tree construction instructions, which allow to control the process of AST con-

struction in fine detail.

• Compiled grammars or grammarmodules are internal representation of source

grammars. As the name implies, compiled grammars are compiled from source

grammars. Compiled grammars contain sequence of low-level instructions that

drive the parsing process.

• The interpreter is one of the primary elements of EVM. It interprets or exe-

cutes the instructions contained in one or more grammar modules. As a result,

an abstract syntax tree is constructed based on the parse input. The process of

42

interpreting compiled grammars is synonymous to parsing the input data in the

context of EVM.

• States. EVM state is an internal structure utilized by the interpreter that tracks

execution of the interpreter. These EVM states have a close resemblance to the

Earley parser states. There may exist one EVM state per each terminal symbol.

• Fibers. EVM fibers have a close relationship to Earley parser items. Each fiber

represents a task of grammar rule execution. A fiber may be thought of as a

thread of a general purpose programming language in which one grammar rule is

executed.

• The fiber queue is a queue of fibers that are ready for execution. The interpreter

works by removing the first fiber from the queue and keeps executing it until it

yields. At which point the next fiber is removed from the queue and execution of

it commences. Empty fiber queue indicates a parse error.

4.1.2 EVM grammars

Much like formal grammars, basic EVM grammars consist of production rules, where

each production rule defines how to parse a single non-terminal symbol.

More formally, a basic EVM grammar is a set of productions in form sym→ body,

where sym is a non-terminal symbol and body is a grammar expression.

A grammar expression is defined recursively as:

• a is a terminal grammar expression, where a is a terminal symbol.

• A is a non-terminal grammar expression, where A is a non-terminal symbol.

• ε is an epsilon grammar expression.

• (e) is a brace (grouping) grammar expression, where e is a grammar expression.

• e1e2 is a sequence grammar expression, where e1 and e2 are grammar expressions.

EVM compiled grammar is a tuple 〈instrs,rule_map〉. instrs is the sequence of in-

structions that represents the source grammar. rule_map is mapping from non-terminal

symbols to locations in the instruction sequence, which represents entry points for the

grammar program. It is used to determine the start locations of compiled rules for spe-

cific non-terminal symbols.

43

4.1.3 EVM states

An EVM state is a structure that tracks the progress of interpreter at a particular point

in the terminal symbol input sequence. Each EVM state has an index that corresponds

to appropriate position of the input sequence.

Each EVM state Si is a tuple 〈susp, trace,reductions〉, where:

• i is the position of the input sequence.

• susp is a list of suspended tasks at position i. When one rule calls another, the

caller is suspended until one or more of the callees complete. Each entry of the

suspended task list is a pair 〈 f iber,symbol_map〉, where f iber is the suspended

fiber. symbol_map represents the reason of the suspension: it contains the set of

non-terminal symbols that the callee expects to parse. Upon parsing any of these

symbols, the caller fiber is resumed by adding it’s copy to the fiber queue (thus

signalling that the target non-terminal symbol has been parsed successfully and

the parsing of caller rule may resume).

• trace is the execution trace set (or ETS for short). It is a set of pairs 〈ip,stack〉.
Whenever a new fiber is created (either by calling a new non-terminal symbol

or by resuming a suspended fiber), the instruction pointer ip and the stack of

the candidate fiber is checked against the ETS. If the pair is not present in the

ETS, then the creation of the fiber commences and this pair is added to the ETS.

Otherwise, the creation of the fiber is aborted. This mechanism ensures that the

input position is parsed with the same grammar rule and the same context only

once, thus avoiding exponential parsing complexity found in certain variations of

recursive descent parser. The ETS also blocks infinite left recursion.

• reductions is a multimap that stores successful reductions that originate from

state/offset i. The key of the multimap is a non-terminal symbol that indicates the

target symbol, where the value of the map is a tuple 〈o f f set1, priority,value〉.
o f f set1 indicates the end position of the reduction. priority indicates the priority

of the reduction. This value is used in conjunction with negative reductions and is

described in more detail later. value is the user-specified value of the reduction. It

usually contains theAST node of the reduction, or when delayed semantic actions

are used, the label of the reduction. The primary purpose of the reductions is to

store the intermediate parsing results. Additionally it is used to merge reductions

44

whose starting positions, ending positions and non-terminal symbols match. This

avoids the exponential complexity explosion in case of ambiguous grammars/in-

puts.

4.1.4 EVM fibers

A fiber represents the task of parsing a single non-terminal symbol. Whenever a non-

terminal symbol needs to be parsed, one or more fibers are created to parse the symbol.

More specifically, a fiber is a tuple 〈origin,o f f set, ip〉:

• origin is the origin input position of the fiber. It indicates the starting position of

the target non-terminal symbol in the terminal symbol input sequence. This value

is used when completing reductions: a successful non-terminal symbol reduction

is recorded in reductions variable of state Sorigin. Additionally, appropriate sus-

pended threads of state Sorigin are resumed in state So f f set .

• o f f set indicates the input position of current fiber. When a single terminal sym-

bol is parsed successfully, the current fiber is advanced by increasing this offset

by 1.

• ip indicates instruction pointer of the current fiber.

4.1.5 EVM interpreter

Parsing terminal symbols

Terminal symbols in EVM are parsed with instruction i_match_char. This instruc-

tion has a single operand that contains a jumptable. This jumptable consists of pairs

〈symbol, target_ip〉, where symbol is a terminal symbol to be matched. target_ip is the

target instruction pointer to jump to if the symbol is matched successfully.

In most basic cases, this instruction can be used only with a single entry in it’s jumpt-

able. However, when using subset construction optimization, multiple i_match_char

instructions can be merged into one by combining their jumptables.

In case of a successful terminal symbol match, the ip of current fiber is set to the

appropriate instruction pointer provided in the jumptable. Additionally, the current fiber

is advanced by increasing it’s o f f set by 1.

45

Table 1: Terminal symbol sequence parsing example

Grammar rule Instruction sequence

S -> a b c

...
20: i_match_char a -> 21
21: i_match_char b -> 22
22: i_match_char c -> 23
23: i_reduce S, 0
24: i_stop
...

In case of matching failure (when no terminal symbol in the jumptable matches the

one in the o f f set position of the input), the current fiber is immediately discarded: the

execution of the fiber is halted and the fiber yields.

An example of a simple source grammar and it’s instruction sequence is provided

in table 1.

Parsing non-terminal symbols

Parsing of non-terminal symbols in EVM is significantly more involved. Multiple in-

structions are used to facilitate matching of non-terminal symbols:

• i_call_dyn S is used to initiate parsing of non-terminal symbol S. This instruc-

tion creates one or more fibers. The instruction pointers of newly created fibers

are set to entry points of the compiled rules that define non-terminal symbol S.

origin of the new fibers is set to o f f set of the caller. Finally, newly created fibers

are added to the fiber queue. It is important to note, that fiber creation process is

still subject to the ETS rules: multiple i_call_dyn invocations to the same non-

terminal symbol S will not result in additional fiber creation. After executing

i_call_dyn instruction, the caller fiber continues it’s execution normally.

• i_match_sym S1 → ip1, ...,Sn → ipn is used to match successful non-terminal

symbol parses, that have been previously initiated by i_call family of instruc-

tions. Whenever a i_match_sym is executed, the current fiber is suspended by

adding it to the list of suspended fibers susp in state So f f set . Additionally, the

interpreter attempts to pre-emptively resume the suspended fiber in case any of

the target non-terminal symbols have been successfully parsed prior to executing

the current i_match_sym instruction.

46

Table 2: Non-terminal symbol sequence parsing example

Grammar rule Instruction sequence

S -> A B C

...
30: i_call_dyn A
31: i_match_sym A -> 32
32: i_call_dyn B
33: i_match_sym B -> 34
34: i_call_dyn C
35: i_match_sym C -> 36
36: i_reduce S, 0
37: i_stop
...

• i_reduce S, prio is used to perform reduction of the non-terminal symbol S.

Firstly, this instruction records the presence of new reduction with priority prio

in state Sorigin. In case that there have been other reductions with same length and

non-terminal symbol in state Sorigin, but with greater priority, the current reduc-

tion is abandoned. This mechanism is used to implement negative reductions that

can be used to exclude certain undesirable parses (for example, certain keywords

can be excluded from identifiers). If the reduction is not abandoned, then this

instructions finds all the suspended fibers in state Sorigin that have been waiting

for S and attempts to resume them. After completing i_reduce instruction, the

current fiber continues executing normally.

• i_stop instruction discards the current fiber.

A simple example of matching several non-terminal symbols is provided in table 2.

Resuming suspended fibers

EVM fibers can be resumed in two circumstances: during i_match_sym or i_reduce

instruction execution. In both cases, the suspended fibers can be resumed with the

following steps:

1. The suspended thread is duplicated.

2. ip of the copy is set to target instruction pointer, which is retrieved from symbol_map.

3. o f f set of the copy is set to o f f set of the fiber that executes i_reduce. In case of

pre-emptive resumption in i_match_sym, the new o f f set value is retrieved from

reductions entry in state So f f set .

47

Table 3: Basic source grammar compilation rules

Grammar element Instruction sequence

Grammar:

G = {P1, ..., Pn}

i_call_dyn main
i_match_sym main→ laccept
laccept :
i_accept

i_stop

code(P1)
...

code(Pn)

Production rule:

P→ e

code(e)
i_reduce P, 0
i_stop

Terminal grammar expression:

a
i_match_char a→ ipnext

Non-terminal grammar expression

(dynamic):

A

i_call_dyn A
i_match_sym A→ ipnext

Epsilon grammar expression:

ε

Brace grammar expression:

(e)
code(e)

Sequence grammar expression:

e1e2

code(e1)
code(e2)

4. The new fiber is traced, by recording it’s presence in state’s So f f set execution trace

set. If a matching entry already exists, the resumption of the fiber is aborted.

5. The new fiber is added to the fiber queue to be executed later by the interpreter.

4.2 Compiling basic EVM grammars

The rules for compiling basic source grammars to corresponding instruction sequences

are proved in table 3. The notation code(e) refers to corresponding sequence of instruc-

tions when compiling grammar element e. Instruction i_accept signals the interpreter

that a matching input has been parsed. main is the name of starting non-terminal symbol

of the grammar that is being compiled.

48

4.3 General purpose computation in EVM

The current model of EVM is quite flexible and can be extended to support general

purpose computation during parsing. This general purpose computation may be used

to imperatively control the parsing process and thus implement some of the required

functionality to support data-dependant constraints.

EVM fibers already support stacks that can be used to store intermediate general

purpose computation results. The following instructions are required, to enable general

purpose execution during parsing:

• i_br ip. Unconditional branch to instruction pointer ip.

• i_bz ip. Conditional branch to instruction pointer ip. The branch condition value

is popped from the top of current fiber stack.

• i_pop. Remove and discard top stack element of the current fiber.

• i_peek n. Duplicate stack element n and push it to the top of the stack.

• i_int_add. Integer addition. Pop two values from top of the stack, add them as

integers and push the result to top of the stack.

• i_int_sub. Integer subtraction.

• i_int_neg. Integer negation.

• i_int_push. Push immediate integer constant to top of the stack.

• i_int_more. Integer comparison.

• i_str_push. Push reference of string constant to the stack.

• i_call_foreign id, n. Call foreign method identified by index id with n ar-

guments. Push the result of the call to the stack. Foreign methods are methods

implemented in host environment of EVM and can be used to extend the function-

ality of EVM without having to directly modify the way EVM is implemented.

• ...

The list of instructions is non-exhaustive and additional instructions may be added

based on requirements.

49

4.4 Improving source grammar flexibility

4.4.1 Regular right hand sides in production rules

Regular right hand sides is a feature commonly found in recursive descent and Pack-

rat family of parsers [10]. It allows the usage of regular operators in right hand sides

of production rules. This simplifies the definition of new grammars, as repeated and

optional grammar elements no longer need to be expressed solely via alternation and

recursion.

To support such operators in EVM grammars, the definition of EVM grammar ex-

pression needs to be expanded. In addition to exiting grammar expressions, the follow-

ing elements are too considered to be grammar expressions:

• e? is optional grammar expression, where e is a grammar expression.

• e+ is one-or-more grammar expression, where e is a grammar expression.

• e∗ is zero-or-more grammar expression, where e is a grammar expression.

• e1|e2 is alternative grammar expression, where e1 and e2 are grammar expres-

sions.

All of these new grammar elements can be implemented in EVM by adding one

additional instruction:

• i_fork ipnew instruction clones (forks) the current fiber and sets the instruction

pointer of the new fiber to ipnew. The newly created fiber is scheduled to be exe-

cuted by adding it to the fiber queue, while the existing one continues executing

normally.

The rules for compiling the new operators into instruction sequences are provided

in the table 4.

4.4.2 Rule and operator precedence

Almost every existing programming language supports the notion of binary operators

with differing precedences. In grammars such operators with different precedences are

commonly implemented via operator expression hierarchies, as shown in fig. 17. Each

different operator precedence level gets a separate non-terminal symbol, under which

50

Table 4: Regular operator compilation rules

Grammar element Instruction sequence

Optional grammar expression:

e?

i_fork lend
code(e)
lend:

One-or-more grammar expression:

e+
lstart : code(e)
i_fork lstart

Zero-or-more grammar expression:

e∗

lstart : i_fork lend
code(e)
i_br lstart
lend:

Alternative grammar expression:

e1|e2

i_fork lother
code(e1)
i_br lend
lother: code(e2)
lend:

S -> E
E -> E "+" F | E "-" F | F
F -> F "*" T | F "/" T | T
T -> "0" | "1"

Figure 17: A grammar that defines simple expressions with binary operators

operators with that precedence level are defined. While such operator with precedence

definition method is simple and easy to understand, it quickly becomes cumbersome

when dealing with real-world programming languages, such as C++, Ruby and similar,

which often have over 15 different levels of operator precedences.

Furthermore, extending such language grammars to include additional operators be-

comes difficult, especially when the new operator has a precedence level that is in be-

tween of two existing neighbour precedence levels. In that case, a new non-terminal

symbol for the new operator precedence level has to be defined and the existing rule

that defines lower precedence operators has to be updated to use the newly defined

operator.

Because definition of operators (either unary, or binary) is such a fundamental task

when defining new grammars for programming languages, newer parser generators and

language translation frameworks often allow specifying the precedences of operators

directly either by assigning each operator a numeric precedence value, or using oper-

ator definition order to infer the precedence of each operator [8]. As such, it would

be beneficial for EVM to support specification of operator precedence levels natively,

51

especially because one of the goals of EVM is to support adaptable grammars that can

be extended dynamically during runtime.

In EVM the term operator precedence is generalized to rule precedence, as any

grammar rule can have an explicit precedence value. All rules that have no explicit

precedence definition have default precedence value of 0.

When compiling source grammars, the precedences are stored in rule_map entry of

the compiled grammar. As a result, rule_map contains a multimap from non-terminal

symbols to rule instruction entry point and rule precedence pairs.

Furthermore, instruction for invoking non-terminal symbols i_call_dyn needs to

be extended to include minimum rule precedence operand, which is then used to filter

out rules with lower precedence than requested. Source grammar compiler can make

use of this operand when detecting that a grammar rule is recursively invoking itself: in

that case only rules with greater precedence in comparison to the precedence of current

rule should be invoked. Such mechanism emulates the behaviour of operator hierarchy

without having to explicitly define it.

Changing just i_call_dyn to support rule precedences is insufficient however, be-

cause i_match_sym instruction has no notion of rule precedence and as such will in-

terpret any successful match of target non-terminal symbol as a valid one, even when

the the callee expects only a non-terminal symbol with a specific minimum precedence.

Therefore, a new instruction is needed to match non-terminal symbols with a specified

precedence:

• i_match_dyn S, precmin instructionmatches successful parses only of non-terminal

symbol with minimum precedence precmin. Just like the original i_call_dyn, it

suspends the current fiber and attempts to pre-emptively resume it by checking

the existing reductions in state So f f set . When resuming the fiber, it’s instruction

pointer is set to ip+1.

4.4.3 Specifying operator associativity

Operator associativity can be considered as a separate edge case of rule precedence.

Left associative operator E +E means that the left non-terminal E can be expanded

recursively into itself, while the right E has to be expanded into expression only with

higher precedence. As such, operator associativity specification can be implemented

using operator precedence mechanism.

52

S -> E
E[10] -> *E "+" E
E[10] -> *E "-" E
E[20] -> *E "*" E
E[20] -> *E "/" E
E[30] -> "0" | "1"

Figure 18: Rewritten grammar that defines simple expressions with binary operators

Table 5: Updated non-terminal symbol compilation rules

Grammar element Instruction sequence

Non-terminal grammar expression (non-recursive):

A
i_call_dyn A, 0
i_match_sym A→ ipnext

Non-terminal grammar expression (recursive):

A
i_call_dyn A, prec+1
i_match_dyn A, prec+1

Non-terminal associative grammar expression (recursive):

∗A
i_call_dyn A, prec
i_match_dyn A, prec

Anew grammar element needs to be added to grammar expression to indicate when

a non-terminal symbol is allowed to recursively expand into itself:

• ∗A is non-terminal associative grammar expression, where A is a non-terminal

symbol. When used in a production rule whose head is A, this grammar expres-

sion indicates, that ∗A can be expanded recursively with current production rule.

As indicated above, by default all recursive non-terminal invocations are non-associative.

This is because if user were to forget to explicitly specify associativity of E +E ex-

pression, it would become ambiguous, as it could be interpreted both as left and right

associative at the same time.

The example grammar in fig. 17 can now be rewritten using explicit rule prece-

dences and non-terminal associative symbols into the one shown in fig. 18. New op-

erators can be added as needed by specifying new production rules with explicit prece-

dences. When adding new operators, no existing rules need to be changed or altered in

any way.

The updated rules for generating instruction sequences for non-terminal symbols

are provided in table 5. prec value refers to the precedence of the current rule that is

being compiled. By default this value is 0, if not specified explicitly with square bracket

notation.

53

Table 6: Fixed length lookahead example

Grammar rule Instruction sequence

A -> a+ &b

40: i_match_char a -> 41
41: i_fork 40
42: i_match_char b -> 43
43: i_advance -1
44: i_reduce A
45: i_stop

id -> [a-zA-Z_] [a-zA-Z_0-9]* &[^a-zA-Z_0-9]

Figure 19: Grammar rule that defines identifier using fixed length lookahead

4.5 Parsing with regular lookahead

4.5.1 Fixed length lookahead

Parsing lookahead is a useful feature that can simplify specifying grammars. When

using a parser in scannerless mode, lookahead becomes mandatory, as it is needed to

implement greedy-matching when defining language tokens. For example, identifier

can be defined as a sequence of alphanumerical characters that terminates on first non-

alphanumerical symbol. As such, in order to correctly specify the termination point of

an identifier, single-character lookahead is required.

In EVM fixed length lookahead could be mostly implemented already using the

existing i_match_char instruction that is used to match terminal symbols. All what is

needed is to backtrack to correct correct input offset after performing lookahead. This

could be implemented using a new instruction:

• i_advance n instruction advances current fiber by n symbols. This operand may

be negative to perform fixed length backtracking.

To make use of this instruction, the definition of grammar expression needs to be

extended to include:

• &e is positive lookahead grammar expression, where e is a grammar expression.

An example usage positive lookahead operator is provided in table 6. Figure 19

shows an example where positive lookahead can be used in a real-world scenario when

defining identifiers.

54

Table 7: Fixed length lookahead compilation rules

Grammar element Instruction sequence

Fixed length lookahead:

&e
code(e)
i_advance −length(e)

Table 8: Variable length lookahead compilation rules

Grammar element Instruction sequence

Variable length lookahead:

&e

i_push_offset

code(e)
i_pop_offset

The rule for compiling fixed-length lookahead grammar expressions is provided in

table 7. length(e) refers to the character (terminal symbol) length of grammar expres-

sion e.

4.5.2 Variable length lookahead

Variable length lookahead in EVM can be implemented with a similar fashion. How-

ever, the difficulty in this case is not knowing how many terminal symbols to backtrack

after performing the lookahead operation. As such, this information can be recorded

and used dynamically by leveraging general purpose computation capability of EVM.

To support variable length lookahead, two additional instructions are required:

• i_push_offset pushes the o f f set value of the current fiber to it’s stack.

• i_pop_offset pops the o f f set value of the current fiber from it’s stack.

The rules for compiling variable length lookahead grammar expressions is provided

in table 8. It is important to note that both fixed and variable length lookahead share

the same notation. As such, it is up to source grammar compiler to determine when

the lookahead operation is fixed length and to use the appropriate compilation rule. It

is also possible to use variable length lookahead even in situations where fixed length

lookahead would be more suitable, but with additional performance cost, as variable

length lookahead makes use of fiber’s stack.

55

4.6 Parsing with data dependant constraints

4.6.1 EVM grammar language

We have already shown that EVM is capable of performing general purpose computa-

tion and hinted that conditional control transfer can be used to drive the parsing process.

However, the current grammar language that is only capable of specifying simple pro-

duction rules that are composed from grammar expressions. Therefore, in order to be

able to make use of conditional control transfer, the source grammar language needs to

be extended to include control flow statements.

Table 9 presents the updated grammar elements and their instruction sequence com-

pilation rules. The list of new grammar elements is non-exhaustive and doesn’t include

additional variations of existing elements (for example, various integer operations can

be implemented in similar fashion to integer addition just by changing the final instruc-

tion).

Every variable defined within rule body is assigned a stack slot. A stack slot is a

position in fiber’s stack where the value for the variable is stored. stack_slotv refers to

the stack slot number for variable v.

In the new grammar language, all grammar elements are divided into several cate-

gories:

• Top level declarations are used to define new grammar rules.

• Statements are used to control execution flow. In the extended grammar lan-

guage, the bodies of rules are composed of statements.

• Expressions are used to perform general purpose computations, much like in

traditional programming languages.

• Grammar expressions are used to perform parsing. Grammar expressions can

be executed by using parse statement.

Grammar rule definitions are now extended to support parameters that can be used to

control execution flow. To implement this, additional instruction changes are required:

• i_call_dyn instruction needs to be extended to include the argument number to

copy to the callee. The copied arguments are discarded from the caller’s stack

frame after the call is complete.

56

• i_reduce_r (reduce and return) instruction needs to be created to allow returning

values from the callee. It behaves exactly the same as i_reduce, but also pops

a value from the current fiber’s frame and stores it in reductions entry of state

Sorigin. This value can be accessed later by i_match_dyn_r instruction.

• i_match_dyn_r instruction behaves exactly the same as i_match_dyn, but also

pushes the return value of the callee to the current fiber’s stack.

parse and other control statements can be mixed and matched to parse complex

data dependant grammars that cannot be parsed with traditional context-free parsers.

For example, table 10 show how to parse fixed length fields, commonly found in binary

formats.

4.6.2 Matching input against dynamic content

While the mechanism for dependant parsing described in previous chapter is powerful,

but it is not sufficient to parse languages like XML: in order to be able to parse XML it

is necessaries to be able to extract a fragment of parsed input and then use that extracted

fragment for further matching.

As a result, two additional additions to grammar expression are required:

• v@e is a capturing grammar expression, where e is a grammar expression and

v is a name (identifier) for a new variable. After successfully matching e, this

operator will store the range (the start end end offsets) of the matched input.

• = v is a dynamicmatch grammar expression, where v is a variable that stores input

range. This operator is used to match input against the one that is referenced by

the range.

To implement these new constructs, only one new instruction is needed:

• i_match_range pops two integer values from the fiber’s stack that represents in-

put range and attempts to match the input at current position against the char-

acters referenced by the range. In case of a successful match, the current fiber

is advanced by the length of the range. In case of a failure, the current fiber is

discarded. This instruction is fairly unique in EVM, as it is the only one that can

match more that one terminal symbol at the same time.

57

Table 9: Extended grammar language elements and their compilation rules

Element name Syntax Instruction sequence

Grammar rule

rule sym(arg1, ...,argn)
stmt1
...

stmtn
end

code(stmt1)
...

code(stmtn)
i_reduce sym, 0
i_stop

Block statement

stmt1
...

stmtn

code(stmt1)
...

code(stmtn)

If statement

if cond
body

end

code(cond)
i_bz lend
code(body)
lend:

Parse statement parse grammar_expr code(grammar_expr)

Return statement return expr
code(expr)
i_reduce_r sym, 0
i_stop

While statement

while cond
body

end

lstart : code(cond)
i_bz lend
code(body)
i_br lstart
lend:

Variable declaration statement var v = expr code(expr)

Integer addition expression e1 + e2

code(e1)
code(e2)
i_int_add

Integer constant expression value i_push_int value
Variable read expression v i_peek stack_slotv

Variable write expression: v = e
code(e)
i_poke stack_slotv

Parameterized non-terminal

grammar expression
A(arg1,arg2, ...,argn)

code(arg1)
code(arg2)
...
code(argn)
i_call_dyn A, precmin, n
i_match_dyn A, precmin

A grammar rule example that can match simplified XML tags is provided in fig.

20. This rule combines multiple key elements of EVM to successfully parse XML tags:

fixed length lookahead, associative non-terminals, dynamic matching.

58

Table 10: Parsing fixed length fields

Grammar rule Instruction sequence

rule field(n)
while n > 0
parse "a"
n = n - 1

end
end

10: i_peek 0
11: i_push_int 0
12: i_int_more
13: i_bz 20
14: i_match_char a -> 15
15: i_peek 0
16: i_push_int 1
17: i_int_sub
18: i_poke 0
19: i_br 10
20: i_reduce "field", 0
21: i_stop

rule xml_element()
parse "<" start@([a-zA-Z_] [a-zA-Z_0-9]* &[^a-zA-Z_0-9]) xml_attrs ">"
parse (*xml_element)*
parse "</" =start ">"

end

Figure 20: Simplified XML tag grammar rule

Table 11: Rules for compiling capturing and dynamic match grammar expressions

Grammar element Instruction sequence

Capturing grammar expression:

v@e

i_push_offset

code(e)
i_push_offset

Dynamic match grammar expression:

= v

i_peek stack_slotv0
i_peek stack_slotv1
i_match_range

Rules for compiling newly added grammar expressions into instruction sequences

are provided in table 11. stack_slotv0 and stack_slotv1 refer to the stack slot indices of

values produced by i_push_offset instructions.

4.7 Abstract syntax tree construction

4.7.1 Automatic AST construction

EVM in its current iteration cannot be called a parser, as it only currently performs input

recognition. As such, for EVM to be truly useful and applicable, there needs to be a way

to construct the abstract syntax tree of the matched input.

59

There are multiple ways of howAST can be constructed in EVM, and in this section

we describe automaticAST construction that requires no grammar modifications or any

additional input from the user to be able to construct the AST.

Such method ofAST construction can be implemented by augmenting the definition

of EVM fiber: an additional stack can be added to each fiber that can store children

nodes of the current non-terminal symbol that is being parsed. To make use of such

stack, the following instructions would need to be updated:

• i_reduce A, prio in addition to performing reduction, additionally constructs the

AST node for the non-terminal symbol that is being reduced. The newly con-

structed node is composed from nodes found in children node stack. Additionally,

the node is tagged with non-terminal symbol A. Furthermore, the source range for

the non-terminal can be added by including a copy of the pair 〈origin,o f f set〉,
as origin refers to the starting position and o f f set refers to the current (and thus

ending) position of the non-terminal. Finally, i_reduce registers the newly con-

structed node.

• i_match_dyn additionally adds the corresponding node index to the child AST

stack, thusmaking these indices available duringASTnode construction in i_reduce

instruction.

It is important to note, that EVM is capable of parsing ambiguous grammars, in

which case the AST size may grow exponentially. To avoid this, shared packed parse

forests (or SPPFs for short) can be used [22]. In SPPFs subtrees that refer to alternative

parse paths are packed into a single ambiguous node.

The key difficulty in constructing such SPPFs within EVM is that corresponding

reductions may not happen sequentially: it is entirely possible that two reductions that

refer to alternative parses may be separated by several, completely unrelated reduc-

tions. As such, the SPPF cannot be constructed in a single pass, as any node that was

previously constructed may become ambiguous as more reductions complete.

Therefore, a layer of indirection is necessary to ensure that nodes can be changed

from non-ambiguous to ambiguous after they have been constructed. In EVMs case,

each node is assigned a unique index. Nodes in EVM internally are referred by storing

and passing these indices around: the child node stack of each fiber stores node indices

and i_reduce instruction uses node indices to compose new nodes. The actual node

data (such as child node vectors) are stored separately.

60

To allow the changing of node type, the node registration process within i_reduce

is used:

• If a reduction is unique (i.e. there are no other reductions that share the same

source interval and the same non-terminal symbol), then a normal child node is

constructed. Then it is assigned a unique index and this index is stored within

reductions entry in appropriate state.

• If a reduction is non-unique (or ambiguous), then a normal child node is created

and it is assigned a unique index. However, this time the existing node is con-

verted to ambiguous packed node, and the newly created node is added as it’s

child.

The conversion of non-ambiguous node to ambiguous node works by duplicating

the target node, assigning it a new unique index and changing the target node’s type to

ambiguous. The duplicate of the original is then added as the only child of the converted

node.

These node registration and conversion processes ensure that the node references

are not broken when node conversion occurs. This enables incremental construction of

SPPFs when there is no prior knowledge of which nodes will become ambiguous.

While this approach of AST construction is simple, it has two primary flaws:

• Inclusion of undesirableAST child nodes. EVM is primarily a scannerless parser,

and as such will be used to parse whitespace. It is not uncommon to define a

non-terminal symbol for recognising whitespace and then using that within other

grammar rules. As such, during automaticAST construction, nodes that represent

whitespace will be added to the resulting AST, possibly unnecessarily increasing

the overall size ofAST and littering it with nodes that carry no semantic informa-

tion.

• Rigid and inflexible AST node type. Every normal node of the AST currently

shares the same type and thus the same structure. Such behaviour however may

not be desirable, as different non-terminal symbols represent different language

elements with unique behaviours. Furthermore, it is common to use the AST to

store semantic information when performing semantic analysis of theAST during

later stages of compilation. Current node model has no space reserved for such

semantic information and changing the node type would require changing the

61

internals of EVM itself. The most flexible way to use the parsed result would

be to convert the EVMAST to possibly polymorphic user-defined AST type that

includes all the necessary fields and behaviours to perform semantic analysis.

4.7.2 Manual AST construction

Manual AST construction is the polar opposite of the automatic AST construction: in-

stead of requiring the EVM to define and construct the AST automatically, the respon-

sibility of the AST definition and construction is moved completely to the user.

As EVM supports general purpose computation, it would be logical to assume that

this method could be extended to enable manual and imperative construction of theAST.

Firstly, the EVM grammar language needs to be extended with the following con-

structs:

• v : E is a capturing non-terminal grammar expression, where v is the variable name

for storing the captured result and E is one of available non-terminal grammar

expressions (plain or associative).

• <name arg1 ... argn> is a node construction expression. Node is constructed with

head name and arguments arg1 ... argn. Arguments can be other nodes, integer

values or string values.

Additional instruction i_new_node n is needed that constructs new AST node with

n arguments/children. The head (type) of the node must be provided in the stack before

pushing arguments. As a result, i_new_node will always pop n+ 1 elements from the

stack. This instruction is needed to implement node construction expression. However

it can be implemented as a foreign call as well.

Example usage of manual AST construction is provided in table 12.

To avoid exponential AST growth in ambiguous cases, similar mechanism for con-

structing SPPFs as described in previous section should be used. i_new_node should re-

turn a node index and i_reduce_r should include the node registration logic that would

enable the merger of ambiguous subtrees into packed nodes.

However, it is known that the grammar is unambiguous or that the ambiguity would

be minimal, then direct node references could be used and i_reduce_rwould no longer

need to include the node registration logic. Furthermore, nodes could be constructed

in the host environment via foreign calls, thus allowing user to manually define and

use different node types where desirable. That way, both weaknesses of automatic AST

62

Table 12: Grammar rule for parsing and AST node construction of binary addition

Grammar rule Instruction sequence

rule expr[10]
parse l:*expr "+" r:expr
return <add l r>

end

60: i_call_dyn "expr", 10
61: i_match_dyn_r "expr", 10
62: i_match_char '+' -> 63
63: i_call_dyn "expr", 11
64: i_match_dyn_r "expr", 11
65: i_str_push "add"
66: i_peek 0
67: i_peek 1
68: i_new_node 2
69: i_reduce_r "expr", 0
70: i_stop

node construction could be avoided at a cost of having to manually specify (both within

the grammars and possibly within the host environment) of how to construct the AST.

Even though this approach has numerous advantages of the automatic AST con-

struction, one key flaw still persists:

• Wasted resources during speculative parsing. As EVM performs parsing breadth

first, quite a few parse paths get discarded. Consider parsing expression 2 +

3 ∗ 4. Upon parsing the 2 + 3 portion of the input, a complete addition node

would be constructed and stored within reductions entry of S1. However, this

node would be never used, as eventually the remainder of input would be parsed

and two additional nodes would be constructed (one for 3∗4 and one for the whole
expression). The problem here is twofold: highly speculative nature of EVM and

too eager construction of the resulting nodes. The problem becomes even more

significant when using more ”heavy” nodes that contain fields that are meant to

be used during later stages of compilation, source ranges for error reporting and

other information. In that case both the memory usage of unused nodes and the

time it takes to construct them may become a significant performance drain of

overall parsing process.

As such, it would be useful, if node construction could be delayed only until the

parser is sure that the node won’t be discarded.

63

rule arg_list
parse (a0:arg ("," a1:arg)*)?
return <arg_list a0 *a1>

end

Figure 21: Grammar rule for parsing argument list separated by commas

4.7.3 Delayed semantic actions

The arguments for delayed semantic actions

Delayed semantic actions [14] is an attempt to avoid too eager computation within non-

terminal rules that may not contribute to the parsing result in the Yakker parser [15]. In

this section we present an adaptation of delayed semantic actions for EVM.

The core idea behind delayed semantic actions is to separate parsing into two distinct

phases:

• Early and non-deterministic phase, that performs parsing and constructs an exe-

cution history.

• Late and deterministic phase, that consumes the execution history and uses it to

execute necessary semantic actions (possibly for AST construction).

Consider the example in table 12. It contains three semantic actions, whose exe-

cution can be delayed: the assignment of l variable, the assignment of r variable and

finally the construction of the AST node. In case of EVM, delaying these 3 actions

would mean that fiber’s stack in many situations would become optional thus making

fiber suspension process more efficient, as it’s no longer necessary to both allocate and

store the stacks of suspended fibers.

The advantage of delaying AST construction becomes even more apparent in the

example provided in figure 21. Both operators in EVM that provide repetition (+ and

∗) are implemented in EVM by using i_fork instruction, which makes a copy of the

current fiber with altered instruction pointer. In case that the actual argument list con-

sists of n elements, EVM will perform n forks and reductions in arg_list rule alone. As

a result, n+1 arg_list nodes will be constructed, out of which nwill be never used again

(assuming that the grammar is non-ambiguous). As such, delaying AST construction is

of vital importance in EVM.

64

Constructing execution history labels

As mentioned previously, the core idea behind delayed semantic actions is to construct

execution history composed of labels that somewhat mirrors the structure of AST, but

with one key difference: whereas the AST nodes are heavyweight and contain signifi-

cant amount of information, the individual labels are small and lightweight. Then these

labels can be replayed (either in separate late phase, or in parallel during parsing), thus

executing the semantic actions that have been previously delayed.

Several different label types are required:

• Tag label is a unary label. It stores a reference to the previous label and a general

purpose numeric value. The semantic meaning of the numeric value depends on

other nearby labels.

• Call label is a binary label that indicates a call branch. It stores a reference to the

previous label and a reference to the reduction label of the callee.

• Normal reduction label is a unary label that indicates a successful non-ambiguous

reduction. Stores a reference to the previous label and the reduction tag. Reduc-

tion tag is a value that uniquely identifies a reduction. Normal reduction label

may be mutated to ambiguous reduction label.

• Ambiguous reduction label is a binary label that indicates an ambiguous reduc-

tion. Stores two references to reduction labels, which may too be ambiguous.

• Resolved reduction label is a 0-ary label that stores the result of the reduction,

which is computed by executing corresponding delayed actions. Normal and am-

biguous reduction labels can be mutated into resolved labels after they have been

replayed. The use of resolved labels avoids replaying the same reduction labels

several times.

• Nil label is a 0-ary label that terminates tag or call label chain.

• Range label is a unary label that that holds a source range. Used when parsing

language tokens to hold starting and ending position of a token, thus avoiding the

need for two separate tag labels.

To facilitate the construction of labels, a definition of a Fiber is extended to include

a current label label. General purpose stack is not used for holding labels, as the fiber’s

stack is a variably sized structure, thus requiring separate allocation.

65

Furthermore, additional instructions and existing instruction changes are required:

• i_trace tag constructs a new tag label 〈label, tag〉 and sets the label of the current
fiber to the newly constructed one. This instruction is used to delay execution of

statements and expressions within rule definition.

• i_trace_offset sets label to 〈label,o f f set〉. It it used to capture the current
parsing location so it may be used when replaying labels.

• i_trace_range sets label to 〈label,origin,o f f set〉. It it used to capture the input
range of the current non-terminal so it may be used when replaying labels.

• i_reduceA and i_reduce_rA now construct a normal reduction label l1 = 〈label,A〉.
Then this label is registered by checking if the new reduction is ambiguous. In

case that this is true, then existing reduction label l0 is duplicated and a new am-

biguous label 〈l0, l1〉 is constructed in place of the old one.

• i_match_sym, i_match_dyn, i_reduce and i_reduce_r now construct a call label

when resuming suspended fibers.

All newly constructed fibers (usually with i_call* family of instructions) are ini-

tialized with nil label.

Compilation of grammars that use delayed semantic ac-

tions

The rules for compiling grammars with delayed semantic actions are provided in table

13.

A fully capturing parse statement is a parse statement that contains a single cap-

turing grammar expression that captures the entire input of a non-terminal symbol. It

is meant to be used in language token definitions. A fully capturing parse statement is

an optimized variation of the original parse statement. If a rule contains a single parse

statement and the grammar expression of that statement is a capturing one, then the

original parse statement may be substituted with a fully capturing one. This is an im-

portant optimization for parsing tokens, as it avoids the need for processing. In other

words, the i_trace_range instruction when compiling the statement is only added as a

suffix. This becomes especially important when using i_trace_range in conjunction

with subset construction optimization.

66

Table 13: Rules for compiling grammars with delayed semantic actions

Element name Grammar element Instruction sequence

Fully capturing parse statement parse r@grammar_expr
code(grammar_expr)
i_trace_range

Delayed return statement return expr
i_reduce_r sym, 0
i_stop

Capturing grammar expression v@e
i_trace_offset

code(e)
i_trace_offset

Capturing non-terminal

grammar expression
v : E

code(E)
i_trace labelnext

labelnext in table 13 refers to the next label index. Labels in capturing non-terminal

grammar expressions are indexed from 100 to differentiate them from the ones gen-

erated with i_trace_offset instruction. These labels are referred to as action labels

as they refer to a delayed action (in this case, assignment of a variable). Action labels

are specifically defined to be locally, but not globally unique. That means that in every

non-terminal rule action labels are numbered from 100. This further aids when perform-

ing instruction subset constructions, as i_trace instructions with the same tag may be

merged together.

Replaying labels

Execution history labels are created within EVM, often by using specialized label cre-

ation instructions. However, they can be replayed outside of EVM, possibly in the host

environment. This reduces AST construction difficulty, as native data structures and

method/function calls may be used to construct the AST.

When the EVM completes parsing, the reduction label of starting symbol may be

found in reductions entry of state S1, whose length matches the total length of the input.

This label is the result of parsing and can be used independently of EVM to perform

semantic action playback.

The label playback process consists of several steps:

1. Collection. During the collection step, labels for a single non-terminal symbol are

collected into an array (essentially flattening a linked list of labels into array). The

first label in the resulting array is always the normal (non-ambiguous) reduction

label that contains the unique reduction tag. The rest of the labels are added to

67

the array in the order they were constructed. Call labels are added to the resulting

array without traversing the callee labels.

2. Replay function selection. Once the label sequence is collected, the replay func-

tion based on the non-terminal symbol tag is selected. Every non-terminal rule

has a corresponding replay function that can be used to replay labels for that non-

terminal rule.

3. Execution. The appropriate replay function is invoked. Within it’s body, the

necessary local variables are initialized and label array is iterated over and the

corresponding semantic action for each label is executed. This step may invoke

label playback recursively when resolving call labels.

4. Disambiguation. If the original reduction label was ambiguous, then disam-

biguation function is invoked, which has to produce a single value from all pos-

sible alternatives. When constructing SPPFs, the result of disambiguation step is

a SPPF node that combines all possible alternatives.

5. Resolution. The original reduction label is replaced with a resolved label that

stores the result of the playback.

Depending on the current label, a different action is performed during the resolution

step:

• For call labels, the label playback process is invoked recursively. The resulting

resolved label is recorded as the previous label.

• For range labels, the label is only recorded as the previous label.

• For tag labels, the appropriate semantic action is executed based on the numeric

value of the tag.

• Other labels may not be encountered in a properly constructed execution history

during the execution step.

The grammar rule example provided in table 12 can now be compiled into a different

instruction sequence, shown in table 14, when delayed semantic actions are used.

The replay function for the rule, implemented in Ruby programming language is

shown in fig. 22. The method each_action iterates over the collected labels (starting

from the 2nd label). prev_result accesses the resolved value of the previous resolved

68

Table 14: Grammar rule and the corresponding instruction sequence for binary addition

when delayed semantic actions are used

Grammar rule Instruction sequence

rule expr[10]
parse l:*expr "+" r:expr
return <add l r>

end

60: i_call_dyn "expr", 10
61: i_match_dyn_r "expr", 10
62: i_trace 100
63: i_match_char '+' -> 64
64: i_call_dyn "expr", 11
65: i_match_dyn_r "expr", 11
66: i_trace 101
67: i_reduce_r "expr", 0
68: i_stop

def action_expr(replay)
l = nil
r = nil
each_action(replay) do |action_id|
case action_id
when 100
l = prev_result

when 101
r = prev_result

end
end
return create_add_node(l, r)

end

Figure 22: The replay function for binary addition in Ruby programming language

label. create_add_node is a user defined method that constructs the binary addition

AST node. It is important to note, that the replay function can be implemented in any

language and it is not in any way bound just to Ruby programming language. For ex-

ample, the same replay function can be implemented in C programming language, as

shown in fig. 23.

4.8 Parsing reflective grammars

One of the key reasons for choosing Earley parser as basis for constructing the parsing

method for a REP language is its flexibility and limited need for grammar preprocessing.

In this chapter we describe how EVM can be extended to support adaptable grammars.

The approach for implementing adaptable grammar support in EVM is inspired by [27].

69

void action_expr(replay_t* replay) {
node_t* l = NULL;
node_t* r = NULL;
REPLAY_ITERATE(label, replay) {
switch (label_action_id(label)) {
case 100:
l = (node_t*) replay_prev_result(replay);
break;

case 101:
r = (node_t*) replay_prev_result(replay);
break;

}
}
return create_add_node(l, r);

}

Figure 23: The replay function for binary addition in C programming language

4.8.1 Dynamic grammar composition

Because EVM is primarily a scannerless parser, dynamic syntactic extension can be

achieved by dynamically loading additional grammars during the parsing process. EVM

grammars are composed out of grammar rules, so dynamic syntactic extension would

consist of extending the active set of grammar rules.

The current version of EVM is fairly dynamic: non-terminal symbols are invoked

via i_call_dyn instruction, which spawns possibly several fibers to parse the target non-

terminal. The successful completion of a non-terminal is detected by a corresponding

i_match_dyn instruction. There is no reason why the list of active grammar rules used

by these instructions has to be static. By adding additional instructions that manipulate

this list it would be possible to dynamically extend or constrain the active language that

is begin parsed.

Unfortunately, a single global list of active grammar rules is insufficient to correctly

parse any context-free grammar, as the statement for grammar rule activation may be

ambiguous. Which means that in such situation a parser must be able to parse the same

input with two separate sets of grammar rules: one in case the the recognised state-

ment meant activation of new grammar rules and another if that was just an ordinary

statement. Therefore, the active list of grammar rules has to be bound to a specific fiber.

To avoid having to make multiple copies of the active grammar rules, the target

language can be divided into domains. A domain is a part of a grammar. Each grammar

rule is assigned a set of domains. Each fiber has a set of active domains. If the set of

rule domains is a subset of fibers active domains, then that grammar rule is considered

70

to be active within the context of the domain. By manipulating the set of active domains

it is possible to dynamically extend and constrain the current language.

Additionally, this method of grammar division and domain activation can be used

to eliminate certain flaws present in traditional parsers: for example, there is no rea-

son why break should be a reserved keyword in C programming language. Because

break keyword is meaningless outside of loop and switch constructs, it should only be

recognised as a keyword inside of bodies of such constructs. However, due to lexer and

parser limitations that is not the case. However, by using EVM it would become possi-

ble to dynamically activate the rule for break keyword only inside a looping construct

body. Similarly, the return keyword (and the grammar rule for it) could be activated

only within a function body and so on.

4.8.2 Extensions of EVM grammar language

To enable domainmanipulationwithin EVM, additional grammar elements are required.

They are listed in table 15:

• Domain definitions are used to create new domains within a grammar.

• Domain annotations for grammar rules allow specifying the domain set under

which the grammar rule should be considered active. If the domain annotation is

not provided, then the rule is considered to be always active.

• Domain activation statements are used to temporarily activate new domains. If

there there are parse statements within domain activation body, then the active

domain set is inherited by the callees.

Example of a simplified grammar that uses domains to enable break statement only

within the body of a loop statement is provided in fig. 24.

By adding every rule of a language extension to a specific domain, it is possible to

enable or disable the entire language extension with a single statement.

4.8.3 Compiling EVM grammars with domains

The most complex operation in EVM regarding domains is new domain activation. It

is not enough just to add a simple instruction pair to enable and disable new domains:

with_domains statements may be nested recursively, as such repeated domain activa-

tions should not affect the active domain set. Similarly, upon leaving thewith_domains

71

Table 15: Additional grammar language elements to support reflective grammars

Element name Element syntax

Domain definition domain dom1

Grammar rule with domain annotation

@domains dom1 dom2 dom3
rule name
stmt1
...
stmtN

end

Domain activation statement

with_domains dom1 dom2 dom3
stmt1
...
stmtN

end

domain loop

@domains loop
rule statement
parse "break"

end

rule while_loop
parse "while" expr
with_domains loop
parse statement+

end
parse "end"

end

Figure 24: Example domain usage

block, the only those domains should be disabled, which have been previously enabled

within the same block.

Therefore, the following new instructions are required to enable domain support in

EVM:

• i_dom_push_active pushes the active domain set to the stack of the current fiber.

• i_dom_enable dom enables the domain dom by adding it to the active domain

set.

• i_dom_enable_dyn pops the target domain from the stack and enables it by adding

the domain to the active domain set.

• i_dom_disable dom disables the domain dom by removing it from the active

domain set.

72

Table 16: Rule for compiling domain activation statement

Element name Grammar element Instruction sequence

Domain activation

statement

with_domains dom1 ... domn
body

end

i_dom_push_active

i_dom_enable dom1
...

i_dom_enable domn
code(body)
i_dom_restore stack_slotdom

• i_dom_restore n restores the active domain set by retrieving it from stack slot n

of the current fiber.

These instructions can be used to compile thewith_domains statement, as shown in

table 16. stack_slotdom refers to the stack slot that contains the previous active domain

set pushed by i_dom_push.

4.8.4 Loading multiple grammar modules in EVM

Whenever using EVM to parse a language, the base variant of that language most likely

will be contained in a single compiled grammar module that will be loaded into EVM

during EVM initialization. Language extensions then could be contained in separate

grammar modules that can be both generated and loaded dynamically during parsing.

Loading multiple grammar modules in EVM is not trivial, as each grammar mod-

ule has it’s own address space. To support multiple address spaces within EVM the

instruction pointer can be extended to include the module index. That way each in-

struction pointer in EVM that is store internally (for example, the ip of a fiber) is a

pair 〈idmod, ip〉, where idmod is the module index and ip is relative instruction pointer to

the start of the module. All existing instructions would use relative instruction pointers

(such as i_fork, i_match_char, etc).

In practise, for performance reasons several bits of instruction pointer can be re-

served for storing the module index. That way the instruction pointer could remain

word-sized.

Additionally, all the grammar rules of any language extension should belong to a

corresponding extension domain. That way language extensions could be enabled dy-

namically only for desired scopes with i_dom_enable_dyn instruction.

Additional instructions that work with absolute instruction pointers may be added

in future if necessary for performance reasons.

73

4.8.5 Parsing reflective grammars in EVM

Themechanisms described in this chapter can be used to implement adaptable/reflective

grammars by applying the following steps:

1. Define the base language. During this step grammar for the base programming

language should be defined. This could be an existing programming language

(such as C) or entirely new one.

2. Define the extension metalanguage within the base language. EVM does not pro-

vide a specific extension metalanguage, as the extension metalanguage should be

defined to match the syntax of the base language (however, the extension meta-

language could be designed to be similar to the EVM grammar language). The

extension metalanguage should include extension activation construct for activat-

ing defined language extensions.

3. Implement compilation of metalanguage language extension node into a gram-

mar module as described in this chapter. If the extension language matches EVM

grammar language, then the rules for compiling EVM grammar language ele-

ments can be used directly to implement this compilation step.

4. Implement the extension activation construct by adding a foreign call, which

would lookup the target extension grammar module in host environment. Af-

ter finding the target grammar module, it should be loaded into EVM. The for-

eign call should return the domain index for the extension. The domain of the

extension then can be activated with i_dom_enable_dyn instruction within the

extension activation construct. At this point EVM becomes capable of parsing

constructs defined in the previously specified extension.

4.9 EVM performance improvements

In this chapter we describe several EVM optimizations that significantly increase the

overall parsing performance (both in term of CPU time and memory usage).

4.9.1 Garbage collection of suspended fibers

EVMcurrently creates a state for every input positionwhere other non-terminal rules are

invoked with i_call instruction family. This state information is then used to record

74

execution trace, to store reduction information and the most importantly to park sus-

pended fibers so they may be resumed later. All this information over time adds to

a significant amount. However, not all of it is needed for further parsing. There are

several important observations to make:

• Most states and fibers after suspension will be never needed during parse again.

As such, some states that are unnecessary, together with the suspended fibers they

contain, may be discarded before the parsing process completes.

• The only the reduction instructions access variables from previous states.

• State index sid of a fiber is always equal or higher to the lowest value sid in the

fiber queue. In other words, new fibers are always created with monotonically

increasing state indices.

Based on these observations, the following optimizations can be made:

• Execution trace sets may be discarded from states with indices from interval

[1,sidmin), where sidmin is the lowest state index in fiber queue Q. These sets

are only needed in states where new fibers may be created to avoid creating du-

plicate fibers. Because new fibers are created with monotonically increasing state

indices, the sets are no longer needed.

• Unreachable states with indices [2,sidmin) may be discarded completely.

Astatewith index sid is reachable if there exists a fiber (either running or suspended)

with origin state index origin equal to sid. As such, mark-and-sweep garbage collector

may be employed to identify reachable and unreachable states.

Such garbage collector will discard all states with the fibers they contain that are

not part of any parse rule/active reduction that can be traced back to the starting non-

terminal symbol. To reduce the garbage collector’s performance impact to the parsing

process, the garbage collector could be run every n parsed terminal symbols.

4.10 Eliminating dynamic non-terminal call indirection

Rules for parsing non-terminals in EVM are invoked with i_call_dyn and then are

matched with i_match_dyn instruction. However, both of these instructions perform

significant amount of redundant work:

75

• The list of candidate rules is fetched from rule_map map.

• The candidate rules are filtered based on current active domain set.

• The candidate rules are filtered based on minimum rule precedence.

If the active domain set for a specific call is known during compile time, then the

instruction pointers for target rule entry points and reduction tags can be computed dur-

ing compile time. As such, it becomes no longer necessary to perform dynamic rule

lookup and filtering during parse time. Therefore dynamic instructions i_call_dyn and

i_match_dyn can be replaced into corresponding static ones: i_call and i_match_sym.

i_call iptarget , n is a new instruction that invokes non-terminal rule with entry point

iptarget and n arguments.

4.10.1 On-demand instruction subset construction

Importance of subset construction

EVM is based on Earley parser and therefore inherits some of it’s flaws. One of the main

reasons why Earley parser in it’s original form is not used for parsing programming

languages is it’s inefficiency.

One of themore common tasks of parsing programming languages is parsing expres-

sions. Even older programming languages (such as C++) have huge operator hierarchies

with many precedence levels. For example, C++ language has:

• 12 arithmetic operators.

• 6 comparison operators.

• 3 logical operators.

• 6 bitwise operators.

• 10 compound operators.

• 7 member and pointer operators.

That’s a total of 44 distinct operators. This list does not include around 20 more

operators that are more difficult to classify. This means, that if EVM was used to im-

plement a C++ parser and if every operator was defined in a separate rule, every time

76

an expression could be encountered, EVM would create around 50 fibers to parse a

single expression. Roughly a quarter of these expressions are prefix operators, so cor-

responding fibers would be discarded as soon as the first character was parsed. The

remaining fibers would be suspended to parse the first operands of unary (postfix) and

binary operators. After completing that operand and parsing the character(s) that repre-

sent the binary operator (such as +, -, *, etc), all but one of the remaining fibers would

be discarded.

This is a huge issue that prevents usage of EVM for any practical application. 50

fiber creations, 35 suspensions, additional 35 fiber creations after resuming the sus-

pended fibers just to parse a single binary expression. This problem also affects the

original Earley parser. To combat this inefficiency, an efficient variation of Earley parser

has been produced.

The way EVM currently operates can be similar to a non-deterministic finite au-

tomaton: just like a NFA can be in multiple states at the same time, so does EVM can

execute multiple fibers at the same time. But it is well known that any NFA can be

converted into DFA by applying the process known as subset construction. The Faster

Earley Parser [19] or Efficient Earley Parser with Regular Right-hand Sides [13] are

both based on this algorithm. By applying such parsing algorithms to parse C++, it

would no longer take 50 distinct fibers (or items in Earley parser case) to parse a single

expression: all 50 grammar rules could me merged into 1 optimized rule.

Because EVM is unique that it uses instruction sequences to represent grammars,

the traditional subset construction or their modifications for Earley parser cannot be ap-

plied directly to EVM. Furthermore, EVM is capable of loading and enabling additional

grammars during parsing, therefore subset construction needs to applied on-demand for

only those grammar rules that are about to be used for parsing. As such, specialized sub-

set construction algorithm for EVM grammar modules that supports all existing features

of EVM needs to be created.

Instruction ε-closures

The first step of subset construction is computation of an ε-closure. ε-closure in au-

tomata theory is a set of states in NFA reachable from initial state by ε transitions. The

ε-closure always includes the initial state as well.

Similarly, in EVMwe can define instruction ε-closure as a set of instruction pointer

and active domain set pairs, which are reachable from initial instruction pointer with

77

initial activate domain set by executing only unordered instructions.

unordered instructions are instructions whose order of execution doesn’t affect the

outcome of computation (or parsing). For example, i_call and i_fork are unordered

instructions, because a block of such instructions can be executed in any order without

affecting the result.

For efficiency reasons, i_dom_enable is considered to be partially unordered. By

including this instruction into the set of unordered instructions, it can be optimized away

completely by tracking the changes of current active domain set. This way the overhead

of being able to parse adaptable grammars can be mostly eliminated (adaptable gram-

mars still need to compiled into grammar modules and then loaded into EVM).

Instruction closure computation begins with a set of initial domain addresses. A

domain address is an instruction pointer and active domain set pair. All of the initial

domain addresses are placed into a queue. Then appropriate actions are executed for

each element of the queue based on the instruction which is referenced by instruction

pointer of the current element.

There are two possible actions:

• continue da action adds the domain address da to the queue if it’s not already

present.

• relevant da action adds the domain address da to the resulting instruction closure

set.

The actions to be executed for each instruction are provided in table 17. ip and ads

refer to instruction pointer and active domain set of the current entry correspondingly.

entries(A,ads) refers to the set of rule entry points for non-terminalAwith current active

domain set ads.

Merging instruction ε-closures

The goal of merging instruction ε-closures is twofold: merger of similar instructions

to avoid duplicate computation and elimination of dynamic elements that can reduce

parsing performance.

Because of the second goal, dynamic instructions like i_call_dyn and i_match_dyn

are replaced with their static counterparts. In general, all instructions are merged based

on instruction merger key. If two instructions share the same instruction merger key

78

Table 17: Rules for computing instruction closures

Instruction Action

i_br target continue 〈target,ads〉

i_call target, n

If call visitation is disabled:

relevant 〈ip,ads〉
continue 〈ip+1,ads〉

If call visitation is enabled:

continue 〈target,ads〉
continue 〈ip+1,ads〉

i_call_dyn A, n

If call visitation is disabled:

relevant 〈ip,ads〉
continue 〈ip+1,ads〉

If call visitation is enabled:

continue 〈target,ads〉,∀target ∈ entries(A,ads)
continue 〈ip+1,ads〉

i_dom_disable dom continue 〈ip+1,ads\dom〉
i_dom_enable dom continue 〈ip+1,ads∪dom〉

i_fork target
continue 〈target,ads〉
continue 〈ip+1,ads〉

i_reduce A, n
relevant 〈ip,ads〉
continue 〈ip+1,ads〉

i_stop

All others relevant 〈ip,ads〉

Table 18: Rules for computing instruction merger keys

Instruction Merger key

i_call target, n 〈”call”,n〉
i_call_dyn A, n 〈”call”,n〉
i_match_chars table 〈”match_chars”〉
i_match_dyn A, precmin 〈”match_syms”〉
i_match_syms table 〈”match_syms”〉
i_reduce A, prio 〈”reduce”,A〉
i_reduce_r A, prio 〈”reduce_r”,A〉
All others:

instr arg1, ...,argn
〈instr,arg1, ...,argn〉

then they can be merged into a single instruction. The instruction merger keys can be

derived from rules provided in table 18.

Once the merger keys have been computed for all instructions in the ε-closure, sim-

ilar instructions can be merged. Each type of instructions is merged differently:

79

• i_match_chars table instructions are merged by merging their jumptables: tran-

sitions that share the same character are merged by computing their ε-closure and

optimizing it. The resulting instruction is a i_match_chars.

• i_match_dyn and i_match_syms instructions aremerged into a single i_match_syms.

Themerger process works similarly to themerger of i_match_chars: instructions

are merged by merging their jumptables. In case of i_match_dyn (which has no

jumptable argument), jumptables are computed based on i_match_dyn operands

and active domain set. Then transitions that share the same non-terminal symbol

are merged by computing their ε-closure and optimizing it.

• i_call and i_call_dyn are merged into a single i_call_opt or a i_call in-

struction. This is done by computing ε-closure of entry points of the target non-

terminal. If optimized instruction sequence for resulting ε-closure already exists,

then a direct call with i_call to that instruction sequence is generated. Oth-

erwise i_call_opt closure is generated. closure refers to the target ε-closure.

This instruction is used to avoid subset construction of the entire grammar mod-

ule. Only upon executing i_call_opt the optimized (subset constructed) version

for the closure is generated, thus making instruction subset construction process

only run on-demand.

• i_reduce A instructions are merged simply based on reduction non-terminal into

a single i_reduce instruction. This way duplicate reductions with the same non-

terminal get eliminated.

Other instructions are merged by adding them to instruction blocks and merging

matching prefixes of these blocks. Instruction block is a sequence of instructions that

terminates with a terminator instruction. All control transfer instructions are block ter-

minator instructions. That includes instructions like i_br, i_match_chars, i_match_syms,

etc. This is necessary, because many EVM instructions are executed sequentially and

have no way to transfer control to arbitrary position.

Once instructions are merged, they can be outputted to a target grammar module.

Resulting instructions are outputted in a specific order:

1. Unordered instructions: i_call and i_reduce.

2. n−1 i_fork instructions for the following n ordered instructions.

3. n ordered instructions.

80

Table 19: Subset construction example

Source grammar Compiled grammar Optimized grammar

rule A[0]
parse A "+" *A

end

rule A[5]
parse A "*" *A

end

rule A[10]
parse "b"

end

10: i_call_dyn "A", 1
11: i_match_dyn "A", 1
12: i_match_char '+' -> 13
13: i_call_dyn "A", 0
14: i_match_dyn "A", 0
15: i_reduce "A0", 0
16: i_stop

20: i_call_dyn "A", 6
21: i_match_dyn "A", 6
22: i_match_char '+' -> 23
23: i_call_dyn "A", 5
24: i_match_dyn "A", 5
25: i_reduce "A1", 0
26: i_stop

30: i_match_char '+' -> 31
31: i_reduce "A2", 0
32: i_stop

01: i_call 30
03: i_fork 25
05: i_match_syms "A1" -> 7,
"A2" -> 16

07: i_match_chars '+' -> 9
09: i_call 38
11: i_match_syms "A0" -> 13,
"A1" -> 13, "A2" -> 13

13: i_reduce "A0"
15: i_stop
16: i_match_chars '*' -> 18,
'+' -> 9

18: i_call 30
20: i_match_syms "A1" -> 22,
"A2" -> 22

22: i_reduce "A1"
24: i_stop
25: i_match_chars 'b' -> 27
27: i_reduce "A2"
29: i_stop
30: i_fork 36
32: i_match_syms "A2" -> 34
34: i_match_chars '*' -> 18
36: i_match_chars 'b' -> 27
38: i_fork 42
40: i_match_syms "A1" -> 7,
"A2" -> 16

42: i_match_chars 'b' -> 27

4. i_stop instruction if n = 0.

An example of optimized (subset constructed) instruction sequence is provided in

table 19. The resulting instruction sequence is longer, however it is more deterministic.

For example, it can be seen at offset 16 of optimized instruction sequence, that prefixes

for addition and multiplication have been merged successfully and that it will take a sin-

gle instruction at offset 16 to match the binary operator, at which point parsing diverges

based on matched operator.

4.11 Conclusions

In this chapter we have presented Earley Virtual Machines: a virtual machine-based and

Earley parser inspired parsing method that:

• Can parse arbitrary context-free grammars.

81

• Supports regular right hand sides in production rules.

• Supports regular lookahead.

• Supports adaptive grammars by dynamically loading end enabling new grammars

during parsing.

• Provides multiple means for abstract syntax tree construction.

• Supports data-dependant constraints.

• Supports subset construction optimization that can be used to increase determin-

ism and reduce number of dynamic elements executed during parsing.

All of these EVM features provide sufficient means for implementing a parser for a

REP language.

82

5 Implementation of Scannerless EVM

5.1 Scannerless EVM

5.1.1 Flaws of the original EVM

Each parser implementation has several major characteristics by which these parsing

methods can be compared:

• Recognized grammar class. Different parsing methods can recognize different

classes of input languages. For example, LR(0) parsers can only recognize LR(0)

grammars. More generalized methods, such as GLR [28] can recognize wider

class of input languages (all context-free languages in the case of GLR). However,

even then it is possible that such parsing method may not be able to recognize all

programming languages used in practise, as not all programming languages are

context-free languages. The size of recognized grammar class determines how

many real-world computer languages can be recognized by this parser.

• Expressiveness of grammar language. Parser development typically starts with

creation of target language grammar. This grammar is written in a specific gram-

mar description language, which is then read by parser or parser generator, which

then is responsible for generating and/or configuring the parser so it then can rec-

ognize the target language. These grammar description languages often provide

additional features beyond just production rules to express the target grammar in

a more clear and concise fashion. For example, the bison parser generator sup-

ports operator precedence declarations, which provide a more clear and compact

way to describe operator precedence. The existence of such operator precedence

declarations does not allow to parse additional languages, but merely allows to

express the already recognizable languages in a more intentional fashion. As a

result, the greater expressiveness of the grammar language makes development

83

of new grammars easier.

• Performance. The performance of the parsing method and it’s implementation is

one of the primary factors determining whether or not such parser is suitable for

parsing real-world computer languages. Generalized parsing methods have ex-

isted for decades, however even today they are not widely used due to their lack-

lustre performance. The same is even more true for scannerless parsing methods,

as not a single scannerless parser is used to parse any high-profile programming

language (both gcc, clang and Lua use hand-written recursive descent parsers

[5], MRI Ruby implementation uses LALR(1) bison, CPython uses a custom

bottom-up tokenizer and parser combination, etc).

• Support for scannerless parsing determines whether on not two grammars can

be effortlessly combined. If two grammars can be combined during parser’s run-

time, then such parser can be used to parse extensible languages. Additionally,

scannerless parsers must provide additional features to eliminate character-level

ambiguity.

• Error correction. Any parser used in practise should be able to provide informa-

tive feedback when a parsing error occurs, so the user of such parser may be able

to correct the errors in the parser’s input. The more descriptive and informative

error messages are, the less time the user needs to spend figuring out why the

error occurred and how to fix it.

The original EVM and it’s prototype implementation have several flaws that need

to be rectified before a proper comparison of EVM with other parsing methods can be

made:

• The original research prototype for EVMwas implemented in Ruby programming

language. Because Ruby is interpreted, any parser with written in this language

will be orders of magnitude slower due to the overhead of the interpreter. As

such a new EVM implementation is needed, if the performance of EVM is to be

compared to other parsing methods.

• While EVM was created with scannerless parsing in mind, there is still one key

issue that will severely limit the performance of EVM, even if EVM was im-

plemented in a non-interpreted language: during parsing EVM creates a state

for each terminal input symbol. This means that to parse input of length n,

84

n∗size_o f (State) bytes ofmemory is needed just to represent parser states. These

states will then contain additional dynamically allocating structures, such as the

list of suspended tasks, reductions and the trace.

• Because EVM is a scannerless parser, there needs to be a way to disambiguate

identifiers from keywords in languages that have such grammar elements. Fur-

thermore, there needs to be a way to disambiguate operators that consist of more

than one character (for example, logical operator && in C may be incorrectly in-

terpreted as a pair of & operators). While this disambiguation can be performed

post-parse by eliminating invalid parse paths in resulting parse forest [31], both

ambiguous parsing and invalid parse elimination would incur additional perfor-

mance costs. As such, simple character-level ambiguities should be resolved as

early as possible during parsing to avoid ”useless” work that yields invalid parse

trees.

• Trace simplification. In current EVM version, EVM records previous parse po-

sitions in a set called trace. This trace contains a complete snapshots of fiber

states at various positions during parsing. It is important to notice that because of

this there is significant overlap of information that is stored trace and the list of

suspended tasks and the list of reductions in each state.

5.1.2 Overview of the internal structure of SEVM

In this section we provide a description of the internal structure of Scannerless EVM

(SEVM). SEVM is a further modification of EVM that attempts to improve the perfor-

mance of EVM and extend the parser enough for it to be able to recognize real-world

computer languages.

SEVM consists of the following primary components:

• Grammar compiler translates textual representation of input grammar tomedium-

level intermediate language (or MIR for short). It also detects any syntax or se-

mantic errors of the input grammar.

• Optimizer is responsible for merging grammar rules in MIR form. Optimizer

takes a list of grammar rules to be merged in MIR form and produces combined

MIR which implements all of the merged grammar rules, but with their prefixes

merged.

85

• Resolver is responsible for invoking optimizer and translating the resulting MIR

into machine-code.

• Runtime is responsible for coordinating the execution of parser.

SEVM consists of the following data structures:

• MIR tree is an abstract syntax tree of intermediate language representation. This

is intermediate representation of SEVM grammars.

• Chart is the primary data structure of parser runtime. It closely corresponds to

EVM state list. Chart is a sparse index map from input positions to chart entries.

• Chart entry stores all the information about parsing progress at a specific in-

put position. Each chart entry contains the following: reduction list reductions,

list of suspended tasks suspended, list of currently active tasks running, activity

indicator queued.

• Reduction contains information about a single reduction: kind, reduce_id, length,

tree_id. Reduction kind determines if the current reduction is an accept or reject

reduction. This information is used to implement negative reductions. Reduction

index reduce_id determines the non-terminal symbol associated with the reduc-

tion. Reduction length indicates the reduction length in bytes. Finally, tree_id

stores the index of the resulting parse node.

• Task directly corresponds to fiber in the original EVM. Each task is responsi-

ble for parsing one or more non-terminal symbols. A task contains at least the

following: state_id, origin, position, tree_id, grammar_id. Semantically a task

can be viewed as a function closure in other programming languages. state_id

determines the current state of the task: this value is used to implement task sus-

pension and resumption. origin is the index of the chart entry in which this tasks

was initially created. In other words, it represents the starting position of the non-

terminal that this task will parse. position indicates the current parsing position.

It is an offset from beginning of the parse input. tree_id is the node index of the

partially constructed parse-tree so far. grammar_id stores the active grammar

index.

• Suspended task represents a task that was suspended and is awaiting for success-

ful completion of child task. Tasks get suspended when calling other tasks/non-

terminal symbols and resumed when these children tasks complete successfully

86

with reductions. Each suspended task contains: task, resumes, pos_match, neg_match.

A task is a copy of suspended task data. resumes records the occurrences each

time this specific tasks is resumed. pos_match represents positive match con-

ditions for resuming this task. neg_match represents negative match conditions

for resuming this task. Both pos_match and neg_match are referred as match

specifiers.

• Resume stores information about a single occurrence of task resumption: the

index of reduction that woke the task (reduce_id), the length of that reduction,

and parse-tree node index that was appended to the newly awakened task. This

information is used to eliminate some duplicate parse paths that may lead to ex-

ponential complexity. See chapter 5.5 for more about eliminating exponential

complexity.

• Match specifier is a map from match_id and precedence interval to state_id.

When a reduction occurs at a position pos with reduction index reduce_id and

precedence prec, then all suspended tasks in chart entry with position pos, whose

match_id matches reduce_id are resumed in state state_id. In other words, match

specifier stores the conditions when to resume a suspended task (when awaited

reduction happens) and what to do when the resumption occurs (move the tasks

into provided state_id).

• Reduce index represents a non-terminal symbol. Each non-abstract rule has a

unique reduction index. Reduction indices are used only when performing re-

ductions.

• Match index also represents a non-terminal symbol, but these indices are used on

caller side. This separation of reduction and match indices allows to dynamically

add new grammar rules, as multiple reduction indices can be matched against a

single match index.

• Call specifier represents a set or grammar rules that are meant to be invoked

during parsing. Optimizer uses call specifier and the grammar MIR as inputs

to produce optimized MIR in which multiple rules are merged. Internally, call

specifier is a sequence of match_id and minimum precedence min_prec value

pairs.

87

• Grammar stores a mapping between reduce and match indices. Each grammar

has a unique index.

• Parse-tree stores the automatically constructed parse tree during parsing. Chap-

ter 5.6 details how parse trees are encoded.

• Call stack is a stack of chart indices that represents call stack of the parser.

• DFA is a data structure that encodes a deterministic finite automata, which is used

to parse non-ambiguous intervals of input languages.

5.2 Improving grammar expressiveness

In this section we present and justify several extensions to the grammar language of

SEVM.

5.2.1 Abstract grammar rules

Abstract grammar rules are new type of grammar rules that have several purposes:

• They provide an alternative way to declare production rules like Z = A|B|C.

• They provide an extension point for extending grammars. Original EVM gram-

mar language provided no grammar construct to specify extensions points: EVM

only provided low-level infrastructure needed to implement such extension points,

but provided no metalanguage at grammar level to specify such extension points.

Abstract rules may be viewed as non-terminals in form Z = A1|A2|...|An, where

Z is the name of the abstract rule and Ai are it’s members. Abstract rules in north

language can be declared with keyword rule_dyn. Upon declaration, the newly created

abstract rule is empty and new members to it can be added by annotating member rules

with part_of attribute. Additionally, part_of attribute may specify the precedence of

this rule member. The precedence value is used when the rule member directly and

recursively calls itself via abstract rule to determine if this rule should be part of the

call.

It is also important to note that a single non-abstract rule may be a member in mul-

tiple abstract rules. In other words, a single rule item may have multiple part_of at-

tributes.

88

rule_dyn expr();

#[part_of(expr, 10)]
rule expr_add() { parse (expr!, "+", expr); }

#[part_of(expr, 20)]
rule expr_mult() { parse (expr!, "*", expr); }

#[part_of(expr, 30)]
rule expr_zero() { parse "0"; }

Figure 25: Abstract grammar rule example

Fig. 25 shows an example grammar that uses an abstract grammar rule to implement

expression hierarchy, which contains + and ∗ operators with appropriate precedence.
Each abstract rule (same as a normal rule) has a uniquematch_id that may be used to

construct calls or perform non-terminalmatches. However, unlike normal rules, abstract

rules have no reduction indices reduce_id. Because of this, the resulting parse forest

contains no nodes that represent abstract rules.

When a rule is annotatedwith part_of attribute, a new entry is added to the grammar

match map that associates the match_id of abstract rule with reduce_id and precedence

value of target rule.

Compared to traditional notation A1|A2|...|An, usage of abstract syntax rules has a

number of advantages:

• Increased performance. Abstract grammar rules do not perform reductions and

are matched directly against callee match_ids.

• Each abstract rule member may have rule precedence. As such, abstract rules

provide a simpler way to specify operator hierarchies.

5.2.2 Named precedence groups

Named precedence groups is a grammar feature closely related to abstract rules. Named

precedence groups provide a way to call an abstract rule with custom precedence value.

Consider the ANSI C grammar fragment provided in fig. 26.

The expressions that have the highest precedence in ANSI C language are pri-

mary expressions. Below them are postfix expressions with slightly reduced prece-

dence. Even lower precedence have unary expressions and then cast expressions, etc.

In expression hierarchies with precedence, rules that represent expressions with lower

89

primary_expression
: IDENTIFIER
| CONSTANT
| STRING_LITERAL
| '(' expression ')'
;

postfix_expression
: primary_expression
| postfix_expression '(' ')'
| postfix_expression INC_OP
| postfix_expression DEC_OP
;

unary_expression
: postfix_expression
| INC_OP unary_expression
| DEC_OP unary_expression
| unary_operator cast_expression
;

cast_expression
: unary_expression
| '(' type_name ')' cast_expression
;

Figure 26: A simplified fragment of C99 grammar

precedence only refer to expressions with higher precedence. This, however, is not

always true: in ANSI C case, unary_expression refers to cast_expression which

has lower precedence. Similar situation can be observed in grouping expression of

primary_expression, which refers to expression, which is the top of the expression

hierarchy.

In order to be able to represent such expression hierarchies with abstract syntax

rules, there needs to be a way to name and invoke a specific level of rule hierarchy.

This is what named precedence groups are for. In essence, named precedence groups

are callable names attached to specific precedence level (value) of abstract grammar

rule.

Named precedence groups may be declared with keyword group, which is then fol-

lowed by the group name, the abstract rule name and the precedence level of that abstract

rule. If abstract rule represents a set of concrete/normal rules, then named precedence

group is a subset of that set.

The grammar fragment fig. 26 may be rewritten in north as 27. In north, ANSI

C expression is an abstract grammar rule. Different precedence levels are just named

precedence groups (primary_expression, postfix_expression, unary_expression,

90

rule_dyn expression();

group primary_expression: expression(100) {
rule identifier_expression() { parse IDENTIFIER; }
rule constant_expression() { parse CONSTANT; }
rule string_literal_expression() { parse STRING_LITERAL; }
rule grouping_expression() { parse ("(", expression!0, ")"); }

}

group postfix_expression: expression(90) {
rule call_expression() { parse (expression!, '(', ')'); }
rule inc_expression() { parse (expression!, INC_OP); }
rule dec_expression() { parse (expression!, DEC_OP); }

}

group unary_expression: expression(80) {
rule unary_inc_expression() { parse (INC_OP, expression!); }
rule unary_dec_expression() { parse (DEC_OP, expression!,); }
rule unary_op_expression() { parse (unary_operator, cast_expression);

}
}

group cast_expression: expression(70) {
rule cast_expression_() { parse ("(", type_name, ")", expression!); }

}

Figure 27: A fragment of C99 grammar rewritten in north

cast_expression).

There are several types of calls in north:

• Concrete rule calls. These are in form unary_operator, where unary_operator

refers to a concrete rule.

• Abstract rule calls (non-associative). These are in form expression, where expression

refers to abstract rule. If the call is directly recursive from callee with precedence

prec, then the same abstract rule with precedence prec+1 is invoked. If the call
is non-recursive or transitively recursive, then the abstract rule is invoked with

the minimum precedence value of 0.

• Abstract rule calls (associative). These are in form expression!. They are stat-

ically ensured to be directly recursive. If callee has precedence value prec, then

abstract rule with same precedence value prec is invoked.

• Abstract rule calls with explicit precedence value. These are in form expression

!prec, where prec is an integer value. In such calls callee precedence level (if it

exists) is ignored, and an abstract rule with precedence prec is invoked.

91

rule comment() {
parse ("/*", ANY*, "*/");

}

Figure 28: A north grammar rule for parsingANSI C multi-line comments (attempt 1)

rule comment() {
parse ("/*", (r"^*" | ("*", r"^/"))*, "*/");

}

Figure 29: A north grammar rule for parsingANSI C multi-line comments (attempt 2)

• Named precedence group calls. These are in form cast_expression, where

cast_expression refers to a named precedence group. In this case, the abstract

rule is invoked that is provided in the definition on the referenced named group

with the appropriate precedence level.

Because now it is possible to express expression hierarchies using only abstract

grammar rules (without having tomanually declare concrete grammar rules representing

different precedence levels), such hierarchies can be extended by either:

• Adding new rules to existing precedence levels with part_of attribute.

• Or, by adding entirely new levels (that may exist in-between other precedence

levels) with their respective grammar rules.

Because of this, any non-trivial alternative grammar expressionA1|A2|...|An in north

should be implemented using abstract grammar rules to maximize extensibility of the

implemented grammar.

5.2.3 Dominating terminals

Multi-line comments in ANSI C programming language start with characters /* and

terminate with */. In north such comments may be parsed with a rule shown in fig.

28. However such simple rule is not entirely correct: the comment terminator */ will

be ambiguously matched both as comment terminator and as comment body, forking

the rest of the input into two distinct path: one where comment never terminated, and

another where */ was interpreted as comment terminator.

To avoid this ambiguity, the rule may be redefined as shown in fig. 29. In this case

the character sequence */ is excluded from comment body by firstly allowing the com-

ment body only to contain non-* characters (r"^*"), and then requiring that character

92

rule comment() {
parse ("/*", ANY*, dom_g "*/");

}

Figure 30: A north grammar rule for parsingANSI C multi-line comments (attempt 3)

#0 CtlMatchChar '/' => #1
#1 CtlMatchChar '*' => #2
#2 CtlFork #3, #5
#3 CtlMatchClass 0..255 => #4
#4 CtlBr #2
#5 CtlMatchChar '*' => #6
#6 CtlMatchChar '/' => #7, DOM
#7 StmtReduce REDUCE_ID(:comment), NORMAL

CtlStop

Figure 31: Unoptimized MIR for the ANSI-C multi-line comment rule

* must not be followed by a slash (("*", r"^/")). Such rule correctly and unambigu-

ously parses C comments, however it’s nowhere as clear as the initial rule shown in fig.

28.

It would be ideal if there was a way to specify that the slash in the comment ter-

minator */ would take precedence over the one possibly found in comment body. This

would enable to retain the correct and non-ambiguous semantics of grammar rule of fig.

29 while keeping the simpler definition of fig. 28.

Such precedence or priority in SEVM can be specified using dominating termi-

nal symbols. In north grammars user may annotate grammar expressions with dom_g

specifier, which would cause the last characters or all descendant string grammar sub-

expressions to parsed with higher precedence. That way the grammar rule for parsing

C comments may be rewritten to the one shown in fig. 30.

The two primary reasons for implementing dominating terminals is that they can

be simplify the definition of various grammar rules without any reduction of parsing

performance: such behaviour may be implemented statically in SEVM optimizer. The

rule shown in fig. 30 may be translated to unoptimized MIR graph shown in fig. 31.

Then this MIR would be optimized via subset construction, during which the fol-

lowing ε-closures would be constructed: [#0], [#1], [#3, #5], [#3, #5, #6], [#3,

#5, #7].

The most important closure of the set is the [#3, #5, #7], because that’s where

ambiguity occurs. It is important to note this closure is constructed as the successor of

[#3, #5] which is reachable via character /.

Bymodifying SEVMoptimizer’s implementation and annotating instruction #6with

93

domination flag DOM (that was added as a result of dom_g specifier), we may request that

all the outgoing edges from instruction #6 should take precedence over all other edges.

As a result of this change, the closure [#3, #5, #7] now becomes [#3, #5, DOM #7],

thus making it possible to simply filter the closure and retain instruction nodes only with

highest priority, which after filtering becomes [DOM #7].

Such implementation of dominating terminals is not only simple and effective, but

also enables using dominating symbols to disambiguate tokens at character-level as de-

scribed in chapter 5.3.6.

5.3 Ambiguity elimination

Even though original EVM could parse real-world programming languages, it could

not do so without ambiguities. As such, before the resulting parse-tree could be used,

it needed to be filtered by disambiguation filters [31], which would remove the parse

nodes that represent invalid parse paths. This approach causes two main issues:

• The invalid parse paths still needed to be parsed, thus potentially wasting EVM’s

performance on invalid parse paths.

• It increases the overall parser complexity, because additional code is needed to

perform ambiguity elimination at parse-tree level.

To reduce the impact of both of these issues, some of the ambiguity elimination

may be performed during parsing. This chapter details several of the techniques used

in SEVM to perform such ambiguity elimination.

5.3.1 Negative reductions

Negative reductions are an adaptation of SGLR’s reject reductions [8] for SEVM. In

Scannerless GLR family of parsers, reject reductions/productions are used to disam-

biguate reserved keywords from identifiers.

In general, negative reductions work by annotating every reduction in SEVM with

reduction kind. Reduction kind specifies, if a reduction is normal or a reject reduction.

When a new reduction occurs, as part of exponential parse complexity mitigation, the

parser runtime checks if amatching reduction happened before. If there already exists a

matching reduction then any further reduction processing (such as resuming suspended

tasks) is aborted.

94

Table 20: Reduction kind values

Reduction kind Value

REJECT 0

PREFER 1

NORMAL 2

AVOID 3

rule ident() {
reject ("if", " ", R1);
parse (r"a-zA-Z"+, " ", R1);

}

Figure 32: A grammar rule that defines an identifier followed by a space

An existing reduction A and a new reduction B are considered to match if any of the

following statements are true:

• They have the same reduce_id, reduce_kind and length:

Areduce_id = Breduce_id ∧Areduce_kind = Breduce_kind ∧Alength = Blength

• They have the same reduce_id, but the new reduction has a higher reduce_kind:

Areduce_id = Breduce_id ∧Areduce_kind < Breduce_kind

The first condition is used for identical reduction de-duplication. The 2nd condition

implements reduction priorities: if there already exists a reduction with higher priority

then the new, lower priority reduction is rejected. For this approach towork, all code that

implements higher priority reductions must to be executed first, otherwise it is possible

for lower reductions to ”slip through”. If this does indeed occur during parsing, then

such an event is called a reduction slip. Reduction slips can only happen in ill-formed

grammars with recursive negative reduction cycles.

In order to be able to compare reduction kinds, each reduction kind is assigned a

unique integer value (see table 20). Then the reduction kinds are compared by these

integer values.

From the user’s perspective, negative reductions can be defined in grammars with

reject keyword, which is then followed by a grammar expression. If this grammar

expression matches, then all subsequent reductions that happen in the same rule are

rejected.

95

#0: CtlFork #1, #5

#1: CtlMatchChar 'i' => #2
#2: CtlMatchChar 'f' => #3
#3: CtlMatchChar ' ' => #4
#4: StmtRewind 1

StmtReduce REDUCE_ID(:ident), REJECT
CtlStop

#5: CtlMatchClass 'a'..'z' => #6, 'A'..'Z' => #6
#6: CtlFork #5, #7
#7: CtlMatchChar ' ' => #8
#8: StmtRewind 1

StmtReduce REDUCE_ID(:ident), NORMAL
CtlStop

Figure 33: Unoptimized MIR for grammar rule that defines an identifier

The grammar shown in 32 defines a rule for parsing identifiers, which may be com-

posed from lower case or upper case characters followed by a space. However, if the

identifier matches the keyword if, then a negative reduction is produced, which pre-

vents any other normal identifier reductions from being added. This effectively disam-

biguates identifiers from keyword if (see fig. 33 for MIR of the same grammar rule).

By adding more complex grammar expressions to the reject statement, it is possible

to disambiguate several keywords or even more complex grammar expressions from

identifiers.

5.3.2 Strict execution ordering in SEVM runtime

EVM, much like the original Earley parser [7], performs mostly breadth-first search

(with the exception when fiber priorities were involved, which were used primarily to

implement regular look-ahead). Other than this, the rest of the execution of the parser

was unordered: i_fork instruction for creating duplicate fibers would queue the fiber

for execution, but in arbitrary order. i_call family of instructions also behaves simi-

larly: the newly created tasks are also queued in an unspecified order.

While this arbitrary execution model works well in EVM, it’s no longer suitable

for SEVM: SEVM has to ensure that the reductions with higher priority execute first to

avoid reduction slips. To that end, the entire execution model for SEVMmust be shifted

to depth-first execution:

• CtlForkB1,B2, ...,BN instruction has to ensure, that the basic blocksB1,B2, ...,BN

complete in the same order as they are given to the CtlFork instruction.

96

• StmtCall family of instructions has to ensure that the callee will begin execution

immediately after the current task completes or is suspended with CtlMatchSym.

Internally, this is implemented by a two layer stack:

1. Primary call stack stores all chart entry indices that have at least one active task.

2. Each chart entry has a secondary call stack, which ensures proper execution or-

dering in entries that have more than one active task.

When a new task is created, it is added to the top of appropriate secondary stack.

Then the index of that chart entry is added to the top of primary call stack if the index

does not already exist in the primary stack.

To avoid having to perform linear search in primary stack to check if an index al-

ready exists, each chart entry contains an indicator queued, which is set to truewhenever

the corresponding chart entry index is added to the primary call stack.

Then the algorithm for executing SEVM tasks is comprised out of the following

steps:

1. Locate the currently active chart entry by retrieving it’s chart index from the top

of the primary call stack. If the primary stack is empty, then parser terminates.

2. If the secondary stack is empty, then attempt to populate it by failing the current

entry (see chapter 5.3.3). If failing yields no new tasks, then remove the top

element from primary stack index and go to step 1.

3. Pop a task from the secondary stack stored in the current chart entry.

4. Resume the task.

5. Go to step 1.

This algorithm in essence simulates how call stacks work in traditional imperative

programming languages, but also adds an ability to execute several tasks ”in parallel”.

Because of the north grammar to MIR translation rules and the above SEVM exe-

cution algorithm, the following grammar expressions now have ordered execution:

• Members grammar expressions E1,E2, ...,En of the alternative grammar expres-

sion E1|E2|...|En now complete in the order in which they are given.

97

• Call grammar expression C, where C is a valid call target, now fully completes

(all of the possible alternative parse paths are analysed), before resuming the

caller. This happens because each call grammar expression is translated into a

pair of StmtCall and CtlMatchSym instructions. The first one queues the callee

for immediate execution and the 2nd one causes the current task (caller) to be sus-

pended, effectively yielding execution control to the callee. If the callee creates

new subtasks (for example, as a result of CtlFork or StmtCall), they are placed

on the top of the current secondary stack (if the call is left recursive) or on top of

another secondary call stack, which causes causes the currently active chart entry

to shift.

• Reject statements reject E, where E is another grammar expression now com-

plete before any subsequent statement completes. This is because reject state-

ments fork execution with CtlFork into two parse paths: the primary parse path,

which contains the code for grammar expression E and terminates with REJECT

reduction, and the secondary parse path, which contains the remainder of the cur-

rent parse rule. Because of this, it is guaranteed that the REJECT reductions will

always happen before NORMAL reductions, thus fulfilling the strict execution or-

dering requirement for negative reduction implementation.

5.3.3 Negative matches

The strict execution ordering when applied to rule calls has an additional positive side-

effect thatmay be used to implement negative non-terminalmatching: because the caller

of a grammar rule is only resumed when all of the callees and their subtasks fully com-

plete, it is possible to determine if a particular non-terminal failed to match.

In order to detect such negativematches atMIR level, match specifiers in CtlMatchSym

instruction are split into two parts: positive and negative match part. Each part lists

the conditions for resuming the suspended task. Each condition is match_id, min_prec,

state_id tuple: match_id indirectly represents a set of accepted reductions andmin_prec

specifies the minimum precedence value of those reductions and finally state_id indi-

cates task state index in which the suspended task should be resumed. The positive part

of match specifiers is used only when resuming tasks as a result of new reductions. The

negative part is used during chart entry failure.

In SEVMnegative (failed) matches are detected when selecting a task for execution:

when the secondary stack of a chart entry is empty and the runtime attempts to pop a

98

task from it, the following conclusions can be made as a result:

• That all active tasks from the current chart entry have been completed (because

the secondary stack is empty).

• That the current chart entry is active (it’s index is stored at the top of primary call

stack).

In other words, the parsing process at the current entry/position has reached a dead-

end, because all of the possible parse paths starting at CEposition have been explored

to their completion, where CE is the current chart entry. At this point during parsing

SEVM fails the current chart entry by performing the following steps:

1. The newest suspended task T from the current chart entry CE is selected.

2. If the suspended task has at least one negative match (it’s negative match specifier

is not empty), then go to next step. Otherwise discard the current suspended task,

because all of it’s subtasks have failed and then go to step 1.

3. The last entry MS of negative match specifier of task T is selected.

4. MS is matched against the list of all reductions of CE. If there is at least one

positive match, that indicates that the suspended task T was resumed at least once

and negative match cannot be performed. As a result, MS is removed from the

negative match specifier of T . Then continue to step 2, otherwise proceed to the

next step.

5. If no positive match for MS was found that means that the specific match_id with

minimum precedence min_prec failed to match at positionCEposition. As a result,

task T is resumed in state state_id by pushing a copy of T to secondary stack of

E. Further chart entry failure is aborted.

In essence, during chart entry failure, each suspended task from newest to oldest

is failed in turn: each suspended task is either discarded if no negative matches have

been detected, or resumed otherwise. The process is continued until at least one task is

resumed or all the list of suspended tasks in the current chart entry becomes empty.

It is important to note, that because of the negative matches, the order of suspended

tasks must be preserved in order for recursive negative matches to work correctly. Also,

the order of resume conditions in negative match specifiers is also important.

Negative matches in SEVM/north aren’t directly accessible to user, but they are

used to implement greedy non-terminal repetition operators.

99

5.3.4 Greedy non-terminal repetition

Greedy repetition in SEVM is accessible via parse_g statements, which are similar to

regular parse statements, but certain operations within provided grammar expression

are replaced with greedy equivalents.

Greedy non-terminal repetition is implemented by using negative matches: call rule

grammar expression R, where R is a valid call target is normally compiled as a pair of

CallRuleDyn and CtlMatchSym instructions. However, if the R grammar expression is

a descendant of parse_g and child of one of the repetition operators (?, * or +) then

the call is compiled differently: CtlMatchSym instruction now contains the the callees

match_id both in positive and negative parts of match specifier. This means that the

statement parse_g (A*, B) fully completes parsing the sequence of A non-terminals

and only when parsing A fails the control is transferred to parse B, effectively enabling

to parse greedy sequences of non-terminals.

This, however, has an undesirable side effect: becauseA andB are parsed separately,

their prefixes cannot be merged. This may potentially lower the performance of SEVM

and thus greedy non-terminal repetitions should be used sparingly to avoid interfering

with optimizer’s subset construction.

5.3.5 Strict execution ordering in SEVM optimizer

So far we described how the runtime north preserves the strict execution order that is

required to implement negative reductions and negative matches. However, ensuring

proper execution ordering just in runtime is not enough: SEVM relies heavily on it’s

optimizer, which can merge multiple grammar rules by performing a variation of subset

construction on MIR graphs (the algorithm for which is inspired by Efficient Earley

Parser [13]). In this chapter the description is given how the strict execution ordering

is preserved during optimizer’s subset construction.

This is a simplified version of subset construction algorithm used by original EVM:

1. Add the instruction pointers to be merged into a initial set SI .

2. Add this set into resolution queue Q.

3. Remove one set S0 from the Q.

4. Find ε-closure of the set S0 and store it as set S1.

100

Table 21: Rules for computing SEVM ε-closures

Instruction Action

CtlBr target VISIT target

CtlFork B1, B2, ..., BN

VISIT B1
VISIT B2
...

VISIT BN
CtlMatchChar ... RELEVANT

CtlMatchClass ... RELEVANT

CtlStop IGNORE

StmtCallRuleDyn T , min_prec
VISIT T , if the call is at origin
RELEVANT, otherwise

VISIT next

StmtReduce reduce_id, kind
RELEVANT

VISIT next
StmtRewind num RELEVANT

5. Go back to step 2 if S1 was merged already by looking up it’s entry in subset

construction cache C.

6. Store the mapping S1 to ipend into subset construction cacheC, where ipend refers

to the end of the grammar program; this is where the merge result of S1 will be

stored.

7. Merge the instructions of the set S1 and write result to ipend . This step may queue

additional elements to Q.

8. Continue until Q is empty.

Much like the original subset construction for converting NFAs to DFAs [20], the

one used for EVM uses sets to represent instruction ε-closures and a queue to control

the order of individual subset construction steps.

Because SEVMhas strict execution ordering, sets no longer suitably represent SEVM

ε-closures. Instead, ε-closure in SEVM is a sequence of unique MIR node indices.

ε-closures in SEVM optimizer are constructed recursively, essentially by simulating

function call behaviour of imperative programming languages. Because of this, it is

possible to have several distinct ε-closures with same elements, but with different or-

derings of those elements.

Rules for constructing ε-closures in SEVM are given in table 21. Whenever one of

the given instructions is encountered, the appropriate actions are executed:

101

• VISIT E recursively visits the entity E:

– If E is an instruction, then it’s visited according to the rules provided in table

21.

– If E is a basic block, then the first instruction of that basic block is visited.

– If E is a concrete rule, then the first basic block of that rule is visited.

– If E is an abstract rule, then all of it’s implementations are visited.

• IGNORE ε-closure construction.

• RELEVANT I adds instruction I to the resulting ε-closure.

Once an ε-closure is obtained, it’s instructions are merged much like in original

EVM. One key difference in SEVM subset construction is that the initial merge se-

quence may only contain other concrete rules. In other words, during SEVM subset

construction, one or more concrete rules are merged into a new rule, which remains

entirely separate from the rules constructed in previous iterations. As a result, the con-

structed and optimized rules are entirely independent and isolated from any other code.

The primary advantage of this is that the calls that start at rule origin may be partially

incorporated, thus increasing the reduction performance.

The main disadvantage is that this results in a significantly higher amount of code

generated: in original EVM generated rule suffixes were reused possibly several times

across entire grammar. In SEVM, the reuse may only happen internally within one

generated rule. In other words, if optimizer constructs merged rule for parsing A |

B and later for A | C, then no code between these two generated rules will be shared,

whereas EVMmay reuse some part of A | B, which represents a unique suffix of A in A

| C. To combat this duplication of code, matching state transition tables in deterministic

DFAs are cached and de-duplicated, as described in chapter 5.4.3.

5.3.6 Token level ambiguity elimination

An unexpected side-effect of dominating terminals implementation is that dominating

terminals can have an effect beyond just a single rule in which they are used: because the

optimizer may potentially merge multiple rules into one combined rule, a terminal from

one rule may dominate over nodes found in the other rules. Because of this, dominating

terminals may be used to disambiguate identifiers from keywords without using more

computationally expensive negative reductions.

102

rule ident() { parse (r"a-z"+, " ", R1); }
rule kw_self() { parse ("self", " ", R1); }

Figure 34: A grammar for parsing identifiers and keywords

rule ident() { parse (r"a-z"+, " ", R1); }
rule kw_self() { parse ("self", dom_g " ", R1); }

Figure 35: Amodified grammar for parsing identifiers and keywords

Consider the grammar shown in fig. 34. It defines two grammar rules: one for

parsing identifiers and another for parsing a reserved keyword self, both of which

must be followed by a space. If these non-terminals are used in a grammar expression

like ident | kw_self, then the result would be ambiguous, because both rules would

match. To resolve this ambiguity, negative reductions can be used.

Alternatively, the grammar may be modified as shown in fig. 35. In this case,

the terminating whitespace symbol (in practise an alphanumerical boundary symbol

is typically used instead) is changed to be dominating with dom_g specifier. As a re-

sult, when ident | kw_self expression is encountered, ident and kw_self rules are

merged. Subset construction continues until the terminating symbol is encountered,

at which point the lower priority (non-dominating) terminating symbol for ident is

filtered-out, allowing only kw_self reduction to occur, thus eliminating the ambiguity.

This scenario, however, only works when it is guaranteed that ident is merged with

all other keywords (in this example kw_self). Under normal circumstances no such

guarantee can be made, however, SEVM can be extended to enforce this condition.

For this reason, #[token_group] attribute is introduced to north, which can be used

to annotate named precedence groups. When a call is made to a rule that is part of a

rule_dyn kw();

#[token_group]
group _: kw(0) {
rule ident() { parse (r"a-z"+, " ", R1); }
rule kw_if() { parse ("self", dom_g " ", R1); }
rule kw_self() { parse ("self", dom_g " ", R1); }

}

rule expr_if() {
parse (kw_if, ...);

}

Figure 36: A grammar that uses token groups to disambiguate keywords from identi-

fiers

103

Table 22: Identifier-keyword disambiguation performance cost comparison

Approach Resulting symbol Total reduction count

Negative reductions Identifier 1

Negative reductions Keyword 3

Token groups Identifier 1

Token groups Keyword 1

#[token_group] group, then the call to that rule is replaced with a call to the whole

group, without changing the way CtlMatchSym instruction is generated. This means

that the members of a token group are always guaranteed to be merged during subset

construction. As a result, combining token groups with dominating terminals allows to

effectively disambiguate keywords from identifiers.

Comparing this approach to negative reductions reveals significant performance

gains for parsing reserved keywords. Table 22 shows performance cost (in terms of to-

tal reductions needed) to recognize disambiguated keywords and identifiers with both

of the described approaches.

Disambiguating keywords from identifiers with negative reductions requires 3 sep-

arate reductions to be performed:

1. Keyword reduction (kw_if, kw_self, etc).

2. Negative identifier reduction that is performed as a result of matching keyword

within reject statement. This reduction may be avoided by manually listing

all keywords within identifier definition, but such approach is impractical and

unergonomic.

3. Positive identifier reduction that gets eventually rejected.

When using token groups (in combination with dominating terminals), only 1 re-

duction is needed. Another positive effect of token groups is that it results in less sig-

nificantly less generated code, because of the following reasons:

• No separate parse path for matching keywords and performing negative reduction

is needed.

• Token group disambiguation can happen as part of DFA extraction process (see

chapter 5.4.3 for more), which reuses matching transition tables across different

rules.

104

• Replacing all direct calls to individual keyword rules into corresponding token

groups results in lower number of unique call specifiers, which means that less

optimized rules need to be generated and translated to machine code in total (but

the ones that include any keyword become larger, because instead of parsing a

single keyword, these rules will be capable of recognizing every keyword defined

in a token group).

5.4 Parser optimizations

5.4.1 Profiling EVM

During research and development of SEVM/north, the following profiling methods

were used:

• Built-in performance counters. During various steps of north execution, execu-

tion times for most important components are measured and stored. This infor-

mation is then optionally displayed after the execution to the user.

• callgrind code profiler. This is a tool designed to profile program performance.

It works by instrumenting input programs and keeping detailed logs of their ex-

ecution. As a result, the input program is executed significantly slower, but the

additional instrumentation allows to obtain detailed metrics about the entire pro-

cess of program execution.

• massif heap profiler. This is a tool that allows tomeasure and observe the changes

of overall memory usage.

• bench_parsers tool. It was developed as part of the north implementation and

allows to compare the performance of different parser implementations with great

accuracy.

Built-in performance counters were used to quickly measure and detect changes

in performance as a result of north implementation/configuration or input grammar

adjustments.

callgrind was used to identify the critical paths of north execution. It allows to

observe howmany times each function is called, how long each call on average takes and

similar. This tool enabled to identify the parts of north that were running the slowest and

105

thus focus optimization attempts at such locations, either by optimizing such functions,

or by adjusting the parsing method to reduce the number of calls to such functions.

massif was used to identify the parts of code that allocate the most memory. As a

result of massif’s measurements, the garbage collector for SEVM was implemented to

significantly reduce memory usage of north.

5.4.2 Just-in-time grammar compilation

To minimize the overhead of interpreting EVM’s instructions, in north a just-in-time

compiler is used to translate optimized rule MIRs into native machine code that can be

directly executed by the processor. The machine code in north is generated by LLVM

library: at first SEVM’s MIR is translated into LLVM’s IR (intermediate representa-

tion), which then is translated by LLVM into machine code.

Some changes have been made to SEVM to simplify translation of MIR to LLVM

IR:

• MIR instructions are organized into basic blocks: each basic block contains 0-or-

more statement instructions and must terminate exactly by 1 control instruction.

All operations that affect the flow of the execution are control instructions. This

approach somewhat mimics LLVM design, where instructions are also organized

in basic blocks.

• MIR rules are composed out of basic blocks, instead of instructions. This matches

LLVM functions, which are composed out of LLVM basic blocks.

Each task is compiled into a single native function, which takes the parser’s context

and a pointer to the current task as parameters. This function is referred as the resume

or task resumption function.

resume function of a rule always starts with a preamble, which loads commonly

used values into temporaries to reduce code duplication and terminates with a switch

statement, which transfers execution to the appropriate state based on task’s state_id

value. state_id values correspond to matching MIR basic block indices to ease debug-

ging process. Each SEVMbasic block is translated by translating individual instructions

of that basic block directly into LLVM IR. SomeMIR instructions can be translated into

several LLVM IR instructions or even several LLVM IR basic blocks.

Most of statement instructions (such as StmtCallRuleDyn, StmtReduce, StmtRewind

) are compiled into LLVM IR function calls (call), which invoke north runtime. The

106

context of the parser runtime and a pointer to the current task as well as instruction-

specific operands are passed as arguments to those functions.

CtlMatchChar instructions are compiled into several LLVM instructions:

1. load: Firstly, the current input position pointer is loaded from the current task.

2. icmp, br: Current input position pointer is checked against end of input pointer,

a conditional jump is made as a result.

3. load: Input character at current position is loaded.

4. getelementptr, store: The current position pointer is increased by 1 and written

into the current task.

5. icmp, br: Input character is compared with target character and a conditional

jump is made as a result.

CtlMatchClass instruction is compiled similarly: the first 4 steps are the same as

CtlMatchChar, but the input character is compared using unrolled binary search: each

bound of search space is compared with a pair of icmp and br instructions.

CtlReduce instruction is translated into a call to appropriate runtime function and

unconditional jump to target location.

CtlMatchSym is translated into a call instruction to appropriate runtime function,

which takes ownership of the current task and (potentially) adds it to the list of sus-

pended tasks, and ret instruction, which stops the current task.

CtlStop is translated into a single ret, which terminates the current task.

5.4.3 DFA extraction

Terminal symbol matching shortcomings

In current version of SEVM terminals arematchedwith CtlMatchChar and CtlMatchClass

instructions. CtlMatchChar can match a single input character against another charac-

ter, where CtlMatchClass can match a single input character against several different

symbols. By analogy, CtlMatchChar can be viewed as an imperative if statement,

whereas CtlMatchClass would be a switch.

Both of these instructions get replaced with CtlMatchClass during subset construc-

tion, which later gets translated into LLVM IR. The compiled CtlMatchClass performs

107

binary search to match the input character against several possible alternatives. As a

result, the resulting LLVM IR code contains at least:

• 3 basic blocks.

• 3 comparison instructions: 1 to test for end-of-stream, 1 to test the lower bound,

1 to test the upper bound.

• 3 conditional jumps.

• 1 addition: used to increase the position value of current task.

• 2 memory loads: used to load current position and the character at the current

position.

• 1 memory store: used to store the updated position of the current task.

This means that matching a single input character, when translating SEVMMIR to

LLVM IR requires significant amount of instructions and basic blocks. The Rust lan-

guage grammar for north, as of the time of writing this, contains 41 distinct keywords

and 48 operators. On average, each keyword contains 4.3 and each operator 1.5 char-

acters. All keywords and operators when concatenated occupy 250 characters. Some

of these characters would be merged during subset construction. However, even if all

keywords and operators required 125 distinct CtlMatchClass instructions, they would

occupy at least 375 LLVM IR basic blocks. This does not include other token-like non-

terminals, such as comments, literals and whitespace.

The problem is further compounded due to the way subset construction works: only

complete rules are merged to form another complete optimized rule. Because of this,

each distinct operator precedence level would be optimized at least once, each time

including every keyword of the grammar, resulting in massive amounts of generated

code.

Another yet unsolved issue in SEVM is extensible way for disambiguating oper-

ators. Keywords from identifiers can now be effectively disambiguated with token

groups and dominating terminals, but this method only enables to disambiguate tokens

of same length. As a result, additional method is needed to disambiguate operator &&

from a pair of &. For example expression a && b in C language without any disam-

biguation can be interpreted both as a && b (logical and) and as a & (&b) (bitwise and

where right hand side is the address of variable b).

108

rule_dyn kw();

group _: kw(0) {
rule kw_self() { parse ("self", " ", R1); }
rule kw_static() { parse ("static", " ", R1); }
rule kw_struct() { parse ("struct", " ", R1); }

}

Figure 37: A north grammar for matching 3 keywords

A simple solution to his problem would be to add negative lookahead to operator

&, so it may not be followed by another &. This can effectively be implemented in

SEVM with rewind directive R1, but such approach requires for the grammar author to

know all the possible operators before hand, thus making extensions to the language

more limited. Another issue is that such operator definition breaks rule encapsulation,

because the rule for parsing operator & has to contain knowledge about operator &&.

All of these issues described in this chapter can be solved (to an extent) by compar-

ing the current method for matching terminals in SEVM with traditional lexers: during

subset construction, SEVM optimizer essentially constructs an embedded lexer each

time a terminal symbol (or terminal symbol sequence) is to be matched. By isolating

these deterministic fragments of instructions sequences, it would be possible to extract

them and to perform terminal symbol matching in a lexer-like environment, isolated

from the rest of VM. We call this approach of separating terminal matching as deter-

ministic finite automata extraction or DFA extraction for short.

Simple DFA extraction

Consider the grammar shown in fig. 37. It defines 3 keywords: self, static and

struct. During subset construction shared prefixes of these keywords will be merged

and MIR shown in fig. 38 will be produced. This MIR may also be visualised as

a deterministic finite automaton as shown in fig. 39, which captures the essence of

DFA extraction method: the segments of deterministic source MIR get extracted into

a separate DFA, which is then used for matching terminal symbols. Then, instead of

CtlMatchClass (and CtlMatchChar) instructions, the resulting MIR contains a new

CtlExecDFA instruction, which executes the DFA and transfers the control based on

success or failure of DFAmatch result.

OptimizedMIR for abstract rule kwwith DFAextraction enabled is shown in fig. 40.

CtlExecDFA instruction takes 2 operands: the DFA to be executed and transition table

109

#0: CtlMatchClass 's' => #1
#1: CtlMatchClass 'e' => #2, 't' => #7
#2: CtlMatchClass 'l' => #3
#3: CtlMatchClass 'f' => #4
#4: CtlMatchClass ' ' => #5
#5: StmtRewind 1

StmtReduce REDUCE_ID(:kw_self), NORMAL
CtlStop

#7: CtlMatchClass 'a' => #8, 'r' => #14
#8: CtlMatchClass 't' => #9
#9: CtlMatchClass 'i' => #10
#10: CtlMatchClass 'c' => #11
#11: CtlMatchClass ' ' => #12
#12: StmtRewind 1

StmtReduce REDUCE_ID(:kw_static), NORMAL
CtlStop

#14: CtlMatchClass 'u' => #15
#15: CtlMatchClass 'c' => #16
#16: CtlMatchClass 't' => #17
#17: CtlMatchClass ' ' => #18
#18: StmtRewind 1

StmtReduce REDUCE_ID(:kw_struct), NORMAL
CtlStop

Figure 38: Optimized MIR for matching 3 keywords

s

_

f

t

l

i
t

c

t

_

r

e

c

_

u

a
#10#8

#17

#4

#16

#9

#18#15

#2 #3

#12

#1#0

#7 #11

#5

#14

Figure 39: Traditional DFA for matching 3 keywords

#0: CtlExecDFA <DFA:0>, 0 => #1, 1 => #2, 2 => #3
#1: StmtRewind 1

StmtReduce REDUCE_ID(:kw_self), NORMAL
CtlStop

#2: StmtRewind 1
StmtReduce REDUCE_ID(:kw_static), NORMAL
CtlStop

#3: StmtRewind 1
StmtReduce REDUCE_ID(:kw_struct), NORMAL
CtlStop

Figure 40: Optimized MIR for matching 3 keywords (with DFA extraction enabled)

110

l

r

s

t

t

_

a i

c _u

f

c

e

t
_

8,S7,S

16,C(2)

9,S

4,S

11,C(1)
6,S

5,C(0)

1,S

10,S

2,S

12,S 14,S13,S

3,S

0,S

15,S

Figure 41: SEVM DFA for matching 3 keywords

that pairs the result of DFA with the target state_id of the task. Note the significant

reduction of basic blocks in this version of optimized MIR.

Every CtlExecDFA instruction is translated to 2 LLVM IR instructions: single call to

north runtime, which simulates the DFA and returns the result; and a switch statement,

which transfers the control of execution based on DFA simulation result.

It is also important to note, that states in SEVM DFA are classified by their type:

• Shift (”S”) states only consume a single input symbol and move to a different

state. Each shift state contains a transition table.

• Fail (”F”) states fail the DFA simulation immediately upon entering them. Typ-

ically each DFA contains exactly 1 fail state, which is reachable from all other

states with unexpected terminals. They are not shown in any of DFA visualisa-

tions, because there would be an edge from each shift state to the fail state with

all other characters fromASCII range 0..255.

• Complete (”C”) states terminate the DFA simulation with given result. The result

is a number that then is used in MIR to transfer control of execution.

• Lookahead (”L”) states are used to implement lookahead. See chapter 5.4.3 for

more.

Furthermore, shift state transition tables are split into two parts: transition index ta-

ble and transition state table: transition index table store indices of transition state table,

which store actual destination state indices. This two layer transition-table approach al-

lows to de-duplicate and reuse transition index tables. All transition index tables have

111

256 entries (1 byte each), where 1 entry is reserved for each possible input character.

Transition state table is variable sized and it’s size corresponds to the number of unique

transition destinations from a specific state.

This significantly reduces the size of generated DFAs, because the largest parts of

each DFAcan be reused: the largest DFAs used to parse Rust language is composed out

of 237 distinct states, 136 of which are shift states,≈95% of which are reused in at least

one other DFA.

Dominating terminals in extracted DFAs

Dominating terminals in extracted DFAs work just like with original CtlMatchClass in-

structions, because the north optimizer uses the same ε-closure computation algorithm

for both subset construction and DFA extraction. As a result, token group based ap-

proach for identifier-keyword disambiguation works with DFA extraction without any

additional modifications.

Greedy tokens

Extracting the terminal matching algorithm from SEVMVMhas one additional benefit:

it allows us to implement greedy token matching: this would enable to disambiguate

operator && from a pair of &s, a pair of divisions / from one-line comment start and

similar.

They way the extracted DFAworks already resembles traditional lexers. By extend-

ing this analogy can farther we can implement greedy tokens: in case where there are

multiple token matches available (such as & and &&), select the longest.

In SEVM this can be done by adding an additional indicator to CtlMatchChar and

CtlMatchClass instructions to specify the longest match preference. At the grammar

level, shift_p (prefer shift) directive is needed to express the desire to traverse only the

longest match when multiple character-level parse paths are available.

Normally, the divergence of two parser paths is detected immediately after con-

structing ε-closure when building DFAs: if all members of constructed ε-closure are

CtlMatchChar or CtlMatchClass instructions, then they are merged into a single shift

state in theDFA. If there are additional instructions (such as StmtCallRuleDyn, StmtReduce

or CtlReduce), then a complete state is generated instead, which hands the execution

control back to SEVM, which then will fork the execution (typically) into two different

112

rule op_dot() { parse shift_p "."; }
rule op_dot_dot_dot() { parse shift_p "..."; }
rule main() { parse op_dot | op_dot_dot_dot; }

Figure 42: A north grammar for parsing . and ... operators

...
1,L(0) 3,S2,S0,S 4,C(1)

Figure 43: SEVM DFA for the triple dot grammar

to paths: one task with another DFA that performs character matching, and another that

contains other instructions.

To implement longest input match in SEVM DFA, the completion states can be

replaced with lookahead states: each lookahead state will recursively start another DFA

at a given state: if child DFA completes successfully, then it means that a longer match

has been found and the result of that DFA is returned from primary DFA. However, if

the child DFA fails, it means that matching an alternative parse path with potentially

longer input was unsuccessful, and the original completion value is returned instead.

An example grammar for parsing and disambiguating operators . and ... is shown

in fig. 42. During subset construction, terminal symbol matching will be extracted into

DFA shown in fig. 43. After matching a single dot character (.), lookahead state 1 will

be reached, which will spawn a child DFA that will start in state 2. If two additional

dots are found, then the child DFA will complete with result 1 in state 4, otherwise it

will fail, which will cause the main DFA to complete successfully with result 0.

It’s important to note, that there can be several levels of lookahead states, allowing

to disambiguate complex tokens. For example, greedy tokens are used in the grammar

of Rust programming language to disambiguate all of Rust’s tokens:

• Raw string literals r"text" are disambiguated from identifier r and text literal

"text" sequence.

• Operators of varying length are disambiguated (., .., ..., ..=, =, etc).

• In combinationwith dominating terminals, base-16 integer literals such as 0x1234ABCD

are disambiguated from base-10 integers with a suffix (10i32).

Because of SEVM greedy tokens, the north parser can fully replicate the behaviour

of a lexer in a scannerless parser, thus allowing to parse the languages that depend on

such behaviours without ambiguities.

113

5.4.4 Partially incorporated reductions

Reduction incorporated parsers

The LR family of parsers [17] use a stack to track the execution of overall parsing pro-

cess. The stack contains state indices which represent the path throughwhich the current

parser position was reached from the initial parsing position. Additional elements to the

stack are added with shift actions, and multiple stack entries are removed and consol-

idated into one with a reduce action. The top element of the stack always represents

the current parsing state. Out of the two actions, computationally more expensive is the

reduce action.

During a single reduction of length N, the following steps are performed:

1. Top N elements from the stack are removed.

2. Newly exposed top element is used to determine the current parser state.

3. Transition table, the current parser state and the reduced non-terminal is used to

determine the next parser state.

4. This state is pushed to the top of the stack.

Because a reduction is so expensive performance-wise, the performance of LR parsers

is typically entirely bound by the total number of reductions performed during parsing.

In general, the performance of LR parsers can be said to be bound by the amount of stack

activity needed to parse the input. As such, there have been numerous approaches to re-

duce the overall stack activity during parsing to increase parsing throughput: typically

left recursion is favoured over right recursion, as it leads to lower stack growth.

Amore involved and recent approach for reducing stack activity is reduction incor-

porated parsers [23]. At the cost of significantly increased number of parser states (and

thus transition table), it is possible to record target state index as part of reduction entry

in transition tables. As a result, such parsers in many cases no longer need two separate

transition table lookups to perform a single reduction. Where a typical reduction entry

contains only the non-terminal symbol being reduced and the reduction length, an in-

corporated reduction entry additionally contains a target state index which determines

the next state of the parser, thus eliminating the third step of reduction sequence.

114

rule A() { parse "a"; }
rule B() { parse "b"; }
rule C() { parse "c"; }
rule D() { parse "d"; }
rule AB() { parse A | B; }
rule CD() { parse C | D; }
rule ABCD() { parse AB | CD; }
rule main() { parse ABCD; }

Figure 44: A simple north grammar

The cost of a reduction in SEVM

Just like in LR parsers, reductions in SEVM are computationally too quite expensive.

During each reduction, the following steps are executed:

1. The newly created reduction is checked against existing reductions. If a matching

reduction exists, further reduction processing is aborted.

2. The positive match specifier part of each suspended task is checked against the

new reduction and if any matches are found, the task is resumed.

3. The new reduction is added to the reduction list of the current chart entry.

The 2nd step of the reduction process is very costly in particular: each suspended

task may be awakened more than once, if the suspended task positive match specifier

contains several abstract rules that match the same reduction. Also, under certain con-

ditions this step due to the way subset construction works in SEVM can be avoided

entirely.

Reduction incorporation in SEVM

Optimized rules in SEVM are entirely defined by a call specifier and the currently used

grammar. Consider the grammar shown in fig. 44. When optimizing main rule, the di-

rect call to rule ABCDwould be replaced to a dynamic call with call specifier [REDUCE_ID

(:ABCD), 0]. Then optimizer would use this call specifier to drive subset construction

and generate the optimized version of ABCD.

Because ABCD starts with both AB and CD rules, both of these rules would be merged

into optimized version of ABCD. Continuing this process recursively, optimizer would

merge ABCD, AB, A, B, CD, C and D rules in this order. Eventually MIR code shown in fig.

45 would be produced (to make the MIR more readable, DFA extraction was disabled).

115

#0: CtlFork #1, #2
#1: CtlMatchSym :AB => #9, :A => #7, :B => #7, :CD => #9, :C => #8, :D

=> #8
#2: CtlMatchClass 'a' => #3, 'b' => #4, 'c' => #5, 'd' => #6
#3: StmtReduce REDUCE_ID(:A), NORMAL

CtlStop
#4: StmtReduce REDUCE_ID(:B), NORMAL

CtlStop
#5: StmtReduce REDUCE_ID(:C), NORMAL

CtlStop
#6: StmtReduce REDUCE_ID(:D), NORMAL

CtlStop
#7: StmtReduce REDUCE_ID(:AB), NORMAL

CtlStop
#8: StmtReduce REDUCE_ID(:CD), NORMAL

CtlStop
#9: StmtReduce REDUCE_ID(:ABCD), NORMAL

CtlStop

Figure 45: Optimized MIR for ABCD grammar rule

Consider this step sequence, which would be executed for parsing character a:

1. Task 0 starts execution in basic block #0.

2. Task 0 is forked (queued) into task 1 with state #2.

3. Task 0 is suspended in #1.

4. Task 1 executes #2 and matches character a, which transfers control to #3.

5. Task 1 reduces A, spawning a copy of task 0 (now named task 2) in state #7 as a

result.

6. Task 1 is discarded with CtlStop.

7. Task 2 reduces AB, spawning a copy of task 0 (now named task 3) in state #9.

8. Task 2 is discarded with CtlStop.

9. Task 3 reduces ABCD, causing the callee of ABCD to be resumed.

10. Task 3 is discarded with CtlStop.

It is important to node, that tasks 2 and 3 were created only to perform a single

reduction, after which both were terminated.

116

#0: CtlMatchClass 'a' => #1, 'b' => #2, 'c' => #3, 'd' => #4
#1: CtlReduceShort REDUCE_ID(:A), NORMAL => #5
#2: CtlReduceShort REDUCE_ID(:B), NORMAL => #5
#3: CtlReduceShort REDUCE_ID(:C), NORMAL => #6
#4: CtlReduceShort REDUCE_ID(:D), NORMAL => #6
#5: CtlReduceShort REDUCE_ID(:AB), NORMAL => #7
#6: CtlReduceShort REDUCE_ID(:CD), NORMAL => #7
#7: StmtReduce REDUCE_ID(:ABCD), NORMAL

CtlStop

Figure 46: Optimized MIR for ABCD grammar rule (with partial reduction incorpora-

tion)

Another important observation to be made is that all merged rules ABCD, AB, A, B, CD,

C and D share their origin. In other words, they start at the same input position during

parsing. Because of this, we can statically determine which internal reductions lead to

which states.

An internal reduction is reduction that occurs within optimized MIR, but that is not

also part of the call specifier. In the current example, reductions for A, B, C, D, AB and CD

are internal. Reductions which are part of call specifier are called external reductions,

because the effect of the reduction will be transferred beyond current optimized rule.

All control transfers for internal reductions during reduction process may be re-

solved statically: by definition, the effect of internal reductions does not extend beyond

the current rule. As such, the rule which performs internal reduction must have been

also invoked from the same optimized (merged) rule. Furthermore, only rules with are

part of rule prefix are merged into optimized rule. Because of this, StmtReduce of inter-

nal reductions will always match the match specifier of CtlMatchSym instruction, which

will be always located at the start of optimized MIR.

To statically resolve reductions in SEVM, a new instruction is needed: CtlReduceShort

. In addition to performing a shortened version of reduction process, which is only

suitable for internal reductions, this instruction will also transfer control to statically

resolved target state, bypassing the normal reduction process of SEVM.

Fig. 46 shows the optimized MIR for ABCD, but with partial reduction incorporation

enabled. With this MIR, parsing character a is significantly more straightforward:

1. Task 0 starts execution in basic block #0.

2. Task 0 executes #0 and matches character a, which transfers control to #1.

3. Task 0 internally reduces A, transferring control to #5.

117

4. Task 0 internally reduces AB, transferring control to #7.

5. Task 0 reduces ABCD, causing the callee of ABCD to be resumed.

6. Task 0 is discarded with CtlStop.

Only a single instance of a task is now needed (instead of 4). Furthermore, calls

that are part of the prefix no longer require CtlMatchSym, because the control transfer

of internal reductions is handled directly by CtlReduceShort. As a result, the reduction

incorporated version of ABCD performs 3 less reductions and 1 less task suspension.

This optimization also yields significant performance gains in real-world programming

languages, as shown in chapter 6.7.3.

On final note, reductions in SEVM are ”only” partially incorporated is because only

reductions that are part of optimized rule prefix (and are not part of call specifier) are

incorporated. All other reductions are processed normally.

5.4.5 Garbage collection

The purpose of the garbage collector in SEVM, just like EVM, is to remove no longer

needed information from memory, so it may be reused again. Because of the changes

in SEVM structure, the original garbage collector of EVM is no longer suitable.

The memory in SEVM is freed-up by removing potentially unneeded chart entries

from the parser’s chart. The condition for removing entries from the chart is based on

a heuristic, and as a result may remove entries that may still be needed later during

parsing. Ideally, such situation would not occur often, and if it did, these chart entries

would have to be recreated by re-parsing fragments of input.

The heuristic for determining the usefulness of a chart entry is based on the following

observations:

• Entries that have active tasks within them will always be needed later and as such

must not be freed.

• Parsing is typically done sequentially, with relatively little significant jumps due

to ambiguities/backtracking.

• Ambiguities and backtracking are typically localized.

The current parsing position can be determined by inspecting the currently active

chart entry, whose indexwill be stored on top of the primary execution stack. All entries,

118

whose positions are lower than the current position and which do not contain any active

tasks are marked for removal during garbage collection.

Garbage collection occurs everyGCiter number of resume invocations. HigherGCiter

means that the garbage collector will run more rarely and thus may lead to higher mem-

ory usage. Too low GCiter may lead to premature chart entry elimination, which may

cause SEVM to re-parse the same input fragments repeatedly.

The desired GCiter is chosen by manually inspecting the parse times of sample in-

puts and setting it to a value higher than GCmin (typically 3 ∗GCmin). GCmin refers to

the minimum value of GCiter, below which a significant number of premature entry

removals occur.

The number of premature entry removals can be measured in north by running in a

mode, which partially disables the garbage collector: in this mode, the garbage collector

instead of removing those entries, only marks them as removed. If an entry with remove

flag set is reused in the future, then the remove flag is unset and the number of premature

entry removals is increased by 1.

Such strategy of garbage collection may not be optimal (and may lead to significant

slow-downs in worst-case ambiguity scenarios), however it works well when used with

real-world programming language grammars: heap usage and processor time profiling

reveal that the parser’s runtime uses only minor amounts of memory (with the garbage

collector enabled, the parse-tree becomes the largest memory consumer in north, fol-

lowed by the index map of the chart), while taking insignificant amount of time to

execute (below 5% of total execution time with ANSI C and Rust grammar tests).

5.5 Avoiding exponential complexity

Original EVM had one primary way to avoid exponential parsing complexity: the trace.

The trace in EVM was a set stored in each state containing fiber snapshots of previous

parse positions. Whenever a new fiber was created, the contents of that fiber were

checked against the trace: if the new fiber was a duplicate of a previously created fiber,

the creation process was aborted, otherwise, the copy of the new fiber was added to the

trace and the new fiber was readied for execution.

This had several positive effects:

• Any form of infinite left recursion was eliminated, because it would result in two

identical fibers in the same state.

119

• Exponential complexity of parsing was eliminated, when using trace with reduc-

tion duplication and incremental parse-tree construction: multiple reductions of

the same type and length were merged together, multiple resumptions of same

task but with different reduction were also merged when the task was resumed in

the same instruction pointer.

However, while using trace for reduplicating fibers was simple and powerful, it also

meant that creating new new fibers was performance-wise expensive, because each fiber

had to be checked against trace first, and then a copy of that fiber had to be made in case

the newly created fiber was unique. As a result, a new method for avoiding exponential

complexity is needed.

Firstly, it’s important to identify the situations that can lead to exponential com-

plexity (and potentially hidden infinite recursion). We call these situations conflicts

(the term is inspired by shift/reduce and reduce/reduce conflicts of (G)LR parsers [17]),

as they potentially may lead to multiple parse paths. There are four types of conflicts in

SEVM:

• Reduce/reduce conflict. These conflicts occur when two reductions of same

type and length occur at the same starting origin. Resuming a task with both

reductionsmay lead to exponential parsing complexity, because the same taskwill

be resumed with duplicate reduction twice, which may lead to further conflicts.

• Resume/resume conflict. These conflicts are closely related to reduce/reduce

conflicts. They occur, when two reductions occur of the same length, but with

different reduce_id and result in resumption of the same task, in the same state_id

twice. The existence of resume/resume conflict indicates that a rule has an am-

biguous, but fixed-length prefix with matching suffix. Performing both resump-

tions means that the matching suffix is parsed multiple times, potentially leading

to further conflicts.

• Call/call conflict. These conflicts occur, when the same non-terminal rule is

called multiple times at the same position. Executing both calls would mean that

the same input segment is parsed multiple times with same grammar rule(s). The

calleesmay perform further calls, whichmay lead tomore conflicts and/or infinite

hidden recursion.

• Match/match conflict. These conflicts occur, when the same task is suspended

at the same position twice. Accepting both matches may lead to scenario, where

120

one reduction would awaken both tasks, which may lead to other conflicts (and

exponential parsing complexity).

Reduce/reduce conflicts can be solved by merging reductions: when a ambiguous

reduction occurs (this can be trivially detected, because the list of all reductions is stored

in each chart state), then the tree_ids of both reductions can be merged to form an am-

biguous node, representing two alternative parse paths. Then further reduction process-

ing is aborted: that way ambiguous reductions do not wake additional suspended tasks.

Resume/resume conflicts can be eliminated by keeping a list of resumptions in each

suspended task. Only reduce_id, reduction length and reduction tree_id need to be

stored. Whenever a duplicate resumption occurs (with same reduce_id and length pair),

instead of resuming the task again, the corresponding tree_ids are merged, forming an

ambiguous shift node in the parse tree.

Call/call conflicts can be eliminated by making use of the following observation:

whenever a new task is called, its callee is soon after suspended with a CtlMatchSym

instruction. As a result, it is possible to reconstruct the list of called tasks at a specific

position based on match specifiers stored in the list of suspended tasks. This can be

implemented by pairing each match specifier with a bit mask, where the bit mask rep-

resents the set of concrete rules that were called. By performing bitwise-or operator

between these masks it is possible to efficiently recreate the set that represents all the

concrete rules that have been called so far at this position. If the newly called task is

a subset of the previously called concrete rules, then the completion of the call can be

aborted, because all of the currently called rules have been called before.

Finally, merge/merge conflicts can be eliminated by ensuring that newly added sus-

pended tasks are unique to that state. However, it is possible to completely remove this

conflict mitigation (or make it optional) to increase the overall parsing performance,

because merge/merge conflicts are quite rare and only happen when a task is resumed

twice at the same position, but with reductions of two different lengths.

5.6 Parse-tree construction

SEVM constructs SPPFs automatically as described in chapter 4.7.1.

Automatic parse-tree construction was chosen over manual AST construction due

to the following reasons:

• Less-noisy grammars. Including AST construction statements and expressions

121

to source grammars makes them less readable.

• Universal node format. Forcing a specific node storage format makes the parser

more predictable, because each grammar names and constructs the resulting parse-

tree in the same fashion. This also enables easier grammar merger, as now it is

guaranteed that all grammars will use the same node format, thus eliminating any

node type-mismatch conflicts.

• Higher parsing performance. The automatically constructed SPPFs are de-

signed to use minimal amount of memory and are laid out sequentially in heap

(the same cannot be said about traditional ASTs, which may contain additional

fields needed for further compilation steps). This ensures that creation of new

SPPF nodes is cheap. Furthermore, all constructed SPPF nodes can be erased

from memory in one sweep.

In typical usage of SEVM, after parsing, user takes the constructed SPPF, ”man-

ually” removes ambiguous nodes (if there are any) using disambiguation filters and

converts the SPPF to AST (in host language environment), which may contain addi-

tional fields needed for further AST processing (such as fields that contain information

needed for type-checking or code generation).

122

6 Evaluation of SEVM

6.1 Overview of evaluation process

In this chapter we present evaluation of SEVM. The primary focus is to evaluate the

relative performance of SEVM compared to other parsing implementations.

6.2 Language selection

Because one of the goals of north is to prove that a scannerless generalized parsing

algorithm may be used for parsing in practise, two existing programming languages

were chosen to be used in comparison:

• ANSI C. It is one of the most widely used programming languages and as such

any parsing algorithm with the goal of parsing programming languages should

be able to parse such language. It is also commonly used for comparing parser

performance.

• Rust. Rust is relatively new programming language, but one that is quickly gain-

ing popularity. It’s grammar is significantly larger in size compared to ANSI C

and it is also mostly ambiguity-free (when viewed as a context-free grammar).

An additional note regarding parsing ANSI C: it is often claimed that ANSI C is a

simple language: and this statement is true in respect to the grammar size of ANSI C

(when compared to other programming languages). However one key aspect that makes

parsingANSI C deterministically more complicated is the fact that most grammars used

to parseANSI C (including the one specified in theANSI C standard) depend on the abil-

ity to disambiguate identifiers from type names during lexing/parsing. In other words,

in order to parse ANSI C code deterministically, the parsing method needs to perform

limited version of semantic analysis (namely, name resolution) during parsing. Oth-

erwise, statements such as a * b; may be both interpreted as multiplication and as a

123

declaration of pointer b with type a. This happens to be the case where generalized

methods become more useful: they are capable of parsing this input with both interpre-

tations and to produce parse forest, which then can be filtered after parsing based on

semantic predicates. As such, using generalized parsing methods to parse C program-

ming language allows to separate parsing from semantic analysis and thus to improve

separation of concerns.

In this comparison, ANSI C parser implemented with bison performs limited se-

mantic analysis during parsing, because it is used as a LALR(1) parser. Other ANSI C

parser implementations support generalized parsing and instead produce parse forests

when ambiguities are encountered.

Rust programming language in this sense is a complete opposite of ANSI C: it’s

grammar is larger, but it does not require performing any semantic analysis during pars-

ing.

As a result, these two languages, ANSI C and Rust, should sufficiently cover both

ambiguous and unambiguous use cases of parsing.

6.3 Implementation selection

The following parser implementations are included in this evaluation:

• north: it’s the implementation of SEVM described in this work, written in Rust

programming language.

• bison with flex: bison is a yacc-compatible LALR(1) parser generator. It is

perhaps de-facto LALR(1) parser generator. It it/was used in various prominent

open-source projects, such as: Bash, GCC before v3.4, Perl 5, PHP and others.

It is commonly taught in universities and has integrations for wide variety of

programming languages. Because bison works only with tokens (it’s not a scan-

nerless parser), a lexer is needed in order to be able to parse textual inputs. As

such, lex-compatible flex was chosen, which is commonly used in conjunction

with bison.

• yaep with flex: yaep is one of the few complete (as of writing this work) im-

plementations of Earley parser with various optimizations to make it suitable for

use in practise. It is also a non-scannerless implementation, and thus is used in

conjunction with flex during evaluation.

124

• dparser: dparser is a scannerless implementation of GLR parsing algorithm. It

is one of the very few still maintained projects capable of generalized scannerless

parsing. Therefore dparser is the closest match in this list to north.

• syn: syn is a parser for Rust programming language, implemented with a hand-

written recursive descent parser. It is a non-scannerless parsing method, but

comes with it’s own lexer and as such, no external lexer is needed. syn is primar-

ily used as a library for developing language extensions for Rust programming

language.

6.4 Comparison method

In order to compare multiple parser implementations, a tool called bench_parsers was

created. The tool works by executing a series of scenarios, where each scenario is re-

peated multiple times to gain reliable measurement data. See appendix A to learn how

to use the tool or how to reproduce the results of this evaluation.

Each scenario is comprised of the following steps:

1. An input file containing the source code to be parsed is read.

2. An accurate measurement of system time is made called start_time.

3. The input file is lexed, if the parsing method being tested requires a dedicated

lexer. Otherwise this step is skipped.

4. The input is parsed. Some of the parsing methods may produce parse trees or

abstract syntax trees during parsing.

5. An accurate measurement of system time is made called end_time.

6. end_time− start_time of each scenario is added to a vector.

As mentioned above, each scenario is run multiple times. After these runs are com-

plete, the results are stored to a CSV file, which later can be analysed. Before each set

of scenarios, the current parsing implementation is run for at least 3 seconds (potentially

by repeating the current test multiple times) as a warm-up to avoid any result irregu-

larities related to input/output caching (either at hardware level, or at kernel/file system

level), dynamic CPU frequency scaling and others.

125

To evaluate north on it’s own, an additional tool called north_cli was developed.

It allows to observe internal state of SEVM parser and to obtain other metrics (such as

the amount of shortened reductions that were performed during parsing). See appendix

B for more information about this tool.

6.5 Test environment

The test results described in this chapter were obtained on machine with the following

specifications:

• Processor: Intel i9-3930k.

• Memory: 16 GB of DDR3 RAM, 1333 MHz.

• Operating system: Ubuntu 18.04.1 LTS.

• Linux kernel: 4.15.0-36.

• GCC: version 7.3.0.

• rustc: version 1.30.0-nightly (90d36fb59 2018-09-13).

• flex: version 2.6.4.

• bison: version 3.0.4.

• dparser: version 1.30.

• yaep: obtained from GitHub with revision 1f19d4f5.

6.6 Test data

Two primary files are used as inputs for benchmarking north and other parsingmethods:

1. input_gcc_470k.i is ANSI C source file taken from yaep parser benchmark

suite. It contains preprocessed source-code of entire GCC 4.0 compiler. The

file is 14.8 MB in size and consists of ∼475000 lines of code.

126

Table 23: A chart showing the median time needed to parse sample inputs

Parser Language N IQR % Outliers Median

bison ANSI C 50 0.0008 20.0 0.4974

dparser ANSI C 50 0.0104 20.0 16.1007

north ANSI C 50 0.0162 0.0 4.6132

yaep ANSI C 50 0.0737 0.0 1.7231

north Rust 50 0.0197 0.0 6.3258

syn Rust 50 0.0346 0.0 5.5434

2. input_rust_650k.rs is Rust source file that contains the entire implementation

of the Rust Compiler. The file is created by concatenating every Rust source

file (excluding tests, some of which may not be syntactically correct) of GitHub

Rust repository. Minor modifications were performed to the resulting file, to

ensure that the concatenated file is still syntactically correct (some Rust language

constructs may only appear in the beginning in the file, and thus not all source

files can be simply concatenated and result in a valid Rust source code). These

modifications were primarily performed so the syn parser without any additional

modifications would be capable of parsing the resulting file. The file is 22.3 MB

in size and consists of ∼650000 lines of code.

Both of these input files represent larger than average projects and should cover

every use of ANSI C and Rust grammars.

6.7 Test results

6.7.1 Relative performance comparison

The relative performance comparison results of different parser implementations are

shown in table 23.

Out of all tested ANSI C parsing methods, bison was unsurprisingly the fastest.

It’s token-based, fully deterministic parsing method that performs no variable-length

lookahead or backtracking. Because it’s a LALR(1) parser, limited form of semantic

analysis was performed during parsing to disambiguate identifiers from type names.

It’s also important to note that ANSI C bison parser only performs recognition and

constructs no parse-tree or AST as result.

yaep parser is slightly less performant than bison, but it’s significantly more gen-

eral, as it’s an Earley parser. It still requires the use of dedicated lexer, however, no

127

Table 24: Table showing the median time needed to parse input_gcc_470k.i with and

without garbage collection in north

Benchmark N IQR % Outliers Median

ANSI C 2 0.0150 0.0 5.3165

ANSI C (with GC) 2 0.0035 0.0 4.6139

Table 25: Table showing the median time needed to parse input_rust_650k.rs with

and without garbage collection in north

Benchmark N IQR % Outliers Median

Rust 2 0.0069 0.0 6.9651

Rust (with GC) 2 0.0198 0.0 6.3965

semantic analysis was performed during parsing, because Earley parsers can produce

ambiguous parse forests to represent different parse paths.

north is ≈9.3 times slower than bison, but it’s the first parser in the list that’s not

only fully general, but also scannerless. Just like in the case of yaep, SPPF is used to

represent ambiguous parses.

Finally, the scannerless, GLR-based dparser comes last in this list.

For testing Rust grammars, only one other parsing method was tested, because Rust

is a relatively new programming and complex language and beyond the parser used in

the Rust compiler itself, there exists only one additional Rust parser implementation:

the syn parser, which is a hand-written predictive recursive descent parser. While it is

faster than north for parsing Rust, it is so only by a narrow margin.

It should be also noted the amount of time if takes for north to optimize, JIT and

otherwise pre-process grammars is included in the final running time in all of the north

benchmarks. If all of the preprocessing was done statically before parsing, then signif-

icant gains of parsing performance may be achieved, at a cost of sacrificing grammar

extensibility, which is one of the key factors that sets SEVM/north apart from other

parsing algorithms and implementations.

6.7.2 Performance influence of garbage collector

The primary purpose of garbage collector in SEVM/north is to reduce memory usage

of the parser. It works, as described in section 5.4.5, by periodically scanning all of the

currently existing chart entries and removing the ones that are believed to be no longer

needed. Because the unneeded entries are identified by a heuristic, it is possible that

128

the garbage collector may remove a chart entry that will be needed in the future. When

that happens, SEVM runtime has to recreate the required chart entries by reparsing

corresponding input fragments.

As such, initially it may seem that that the garbage collector should reduce the over-

all parsing performance because of the following reasons:

• Scanning all the existing chart states and deleting the unneeded ones takes addi-

tional processor time.

• In case a required entry is removed that entry will have to be recreated in the

future.

To see the actual performance impact of parsing ANSI C and Rust, additional tests

were carried out: ANSIC (input_gcc_470k.i) and Rust (input_rust_650k.rs) inputs

were parsed both with and without using garbage collector. The results of these tests

are displayed in tables 24 and 25.

Surprisingly, enabling the garbage collector not only lowered the overall memory

usage, but also improved overall performance: ANSI C and Rust input parsing times

are faster by approximately 13% and 8% respectively. This can be explained by the

following reasons:

• Enabling the garbage collector allows reusing previously allocated memory frag-

ments and therefore is more processor cache-friendly, which significantly im-

proves the overall performance of the parser.

• Because the parser uses less overall memory, it means that less system calls are

needed for allocating new memory blocks.

Because of the improved performance and lower memory usage, the garbage col-

lector in north is enabled by default.

6.7.3 Performance influence of incorporated reductions

Partial reduction incorporation (described in chapter 5.4.4) is a further optimization

made possible by performing MIR subset construction. In short, whenever a reduction

is performed, SEVM runtime checks the list of suspended tasks in the origin entry of

the task that is performing the reduction and resumes the appropriate task. This process

is consists of several steps that are computationally expensive:

129

Table 26: Table showing the time needed to parse input_gcc_470k.iwith and without

reduction incorporation in north

Benchmark N IQR % Outliers Median

ANSI C 2 0.0054 0.0 6.9844

ANSI C (with RI) 2 0.0060 0.0 4.6619

Table 27: Table showing the time needed to parse input_rust_650k.rswith and with-

out reduction incorporation in north

Benchmark N IQR % Outliers Median

Rust 2 0.0101 0.0 9.1468

Rust (with RI) 2 0.0076 0.0 6.4659

• Iterating though all suspended tasks requires Nsusp steps, where Nsusp is the num-

ber of suspended tasks in the origin entry.

• In order to determine if a suspended task needs resumed, it’s match specifier needs

to be matched against the reduce_id of the reduction. This matching is performed

by using a hash table.

• Finally, when it is know that a suspended task can be resumed, a copy of it is

made in the target state.

In order to test the effect of reduction incorporation on parsing performance, addi-

tional tests were carried out: ANSIC andRust inputs (input_gcc_470k.i and input_rust_650k.rs)

were parsed both with and without enabling partial reduction incorporation. The results

of these tests are shown in tables 26 and 27.

Reduction incorporation on average improves the parsing times in both tests approx-

imately by 33% and 29% respectively. This significant performance boost comes from

two primary sources:

• The short reductions make up a significant part of all reductions and are less

expensive computationally.

• Rules with all reductions partially incorporated no longer need to be suspended

at origin position. Therefore each call to a rule with partially incorporated reduc-

tions results in one less task suspension. This in turn means that there are overall

less suspended tasks, which causes new (normal) reductions to execute faster,

because each reduction needs to traverse a shorter suspended task list.

130

rule_dyn expr();

group _: expr(0) {
rule expr_base() { parse "a"; }
rule expr_suffix() { parse (expr!, expr_base) }

}

rule main() {
parse ((expr, ";")+, "\n");

}

Figure 47: Left-recursive test north grammar

Table 28: Table showing the benchmark results for parsing input_a_1k.txt with left

and right recursive grammars

Benchmark N IQR % Outliers Median

Left assoc. 10 0.0001 0.0 0.0089

Left assoc. (with RI) 10 0.0001 0.0 0.0076

Right assoc. 10 0.0101 10.0 0.7660

Right assoc. (with RI) 10 0.0020 0.0 0.7527

Reduction incorporation has one key negative effect: the optimized MIR grammars

become language (grammar_id) dependant and can be no longer reused when dynam-

ically switching to other grammars. As such, in workloads where a parser has to parse

input which is described by several closely related grammars it may be desirable to

disable partial reduction incorporation.

6.7.4 Performance influence of recursion type

In order to test the performance influence of recursion type, two additional synthetic

test inputs were created:

• input_a_1k.txt contains 1000 characters a, followed by a semicolon and a new-

line.

• input_5a_10k.txt contains 10000 lines of text, where each line contains aaaaa;.

The first file is meant to test the worst-case scenario with deep recursion. The second

file is designed to test a more realistic scenario, where recursion depth is not as high,

however there are more instances of recursion use, such as binary expressions of various

programming languages.

131

rule_dyn expr();

group _: expr(0) {
rule expr_base() { parse "a"; }
rule expr_prefix() { parse (expr_base, expr!) }

}

rule main() {
parse ((expr, ";")+, "\n");

}

Figure 48: Right-recursive test north grammar

Table 29: Table showing the benchmark results for parsing input_5a_10k.txt with

left and right recursive grammars

Benchmark N IQR % Outliers Median

Left assoc. 10 0.0001 20.0 0.0371

Left assoc. (with RI) 10 0.0003 10.0 0.0311

Right assoc. 10 0.0002 10.0 0.0522

Right assoc. (with RI) 10 0.0004 0.0 0.0373

The inputs are then parsed with grammars shown in figures 47 and 48 both with and

without reduction incorporation.

The results for parsing input_a_1k.txt are shown in table 28. This test scenario

triggers quadratic complexity when performing right recursion, and therefore right re-

cursion is on average two orders of magnitude slower than left recursion. This is a well

known characteristic of Earley parsers, and is inherited by SEVM/north as well. Op-

timizations to eliminate quadratic complexity of right recursion in Earley parser exists

[18], however they are not implemented in north.

The results for parsing input_5a_10k.txt are shown in table 29. In this scenario,

the difference in parsing times between left and right recursion is significantly lower,

because the recursion depth is limited to 5 layers of rule calls (as opposed to 1000 in

the previous test). This represents a more realistic scenario, because of the following

observations:

• Repetition in SEVM (unlike in most other parsing methods) is performed with

repetition operators and not recursion.

• Recursion is still used for binary expression operators, however most operators

in common languages (such as C, C++, Java, Rust) are left recursive.

As expected, left recursion is faster than right recursion in all scenarios, however

132

when the recursion depth is low, then the difference is not that large (≈17% when re-

cursion depth is 5).

Partial reduction incorporation also provides a significant performance improve-

ment (15% to 30%) in both left and right recursive grammars. This is because when-

ever a call to a rule is part of the caller prefix (when it is part of the FIRST set), that

call can be incorporated: in right recursive grammars calls from main to expr and from

expr_prefix to expr_base can be incorporated.

6.8 Validity

6.8.1 Internal validity

The following steps were taken to ensure internal validity of the evaluation results:

• All benchmarks are run in Linux runlevel 3. This means that no desktop appli-

cations were running in the background while executing the tests. That way any

potential unwanted influences of the operating system and the environment are

minimized.

• All tests were run in the same environment with the same configuration.

• Each benchmark/test scenario was run multiple times to obtain more consistent

data.

• Before running a set of benchmarks, each test scenario was warmed up for at least

3 seconds to reduce any influence of hardware level/file system level caching, as

well as to ensure that dynamic CPU frequency scaling policy does not influence

the results.

• After running all of the scenarios, outlier detection (IQR method) was carried out

to ensure the consistency of the data: even though the tests were performed in a

fairly isolated environment, it was still possible for operating system background

services to awaken during execution of the tests and interfere with the execution,

potentially lowering the performance of an individual test run and causing an

anomaly in the test results. As such, large number of outliers would suggest the

existence of unwanted external influences.

133

• Other tests that are not performance dependant are deterministic and only depend

on the parser’s input and grammar. As such no external influences can interfere

with such tests.

6.8.2 External validity

To test the performance of north, two grammars of popular programming languages

were chosen as test objects: ANSI C and Rust. Both of these languages are widely used

in practise (especially ANSI C). As such, there are two primary questions regarding

generalization of results:

1. Do benchmark results of north generalize to other inputs in the context of ANSI

C and Rust languages?

2. Do benchmark results of north generalize to other untested languages and their

grammars that are used in practise?

The first question is easier to answer: the test inputs (the source files used for pars-

ing) that were chosen represent significantly larger than average inputs. The input files

are made of unique concatenated input source files and as such cover the majority (if

not entirety) of the input grammars. That means that it is highly likely that any poten-

tial slow paths that negatively effect the performance of the parser would have been

reached during parsing of these files. And indeed, during early stages of development

of north there were several occurrences of exponential complexity behaviour, but that

was before current exponential complexity avoidance techniques were implemented.

It is still possible that some edge cases remain in existing parser implementation

that may result in unexpected performance loss, however they would then be regarded

as implementation bugs rather than systemic issues with the overall parsing method of

SEVM or it’s implementation north. Another important observation is that the only

way to achieve a significant performance loss in north is to increase the ambiguity of

the input grammar. Otherwise, the performance of north would be linear. To lower

probability of such performance issues occurring, additional metrics are generated dur-

ing parsing in north, which would highlight potential areas of ambiguity within test

inputs. These metrics primarily indicate the number of suspended tasks and completed

reductions per each chart entry. High average values of suspended tasks and reduc-

tions indicate high overall ambiguity of input grammars, while unexpected high peaks

of suspensions and reductions indicate a potential problem area, with higher than linear

134

asymptotic complexity. However, during testing all of the collected metrics remained

in line with the expectations.

It is also important to note that parsing performance is a concern only when parsing

such large inputs, because parsing anything several orders or magnitude smaller would

result in insignificant CPU time. As such no tests with tests of minor size were carried

out.

As such, it may be indeed concluded that the performance of north will generalize

to other inputs of ANSI C and Rust.

The other question is whether or not the performance of north will generalize to

other grammars used in practise?

To answer this question, additional observations need to be made:

• Many existing programming and mark-up languages have been designed with

simpler parsing methods in mind: primarily, many of such languages can be

parser either with simple LALR(1) parsers or with recursive descent parsers.

• Very few languages require any semantic analysis to be performed during parsing

(C/C++ are the exception to this rule). The languages that do require semantic

analysis for parsing, can be parsed in north or other generalized parsing meth-

ods ambiguously and filtered after parsing [31]. As such, ANSI C language and

it’s input can be considered as the worst-case real-world scenario regarding the

ambiguity of the input grammar in north.

As a result, ANSI C covers the ambiguous case of inputs and tests the code paths in

north that deal with such ambiguities. Conversely, Rust represents the non-ambiguous

case, where the input is deterministic and covers the real-world languages and inputs

that are non-ambiguous.

Further differences of performance in north arise from different recursion use (left

versus right recursion) and depth of overall grammar.

While left recursion is more efficient in SEVM, primarily due to the fact that left-

recursion can be partially incorporated and can avoid much of the complex machinery

of new reduction handling, right recursion is still offers acceptable performance (as

indicated by synthetic tests, the performance of right recursion is lower by a constant

factor).

The grammar depth is another factor that affects overall parsing performance, but

this happens in every parsing algorithm and implementation: recursive descent parsers

135

require more calls and returns to parse grammars with higher depth, while bottom-up

parsers such as LR/LALR/GLR require more reductions.

Finally, it is important to note that the important takeaway of these test results is

not the exact absolute performance values, but relative performance of north to other

parsing implementations, as the goal of SEVM is to be a suitable replacement for such

parsers. As such, even if minor performance fluctuations were to occur, they would not

significantly impact the overall result of this study: that SEVM is becoming a viable

alternative tomore traditional parsingmethods, even though it still requires some further

research and improvements in certain areas.

6.9 Conclusions

We have created an implementation for SEVM parser called north. Then we imple-

mented ANSI C and Rust grammars for north, which then were used for performance

evaluation. We compared north’s performance against several other parser implemen-

tations and found that a proper SEVMmay be indeed used in practise to parse real-world

programming languages.

However, further research is needed in the following topics:

• Further SEVM optimizations. SEVM may be further optimized by eliminating

external stacks and driving execution with native recursion, much like it is done

in Packrat parsers [10].

• Greedy calls and ordered choice. These additional operations should be added to

SEVM to boost its disambiguation capabilities.

• Error reporting. north currently implements no error reporting, but this can be

done by analysing the contents of susp_list in the final chart entry.

• Error recovery. SEVM aborts execution upon encountering first parse error. It

should be modified, so the parsing process may continue (by skipping fragments

of invalid input). Error recovery algorithms for Earley parser exist, but none of

them are designed for scannerless parsing [1]. There have been some work on

error recovery in SGLR parsers [30], but it’s uncertain how well such method

may translate to SEVM.

136

7 General conclusions

This thesis began with a single wish: a wish for an extensible programming language.

To ensure that it was clear what was meant by an extensible programming language,

we firstly defined what an extensible programming language is. Then, we set on and

searched for all the languages that suit our criteria. After our search was done, we

realized that very few such languages exist and all of them comewith various restrictions

and limitations.

One of the reasons why so few extensible programming languages exist is their

implementation difficulty: not only the compiler (or interpreter) has to be extremely

generic, the parsing algorithm used to parse such languages has to be able to accommo-

date dynamically changing grammars. In fact, the lack of generic and high-performance

parser might be one of the reasons why there are so few extensible languages.

To ensure that this is indeed the case, we defined the requirements for an extensible

parser and analysed all available parsing algorithms and their implementations that even

remotely matched our criteria. After the analysis, we concluded that no existing parsing

algorithm is fully suitable to parse such extensible languages: the ones that do exist

are either so inefficient that they can only be used as proof-of-concepts or so much

generality is sacrificed in favour of increased parsing performance that it makes defining

new syntactic language extensions problematic.

As a result, by using the ideas of existing parsing algorithms (primarily from Earley

parser and its derivatives), we created a new parser called Earley Virtual Machines.

It is a virtual-machine based, generalized context-free parsing algorithm that supports

parsing adaptive grammars. We also created a grammar language for defining other

languages that exposes additional internal features of EVM that are not present in more

conventional parsing algorithms. These features allow defining new languages in more

modular fashion and can be used to extend existing grammars without modifying them.

After testing our prototype implementation of EVM, we concluded that additional

changes and optimizations are needed to EVM so it could maintain acceptable perfor-

137

mance. These changes and optimizations were incorporated into a successor of EVM,

which we called Scannerless Earley Virtual Machines (or SEVM for short).

As the name implies, the main focus of SEVM is the scannerless aspect of the parser:

faster terminal symbol matching, cheaper (performance-wise) token-level disambigua-

tion, just-in-time grammar to machine code translation and other improvements. An

improved language for defining grammars was created for SEVM to enable access to

some of these new features. To ensure that SEVM possesses improved performance, an

implementation for SEVM was created (called north).

This implementation was tested to ensure that our optimizations yield meaningful

performance improvements. Furthermore, the performance of north was compared to

other parser implementations (such as the commonly used flex and bison combina-

tion). We found that SEVM, while being less performant than more constrained/spe-

cialized parsing algorithms, possesses impressive performance for a generalized scan-

nerless parser that can parse adaptive grammars as a bonus.

As a result, we can safely conclude that Scannerless Earley Virtual Machines satisfy

all the requirements for parsing extensible programming languages, which was the goal

of this thesis.

138

Appendices

A bench_parsers utility

bench_parsers utility is designed to obtain accurate benchmarks of various parsing

methods, north included.

bench_parsersmay be run with cargo utility of Rust programming language with:

cargo bench -p bench_cli -- <TEST_NAME>

The following benchmarks are available:

• assoc_a: recursion performance test A.

• assoc_b: recursion performance test B.

• benches: relative parser performance comparison.

• gc: a benchmark for testing the impact of garbage collection to parsing perfor-

mance.

• ri: a benchmark for testing the impact of partial reduction incorporation to pars-

ing performance.

B north_cli utility

north_cli utility enables to test north implementation of SEVM. Users can inspect

SEVMparsing process, resulting parse-tree and additional metrics by providing an input

grammar file and input data file.

In order to parse a sample file with a provided grammar, north_climust be launched

by supplying the following required options:

./north_cli parse -g <grammar_file> -i <input_file>

139

This will cause the input grammar file to parsed and analysed, after which the gram-

mar MIR will be generated, which then will be used during parsing/subset construction

to parse the provided input file. No output will be printed if the parsing was successful.

There are additional options that can be supplied to north_cli to augment the pars-

ing process and/or reported information:

• -G disables the garbage collector. This will cause the parser to use significantly

more memory.

• -I disables the partial reduction incorporation.

• -p prints the timing information for significant parts of the parsing process.

• -m shows the unoptimizedMIRwhich is directly constructed from the input gram-

mar.

• -o shows optimized MIR fragments immediately after they are constructed.

• -r shows reduction trace. This allows to trace the execution of the parser.

• -t shows the resulting parse-tree. It will only be printed if the parsing process

was successful.

• -e shows the additional metrics after parsing. Some of the shown metrics are:

number of reductions per chart entry histogram, number of suspended tasks per

chart entry histogram, total number of reductions, number of duplicate reductions,

allocator information and others. Some of this information may be meaningful

only when parsing with garbage collector disabled.

It should be noted that MIR printed by north_cli will shown in a slightly different

dialect compared to the rest of this work. The dialect for visualisingMIRwas simplified

to make it more compact and suitable for embedding fragments of it to this work.

140

References

[1] S. O. Anderson and R. C. Backhouse. Locally least-cost error recovery in earley’s

algorithm. ACM Trans. Program. Lang. Syst., 3(3):318–347, July 1981.

[2] J. Aycock and R. N. Horspool. Practical earley parsing. Compututer Journal,

45:620–630, 2002.

[3] C. Brabrand and M. I. Schwartzbach. The metafront system: Safe and extensible

parsing and transformation. Science of Computer Programming, 68(1):2–20,Aug.

2007.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/xt 0.17.

a language and toolset for program transformation. Sci. Comput. Program.,

72(1-2):52–70, June 2008.

[5] W. H. Burge. Recursive Programming Techniques. Addison-Wesley, Oct. 1975.

[6] W. Cazzola and E. Vacchi. On the incremental growth and shrinkage of lr goto-

graphs. Acta Informatica, 51(7):419–447, 2014.

[7] J. Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–

102, 1970.

[8] G. Economopoulos, P. Klint, and J. Vinju. Faster Scannerless GLR Parsing, pages

126–141. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[9] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. Sugarj: Library-based syn-

tactic language extensibility. SIGPLAN Not., 46(10):391–406, Oct. 2011.

[10] B. Ford. Packrat parsing: a practical linear-time algorithm with backtracking.

Master’s thesis, Massachusetts Institute of Technology, 2002.

[11] B. Ford. Parsing expression grammars: A recognition-based syntactic foundation.

SIGPLAN Not., 39(1):111–122, 2004.

141

[12] R. Grimm. Practical packrat parsing. Technical report, New York University,

Computer Science, 2004.

[13] T. Jim and Y. Mandelbaum. Efficient earley parsing with regular right-hand sides.

Electronic Notes in Theoretical Computer Science, 253(7):135 – 148, 2010.

[14] T. Jim andY.Mandelbaum. Delayed semantic actions in yakker. In Proceedings of

the Eleventh Workshop on Language Descriptions, Tools and Applications, LDTA

’11, pages 8:1–8:8, New York, NY, USA, 2011. ACM.

[15] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and algorithms for data-

dependent grammars. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’10, pages 417–430,

New York, United States, 2010. ACM.

[16] L. C. Kats, E. Visser, and G. Wachsmuth. Pure and declarative syntax definition:

Paradise lost and regained. SIGPLAN Not., 45(10):918–932, Oct. 2010.

[17] D. E. Knuth. On the translation of languages from left to right. Information and

Control, 8(6):607 – 639, 1965.

[18] J. M. Leo. Ageneral context-free parsing algorithm running in linear time on every

lr(k) grammar without using lookahead. Theoretical Computer Science, 82(1):165

– 176, 1991.

[19] P. McLean and R. N. Horspool. A faster earley parser. In Proceedings of the

6th International Conference on Compiler Construction, CC ’96, pages 281–293,

London, UK, UK, 1996. Springer-Verlag.

[20] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal of Research and Development, 3(2):114–125, April 1959.

[21] L. V. Reis, R. S. Bigonha, V. O. Di Iorio, and L. E. S. Amorim. The formaliza-

tion and implementation of adaptable parsing expression grammars. Sci. Comput.

Program., 96(P2):191–210, Dec. 2014.

[22] E. Scott. Sppf-style parsing from earley recognisers. Electronic Notes in Theoret-

ical Computer Science, 203(2):53 – 67, 2008.

[23] E. Scott and A. Johnstone. Generalized bottom up parsers with reduced stack

activity. Comput. J., 48(5):565–587, Sept. 2005.

142

[24] E. Scott and A. Johnstone. Right nulled glr parsers. ACM Trans. Program. Lang.

Syst., 28(4):577–618, July 2006.

[25] C. Seaton. A programming language where the syntax and semantics are mutable

at runtime. Master’s thesis, University of Bristol, 2007.

[26] T. A. Standish. Extensibility in programming language design. SIGPLAN Not.,

10(7):18–21, July 1975.

[27] P. Stansifer and M. Wand. Parsing reflective grammars. In Proceedings of the

EleventhWorkshop on LanguageDescriptions, Tools andApplications, LDTA’11,

pages 10:1–10:7, New York, United States, 2011. ACM.

[28] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for Prac-

tical Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1985.

[29] E. Vacchi andW. Cazzola. Neverlang: A framework for feature-oriented language

development. Computer Languages, Systems & Structures, 43:1–40, 2015.

[30] R. Valkering. Syntax error handling in scannerless generalized lr parsers. Physica

D-nonlinear Phenomena - PHYSICA D, 01 2007.

[31] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation

filters for scannerless generalized lr parsers. In R. N. Horspool, editor, Compiler

Construction, pages 143–158, Berlin, Heidelberg, 2002. Springer Berlin Heidel-

berg.

143

Audrius Šaikūnas

EXTENSIBLE PARSINGWITH EARLEYVIRTUALMACHINES

Doctoral dissertation

Tehnological Sciences

Informatics Engineering (07 T)

Editor: ???

	Abstract
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Research context
	Introduction and motivation
	Problem statement
	Research goal, objectives and tasks
	Scientific contribution of the research
	Practical significance of results
	Defended claims
	Approbation and publications
	Outline

	Basic concepts
	Compilers and programming languages
	Compiler architecture
	Lexing and parsing
	Code generation
	Extensibility

	State of art
	Parsing methods
	Requirements for a REP language parser
	LR(k) parsers
	GLR-family parsers
	Recursive decent parser
	Packrat parser
	Adaptable Parsing Expression Grammars (APEG)
	Specificity parser
	Earley parser
	Parsing reflective grammars
	Efficient Earley parsing
	Yakker parser

	Related tools and languages
	Katahdin
	SugarJ
	Neverlang

	Conclusions

	Extensible parsing with Earley Virtual Machines
	Earley Virtual Machines
	Introduction to Earley Virtual Machines
	EVM grammars
	EVM states
	EVM fibers
	EVM interpreter

	Compiling basic EVM grammars
	General purpose computation in EVM
	Improving source grammar flexibility
	Regular right hand sides in production rules
	Rule and operator precedence
	Specifying operator associativity

	Parsing with regular lookahead
	Fixed length lookahead
	Variable length lookahead

	Parsing with data dependant constraints
	EVM grammar language
	Matching input against dynamic content

	Abstract syntax tree construction
	Automatic AST construction
	Manual AST construction
	Delayed semantic actions

	Parsing reflective grammars
	Dynamic grammar composition
	Extensions of EVM grammar language
	Compiling EVM grammars with domains
	Loading multiple grammar modules in EVM
	Parsing reflective grammars in EVM

	EVM performance improvements
	Garbage collection of suspended fibers

	Eliminating dynamic non-terminal call indirection
	On-demand instruction subset construction

	Conclusions

	Implementation of Scannerless EVM
	Scannerless EVM
	Flaws of the original EVM
	Overview of the internal structure of SEVM

	Improving grammar expressiveness
	Abstract grammar rules
	Named precedence groups
	Dominating terminals

	Ambiguity elimination
	Negative reductions
	Strict execution ordering in SEVM runtime
	Negative matches
	Greedy non-terminal repetition
	Strict execution ordering in SEVM optimizer
	Token level ambiguity elimination

	Parser optimizations
	Profiling EVM
	Just-in-time grammar compilation
	DFA extraction
	Partially incorporated reductions
	Garbage collection

	Avoiding exponential complexity
	Parse-tree construction

	Evaluation of SEVM
	Overview of evaluation process
	Language selection
	Implementation selection
	Comparison method
	Test environment
	Test data
	Test results
	Relative performance comparison
	Performance influence of garbage collector
	Performance influence of incorporated reductions
	Performance influence of recursion type

	Validity
	Internal validity
	External validity

	Conclusions

	General conclusions
	Appendices
	bench_parsers utility
	north_cli utility

	References

