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Summary
Conventional Unmanned Air Vehicle auto-pilot systems use GPS signal for
navigation. Conventional autopilot systems fail to navigate safely if the
GPS signal is lost, jammed or unavailable. UAV should estimate its position
without the need for external signals. By localizing the aircraft using radio
signal beacons placed on the ground solves the problem of navigation in
GPS-Denied environment, but jamming of radio signals makes this method
unfeasible. The pose estimation must be performed using onboard methods
only in order to achieve complete autonomy of the UAV. Localization, the
process of pose estimation relatively to a known environment, may solve
the problem of navigation in GPS-Denied environment. Visual odometry,
Simultaneous Localization and Mapping (abbr. SLAM), or map-based loc-
alization techniques can be used to process aerial imagery from a downward
looking camera onboard UAV may be used to solve the pose estimation
problem. Visual odometry and SLAM has shown astonishing results while
performing flights in indoors or near-ground altitudes (< 100 meters). While
Visual odometry and SLAM methods do not require an apriori known map
of the environment (map-less methods), these algorithms are prone to errors
over long distance flights (>1 kilometer). The accuracy of these methods for
low-altitude flights (> 100 meters) is not well studied since the GPS signal
is usually available in this altitude and the problem of signal jamming and
spoofing is receiving attention only in recent years. Map-based techniques
can reduce the errors for long distance flights compared to map-less systems.
This dissertation aims to develop a new map-based localization algorithm
based on Particle filter combined with Visual Odometry to achieve accurate
pose estimation for low-altitude and long distance flights.

A modification of a Particle filter localization algorithm is proposed and
called Discriminatory Pearson Correlation based Particle Filter Localization
(abbr. DCP-PFL). The algorithm is developed using KLD sampling based
Particle filter and Pearson correlation. The experimental results obtained
in this dissertation identified that Pearson Correlation is the most suitable
image similarity metric to match aerial images to a map and KLD sampling
technique provides the results 3x times faster with similar results compared
to other techniques. The main contribution of the work is the proposed
image similarity to probability conversion functions. The thesis proposes
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Summary

two conversion functions – rectifying and logistic. The conversion functions
are parametrized to achieve a trade-off between localization accuracy and
robustness. By changing the parameter value, conversion function allows
to boost survival probabilities of high similarity particles and reduce the
probability for particles with low similarity; thus the algorithm is called dis-
criminatory. By comparing conversion functions with different parameter
values, the logistic conversion function with parameter value 0.2 was identi-
fied as most suitable performing since it achieved 43% more accurate results
using 3x times less computation compared to baseline Softmax conversion
function.

DCP-PFL algorithm is compared against state-of-the-art Visual Odo-
metry algorithm SVO and Visual SLAM algorithm ORB-SLAM. The pro-
posed algorithm reduced localization error by a factor of 2x and reduced the
error drift slope by 11x times compared to the SVO Visual Odometry al-
gorithm. Comparing against state-of-the-art SLAM algorithm ORB-SLAM,
the proposed DCP-PFL algorithm achieved 2.6 times better accuracy.

Additionally, the thesis proposes a method for energy efficiency com-
parison of embedded computing platforms. Three heterogeneous platforms
were compared for a typical image processing application to identify the
most energy efficient platform for executing computer vision algorithms on-
board UAV. The results have shown that GPU platforms are more efficient
compared to the Epiphany-16 co-processor and Nvidia Tegra X1 GPU was
the best performing (142x faster than a single core application and 29x
faster than nearest GPU opponent) and the most energy efficient platform
(used 84x less energy than a CPU and 12x less than GPU opponent).

The obtained results were published in six publications: three papers
in periodic scientific journals and three papers in peer-reviewed scientific
conference proceedings. The results were presented in three international
scientific conferences.
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Santrauka
Bepiločių orlaivių (toliau – BPO) navigacijos sistemos naudoja GPS pozi-
cionavimą autonominių misijų vykdymui. Jeigu GPS signalas yra laikinai
prarastas, užblokuotas arba neprieinamas – įprastos navigacijos sistemos
negali tęsti autonominio skrydžio, orlaiviams tenka nusileisti avariniu būdu
arba jie būna prarasti. GPS signalas gali būti pakeičiamas iš žemės si-
unčiamais radijo signalais, tačiau jei radijo signalai yra blokuojami – šis
metodas tampa neveiksmingu. Norint pasiekti tikrą BPO autonomiškumą,
orlaivis turi gebėti nustatyti savo poziciją nenaudodamas išorinių radijo
signalų grįstų technologijų. Problema sprendžiama vizualinės lokalizacijos
algoritmais apdorojančiais aerofotografinius vaizdus, kurie gaunami iš or-
laivyje įmontuotos ir į žemės paviršių nukreiptos kameros.

Vizualinė lokalizacija – kompiuterinės regos sritis, tirianti žemėlapiui
reliatyvios orlaivio (ar roboto) pozicijos nustatymo metodus naudojant
optines vaizdo kameras ir vaizdo apdorojimo algoritmus. Šiuo metu yra
trys pagrindinės metodų rūšys naudojamos BPO vizualinei lokalizacijai:
vizualinė odometrija, sinchroniška lokalizacija ir žemėlapio formavimas ir
žemėlapiais grįsti metodai. Vizualinės odometrijos ir sinchroniškos lokaliza-
cijos ir žemėlapio formavimo algoritmams nereikalingas iš anksto žinomas
žemėlapis, tačiau ilgesnio atstumo (> 1 kilometro) skrydžių metu atsir-
anda paklaidos. Žemėlapiais grįsti metodai leidžia sumažinti besikaupi-
ančias paklaidas ilgesniems skrydžiams. Šioje disertacijoje tiriami vizu-
alinės lokalizacijos algoritmai nedideliems orlaiviams (nuo 1 iki 25 kg)
skrendantiems mažame aukštyje (nuo 100 iki 3000 metrų). Disertacijos
tikslas yra pasiūlyti naują žemėlapiu grįsta lokalizacijos algoritmą apjungi-
antį dalelių filtru grįstą lokalizaciją ir vizualinę odometrija. Dėl atliktų
eksperimentinių tyrimų buvo parinkta vaizdų panašumo metrika, atrankos
metodas, bei vaizdų panašumo perskaičiavimo funkcija. Eksperimentiniai
rezultatai parodė, kad tinkamiausia vaizdų panašumo metrika šiam už-
daviniui yra Pirsono koreliacijos koeficientas. KLD algoritmas, naudojamas
dalelių atrankai, leido pagreitinti lokalizaciją 3 kartus lyginant su kitais
atrankos algoritmais. Disertacijoje buvo pasiūlyta nauja Dalelių filtro al-
goritmo sudedamoji dalis – parametrizuota funkcija perskaičiuojanti vaizdų
panašumo metriką į dalelės tikimybę. Eksperimentinėje dalyje parodoma,
kad keičiant perskaičiavimo funkcijos parametro vertę galima pasiekti al-
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Santrauka

goritmo atsparumą senesnių žemėlapių netikslumams. Iš keleto pasiūlytų
perskaičiavimo funkcijų – logistinė funkcija su parametro verte 0.2 buvo
išrinkta tinkamiausia, naudojant ją buvo pasiektas 43% geresnis tikslumas
ir algoritmas paspartintas 3 kartus lyginant su Softmax perskaičiavimo funk-
cija.

Atlikus eksperimentus parenkant tinkamiausias komponentes lokalizaci-
jos algoritmui, disertacijoje pasiūloma adapatyvaus dalelių filtro modifika-
cija – Dalelių Filtro Lokalizacija su diskriminavimu pagal Pirsono koreliaciją
(angl. Discriminatory Pearson Correlation based Particle Filter Localiza-
tion, DPC-PFL). Algoritmas vadinamas diskriminuojamu, kadangi vaizdo
panašumo į dalelės tikimybę perskaičiavimo funkcija yra parametrizuota, ji
leidžia valdyti kurioms Pirsono koreliacijos vertėms bus suteiktos mažesnės
tikimybės išgyventi, t.y. kurios dalelės bus diskriminuojamos. Pasiūlytas
algoritmas su pasirinktomis komponentėmis buvo palygintas su moderni-
ausiu vizualinės odometrijos algoritmu SVO ir vizualinės sinchronizuotos
lokalizacijos ir žemėlapio atkūrimo (angl. Visual SLAM) algoritmu ORB-
SLAM. Pasiūlytas algoritmas pagerino SVO odometrijos algoritmo tikslumą
2 kartus ir 11 kartų sumažino besikaupiančios klaidos kaupimosi šlaitą. Ly-
ginant su ORB-SLAM algoritmu, pasiūlytas algoritmas pasiekė 2.6 karto
geresnį tikslumą.

Norint identifikuoti energetiškai efektyviausią ir greičiausią įterpt-
inę platformą vaizdo apdorojimui tinkamą montavimui orlaivyje, diser-
tacijoje buvo palygintos trys įterptinės lygiagrečių skaičiavimų platfor-
mos. Tyrimo rezultatai parodė, kad grafiniais procesoriais grįstos plat-
formos yra efektyvesnės nei neseniai pristatyta koprocesoriaus platforma
naudojanti Epiphany-16 koprocesorių. NVIDIA Tegra X1 grafiniu pro-
cesorius grįsta platforma parodė geriausius rezultatus (142 kartus greičiau
atliko skaičiavimus nei įprastas vieno branduolio procesorius ir 29 kartus
greičiau nei antroje vietoje esanti platforma) ir yra energetiškai efektyvi-
ausia (naudoja 84 kartus mažiau energijos negu vieno branduolio procesorius
ir 12 kartų mažiau energijos nei antroje vietoje esanti vaizdo plokštė).

Doktorantūros studijų metu parengtos 6 publikacijos: 3 publikacijos
periodiniuose mokslo žurnaluose ir 3 publikacijos recenzuojamose periodinių
mokslinių konferencijų medžiagose. Darbai buvo pristatyti 3 tarptautinėse
mokslo konferencijose.
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Notation

St - Particle set on time t

P (i) - ith particle of the particle set
T - image from camera, represented by a sequence of pixel color intensity
values
I - image patch from a map, represented by a sequence of pixel color
intensity values
s
(i)
t - probability value of ith particle on time t

Rt - image similarity value on time t

b
(i)
t - ith particle weight on time t

F (x) - image similarity to probability conversion function
δ̂tran - movement distance measured by odometry algorithm, with addi-
tional noise
δ̂rot - rotation angle measured by magnetometer sensor, with additional
noise
⟨x, y, θyaw⟩ - a set describing UAV pose in 2D map space, x, y coordinates
and heading angle θ

⟨x′, y′, θ′yaw⟩ - posterior UAV pose
bel(zt) - belief over position hypothesis zt

zt - UAV (or robot’s) position hypothesis on time t

mt - sensor measurement data on time t
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INTRODUCTION

1. Research Context
During the recent years, the development of powerful embedded comput-
ing platforms enables the use of computer vision and artificial intelligence
onboard robotic platforms, such as Unmanned Air Vehicles (abbr. UAV)
(e.g., drones), ground vehicles, submarines, and others. These capabilities
take a step forward towards intelligent, autonomous, secure, and most im-
portantly safe robots. In the case of UAVs, flight safety and security are
vital issues, since UAVs are highly dependent on GPS signal which can be
jammed or spoofed [1]. The UAVs play an essential role in the military,
law enforcement, and rescue services by providing critical intelligence from
above. GPS signal is vulnerable to jamming and spoofing. Encoded milit-
ary standard GPS signals can be used to avoid spoofing, although they are
still vulnerable to jamming, this type of GPS signals are not available for
use in commercial aircraft. If the GPS signal is lost or the UAV is navig-
ating in a GPS-denied environment, conventional autopilot systems fail to
navigate safely when there is no available alternative localization method.
UAV should estimate it is own position without the need of GPS signal
or other radio signal based localization techniques. Therefore, visual local-
ization, the process of pose estimation relatively to a known environment
using optical sensors, may solve the problem of navigation in GPS-Denied
scenarios.

Visual odometry calculated on imagery from a downward looking camera
on a UAV can solve the GPS-Denied localization [2, 3]. Such a solution may
deal with this problem to certain limitations: the visible area of the cam-
era must contain enough visual features for tracking throughout the flight.
Visual odometry has a fundamental issue of positioning drift and errors add
up to infinity, within infinite flight time. A similar problem of mobile robot
localization was solved using Monte Carlo localization [4]. Particle filter
mixed with wheel odometry approach was used in [5], where a mobile robot
used ceiling mosaic and an upward facing camera to localize its position us-
ing Particle filter localization. [6] demonstrates the usage of Particle filter
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with a panoramic vision for robot localization. Stereo vision systems have
been successfully applied to low/medium size UAVs due to its low weight
and versatility. The problem of two cameras is the rigid distance between
them, which limits the useful altitude range [7]. Computer vision techniques
were demonstrated to be able to solve “kidnapped robot problem” (or global
localization problem) using Visual odometry and Extended Kalman-filter
based Synchronous Localization and Mapping (abbr. SLAM) in [7]. This
solution relies on natural landmark seen in the which are used to calculate
homography, recovering the flight. Particle filters have solved localization
problem for autonomous robots [8] using laser scanners and panoramic vis-
ion [6]. A Particle filter based map matching solution was proposed in [9],
it has shown potential results, but the evaluation of the algorithm is limited
to a tiny dataset. Military navigation systems—TERMAC and DSMAC—
successfully used Particle filtering techniques for missile guidance [10]. This
thesis uses basic principles of Particle filter and previous works on UAV
navigation to propose a new algorithm that improves localization accuracy,
execution speed, and robustness to inaccuracies in maps of the environment.

The research questions are the following:

1. What are the means of UAV localization when GPS signal is unavail-
able?

2. What is the accuracy that can be achieved using visual localization
and how can it be improved?

3. Which computing platform should be used to perform visual localiza-
tion onboard UAV?

4. Which computer vision algorithms are most suitable for UAV localiz-
ation during long distance, low altitude flights in GPS-Denied envir-
onment?

2. Statement Of The Problem

Autonomous flight of UAV is highly dependent on precise pose estimation
of the aircraft body. Autonomous aircraft rely on a precise GPS signal to
perform autonomous flight missions. Consequently, flights are impossible
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2. Statement Of The Problem

to perform or fail if the GPS signal is lost or jammed. It is an especially
worrying problem during military UAV missions since the GPS signal is
entirely unavailable in such scenarios. UAVs can also be used for search
and rescue missions in extreme situations, where GPS signal might not be
available. External radio signal based navigation systems were developed
as a feasible solution for this challenge, but all radio signals are vulnerable
to jamming.

The field of computer vision is tackling the problem by proposing visual
localization algorithms, that process video stream from onboard cameras
and estimates aircraft pose in space. Visual odometry, SLAM, optical
flow, and image registration algorithms were developed, which can provide
backup localization for UAVs. Although, these techniques show stunning
results in indoors or outdoor environments at near-ground (< 100 meters)
altitude, not many researchers apply these algorithms in low altitude flights
(between 100-3000 meters). Most researchers focus on micro UAVs, that are
only capable of flying at near-ground altitudes or indoor environments since
they are cheaper and more widely available. Problems faced at near-ground
altitude is quite different than during low altitude, long distance flights that
are far more expensive to perform.

Visual SLAM algorithms have significantly advanced to provide drift-
free positioning systems, but they have focused for ground vehicles or UAVs
flying in indoors or a near-ground altitude (usually 5-15 meters) outdoors
flights. The military field developed TERCOM navigation systems for mis-
sile GPS-Denied navigation a few decades ago. TERCOM systems are still
in use today, but they are dependent on accurate height maps of the envir-
onment to provide precise localization. An improved version of TERCOM
is the DSMAC system, which used ortho-photo maps and optical camera
sensor for navigation. Both systems require very recent elevation or ortho-
photo map of the environment, which is usually captured using satellites
moments before the flight.

The development of a backup navigation system for GPS is being per-
formed by researches around the globe, to solve the GPS-Denied navigation
problem and contribute to autonomous flight safety. This thesis analyses
map relative localization techniques using an optical sensor to provide pre-
cise and drift-free positioning for low altitude UAV flights in GPS-Denied
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environments. Improvements to current techniques are proposed to speed-
up execution, reduce localization drift, improve precision and improve ro-
bustness to inaccuracies in maps so that localization could be feasible in
out-of-date map.

For the UAV to be completely autonomous and independent of external
sensors to perform navigation, sensors and computing hardware must be
mounted on board the UAV. It means that hardware must be powerful
enough to process images from camera at high frequency, but also is con-
strained in size and energy consumption. The thesis aims to develop and im-
prove a map-based visual localization algorithm but also proposes a method
for evaluating the energy efficiency of embedded parallel computing plat-
forms. It is necessary to benchmark state-of-the-art hardware computing
platforms and evaluating their ability to perform common vision task with
the least energy consumption.

3. Research Object

The research object is visual localization of a UAV using computer vision,
image processing, and Particle filtering algorithms, that suitable for execu-
tion onboard UAV with embedded computer hardware.

4. Research Aim And Objectives

The research aim is to develop new visual localization algorithm, that is
capable of UAV pose estimation in GPS-Denied environments during low
altitude and long-distance flights, running on embedded flight computer that
outperforms existing methods in localization accuracy, execution speed, and
robustness to errors in the aerial imagery.

To accomplish the research aim, followed tasks were performed:

1. Compare image similarity metrics to identify the most suitable metric
for matching terrain images captured during a low altitude flight for
UAV localization.

2. Compare particle sampling techniques used in Particle filters to
identify which sampling technique requires the least computations for
Particle filter localization algorithm.
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3. Propose and compare image similarity to particle probability conver-
sion function to improve the accuracy of a Particle filter localization
algorithm.

4. Propose a visual Particle filter localization algorithm based on the
results of previous tasks and evaluate the ability of the algorithm to
reduce the accumulating error of Visual odometry.

5. Compare the proposed Particle filter localization algorithm against
state-of-the-art SLAM algorithm.

6. Propose a new method for evaluation of embedded computing plat-
forms to identify the most energy efficient platform currently available
that suitable for computer vision tasks onboard UAV.

5. Research Methods

Research performed in this thesis is based on these scientific methods:

1. Literature review is performed on the latest scientific papers to
identify, select and evaluate state-of-the-art algorithms solving the
stated problem.

2. Quantitative and qualitative information gathering was performed to
create datasets used for experiments and experimental data describing
the performance of the proposed solution, or its components.

3. Statistical methods, e.g., Student’s t-test, Shapiro-Wilk test, are used
to perform confirmatory data analysis, ensuring the reliability of data
and experimental setup.

4. Constructive research was used to propose improvements on the real-
world of the problem and propose new methods to improve the theory.

5. Software development methods were used in the experimental part of
this thesis, implementing localization algorithms and proposing new
methods to improve existing algorithms.
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6. Scientific Contributions Of The Research

The thesis contributes to the development of vision-based map relative loc-
alization systems for low altitude UAV flights. The main contributions of
the thesis can be outlined as follows:

1. A modification of visual Particle filter localization algorithm is pro-
posed. The thesis introduces a new component for Particle filter al-
gorithm — image similarity to probability conversion function. The
effects of the function on the accuracy, execution speed and robust-
ness were measured in the experimental section of this thesis. The
ability to achieve trade-off of accuracy for robustness by using func-
tion parametrization was presented.

2. Proposed Particle filter localization algorithm was able to outperform
state-of-the-art algorithms — SVO and ORB-SLAM in the means of
localization accuracy. The proposed localization algorithm drastically
improves both - accuracy and execution speed over classical imple-
mentation. It allowed improving the accuracy results of state-of-the-
art odometry and SLAM algorithms.

3. Embedded computing platform benchmark method is proposed to
identify the most energy efficient parallel computing platform capable
of common computer vision tasks. Three platforms were compared,
and a platform based on NVIDIA TX1 GPU was identified as the fast-
est and most energy efficient platform for image processing onboard
UAV among other compared platforms.

7. Practical Value Of The Research

The research is focused on low altitude UAV localization to provide GPS
backup system during flight. The research provides valuable information for
computer vision engineer researching on robotics, localization, and image
registration on embedded hardware. The most important practical contri-
butions are the following:
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8. Defensive Claims

1. New localization algorithm based on Particle filter was developed, and
its source code 1 is publicly available for other researchers to bench-
mark against and use in the development of UAV backup localization
systems.

2. The experimental results have shown that by using image similarity to
probability density conversion function in Particle filter, it is possible
to control the accuracy and robustness of the localization. By using
logistic conversion function and changing conversion curve using a
parameter, it is possible to achieve robustness and accuracy trade-off,
e.g., increasing accuracy if up-to-date maps are available or increasing
robustness to inaccuracies in an out-dated map with a certain loss of
accuracy.

3. A new dataset of aerial imagery was created and published with open
access. The dataset contains images from a simulated alongside with
sensor data that can be used to develop and evaluate optical flow,
visual odometry, localization, SLAM, and other vision algorithms. To
the best of our knowledge, it is by far largest dataset of low altitude
aerial imagery.

4. Different particle sampling techniques were evaluated and KLD
sampling technique has shown to significantly improve localization
algorithm execution runtime with similar accuracy compared to other
techniques.

5. The new method of embedded computing platform comparison was
used to identify the most energy efficient computing platform from
currently most advanced available platforms. Nvidia Tegra X1 has
shown the best energy efficiency results and price/performance rates.

8. Defensive Claims

The following claims are defended in this thesis:
1Source code is available online: https://github.com/jureviciusr/particle-match
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1. Pearson Correlation Coefficient (or Normalized Correlation Coeffi-
cient) is the most suitable image similarity metric for visual local-
ization of a UAV compared against the sum of squared differences
and cross-correlation metrics.

2. The use of KLD sampling algorithm speeds-up the execution of
Particle filter localization by reducing the number of particles used
for localization without affecting positioning accuracy.

3. The use of logistic conversion function allows the proposed localization
algorithm to achieve higher accuracy and improve robustness against
inaccuracies in maps of the environment.

4. Proposed modification of Particle filter localization algorithm is more
accurate then Visual odometry algorithm SVO and has reduced the
accumulating error.

5. Proposed modification of Particle filter localization algorithm is more
accurate than state-of-the-art algorithm ORB-SLAM.

6. The proposed method for energy efficiency measurement allows the
comparison of embedded computing platforms and identifies the most
energy efficient platform.

9. Approbation Of The Results

Results obtained in this thesis were published in six papers: three papers in
periodic scientific journals and three papers in reviewed scientific conference
proceedings. The results were presented in three international scientific
conferences. The following list presents the publications and presentations
in conferences:

Papers in periodic scientific journals:

[A1] Jurevičius, R., Marcinkevičius, V., and Šeibokas J. (2012). Robust
GNSS Denied Localization for UAV Using Particle Filter and Visual
Odometry. Machine Vision and Applications, Springer. ISSN: 1432-
1769 [Under Review] [IF: 1.306]
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9. Approbation Of The Results

[A2] Jurevičius. R., Marcinkevičius, V. (2019). AIR: A Dataset Of Aerial
Imagery From Robotics Simulator. International Journal of Intelligent
Unmanned Systems. ISSN: 2049-6427 [Under Review] [IF: 1.10]

[A3] Jurevicius, R., and Marcinkevicius, V. (2016). Energy Efficient Plat-
form for Sobel Filter in Energy and Size Constrained Systems. Baltic
Journal of Modern Computing, 4(1), 2015, p. 79-88. ISSN: 2255-8950

Papers in peer-reviewed scientific conference proceedings:

[A4] Jurevičius, R., and Marcinkevičius, V. (2017). Application Of Vision-
Based Particle Filter and Visual Odometry for UAV Localization.
WSCG ’2017: short communications proceedings: The 25th Interna-
tional Conference in Central Europe on Computer Graphics, Visualiz-
ation and Computer Vision 2016 in co-operation with EUROGRAPH-
ICS: University of West Bohemia, Plzen, Czech RepublicMay 29 –
June 2, 2017, p. 67–71. ISBN: 978-80-86943-45-9

[A5] Jurevicius, R., Marcinkevicius, V., and Taujanskas, V. (2016). Com-
parison of Image Similarity Functions and Sampling Algorithms in
Vision-Based Particle Filter for UAV Localization. Proceedings of
CSIST 2016, p. 109–114. ISBN: 978-985-566-369-1

[A6] Jurevičius, R., and Marcinkevičius, V. (2015). Energy Efficient
Platform for Sobel Filter Implementation in Energy and Size Con-
strained Systems. In Information, Electronic and Electrical Engineer-
ing (AIEEE), 2015 IEEE 3rd Workshop on Advances in (pp. 1–5).
IEEE. ISBN: 978-1-5090-1201-5

Presentations in international scientific conferences:

1. Jurevičius R. Energy Efficient Platform for Sobel Filter Implementa-
tion in Energy and Size Constrained Systems. The 3rd Workshop on
AIEEE’15, Riga, Latvia. November 13–14, 2015.

2. Jurevičius R. Comparison of Image Similarity Functions and Sampling
Algorithms in Vision-Based Particle Filter for UAV Localization. In-
ternational Congress on Informatics CSIST’2016, Minsk, Belarus. Oc-
tober 24–27, 2016.
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3. Jurevičius R. Application of Vision-Based Particle Filter and Visual
Odometry for UAV Localization. The 25th International Conference
in Central Europe on Computer Graphics, Visualization and Com-
puter Vision WSCG ’2017, Plzen, Czech Republic. May 29–June 2,
2017.

10. Outline Of The Thesis

The thesis is organized as follow: Chapter 1 provides an introduction and
overview of the thesis; Chapter 2 describes methods of visual localization
which can be performed onboard UAV and datasets used for algorithms
development and evaluation; Chapter 3 presents the research methodology
and presents the new methods proposed by in thesis; Chapter 4 presents
experimental results of evaluation of the modification of the Particle filter
localization algorithm and the comparison of different embedded comput-
ing platforms; General conclusions are presented afterward; Bibliographic
references are included at the end of the thesis. The dissertation consists of
105 pages, 30 figures, and 16 tables.
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Chapter 1

VISUAL LOCALIZATION
ON-BOARD UAV

This chapter reviews current state-of-the-art research in the field of GPS-
Denied UAV localization. The types of UAVs are presented to define the
constraints of the objective. Algorithms of localization are presented to nar-
row down which techniques are the most suitable for the localization. Par-
allel computing platforms suitable for computer vision processing onboard
the UAV are presented. The literature review and experimental ideas are
based on research published in papers [A1], [A2], [A3], [A4], [A5], and [A6].

1.1 Unmanned Air Vehicle Platforms

The recent development in hardware sensors and embedded processors has
brought many consumer-level UAVs capable of autonomous operations. The
UAVs can be categorized according to their weight into these categories:

• Micro Aerial Vehicle (abbr. MAV): < 1 kg

• Small Unmanned Aerial System (abbr. sUAS): < 25 kg

• Unmanned Aerial System (abbr. UAS): > 200 kg

The MAVs usually are small quadrotor helicopters, since they are the
easiest to carry, operate, and can be relatively very small. Military and law
enforcement fields have been using UAVs for a few decades, most of them are

11



VISUAL LOCALIZATION ON-BOARD UAV

sUAS or large UAS. These UAVs are usually fixed-wing UAVs, which can
be very expensive, but can carry more payload, fly in higher altitudes and
flight distances might be of tens of kilometers. Figure 1.1 presents examples
of common UAV platforms used in research and development, agricultural,
and other commercial activities. AscTec Pelican UAV is shown in figure
1.1a, a UAV that was specifically designed for computer vision algorithm
development. The UAV has an onboard high-performance computing plat-
form and various sensor - optical camera, laser scanner, IMU, GPS, Baro-
meter, and other. It is a very popular platform among the computer vision
research community. Figure 1.1b shows a more classical helicopter model
UAV, which was modified with autonomous capabilities for localization re-
search by G. Conte et al. [11]. Figure 1.1c shows the Sentera Pheonix fixed
wing UAV, which is designed for aerial mapping and survey in agriculture.
Figure 1.1d show a larger fixed wing UAV Baam Tech Futura. The fixed-
wing UAVs are the most common platform in military and law enforcement
fields, due to the ability of long-distance flights.

The altitudes in which the UAVs operate can be categorized into these
categories:

• Near-ground altitude: < 100 meters

• Low altitude: between 100 and 3000 meters

• High altitude: > 3000 meters
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1.1 Unmanned Air Vehicle Platforms

(a) AscTec Pelican UAV 1 (b) Modified Autonomous RMAX Helicopter
UAV [11] 2

(c) Sentera Pheonix Fixed Wing UAV 3 (d) Baam Tech Futura Fixed Wing
UAV 4

Figure 1.1: Different autonomous UAV platforms.

The small quadrotor MAVs, such as the AscTec Pelican, usually fly in
near-ground altitude (< 100 meters) or in indoor environments, so the use
of vSLAM algorithms is quite common among these types of aircraft. The
larger helicopters and fixed-wing UAVs flying in higher altitudes have not re-
ceived that much of research activity, the most popular localization method
for them is VO. The Stereo Vision system, consisting of two calibrated cam-
eras, providing depth information is used for UAVs flying in low altitude.
The depth information combined with optical data can improve the posi-

1Ascending Technologies Home Page: http://www.asctec.de/en/
uav-uas-drones-rpas-roav/asctec-pelican/

2Research By G. Conte et al.: https://www.researchgate.net/figure/
The-Rmax-helicopter_fig1_242515144

3Sentera Pheonix UAV Home Page: https://sentera.com/phx-drone/
4Baam Tech Futura UAV Home Page: https://baam.tech/in-depth
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tioning accuracy of vision-based localization algorithms. On the other hand,
flying at higher altitudes stereo camera systems are unable to provide depth
information since the disparity between images is negligible. Low altitude
(>100 meters) usually uses monocular localization techniques.

1.2 Mobile Robot Localization

Localization is one of the key challenges for a robotic platform to achieve
complete autonomous operation. Localization is the process of estimating
the robot’s pose relative to its environment according to sensor data [4]. The
pose is usually estimated relatively to an a priori known map or is building
the map during operation. Estimating the precise robot’s pose is required to
perform autonomous navigation. This section presents general approaches
to mobile robot localization using computer vision techniques since UAV is
a mobile robot; the algorithms are generally suitable to all moving robotic
platforms. A general representation of robotic localization is presented in
figure 1.2. The general localization of a mobile robot is performed in two
main steps [12]:

1. Position prediction;

2. Position update.

Position prediction step takes the current position and applies the meas-
ured motion from sensor data, predicting the new position. The current
observations from sensors are used to match the predicted position to what
the robot currently ”sees” and update the prediction accordingly. The es-
timated robot position from position update is passed to the navigation
module, that uses this information to control the robot’s motors and plan
actions to achieve the robot’s goal.

Current state-of-the-art localization techniques are mostly probabilistic
techniques, which are variants of the Bayes filter or at least employ some
Bayesian filter based techniques. These techniques include [13]:

• Kalman filters

• Particle filters
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1.2 Mobile Robot Localization

Figure 1.2: General scheme of a mobile robot localization process.

• Multihypothesis tracking

• Grid-based approaches

• Topological approaches

In probabilistic techniques, the robot’s position is denoted as belief over
position variable zt by bel(zt) and is described in the following form:

bel(zt) = P (zt|z0:t−1,m0:t−1), (1.1)

where:

• zt - position variable on time t, it is a set of coordinates describ-
ing robot’s position in a coordinate system (it can be a planar 2-
dimensional environment or a complete 3-dimensional pose described
using 6-degrees of freedom)

• mt - sensor data (IMU, barometer, wind speed and other data used
for dead-reckoning) on time t.

The estimated position can be seen as a conditional probability over
all past robot positions z0:t−1 and all past sensor measurements m0:t−1.
On each iteration of the localization process, the previous position zt−1 is
transformed into current position zt by applying new movement data to the
previous location and correcting the location with current sensor data.
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1.2.1 Bayesian Filter

Bayesian filtering can be used to estimate the position of a mobile robot
platform. One of the first authors to explore iterative Bayesian estimation
and describe Bayesian filtering was Y. Ho et al. [14], the authors show that
the approach can solve nonlinear, non-Gaussian estimation problems [15].
In general, the Bayes filters estimate a dynamic system’s state from noisy
sensor measurements [13]. Bayes filters are iterative algorithms implement-
ing the Bayes rule:

p(A|B) =
p(B|A)p(A)

p(B)
, (1.2)

where:

• A and B are events.

• p(A|B) is a conditional probability of event A occurring given B has
occurred.

• p(B|A) is a conditional probability of event B occurring given A has
occurred.

• p(A) and p(B) are the probabilities of occurring events A and B in-
dependently.

This probabilistic approach is necessary since data from any sensor con-
tains some amounts of noise which is addressed by filtering using the Bayes
rule. In the context of mobile robot localization, the discrete Bayes rule is
used more often [13]:

p(A|B) =
p(B|A)p(A)∑
A′ p(B|A′)p(A′)

, (1.3)

where A′ is a single discrete element from the set A and
∑

A′ P (A′) = 1.
Algorithm 1 shows the basic Bayes filter algorithm to calculate robot pose
estimate shown in equation 1.1 using the discrete Bayes rule [16]. Line 3 of
the discrete Bayes filter is the prediction step of the algorithm; it calculates
belief over state zt and measurements mt. If the algorithm performs only
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localization without knowing the movement, this step usually uses odometry
information to predict the state, or in other cases, control information sent
to robot motors can be used to predict the state. In line 4 the algorithm
multiplies the belief b̄el(zt) with the probability of measurements mt be-
ing observed in the current state. The resulting value is normalized using
normalization constant η to obtain the final belief bel(zt).

Algorithm 1 Discrete Bayes Filter
Inputs: the previous robot position belief distribution bel(zt−1), latest
sensor data mt

Outputs: current robot position belief distribution bel(zt)

1: function DiscreteBayesFilter(bel(zt−1), mt)
2: for all zt−1 do
3: b̄el(zt) =

∑
zt−1

p(zt|mt, zt−1)bel(zt−1) ▷ Prediction
4: bel(zt) = ηp(mt|zt)b̄el(zt) ▷ Current state belief, normalized

return bel(zt)

1.2.2 Kalman Filter

Kalman filter is the most widely used implementation of Bayes filter. Kal-
man filter was developed by R. E. Kalman in the 1960s, and its first ap-
plication was to estimate spacecraft trajectories in the Apollo mission [17].
Since then the Kalman filter was used in a vast array of application, includ-
ing robot pose estimation, aircraft trajectory estimation, various tracking
application, such as GPS / GNSS and radar tracking. Despite the wide
usage, the Kalman filter has its limits, such that it is implemented for
continuous states and is not applicable for discrete spaces. Kalman filter
approximates beliefs by their first and second moment, which is identical to
unimodal Gaussian representation [13]:

bel(zt) = N(zt;µt,Σt) =
1

(2π)
d
2 |Σt|

1
2

e−
1
2
(xt−µt)TΣ−1

t (xt−µt), (1.4)

where:

• µt is the distribution’s mean (first moment) on time t,

• Σt is d× d covariance matrix (second moment) on time t,
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• d is the dimension of the state,

• N(zt;µt,Σt) denotes the belief of state zt given a Gaussian distribution
with mean µt and covariance Σt.

Kalman filters are optimal estimators, assuming the initial uncertainty
is Gaussian, and the system is linear. The Kalman filter can also be applied
to some nonlinear systems which can be linearized using first-order Taylor
series expansion, this type of Kalman filter is called the extended Kalman
filter[13]. The Kalman filter works only on linear systems (or linearized
nonlinear systems), so it usually is used for tracking problems when the
state can be observed with a continuous Gaussian distribution and little
noise [16].

1.2.3 Particle Filter

Particle filters are a nonparametric implementation of the Bayes filter.
Particle filters approximate the systems state space posterior by a finite
number of parameters called particles. The Bayes theorem is used in Particle
filters to update a particles probability value when more data is available.
The particles in the Particle filter is denoted as a finite set:

St := P
(1)
t , P

(2)
t , ..., P

(n)
t (1.5)

Particle P
(i)
t (where 1 ≤ i ≤ n) is an instance of state at time t. In

other words, a particle is a hypothesis of a true state space at time t, and
in the case of localization, it represents the robot’s position in space. Here
n represents a number of particles, which can be a fixed number, e.g., n =

500, or in specific cases, the number of particles can be dynamic. Particle
filters that use variable particle count to represent a distribution are called
Adaptive Particle filters.

Algorithm 2 shows a basic Particle filter algorithm based on import-
ance sampling [16]. In line 4 of the algorithm performs prediction step
by sampling a particle from a previous set, while in line 6 the particle is
propagated forward using odometry data or control signal value instead and
inserted into the set S̄t which will contain all the propagated values. The
lines 8 and 9 take the propagated set S̄t and draw new particles from it, a
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Algorithm 2 Importance sampling based Particle filter algorithm.
Inputs: the previous particles St−1, latest sensor data mt

Outputs: newly drawn particles St

1: function ParticleFilter(St−1, mt)
2: S̄t = St = ∅
3: for i = 1 to n do
4: sample P

(i)
t ∼ p(z

(i)
t |mt, P

(i)
t−1) ▷ z

(i)
t denotes the particle’s

position
5: b

(i)
t = p(mt|P (i)

t )

6: S̄t = S̄t∪ < P
(i)
t , b

(i)
t >

7: for i = 1 to n do
8: draw Pt with probability ∝ b

(i)
t

9: St = St ∪ Ptreturn St

new set of particles is created for the next iteration. In the Particle filter
algorithm, the set St represents the belief distribution bel(zt) in Bayes filter
algorithm. The set S̄t is the representation of b̄el(zt).

Different sampling techniques can be used in Particle filters to achieve
different goals, in some cases, a fixed amount of particles are necessary to
achieve a fixed iteration run time, while embedded platforms use sampling
techniques that can adapt particle counts to reduce computations.

1.3 Monocular Visual Localization

Monocular visual SLAM algorithms have been developed over the last few
years and achieved localization GPS-Denied environment. Visual SLAM
algorithm developed in [18] was shown to achieve centimeter-level precision
in an in-doors environment. ORB-SLAM2 and LSD-SLAM achieved very
accurate results on TUM-RGBD and KITTI datasets [19] [20], however,
these experiments were performed on forward facing camera images only,
which is not the case for low altitude (> 100 meters) UAV flights. Addi-
tionally, SLAM techniques suffer from increasing localization error due to
the lack of a global localization. The problem of GPS-Denied navigation
is solved by Visual odometry algorithms, although they achieved very high
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Figure 1.3: An example of a Dense optical flow of sample images. Green
lines represent the direction and magnitude of the approximated camera
movement. [21]

performance and precision, they also suffer from accumulating error (posi-
tion drift) over long distance flights (> 1km distance). The thesis focuses
on middle-sized sUAS UAVs flying in low latitude flights, so the localization
techniques covered in this section only includes monocular systems, since,
as mentioned in section 1.1, stereo vision systems do not provide any gains
at altitudes above 100 meters.

This section describes algorithms and systems developed to solve pose
estimation in GPS-denied environments and discusses the applicability of
the algorithms for low altitude UAV flights.

1.3.1 Optical Flow

Optical flow is a method of calculating the movement vectors of pixels given
two images of the same scene. The optical flow techniques are divided
into two categories: global and local methods. Global methods, such as
Horn-Schunck [22], estimate motion vectors on the whole image, even if
it contains homogeneous zones. Visualization of a global method used to
estimate dense optical flow is presented in figure 1.3. Local methods, such as
Lucas-Kanade [23], calculate optical flow only for specific pixels of interest
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and their neighborhoods, which allows faster execution and is more robust
to image noise compared to global methods. The Horn-Schunck and Lucas-
Kanade methods are considered classical optical flow methods. Applications
of optical flow inspired by bionic insect vision were used to estimate UAV
self-motion in several pieces of research [24–26]. More recently, optical flow
combined with IMU data was implemented to perform fixed hovering and
landing on moving platform for UAV [27]. Additionally, optical flow can be
used to detect moving objects in the scene from UAV [28]. Although the
optical flow is suitable for some of the maneuvers of UAV, such as hovering
and landing, it is unsuitable for long distance flights, since the optical flow
methods, even combined with IMU data, cannot acquire suitable positioning
accuracy [29].

1.3.2 Visual Odometry

Visual odometry (abbr. VO) is the process of calculating aircraft (or robot)
egomotion from the camera image stream. VO methods usually fall into
three categories[30]:

1. feature-based methods,

2. appearance-based (also known as direct) methods,

3. hybrid methods.

Feature-based methods extract visual features and track them. Depend-
ing on the focus of the method, one of the following features can be used:

• Haris [31],

• Shi-Tomasi [32],

• SIFT [33],

• SURF [34],

• CENSURE [35],

• BRIEF [36],

• FAST [37, 38],
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• ORB [39].

SIFT and SURF features are considered to be very computationally de-
manding, novel algorithms tend to use ORB or FAST features to achieve
real-time execution. Appearance-based VO approaches (also known as dir-
ect methods) does not rely on engineered visual features but uses pixel
intensity directly to reconstruct motion. These methods are also very com-
putationally demanding, so they use GPU resources for real-time execution.
Also, over the last few years, hybrid approaches were developed, that com-
putes odometry directly on pixel intensity values of selected regions. VO
can be calculated using two hardware approaches — using monocular or
stereo imagery. This research focuses on low altitude (>100 meters) flights,
where stereo cameras do not provide any advantage, the following review of
algorithms will be focused on monocular VO only.

Nistér et al. in 2004 [40] proposed first monocular VO algorithm. In the
mentioned paper, five-point RANSAC [41, 42] was introduced to calculate
motion hypotheses, and later this method became popular among other
VO algorithms. A method of combining IMU sensor data with the optical
flow in an EKF framework was proposed in [43]. The first implementation
of the proposed algorithm was a part of a SLAM algorithm, but later the
method was published as a standalone visual navigation method [44]. Some
VO algorithms were proposed for UAVs that were dependent on PTAM (a
feature-based SLAM algorithm, the next section will present it in details)
[45–47]. A semi-direct VO (abbr. SVO) was proposed to calculate motion
in real-time onboard UAV [2, 48]. The algorithm uses a sparse approach
to select features for matching between frames. The sparse approach uses
pixels at corners detected using FAST corner detector or along intensity
gradient edges. This approach uses fewer features, but the selected features
are very strong, and the algorithm achieves precise image alignment using
less computational resources. The sparse approach used in this algorithm
allows high-speed execution — 55 frames per second on embedded computer
hardware[2]. Figure 1.5 shows the transformation calculated from image
sequences. Due to the new era of deep learning and CNN, Visual odometry
is also one of the fields that are explored by deep learning approach, CNN is
proposed to be used for Visual odometry calculations [49, 50]. The approach
is to learn the motion from pixel values over two frames. The deep learning
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based methods are still heavily developed, and accuracy results are only
available on the datasets, that was used to train the network, so the general
use case for them is still unsure.

SVO with a downward facing camera is used in this research to calculate
aircraft motion. It provides more accurate positioning compared to other
algorithms and real-time execution on embedded platforms. The algorithm
processing pipeline is shown in figure 1.4. The pipeline can be described in
these steps:

1. Feature tracking — features are extracted from the input image and
matched against features from the previous image.

2. The matched features are aligned with the constructed 3D map from
previous iterations.

3. Mapping thread uses the processed image to detect 3D displacement
of the camera. Then the features are mapped into 3D space and the
constructed map is used during feature alignment.

Figure 1.5: Visual odometry calculates motion by aligning 3D world points
pj in image sequence and calculate transformation Tk,k−1 that causes the
features to be reprojected from image patches un to u′n. [2]

The problem of any VO algorithm is accumulating drift over long dis-
tance flights. Since VO computes the camera path incrementally, the errors
introduced by each frame are accumulated [30]. Bundle adjustment (abbr.
BA) method was proposed to reduce the drift. It works by using the sliding
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Figure 1.4: SVO algorithm processing pipeline. [2]

window approach for image sequences and tries to adjust positions of fea-
tures between more than two frames. A work from K. Konolige et al. [51]
has shown that sliding window BA approach can reduce the position drift
by a factor of 2 to 5 over a 10 kilometer VO experiment. However, since the
algorithm uses a map built by its own, the drift is unavoidable, so VO is a
suitable method for short distance flights, but long-distance flights require
the ability of global localization to remove the drift altogether.
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1.3.3 Bayesian Nonlinear Filtering

Another approach of UAV localization is the use of algorithms based on
nonlinear filtering. Nonlinear filtering makes an inference of the state, by
computing the posterior distribution for state vector given all the obser-
vations at the time. Traditional approaches use the Kalman Filter (abbr.
KF) [52] which computes posterior distribution for linear Gaussian systems.
Nonlinear, non-Gaussian state-space estimation is solved by using a general
KF and adding additional noise to and second-order moments; this approach
is named the extended Kalman Filter (abbr. EKF) [53]. These approaches
are usually used for computationally limited applications, where the sys-
tems are mostly linear or mildly nonlinear. In the case of UAV localization,
KF and its’ variants are suitable for signal processing of the sensor data,
but the localization in a map might be highly nonlinear, especially during
the global search, when the position of aircraft is highly uncertain. The
Particle filter development started in 1993 [54] when resampling stage was
introduced. Resampling allowed the application to approximate the more
nonlinear models and it was used in fastSLAM [55] algorithm to solve the
SLAM problem. It was also incorporated in UAV localization techniques
using height measurements. [56].

1.3.4 Visual SLAM

For the case of localization in a very dynamic environment with no available
map, Visual odometry is extended to build a 3D structure of the environ-
ment, which is used for localization during algorithm runtime. Such systems
are referred to as Simultaneous Localization and Mapping (SLAM) systems.
The earliest research that proposed a solution to robotic mapping with loc-
alization problem was in the 1990s, in papers by R. Smith et al. [57, 58].
Another influential paper by [59] has stated the problem of mapping and
localization as a single problem. The early researches were made using a
range sensor, specifically ultrasonic distance sensors to map and navigate
in a 2D environment. Since then, a variety of 2D SLAM systems were
developed [60–63], which easily maps the unknown environment and can
navigate in it. With the advancement of photogrammetry and computing
power of small computers, optical camera based SLAM systems were de-
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veloped. SLAM systems that use optical camera sensor data as input are
also referred to as visual SLAM (vSLAM), the algorithms are widely used
in computer vision, robotics, and augmented reality. vSLAM methods can
be categorized the same way as the VO algorithms:

1. Feature-based methods,

2. Direct methods,

3. Hybrid methods.

An overview of feature-based and direct vSLAM methods key components
is presented in figure 1.6. The basic components in a SLAM system are [64]:

1. Initialization,

2. Tracking,

3. Mapping.

During the initialization, a global coordinate system is defined, and the
currently visible environment is reconstructed. Tracking and mapping steps
are iteratively performed on the initial map. Mapping step extends the map
of the environment, while tracking matches image sequences and performs
localization inside the map. Tracking is performed by matching current
landmarks with landmarks from previous images. Tracking calculates the
relative motion between two consecutive images. Feature-based methods
usually use visual feature descriptors as landmarks and match them using
one of the RANSAC [42] family algorithms. The direct method does not al-
ways on landmark matching; some direct methods estimates camera motion
by minimizing the photometric residual between two intensity images [65].
Structure from Motion (SfM) is the most common method of reconstructing
the environment from the image sequence. SfM is a crucial component used
for photogrammetry, robotic mapping, SLAM, and some VO algorithms.
SfM recreates a 3D model of a scene from sequences of images. In the case
of VO and SLAM, SfM is used to build a 3D model of the environment. Dir-
ect methods recreate a dense point-cloud of the environment while feature
based methods might recreate the environment with only the features it is
extracting. SfM is solving some of the critical challenges faced in robotic
mapping applications [66]:
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1. Measurement error is statistically dependent,

2. Data association problem,

3. Environment is not static; it changes over time.

These problems are also relevant from a localization perspective, just
as the SLAM algorithms solve the mapping and localization as a single
problem. One of the first SfM methods that reconstruct dense environments
was proposed by C. Tomasi et al. [67]. Over the recent years and especially
with interest for a robotic mapping application, improved methods were
developed [68].

Additional modules are incorporated in the systems to ensure the long
running of the algorithm:

• Relocalization,

• Global map optimization.

The relocalization is performed in case the tracking of position is lost and
the current position has to be searched in the created map, or the mapping
must be restarted. Global map optimization usually refines the already built
map using BA if the system detects that the robot platform has returned
to the point that was previously visited and a loop was formed.

First monocular vSLAM was developed in 2003 and was called Mono-
SLAM [69, 70]. To increase the computational efficiency of MonoSLAM
- PTAM algorithm was introduced [3], it separated tracking and mapping
into separate threads on CPU. The PTAM algorithm was very influential
and many VO algorithms that were developed after it was proposed, used
PTAM as its’ internal framework. PTAM algorithm is composed of the
following four main components [64]:

1. Map initializing using five-point RANSAC algorithm [41].

2. Camera poses are estimated from matched feature points and the in-
put image.

3. 3D position of features is estimated by triangulation.

4. The tracking process is recovered by randomized tree-Based search
[71].
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Figure 1.6: An overview of feature based and direct vSLAM methods. The
key difference is that direct methods does not abstract image data using
feature extraction and uses photometric error minimization for movement
tracking.

ORB-SLAM [19, 72] an extension of PTAM, which includes BA, vision-
based closed-loop detection, and 7 DoF pose-graph optimization. ORB-
SLAM is the most complete feature-based monocular vSLAM system [64].
ORB-SLAM achieves state-of-the-art results on TUM-RGBD and KITTI
datasets. The algorithm is available for stereo and mono sequences. The
concept of monocular ORB-SLAM2 algorithm is based on ORB feature [39]
extraction and matching. The ORB features are tracked in every frame of
the image sequence; the camera is localized by matching the features to the
local map and minimizing the reprojection error by applying motion only
BA, and the camera is localized relative to the local map.

DTAM [73] is one of the first direct vSLAM method. The method uses
all pixels in the imagery for reconstruction, so it is a dense method. It
was optimized for execution on a GPU to achieve real-time execution of the
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algorithm. DTAM was also shown to be able to execute on mobile device
[74] (smart-phone), so it is possible to run it on embedded hardware. One
of the currently leading direct methods of SLAM is the LSD-SLAM [20,
75]. It reconstructs only areas containing intensity gradient, thus ignoring
textureless areas. The semi-dense approach allows the execution of the
algorithm on CPU in real-time.

1.3.5 Other GPS-Denied Localization Methods

This section covers other visual proposed localization methods that do not
use optical flow, VO, or vSLAM. An algorithm of extracting features and
matching them to GIS data is proposed in [76]. By extracting corners and
lines, algorithms try to identify roads and buildings and match them to a
GIS model, thus providing a location. A similar approach of detecting and
matching roads in aerial imagery for localization is proposed in [77, 78]. Im-
age registration technique is used to match aerial images with orthophoto
maps in research by P. Jende et al. [79]. The proposed algorithm extracts
corner features from UAV camera images and matches them against extrac-
ted features from an orthophoto map. The method was shown to work quite
well in urban areas where the roads provide robust features for matching,
but authors suggest that without the strong features, localization accur-
acy might drop. A map matching localization approach is presented in [9],
where a UAV is localized relatively to imagery from Google maps. During a
test flight, algorithms achieved root mean square error of ~6 meters, which
is comparable to GPS root mean square error of ~3 meters. Unfortunately,
the authors do not provide absolute mean error, which could be used for an
actual comparison against other methods.

Terrain Contour Matching (abbr. TERCOM) system was developed for
cruise missile navigation before the GPS was widely available [80]. TER-
COM navigation systems are still in use, but they are dependent on the
latest height maps, which are not universally available. Digital Scene Map-
ping and Area Correlation (abbr. DSMAC) was an improved system with
the same idea of TERCOM, but instead of heights, it uses aerial imagery
obtained using optical camera sensor, but it is also very dependent on up-
to-date maps [10]. DSMAC systems are susceptible to shadows, so the maps
must be made at the same time of the day as the navigation is performed.

29



VISUAL LOCALIZATION ON-BOARD UAV

DSMAC systems were proven to be useful and used for lunar module landing
in the Apollo missions.

1.4 Parallel Computing Platforms for Size and
Energy Constraint Environments

Sophisticated computer vision applications often used in robotics requires
a lot of computing power, i.e., recent research demonstrates that vision-
aided navigation is feasible during flight-time to operate in GPS-denied
environments, but the challenge is in dealing with the power and weight
restrictions onboard a UAV while providing necessary positioning accuracy
[81]. Most modern computers have enough computing power to run complex
computer vision algorithms, though such machines often consume tenths or
hundreds of watts of electrical power and are large compared to small robotic
systems or UAVs. The computing power requirements can be ignored until
the system has to employ image processing and computer vision algorithms
for obstacle avoidance, object recognition or vision-aided guidance using
digital cameras [82].

Researchers developing a framework for computer vision algorithm
benchmark mentioned that in energy and performance constrained con-
text, such as a battery-powered robot, it is essential to achieve sufficient
accuracy while maximizing battery life [84]. By using less power on com-
putations may allow the usage of more sensor which could increase aerial
vehicle security and flight distances.

As described in [85], there are three leading high-performance platforms
for image processing (specifically sliding-window algorithms): multi-core
systems, GPU and FPGA. The research conducted in [85] states, that multi-
core CPU systems may be very energy inefficient compared with FPGA and
GPU implementations.

FPGA based computing platforms suffer from complex development en-
vironments; it requires a lot of development effort to implement such com-
plex algorithms as vSLAM. A platform developed in work by J. Nikolic et al.
[83], designed manufactured an integrated sensor platform based on Xilinx
Zynq-7020 processor containing ARM two core CPU and FPGA on a single
chip (see figure 1.8). Since the development of SLAM system on the FPGA
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(a) The Parallella platform. (b) Radxa Rock2 Square development
board.

(c) NVIDIA Tegra X1 SoC.

Figure 1.7: Platforms used in the experimental comparison.

requires much effort, the FPGA is responsible for sensor data acquisition,
pre-processing and sensor data synchronization and the SLAM algorithm
used to perform positioning was executed off-line.

The new Parallella (see figure 1.7a) platform may be of interest since
it implements low power RISC architecture. The platform contains Xilinx
Zynq-7010 processor with integrated FPGA programmable logic and a 16-
core Epiphany co-processor. The platform uses FPGA logic only for data
line interconnections between Xilinx CPU and Epiphany co-processor. The
Epiphany co-processor was designed to execute parallel applications with
high energy efficiency. The 64-core Epiphany processor variant has shown
to have a high potential in energy efficient computing by achieving 2400
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Figure 1.8: SLAM Sensor Unit with integrated Xilinx Zynq processor with
FPGA. [83]

cycles per second per Watt (c/s/W) compared to 79 c/s/W for the Intel
i7-4770K CPU [86]. So it should be possible to achieve the same compu-
tational power using 30 times less power. These numbers are very rough
since a single cycle in Intel’s instruction set may do such amounts of works
which could require more than several cycles in Epiphany’s RISC architec-
ture. Still, research may be conducted to compare this platform with other
efficient platforms - FPGA or an embedded GPU. I. Grasso has researched
embedded Mali GPU performance and energy for high-performance com-
puting (HPC), the potential is that Mali 604 GPU has an 8.4x computing
speedup compared with Cortex A-15 CPU core while using 32% of the en-
ergy [87]. Previous research conducted by J. Knezovic [88] implementing a
blow-fish password hacking algorithm has shown to be very efficient from
an energy perspective. The efficiency of the algorithm implementation was
measured in password cracks per second per Watt of power. The Epiphany
16 core co-processor was able to crack as many passwords as Intel’s T7200
processor, but epiphany processor requires 17 times less energy to do the
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same calculations [88]. Three hardware platforms were chosen for the com-
parison. All of the platforms were chosen to be small, maximum power usage
under 10 watts and small enough to fit most UAVs. One platform used in
this research will be Parallella [89], which uses a 16 core RISC co-processor
designed for parallel computing.

Another platform will be Radxa Rock2 SoM (see figure 1.7b), which
employs Rockchip RK3288 quad-core ARM CPU and Mali T764 GPU. The
Mali GPU is one of the few widely available embedded GPU cores with
OpenCL 1.1 [90] support for general purpose parallel computing. The ARM
Mali family GPU are the most common co-processor in the smartphone
industry.

In 2015 NVIDIA introduced a new embedded SoC - Tegra X1. It was
specially designed for mobile platforms and robotics, including UAVs in
mind. It was designed to be small and energy efficient while providing
cutting-edge performance. Airvision Core X1 platform, utilizing NVIDIA
Tegra X1 SoC, delivers real-time computer vision and navigation for Un-
manned Aerial Vehicles (UAV) (see figure 1.7c). This hardware platform
uses ARM quad-core CPU (up to 2GHz clock speed) and Maxwell architec-
ture GPU with 256 cores (up to 1GHz clock speed) and is programmable
using CUDA toolkit [91]. In 2017 NVIDIA released an improved SoC -
Tegra X2, which is an improved version of Tegra X1.

1.5 Datasets for Benchmark of Visual
Localization Algorithm

Several methods have been proposed to solve the GPS-denied localization
problem using imaging sensors and computer vision algorithms. A survey
by Yuncheng Lu et al. [29] suggests that current methods can be categorized
into map-based, map-building, and map-less systems. Map-less systems in-
clude Visual odometry and optical flow algorithms. Map-building systems
are usually recognized as SLAM algorithms, that build maps of the envir-
onment during runtime and localizes relatively to the created map. Both
map-less and map-building systems have several public datasets that are
widely used by the computer vision community to benchmark these sys-
tems. Map-based systems do not have established public datasets, and
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researchers create their datasets to measure their accuracy. This problem
was already mentioned in research papers by A. Nassar et al. [92] and M.
Shan et al. [9]. The self-made datasets are usually small since the creation
of a dataset is very laborious. Due to the absence of publicly available data-
set, the comparison between algorithms becomes ambiguous. Real-life test
flights, of course, are mandatory for any system to be proven reliable, but an
initial off-line benchmarking can provide substantial information about the
algorithm performance within common pitfalls and can be used to compare
against each other. This section presents a new dataset that was explicitly
created for map-based system benchmark providing different trajectories,
environments, and altitudes. Despite a map-based system focus, it can also
be used for map-less and map-building systems to measure the accuracy for
high altitude (> 200 meters) UAV localization. The dataset can be down-
loaded online from https://zenodo.org/record/1211730#.W3HJ_XV95hE.

This section reviews popular datasets used for aerial localization systems
benchmarks. Since there is no public dataset suitable for map-based system
benchmark, recent works of such systems are also reviewed, to observe the
volume of data that is used in the state-of-the-art map-based localization
system development.

1.5.1 Most Notable Publicly Available Datasets

SLAM and VO research areas have a few datasets that have been established
as a baseline for benchmarking. The most notable are KITTI [93], TUM-
RGBD [94], ICL-NUIM [95], EUROC [96] and a very recent Zurich Urban
Micro Aerial Vehicle Dataset [97]. The following list provides short content
overviews of these datasets:

1. TUM-RGBD dataset was created using a handheld Kinect sensor in
an indoor environment. The dataset provides ground truth locations
of the camera, that were precisely captured, using external sensors
mounted in the environment.

2. ICL-NUIM dataset provides handheld RGB-D data sequences from
a simulated environment of small indoor spaces, such as living room
and office. Ground truth contains camera locations, the dataset is
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very similar to TUM-RGBD, except it was created in a simulated
environment.

3. EUROC dataset is created in various indoor environments with a ste-
reo camera mounted on a micro UAV. The dataset contains precise
ground truth trajectory of the aircraft from VICON motion capture
system and 3D scans of the environments.

4. KITTI dataset was created using a stereo camera and other sensors
mounted on a car, and the imagery was captured while driving in an
outdoor urban environment. The dataset contains a lot of material
(130 gigabytes of video footage) and can be used as a benchmark for
localization algorithms that use the front-facing camera images for
UAVs flying at low altitude.

5. The Zurich dataset was specifically created to benchmark localization
systems of UAVs flying in low altitude in outdoor urban environments.
The Zurich dataset contains monocular front-facing camera images
captured from a UAV flying at the altitude of 5-15 meters. The dataset
contains images from 2 kilometers of flight distance in Zurich city.

1.5.2 Datasets For Benchmark Of Map-Based Localization
Algorithms

The dataset reviewed in the previous section provides a variety of challen-
ging environments — indoor and industrial spaces, urban city streets with
live traffic. However, no dataset could be used to measure localization ac-
curacy of a low altitude UAV flight with a downward facing camera. Due
to the lack of a dataset, the following list of researches relies on self-made
simulated datasets or real-life test flights:

1. Navigation system using VO, inertial navigation, and image registra-
tion proposed by G. Conte et al. [11, 98] uses images from an offline
dataset which contains imagery from a 1-kilometer distance flight of
a rectangular trajectory. The proposed system was additionally eval-
uated during a test flight.
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2. Geo-referenced localization approach published by F. Lindsten et al.
[99] was evaluated using a self-made dataset captured from a flight
covering a distance of 400 meters.

3. Map matching approach presented by M. Shan et al. [9] was evaluated
using images from a 3-minute flight (around 360 meters of distance)
at an altitude of 80 meters. This dataset is available publicly and can
be used for benchmarking, although it is rather small and contains
only a single flight.

4. A research by A. Nassar et al. [92] proposed deep Convolutional
Neural Network (abbr. CNN) for image registration from a down-
ward facing camera a UAV. Due to the lack of datasets, authors cre-
ated two datasets of their own, (1) using images from 1.2-kilometer
distance flight at 300 meters altitude over the city of Potsdam, Ger-
many and (2) from a flight of 0.5-kilometer distance over Famagusta,
Cyprus.

5. Navigation system based on detection and matching of road intersec-
tions proposed by S. Dumble et al. [78] evaluates the system on a test
flight of around 7 kilometers distance.

6. Image feature based localization approach is proposed by T. Wang et
al. [100], and the system is evaluated using self-made image-in-loop
simulation. The volume of the dataset is undisclosed.

Unfortunately, datasets from most of these researches are not publicly
available, or the volume of the datasets are relatively small and does not
cover more than one aspect of map-based GPS-denied localization. Due to
the lack of publicly available datasets for map-based localization systems
benchmark, a new dataset was created and is presented in section 2.2.2.

1.6 Conclusions of Chapter 2

This section reviews the development of visual localization methods used
for UAV localization.
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• State-of-the-art in visual localization for near-ground altitude and
in-doors environments is currently achieved by vSLAM algorithms,
which show incredible performance and accuracy. The ORB-SLAM
algorithm is currently the state-of-the-art algorithm among vSLAM
methods.

• VO is among the most popular methods for position estimation dur-
ing low altitude flights, although VO can provide localization, all VO
algorithms suffer from position drift over a long period of flights.

• Particle filter techniques can be used to solve localization drift for
long-distance flights; the technique is known to solve nonlinear, non-
Gaussian state-space estimation problems.

• For the system to be able to work onboard UAV in real-time, it is
necessary to compare computing platforms and choose the most energy
efficient platform capable of computer vision tasks.

• It is required to propose a method for the benchmark of embedded
computing platforms that are capable of computer vision tasks on-
board UAV. Currently, there is no unified benchmark of energy effi-
ciency for embedded computing platforms.

• Since real-life test flights require much effort and there are no publicly
available datasets for map-based localization algorithm benchmark, a
new dataset is required to perform algorithm development and com-
parison against other algorithms.
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Chapter 2

RESEARCH
METHODOLOGY

This chapter presents the proposed algorithms and functions to achieve pre-
cise visual localization based on the literature review performed in chapter
1. New datasets are presented in this section which was created for eval-
uation of the localization algorithm. The algorithms are implemented and
evaluated in chapter 3 using the new datasets. The methodology is based
on research published in papers [A1], [A2], [A3], [A4], [A5], and [A6].

2.1 Energy Efficiency Of Computing Platforms

This section describes the method that is used to measure the energy effi-
ciency of computing platforms. A typical computer vision algorithm, Sobel
filter, is performed on the target platform while execution time and the
energy consumption is measured in high frequency (1 kHz) to measure the
exact amount of energy used to perform the calculations.

2.1.1 Parallel implementation of the Sobel filter algorithm

Parallel programming will be used to employ all of the 16 cores of the
Parallella platform, a more detailed description of the Parallella and other
computing platforms can be found in section 1.4. The software can be
developed eSDK (Epiphany SDK, developed by Adapteva[101]) or OpenCL
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(a) 480p Input (b) 480p Vertically filtered (c) 480p Horizontally filtered

Figure 2.1: Input and output images of the Sobel filter.

implementation for the Epiphany processor by the Brown Deer Technology
(OpenCL, part of COPRTHR framework[102]). Due to better performance,
the algorithm was implemented using eSDK framework. The software for
Mali GPU was developed using OpenCL framework since it is the only
framework supported by the Mali GPU for general purpose computing. A
data parallelization technique was chosen for the implementation which is
described in OpenCL introduction [103] - the input data is divided into even
sub-arrays, the computational core count selects the sub-array count in the
accelerating hardware.

An evaluation of the two frameworks and platforms was carried out by
implementing Sobel filter [104] algorithm. Two convolutions of the input
image was calculated using frame

Iv =

−1 −2 −1

0 0 0

+1 +2 +1

 ∗ T

for vertical image convolution and

Ih =

−1 0 +1

−2 0 +2

−1 0 +1

 ∗ T

for horizontal image convolution [104]. In the convolution frame equations
’∗’ symbol notes convolution operation with 2D pixel array T . T denotes a
input image as a set of pixel intensity values in a two dimensional matrix (a
grayscale image). Input image example is available in fig. 2.1a, also output
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horizontal and vertical images are available in fig. 2.1 b and c respectfully.
The convolution will be calculated for 100 iterations using the same image
and the execution time (in seconds) for each frame will be measured. For a
more real-life evaluation and in-depth execution analysis, the single iteration
will be divided into three stages:

Write. Time taken to write the image to a shared memory buffer.

Exec. Time taken for the parallel hardware to complete calculations.

Read. Time taken to read the results from shared memory.

Measuring the execution time will allow calculating possible execution
framerate (FPS) for an image stream. Measuring energy consumption in
millijoules (mJ) will allow comparing the energy efficiency of each device.
Few different image sizes were selected to see what framerates are feasible
with each platform (see fig.2.1). The performance is compared against a
single core of a CPU, which would be a typical implementation of the Sobel
convolution filter without any additional hardware acceleration.
Algorithm 3 shows an overview of the steps that are performed while
measuring a single calculation of Sobel filter on a single image. The
implemented algorithm of the Sobel filter was intended to be able to
process an image of any given size. Keeping that in mind and the fact
that Epiphany co-processor’s single core has only 32 kB of available local
memory, the use of external shared DDR memory block was implemented.
The program writes all image into a shared memory block, then executes
each of the parallel computing cores.

2.1.2 Measuring The Power Consumption

The energy consumption of computing platforms will be analyzed during
the execution of the implemented Sobel filter algorithm. Current / voltage
sensor INA219 1 is used to measure power at ~1 kHz sampling rate. The
sensor setup (see fig. 2.2) was made to avoid power measurement influence
possible by the additional electronics. The data is captured using MCU,

1Texas Instruments INA219 Current sensor, data sheet available online: http://www.
ti.com/lit/ds/sbos448f/sbos448f.pdf
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2.1 Energy Efficiency Of Computing Platforms

Algorithm 3 Procedure for measurement of energy consumption
Inputs: Image T

Outputs: Vertically filtered image Iv, horizontally filtered image Ih, write
time tw, execution time te, read time tr, consumed energy E

function MeasureSobelFilter(T )
startPowerMeasurementCapture() ▷ Capture energy consumption

in a separate thread
tstartw = timeNow() ▷ Record current time
upload(T ) ▷ Upload image to the accelerator memory
tw = timeNow()− tstartw ▷ Measure write time
tstarte = timeNow()

Iv, Ih = performSobel(T ) ▷ Calculate Sobel filter on the accelerator
te = timeNow()− tstarte ▷ Measure execution time
tstartr = timeNow() ▷ Record current time
download(T ) ▷ Download image from the accelerator memory
tr = timeNow()− tstartr ▷ Measure read time
endPowerMeasurementCapture()

E = retrieveEnergy() ▷ Integrate the power measurements
return < Iv, Ih, tw, te, tr, E >

which transmits measurements to a laptop where they are recorded. A
laptop uses a wired LAN connection to receive messages from the platform
performing calculations to capture the beginning and end of the computa-
tion process. Energy equation E =

∫ t
0 P (t)dt derived from power equation

in [105] is used to calculate the amount of energy used to process each frame.
P (t) is the measured power in Watts on time t. To check the reliability of
the measured data Shapiro–Wilk test [106] will be used on calculated energy
values. The statistical p-value threshold of 0.05 will be used to check the
null hypotheses that measured data is of normal distribution. To provide
additional confidence on measured data Student’s t-test will be performed
to prove that mean values from both experiments has significant differences.
Figure 2.2 shows the setup of current / voltage sensor for the experiment.
The platform being measured is connected to the power supply over the
sensor. MCU reads sensor measurements over the I2C interface and is con-
nected to a computer that is recording the launch of the algorithm and
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Figure 2.2: Setup of power measurement sensor.

energy consumption measurements.

2.2 Datasets of Aerial Imagery for Benchmark of
Visual Localization Algorithms

Datasets of aerial imagery from low altitude with location information are
not common. As described in section 1.5, researchers tend to create their
datasets to develop the system and measure the execution performance.
Two datasets were created:

1. Test flight dataset using an actual UAV,

2. Dataset from a simulated environment.

The datasets will be used to perform experiments on the proposed loc-
alization method. A test flight using fixed-wing UAV was performed to
collect real-life data. Performing a test flight is an expensive and time-
consuming process, to improve the experiment credibility, additional data
was collected using a simulation environment. The simulated dataset takes
into account different aspects of visual localization so that it could be used
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Figure 2.3: Spartan UAV used in test flights.

for the benchmark of other localization systems. The simulated dataset is
made public, and to the best of knowledge, it is by far the largest publicly
available dataset of aerial imagery for visual localization benchmark.

2.2.1 Data From Test Flight

A fixed-wing Spartan UAV (see figure 2.3) was used to collect aerial im-
agery and sensor data during ~1 km flight. The Spartan UAV manufac-
tured in Lithuania by the Space Science and Technology institute 2. Basler
acA640-120uc industrial camera with global shutter was used to collect aer-
ial imagery alongside with other sensor data provided from the UAV flight
controller. Images were recorded in 640x480 resolution at 90 FPS. Data
was recorded using MPEG2-TS video format, and sensor data were recor-
ded as metadata alongside the video stream in KLV format according to
MISB 0601 metadata standard 3. The video playback allows data to be

2UAVs of Space Science and Technology Institute: http://space-lt.eu/en/
technologies/unmanned-aircraft-vehiclesuav/

3MISB ST0601 Metadata Standard: http://www.gwg.nga.mil/misb/docs/
standards/ST0601.6.pdf
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Sample images from the dataset captured during the test flight.

read with the same timing as it was recorded on UAV. Sample images from
the video file is provided in figure 2.4. Metadata includes GPS coordinates
in WGS84 format, UAV attitude quaternion as measured by flight control-
ler IMU, camera parameters (horizontal and verticals fields of view and
focal length), location of current frame corners and image center in GPS
coordinates.

2.2.2 Simulated Dataset

Section 1.5 presents currently available datasets, and the problem of missing
dataset researchers are facing when developing map-based localization sys-
tems. To define requirements for the new dataset an overview of common
map-based localization system components and their pitfalls is needed.

Map-based localization systems use image registration algorithms to
match image from an onboard camera with a map. These algorithms are
prone to errors when the maps are not up-to-date. Another common com-
ponent is Visual odometry, which provides motion information between the
images. Usually, Visual odometry relies on a high framerate video feed
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to accurately calculate vehicle motion in real-time. For the dataset to
be suitable for Visual odometry, authors of popular Visual odometry al-
gorithms suggest, that the image sequences should be of at least 50 frames
per second [2, 3]. The rapid motion may be captured more precisely using
higher framerates, but advanced real-time systems rarely exceed 60 FPS
[107], so recording more than 60 images per second is not practical. From
the researches reviewed in section 1.5, it is clear that researchers tend to
use imagery from urban environments. Since urban environments contain
buildings, roads, and other artifacts, such imagery provides a rich texture
that computer vision algorithms can successfully process and extract inform-
ation. An additional environment, such as forests, would provide useful in-
formation about system accuracy when the imagery is not rich with texture
and features. Different trajectories at different altitudes should also provide
additional validation of system behavior in different flight scenarios. The
creation of a dataset is very laborious, so researchers might be using small
datasets to evaluate localization accuracy, which might not expose the long-
term issues of localization drift, so the distance should also be considered
as a critical requirement for the dataset. Advanced localization systems are
using loop-closure algorithms to improve localization accuracy and reduce
drift over time. These algorithms detect a point in space that was already
passed during the localization and optimizes the flight trajectory to match
the passed point. It would be beneficial for a system to test this feature
using the new dataset.

One of the key challenge defined in robotic mapping problem [66] that
is also challenging in UAV localization problem: environments change over
time, and maps currently available from satellite imagery might be at least
few years behind. Some changes may be slow, such as new buildings or
roads, but some changes are visible very quickly - moving cars, effects of
seasons on trees, etc. A previous work of road feature mapping [77] in-
cludes tests of the matching algorithm using maps of different dates. Dif-
ferent maps provided information on the robustness of the algorithm, and
it is also important to be able to test algorithm robustness to changes in
the environment. After the careful review of localization systems, the key
requirements for the dataset were defined as follows:

1. flights should be performed in multiple environments: urban and
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(a) 2009-06-29 (b) 2010-07-01

(c) 2012-06-22 (d) 2014-07-20

Figure 2.5: Sample patches of the same location in urban map created at
different dates. Each figure is annotated with a creation date.

forest,

2. image capture framerate should be at least 50 frames per second,

3. maps of different dates should be available to test algorithm robustness
to changes in the imagery,

4. different trajectories should be available,

5. flight distances should be 1 kilometer or longer.

A number of different flight scenarios are set up to satisfy the defined
requirements. A single flight scenario is a combination of a map, trajectory,
and altitude. Table 2.1 shows different trajectories, maps, and attitudes that
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are used while performing simulated flights. Three trajectories were chosen
— straight line, rectangular, and circular. Previews of the trajectories are
given in figure 2.6. Rectangular and circular trajectories have a returning
point, so these scenarios can be used to test loop-closure algorithms. Each
flight scenario is given an abbreviation, e.g., FL-200, where the first charac-
ter stands for map (F - forest, U - urban), the second character stands for
trajectory (L - straight line, R - rectangular, C - circular), and the number
stands for the altitude in meters. A total of 12 flight scenarios is performed.

The new dataset was created using orthophoto maps from the United
States Geological Survey’s (abbr. USGS) National Agriculture Imagery
Program (abbr. NAIP) database [108] and Gazebo Robotics simulation
environment4. Maps were used as a texture for the simulator ground
plane. Flights over the urban environment used the map created at the
year 2009 and flights over the forest environment used the map created in
2008. Sample patches of maps of the same location are given in figure 2.5.
PX4 flight controller software in software in the loop (abbr. SITL) mode
was used to control the aircraft model in the simulated environment. A
software service was developed which captured images from the simulator
as soon as it reached target altitude and location. Image metadata was
collected using the CSV file format. Flight trajectories for each scenario
were planned manually using QGroundControl5 software. The flight plans
were also saved alongside the images. Previews of planned trajectories
from the ground control software are shown in figure 2.6. The flight plans
include plane takeoff, but this part is not included in the dataset, and image
sequences begin when the plane reaches its starting point and altitude.

4Gazebo Simulator home page: http://gazebosim.org/
5Qgroundcontrol: Ground control station for small air land water autonomous un-

manned systems, website: http://qgroundcontrol.com/
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(a) Straight line trajectory (FL-
200)

(b) Rectangular trajectory (FR-200)

(c) Circular trajectory (FC-200)

Figure 2.6: Flight plans for different scenarios.

Table 2.1: Different trajectories, maps and altitudes used to perform 12
flight scenarios in the dataset

Trajectory Map Altitude, meters
Line (L) Forest (F) 200
Rectangular (R) Urban (U) 300
Circular (C)
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Table 2.2: Number of images and distances of each flight.

Scenario Image count Flight distance, meters
FL-200 11837 2936
FL-300 9020 2736
FR-200 16056 4748
FR-300 15307 4541
FC-200 3601 1065
FC-300 3450 1028
UL-200 8735 2592
UL-300 8416 2496
UR-200 14997 4418
UR-300 15361 4542
UC-200 3422 1016
UC-300 3272 970
Total 113474 33088

Dataset consists of 12 archives for each of the planned scenarios. Each
archive contains jpeg encoded images, flight plans from QGroundControl
software and a CSV file containing image metadata. Table 2.3 presents a
detailed list and explanation of fields available in the CSV file. The dataset
contains a total of 113474 images, alongside with geographical coordinates
and UAV pose at the moment of image capture. The total distance covered
by flight is over 33 kilometers; the statistics of each flight is available in table
2.2. All images are captured at 640x480 resolution. Images are rectified
and do not contain camera distortion, so camera calibration is not required.
The captured images contain identical pixel intensity values to the map, so
to avoid perfect matches between the map and an image, Gaussian noise
(mean: 0.0, standard deviation: 0.02) is added to each image. Sample
images from the dataset are shown in figure 2.8.

The metadata fields are given in the table 2.3 contains
information on the aircraft attitude during the capture of
an image. Fields < ImuX, ImuY, ImuZ, ImuW > and <

OrientationX,OrientationY,OrientationZ,OrientationW > repres-
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ents an orientation in space using a quaternion in the following notations:

q = W +X · i+ Y · j + Z · k, (2.1)

where:

• i, j, k are the imaginary numbers used in the quaternion,

• X,Y, Z,W are the scalar values of the rotation quaternion.

The images were processed using SVO visual odometry algorithm to
provide a baseline for comparison, and the resulting coordinates are available
in the metadata file. Visual odometry and SVO algorithm are presented in
details in section 1.3.2. The recovered trajectories using SVO algorithm is
shown in figure 2.7. From the recovered trajectories we can see that while
SVO algorithm works pretty accurate on straight line trajectory, it fails
to recover rectangular and circular trajectories. The problem is that SVO
fails to accurately calculate trajectory while the plane is performing turn
maneuver, which causes pure rotational movement which is known to cause
problems for the SVO algorithm.

2.3 Particle Filter Localization For Low-Altitude
UAV Flights

Particle filter localization (or Monte Carlo localization) is a recursive Bayes
filter that estimates the posterior distribution of robot poses conditioned on
sensor data [4]. The particle filter is known to provide better performance
compared to other nonlinear approaches (e.g., the EKF) since it can provide
optimal estimation in nonlinear non-Gaussian state-space models [109]. The
problem is that robot pose is changing over time and the aircraft pose
probability distribution must be evaluated iteratively. It is possible that
aerial imagery might be obstructed or the images might not contain any
texture, in case of flying over forests or lakes. In that case, only dead-
reckoning may be used to estimate the pose until enough data is collected
to provide a precise location of the aircraft. The Particle filter is known to
be robust to significant noise in the sensor measurements and may recover
position even if there is not enough texture in the imagery for the VO to
reconstruct motion.
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Table 2.3: Metadata fields available for each image in the dataset.

Field Description Unit

Filename Name of the image file -

Latitude Latitude of the aircraft position degrees

Longitude Longitude of the aircraft position degrees

RelativeAltitude Altitude from the earth’s surface meters

ImuX IMU orientation quaternion, X component -

ImuY IMU orientation quaternion, Y component -

ImuZ IMU orientation quaternion, Z component -

ImuW IMU orientation quaternion, W component -

PoseX GT position relative to flight start location,
X component

meters

PoseY GT position, Y component meters

PoseZ GT position, Z component meters

OrientationX GT orientation, relative to world coordinate
frame, X component

-

OrientationY GT orientation, Y component -

OrientationZ GT orientation, Z component -

OrientationW GT orientation, W component -

MapX Image center location on map, X axis pixels

MapY Image center location on map, Y axis pixels

SvoX Pose estimate, calculated using SVO al-
gorithm in Euclidean space, X component

meters

SvoY Pose estimate, Y component meters

SvoZ Pose estimate, Z component meters
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(a) Scenario FL-200. (b) Scenario UR-200

(c) Scenario UC-300

Figure 2.7: Different flight trajectories recovered using the SVO algorithm
and compared against ground truth (GT).

Particle probabilities are obtained by calculating image similarity R with
formulas presented in section 2.3.6 and mapping them to an interval of [0; 1].
To map the image similarity values to particle probability, a conversion
function from section 2.3.7 is used:

s = F (R) (2.2)

Then we can extend position belief presented in equation 1.1 for the
UAV position belief in a Particle filter as

bel(zt) = p(zt|z0:t−1,m1:t−1, s1:t−1) (2.3)

Figure 2.9 shows the diagram of the Particle filter localization algorithm.
The algorithm is divided into seven steps:
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(a) Forest map, 200 meters altitude, Straight line trajectory (FL-200)

(b) Urban map, 200 meters altitude, Rectangular trajectory (FR-200)

(c) Forest map, 200 meters altitude, Circular trajectory (FC-200)

Figure 2.8: Sample image sequences from the dataset.
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1. Particles. During the initialization, this step initializes the algorithm
by generating some initial particles. On other iterations, this step
passes the current particles to the next step.

2. Particle sampling. This step takes current particles and samples a
particle according to its probability and passes to particle propagation.

3. Odometry. This step takes raw image data from the camera sensor
and calculates the movement of the UAV from the imagery.

4. Motion model. This step takes motion measured by the odometry
and adds additional noise for each of the drawn particles from the
sampling step.

5. Particle propagation. This step predicts the next position of a
particle by adding motion data using the motion model to the drawn
particles from the sampling step.

6. Particle map matching. This step takes a patch of the map accord-
ing to a predicted particle’s location and calculate image similarity
value using the patch and latest camera image.

7. True pose estimation. This step takes all the latest particles and
estimates the current position of the aircraft.

2.3.1 Particles

Particle is a hypothesis for the aircraft’s true position relatively to a given
map. Several particles are maintained in the algorithm to evaluate more
than one possible location of the aircraft and propagate the possibilities
over time. Each particle is assigned a probability value st on time t using a
selected conversion function F (x)

st = F (Rt), (2.4)

it is calculated using UAV image similarity value Rt with the map image on
the particle location. Initial particle probability value is assigned s0 = 1.
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Figure 2.9: Particle filtering algorithm including VO

Particles are also assigned weight value which is used during sampling. The
particle weight bi is calculated by normalizing all probabilities

bi,t =
si,t∑n
j=0 st,j

, (2.5)

where

• n is the particle count,

• i is single particle index,

• t is time of current iteration.

2.3.2 Particle sampling

Sampling is the stage of the Particle filter when particles are resampled
according to their probability. Each iteration resamples particles to find
the most plausible UAV location over time. Few sampling techniques that
are commonly used for Particle filtering applications:

• Rejection Sampling [110],

• Importance Sampling [111],
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• KLD-Sampling [112].
Rejection Sampling is a practical method that is easy to implement and

to deploy. The principle of rejection sampling is to evaluate the survival of
a randomly selected particle to survive with a probability equal to its belief
value. Particles with higher belief are more likely to be resampled, though
bad particles are also able to survive with less probability. Importance
sampling was introduced to deal with higher uncertainty in the measure-
ments. This sampling technique uses weighted probabilities to resample the
particles. By generating a random uniform number in the interval [0; 1], we
select a particle which weights the nearest patch. Patch for a particle gi is
calculated from the particle weight

g
(j)
t = 1−

n∑
j=i

b
(j)
t . (2.6)

The higher particle belief is, the larger weight it gets and a wider patch it
gets in the interval of [0; 1] and value is more likely to be resampled. Figure
2.10 presents an example of sampling with 5 particles.

This way an important value may be resampled more times than in
rejection sampling, due to the usage of the particle weight. Importance
sampling is the most common method used in Monte Carlo localization.
KLD-sampling is an extension of the importance of sampling. It uses
Kullback-Leibler divergence [113] to dynamically calculate a required num-
ber of particles to calculate the accurate position. The Particle filter with
variable particle count is referred to as the Adaptive Particle filter.

2.3.3 Motion model

Motion model is used for dead-reckoning of the UAV pose from odometry
data (visual and movement speed sensors). The UAV pose may be described
using six parameters ⟨x, y, z, θroll, θpitch, θyaw⟩ in space relative to the known
environment. Parameter z is equivalent to altitude, which can be measured
using sensors (barometer, laser) with relatively high precision and the alti-
tude is only required for image scaling so that it will be ignored in the
model. Roll and pitch angles are required for the calculation of camera
relative elevation angle and image center on the map. Those parameters
can be ignored by using camera gimbal hardware in the case if the gimbal
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Figure 2.10: A preview of the particle sampling according to it’s weight.
This example contains 5 particles with given weight values. If a generated
random uniform number is within the patch assigned to a specific particle,
that particle will be sampled, in case of generated value = 0.68, particle
P

(1)
t would be drawn.

system is configured to look downward. The search space thus is narrowed
down to pseudo-planar movement using only three parameters (see figure
2.11), where

• aircraft pose zt = ⟨x, y, θyaw⟩, where θyaw is an angle, equivalent to
UAV heading angle and

• zt is the UAV pose on time t in orthophoto map plane.

The pose update can be calculated after new sensor data using these
equations [16]:

x′ = x+ α1δ̂trancos(θyaw + α3δ̂rot), (2.7)

y′ = y + α2δ̂transin(θyaw + α3δ̂rot), (2.8)
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Figure 2.11: Simplified planar motion model for UAV

θ′yaw = θyaw + α3δ̂rot, (2.9)

where:

• x′, y′ and θ′yaw are posterior UAV location relative to the orthophoto
map
αn - measurement noise coefficient

• δ̂tran - transitional (movement speed) measurement with measure-
ment noise ϵtran, obtained:

δ̂tran = δtran + sample_normal(ϵtran) (2.10)

• δ̂rot - rotational (heading angle) measurement with measurement
noise ϵrot, obtained:

δ̂rot = δrot + sample_normal(ϵrot) (2.11)

– sample_normal is an algorithm that samples normal distribu-
tion according to known measurement error. Algorithm imple-
mentations can be found in [16].

2.3.4 Particle propagation

This step of the Particle filter uses sensor data, VO and motion model
to propagate the particles after re-sampling. Propagation moves the re-
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sampled particles into their current locations by adding relative movement
that was measured since last Particle filter iteration with additional noise
from the motion model discussed in section 2.3.3. An additional technique
of sensor fusion can be used to fuse data from IMU and VO to improve
VO accuracy and in case of VO failure, using IMU data to propagate can
provide dead-reckoning of the UAV pose.

2.3.5 True Pose Estimation

True location of the UAV is calculated by recursively estimating particle
probability values as described in [16]. The particle with highest probab-
ility can be considered to be the true UAV pose P final

t for current time t.
Weighted sum of all particle locations can also be used as final pose of the
UAV. Particle weight is calculated using equation 2.5 and is used to sum all
particle locations:

P final
t =<

n∑
i=0

(b
(i)
t ∗ x(i)t ),

n∑
i=0

(b
(i)
t ∗ y(i)t ) >, (2.12)

where x
(i)
t and y

(i)
t are the x and y coordinate values of ith particle on time

t.

2.3.6 Similarity Between Two Images

Similarity between two images, which are sequences of pixel intensity values,
is a measure that quantifies the dependency between the images. A measure
R is considered a similarity measure if it increases in value if the dependency
of two sequences increases. Image similarity is calculated to evaluate a
hypothesized UAV location probability to be the true location. A correlation
value can be calculated between a map patch of an according UAV location
and the imagery retrieved from camera sensor. Normalized Sum of Squared
Differences (SSD), also known as normalized L2 norm, is a very popular
measure to calculate image similarity:

R = 1−
∑w

x=0

∑h
y=0(T (x, y)− I(x, y))2√∑w

x=0

∑h
y=0 T (x, y)

2 ·
∑w

x=0

∑h
y=0 I(x, y)

2
, (2.13)

59



RESEARCH METHODOLOGY

note that subtraction from 1 is added, to satisfy similarity condition No.
1, otherwise it would be considered dissimilarity measure as value would
decrease with increasing dependency. Another popular image similarity
measure is cross-correlation (CC):

R =

∑w
x=0

∑h
y=0(T (x, y) · I(x, y))√∑w

x=0

∑h
y=0 T (x, y)

2 ·
∑w

x=0

∑h
y=0 I(x, y)

2
(2.14)

An extension to the CC similarity measure is normalized correlation
coefficient, also known as Pearson Correlation [114] or normalized cross-
correlation (NCC) [115], which subtract mean of the image, thus making
the measure robust to changes in contrast and exposure:

R =

∑w
x=0

∑h
y=0(T

′(x, y) · I ′(x, y))√∑w
x=0

∑h
y=0 T

′(x, y)2 ·
∑w

x=0

∑h
y=0 I

′(x, y)2
, (2.15)

where

• T ′(x, y) = T (x, y)−
∑w

x′=0

∑h
y′=0 T (x′,y′)

w·h

• I ′(x, y) = I(x, y)−
∑w

x′=0

∑h
y′=0 I(x

′,y′)

w·h

• w, h are the image dimensions (width and height).

A two stage approach by A. Goshtasby et al. [116] was proposed to
increase computation speed of the correlation coefficient. The book Image
Registration by Goshtasby [117] provides an evaluation of these and other
measures. In the evaluation, normalized SSD was the fastest measure to cal-
culate (7.25 milliseconds for an image pair) compared to any other measure
in the evaluation. On the other, Pearson Correlation, which is slower (12.13
milliseconds for an image pair) was one the best measures that was able
to match images when the pair contained images of different scene lighting
and exposure.

2.3.7 Image Similarity To Particle Probability Conversion
Functions

This section describes F (x) used for image similarity to particle probab-
ility conversion. Image similarity is calculated using Pearson Correlation
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Coefficient [114] between map and an aerial image obtained from the UAV
camera. Pearson correlation coefficient is chosen since it was the best im-
age similarity measure according to the comparison carried out in section
3.2. Pearson Correlation Coefficient provides an arbitrary similarity value
that is proportional to image similarity in range of [−1; 1], where one means
that images are proportional and -1 means that one image is entirely anti-
correlated. The similarity cannot be used to sample the Particle set, which
is the basic idea of the Particle filtering algorithm. The similarity value
must be recalculated to a probability distribution, which can be sampled.

The easiest approach to calculate particle probability is to convert neg-
ative image similarity values to positive. The range of Pearson Correlation
Coefficient is fixed in range of[-1; 1], the following formula can be used:

F (x) =
x+ 1

2
(2.16)

Equation 2.16 provides high probabilities at poor similarity values, e.g.
if x = −0.1, then F (x) = 0.45. Fig. 2.12a shows the visual representation of
such conversion. This means that particles with poor image-map similarity
survives with high probability.

Softmax is a popular function used to convert arbitrary output val-
ues to categorical probability distributions in neural networks and machine
learning [118]. Softmax conversion function (see figure 2.12b) can be imple-
mented by the following equation :

F (x) = ex (2.17)

Due to its wide use amongst machine learning applications, it is going
to be used as a baseline in the experimental sections of this paper.

The main idea for the conversion function is to achieve robust localiz-
ation with as little particles as possible. It should assign low probabilities
(non-zero) for the negative similarities and boost positive similarities to im-
prove their survivability during sampling. Two functions are proposed to
deal with the conversion in the described fashion. The first function uses
linear rectification with a single parameter d describing what probability
value is assigned at x = 0 using positive parameter value and where the
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function starts rising on the X-axis using negative parameter values (see
figure 2.12c):

F (x, d) =


0, if d < 0 and x ≤ |d|

(1 + |d|)(x− |d|) + d2, if d < 0 and x > |d|

d(1 + x), if d ≥ 0 and x ≤ 0

x(1− d) + d, if d ≥ 0 and x > 0

(2.18)

Previous work by A. Nakhmani et al. [119] has used a rectified Pearson
correlation coefficient for a Particle filter based visual tracking algorithm,
this conversion function would be equivalent to proposed rectified function
with parameter value d = 0. The second function was developed from
generalized logistic function [120]:

l(x) =
A

(1 + δe−kx)
1
v

(2.19)

and by applying fixed coefficients: A = 1, δ = 1, k = 5, the logistic function
becomes:

L(x, v) =
1

(1 + e−5x)
1
v

. (2.20)

Parameter v is going to be used as a hyper-parameter to control the shape
of the curve. To achieve a curve in range of [0; 1] at input range of [-1; 1],
a division is added, so the final conversion equation is:

F (x, v) =
L(x, v)

L(1, v)
. (2.21)

See figure 2.12d for the curves with different v values used in the research.
This function has a more practical form without different if-cases. It also
contains a single hyper-parameter, that is used to control the function
curvature. Each of these conversion functions is implemented, and their
impact using different hyper-parameters on localization accuracy, speed,
and robustness is analyzed.

This section describes the methodology and experimental setups used
for performance measurements of Particle filter localization.
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(a) Linear conversion (b) Softmax conversion

(c) Rectifying conversion (d) Logistic conversion

Figure 2.12: Conversion functions outputs.

2.3.8 DPC-PFL: Discriminatory Pearson Correlation based
Particle Filter Localization Algorithm

This section proposes a variant of adaptive Particle filter localization al-
gorithm based on KLD sampling and Pearson correlation coefficient simil-
arity measure to solve GPS-Denied localization on an aircraft flying in low
altitude. The main novelty of this algorithm is the use of image similarity
to particle probability conversion function, which is used to convert Pear-
son correlation values to particle probability with lower-probability values
for low correlation and higher-probability value for increasing correlation
values. Since the conversion function is used to reduce the survivability
of particles with low correlation values and increase chances of survival of
particle with better correlation values, the function is named particle dis-
crimination function and the algorithm is named Discriminatory Pearson
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Algorithm 4 Proposed Particle Filter Localization Algorithm - DPC-PFL
Inputs: Set of particles St−1 obtained from previous iteration, Latest
camera image T , Conversion function parameter v (if applicable)
Outputs: Proposed location < X,Y > of the UAV in map coordinates
function FilterParticles(St−1, T , v)

H = 0, k = 1, St = ∅, i = 0

do
P (i) ∼ St−1 ▷ Sample a particle from the particle set
PropagateParticle(P (i)) ▷ Propagate particle using motion

model equations 2.7, 2.8, and 2.9
I = ExtractMapImage(P (i)) ▷ Extract map image

corresponding to particle location
r
(i)
t = CalcSimilarity(T, I) ▷ Calculate image similarity using

NCC measure
s
(i)
t = F (r

(i)
t , v) ▷ Convert image similarity value using logistic

conversions function
H = H + s

(i)
t

St = St ∪ P (i) ▷ Insert particle into the particle set
if P (i) falls into empty bin then

bin = non-empty ▷ Mark bin as non-empty
k = k + 1 ▷ Increase marked bin counter

i = i+ 1 ▷ Increase number of particles
while i < 1

2ϵZ
2
k−1,1−δ ▷ Until K-L bound is reached

n = i ▷ Save the number of particles
x′ = 0, y′ = 0, θ′yaw = 0

for i = 1 .. n do
b
(i)
t = s

(i)
t /H ▷ Calculate particle weight

x′ = x′ + (b
(i)
t ∗ x(i)t ) ▷ Calculate weighted sum of particle

coordinates
y′ = y′ + (b

(i)
t ∗ y(i)t ) ▷ x

(i)
t , y

(i)
t are ith particle’s coordinates in

map
θ′yaw = θ′yaw + (b

(i)
t ∗ θ(i)t ) ▷ Final pose heading angle θyaw

return < x′, y′, θ′yaw >
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Correlation based Particle Filer Localization (abbr. DPC-PFL).
Localization is achieved by sampling a set of particles using their prob-

ability distribution. Particles are hypothesized UAV locations on the map
and are assigned a probability value that is proportional to the likeliness of
being the true location. Particles are iteratively re-sampled using sampling
technique which adapts sampled particle count n depending on Kullback-
Leibler divergence (abbr. KLD sampling):

n =
1

2ϵ
Z2
k−1,1−δ =

k − 1

2ϵ

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}3

, (2.22)

where :

• z1−δ is the upper 1− δ quantile of the standard normal N(0, 1) distri-
bution;

• ϵ is the upper bound of the approximated discrete distribution by the
KL-divergence [121];

• k is the number of bins that are marked taken.

The technique has shown good results against other sampling techniques
on simulated flight data — it provides the same localization accuracy, but
dynamic particle count allows to decrease computational costs up to 1.7
times (see section 3.4 for details of KLD sampling algorithm evaluation
against other algorithms). The particles can be sampled only if the prob-
ability distribution is known. The problem is how probability distribution
could be calculated from image similarity. Particle filter uses a finite amount
of particles; thus a probability mass function is going to be used as a discrete
probability distribution. Algorithm 4 shows the detailed implementation of
the Particle filter localization. The initial particle set S0 is generated around
the starting point within 300 meters radius, an initial probability is set to
1. During the first iteration, all particles have an equal likelihood to be
sampled. KLD algorithm parameters ϵ and δ were chosen empirically and
the values used were ϵ = 0.05 and δ = 0.9. The bins used in the algorithm
is implemented by dividing map coordinates into a 2-D grid of 5 meters. If
a particle falls into a bin (a grid square), it is marked as taken. The num-
ber of bins is used in the Kullback-Leibler divergence calculation to adapt
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the number of particles according to their distribution on the map. Image
similarity value is calculated using NCC similarity measure, the measure
was chosen since it provides highest similarity values to near ground-truth
positions compared to SSD and CC similarity measures (see section 3.2 for
details). The image similarity value R is converted to particle probability b(i)

using one of the conversion functions F (x) described in section 2.3.7. The
recommended conversion function is the logistic function with parameter
value 0.2 since this function achieved highest scoring results in experiments
performed in section 3.5. In the case, if the given map is very recent, lower
values of 0.1 or 0.05 can be used to increase algorithm accuracy but reducing
robustness to changes between aerial imagery and the map. The sampling
algorithm can sample the calculated particle probability in the resampling
stage. Sampled particles must be propagated given their motion since the
last iteration. Visual odometry algorithm is used to calculate relative UAV
movement over time and is added using a planar motion model presented
in section 2.3.3.

2.4 Conclusions Of Chapter 3

The conclusions of chapter 3 can be outlined as follows:

• Two image similarity to particle probability conversion functions are
proposed to map image similarity to particle probability and allow the
trade-off between accuracy and execution speed.

• Modification of Particle filter based localization algorithm named
DPC-PFL is proposed to solve the drift of Visual odometry, the most
common method for low-altitude UAV localization in GPS-denied en-
vironments.

• New method is proposed for measuring the energy efficiency of a par-
allel computing platform using a common computer vision task - com-
puting Sobel filter. The method includes measurements of energy con-
sumption by the platform to accurately compare the energy efficiency
of each processing iteration by the hardware.
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Chapter 3

EXPERIMENTS AND
RESULTS

This chapter presents experiments performed during the research and the
results that were obtained. The plan of experiments is as follows:

1. Comparison of computing platforms. The goal of this experiment is to
measure energy consumption and execution time of Sobel filter calcu-
lation on selected computing platforms, to identify the most efficient
computing platform.

2. Comparison of image similarity metrics. The best-identified metric
will be used in the following experiments.

3. Evaluation of UAV Heading Error Impact on the NCC Similarity Met-
ric. This experiment is performed to measure how the error of the
magnetometer sensor (used to measure heading direction) affects the
image similarity value. The similarity value is calculated between an
actual image from UAV and according to map patch with different
angular errors..

4. Comparison of particle sampling techniques. Few selected sampling
techniques will be evaluated to choose the best particle sampling tech-
nique for the case of UAV visual localization using Particle filter.

5. Evaluation of image similarity to probability conversion functions.
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The experiment is performed by running localizations on the simu-
lated dataset using different image similarity to probability conversion
functions. Position estimation accuracy, execution speed, and robust-
ness to the difference in map imagery are evaluated using different
conversion functions. The best performing conversion function will be
used in the next experiments.

6. Comparison against Visual odometry. Measure the accuracy of the
proposed localization algorithm DPC-PFL and evaluate whether the
algorithm can reduce accumulating drift of VO on the test-flight data-
set.

7. Comparison against Visual SLAM. Compare the DPC-PFL against
state-of-the-art vSLAM algorithm - OSB-SLAM.

The experiments will be performed in the planned order. Results from
each item of the plan will be presented in a separate section of this chapter.
The results of this chapter were based on works published in papers [A1],
[A3], [A4], [A5], and [A6]

3.1 Comparison Of Computing Platforms

This section presents comparison of three computing platforms fit for execu-
tion computer vision algorithms on-board UAV. The platforms are evaluated
using methodology presented in section 2.1. Three platforms are evaluated
(see section 1.4 for details on the platforms):

• Parallella platform with Epiphany 16 co-processor,

• Radxa Rock 2 platform with ARM Mali-T764 GPU,

• Airvision Core X1 platform with NVIDIA X1 Embedded GPU, based
on NVIDIA Maxwell architecture.

3.1.1 Execution Speed on Different Platforms

The Sobel filter was implemented on both OpenCL and eSDK frameworks
for the Epiphany processor, and a brief comparison of results was made.
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Figure 3.1: Time taken to process a single frame using OpenCL and eSDK
on the Parallella platform.

The main difference between these implementations is that eSDK required
the manual implementation of input/output image buffers, while OpenCL
framework does manage buffers by itself. Figure 3.1 shows that eSDK frame-
work has done the same calculations at least 3 times faster. The reason
might be that the OpenCL is poorly implemented for the Epiphany pro-
cessor and has too much overhead. Further experiments will be done using
only eSDK since it shows better results without a doubt. The result values
below are average values of 100 iterations processing the same image.

Figure 3.2 shows the execution time taken to process the images of dif-
ferent resolutions on ARM CPU, Epiphany Co-Processor, ARM MALI GPU
and NVIDIA TX1 GPU. Images of following resolutions were processed:

• 640x480 (480p)

• 1280x720 (720p)

• 1920x1080 (1080p)

The results show that the execution time on Epiphany co-processor takes
longer compared to CPU implementation, while Mali GPU operates approx-
imately twice faster than the CPU. The NVIDIA Tegra X1 GPU performs
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Figure 3.2: Execution time of Sobel filter algorithm on images of different
resolutions. Note that CPU data does not contain read and write times,
since these operations are required on accelerator devices.

15–50 times faster compared to CPU implementation, the values are dis-
played on a different scale since they are barely visible on the scale on the
left side.

3.1.2 Energy Efficiency of Computing Platforms

Histograms presented in figure 3.3 shows consumed energy values for each
of the experiment iterations, and the red dashed line represents the average
value of all measured values. The experiment is carried out by perform-
ing 100 iterations of Sobel filter on an input image of 1920x1080 resolution.
Table 3.1 presents average measured energy consumption for each experi-
ment. The results show that by using Mali GPU T764 (on Radxa Rock2 plat-
form) may reduce energy consumption 6.85 times comparing with 16 core
Epiphany co-processor (on Parallella platform) and consumes 84.2 times less
energy when using Nvidia Tegra X1 (Airvision Core X1 platform). Table 3.2
shows the results of performing a Shapiro-Wilk test against measurements
on each platform. The test shows that all measurement value p-values are
above 0.05, so the null-hypothesis that values are from a normally distrib-
uted population cannot be rejected with a 95% probability. The results of
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(a) Consumed energy histogram on
Parallella with Epiphany-16 co-processor.

(b) Consumed energy histogram on ARM
Cortex A9 CPU.

(c) Consumed energy histogram on Radxa
Rock2 with ARM Mali T764 GPU.

(d) Consumed energy histogram on
Airvision Core X1 with NVIDIA Tegra X1

GPU.

Figure 3.3: Consumed energy histograms of different platforms.

Student’s t-test across the measurements are provided in table 3.3, the t

value represents the t-Statistics of the test and p is the p-value of a null-
hypothesis stating that measurements are measured dependently. The res-
ults of the Student’s t-test show that the experimental results were captured
independently with a very high probability (p-value < 0.001).

The experiments shows a comparison of various heterogeneous platforms
and though Parallella platform has a new innovative co-processor technology
it may be inefficient with input data-intensive tasks, such as convolution
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filters (like benchmarked Sobel filter), with only 2.54 FPS processing speed
on high-resolution images. Due slow computations, the platform consumes
3x more energy than a single core ARM CPU.

Nvidia Tegra X1 GPU powered platform showed the best results com-
pared with any other platform, which may be expected since it uses 256
cores for processing while the Parallella platform has only 16 cores. It uses
~12x less energy for the same amount of calculations and is ~29x times
faster than a second-best platform – Radxa Rock2, this is not only because
execution is a lot faster because of the number of cores, but memory transfer
is ~26x faster.

Although Nvidia Tegra X1 platform was around six times more expens-
ive than other platforms at the time of experiment execution (600$ versus
99$ and 120$ for Parallella and Radxa Rock2 respectively), to compare
value-per-money metric we see that Parallella calculates 0,025 FPS/$ (min-
imum price per unit is 99$), Radxa Rock2 can calculate 0.10 FPS/$ (min-
imum price per unit is 120$), Nvidia Tegra X1 0.60 FPS/$ (minimum price
per unit is 600$) so money-value is better with Nvidia Tegra X1 although
Radxa Rock2 is a cheaper solution. Parallella platform is not able to sur-
pass a single core application nor by processing speed (~3x slower) nor by
energy consumption (~3x more energy). Radxa Rock2 is ~5x faster and 7x
more energy efficient than a single core application, while Nvidia Tegra X1
is ~142x times faster and ~84x more energy efficient.

Processing results on the Parallella platform are somewhat disappoint-
ing; the acceleration of processing is only three times faster using 16 parallel
cores versus single-core implementation (on both eSDK and OpenCL). The
reason may be the required data buffering due to insufficient memory on
the co-processor. It is possible to avoid usage of the external memory buffer
by writing an image directly into the core‘s internal memory. It could im-
prove performance, but constrains image size. Further experiments would
be required to back up this statement. Also, the FPGA system reviewed in
the related work has shown potential in performance and power efficiency
compared with traditional platforms.
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Figure 3.4: Image similarity metric values on simulated 500 UAV pose hy-
potheses. Image a) shows the similarity coefficient values calculated using
NCC metric (eq. 2.15), most values are around 0 with few clear peak values
of over 0.1. The image b) contains CC metric (eq. 2.14) value, which does
not contain any clear peak values. The image c) contains SSD similarity
(eq. 2.13) values, the values are mostly 0, but there is also a lot of peak
values.
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Table 3.1: Measured average energy consumption per computed frame.

Platform Energy, mJ
ARM Single Core 587

Parallella 1651
Radxa Rock2 238

Airvision Core X1 19.6

Table 3.2: Shapiro-Wilk test results

Data set name W p-value
ARM Single core consumed energy 0.979 0.144
Airvision Core X1 consumed energy 0.984 0.153
Parallella consumed energy 0.984 0.286
Radxa Rock2 consumed energy 0.980 0.165

3.2 Comparison of Image Similarity Metrics

Image similarity are evaluated using images from test flight dataset de-
scribed in section 2.2.1. The similarity metrics described in section 2.3.6
will be evaluated by calculating the metrics between the test flight image
and according to image patch from a map. The map is located in a suburb
region of Lentvaris near Vilnius City, the capital of Lithuania. The area
was selected to contain forests, grass plains and civil buildings with streets.
The map contains both, texture-rich imagery like streets with many houses

Table 3.3: Student’s t-test results across measurements.

ARM
Single Core

Parallella Radxa
Rock2

Airvision
Core X1

Statistic t p t p t p t p
ARM Single Core - - -1207 <0.01 187 <0.01 752 <0.01
Parallella 1207 <0.01 - - 742 <0.01 1801 <0.01
Radxa Rock2 -187 <0.01 -742 <0.01 - - 119 <0.01
Airvision Core X1 -752 <0.01 -1801 <0.01 -119 <0.01 - -
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and grass plains which does not contain a lot of distinct visual features.
Images of a hypothesized location are cropped out of the map, re-scaled

and noise are added using Gaussian and Salt and pepper algorithms. Salt
and pepper algorithm is changing 5% image pixels into completely white
pixels and 5% pixels completely black. Gaussian noise is added using 25
mean value and 40 sigma value of standard deviation. Images are compared
in gray-scale color space, a conversion from colored to gray-scale color space
is performed before calculating similarity value.

To compare the image matching coefficients, a set of 500 search hypo-
thesis is generated and image similarity is calculated using a single ground
truth location. Figure 3.4 shows the similarity values as calculated by formu-
las given in section 2.3.6. CC metric (see figures 3.4b) does not distinguish
any poses from the common; there are many peak values. This issue will
cause problems while localizing because many particles will survive during
localization and it may take considerable time to filter out the final pose.
SSD function (see figure3.4c) contains a lot of zero values, which means that
these values will undoubtedly be omitted on the next iteration of Particle
filtering. It causes a very early pose convergence which is likely to be in-
correct. Particle filter requires some iterations to collect enough evidence
over time to select a proper pose. Meanwhile, NCC (see figure 3.4a) has few
high probability particles, and others are in a low probability zone. Thus,
it allows the survival of very probable locations, but less probable locations
can survive for consideration with lower probability. This property allows
filtering the values over time with some chance of survival for images with
lower similarities, which in some cases, over time, maybe the ground truth
pose.

The dashed vertical lines mark five particles nearest to ground truth,
most of them are one of the peak probability values, from figure 3.4a we
can see that even particles with highest correlation coefficient values may
not be the closest particle to the ground truth.

Table 3.4 shows a statistical comparison of the similarity values; each
row of the table is explained in the following list:

1. Top 5 Min - the minimum similarity value of 5 particles nearest to the
ground truth.
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Table 3.4: Similarity metric comparison.

Value NCC CC SSD
Top 5 Min 0.0122 0.7185 0
Top 5 Average 0.0550 0.7471 0.0000
Top 5 Max 0.1253 0.7703 0.0000
Top 5 particles above Min (N+) 5 5 5
Top 5 particles above Average (N+) 2 2 5
Top 5 particles above Max (N+) 1 1 5
Particles Above Top 5 Min (N−) 166 151 141
Particles Above Top 5 Average (N−) 31 74 141
Particles Above Top 5 Max (N−) 3 15 141
Top 5 Min Accuracy 2.92% 3.21% 3.42%
Top 5 Average Accuracy 6.45% 2.70% 3.42%
Top 5 Max Accuracy 25.00% 6.25% 3.42%

2. Top 5 Average - the average similarity value of 5 particles nearest to
the ground truth.

3. Top 5 Max - the highest similarity value of 5 particles nearest to the
ground truth.

4. Top 5 particles above Min - number of particles from the top 5 that
received higher similarity value than top 5 minimum.

5. Top 5 particles above Average - number of particles from the top 5
that received higher similarity value than top 5 average.

6. Top 5 particles above Max - number of particles from the top 5 that
received higher similarity value than top 5 maximum.

7. Particles Above Top 5 Min - Number of particles that received a higher
similarity value than the top 5 minimum.

8. Particles Above Top 5 Average - Number of particles that received a
higher similarity value than the top 5 average.
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9. Particles Above Top 5 Max - Number of particles that received a
higher similarity value than the top 5 maximum value.

10. Top 5 Min Accuracy - shows the accuracy of the metric with a bottom-
line of top 5 minimum.

11. Top 5 Average Accuracy - shows the accuracy of the metric with a
bottom-line of top 5 average.

12. Top 5 Max Accuracy - shows the accuracy of the metric with a bottom-
line of top 5 maximum.

The accuracy in the table 3.4 is calculated by expressing the number of
the positive particle (any of the top 5) in the range of particle above the
top 5 minimum, average, or maximum. The accuracy can be expressed as:

αaccuracy =
N+

N− +N+
, (3.1)

where:

• αaccuracy is the accuracy value,

• N+ is the number of particles from the top 5 particle set that received
a similarity value higher than one the minimum, average, or maximum,

• N− is the number of particles from non-top 5 particle set (the rest of
the particles) that received a similarity value higher than one of the
minimum, average, or maximum.

From the table 3.4 we can see that NCC metric calculates higher simil-
arity values for the nearest particles compared to other metrics. The NCC
metric has only three particles with higher similarity then top 5 particles
maximum similarity compared to 15 particles of CC and 141 particles of
SSD. Despite that, the NCC has 10% lower top 5 minimum accuracy than
the CC, but the average and maximum accuracies are better (2.4 times
better on average and four times better on maximum). The NCC metric
provides far better chances of survival for the top particles compared to
other metrics. Therefore, (NCC) will be used for Particle filter localization
in the rest of the experiments.
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Figure 3.5: Correlation coefficient values when matching map with aerial
imagery on all heading angles.

3.3 Evaluation of UAV Heading Error Impact on
the NCC Similarity Metric

This section investigates the magnetometer error impact on NCC image
similarity metric. The NCC metric is rotation variant, so the error in sim-
ilarity value with inaccurate rotational data is measured. To evaluate how
the angular errors affect NCC similarity values 500 aerial images were se-
lected from test flight dataset with according map patches and correlation
values between the pairs were calculated while rotating the aerial image
around its center point and keeping the map patch unmodified. The change
in correlation value is observed relative to the correlation value of perfectly
aligned images. Figure 3.5 presents NCC similarity values for 6 sample
images captured during real flight and matched with according orthophoto
map patches. Table 3.5 contains average similarity change values versus
heading change. Data from table 3.5 suggests that +/- 2 degrees of head-
ing angle error can be ignored because it affects the correlation coefficient
only up to 10% on average. The NCC metric can be used with heading
measurements from magnetometers which measures the heading angle with
2-degree accuracy.
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Table 3.5: Heading change impact on similarity coefficient

Average similarity
Heading change, ◦ change, %

+10 67.78
+5 34.59
+2 9.38
-2 10.15
-5 35.49

-10 62.08

3.4 Comparison Of Particle Sampling Techniques

This section presents an experiment performed to evaluate three particle
sampling algorithms presented in section 2.3.2:

1. Rejection Sampling

2. Importance Sampling

3. KLD-Sampling

This experiment aims to identify the sampling algorithm which can localize
the UAV faster and with comparable accuracy. The experiment is set up
by imitating the loss of GPS signal during UAV flight. The localization
is started in a region of 312-meter radius (1040 in pixels) of last known
position (worst case GPS accuracy is 156 meters, so doubled value makes
the experiment more thorough). The effectiveness of the algorithm is meas-
ured by the percentage of successful predictions of the ground truth pose
after 50 iterations (around 1 kilometer of flight distance). The result is con-
sidered successful if the particle with the highest probability is no further
from ground truth then 15 meters. An example search of UAV location is
presented in figure 3.6, where 500 particles are scattered randomly over an
area of a map to localize the true pose of UAV. In the initial state (fig-
ure 3.6a) the particles are scattered uniformly among the map, the ground
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(a) Initial Particles. (b) Localization in progress.

(c) Final location converged.

Figure 3.6: Hypothesized UAV locations on the known map.

truth location is marked with a circle marker that is five times larger than
the hypothesized locations. During the localization (figure 3.6b, the weak
hypotheses were eliminated, and the surviving particles are concentrated in
few places which contain similar imagery to the one visible from the UAV.
At the end of localization (figure 3.6c, all the surviving particles are near
the ground truth location. The pose is marked with a large circle in the im-
age center. To measure the accuracy of the localization 100 start locations
are randomly selected, and each sampling algorithm is evaluated using the
same starting conditions. The experiment allows 50 iterations for a single
localization to converge. Then the best-matched hypothesis is compared
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to a ground truth value. Cropped out of the map image frame has the di-
mensions of 400x400 pixels. Such image size would be visible while using
the 90-degree camera at around 100-meter altitude. This small size of the
image was chosen because usage of a global shutter camera would be re-
commended to avoid shutter distortions. Most global shutter cameras are
usually industrial low-resolution cameras. Higher resolutions may require
additional resources and are more expensive. Quality image is more import-
ant than high resolution. Higher resolution may not vary significantly in
matching quality. The camera should be calibrated correctly to be used in
real-world scenarios.

Table 3.6 shows the experimental results of the algorithm comparison.
The final particle count is the average particle count at the last iteration
of the algorithm. Rejection and importance sampling algorithms have fixed
particle counts, and the KLD-sampling particle count is variable over time.
The average time is calculated by adding up the execution time of each 100
flight starting point tests. Experiments were concluded on an Intel i5-4200M
processor with 3.1 GHz operating frequency.

Table 3.6: Comparison of sampling algorithms

Algorithm End particle
count

Average dur-
ation, s

Successful
localization

Rejection 500 215 90 %
Importance 500 219 99 %
KLD 150 81.8 94 %

3.5 Image Similarity To Probability Conversion
Functions

This thesis proposes a new component for visual Particle filter localization
- image similarity to particle probability conversion function (also referred
to as the discriminatory conversion function). Two parametric conversion
functions were proposed in section 2.3.7. Accuracy, execution speed, and
robustness to inaccurate maps are measured using different conversion func-
tions and different parameter values. The simulated dataset is used in the
experiments; 10 flights are performed for each of the dataset scenarios and
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conversion functions with different parameter values. A total of 1440 simu-
lated flights were performed on the simulated dataset (presented in section
2.2.2) and average values are presented. To measure the improvement, two
baseline functions were used: normalization to a range [0; 1] (see equation
2.16) and softmax conversion (see equation 2.17). For details of conversion
function, see section 2.3.7. The final results are divided into three subsec-
tions: accuracy, execution time, and robustness.

A single combination of conversion function, a flight scenario, and a map
used for matching is run for ten times, and average results are provided to
account for randomness in the Particle filter algorithm. Maps of different
dates are used for matching to test whether the algorithm can cope with
changes in the environment. Four maps created on two-year intervals in
the forest and urban environment are used for localization. During each
experimental flight iteration, a measure of accuracy in meters and dura-
tion in particle evaluations are recorded. Rectifying function is used with
parameter values: 0.2, 0.1, 0.0, -0.1, -0.2. Logistic function is used with
parameter values: 0.7, 0.4, 0.2, 0.1, and 0.05. Different metrics are used to
evaluate accuracy, speed, and robustness:

• Accuracy is measured by calculating Euclidean distance between the
ground truth location and algorithm’s output location in the map
plane. A ranking method is used to select which conversion function
gives the most accurate results. Average accuracies from each conver-
sion function are ranked amongst each of the flight scenarios, given
the best - 1 point for the most accurate result, 2 points for the second
most accurate and so on, finally, the function with least points will be
chosen as the most accurate conversion function.

• Speed is measured by the number of average evaluated particles during
the single experimental flight. Since the number of iterations in each
simulated flight is the same, average particle evaluations per iteration
is proportionate to time of execution, eliminating stochastic changes
introduced while measuring execution time and it is independent of
system resources.

• Robustness is evaluated by measuring the standard deviation of aver-
age accuracy using maps that were created on different dates. USGS
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Table 3.7: Localization accuracy in meters using parametric logistic conver-
sion function

Scenario v = 0.7 v = 0.4 v = 0.2 v = 0.1 v = 0.05
FL-200 39.27 37.41 55.91 225.41 238.70
FL-300 26.74 26.09 27.66 25.63 160.18
FR-200 62.71 52.73 74.06 62.36 58.20
FR-300 64.34 59.25 31.83 32.54 58.48
FC-200 57.32 68.53 92.39 102.86 49.36
FC-300 95.63 112.06 126.93 156.09 140.20
UL-200 27.17 27.64 26.56 25.46 28.27
UL-300 27.27 25.88 25.95 26.60 27.57
UR-200 54.69 42.43 37.09 66.53 52.23
UR-300 50.00 43.55 41.27 45.07 55.10
UC-200 70.42 56.57 49.09 48.38 65.56
UC-300 73.71 64.74 54.29 63.16 67.49

provides imagery of the same regions every two years starting from
2008 (for the regions chosen for this research). This way we can meas-
ure how well the algorithm copes with changes introducing in the
environment that is caused by time.

Visualization of the results is available online 1 .

3.5.1 Accuracy

Tables 3.7 and 3.8 show average accuracy results on each flight scenario
with logistic and rectifying conversion functions using different parameter
values. Columns in bold show the most accurate localization with a given
parameter value of a function from ranking results in table 3.9. Table 3.9
shows the experimental results ranked by accuracy for each of the experi-
mental results, by ranking from 1 (best) to worst (10), the sum of the ranks
is used to determine the most accurate (lowest value) conversion function
and its parameter value.

1Presentation video online in YouTube platform: https://youtu.be/tcz_gFbivqA
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Table 3.8: Localization accuracy in meters using parametric rectifying con-
version function

Scenario d = 0.2 d = 0.1 d = 0.0 d = -0.1 d = -0.2
FL-200 39.97 37.66 50.79 145.09 233.22
FL-300 27.01 25.74 27.14 56.05 184.69
FR-200 59.64 67.15 72.57 72.03 79.35
FR-300 59.50 51.41 40.72 29.18 35.53
FC-200 58.26 73.73 78.47 67.71 26.03
FC-300 92.44 116.12 125.66 142.34 112.88
UL-200 29.81 27.40 26.67 27.03 26.61
UL-300 26.66 26.34 25.01 25.60 25.27
UR-200 58.50 44.85 36.39 42.53 49.48
UR-300 53.54 42.82 39.55 39.92 42.68
UC-200 78.07 72.78 49.43 50.33 48.05
UC-300 76.03 67.38 57.79 56.38 61.53

Table 3.9: Conversion function ranking according to accuracy

Function Parameter value Score Rank
Rectifying 0.2 75 8
Rectifying 0.1 54 2
Rectifying 0 56 3
Rectifying -0.1 69 7
Rectifying -0.2 88 10
Logistic 0.7 82 9
Logistic 0.4 68 6
Logistic 0.2 52 1
Logistic 0.1 58 4-5
Logistic 0.05 58 4-5
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Table 3.10: Localization comparison against Softmax conversion function

Accuracy improvement
Scenario Softmax / Linear Logistic / Linear Logistic / Softmax
FL200 7.79% 15.59% 7.24%
FL300 6.47% 32.40% 24.35%
FR200 14.77% 10.18% -4.00%
FR300 6.37% 85.07% 73.99%
FC200 2.48% -40.14% -41.59%
FC300 -2.58% -23.61% -21.58%
UL200 12.10% 65.12% 47.30%
UL300 12.37% 48.47% 32.12%
UR200 22.90% 224.89% 164.34%
UR300 6.49% 98.27% 86.19%
UC200 0.81% 95.25% 93.67%
UC300 2.79% 63.48% 59.04%
Average 7.73% 56.25% 43.42%

Table 3.10 shows the comparison of selected best conversion function
with a parameter value (logistic with v = 0.2) to the baseline Softmax
conversion function, the comparison results shows, that the best logistic
function is 43% more accurate and also requires 3 times less iterations (see
table 3.11) on average to achieve the result.

3.5.2 Execution Time

Table 3.11 presents execution time speed-up measured of the best ranked
logistic conversion function with 0.2 parameter value. The second column
shows localization speed-up using Softmax conversion function against the
most trivial linear conversion function. The Softmax function achieved 14%
execution time speed-up in some cases and 7% speed-up on average. The
best ranked logistic conversion function achieved 3.18x speed-up compared
against the linear and 2.96x speed-up compared against Softmax conversion
function. The execution time reduction achieved by using logistic conversion
function is a very significant speed-up and even after the 3x speed-up already
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Table 3.11: Localization comparison against Softmax conversion function

Speedup
Scenario Softmax / Linear Logistic / Linear Logistic / Softmax
FL200 1.06 2.41 2.26
FL300 1.07 2.32 2.17
FR200 1.11 3.23 2.92
FR300 1.14 3.36 2.95
FC200 1.00 2.66 2.65
FC300 0.99 2.51 2.53
UL200 1.14 3.76 3.31
UL300 1.12 3.40 3.03
UR200 1.14 3.66 3.21
UR300 1.10 3.37 3.07
UC200 1.01 3.62 3.58
UC300 1.02 3.89 3.83
Average 1.07 3.18 2.96

achieved by implementing KLD-sampling based localization.

3.5.3 Robustness

By comparing average accuracies on different maps, we can evaluate the
algorithms ability to localize with changes in the imagery. Figure 3.7 shows
accuracies using different maps for localization. The flight data was col-
lected using the 2008 map, so with an increasing date of map creation, it
incorporates more changes. Data shows that using a rectifying function
with parameter in the range 0.0, . . . , 0.2 and logistic conversion function
with parameter in the range 0.2, . . . 0.7 provides similar accuracy with dif-
ferent maps, even with a map dated in 2014 which is six years apart from
the imagery used in the flight. The accuracy also continues to increase with
logistic function values 0.1 and 0.05 while using very recent maps, but the
accuracy decreases drastically with maps that were created later, so using
these values would provide benefits only if the map is very recent and does
not have drastic changes. Table 3.12 shows the Standard Deviation (abbr.
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(a) Accuracies using rectifying
conversion function

(b) Accuracies using logistic
conversion function

Figure 3.7: Comparison of localization accuracy with different maps, map
years depicts the date when map was created.

SD), Average, and Relative Standard Deviation (abbr. RSD) of localization
accuracy using different probability conversion functions. The RSD value
is calculated using the following formula:

RSD =
100 · SD
Accuracy

, (3.2)

where

• SD — Standard Deviation value,

• Accuracy — Average accuracy .

The rectifying function with parameter values of 0.2, 0.1, and 0 and
logistic function with parameter value of 0.7 and 0.4 relative standard devi-
ation values are under 10% which shows these function abilities to be robust
using any maps from this experiment. Although, other functions are not
that robust to older maps, but their accuracy is better using recent maps.

3.6 Comparison of DPC-PFL Against Visual
Odometry

This experiment evaluates localization accuracy compared with conven-
tional GPS positioning system and pure Visual odometry positioning. Ac-
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Table 3.12: The deviations of localization accuracy achieved using different
conversion functions over different maps.

Function Parameter value SD Accuracy RSD
Rectifying 0.2 3.14 54.16 5.8%
Rectifying 0.1 4.09 52.36 7.8%
Rectifying 0 4.14 53.64 7.7%
Rectifying -0.1 26.06 73.73 35.4%
Rectifying -0.2 42.09 86.80 48.5%
Logistic 0.7 3.20 54.95 5.8%
Logistic 0.4 4.29 54.45 7.9%
Logistic 0.2 8.96 53.08 16.9%
Logistic 0.1 28.99 62.85 46.1%
Logistic 0.05 44.49 77.11 57.7%

cumulated odometry error correction is expected when using Particle filter
in combination with odometry. Flight trajectory reconstruction using odo-
metry and DPC-PFL is presented in figure 3.8. Trajectory errors in meters
are presented in figure 3.9, the figure shows that odometry suffers from
cumulative errors as it was introduced in section 1.3.2. The dashed lines
are the error trend-lines. The vertical line shows the breaking point of the
trend-lines at 35 seconds of flight time. Since the breaking point of ac-
curacies shows that the proposed algorithm adds a lot fewer errors during
long time flights. Additional experiments are required to validate whether
errors will not add up after long flights. Particle filter localization was able
to keep error values in an around 50-meter range. After the 1 kilometer
flight, the final error was reduced by a factor of 2 compared to localization
from Visual odometry only. The DPC-PFL reduces error trend-line slope
by a factor of 11 compared against SVO.

3.7 Comparison Against Visual SLAM

This section presents the comparison results of the proposed DPC-PFL al-
gorithm with state-of-the-art ORB-SLAM algorithm. Results of 4 flight
scenarios are compared since ORB-SLAM was not able to reconstruct other
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Figure 3.8: Flight trajectory reconstruction using Visual odometry (red),
proposed DPC-PFL (green) and conventional GPS sensor (blue).

Figure 3.9: Absolute positioning error using Visual odometry (red) and
proposed DPC-PFL (green).
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flights and lost position tracking mid-flight; incomplete results are not in-
cluded. Figures 3.10a to 3.10d shows flight trajectories recovered by 3
algorithms - SVO (which is used internally by Particle filter), proposed
DPC-PFL with logistic conversion function and parameter value of 0.2,
and ORB-SLAM. According to results in table 3.13, ORB-SLAM provides
similar results to SVO, while being a little bit more precise; meanwhile, the
proposed DPC-PFL outperforms both SVO and ORB-SLAM with over ~2.6
times higher precision in average.

(a) Forest map, 200 meters altitude. (b) Forest map, 300 meters altitude.

(c) Urban map, 200 meters altitude. (d) Urban map, 200 meters altitude.

Figure 3.10: Linear flight trajectories recovered using SVO, ORB-SLAM2,
and proposed DPC-PFL.
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Table 3.13: Localization accuracy comparison of ORB-SLAM (ORB), SVO
Visual odometry, and the proposed algorithm – DPC-PFL.

Accuracy, m Relative accuracy
Scenario SVO PFL ORB PFL/SVO ORB/SVO PFL/ORB
FL-200 48.36 27.60 49.56 75.26% -2.43% 79.61%
FL-300 45.00 17.08 58.55 163.53% -23.14% 242.88%
UL-200 130.95 21.93 118.48 497.03% 10.53% 440.17%
UL-300 129.88 21.06 86.05 516.84% 50.94% 308.67%
Average 313.16% 8.97% 267.83%

3.8 Conclusions Of Chapter 4

The conclusions of the experiments performed in this chapter can be out-
lined as follows:

• Normalized Correlation Coefficient is the most suitable metric for
Particle filter localization compared against Sum of Squared Differ-
ences and Cross-Correlation since it calculates the highest similarity
values to particles that are closest to the ground truth. The metric
can be used with magnetometers that measure heading angle with a
±2◦ error since such error reduces the similarity value only by 10%.

• KLD sampling technique was shown to be as accurate as importance
and rejection sampling techniques but also adapts particle count to re-
duce computational load when it is not necessary. The experimental
results suggest that KLD sampling is at least 2.8x faster than tradi-
tional importance sampling technique with similar localization success
rate.

• Localization performed using Softmax function 2.17 compared with
linear conversion function 2.16 shows that localization using Softmax
function reduces positioning error by 7% on average.

• Localization using the proposed logistic function with a parameter
value of 0.2 was shown to provide the highest ranking results compared
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against linear and logistic conversion function with different parameter
values.

• Particle filter localization using logistic conversion function with a
parameter value of 0.2 achieves 43% higher accuracy using three times
fewer computations than the baseline Softmax probability conversion
function.

• Localization using the rectifying conversion function with a parameter
values 0.2, 0.1, and 0.0 and the logistic conversion function with a
parameter values 0.7, 0.4, and 0.2 has shown robust localization ac-
curacy, the relative standard deviation is under 20% for all cases.

• Proposed localization algorithm DPC-PFL has shown the ability to
reduce the accumulating drift which is a known drawback of Visual
odometry algorithms. During the localization performed on real test
flight data, absolute localization error was reduced two times, and the
slope of accumulating error was reduced 11 times.

• DPC-PFL algorithm was compared against state-of-the-art ORB-
SLAM algorithm. The results show that ORB-SLAM provides 9%
higher accuracy than the Visual odometry algorithm SVO. Meanwhile,
Particle filter using the proposed logistic function was able to achieve
~2.6 times better accuracy than both ORB-SLAM and SVO. However,
the results were only provided for the straight line flight trajectory,
since ORB-SLAM was unable to complete whole trajectories on the
other flight scenarios, while the DPC-PFL completed all flights.

• The comparison of computing platforms concludes that Airvision Core
X1 with NVIDIA TX1 GPU is the most energy efficient parallel com-
puting platform for computer vision tasks onboard GPU since it is
~142x times faster and ~84x more energy efficient than single-core
ARM CPU and ~29x times faster and ~12x more energy efficient then
second best platform Radxa Rock 2 with ARM Mali T764 GPU.
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GENERAL CONCLUSIONS
1. Pearson Correlation Coefficient (or Normalized Correlation Coeffi-

cient) is the best image similarity metric for localization in low altitude
GPS-Denied flight compared to the Sum of Squared Differences and
Cross-Correlation. It provides higher similarity values to hypotheses
that are closer to the ground truth location compared to the other
image similarity metrics. The usage of Normalized Correlation Coef-
ficient allows increasing the detection probability of a particle that is
close to the ground truth 4 times compared to Cross-Correlation.

2. Particle filter localization algorithm using KLD sampling technique
performs 2.6 times faster compared to rejection and importance
sampling based Particle filter localizations with a similar localization
success rate.

3. Particle filter based localization algorithm using logistic conversion
function with parameter value 0.2 achieved 43% more accurate local-
ization and is 3 times faster compared to the same algorithm using
baseline Softmax conversion function.

4. The Proposed particle filter localization algorithm reduces the loc-
alization error 2 times compared to state-of-the-art Visual odometry
algorithm SVO. Additionally, the algorithm reduces the accumulating
error slope of odometry 11 times.

5. Proposed localization algorithm based on Particle filter, KLD
sampling, logistic conversion function with parameter value 0.2 and
Normalized Cross Correlation achieves 2.6 times better localization ac-
curacy compared against state-of-the-art Visual SLAM ORB-SLAM
algorithm.

6. The proposed method for measuring the energy efficiency of comput-
ing platforms identified the Airvision Core X1 with NVIDIA Tegra
X1 GPU as the most energy efficient platform for computing onboard
UAV. It is ~142x times faster and ~84x more energy efficient than
single-core ARM CPU and ~29x times faster and ~12x more energy
efficient then second best platform Radxa Rock 2 with ARM Mali
T764 GPU.
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