

Vilnius university
Institute of Data Science and

Digital Technologies
L I T H U A N I A

INFORMATICS ENGINEERING (T007)

MODELING THE SYSTEM FOR
INTERACTIVE TASKS DEVELOPMENT:

ENGAGEMENT TAXONOMY FOR
INTRODUCTORY PROGRAMMING

TOOLS

Tomas Šiaulys

October 2020

Technical Report DMSTI-DS-T007-20-08

VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius

LT-08412, Lithuania

www.mii.lt

http://www.mii.lt/

DMSTI-DS-T007-20-08 2

Abstract
One of the main ideas behind these introductory programming environments is

introducing basic programming concepts more effectively by incorporating different

visualization strategies. There have been attempts to classify introductory programming

tools, however, certain critical aspects have not yet been discussed within the existing

classifications, especially those related to user engagement in the programming

environment. In this paper we introduce an engagement taxonomy for introductory

programming tools (ETIP) built on a concept of engagement taxonomy for software

visualization and previous classifications of programming learning tools. The new

taxonomy is then used to inclusively review introductory programming environments

for secondary education used today. Our review illustrates how majority of introductory

programming tools do not fully explore the ways visualizations could help with tackling

the problems of beginner programming comprehension. This report includes excerpts

from the paper to be presented at the ISSEP 2020 conference.

Keywords: Introductory programming, software visualization, engagement

taxonomy

DMSTI-DS-T007-20-08 3

Contents

Abstract ... 2
1 Introduction ... 4

2 Related work ... 4
2.1 Misconceptions of novice programmers .. 4
2.2 Taxonomies of programming learning tools ... 4
2.3 Engagement taxonomies .. 5

3 Engagement taxonomy for introductory programming tools (ETIP) 5

4 Method to select tools ... 7

5 Results and discussion .. 7

6 Conclusion and future work .. 7
7 References ... 8
Appendix 1 .. 10
Appendix 2 .. 12

DMSTI-DS-T007-20-08 4

1 Introduction
Before working on systems for interactive tasks development, a clear picture about

the present systems being used at schools is needed with a particular attention to

introductory programming environments. These systems at present are the main tools

used to introduce students to computational thinking. The common difference between

the introductory programming tools for higher education and secondary education is

that the tools for younger audience tend to be more visual and more tangible.

This study focuses on the role of visualization in improving student comprehension

of the basic concepts and practices of programming in introductory programming

environments for K-12 education. It is important to note that visual programming

environments that are widely used across the secondary education, employ both

visualization types - programming code visualizations as well as visualizations of

program execution. While the role of code visualization has been extensively studied

(Xu et al., 2019, Weintrop and Wilensky, 2019), the impact of execution-time

visualizations on students’ comprehension is less clear. This report includes excerpts

from the paper to be presented at the ISSEP 2020 conference.

2 Related work

2.1 Misconceptions of novice programmers
According to literature review by Qian and Lehman (2017) novice programmers tend

to have misconceptions about most of the basic programming concepts including

variables, conditionals, parameters, loops and even the idea of states and sequential

execution. Tracing programs step by step is probably the most important strategy to

come over these misconceptions, however, Lister et al. (2004) and Simon (2011) show

that it’s the ability that most of the novices struggle with. Grover and Basu (2017) show

that even students, who completed introductory visual programming courses, keep

misconceptions about the basic programming concepts. Authors argue, that even

though visual programming environments like Scratch, do help learners with the

syntactic aspects of programming, conceptual and strategic aspects of programming

require additional effort. Role of pedagogy in overcoming these misconceptions also

leaves many unknowns as instructors tend to show weak understanding about students’

mistakes (Brown and Altadmri, 2014). One of the most popular approaches in trying to

tackle the problems of student comprehension is visualization. Visualizations can make

abstract programming concepts and hidden automatic runtime processes visible and

controllable.

2.2 Taxonomies of programming learning tools
Taxonomy of programming environments and languages for novice programmers

by Kelleher and Pausch (2005) is the most cited attempt to classify introductory

programming tools. While proposed taxonomy could be criticized for vague

descriptions and overlapping categories, it provides an overall view of the key aspects

in making programming accessible for novices (K-12 as well as higher education).

Taxonomy suggested the category of code visualization with an emphasis of avoiding

syntax errors, as well as the category for visualizing program execution, including

examples of strategies that programming environments use for visualization. Authors

argue that different visualization techniques are similar to “the supports found in many

DMSTI-DS-T007-20-08 5

debuggers”. Article provides brief descriptions of 86 systems, some dating back to

1960’s.

Built upon the work of Kelleher and Pausch, Taxonomy of programming learning

tools (Saito et al., 2017) attempts to describe each learning tool across 11 categories.

However, due to the lack of clarity in category definitions, it is not fully clear what

certain categories of the taxonomy represent. While taxonomy doesn’t explicitly focus

on visualization of execution, support to understand programs category provides some

information about visualization strategies of the learning tools. Proposed taxonomy is

then used to classify 43 introductory programming environments designed for kids.

João et al. (2019) used similar approach analyzing 26 most popular block-based and

visual programming apps across 27 categories with a focus on pedagogical usefulness.

As with the previous classifications, some categories are vaguely defined, particularly

those concerning the execution environment.

Different approach was taken by Duncan et al. (2014) in loose classification of 47

tools for introductory programming according to the difficulty level, concepts being

introduced, as well as student age, without focusing on visualization. Authors introduce

heuristics to classify introductory programming tools into 5 approximately defined

categories leaving the classification rather subjective.

2.3 Engagement taxonomies
Metaanalysis of visualization systems by Hundhausen et al. (2002) concludes that

visualization proved to be effective in only 13 out of 28 studies and that different learner

engagement forms were connected to the effectiveness of visualizations. Following this

work Naps et al. (2002) introduced original engagement taxonomy (OET) for program

visualization, which defined six different forms of learner engagement in the context of

using visualization tools: no viewing, viewing, responding, changing, constructing and

presenting. It has been hypothesized that increasing level of engagement would result

in better learning outcomes and that the mix of different forms of engagement would

be more beneficial than a single engagement form. A survey partially supporting OET

was carried out by Urquiza-Fuentes and Velázquez-Iturbide (2009) regarding program

visualization and algorithm animation systems.

Building upon the original engagement taxonomy Myller et al. (2009) and Sorva et

al. (2013) attempted to improve the categorization of engagement levels. Hypothesizing

that collaborative activities of the students and engagement levels are correlated, Myller

et al. introduced an extended engagement taxonomy (EET) defining 10 engagement

levels: no viewing, viewing, controlled viewing, entering input, responding, changing,

modifying, constructing, presenting and reviewing. Sorva et al. (2013) criticized OET

and EET for mixing different engagement forms and introduced a revised 2-dimentional

engagement taxonomy (2DET) differentiating between direct engagement dimension:

no viewing, viewing, controlled viewing, responding, applying, presenting, creating;

and content ownership dimension: given content, own cases, modified content, own

content. Then 22 systems were classified into categories according to 2DET.

3 Engagement taxonomy for introductory programming
tools (ETIP)

Previously defined taxonomies of engagement in software visualization, even

though have theoretical basis, are still problematic in using them practically for

classification and research of program visualization systems. Attempts to classify

DMSTI-DS-T007-20-08 6

programming environments tend to distribute all the systems across two or three groups

and for the further analysis other factors have to be chosen. Sorva et al. (2013) found

that 18 out of 22 generic program visualization systems fall under controlled viewing

engagement level and own content in ownership dimension of 2DET. Hence

understanding what is meant by controlled viewing may be the key in explaining user

engagement in using visualization tools. This is especially relevant when discussing

introductory programming tools for K-12 since these tools tend to employ

visualizations different from the ones used in higher education that were analyzed using

previous taxonomies.

Another argument for introducing a new taxonomy for introductory programming is

that most of the visualizations cannot be categorized as specially designed for

presenting (Sorva, 2013) and even if they were, this would give us more information

about the use of visualization in social interactions rather than about individual

interaction with the visualization. This remark is consistent with the survey of Urquiza-

Fuentes and Velázquez-Iturbide (2009) classifying all the systems that support

changing level of OET, as well supporting presenting level of engagement.

We propose a new engagement taxonomy for introductory programming tools

(ETIP) focusing on student engagement in studying the visual execution of programs

(Table 1). The lower levels of engagement (no viewing and viewing) in our proposed

taxonomy are the same as in 2DET. Following is added and controlled viewing is split

into three levels of engagement in respect to tracing the execution of a program in visual

environment. Highlighting the code during execution was suggested by Naps et al.

(2002) in the context of algorithm visualization. Nevertheless, this might not be enough

to engage learners into tracing the visualization, especially when the certain steps being

executed are too complex or the bugs are present. Tracing the execution of visualization

can be partially helped by changing the speed. Finally, engagement levels of executing

step-by-step and rewinding are adapted from the requirements for the algorithm

visualization systems (Karavirta & Shaffer, 2016). For the reasons described above,

presenting level was not included. Creating, responding and applying levels were

omitted as well for being not consistent with the concept of visual student-written

program execution. Given that all of the introductory programming environments

involving program visualization are expected to promote content ownership of the

students, content ownership dimension is as well omitted in the presented taxonomy.

Table 1. The categories of the engagement taxonomy for introductory programming tools

Level of engagement Description

No viewing There is no visualization, only material in textual format

Viewing

The learner views a visualization with no control over
execution of visualization, can only zoom/navigate the
environment of program execution.

Following The learner views the visualization with the executed
code being highlighted .

Controlled
viewing

Changing the
speed

The learner can change the speed of visualization being
executed.

Executing
step by step

The learner can view the visualization being executed
step-by-step.

Rewinding The learner can rewind the visualization at any time
during the visualization.

DMSTI-DS-T007-20-08 7

4 Method to select tools
To answer the second research question, as many as possible of all the available

programming environments for secondary education were categorized according to the

highest level of user engagement of ETIP they allow. All the tools from the previous

classifications of programming environments for K-12 education (Duncan et al., 2014,

Saito et al. 2017, Joao et al., 2019) were included in the list for the study as well as

additional environments from the web search. The general overview of 70 selected

environments can be found in the Appendix 1. The list could not be seen as complete,

since the number of introductory learning environments for K-12 education is difficult

to track. However, most of the most popular visual introductory programming

environments are included.

5 Results and discussion
The results from the Appendix 1 table suggest that majority of the tools cover most

of the basic programming concepts with exception of the tools focusing on primary

education. Also, majority of the tools use the same block model for code construction

as well as the same game/puzzle activity type (Blockly games, Code Studio, etc.).

Another common group of introductory programming environments are the classical

turtle visualization environments (Scratch, Snap!, etc.) focusing on the motion of the

sprites and drawing. The most common programming languages used for learning were

Python and JavaScript. Systems based on gamification elements are just as common as

tools allowing for free creation of games, animations, etc.

Appendix 2 shows that only 2 programming tools allow rewinding and only 20% of

the introductory programming environments allow executing step by step level of

engagement, while majority (47%) allows only viewing of program execution

visualization. What is somewhat surprising is that tools created for primary education

to a great extent employ low engagement levels, while the systems that fall into high

engagement level categories are targeted towards older students.

The results of the study bring some new insights into K-12 programming education.

First of all, it seems that in relation to such a large number of educational programming

environments, most of the tools stick to the same old models. Of course, new

technologies gave visualizations the quality and the possibilities never seen before, but

as noted before, even though more enjoyable and emotionally engaging, visualizations

are not always effective in improving the learning results. Secondly, having in mind the

misconceptions of novice programmers about most of the basic programming concepts,

it seems puzzling why so many tool designs do not address the issue of learners’

comprehension. In particular, the ability to track the program execution, a skill at the

core of understanding the basic programming concepts, seems to be unrepresented in

most of the programming environments for schools. These systems could borrow

strategies for program visualization from the systems targeted more at higher education.

It could be argued that tracing the program execution in a visual environment involves

the same strategies as tracing an algorithm visualization, while the systems for

algorithm visualization often employ much richer tools for user engagement.

6 Conclusion and future work
This report introduced Engagement taxonomy for introductory programming tools

(ETIP) - a model to measure learners’ engagement in tracing the program execution in

visual environments. There is still a lack of knowledge about the importance of

DMSTI-DS-T007-20-08 8

engagement levels in designing introductory programming tools as well as different

types of engagement involved. Suggested taxonomy could be used for future research

in studying student engagement levels in visual environments.

The results also suggest that in order to improve learners’ comprehension through

more engaging interactive tasks, introductory programming environments’ design

could be improved. This also involves the tools and libraries used in creating these

interactive tasks and learning environments.

7 References

1. Brown, N.C. and Altadmri, A., 2014, July. Investigating novice programming

mistakes: Educator beliefs vs. student data. In Proceedings of the tenth annual

conference on International computing education research (pp. 43-50).

2. Duncan, C., Bell, T. and Tanimoto, S., 2014, November. Should your 8-year-old

learn coding?. In Proceedings of the 9th Workshop in Primary and Secondary

Computing Education (pp. 60-69).

3. Grover, S. and Basu, S., 2017, March. Measuring student learning in introductory

block-based programming: Examining misconceptions of loops, variables, and

boolean logic. In Proceedings of the 2017 ACM SIGCSE technical symposium on

computer science education (pp. 267-272).

4. Hidalgo-Céspedes, J., Marín-Raventós, G. and Lara-Villagrán, V., 2016, October.

Learning principles in program visualizations: a systematic literature review. In

2016 IEEE frontiers in education conference (FIE) (pp. 1-9). IEEE.

5. Hundhausen, C.D., Douglas, S.A. and Stasko, J.T., 2002. A meta-study of algorithm

visualization effectiveness. Journal of Visual Languages & Computing, 13(3),

pp.259-290.

6. João, P., Nuno, D., Fábio, S.F. and Ana, P., 2019. A Cross-analysis of Block-based

and Visual Programming Apps with Computer Science Student-Teachers.

Education Sciences, 9(3), p.181.

7. Kelleher, C. and Pausch, R., 2005. Lowering the barriers to programming: A

taxonomy of programming environments and languages for novice programmers.

ACM Computing Surveys (CSUR), 37(2), pp.83-137.

8. Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,

McCartney, R., Moström, J.E., Sanders, K., Seppälä, O. and Simon, B., 2004. A

multi-national study of reading and tracing skills in novice programmers. ACM

SIGCSE Bulletin, 36(4), pp.119-150.

9. Luxton-Reilly, A., Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott, L.,

Paterson, J., Scott, M.J., Sheard, J. and Szabo, C., 2018, July. Introductory

programming: a systematic literature review. In Proceedings Companion of the 23rd

Annual ACM Conference on Innovation and Technology in Computer Science

Education (pp. 55-106).

10. Mladenović, M., Boljat, I. and Žanko, Ž., 2018. Comparing loops misconceptions

in block-based and text-based programming languages at the K-12 level. Education

and Information Technologies, 23(4), pp.1483-1500.

11. Myller, N., Bednarik, R., Sutinen, E. and Ben-Ari, M., 2009. Extending the

engagement taxonomy: Software visualization and collaborative learning. ACM

Transactions on Computing Education (TOCE), 9(1), pp.1-27.

DMSTI-DS-T007-20-08 9

12. Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C.,

Korhonen, A., Malmi, L., McNally, M., Rodger, S. and Velázquez-Iturbide, J.Á.,

2002. Exploring the role of visualization and engagement in computer science

education. In Working group reports from ITiCSE on Innovation and technology in

computer science education (pp. 131-152).

13. Papert, S., 1980. Mindstorms: Computers, children, and powerful ideas. NY: Basic

Books, p.255.

14. Qian, Y. and Lehman, J., 2017. Students’ misconceptions and other difficulties in

introductory programming: A literature review. ACM Transactions on Computing

Education (TOCE), 18(1), pp.1-24.

15. Rijke, W.J., Bollen, L., Eysink, T.H. and Tolboom, J.L., 2018. Computational

Thinking in Primary School: An Examination of Abstraction and Decom-position

in Different Age Groups. Informatics in education, 17(1), p.77.

16. Saito, D., Sasaki, A., Washizaki, H., Fukazawa, Y. and Muto, Y., 2017, November.

Program learning for beginners: survey and taxonomy of programming learning

tools. In 2017 IEEE 9th International Conference on Engineering Education

(ICEED) (pp. 137-142). IEEE.

17. Saito, D., Sasaki, A., Washizaki, H., Fukazawa, Y. and Muto, Y., 2017, November.

Program learning for beginners: survey and taxonomy of programming learning

tools. In 2017 IEEE 9th International Conference on Engineering Education

(ICEED) (pp. 137-142). IEEE.

18. Simon. 2011. Assignment and sequence: why some students can’t recognise a

simple swap. In Proceedings of the 11th Koli Calling International Conference on

Computing Education Research (Koli Calling ’11). Association for Computing

Machinery, New York, NY, USA, 10–15.

DOI:https://doi.org/10.1145/2094131.2094134

19. Sorva, J., Karavirta, V. and Malmi, L., 2013. A review of generic program

visualization systems for introductory programming education. ACM Transactions

on Computing Education (TOCE), 13(4), pp.1-64.

20. Thomas, L., Ratcliffe, M. and Thomasson, B., 2004. Scaffolding with object

diagrams in first year programming classes: some unexpected results. ACM

SIGCSE Bulletin, 36(1), pp.250-254.

21. Urquiza-Fuentes, J. and Velázquez-Iturbide, J.Á., 2009. A survey of successful

evaluations of program visualization and algorithm animation systems. ACM

Transactions on Computing Education (TOCE), 9(2), pp.1-21.

22. Vieira, E.A.O., Da Silveira, A.C. and Martins, R.X., 2019. Heuristic Evaluation on

Usability of Educational Games: A Systematic Review. Informatics in Education,

18(2), pp.427-442.

23. Weintrop, D. and Wilensky, U., 2019. Transitioning from introductory block-based

and text-based environments to professional programming languages in high school

computer science classrooms. Computers & Education, 142, p.103646.

24. Xu, Z., Ritzhaupt, A.D., Tian, F. and Umapathy, K., 2019. Block-based versus text-

based programming environments on novice student learning outcomes: A meta-

analysis study. Computer Science Education, 29(2-3), pp.177-204.

DMSTI-DS-T007-20-08 10

Appendix 1

General information of introductory programming environments for K-12 sorted by the age of target audience.

Name
Code

representation

Activity

type

Visualization

type

r
e
le

a
se

 d
a

te

age

group

c
o

n
d

it
io

n
a

ls

lo
o

p
s

v
a
r
ia

b
le

s

fu
n

c
ti

o
n

s

o
b

je
c
ts

Code Studio (courses) blocks game-puzzle moving sprite,
drawing

2013 4 and up x x x x

BotLogic.us picture-blocks game-puzzle moving sprite 2013 4–11

Kodable picture-blocks,

JavaScript

game-puzzle moving sprite 2014 4–11 x x x x x

Lightbot Jr picture-blocks game-puzzle moving sprite 2014 4–8 x x

Cargo-bot picture-blocks game-puzzle moving sprite 2012 5 and up x x

Tynker Blocks, Python,

JavaScript, HTML

game-puzzle,

creating

moving sprite,

drawing,

animation,
music

2012 5 and up x x x x x

Code avengers Java, JavaScript,

Python

game-puzzle,

creating

moving

sprite/drawing

2012 5 and up x x x x x

Lego Bits and bricks picture-blocks game-puzzle moving sprite 2017 5–11 x

Move the Turtle picture-blocks game-puzzle moving sprite 2012 5–11 x x x

My robot friend picture-blocks game-puzzle moving sprite 2013 5–12

Cato's Hike picture-blocks game-puzzle moving sprite 2012 5–12 x x

Junior Coder picture-blocks game-puzzle moving sprite 2015 5–12 x x x

ScratchJr picture-blocks creating moving sprite,
game design

2014 5–7 x x

Daisy the dinosaur blocks game-puzzle moving sprite 2012 5–7 x x

the Foos (CodeSpark) picture-blocks game-puzzle moving sprite,

game design

2014 5–9 x x

Codable Crafts picture-blocks game-puzzle moving sprite 2015 5–9 x x

Swift Playgrounds swift game-puzzle moving sprite 2016 6 and up x x x x x

Run Marco (All can

code, hour of code)

blocks game-puzzle moving sprite 2014 6–12 x x

Codemancer picture-blocks game-puzzle moving sprite 2013 6–12 x x

Rapid router (Blockly,

Code for life)

blocks/Python game-puzzle moving sprite 2014 6–13 x x x x

Gamefroot blocks creating game design 2017 7 and up x x x x x

Bee-bot app / bee-bot
emulator

no code game-puzzle moving sprite 2012 7–11

Alice blocks creating game design 1998 7–13 x x x x x

RobotMagic (Blockly) blocks, JavaScript game-puzzle,

creating

moving sprite,

simulation,
game design

2017 7–16 x x x x x

Code Monkey CoffeeScript,

Python

game-puzzle moving sprite 2014 8 and up x x x x x

Blockly games
(Blockly)

blocks game-puzzle moving sprite,
drawing,

animation,

music

2012 8 and up x x x x

mBlock (Blockly) blocks, Python creating moving sprite,
drawing, game

design

2011 8 and up x x x x

Pencil Code (Droplet
editor)

blocks,
coffeeScript,

JavaScript

creating moving sprite,
drawing,

animation,

game design,
music

2013 8 and up x x x x x

Microsoft MakeCode

Arcade

blocks creating game

development

2020 8 and up x x x x x

Open Roberta Lab
(robot simulation)

blocks creating simulation 2016 8 and up x x x x

CodeBug (electronics

simulation)

blocks creating simulation 2015 8 and up x x x

LearnToMod

(Minecraft)

blocks, JavaScript creating game design 2015 8 and up x x x x x

Penjee Python game-puzzle moving sprite 2014 8 and up x x x x x

RoboMind RoboMind game-puzzle moving sprite 2005 8 and up x x x x

DMSTI-DS-T007-20-08 11

Turtle Academy jslogo creating moving sprite,

drawing,
animation

2011 8 and up x x x x

Robo Logic picture-blocks game-puzzle moving sprite 2013 8 and up x

StarLogo TNG/Nova blocks creating moving sprite,

drawing,
animation,

game design,

simulation

2008 8 and up x x x x x

NetsBlox blocks creating moving sprite,
drawing, game

design,

simulation

2016 8 and up x x x x x

Logo Interpreter UCBLogo creating moving sprite,

drawing, game

design

2013 8 and up x x x x x

SpriteBox Coding picture-blocks,
Swift

game-puzzle moving sprite 2018 8–13 x x

Code Kingdoms

(Minecraft, Roblox)

blocks, Java, Lua creating game design 2013 8–14 x x x x x

Hopscotch blocks creating animation,
game design

2012 8–14 x x x x x

Scratch blocks creating moving sprite,

drawing, game
design

2007 8–16 x x x x

Snap! blocks creating moving sprite,

drawing, game
design

2011 8–16 x x x x x

SmalRuby blocks/Ruby creating moving sprite,

drawing, game

design

2014 8–16 x x x x

Pyonkee blocks creating moving sprite,

drawing, game

design

2014 8–16 x x x x

Kodu picture-blocks creating game design 2009 9 and up x x x x

Lightbot picture-blocks game-puzzle moving sprite 2008 9 and up x x x

Code Combat python, JavaScript,

CoffeeeScript

game-puzzle,

creating

moving sprite 2013 9 and up x x x x x

Crunchzilla/Code
Monster

JavaScript creating animation,
game design

2015 9 and up x x x x x

NetLogo NetLogo creating moving sprite,

drawing,

animation,
game design,

simulation

1999 9 and up x x x x x

Khan Academy JavaScript creating animation,
game design

2014 9 and up x x x x x

RoboZZle picture-blocks game-puzzle moving sprite 2010 9 and up x x x

MIT App Inventor

(Blockly)

blocks creating app 2010 10 and up x x x x x

Kodular (MIT
AppInventor)

blocks creating app 2018 10 and up x x x x x

Thunkable blocks creating app 2018 10 and up x x x x x

Looking Glass blocks creating game design 2012 10 and up x x x x x

tickle app learn to
code

blocks creating moving sprite 2014 10 and up x x x x

AgentCubes blocks creating game design 2006 10 and up x x x x x

Codesters Python creating moving sprite,

drawing, game
design

2014 11 and up x x x x x

CodeSpells blocks, JavaScript creating game design 2015 12 and up x x x x x

Gameblox (Blocky) blocks creating game design 2014 13 and up x x x x x

App Lab (Code
Studio)

blocks, JavaScript creating app 2016 13 and up x x x x x

Grasshopper (Google) JavaScript game-puzzle,

creating

animation 2018 13 and up x x x x x

Game Lab (Code
Studio)

blocks, JavaScript creating app 2016 13 and up x x x x x

Karel the Dog

(CodeHS)

Karel, Java game-puzzle moving sprite,

drawing

2012 13–15 x x x x

Coding with Chrome
(Blockly)

Blocks, Python,
JavaScript,

CoffeeScript

creating drawing,
animation,

game design

2015 14 and up x x x x x

DMSTI-DS-T007-20-08 12

Greenfoot Java, Stride creating game design 2006 14 and up x x x x x

Codea Lua creating game design 2011 14 and up x x x x x

CodeHS Python, Java,
JavaScript, C++, C

creating drawing,
animation

2012 16 and up x x x x x

Appendix 2

Classification of introductory programming tools for K-12 education.

Name

V
ie

w
in

g

F
o

ll
o

w
in

g

C
h

a
n

g
in

g
 t

h
e
 s

p
ee

d

E
x
e
c
u

ti
n

g
 s

te
p

-b
y

-s
te

p

R
e
w

in
d

in
g

Age group

Code Combat x 9 and up

Karel the Dog (CodeHS) x 13–15

RobotMagic (Blockly) x 7–16

NetsBlox x 8 and up

Snap! x 8–16

Cargo-bot x 5 and up

Rapid router (Blockly, Code for life) x 6–13

CodeBug (electronics simulation) x 8 and up

Penjee x 8 and up

RoboMind x 8 and up

RoboZZle x 9 and up

AgentCubes x 10 and up

App Lab (Code Studio) x 13 and up

Game Lab (Code Studio) x 13 and up

Greenfoot x 14 and up

Code Studio (courses) x x 4 and up

Blockly games (Blockly) x 8 and up

Lightbot Jr x 4–8

Code Monkey x 8 and up

Lightbot x 9 and up

Swift Playgrounds – x 6 and up

Move the Turtle x x 5–11

StarLogo TNG/Nova x x 8 and up

NetLogo x x 9 and up

BotLogic.us x 4–11

Kodable x 4–11

Lego Bits and bricks x 5–11

Junior Coder x 5–12

ScratchJr x 5–7

Daisy the dinosaur x 5–7

the Foos (CodeSpark) x 5–9

Codable Crafts x 5–9

Run Marco (All can code, hour of

code)
x

6–12

Codemancer x 6–12

Robo Logic x 8 and up

SpriteBox Coding x 8–13

Tynker x x 5 and up

Logo Interpreter x 8 and up

Code avengers x 5 and up

My robot friend x 5–12

Cato's Hike x 5–12

Gamefroot x 7 and up

DMSTI-DS-T007-20-08 13

Bee-bot app / bee-bot emulator x 7–11

Alice x 7–13

mBlock (Blockly) x 8 and up

Pencil Code (Droplet editor) x 8 and up

Microsoft MakeCode Arcade x 8 and up

Open Roberta Lab (robot simulation) x 8 and up

LearnToMod (Minecraft) x 8 and up

Turtle Academy x 8 and up

Code Kingdoms (Minecraft, Roblox) x 8–14

Hopscotch x 8–14

Scratch x 8–16

SmalRuby x 8–16

Pyonkee x 8–16

Kodu x 9 and up

Crunchzilla/Code Monster x 9 and up

Khan Academy x 9 and up

MIT App Inventor (Blockly) x 10 and up

Kodular (MIT AppInventor) x 10 and up

Thunkable x 10 and up

Looking Glass x 10 and up

tickle app learn to code x 10 and up

Codesters x 11 and up

CodeSpells x 12 and up

Gameblox (Blocky) x 13 and up

Grasshopper (Google) x 13 and up

Coding with Chrome (Blockly) x 14 and up

Codea x 14 and up

CodeHS x 16 and up

