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1.1 Abstract 
Highly-loaded seaports have extremely complex and intensive marine 

vessel traffic, which generates large volumes of traffic data. Meteorological 
conditions and maritime vessel type influence maritime traffic and they must 
also be taken into account in order to train the model capable of recognizing 
the abnormal movement of the sea transport. Real data often misses some 
data values, such as type of vessel or its status. This paper reviews method of 
obtaining vessel traffic and meteorological data and filling missing vessel 
type data in Rotterdam port region. A deep multi-stacked LSTM neural 
network model is trained to fill the missing vessel type data. This model is 
trained with available vessel type data and used to predict missing values. 
This paper describes creation and evaluation of this model. Results of the 
experiment show it is expedient to use traffic data of a vessel in conjunction 
with meteorological data. 

2 Introduction 

Maritime transport is one of the most important and intense sectors of human activity, 

accounting for about 90% of total trade. The high volume of vessel traffic generates 

large amounts of data, which overload various information systems and sensors[3]. 

Assistive systems are developed to facilitate the task, which extract the necessary 

information from the big data. One of the systems is an unusual traffic detection system, 

which requires full data for accurate detection. Unfortunately, the data that comes from 

different systems such as AIS, radars or satellite systems, is not full at all times[1]. The 

lack of such data prevents the creation of a sufficiently accurate model for detection of 

unusual vessel traffic. It is therefore necessary to develop smart systems for filling in 

the missing data, especially with the increased development of new methods for the 

detection of unusual traffic, which is essential for safety at sea[5]. This article offers a 

way to fill in the missing data for missing vessel types, which would allow for improved 

prediction of abnormal maritime traffic. The first part of the article introduces the 

developed method used to fill in the missing vessel type information in the data, and the 

second part describes the experiments with this method using vessel traffic data in the 

Rotterdam harbour. This research is continuous work in field of abnormal maritime 

traffic detection[4]. 

3 Proposed Method 

Deep neural neural network: The main purpose of the model being developed is 
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to determine the type of vessel by the available or received sets of vessel positions so 

that the missing information fields can be filled. The model input consists of a sequence 

of vessel position vectors, and the model predicts the type of vessels sailing under these 

sets. The model for vessel type prediction uses historical sets of vessel position vectors 

sorted by time, which can be represented as follows: XT = [XT−(n−1,XT−(n−2),,XT−1,XT], . 
Where XT is the set of the vessel’s positions, T is the sequence number of a vessel set, 

which was received at a certain time, n is the predefined length of the set. The input 

vector X consists of the positioning elements of the vessel, such as the latitude, 

longitude, heading, speed, time, state reported by the vessel, weather conditions in the 

geographical location. We can describe the full input vector as a matrix: 

 
Where p is the number of elements in the vessel’s position vector. The output vector 

consists of the predicted distribution of probability classes of vessel types calculated by 

Softmax function. LSTM Deep Neural Network[2] with fully connected multilayer 

percepron is used to train the model at work. The simplified network architecture is 

shown in Figure 1. The deep network architecture diagram shows a network structure 

consisting of 6 constituent layers. The first layer is input layer In with a number of inputs 

that equals to the length of the vessel’s position sequence n. The input layer is connected 

in series to the first n cells from A1 to an in LSTM (A) layer. The LSTM layer may 

have more than n cells. The total number of cells is expressed in k when k n. LSTM (A) 

layer is connected in series to the LSTM (B) layer. Each output of layer A is connected 

to Layer B inputs. The total number of cells in LTSM (B) is expressed in k. Both LSTM 

layers use ReLu activation function. The last cell in B is connected to the multilayer 

fully connected layer of perceptron. The layer of perceptron consists of two hidden 

layers of neurons and one output layer. The hiddens layers use ReLu activation function. 

A number j of outputs constitutes an output layer where each output describes the 

probability of a particular class classification, which is calculated by Softmax function. 

Adam’s stochastic optimizer with a training factor α = 0.001 and a decay factor δ = 10−6 

are used for network training. The termination of epoch training cycles is set in 

accordance with the validation set. The training uses the Sparse Categorical Cross 

Entropy[2] for loss function. Data preparation: Duplicate position 

 
entries are cleared out and then data is parsed based on desired data types. The same 

actions are performed to meteorological data. Technical data fields of a vessel are 

assigned to each position vector of a vessel based on vessel MMSI identificator. 

Meteorological data is assigned to a position data vector by using the method of the 

closest neighbor, depending on the closest time and geolocation of the forecast. Model 

train- 
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Figure 1: Multi-Stacked LSTM deep neural network architecture 

ing data is formed by joining all the data to one vector. Creation of Vector Sets: After 

the preparation of data the vector sets that will be provided to train, validate and test the 

model, are further formed. The data sets must correspond to the model input matrix, 

which is described by formula above. To do this, the available vessel data is grouped 

by their MMSI identifier. All consecutive position of a vessel is cut in sequences of 12 

positions by step of 3 positions. All these formed sequences are used to construct 

training matrix described in this article above. 

4 Experiment and Results 

To test proposed method Rotterdam harbour area was chosen. The data for model 

training are collected from several sources such as AIS vessel traffic monitoring system, 

vessel parameter information system, meteorological observation system, and 

geographic information system. This information comes from several data sources. The 

marine traffic data was colected from shipfinder.co: Colected data is: geolocation, 

speed, direction and type of vessel, length, width, draft, etc. The Meteorological data 

colected from worldweatheronline.com, provides meteorological data in given 

geolocations: wind direction and speed, wave, swell and other data of a particular 

location in 3h intervals. Two separate set was formed to test influence of meteorogical 

data. One set with meteo data, another without. A total of 2.90 ∗ 107 vessel traffic vectors 

were collected in one set from the Rotterdam harbour from November 1, 2018 till 

November 30, 2018, of which 2.78∗107 do not have information about vessel type. This 

represents 95.88% of all available data. A set with vessel type information consists of 

1.195 ∗ 106 vessel traffic vectors from Rotterdam harbour. These vectors were collected 

and created using the methods mentioned above, and they constitute 4.12% of all data. 

The data are randomly divided into three sets: 50% of the data are used for training, 

30% for validation, and 20% for testing. Training data set is used to train models. 

Validation Set - is designed to select the number of LSTM layers in the model and 

LSTM cells in the layer. The test set is used to evaluate accuracy of the final model. In 

this  
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Table 1: Trend of classification accuracy for different network settings 

 Meteorological data excluded Meteorological data included 

Layers Cells Accuracy Cells Accuracy 

2 245 0.78 290 0.78 

3 215 0.79 265 0.81 

4 195 0.77 250 0.93 
 

article precision, recall, and accuracy are calculated using a test set in order to evaluate 

the accuracy of the classifier for different numbers of deep multi-stacked LSTM neural 

network layers and cells. Table 1 first part shows the results of the experiment for 

different values of the model parameters without meteorological data. We see that the 

best result was achieved using 3 LSTM layers made of 215 cells. Table 1 second part 

shows the results of the experiment with meteorological data. Best result was achieved 

using 4 LSTM layers with 250 cells. 

5 Conclusion 

According to the results of the experiment, the proposed method of combining vessel 

traffic data with meteorological data leads to an improved classification. Based on the 

results the best model configuration is chosen, then checked using continued data with 

classification accuracy 0.93, recall 0.92, and precision 0.93. 
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Abstract: The automated identification system of vessel movements receives a huge 

amount of multivariate, heterogeneous sensor data, which should be analyzed to make 

a proper and timely decision on vessel movements. The large number of vessels makes 

it difficult and time-consuming to detect abnormalities, thus rapid response algorithms 

should be developed for a decision support system to identify abnormal movements 

of vessels in areas of heavy traffic. This paper extends the previous study on a self-

organizing map application for processing of sensor stream data received by the 

maritime automated identification system. The more data about the vessel’s 

movement is registered and submitted to the algorithm, the higher the accuracy of the 

algorithm should be. However, the task cannot be guaranteed without using an 

effective retraining strategy with respect to precision and data processing time. In 

addition, retraining ensures the integration of the latest vessel movement data, which 

reflects the actual conditions and context. With a view to maintaining the quality of 

the results of the algorithm, data batching strategies for the neural network retraining 

to detect anomalies in streaming maritime traffic data were investigated. The 

effectiveness of strategies in terms of modeling precision and the data processing time 

were estimated on real sensor data. The obtained results show that the neural network 

retraining time can be shortened by half while the sensitivity and precision only 

change slightly. 

Keywords: streaming sensors data; neural network retrain time; model sensitivity and 

precision; marine traffic anomaly detection; SOM data batching 

 

7.1 1. Introduction 
The maritime industry is an important part of the global trade system with a growing 

volume, intensity, and needs. In 2018, 1.9 billion tons of goods were transported as part 

http://www.mdpi.com/journal/sensors
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of EU short sea shipping [1]. This is 3.2% more in comparison with 2016. Totally, more 

than 90% of cargo is carried by sea transport [2]. 

Such growth presents some challenges in the industry. Increasing intensity of maritime 

traffic raises the need for incident prevention-oriented traffic control. The maritime 

anomaly or abnormal movement detection is one of the control techniques. It is based 

on vessel trajectory analysis and search of irregular, illegal, and other anomalous 

appearances in trajectory data [3]. A maritime trajectory can include vessel 

identification data, traffic parameters (e.g. speed and rotation), auxiliary data (e.g., 

meteorological data) for a vessel, and such dataset presents a large-scale, complex data 

structure. Automated data gathering systems (e.g., Automatic Identification System) 

return larger and larger trajectory datasets, which are challenging for human-based 

analysis and anomaly detection [4]. Nowadays, machine learning-based data analysis 

and mining techniques is a natural choice for this 

Sensors2019, xx, 5; doi:10.3390/sxx010005 www.mdpi.com/journal/sensors 

type of task: the obtained structure of data, the extracted information, detected data 

regularities could help to estimate vessel movement and make some safety decision, to 

enable the automatic anomaly detection even. For real-world applications, a challenge 

of real-time operation, data generalization arises. Movement anomalies are detected as 

history-based deviations of vessel’s trajectory data, which can be problematic 

considering massive trajectory data streams. In this case, constant estimation of 

historical and context data means permanent need for system retraining. Full retraining 

is a time- and power-consuming process; therefore, some techniques of additional or 

adaptive training would be preferred: rapid self-learning algorithms have to be 

developed to detect the abnormal movement in stream data. 

The paper is organized as follows. Section 2 presents the problem of abnormal 

movement detection in maritime traffic data and gives the state-of-the-art problem 

solutions. In Section 3, the motivation of this paper is presented: two retraining 

strategies are introduced for neural network-based real-time maritime anomaly 

detection. The results of experimental research of these strategies are given in Section 

4. The investigation results are concluded in Section 5. 

7.2 2. Review 
In this section, we present maritime anomaly detection task and review some recent 

research results in this area. 

The abnormal vessel movement can be defined as an unreasoned movement deviation 

from the sea lanes, trajectory, speed or other traffic parameters [5]. As most vessels 

have the Automated Identification System (AIS) installed, giving the static and 

dynamic information about the vessel movement, the detection of traffic anomaly 

comes as the task of data analysis and outlier detection. In addition, different sensor 

systems can be connected to the AIS. Traffic data are analyzed in point-based or 

trajectory-based manner [6]. 

In the first case, every single data point (message from the vessel to the AIS) or a group 

of them is treated as an independent point. For this purpose, the analyzed geographical 

area is subdivided into independent cells with related AIS messages. These data points 

in the grid are analyzed using so-called signature-based or rule-based techniques. The 

idea of these techniques is the employment of various association rules to detect 

specific movement changes [7]. Zhu applied database management, data warehouse, 

and data mining technologies to analyze AIS data [8]. Deng [9] extended the features 

and inserted time stamps. These extensions enable employing Markov model for 

http://dx.doi.org/10.3390/sxx010005
http://www.mdpi.com/journal/sensors
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supplementation of rules. While declaring the point-based analysis, Pallotta et al. [10] 

proposed to use a sliding time window to estimate the relationship between successive 

AIS data points. The obtained waypoints are clustered using Density-Based Spatial 

Clustering of Applications with Noise methodology and employed for anomaly 

detection and movement prediction. Despite the claims about point-based analysis, the 

authors implemented the idea of updating the traffic knowledge from the input of AIS 

messages and the use of historical knowledge. The same clustering methodology was 

explored in [11]. 

Here, the historical spatiotemporal data are analyzed to detect waypoints of routes. 

The main weakness of point-based techniques is the analysis of movement short-term 

history or disregard of history even. The planned and purposing vessel movement 

should generate highly-correlated AIS data, and this can be used for movement 

anomaly detection. On the other hand, a limited number of analyzed data points means 

real-time calculation and decision making. This quality makes point-based anomaly 

detection techniques attractive for real-time tasks. Nevertheless, at the moment, the 

prevalence of these techniques is quite limited. 

Trajectory-based techniques treat the entire traffic data sequence as a whole. Several 

research directions are analyzed in the literature related to the analysis of vessel 

trajectories: maritime traffic pattern mining, ship collision risk assessment [12], 

maritime anomaly detection [13–15], identification of the types of ships [16], and 

combating abalone poaching [17]. 

In the case of trajectory-based detection, models of normal movement are created 

(using the entire trajectory data, not part of it) and the anomalies are detected as 

movement data inadequacy to the model. Thus, these techniques are characterized by 

having a huge amount of AIS data to analyze. 

This property requires some data pre-processing such as compression or clustering. 

In [18], a piece-wise linear segmentation is applied to compress the data of vessel 

trajectories, and then the similarity of trajectories (for detection of anomalies) is 

performed using alignment kernels (dynamic time warping and edit distances, namely). 

The model by Lei [13] defines spatial, sequential, and behavioral features of the vessel 

movement. The movement anomaly is detected as the outlying features of the trajectory 

model, and the degree of suspiciousness is evaluated. The geometrical properties of the 

trajectory are employed in [19]. Here, the vessel trajectory is compared with the graph 

search-based path and the difference is estimated by a final score. The threshold value 

of the score is employed as the decision and labeling value. Another trajectory-based 

analysis techniques can be found in [20–22]. 

Analysis of the entire trajectory gives the advantage of the historical movement data, 

which can be essential for anomaly detection. However, full data analysis requires 

much more complicated algorithms such as neural networks. This complicates the 

application of trajectory-based analysis for real-time tasks. In addition, such algorithms 

are sensitive to missing data (e.g., lost AIS messages). 

A comprehensive and categorizing review on maritime anomaly detection can be found 

in [5,15,23]. 

Analysis of full trajectory data and anomaly detection would require data-driven 

approaches such as artificial neural network-based or statistical methods. These 

approaches can perform in an unsupervised or semi-supervised manner (i.e., they do 

not need labeled data) and can cope with large amounts of data. The issue of real-time 

calculations should be solved using the idea of incremental modeling (retraining, re-

estimating, etc.): the model of vessel movement should be updated concerning recent 

data to avoid of complete remodeling or model retraining. 
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7.3 3. Motivation 
The vessel movement (normal or abnormal) can be treated differently regarding the sea 

region where the movement is observed. For example, if the ship is quite distant from 

the seaport, then even high decline from its course cannot be indicated as an anomaly: 

weather condition, stormy sea, etc. may have a great influence on vessel trajectory. On 

the other hand, if vessel movement is observed at the seaport surroundings, even a small 

deviation from the course may be thought as abnormal vessel activity. To this purpose, 

the method used for traffic anomaly detection has to have a feature that allows different 

region scaling at different maritime traffic observation areas. The self-organizing map 

(SOM) method has such a scaling property. SOM is a neural network-based method 

that is trained in an unsupervised way using a competitive learning [24–27]. The neural 

network can be used for both visualization and clustering of multidimensional data 

[28]. 

In the previous research [29], the modified SOM algorithm for maritime vessel 

movement data classification into normal and abnormal classes is presented. The 

modification is achieved by incorporating virtual pheromone intensity calculations at 

the last epoch of model training. During the model validation stage, the pheromone 

intensity threshold is established by applying a gradient descent method. The 

dependence of the network neighboring function on the classification results was 

investigated; the best classification accuracy qA achieved using the Mexican hat 

neighboring function. The influence of different SOM grid dimensions on the 

classification results of the proposed algorithm has been investigated. It was proved 

experimentally that the algorithm achieved the best precision using grid dimension 25 

× 25. This knowledge was used as a starting point for the network data batching and 

training strategies investigation presented in this paper. 

With the growth of maritime traffic, especially near seaports, the complete retraining 

of the SOM algorithm becomes costly in terms of training time. The need for algorithm 

retrain quite straightforward: the more vessel movement data that are observed and fed 

into the algorithm, the better the precision of the algorithm should be. All neural 

networks are strongly dependent on the input sequence in the training data. It was 

observed that, if only the input sequence of the data changes, even though the system 

architecture stays the same, classification accuracy results may be significantly 

impaired [30]. Other authors proposed neural networks retraining strategies to build 

compact neural network models with less memory usage and faster inference speed 

[31]. Recently, the SOM neural network is being used to build datasets used in deep 

neural network model retraining [30,32] or is used as a part of deep neural network 

model [33]. Different areas of applications of the SOM algorithm depicts the necessity 

to investigate more thoroughly algorithm effectiveness with respect to algorithm 

sensitivity, precision and data processing time by introducing different retraining 

strategies. SOM retraining ensures the inclusion of the most recent movement data that 

reflects actual conditions and context. To maintain high algorithm precision and 

sensitivity, approaches to data streaming, batching and model retrain strategies has to 

be explored [34]. In this article, the authors introduce two neural network retrain 

strategies and compare the results with the standard procedure of neural network model 

experimental investigation (so-called Strategy I). 

• Strategy I presents data batching and algorithm training whenever the new batch 

becomes available as if no model history data were available. It is a common 

approach for neural network training/validation/testing. In this paper, it is used as 
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a reference with the view to compare retrain Strategies II and III introduced by the 

authors. 

• Strategy II presents algorithm performance while using pre-trained model 

parameters on previously trained data with the newly arriving data batches. 

• Strategy III presents different data batch shuffling techniques and the use of 

previously pre-trained model parameters. 

All three strategies investigate the learning rate parameter influence on the model 

performance and training time as well. Data passed from a vessel can be viewed as a 

stream that contains facts regarding vessel movement trajectories. Those may depend 

on seasonal data, the shipping routes, schedules, and so on. Thus, the abnormality 

detection model has to be developed by analyzing vessel movement trajectories (as well 

as historical data) in an incremental manned based on the up-to-date data it receives. 

7.4 4. Experiments 
In this section, we present a detailed description of the SOM network retraining 

strategies and results of the experiments using real datasets. 

7.4.1 4.1. Data Preparation 

The detailed description of the previous study of SOM size and modification by 

introducing the SOM evaporation functions are presented in [29]. Data from the region 

of medium maritime traffic at the Klaipeda seaport were selected for the analysis of the 

proposed retraining strategies of the SOM network. During the experiments, two 

datasets were used: Cargo vessels and Passenger vessels. Each item (point) of a vessel’s 

streamed data is described by longitude, latitude, heading, vessel speed, wind direction, 

wind speed, wave direction, and wave height values. The Cargo dataset is represented 

by 180,300 and the Passenger dataset is described by 43,879 vessel movement 

observation items that were registered in a streamed manner. All experiments in this 

section were carried out with the Cargo dataset; afterwards, the data batching strategies 

were tested on the Passenger dataset. 

First, 20% of the Cargo vessel dataset was randomly selected for the general model 

error evaluation. Then, the resulting 80% of the dataset items were used for the data 

batching strategy investigation. These 80% of data items were split into 20% for 

strategy testing, and 80% for T1, T2, and T3 data batch splitting (see Figure 1) to 

perform the SOM network training and validation. Batches were used in the 

experiments to imitate the continuous data arrival with the view to investigate different 

SOM network retraining strategies and learning rate parameter selection. The scheme 

of data split is shown in Figure 1. 
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All data items were sorted in ascending order with respect to data sending time. The 

SOM network of size 25 × 25 was taken according to the SOM size investigation 

published in [29]. 

7.4.2 4.2. Training Strategies of the SOM Network 

Strategy I. For the SOM network training and validation, we used T1, T2 and T3 data 

batches. 

The learning rate parameter was set to 0.5. Then, after the network was trained and 

validated with the 

T1 data batch, the new data were fed to the network as follows: the T1 and T2 batch 

data were merged together and the algorithm was trained from the initial random state 

using all items from T1 and T2. 

The same scheme was applied to the T3 data batch. 

To get the best network performance, the learning rate parameter can be adjusted. Initial 

research led us to divide the learning rate parameter search into these intervals and step 

sizes: in the interval [0.005;0.04], step was set to 0.005; in the interval [0.04;0.1], step 

size was increased to 0.01; and, in the interval [0.1;0.5], step size was set to 0.1 (see 

Table 1). In this way, the training experiment of Strategy I was repeated while every 

learning parameter value was tested to achieve the best algorithm performance. After 

the model was trained, it was tested with the test dataset, which allowed evaluating the 

general model error. The best-obtained model characteristics with model test dataset 

are presented in Table 1 (bold line). 

The statistics of the best Strategy I model using test data for general model error 

estimation and test data for model error estimation is presented in Table 2. The time 

needed for the algorithm retraining was 40,769 s. Strategy II. The initial algorithm was 

trained 10 times with the T1 batch data. During each training, the weights of the SOM 

network were generated randomly, and the best performing network was selected while 

keeping a fixed learning rate parameter at the value of 0.5. The performance of the 

investigated network on repetitive Strategy II (using only T1 dataset) model evaluation 

and testing is presented in Table 3. The line marked in bold shows the best network 

obtained. Quite small deviations of the precision and the sensitivity rates show the 

network stability. Then, the best-obtained network parameters were used as initial 

weights for the network to be trained with T2 batch data. Finally, imitating the new 
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data portion arrival, the best model obtained with T2 batch data was retrained with the 

T3 batch data. The results of the additional experiment show that the best performance 

network was obtained with learning rate 0.025. 

The statistics (model test error and general model error evaluation) of the best model 

data are presented in Table 4. The time needed for model training was 18,229 s. 
Table 1. Selection of learning rate. 

Learning Rate TP FP TN FN Precision Sensitivity 

0.005 924 519 26,648 757 0.6403 0.5497 

0.010 943 505 26,662 738 0.6512 0.5610 
0.015 957 498 26,669 724 0.6577 0.5693 
0.020 963 487 26,680 718 0.6641 0.5729 
0.025 968 478 26,689 713 0.6694 0.5758 
0.030 976 471 26,696 705 0.6745 0.5806 
0.035 986 468 26,699 695 0.6781 0.5866 
0.040 998 461 26,706 683 0.6840 0.5937 
0.050 1025 445 26,722 656 0.6973 0.6098 
0.060 1066 413 26,754 615 0.7208 0.6341 
0.070 1109 394 26,773 572 0.7379 0.6597 
0.100 1197 303 26,864 484 0.7980 0.7121 
0.200 1431 135 27,032 250 0.9138 0.8513 
0.300 1486 81 27,086 195 0.9483 0.8840 
0.400 1500 55 27,112 181 0.9646 0.8923 
0.500 1510 52 27,115 171 0.9667 0.8983 
0.600 1507 54 27,113 174 0.9654 0.8965 
0.700 1502 59 27,108 179 0.9622 0.8935 

Table 2. Training Strategy I performance at learning rate 0.5. 
Stage TP FP TN FN Precision Sensitivity 

Testing (model error) 1510 52 27,115 171 0.9667 0.8983 

Testing (general error) 1868 69 33,890 233 0.9644 0.8891 
Table 3. Strategy II performance on model test data. 

No. TP FP TN FN Precision Sensitivity 

1 1364 241 26,926 317 0.8498 0.8114 

2 1329 280 26,887 352 0.8260 0.7906 
3 1359 252 26,915 322 0.8436 0.8084 
4 1364 274 26,893 317 0.8327 0.8114 
5 1356 253 26,914 325 0.8428 0.8067 
6 1335 253 26,914 346 0.8407 0.7942 
7 1314 251 26,916 367 0.8396 0.7817 
8 1332 258 26,909 349 0.8377 0.7924 
9 1367 237 26930 314 0.8522 0.8132 
10 1338 240 26927 343 0.8497 0.7960 

    max 0.8522 0.8132 

    min 0.8260 0.7817 

    average 0.8413 0.8011 

    stdev 0.0079 0.0115 

Table 4. Retraining Strategy II performance at learning rate 0.025. 
Stage TP FP TN FN Precision Sensitivity 
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Testing (model error) 1500 98 27,069 181 0.9387 0.8923 

Testing (general error) 1836 122 33,837 265 0.9377 0.8739 

Strategy III. The scheme of the model training validation and testing was similar to that 

described in Strategy II, except for the following two things. Firstly, from T2 and T3 

batches, there were produced four data batches (Tm2–Tm5), each containing one 

quarter of both T2 and T3 data (see Table 5). Secondly, as previously described, after 

every model training and validation, the parameters of the best-obtained model were 

used for every next Tm2–Tm5 batch training, except the model training data 

aggregation. For every retraining. test data for model error estimation of data was used 

as described in previous Strategies I and II. Half the items from Tm2–Tm5 data batches 

were compounded of items from T2 and T3, as shown in Table 5 (Tm2–Tm5) while 

another part of the data was selected proportionally, with respect to those data points 

attached to the previous best model SOM winning neurons. This approach guaranteed 

that the knowledge of frequently passed sea regions was incorporated into the next 

model training because it is not frequent for the ships to change their sea routes. 

Experiments depicted that the best model was obtained with the learning rate being 

0.03. Table 5. Partitioning of dataset (Strategy III). 
Data Batches % of Train and Validation Data New Data Items All Data Items 

T1 60% 69,235 69,235 
Tm2 10% 11,539 23,078 
Tm3 10% 11,539 23,078 
Tm4 10% 11,539 23,078 
Tm5 10% 11,539 23,078 

The statistics of the Strategy III best model were obtained using test data for general 

model error estimation, and the results are presented in Table 6. 

Table 6. Retraining Strategy III performance at learning rate 0.003. 

Stage TP FP TN FN Precision Sensitivity 

Testing (model error) 1527 73 27,094 154 0.9544 0.9084 

Testing (general error) 1866 91 33,868 235 0.9535 0.8881 

The time needed for the algorithm retraining was 27854 s. The summary of relative 

time required for the training Strategies I–III is presented in Table 7. 

Table 7. Retraining Strategies I–III performance on Cargo dataset. 
Strategy Precision Sensitivity Relative Time 

Strategy I 0.9644 0.8891 1 

Strategy II 0.9377 0.8739 0.4471 
Strategy III 0.9535 0.8881 0.6832 

The same data batching Strategies I–III described above were tested on the Passenger 

dataset as well. The results are presented in Table 8. 

Table 8. Retraining Strategies I–III performance on Passenger dataset. 
Strategy Precision Sensitivity Relative Time 

Strategy I 0.9795 0.8897 1 

Strategy II 0.9802 0.8870 0.4478 
Strategy III 0.9817 0.8888 0.6817 

From the results shown in Tables 7 and 8, it can be seen that, by applying 

different SOM model retraining Strategies, while keeping the same data batch sizes, it 

is possible to substantially decrease the time for maritime traffic abnormal movement 
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detection while retraining the model precision and sensitivity at very high values. The 

results obtained show that the SOM network could be retrained in half the time while 

keeping precision and sensitivity at almost the same high values. The results 

presented in Table 8 prove the correctness of the training strategies investigation. 

7.5 5. Conclusions 
This paper extends the previous study on a self-organizing map application, which is 

trained in an unsupervised way using competitive learning, for processing of sensors 

stream data in order to detect abnormal vessel movement in maritime traffic. Different 

strategies for the unsupervised retraining of the SOM network to classify maritime 

vessel movement data into normal and abnormal classes were presented and 

investigated. The data batching strategies ensure high precision of the algorithm by 

introducing a huge amount of new data on vessel movements. Two different 

unsupervised SOM network retraining strategies for maritime vessel movement data 

classification into normal and abnormal classes were proposed and investigated. The 

experimental research depicted promising results. The study showed that the SOM 

network can be retrained in half the time by only applying different train/validation and 

test datasets. The initial results depict that the obtained speed-up in data processing 

time maintains precision and sensitivity, varying not more than 3% in unusual maritime 

traffic detection. 

The results of the experiments show that: 

• If the model is trained from initial random weights of the SOM network, the best 

performance is observed; however, the training time is the longest. Model precision 

reaches 0.979 and sensitivity 0.889 at learning rate 0.5. 

• If the model is trained on top of the pre-trained model weights, the precision and 

sensitivity slightly drop, but the training time decreases by half at learning rate 

0.025. 

• If the model is trained on top of the pre-trained model weights and the newly arrived 

data batch is proportionally mixed with those winning neurons, training time can 

be decreased by one third 

while keeping almost the same results as depicted previously at learning rate 0.03. 

The independent experiment on unseen dataset confirmed the results correctness and 

allowed concluding that, by applying batched data approach for SOM retraining on the 

pre-trained model, network training can be shortened to half the time by selecting 

learning rate parameter from the interval [0.025;0.03] while maintaining the model 

sensitivity and precision with only minor changes. 
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