
Vilnius university
Institute of Data Science and

Digital Technologies
L I T H U A N I A

INFORMATICS ENGINEERING (T007)

 MACHINE LEARNING FOR EUROPEAN

ORGANIZATION FOR NUCLEAR

RESEARCH COMPACT MUON SOLENOID

EXPERIMENT DATA CERTIFICATION

Mantas Stankevičius

October 2019

Technical Report DMSTI-DS-T007-19-2

VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius

LT-08412, Lithuania

www.mii.lt

http://www.mii.lt/

Abstract

The Compact Muon Solenoid (CMS) is one of the general-purpose detectors at the

CERN Large Hadron Collider (LHC) which collects enormous amounts of physics

data. Before the final physics analysis can proceed, data has to be checked for quality

(certified) by passing a number of automatic (like physics objects reconstruction,

histogram preparation) and manual (checking, comparison and decision making)

steps. Last manual step of decision making is very important, error-prone and

demands a lot of manpower. Decision making (certification) is currently under active

research in computer science for automation by applying recent advancements from

computer science, specifically, machine learning (ML).

Ultimately, CMS data certification is a binary classification task where various ML

techniques are being investigated for applicability. Just like in any other ML task the

hyper-parameter tuning is a difficult problem, there is no golden rule and each use

case is different. This study explored meta-learning applicability, it is a hyper-

parameters finding technique where algorithm learns hyper-parameters from previous

training experiments. An Evolutionary genetic algorithm has been used to tune hyper-

parameters of a neural network, like number of hidden layers, number of neurons per

layer, activation functions, dropouts, training batch size and optimizer. Initially, the

genetic algorithm takes manually specified set of hyper-parameters and then evolves

towards the near-optimal solution. Genetic stochastic operators, crossover and

mutation, were applied to avoid local optimal solutions.

Study proves that by carefully seeding the initial solution the optimal is likely to be

found. The proposed solution has improved AUC score of neural network used for

CERN CMS data certification. Similar algorithm can be applied for other machine

learning models for hyper-parameter optimization.

Keywords: CERN, CMS, Machine Learning, Neural Networks, Meta Learning,

Genetic Algorithm

DMSTI-DS-T007-19-2 2

Table of Contents
1 Introduction...4
2 Previous Work...4
3 Dataset...4
4 Methodology...4

4.1 Initial Population..5
4.2 Selection...5
4.3 Crossover..5
4.4 Mutation...6

5 Experimental Results...6
6 Conclusions and Future Works...8
7 References...8

DMSTI-DS-T007-19-2 3

1 Introduction

Usually, hyper parameters for a given problem are chosen conventionally and then
tested experimentally. However, this requires a significant amount of experience,
intuition, and trial and error. Two most common and simplest methods are exhaustive
(grid) and random search. In the grid search, a pool of values for each hyper
parameter is hand-picked by an expert then a full set of all value combinations is
constructed for later evaluation. Grid search is easy to implement and make it multi-
threaded, however the number of combinations grows exponentially with the number
of hyper parameters. Quality of this method highly depends on intuition and
knowledge of an expert defining pool of values. Hyper parameter areas of high
importance might be under-examined, while low importance areas might become
over-examined. Random search, on the other hand, tries random combinations of
value combinations, usually defined as ranges. This method is also easy to implement
and make multi-threaded. Empirical studies show that in high dimensional space
random search is much faster than grid search and performs equally well [1]. Study
below explores meta-learning applicability for hyper parameter optimization.

2 Previous Work

This study is a continuation of previous research [2]. Lack of knowledge about the
dataset itself led to poor initialization of parameter pool, so both grid and random
search techniques did not provide decent solution. Manually tuned hyper parameter
values proved to be the best choice. The aim of this work is to find a better set of
hyper parameters to improve the classification power.

3 Dataset

The dataset which was used in this work was collected by the CERN CMS experiment
during 2016 data-taking. This is a reconstructed physics data which contains values of
various physics objects: photons, muons, others. Dataset contains around 160.000
observations, each representing a single lumisection (a period of approximately 23
seconds). Each observation is based on the particles of the recorded collision events
and consists of 401 features like energy, eta, phi and others. Each feature is a vector of
7 numeric values - mean, RMS and five quantiles - representing specific statistical
characteristics of the feature distribution during the lumisection. The class
(GOOD:BAD) distribution ratio is 98:2.

4 Methodology

Genetic evolutionary algorithms [3] are inspired by nature and natural selection.
Evolution begins from the randomly generated initial population. All individuals are

DMSTI-DS-T007-19-2 4

scored by the fitness function and only best ones are used for reproduction. Genetic
stochastic operators are applied to generate new population by avoiding local optimal
solutions. Artificial neural network hyper parameter optimization using genetic
evolutionary algorithm is called neuro-evolution [4].

Figure 1. Steps of the genetic algorithm

4.1 Initial Population

An artificial neural network with all its parameters (optimizer, number of layers,
neurons, activation function and dropout) represents an individual which is a solution
to the problem. The initial population can be generated randomly using parameter
pool (Table 1) as well as seeded with potential combinations where optimal solutions
are likely to be found.

4.2 Selection

The fitness function determines quality of an individual and it gives fitness score. For
this algorithm, the average ROC AUC score was chosen from 3-fold cross validation.
Cross validation is a technique for evaluating ML model performance. The model was
trained on random data set splits and the average ROC AUC value was used for
comparison. This technique makes the score independent from the dataset split. All
possible pairs of individuals are created and sorted by the sum of fitness score. Pairs
having the best fitness score are used to produce the new population.

4.3 Crossover
Crossover is the most important part in a genetic algorithm. This process defines how
new offspring is created and how it inherits genes from parent individuals. There is no
golden rule, therefore crossover implementation varies between different algorithms
and represents a space for innovations. The algorithm treats pairs of parents
differently depending on their similarity. Pair of two neural networks is considered
similar if activation functions match layer-wise. For example: two neural networks
with three hidden layers (sigmoid, sigmoid, tanh) and (sigmoid, sigmoid, tanh) are

DMSTI-DS-T007-19-2 5

considered similar. Such pair produces only one offspring. Categorical (activation,
optimizer) hyper parameter values were randomly chosen from one of its parents.
Numeric hyper parameter values were treated differently - a random value was
selected in the range between parent values, a picked value must exists in the initial
parameter pool (see Figure 2). In order to prevent for population individuals to have
the same activation function, a pair of neural networks having different activation
functions would produce two offsprings, each parent was cloned and mutated with
100% of chance.

Figure 2. Crossover of two parents creates an offspring

4.4 Mutation

The last step in offspring generation process is mutation. Occasionally, one or more
parameters can be randomly altered (Figure 3). New value was randomly chosen from
initial parameter pool (Table 1). The mutation rate is a configurable parameter. The
purpose of this step is to help prevent local optimal solutions. The mutation rate and
amount are very sensitive parameters, high values can kick solution out of high
importance area and make it useless.

Figure 3. Mutation. Randomly alter one or more parameters

5 Experimental Results

Experimental Setup. Software: Python (3.6), Keras (2.1.6) [5], Tensorflow-gpu (1.8.0)
[6], scikitlearn (0.19.1) [7]. Hardware: PC (4 cores 2.2 GHz, 16 GB RAM) with
NVIDIA GeForce GTX 1080 Ti GPU.

Table 1. Hyper parameter pool used to create initial population and configuration of
genetic algorithm

Hyper-Parameters Pool

Units (# of neurons) [10, 50, 100, 200, 500, 750, 1000, 1500, 2000]

Activtion [relu, elu, sigmoid, tanh]

Dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Optimizer [adam, rmsprop, sgd, adagrad, adadelta, adamax]

DMSTI-DS-T007-19-2 6

Genetic Algorithm Parameters

Population size 50

of generations ∞ (while improves)

Mutation rate 0.1 (10%)

The discussed genetic algorithm implementation does not try to optimize topology of
a neural network. Topology is defined at the beginning of algorithm and does not
change during evolution. We did experiments with 1-3 network layers, however we
didn’t observe significant improvement, so it was decided to continue experiments
with a single layer neural network. Baseline score of ROC AUC from previous study
was 0.954. Two hyper parameter search methods were tested - grid search and genetic
algorithm. The grid search method evaluated 1080 combinations of hyper parameter
values. Evaluation is a 3-fold cross validation and it alone took around 6 minutes.
Evaluation mechanism was same for both search methods. Grid search managed to
find a very good solution and improved ROC AUC score from 0.954 to 0.969,
however computations took about 108 hours (4.5 days). The first population of
genetic algorithm was generated randomly. Significantly improved parameter pool
allowed a genetic algorithm to reach baseline score after the first evolution (Figure 4).
The score kept improving and after 4-5 evolutions (200-250 trainings) the ROC AUC
score stabilized around 0.968 and did not show significant improvements.
Computations took 20 to 25 hours Both methods improved the baseline score and
found similarly good solutions, however computation time was highly reduced by the
genetic algorithm implementation. See Table 2.

Table 2. Neural network classification results and parameters

Method AUC ± Trainin
gs

Optimiz
er

Network Layers

Hand picked
[2]

0.954 0.00
5

unknow
n

Adam 3 x [Relu (200) DO (0.5)]

Grid search 0.969 0.00
2

1080 Adagrad Sigmoid (2000) DO (0.2)

Meta-
Learning

0.968 0.00
2

200 Adagrad Sigmoid (1000) DO (0.2)

DMSTI-DS-T007-19-2 7

Figure 4. Comparison of different hyper parameter optimization methods

6 Conclusions and Future Works

This study proves that by using the genetic algorithm and carefully seeding the initial
population the optimal solution is likely to be found faster than trying all possible
combinations of hyper parameter values. The proposed solution has improved AUC
score of neural network used for CERN CMS data certification. Similar algorithm can
be applied for other machine learning models for hyper-parameter optimization.

7 References
1. Bergstra J and Bengio Y 2012 The Journal of Machine Learning Research 13

281–305

2. Stankevicius M, Marcinkevicius V and Rapsevicius V 2018 CEUR Vol-2158
170–176

3. Xin Yao 1999 Proceedings of the IEEE 87 1423–1447 ISSN 0018-9219

4. Lehman J and Miikkulainen R 2013 Scholarpedia 8 30977 revision #137053

5. Chollet F et al. 2015 Keras https://keras.io [

6. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S,
Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G,
Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Man´e D,
Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,

DMSTI-DS-T007-19-2 8

Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Vi´egas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y and Zheng X 2015
TensorFlow: Large-scale machine learning on heterogeneous systems software
available from tensorflow.org URL https://www.tensorflow.org/

7. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M and Duchesnay E 2011 Journal of
Machine Learning Research 12 2825–2830

8. Such F P, Madhavan V, Conti E, Lehman J, Stanley K O and Clune J 2017
CoRR abs/1712.06567 (Preprint 1712.06567) URL
http://arxiv.org/abs/1712.06567

9. Hinz T, Navarro-Guerrero N, Magg S and Wermter S 2018 International
Journal of Computational Intelligence and Applications 17 1850008 (Preprint
https://doi.org/10.1142/S1469026818500086) URL
https://doi.org/10.1142/S1469026818500086

DMSTI-DS-T007-19-2 9

	1 Introduction
	2 Previous Work
	3 Dataset
	4 Methodology
	4.1 Initial Population
	4.2 Selection
	4.3 Crossover
	4.4 Mutation

	5 Experimental Results
	6 Conclusions and Future Works
	7 References

