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Abstract 

This paper covers empirical part of the doctoral thesis. Empirical research description, 

algorithm of classification procedure, simulated data description is presented. 

 

Keywords: Bayes discriminant function, Classification algorithm, Conditional 

Beta distribution. 
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1 Introduction 
 An empirical research question: proposed reliability evaluation for contextual 

classification procedure. This question determines research objectives: construct an 

algorithm for classification, estimate probability of misclassification and estimate 

performance of classifiers, examine algorithm performance for a generated data set and 

apply the algorithm for solving real data problem. 

 

2 Conduct Empirical research 
The objective of the research is to empirically estimate classification error rates by 

simulating different initial situations and perform a comparison. In this section we 

present a particular and planned design for the research, which depend on the question 

and we offer ways of answering.  

1. Construct the algorithm: 

1.1. Statistical analysis for data 

1.2. Initial data input description and format description (choosing neighbour schemes). 

1.3. Unknown parameter estimation (Unknown model parameter estimation procedure) 

1.3. Description of a procedure for BDF value estimation (conditional density function, 

prior probability evaluation, prior probability estimation evaluation methods) 

1.4. Decision making procedure 

1.5. Classification error rate probability estimation procedure (evaluating different 

classification error probability).  

2. Research algorithm performance for a generated data set 

2.1. Generate data set. Gibbs sampling 

2.2. Introduce initial conditions 

2.3. Present the results 

2.4. Compare the results for different initial conditions 

3. Apply the algorithm for real data 

3.1. Describe the problem  

3.2. Introduce initial conditions 

3.3. Apply the proposed algorithm 

3.4. Present the results 

3.5. Compare the results for different initial conditions 

3 Algorithm 
This algorithm is designed for spatial data classification using BDF procedure for 

generalized linear model case when a model belongs to exponential distribution family 

with beta distribution. Data is analysed utilizing their conditional distributions using 

MRF property.  The algorithm is as shown in Algorithm 1:  

 

Algorithm 1: 

Inputs: Data set   : pZ s s D R  , Model M for population l , parameter 

estimation function f, prior probability function g, neighborhood system s D  , 0( )Z s  

– classification observation.  

Algorithm: Choose the model M  to the data   : pZ s s D R   

Estimate unknown parameters:   ˆ ,f Z s Ψ     
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Evaluate the prior probability function for class l:    ˆ , ,l g Z s y l s   t   

Evaluate the BDF function:   0
ˆ,W Z s Ψ   

Make decision for  0Z s :   0
ˆˆ , 0, 1,.., ,B

lkW Z s l m k l  Ψ  

Evaluate probability of misclassification (actual error rate):  0
ˆBP Ψ    

Outputs: Class label for  0Z s  

Probability of misclassification:  0
ˆBP Ψ  

 

Firstly, the data is needed for utilizing the algorithm. The initial data needs to be 

statistically estimated by finding outliers, correlation relations, proper data model must 

be chosen. Initial data is introduced together with input information described below. 

3.1 Inputs 

In this section the user presents initial data that has statistical analysis performed and 

data model chosen. Beta distribution model must be chosen for the data. In this 

algorithm the conditional distributions having Markov property in pairwise interactions 

case are analysed. In this part we choose neighbourhood system. 

 

Probability density function 

We focus on auto-beta models, this class of spatial model is constructed under two 

assumptions: first, the dependence between sites is pairwise and secondly, the full 

conditionals belong to some exponential family. Assume that for spatial auto-beta 

model scheme with spatial cooperation (see Hardouin and Yao, 2008), the full 

conditional density function for feature at location 
is  0,...,i n in reparametrized form 

is  

 

         

    
0 0 0 0

exp ln 1 ln 1, ; 1

exp ln ; 1

l l l l l l l

i i i i i i i ii

l l l l

i i i i

p Z z T z zt y l

B

    

   


       

  
, 

with conditional mean - 
l

i  and, conditional precision - 
l

i , where 

   1

1 2

1
,

2

l
l i
i i i i i l l

i i

A
E Z T t y l

A A
  


   

 
 and 1 122l l l

i iA A    . 

Natural parameters:  

 
 1 1 ln 1l l

i i ij j

i j

A z 


  
 

 2 2 lnl l

i i ij j

i j

A z 


 
 

Large scale in homogeneities can be modeled via 𝛼𝑖𝑘
𝑙 = 𝑥′𝑖𝛽𝑘

𝑙   where 𝑥′𝑖 denotes m 

vector of explanatory variables at location 
is  and 𝛽𝑘

𝑙  unknown regression coefficients 

it is matrix k m  for class l. Small scale variation 
0 1

1 0

l

ij kd
 

  
 

, 0l

kd   , if 
1 2

k kd d  

no differs between class, 
ld  implies spatial symmetry in class l, 

l

kd  allow possible 

anisotropy between the horizontal and vertical directions, 0,1,...,i n , , 1,2k l  . Denote 

the set of all model parameters by     ;l

k ij   . 
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Sufficient statistics      log , log 1
T

i i iT z z z     and log-partition function

   1 2 1 2, log 1; 1l l l l

i i i iA A B A A    . We propose the method of maximum pseudo-

likelihood to estimate the parameters of the multi-parameter auto- beta model. 

 

Neighbourhood system 

First consider the scheme with four nearest neighbours on a two dimension lattice. 

   1, 1,S N N  : each site i S  has four neighbours denoted as 

        1,0 , 1,0 , 0,1 , 0,1e w n si i i i i i i i         with obvious neighbour 

adjustments near the boundary. In the next step we enlarge the model to a scheme with 

eight nearest neighbours. Each site then has four more neighbours 

        1,1 , 1,1 , 1 1, 1 , 1 1,1ne nw sw sei i i i i i           with neighbour 

adjustments near the boundary. In the next step we enlarge the model to a scheme with 

twelve nearest neighbours, third order system. Each site then has four more neighbours 

        3 3 3 32,0 , 2,0 , 0,2 , 0,2e w n si i i i i i i i         with neighbour 

adjustments near the boundary. Note that in this case, some cliques has three or four 

elements but we consider pairwise interactions only. 

 

The experiment for data set in the study is performed for every neighbourhood scheme 

separately. The results are compared. 

3.2 Description of functions 

In this section functions required for empirical study algorithm implementation are 

briefly described. The functions with empirical study conditions are given. 

 

Parameter estimation  

Parameter estimation for a Markov random field has been studied. The method of 

maximum likelihood unfortunately needs computer-intensive approximations, since the 

likelihood function is known only up to a constant that involves the parameters. As a 

remedy, Besag (1974, 1977) proposed the method of maximum pseudo-likelihood. For 

the auto-Beta model the normalizing constant is intractable. However, the 

pseudolikelihood has form: 

 

               1 2 1 2

1

log log log 1 log 1; 1
n

l l l l

i i i i i i

i

L A z s A z s B A A


         
, 

where   1 log 1l l l

i i k k j

i j

A x d z s


    ,   2 logl l l

i i k k j

i j

A x d z s


  . So using 

optimization procedure submitted in software R we get estimation: 

 

 
   ˆ arg max log L


  

. 

These estimates we will plug-in into BDF expression.  

 

Prior probability estimation  

The prior probabilities depend on the location of focal observation and the number of 

neighbors (only the closest vs all training sample). The formula for the prior probability 

for population Ω1 is 
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 𝜋1
0 = ∑ (

1

𝑑𝑖𝑗
)𝑗∈𝑁𝑁𝑖

1(𝑘)
∑ (

1

𝑑𝑖𝑗
)𝑗∈𝑁𝑁𝑖(𝑘)⁄ , 

where 𝑑𝑖𝑗 is the distance between sites 𝑠𝑖 and 𝑠𝑗, 𝑖, 𝑗 = 1, … , 𝑛, 𝑁𝑁𝑖(𝑘) = 𝑁𝑁𝑖
1(𝑘) +

𝑁𝑁𝑖
2(𝑘), where 𝑁𝑁𝑖

𝑙(𝑘) is the set of sites belonging to the 𝑘 − 𝑡ℎ order of 

neighborhood of 𝑠𝑖 in population Ω𝑙, 𝑙 = 1,2. 
 

BDF estimation 

Bayes discriminant function expression for the auto-beta model:  

 

            
1

1 2 1 20 01
0 01 02 0 01 02 0 02

0 02

, ln ln ln 1
p

W Z z z
p


    



 
         

 
  

where    0 ln u   , 
 
 

1 2 2

0 01 02

2 1 1

0 01 02

1, 1

1, 1

B A A
u

B A A





 


 
. By replacing the parameters with their 

estimators in  0 ,W Z  , construct the sample BDF.  So when we have the BDF 

expression, we can take a decision and estimated probability of misclassification.  

 

Decision and probability of misclassification 

So BDF allocates the observation in the following way: classifies observation 𝑍0 given 

𝑍 = 𝑧 to the population Ω1 if  0 , 0W Z   ¸and to the population Ω2, otherwise. 

 

The actual error rate for SBDF 𝑊(𝑍0, Ψ̂) is  

 𝐴𝑅(Ψ̂) = ∑ 𝜋𝑙
0𝑃̂𝑙

2
𝑙=1 , 

where, for 𝑙 = 1,2, 𝑃𝑙 = 𝑃𝑙𝑧((−1)𝑙𝑊𝑧(𝑍0, Ψ) < 0),i.e.  

  

 𝑃̂1 = ∫ 𝑝01(𝑡)𝑑𝑡 = ∫ 𝐻(−𝑊(𝑍0, Ψ̂))𝑝01(𝑡)𝑑𝑡
1

0𝑊
, 

  𝑃2 = ∫ 𝑝02(𝑡)𝑑𝑡 = ∫ 𝐻(𝑊(𝑍0, Ψ̂)) 𝑝02(𝑡)𝑑𝑡
1

0𝑊(𝑍0,Ψ̂)>0
 , 

where 𝐻(∙) is the Heaviside step function. Now we have descriptions of inputs and 

using function, so we can go to realization. This algorithm we use for two data set, one 

is simulated data and the next real data set. 

 

4 Simulated data 
Simulated data sets are used for evaluating algorithm reliability estimation. We 

consider the three different models with neighbours systems as described above. Here 

we are also interested in the measuring empirically the convergence rate of the 

probability of misclassification estimators. Therefore, simulations are conducted on 

increasing lattice sizes. 8 8, 16 16, 32 32, 48 48, 56 56, 64 64n        .  

  

Gibbs sampling 

We used the Gibbs sampler (Geman and Geman, 1984), to generate the random field 

induced by the Markov property, defied over the all lattices sizes. Gibbs sampling is a 

special case of the Metropolis Hastings algorithm. It is a Markov chain Monte Carlo 
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(MCMC) algorithm that samples each random variable of a graphical model, one at a 

time. The point of Gibbs sampling is that given a multivariate distribution it is simpler 

to sample from a conditional distribution than to marginalize by integrating over a joint 

distribution. In our case, we sample one value of a single lattice point 
iz   at a time, 

while keeping everything else fixed. Assume the input lattice has a size of N × N. And 

we will choose a set of parameter values that satisfy the integrability conditions. The 

algorithm is as shown in Algorithm 2. 

 

Algorithm 2: 

Initialize starting values of  iz s  , for 1,...,i N ; 

while not at convergence do 

Pick an order of the N N  variables; 

for each variable  iz s  do 

Sample  iz s  based on      i ip z s N z s   

Update  iz s  to Z  

end 

end 

 

One major of iterative simulation pitfall is what is called the “burn-in” or “warm up” 

problem, which refers to the question of how long to run the chain    1 2
, ,...Z Z  on 

grounds that the chain may not yet have reached equilibrium (i.e., the target 

distribution). Gelman and Rubin (1992) propose a fully quantitative method to monitor 

the convergence of iterative simulation using several independent sequences, with 

starting points sampled from an overdispersed distribution. At each step of the iterative 

simulation, they obtain, for each univariate random variable of interest, an estimate of 

its distribution and an estimate of the factor by which the scale of this distribution might 

be reduced if the simulations were continued indefinitely. This potential scale reduction 

is estimated by the ratio of the current variance estimate using the variance between the 

several sequence means to the within-sequence variance estimate. When this ratio is 

near 1, it is considered that the iterative simulation is close enough to convergence and 

that valid inference for the target distribution can be obtained using data from the next 

iterations. 

 

5 Real data 
Notice that the family of beta distributions offers a large variety of densities on a 

bounded interval [a, b], which makes the auto-beta models a potentially important class 

of spatial models, rates, proportions, or concentration indices. For example pant cover, 

election results. 

 

The modelling approach proposed to tackle spatially sampled proportions will be apply 

to the real database. It is planned to analyze spatial data with given coordinates. Also, 

a quantitative variable is monitored in every spatial point that can be modeled using 

beta distribution.  Also, a qualitative variable with two possible values that split the data 

into two classes. The research objective is to apply proposed classification procedure 

for the data to evaluate possible class label in a new date point based on measured 

qualitative variable values.  
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This empirical study will be expanded, and calculation results will be presented. 

Resulting data analysis will also be performed: comparison, generalization and 

conclusions will be presented. Real data analysis and results will also be presented. 
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