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Abstract 

 

The main goal of global optimization is to find the best solution of optimization 

problems which could have many other local optima solutions. It is common that 

objective functions in global optimization problems are expensive to evaluate, non-

convex and has no derivative. These functions are usually called black-box functions. 

Bayesian optimization has recently emerged as a popular approach for optimizing 

expensive black-box functions. 

This work describes how Bayesian optimization works, the key components, 

including Gaussian process regression and common acquisition functions. We present 

main limitations of Bayesian limitations and extensions to high-dimensional global 

optimization problems. Furthermore, we review some new ideas emerging from meta-

learning applied to Bayesian optimization. Finally, we present some other methods used 

in global optimization. 
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1 Introduction 
 

Global optimization is concerned with the computation and characterization of 

global minima (or maxima) of nonlinear functions. Global optimization problems are 

widespread in the mathematical modelling of real-world systems for a very broad range 

of applications (Horst & Pardalos, 2013). 

Recently Bayesian optimization (BO) has become extremely popular for tuning 

hyperparameters in machine learning algorithms (Frazier, 2018), designing engineering 

systems (Forrester et al., 2008; Candelieri et al., 2018), reinforcement learning 

(Shahriari et al., 2016), automatic configuration (Thornton et al., 2013)  or in chemical 

engineering when selecting candidates for high-throughput screening (Hernández-

Lobato et al., 2017; Griffiths & Hernández-Lobato, 2020). 

Despite the above-mentioned successes, optimization in high-dimension problems 

with large among of data is still challenging. There has been a series of work addressing 

these issues for high-dimensional problems which showed very promising results 

(Kandasamy et al., 2015; Ziyu Wang et al., 2016; Gardner et al., 2017; Mutný & Krause, 

2018; Rolland et al., 2018; Zi Wang et al., 2018; Munteanu et al., 2019; Binois et al., 

2020). Furthermore, new emerging ideas from meta learning have been applied to 

Bayesian optimization which allows to transfer knowledge from one task to another and 

can also help to overcome some limitations in Bayesian Optimization. 

 

2 Global Optimization Problem 
 

Global optimization problem could be described as finding global maximizer 

(minimizer) of an unknown continuous function 𝑓 ∶  𝒳 →  ℝ  defined on a compact 

subset  𝒳 ⊆  ℝ𝐷. We consider the following global optimization problem: 

𝑥∗ =  argmax
𝑥 ∈ 𝒳 

𝑓(𝑥), 

The function  𝑓 is an objective function and 𝒳 is called the feasible set. Alternatively, 

𝒳 is called search space or domain (Pintér, 1996). The objective function 𝑓 is called 

black-box if it satisfies one or more of the following criteria: it does not have a closed-

form expression, is expensive to evaluate and does not have easily available derivatives. 
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We can only get black-box function 𝑓 value points by querying its function values at 

arbitrary 𝑥 ∈ 𝒳.  

3 Bayesian Global Optimization 
 

Bayesian optimization (Mockus et al., 1978; Brochu et al., 2010; Frazier, 2018) is 

a methodology for performing global optimization of black-box functions that are noisy 

and expensive to evaluate. Given small number of observed objective function inputs 

and corresponding outputs, Bayesian optimization iteratively develops a global 

statistical model of the objective function, which could provide an estimate of 

uncertainty about objective function and  can be used to balance trade-off between 

exploration and exploitation. The statistical model consists of a prior distribution that 

captures our assumptions about the behaviour of unknown objective function and data 

generation mechanism (Shahriari et al., 2016). During each optimization iteration a 

posterior distribution is computed by conditioning on the previous evaluations of the 

objective function. This model is also called probabilistic surrogate model because it 

approximates the original objective function and can be queried efficiently at lower 

computational cost.  

To select the next query point, Bayesian optimization uses an acquisition function 

𝛼, which measures how promising are each point in the search space 𝒳 if it were to be 

evaluated next, based on assumptions about the objective function in our statistical 

model ℳ. The main goal is to find the next query point �̂� which maximizes the 

acquisition function and use it for objective function 𝑓 evaluation. The main steps of 

Bayesian optimization algorithm are illustrated in Algorithm 1.  

Algorithm 1 Bayesian optimization 

1: Inputs: objective 𝑓, acquisition function 𝛼, search space 𝒳, model ℳ, initial design 𝒟 

2: repeat: 

3: Fit the model ℳ to the data 𝒟 

4: Maximize the acquisition function: �̂� =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑥 ∈𝒳 𝛼(𝑥, ℳ)  
5: Evaluate the function: �̂� = 𝑓(�̂�) 

6: Add the new data to the data set: 𝒟 =  𝒟 ∪ {(�̂�, �̂�)}  

7: until termination condition is met 

8: Output: the recommendation 𝑥∗ =  arg 𝑚𝑎𝑥𝑥 ∈𝒳  𝔼ℳ[𝑓(𝑥)] 

 

After we select the most promising next query point �̂�, we evaluate the objective 

function 𝑓, and we add the new observation to the data set 𝒟 and then begin the next 
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iteration. Optimization loop is terminated when a maximum elapsed time for the entire 

optimization procedure or a maximum number of function evaluations is reached. 

Bayesian optimization is well suited for the problems when we can optimize acquisition 

function much more efficiently and easier than the original optimization problem. 

3.1 Gaussian Process 
 

Gaussian processes (GPs) are the most popular priors distribution used for 

modelling the function 𝑓 in Bayesian optimization (Snoek et al., 2012; Shahriari et al., 

2016; Frazier, 2018). They define distributions over functions where any finite set of 

function values has a multivariate Gaussian distribution (Rasmussen & Williams, 

2018). A Gaussian process 𝐺𝑃(𝜇, 𝜅) is fully specified by a mean function 𝜇(∙) and 

covariance (kernel) function 𝜅(∙, ∙). Let 𝑓 be a function sampled from 𝐺𝑃(0, 𝜅). Given 

observations 𝒟𝑛 =  {(𝑥𝑡,  𝑦𝑡)}𝑡=1
𝑛  where  𝑦𝑡 ~ 𝒩(𝑓(𝑥𝑡),  𝜎), we obtain the posterior 

mean and variance of the function as 

𝜇𝑛(𝑥) = 𝜅𝑛(𝑥)𝑇(Κ𝑛 + 𝜎2Ι)−1𝑦𝑛 

𝜎𝑛
2(𝑥) =  𝜅(𝑥, 𝑥) −  𝜅𝑛(𝑥)𝑇(Κ𝑛 + 𝜎2Ι)−1𝜅(𝑥) 

via the kernel matrix Κ𝑛 =  [𝜅(𝑥𝑖,  𝑥𝑗)]
𝑥𝑖,𝑥𝑗∈𝐷𝑛

and 𝜅𝑛(𝑥) =  [𝜅(𝑥𝑖 ,  𝑥)]𝑥𝑖∈𝒟𝑛).  

Despite the fact that GP provide flexible, broadly applicable function 

estimators, the 𝛰(𝑛3) computation of the inverse (Κ𝑛 + 𝜎2Ι)−1 can is a major 

bottleneck as 𝑛 grows for posterior function value predictions. 

At each iteration of Bayesian optimization, one has to re-compute the predictive 

mean and variance. These two quantities are used to determine the next iteration 𝑥𝑛+1 

based on the belief about 𝑓 given 𝒟𝑛, a sampling strategy is defined in terms of an 

acquisition function.  

3.1.1 GP kernels 

 

Kernel function is the critical ingredient in defining Gaussian process prior. It 

encodes our assumptions about the objective function we wish to learn. The kernel 

function is a positive definite function and defines nearness or similarity between two 

input pairs x and x’. Kernel functions can be classified into stationary, dot-product or 

non-stationary functions. Stationary kernel functions are the most popular and widely 

used, so we restrict ourselves only to this family of functions.  A stationary kernel is 
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one whose value depends on 𝑥 and 𝑥′ only through their difference 𝑥 − 𝑥′, which means 

that the structure of the function is translation invariant (Rasmussen & Williams, 2018).   

The two most widely used kernel function are the squared exponential kernel 

and the Matérn 5/2 kernel. The squared exponential is infinitely differentiable, which 

means that the GP with this covariance function has mean square derivatives of all 

orders and is very smooth. It has the form 

𝜅𝑆𝐸(𝑥, 𝑥′) = exp(−
|𝑥 − 𝑥′|2

2ℓ2
 ) 

where ℓ  defining the characteristic length-scale. 

Squared exponential kernel puts a strong smoothness assumption on objective 

function, which is unrealistic for modelling many physical processes. For this reason, 

it is recommended to use Matérn 5/2 kernel function which is only two times mean 

square differentiable. It has the following form: 

𝜅𝑀52(𝑥, 𝑥′) = (1 +  
√5𝑟

ℓ
+  

5𝑟2

3ℓ2
) 𝑒𝑥𝑝 (−

√5𝑟

ℓ
) 

where 𝑟 =  |𝑥 − 𝑥′| and  ℓ  is the characteristic length-scale. 

 

 

3.1.2 Learning kernel parameters 

 

In many practical applications, it may not be easy to specify all aspects of the 

kernel function. While some properties such as stationarity of the covariance function 

may be easy to determine from the context, it is more difficult to have an information 

about other properties, such as the value of free hyperparameters. The mismatch of 

hyperparameters and the data can lead to very poor performance. 

For the squared exponential kernel function hyperparameters play the role of 

characteristic length-scales which defines how far length-scale needs to move along a 

particular axis in input space for the function values to become uncorrelated. If the 

length scales in kernel function are set very large, then the GP prior will not be able to 

capture the higher variations in the objective function and if the length scales are set 

very small, the GP might fail to generalize.  The kernel hyperparameters can be learned 

from the data by maximizing the marginal likelihood of the GP. The marginal likelihood 

of a GP is given by: 

log 𝑝(𝑦|𝑋, 𝜃) =  −
1

2
𝑦𝑇𝐾𝑦

−1𝑦 −
1

2
𝑙𝑜𝑔|𝐾𝑦| −

𝑛

2
𝑙𝑜𝑔2𝜋  
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Where 𝐾𝑦 = Κ𝑓 + 𝜎𝑛
2Ι is the covariance matrix for the noisy targets y and 𝐾𝑓 is the 

covariance matrix for the noise-free latent 𝑓. We can explicitly write the marginal 

likelihood conditioned on the hyperparameters and then perform maximum likelihood 

estimation respect to the hyperparameters.  

The complexity of computing the marginal likelihood is dominated by the need 

to invert the 𝐾𝑦
−1 matrix, which requires 𝑂(𝑛3) time for inversion of an n by 

n matrix. Once inverted mattrix is known, the computation of the derivatives with 

respect to hyperparameters requires only time 𝑂(𝑛2)  per hyperparameter (Rasmussen 

& Williams, 2018). 

3.2 Acquisition functions 
 

Acquisition function is used to guide the search for finding the maximum of 

objective function. Usually, high acquisition function values correspond to potentially 

high values of the objective function. Maximizing the acquisition function is used to 

select the next point at which to evaluate the function. The choice of acquisition 

function is nontrivial. Each works well for certain classes of functions, and it is often 

difficult or impossible to know which will perform best on an unknown function 

(Brochu et al., 2010). 

3.2.1 Expected Improvement 

 

The expected improvement (EI) acquisition function (Mockus et al., 1978; 

Donald R. Jones et al., 1998) is one of the most popular acquisition function. It 

measures the expected improvement amount by which observing 𝑓𝑛+1(𝑥) leads to 

improvement over some target 𝑓(𝑥+) :  

𝛼𝐸𝐼(𝑥| 𝒟𝑛) =  𝔼(𝑚𝑎𝑥{0, 𝑓𝑛+1(𝑥) − 𝑓(𝑥+)}|𝒟𝑛) 

In this definition 𝑥+ =  argmax𝑥∈{𝑥1:𝑛}𝑓(𝑥) is the element with the best objective value 

in the 𝑛 steps of the optimization process. The next query point is found by: 

𝑥𝑛+1 =  argmax
𝑥 ∈𝒳

𝛼𝐸𝐼(𝑥|𝒟𝑛) 

This utility function is biased to selecting the points with high variance and points with 

high mean value (Donald R. Jones et al., 1998). 
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3.2.2 GP-UCP 

 

The Gaussian Process Upper Confidence Bound (GP-UCB) acquisition 

function (Srinivas et al., 2010) is defined as follow: 

 

𝛼𝑈𝐶𝐵(𝑥) =  𝜇(𝑥) +  𝜅𝜎(𝑥) 

 

where 𝜅 is a constant, 𝜇 and 𝜎 are the posterior predictive marginal GP mean and 

variance. GP-UCB acquisition function implicitly balance the exploration-exploitation 

trade-off and prefers the points with high posterior mean and variance. 

3.2.3 Thompson Sampling 

 

Thompson sampling (TS) (Thompson, 1933) is also commonly known as 

randomized probability matching is a randomized acquisition strategy which was 

introduced in 1933 and recently attracted renewed interest in multi-armed bandits 

problems.  

In the bandit setting this strategy samples a reward function from the posterior 

and selects the arm with the highest simulated reward, while in the GP context this 

strategy corresponds to sampling the objective function from the GP posterior and then 

finding the maximum of that sample. TS can be formulated as acquisition function as: 

𝛼𝑇𝑆(𝑥, 𝒟𝑛) = 𝑓(𝑛)(𝑥) 

𝑓(𝑛)(𝑥) ~ 𝐺𝑃(𝜇, 𝜅| 𝒟𝑛) 

Empirical evaluations show good performance which, however, seems to 

deteriorate in high dimensional problems, likely due to aggressive exploration 

(Shahriari et al., 2016). 

3.2.4 The information-based acquisition functions 

 

The information-based acquisition functions seek to maximize the expected 

information gain about the solution to the global optimization problem. This is achieved 

by considering the posterior distribution over the location of the solution given the data 

𝑝∗(𝑥| 𝐷𝑛). Two most popular information-based acquisition functions are entropy 

search (ES) and predictive entropy search (PES). 
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3.2.4.1 Entropy search 

 

The goal of Entropy Search (ES) acquisition function is to reduce the 

uncertainty in the location  𝑥∗ by selecting the point which is expected to cause the 

largest reduction in entropy of the distribution 𝑝∗(𝑥| 𝒟𝑛) (Hennig & Schuler, 2012). 

The acquisition function for ES can be expressed formally as: 

𝛼𝐸𝑆(𝑥) = 𝐻(𝑥∗| 𝒟𝑛) −  𝔼𝑦 |  𝒟𝑛,𝑥 𝐻(𝑥∗| 𝒟𝑛 ∪ {(𝑥, 𝑦)}) 

where 𝐻(𝑥∗| 𝒟𝑛) denotes the differential entropy of the posterior distribution 

𝑝∗(𝑥| 𝒟𝑛) and the expectation is over the distribution of the random variable 𝑦. This 

function is not tractable for continuous search spaces and so approximations must be 

made. Recent work uses a discretization of the search space to obtain a smooth 

approximation 𝑝∗(𝑥| 𝒟𝑛) and its expected information gain (Shahriari et al., 2016). 

3.2.4.2  Predictive Entropy Search 

 

Predictive Entropy Search (PES) acquisition function strategy is to select the 

next point from the search space which maximizes the expected reduction in the 

negative differential entropy of 𝑝∗(𝑥| 𝒟𝑛) (Hernández-Lobato et al., 2014). 

𝛼𝑃𝐸𝑆(𝑥) = 𝐻[𝑝(𝑥∗| 𝒟𝑛)] −  𝔼𝑦 |  𝒟𝑛,𝑥 [𝐻[𝑝(𝑥∗| 𝒟𝑛 ∪ {(𝑥, 𝑦)})]] 

where 𝐻[𝑝(𝑥)] =  − ∫ 𝑝(𝑥)log 𝑝(𝑥) 𝑑𝑥 represents the differential entropy of its 

argument and the expectation above is taken with respect to the posterior predictive 

distribution of y given x. The exact evaluation of this equation is not feasible in practice. 

However after making few simplifying assumptions the expectation can be 

approximated via Monte Carlo with Thompson samples (Shahriari et al., 2016; Frazier, 

2018). 

3.3 Limitations of Bayesian Optimization 
 

There are several known limitations and challenges in Bayesian optimization. 

Even though Bayesian optimization typically works well in low-dimensional search 

spaces, optimization in high-dimension problems become very challenging, because 

complexity grow exponentially with the dimensionality of the search space. Another 

challenging area is computational complexity of Gaussian process, which is cubic in 

the number of data points and to ensure that a global optimum is found when 

dimensionality increases more data points are needed to have good coverage of search 
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space which becomes a bottleneck. Furthermore, maximizing acquisition function when 

search space dimensionality is high can become challenging for commonly used global 

optimisation heuristics, because it could require computation exponential in dimension. 

Finally, available kernels are usually restricted in their functional form and an 

additional optimisation procedure is required to identify the most suitable kernel, as 

well as its hyperparameters, for any given task (Frazier, 2018; Rasmussen & Williams, 

2018; Kim et al., 2019). 

 

3.4 Extensions in Bayesian Optimization 

3.4.1 High dimensional Bayesian optimization 

 

There has been a series of work addressing BO in high-dimensional 

(Kandasamy et al., 2015; Ziyu Wang et al., 2016; Gardner et al., 2017; Mutný & Krause, 

2018; Rolland et al., 2018; Zi Wang et al., 2018; Munteanu et al., 2019; Binois et al., 

2020). Some of these authors tries to find and exploit potential additive structure in the 

objective function (Kandasamy et al., 2015; Gardner et al., 2017; Zi Wang et al., 2018). 

These methods typically rely on training a large number of GP and therefore do not 

scale to large evaluation budgets. Other methods exist that rely on a mapping between 

the high-dimensional space and an unknown low-dimensional subspace to scale to large 

numbers of observations (Ziyu Wang et al., 2016; Munteanu et al., 2019). The BOCK 

algorithm of Oh et al. (Oh et al., 2018) uses a cylindrical transformation of the search 

space to achieve scalability to high dimensions. Ensemble Bayesian optimization 

(EBO) (Zi Wang et al., 2018) uses an ensemble of additive GPs together with a batch 

acquisition function to scale BO to tens of thousands of observations and high-

dimensional spaces. (Eriksson et al., 2019) abandoned a global surrogate and instead 

maintained several local models that move towards better solutions. Their TurBO 

algorithm applies a bandit approach to allocate samples efficiently between these local 

searches. Recently, (Munteanu et al., 2019) have proposed the general HeSBO 

framework that extends GP-based BO algorithms to high-dimensional problems using 

a novel subspace embedding that overcomes the limitations of the Gaussian projections 

used in (Ziyu Wang et al., 2016; Binois et al., 2020). 
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3.4.2 Meta learning 

 

Meta-learning is an important and active field of research and recently started 

attracting more and more attention in Bayesian optimization. These methods try to 

achieve optimal data-efficiency by transferring knowledge across many different tasks. 

This is usually done by incorporating the information obtained from previously seen 

tasks into the optimization process. Many practical applications in optimizations are 

repeated numerous times in similar settings, so using information from previous runs 

could allow to achieve global optimal in fewer steps. 

3.4.2.1  Neural Processes 
 

Bayesian Optimization based on Gaussian process regression scales cubically 

with the respect the number of evaluations. Many available kernels for GP requires 

strong prior assumption about the objective function which limits their functional form. 

Also, finding the most suitable kernel for the given problem and optimizing its the 

hyperparameters is not an easy task. Neural Processes (NPs) (Gamelo et al., 2018; Kim 

et al., 2019) was introduced to overcome these limitations by the standard GP 

regression. NP is a neural network-based formulation that learns an approximation of a 

stochastic process by modelling a distribution over regression functions with prediction 

complexity linear in the size of observed context set. Furthermore, the model overcomes 

many functional design restrictions by learning an implicit kernel from the data directly. 

NP model maps an input 𝒙𝑖  ∈ ℝ𝑑𝑥  to an output 𝒚𝑖  ∈ ℝ𝑑𝑦 and defines a 

conditional distribution of target (𝒙𝑐, 𝒚𝑐)  =  (𝒙𝑖, 𝒚𝑖)𝑖 ∈ 𝐶  given an arbitrary number of 

observed contexts (𝒙𝑇 , 𝒚𝑇)  =  (𝒙𝑖, 𝒚𝑖)𝑖 ∈ 𝑇   in a way that is invariant to ordering of 

the contexts and ordering of the targets. This distribution could be modeled as: 

𝑝(𝒚𝑇|𝒙𝑇 , 𝒙𝐶 , 𝒚𝐶) = ∫ 𝑝(𝒚𝑇|𝒙𝑇 , 𝒓𝐶 , 𝒛) 𝑞(𝒛|𝑠𝐶) 𝑑𝒛  

With 𝑟𝑐 = 𝑟(𝒙𝐶, 𝒚
𝐶

) where 𝑟 is a deterministic function that aggregates (𝒙𝑐, 𝒚𝑐)  into a 

finite dimensional representation with permutation invariance in C. A global latent 

variable 𝒛 represents uncertainty in the predictions of 𝒚𝑇 for a given observed (𝒙𝑐, 𝒚𝑐). 

It is modelled by factorized Gaussian and parameterized by 𝑠𝑐 = 𝑠(𝒙𝐶 , 𝒚𝐶).  

The likelihood 𝑝(𝒚𝑇|𝒙𝑇 , 𝒓𝐶 , 𝒛) is called decoder and q, r, s forms an encoder. 

The parameters of the encoder and decoder are learned by maximizing the following 

ELBO. 
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Neural processes were applied to Bayesian optimization on 1-D function using 

Thompson sampling. The results showed that this approach does not reach the optimal 

performance compared to standard GP approach as NP samples were noisier than those 

of a GP. However, NP were much faster to evaluate since only a forward pass through 

the network is needed. This difference in computational speed gets even more 

noticeable as the dimensionality of the problem and the number of necessary function 

evaluations increases (Gamelo et al., 2018). 

 

3.4.2.2  Meta-acquisition function 
 

Neural Acquisition Function (NAF) (Volpp et al., 2019) is a flexible meta-

learning approach which allows to directly to incorporate the prior knowledge from 

previous runs and other related tasks into the optimization strategy of Bayesian 

optimization. The model replaces traditional acquisition function with neural network 

while retaining all other elements from standard Bayesian Optimization framework. 

Using reinforcement learning to meta-train an acquisition function the proposed method 

learns to extract implicit structural information and to exploit it for improved data-

efficiency. 

The experiments showed that this method was able to outperform the existing 

methods and was broadly applicable to a wide range of practical problems were source 

data was abundant or scares. The resulting neural AFs can represent search strategies 

which go far beyond the abilities of current approaches. 

 

4 Related Global Optimization Models 

4.1 Classical Global Optimization Models 

4.1.1 Nelder–Mead algorithm 

 

Nelder-Mead (NM) method is one of the best known optimization algorithms 

originally designed for solving convex non-differentiable unconstrained nonlinear 

optimization problems (Nelder & Mead, 1965). It belongs to direct search family 

methods which uses only the objective function values for searching the optimal 

solution. 
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There are many modifications of the NM method proposed in the literature in 

since the method was first developed (Kolda et al., 2003). In recent years NM is used 

for solving non-convex and non-differentiable optimization problems (Dražić et al., 

2016). Also, many other algorithms were developed based on hybridization this 

algorithm with other algorithms (Chelouah & Siarry, 2003) or based on similar ideas 

(Eriksson et al., 2019). 

4.1.2 Genetic Algorithm 

 

Genetic algorithms (GA) were first popularized by (Holland, 1975) are 

stochastic optimization algorithms inspired by the principles of natural evolution. They 

can often outperform conventional optimization methods when applied to difficult real-

word optimization problems. Many different evolutionary algorithm based strategies 

have been developed recently to find the global minimum for nonlinear programming 

problems (Pham & Yang, 1993; Andrzej & Stanislaw, 2006; Toledo et al., 2014) 

 

4.1.3 Ant Colony Optimization Algorithm 

 

Ant colony optimization is a classical approach to solve combinatorial 

optimization problems, which were introduced by (Dorigo, 1992). The main idea of this 

algorithm is the indirect communication among the individuals of a colony of agents, 

called ants. The method is based on the principle how ants search for food and find their 

way back to the nest. 

This algorithm was successfully applied to global optimization problem 

(Toksari, 2006) and when compared with other global optimization algorithms showed 

noticeable performance improvement. 

 

4.1.4 Simulated Annealing Algorithm 

 

Simulated annealing (SA) is a stochastic method for global optimization. This 

algorithm originated from the analogy between the physical annealing process and the 

problem of finding minimal solutions for discrete minimization problems. This 

algorithm was first developed for combinatorial minimization problems (Kirkpatrick et 

al., 1983) and later modified to apply for continuous global optimization functions 
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(Dekkers & Aarts, 1991). SA algorithms have been successfully  applied to a wide 

variety of real engineering problems (Henderson et al., 2006). 

 

4.2 Lipschitz Global Optimization Models 
 

4.2.1 Direct Method 

 

The DIRECT optimization algorithm (D. R. Jones et al., 1993; Deng & Ferris, 

2007; Donald R. Jones, 2008) which stands for dividing rectangles, is a global 

optimization method first motivated by Lipschitz optimization, which has proven to be 

effective in a wide range of application domains. The algorithm works by iteratively 

dividing large hyperrectangles in search domain into the smaller ones. Each hyper-

rectangle in the decomposition is characterized by the objective function value at the 

center location. During each iteration, a set of potentially optimal hyperrectangles are 

selected for further divisions. An example of such partition in 2 dimensional space is 

illustrated in Figure 1. 

 

Figure 1: The DIRECT optimization algorithm 

4.2.1.1 Partitioning Hyper-rectangles 
 

For each hyperrectangle, let 𝒟 be the coordinate directions corresponding to the 

largest side lengths, 𝛿 be one third of the largest length, and 𝑐 be the center point. The 

function will explore the objective values at the points 𝑐 ± 𝛿𝑒𝑖, for all 𝑒𝑖 ∈ 𝒟, where 𝑒𝑖 

is the 𝑖th unit vector. The hyperrectangle will be trisected along the dimensions in 𝒟, 

first along dimensions whose objective values are better. The procedure continues until 

each point 𝑐 ± 𝛿𝑒𝑖 occupies a single hyperrectangle. Two possible partitioning scheme 

in a 2-dimensional case are illustrated in Figure 2.  
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Figure 2: Partitioning hyperrectangles 

 

Since we only perform trisections, the length of any side in the unit 

hyperrectangle can possibly be 3−𝑘, 𝑘 = 1, 2, … 

4.2.1.2 Potentially Optimal Hyper-rectangles 

 

Selection of potentially optimal hyperrectangles combines the purposes of both 

global and local searches. Let  ℋ be the index set of existing hyperrectangles. For each 

hyperrectangle 𝑗 ∈ ℋ , we evaluate the function value at the center representing point 

𝑓(𝑐𝑗) and note the size of the hyperrectangle 𝛼𝑗. The size 𝛼𝑗 is computed as the distance 

from the center point to the corner point. A hyperrectangle 𝑗 ∈ ℋ is said to be 

potentially optimal if there exists a constant �̃� such that: 

𝑓(𝑐𝑗) −  �̃�𝛼𝑗  ≤  𝑓(𝑐𝑖) − �̃�𝛼𝑖, ∀𝑖 ∈ ℋ, 

𝑓(𝑐𝑗) −  �̃�𝛼𝑗  ≤  𝑓𝑚𝑖𝑛 −  𝜀|𝑓𝑚𝑖𝑛|. 

In the above expressions, 𝑓𝑚𝑖𝑛 is the lowest function value available and 𝜀 is a 

parameter that balances between global and local search. The parameter is typically 

nonsensitive and set as 0.0001. An equivalent interpretation of the process of selecting 

potential optimal rectangles is illustrated in Figure 3.  
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Figure 3: Identifying potentially optimal hyperrectangles 

 

First hyperrectangles are sorted in groups according to the size 𝛼. Each 

hyperrectangle is plotted in the figure as a black dot in accordance with its center 

function value 𝑓(𝑐𝑗) and size 𝛼𝑗. Potentially optimal hyperrectangels are denoted as 

white dots on the lower convex hull of the grap in the figure above. 

The introduction of 𝜀 may result in exclusions of good hyperrectangles in the 

smaller size groups. Thus 𝜀 is considered as a balancing parameter between local and 

global search. As noted from the figure, the best hyperrectangle in the largest size group 

is always selected. The algorithm will eventually converge to the global optimum 

because the maximum size 𝑚𝑎𝑥𝑗𝛼𝑗 decreases to zero and the entire search space is 

thoroughly explored. 

 

4.2.2 Simplicial Lipschitz optimization 

 

Many research papers related to DIRECT algorithm use hyper-rectangles for 

search space partitioning. Using different strategies for search space partitioning could 

be more beneficial for some different type of problems. DISIMPL optimization 

algorithm (Paulavičius & Žilinskas, 2014a, 2014b) which means DIviding SIMPLices 

was proposed to use simplicial partitions for search space partitioning. This algorithm 

adopts similar ideas of DIRECT algorithm with comparable convergence properties. 

 The experiments showed that proposed DISIMPL algorithm had very 

competitive results to DIRECT algorithm for standard test problems and performed 

particularly well when the objective functions have symmetries and the numbers of 

local and global extremum points can be reduced by avoiding symmetries. 
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5 Conclusions and Future work 
 

 

We have introduced Bayesian optimization and its main components, including 

Gaussian process regression, acquisition functions and the process of learning 

hyperparameters. We then discussed main challenges and limitations facing Bayesian 

optimization. 

Many new research directions are focused on addressing the main limitation in 

Bayesian optimization. One of which is developing new methods that work well with 

high-dimensional optimization problems. We have reviewed the main literature and 

experiments in this research are, which showed very promising results. Also, new ideas 

coming from meta-learning field were successfully applied to Bayesian optimization 

which address scalability issues. 

Finally, we have discussed other popular methods used in global optimization from 

classical to more recent ones. Many new algorithms use some ideas from these methods 

to develop hybrid and more efficient new optimization algorithms. 

For future work, research in meta-learning and knowledge transfer domain, 

particularly in neural processes, seems to be very promising for high-dimensional 

problems. This approach could be used to replace Gaussian process which is used in 

most work on Bayesian optimization and could speed up optimization process. 

Furthermore, developing new acquisition functions and combining with meta-learning 

may provide substantial value in high dimensional problems. 
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