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Santrauka

Ataskaitoje sutrumpinta forma yra pateikiama 2019 - 2020 m. m. straipsniams rengta
medžiaga. Ši medžiaga yra dvejopa: viena jos dalis yra skirta teoriniams tyrimams, kuri-
ais siekiama sukurti atitinkamus algoritmus (pagal disertacijos tematiką), o kita dalis –
pasirinktos šių algoritmų taikymo srities plėtojimui.

Raktiniai žodžiai: Gaussian random walk, maximum likelihood, recursion, on-
line estimation, social capital, cultural processes, logistic regression, stochastic
differential equation.
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1 Įvadas

Šioje ataskaitoje yra glaustai pateikiami 2019 – 2020 m. m. vykdytų mokslinių tyrimų
rezultatai.

Pirmoji darbo dalis (antrasis skyrius) yra skirta teorinei mokslinių tyrimų daliai. Joje
sprendžiamas atsitiktinio Gauso klaidžiojimo, stebimo su triukšmu, parametrų vertinimo
realiu laiku uždavinys. Uždavinio sprendimui yra sukonstruojamas didžiausio tikėtinumo
metodu paremtas rekursinis algoritmas. Algoritmo veikimas ištiriamas eksperimentiškai.

Antroji darbo dalis (trečiasis skyrius) yra skirta praktiniam teorinių rezultatų taiky-
mui. Joje yra pasiūlomas kultūros poveikio socialiniam kapitalui tikimybinis modelis,
tokiu būdu siekiant kuriamus algoritmus su stochastinėmis dinaminės sistemomis susijusių
uždavinių sprendimui pritaikyti socialinių sistemų simuliavimui.

Pažymėtina, kad antrosios dalies rezultatai yra atspausdinti WoS žurnale (L.
Sakalauskas, V. Dulskis, R. Lauzikas, A. Miliauskas, D. Plikynas (2020) A probabilistic
model of the impact of cultural participation on social capital, The Journal of Mathematical
Sociology, DOI: 10.1080/0022250X.2020.1725002 ). Tuo tarpu visapusiškai papildytą pir-
mosios dalies turinį su pridėtais teoriniais rezultatais (šioje ataskaitoje ši dalis pateikiama
nėra) planuojama pateikti spausdinimui iki šių metų pabaigos.

Atsižvelgiant į tai, kad antrojo bei trečiojo skyrių medžiagą sudaro straipsniams skirta
medžiaga, jų turinys pateikiamas anglų kalba.
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2 Incremental Maximum Likelihood Estimation of the Pa-
rameters of Noisy Gaussian Random Walk

2.1 Problem Formulation

Let us consider a probability measure space (Ω,F ,P ). Suppose {Xi}, i ∈ Z+, is a
discrete-time linear stochastic state process, taking values in R, with dynamics given by

Xi+1 = Xi + εi+1, X0 = 0. (2.1)

Here {εi+1}, i ∈ Z+, is a sequence of independent and identically distributed N (0,Q) scalar
random variables (N (µ,σ2) denotes the normal distribution with mean µ and variance σ2).

The state process {Xi}, i ∈ Z+, is a well-known Gaussian Random Walk (see, e.g.,
[1]), which, in turn, is a special case of the more general Linear Gaussian State Space
Model [2]. It is observed indirectly via the scalar observation process {Yi}, i ∈ Z+, given
by

Yi = Xi + νi. (2.2)

Here {νi}, i ∈ Z+, is a sequence of independent and identically distributed N (0,R) scalar
random variables. It is assumed that {εi+1} and {νi}, i ∈ Z+, are mutually independent.

The model described by equations (2.1) and (2.2) is completely characterized by pa-
rameter θ := (Q,R). We consider the problem of incremental (online) maximum likelihood
estimation of θ.

2.2 Solution

The goal of this chapter is to arrive at the algorithm for the problem formulated in
the previous chapter. Firstly, we step-by-step introduce the necessary preliminaries while
making comments about the algorithm along the way, and later we combine everything
into the formal description of the algorithm.

2.2.1 Preliminaries

Let us define increments between adjacent observations as Zk := Yk − Yk−1, k = 1,
..., n, n ∈ N. The motivation for using differences Z instead of raw observations Y is that
they produce a more compact covariance matrix, i.e. a tridiagonal one. We have

EZk = 0
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and

Cov(Zk,Zl) = E(ZkZl) =


Q+ 2R, k = l

−R, |k − l| = 1

0, otherwise

,

here k, l = 1, ..., n, n ∈ N.
Estimates of parameters Q and R can be obtained directly from the covariance matrix

for Z1, Z2, ..., Zn, n ∈ N:

Q̂n =
∑n
k=1 z

2
k

n
+ 2

∑n−1
k=1 zkzk+1
n− 1 ,

R̂n = −
∑n−1
k=1 zkzk+1
n− 1 ,

(2.3)

here z1, z2, ..., zn are particular realizations of Z1, Z2, ..., Zn, respectively.
Formulae (2.3) are suitable not only for the offline but also online estimation as they

can be readily calculated recursively. On the other hand, these formulae do not come
without their flaws either: 1) estimates Q̂n and R̂n might obtain negative values while true
parameter values are never meant to be negative (nevertheless, this does not constitute a
problem in practical use); 2) estimates Q̂n and R̂n approach the true parameter values only
asymptotically. Hence, even though there exists a straightforward way to solve the problem
under consideration, it is still reasonable to search for more robust solution opportunities
that would offer not only an efficient solver for the relatively simplistic model that is
being considered in this work, but also provide insight into the solution of similar online
identification problems given more complicated models.

This work specifically focuses on the adaptation of the maximum likelihood method
for the online solution of the problem described in Section 2.1. The maximum likelihood
method is one of the most commonly used methods for drawing statistical inference, and
the maximum likelihood estimates have important asymptotic properties, e.g. consistency,
functional invariance, and efficiency. Estimates of unknown parameters are obtained by
this method as parameters that maximize multivariate probability density. Refer to [3] for
more information.

Let us define vector Zn :=
(
Z1, Z2, ..., Zn

)>
. It is straightforward to see that

vector Zn has n–dimensional Gaussian distribution and therefore its probability density is

fZn(z1,z2,...,zn) = e−
1
2 z>n Σ−1

n zn

(2π) n
2 |Σn|

1
2
, (2.4)

here zn :=
(
z1, z2, ..., zn

)>
and Σn := [Cov(Zk,Zl); 1 ≤ k,l ≤ n].
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By taking the logarithm of (2.4), we get the logarithmic likelihood function:

Ln(θ) := Ln(θ; zn) = −1
2
(
ln(|Σn|) + z>nΣ−1

n zn + n ln(2π)
)
.

Since it is true that

arg max
θ

[Ln(θ)] = arg max
θ

[Ln(θ)
n

]
= arg min

θ

[
ln(|Σn|) + zn

>Σn
−1zn

n

]
,

for both normalization and simplicity purposes we will further consider the minimization
of the function Ln(θ) having the following expression:

Ln(θ) := ln(|Σn|) + z>nΣ−1
n zn

n
. (2.5)

Let us now introduce the following parameterization of θ:

q := Q+ 2R+
√

(Q+ 2R)2 − (2R)2,

r := Q+ 2R−
√

(Q+ 2R)2 − (2R)2,

s := ln
(
q

r

)
.

(2.6)

We now proceed by writing an estimate for parameter r and constructing a new
likelihood function that depends only on parameter s:

Lemma 1. Function r̂n(s) such that dLn(s,r)
dr

∣∣∣
r=r̂n(s)

= 0 is a valid estimate of parameter
r, here

Ln(s,r) = 1
n

ln |An(s)|+ s

2 + ln
(
r

2

)
+ 2
r
e−

s
2
z>n (An(s))−1 zn

n
(2.7)

and

r̂n(s) = 2e−
s
2
z>n (An(s))−1 zn

n
, (2.8)

where

An(s) =




2 cosh
(
s
2
)
, i = j

−1, |i− j| = 1

0, otherwise

; 1 ≤ i,j ≤ n

 .

Corollary 1.

Ln(s,r) ≈ Ln(s,r̂n(s)) = 1
n

ln |An(s)|+ 1 + ln
(

z>n (An(s))−1 zn
n

)
=: L̃n(s). (2.9)
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The algorithm constructed in this work is based on the minimization of function L̃n(s)
(see (2.9)) given that s ∈ [0,∞]. Having found ŝn ∈ [0,∞] with which L̃n(ŝn) ≤ L̃n(s) for
all s ∈ [0,∞], r̂n is then obtained from (2.8). Such ŝn is either one of all local minima that
belong to the interval (0,∞), i.e. all such points s̄n ∈ (0,∞) for which dL̃n(s)

ds |s=s̄n = 0,
dL̃n(s)

ds |s=s̄n−ε < 0 and dL̃n(s)
ds |s=s̄n+ε > 0, here ε > 0 is arbitrarily low, or the left-end point

of the interval, i.e. 0, or the right-end point of the interval, i.e. ∞. The first derivative of
L̃n(s), expressed in a specific form to be used by the algorithm, is given in Lemma 2.

Lemma 2. The first derivate of L̃n(s), i.e. dL̃n(s)
ds , has the following expressions:

dL̃n(s)
ds = sinh

(
s

2

)(
tr
(

(An(s))−1

n

)
− z>n (An(s))−2 zn

z>n (An(s))−1 zn

)

= 1
sinh

(
s
2
) ( gn(s)

hn(s) −
1
2

(
1 + 1

n

) [
(An(s))−1

]
n,n

)
,

(2.10)

here

hn(s) = 1
n

z>n (An(s))−1 zn[
(An(s))−1

]
n,n

,

gn(s) = 1
n

z>n

 1
2 cosh

(
s
2
)

(An(s))−1 −
(
sinh

(
s
2
)

(An(s))−1
)2[

(An(s))−1
]
n,n

 zn.

(2.11)

The idea of the algorithm is to keep certain parts of (2.10) fixed while in search of the
root. If these parts are chosen properly, the newly obtained function will not only become
stable in regards of computational complexity but also its root will approach that of the
original function, i.e. dL̃n(s)

ds , as n→∞.
In addition to functions hn(s) and gn(s) defined by (2.11), we introduce a few similar

functions that will be chosen for fixation:

cn(s) =
z>n
[
(An(s))−1

]<n>[
(An(s))−1

]
n,n

,

dn(s) =
z>n
[
(An(s))−2

]<n>[
(An(s))−2

]
n,n

,

(2.12)

here <> denotes matrix column.
Since the functions defined by (2.11) and (2.12) involve sums, we must be able to

calculate them recursively:

Lemma 3. For i = m+ 1, m+ 2, ..., n, here n > m ≥ 1 (m ∈ N, n ∈ N), the following
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recursions hold:

h̃i = a
(1)
i (ŝi)

(
1− 1

i

)
h̃i−1 + 1

i

(
a

(2)
i (ŝi)c̃i−1 + zi

)2
,

g̃i = a
(1)
i (ŝi)

(
1− 1

i

)
g̃i−1

+ 1
i

(
a

(3)
i (ŝi)

(
a

(2)
i (ŝi)c̃i−1 + zi

)2
− a(4)

i (ŝi)d̃i−1
(
a

(2)
i (ŝi)c̃i−1 + zi

) )
,

c̃i = a
(2)
i (ŝi)c̃i−1 + zi,

d̃i = a
(5)
i (ŝi)d̃i−1 + a

(2)
i (ŝi)c̃i−1 + zi,

(2.13)

here

a
(1)
i (ŝi) =

[
(Ai−1(̂si))−1

]
i−1,i−1[

(Ai(̂si))−1
]
i,i

=

(
1− e−ŝi(i−1)

) (
1− e−ŝi(i+1)

)
(1− e−ŝii)2 ,

a
(2)
i (ŝi) =

[
(Ai−1(̂si))−1

]
i−1,i−1

= e−
ŝi
2

1− e−ŝi(i−1)

1− e−ŝii
,

a
(3)
i (ŝi) = sinh

(
ŝi
2

)1
2

cosh
(
ŝi
2

)
sinh

(
ŝi
2

) − sinh
(
ŝi
2

) [(Ai(̂si))−2
]
i,i[

(Ai(̂si))−1
]
i,i


= 1− e−ŝi

2

 e−
ŝi
2

1− e−ŝi
+ i

e−ŝi(i− 1
2 )

1− e−ŝii
− (i+ 1) e−ŝi(i+ 1

2 )
1− e−ŝi(i+1)

 ,
a

(4)
i (ŝi) = 2 sinh

(
ŝi
2

)2 [
(Ai−1(̂si))−2

]
i−1,i−1

= 1− e−ŝi

2
1− e−ŝi(2i−1) − (2i− 1)

(
1− e−ŝi

)
e−ŝi(i−1)

(1− e−ŝii)2 ,

a
(5)
i (ŝi) =

[
(Ai−1(̂si))−2

]
i−1,i−1[

(Ai(̂si))−2
]
i,i

[
(Ai(̂si))−1

]
i,i

= e−
ŝi
2

1− e−ŝi(i+1)

1− e−ŝii

1− e−ŝi(2i−1) − (2i− 1)
(
1− e−ŝi

)
e−ŝi(i−1)

1− e−ŝi(2i+1) − (2i+ 1) (1− e−ŝi) e−ŝii
,

(2.14)

and h̃m := hm(ŝm), g̃m := gm(ŝm), c̃m := cm(ŝm), d̃m := dm(ŝm) (note that if ŝm =
ŝm+1 = ... = ŝn = s, then h̃n, g̃n, c̃n, d̃n are respectively equal to hn(s), gn(s), cn(s), dn(s)
defined by (2.11) and (2.12)).

Having derived recursions (2.13), we can now implement the previously described idea
of the algorithm. We replace hn and gn in (2.10) with their recursive counterparts h̃n and
g̃n. During the root search, the terms h̃n−1, g̃n−1, c̃n−1 and d̃n−1 are now fixed as they do
not depend on ŝn. The newly found estimate of parameter s, i.e. ŝn, is then used together
with the newest available value of Z, i.e. zn, to recursively obtain h̃n, g̃n, c̃n and d̃n. More
specifically, for i = m + 1, m + 2, ..., n, here n > m ≥ 1 (m ∈ N, n ∈ N), the algorithm
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alternates between the following steps:

• Estimation. Equation ki := ki(s,h,g,c,d) = 0 is solved for s, such that minimizes
function Ki :=

∫
kids in the interval [0;∞] (in practice, we only search for a local

minimum), here

ki = ga
(1)
i (s)

(
1− 1

i

)
+ 1
i

(
a

(3)
i (s)

(
ca

(2)
i (s) + zi

)2
− da(4)

i (s)
(
ca

(2)
i (s) + zi

))
− 1

2

(
1 + 1

i

)
a

(2)
i+1(s)

(
ha

(1)
i (s)

(
1− 1

i

)
+ 1
i

(
ca

(2)
i (s) + zi

)2
) (2.15)

and s = ŝi, h = h̃i−1, g = g̃i−1, c = c̃i−1, d = d̃i−1.

• Update. h̃i, g̃i, c̃i, d̃i are calculated by (2.13).

As the values of parameter s range from 0 to∞, we need to calculate the limits at these
extreme values for the general function and its derivative, i.e. L̃n(s) and dL̃n(s)

ds , as well
as for the constructed function kn(s,h,g,c,d) and its constituents hn(s), gn(s), cn(s), and
dn(s). Doing so provides information ranging from useful to necessary for the proposed
algorithm.

Lemma 4. When s approaches zero, the following limits hold:

(a.1) lim
s→0

L̃n(s) = 1 + ln (n+ 1)
n

+ ln
(
u(1)
n

)
,

(a.2) lim
s→0

dL̃n(s)
ds = 1

12
u

(2)
n

u
(1)
n

lim
s→0

s = 0,

(a.3) lim
s→0

hn(s) =
(

1 + 1
n

)
u(1)
n ,

(a.4) lim
s→0

gn(s) = 1
2 lim
s→0

hn(s),

(a.5) lim
s→0

cn(s) = yn − u(3)
n ,

(a.6) lim
s→0

dn(s) =
n∑
i=1

(
(yi − y0)3i(i+ 1)− n(n+ 2)

n(2n+ 1)

)
,

(a.7) lim
s→0

kn(s,h,g,c,d) =
(

1− 1
n2

)(
1− 1

n

)(
g − h

2

)
,

(a.7′) if g = h

2 , then lim
s→0

kn(s,h,g,c,d)
s2 =

= 1
12a

(2,0)
n

(
h

(2n+ 1)
(
n2 − 1

)
(2n)2 − d

(
1 + a(2,0)

n

) (
ca(2,0)
n + zn

)
− 1

2
(
ca(2,0)
n + zn

)2
)
,

(2.16)
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here

u(1)
n =

∑n
i=1

 i
i+1

(
yi −

∑i−1
j=0 yj

i

)2


n
,

u(2)
n =

n−1∑
j=0

n−1∑
i=0

[
zi+1zj+1

(1 + min (i,j)
n+ 1

)(
1− max (i,j)

n

)
(
j2 + i2 + 2 min (i,j) + 1− n (2 max (i,j) + 1)

) ]
,

u(3)
n =

∑n−1
i=0 yi
n

,

a(2,0)
n = 1− 1

n
,

(2.17)

and y0, y1, ..., yn are particular realizations of Y0, Y1, ...,Yn, respectively (n ∈ N).
When s approaches infinity, the following limits hold:

(b.1) lim
s→∞

L̃n(s) = 1 + ln
(
v(1)
n

)
,

(b.2) lim
s→∞

dL̃n(s)
ds = −v

(2)
n

v
(1)
n

lim
s→∞

e−
s
2 = 0,

(b.3) lim
s→∞

hn(s) = v(1)
n ,

(b.4) lim
s→∞

gn(s) = −1
2v

(2)
n ,

(b.5) lim
s→∞

cn(s) = zn,

(b.6) lim
s→∞

dn(s) = zn,

(b.7) lim
s→∞

kn(s,h,g,c,d) = g

(
1− 1

n

)
− d zn2n,

(2.18)

here

v(1)
n =

∑n
i=1(zi)2

n
,

v(2)
n =

∑n−1
i=1 zizi+1

n
.

(2.19)

The limits of hn(s), gn(s), cn(s), and dn(s) when s approaches its extreme values can
be readily tracked at every iteration. This is rather useful as it allows beginning with a
fresh sequence of s estimates in case its estimate becomes zero (in case it becomes infinity,
the same result is achieved with recursive updates). Moreover, the values at the limiting
values of s can be also tracked for the general function (2.9) and its derivative (2.10),
hence providing an opportunity to correctly estimate s in advance as zero or infinity with
some probability. For all this, the following lemma is needed:
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Lemma 5. The following recursive relations hold:

(1) u(1)
n = u

(1)
n−1

(
1− 1

n

)
+ 1
n+ 1

(
lim
s→0

cn(s)
)2
,

(2) u(2)
n = u

(2)
n−1...,

(3) u(3)
n = u

(3)
n−1 +

yn−1 − u(3)
n−1

n
,

(4) v(1)
n = v

(1)
n−1 +

(zn)2 − v(1)
n−1

n
,

(5) v(2)
n = v

(2)
n−1 +

zn−1zn − v(2)
n−1

n
,

(6) lim
s→0

dn(s) =
(

1− 1
n

) 2n− 1
2n+ 1 lim

s→0
dn−1(s) + lim

s→0
cn(s).

(2.20)

Having estimated parameter s at the sample size n, the estimate for parameter r can
be retrieved from (2.8) using the recursively calculated term h̃n:

r̂n(ŝn,h̃n) = 2e−
ŝn
2 a

(2)
n+1(ŝn)h̃n. (2.21)

Finally, when the estimates of parameters s and t are known, the estimates of unknown
model variances Q and R are obtained by the following formulae:

Q̂n(ŝn,r̂n) =
r̂n
(
e

ŝn
2 − 1

)2

2 ,

R̂n(ŝn,r̂n) = r̂ne
ŝn
2

2 .

(2.22)

However, since limŝn→∞r̂n(ŝn,h̃n) = 0, estimates (2.22) are not valid when ŝn is equal
to ∞. In this case, the estimates of Q and R are the following:

Q̂n = v(1)
n (follows from (2.3)),

R̂n = 0 (by the definition of s).
(2.23)

In the similar regard, when ŝn = 0, we have:

Q̂n = 0,

R̂n =
(

1− 1
n2

)
u(1)
n .

(2.24)

In the next sub-subsection, we lay out the full algorithm.
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2.2.2 Algorithm

1 algoritmas Incremental maximum likelihood estimation of unknown model parameters
Q and R
Input: A sequence of z’s (y’s) generated with model variances Q and R, i.e. z1, z2, ...,

zm, ..., zn, here m is the initial sample size and n is the total sample size (m, n ∈ N,
n > m).

Output: Estimates of Q and R at different sample sizes (iterations), i.e. Q̂i and R̂i, here
i = m, m+ 1, ..., n.

1: u(1) ← u
(1)
m , u(2) ← u

(2)
m , u(3) ← u

(3)
m (see (2.17)); v(1) ← v

(1)
m , v(2) ← v

(2)
m (see (2.19));

dlim0 ← lims→0 dm(s) (see (2.16))
2: ŝ← min

s
L̃m(s) (see (2.9))

3: if ŝ =∞ then
4: h← v(1), g ← −1

2v
(2), c← zm, d← zm

5: Q̂m ← v(1), R̂m ← 0
6: else if ŝ = 0 then
7: h←

(
1 + 1

m

)
u(1), g ← 1

2h, c← ym − u(3), d← dlim0

8: Q̂m ← 0, R̂m ←
(
1− 1

m2

)
u(1)

9: else
10: h← hm(ŝ), g ← gm(ŝ) (see (2.11)); c← cm(ŝ), d← dm(ŝ) (see (2.12))
11: r̂ ← r̂m(ŝ,h) (see (2.21))
12: Q̂m ← Q̂m(ŝ,r̂), R̂m ← R̂m(ŝ,r̂) (see (2.22))
13: end if
14: for i = m+ 1, m+ 2, ..., n do
15: u(1) ← u

(1)
i , u(2) ← u

(2)
i , u(3) ← u

(3)
i , v(1) ← v

(1)
i , v(2) ← v

(2)
i , dlim0 ← lims→0 di(s),

where the right-hand sides are calculated recursively by (2.20)
16: L(0) ← 1 + ln (i+1)

i + ln
(
u(1)

)
, L(∞) ← 1 + ln

(
v(1)

)
17: l(0) ← u(2)

u(1) , l(∞) ← −v(2)

v(1)

18: k(∞) ← g
(
1− 1

i

)
−d zi

2i , k(0) ←
(
1− 1

i2

) (
1− 1

i

) (
g − h

2

)
, k(−1) ← lims→0

ki(s,h,g,c,d)
s2

(see (2.16))
19: if

(
l(0) < 0 and l(∞) < 0

)
or

(
l(0) > 0 and l(∞) < 0 and L(∞) < L(0)

)
or(

k(0) < 0 and k(∞) < 0
)

or
(
k(0) = 0 and k(−1) < 0 and k(∞) < 0

)
then

20: ŝ←∞
21: h← v(1), g ← −1

2v
(2), c← zi, d← zi

22: Q̂i ← v(1), R̂i ← 0

12



23: else if
(
l(0) > 0 and l(∞) > 0

)
or

(
l(0) > 0 and l(∞) < 0 and L(0) < L(∞)

)
or
(
k(0) > 0 and k(∞) > 0

)
or
(
k(0) = 0 and k(−1) > 0 and k(∞) > 0

)
then

24: ŝ← 0
25: h←

(
1 + 1

i

)
u(1), g ← 1

2h, c← yi − u(3), d← dlim0

26: Q̂i ← 0, R̂i ←
(
1− 1

i2

)
u(1)

27: else
28: Starting from ŝ (if ŝ 6= 0 and ŝ 6= ∞) or some arbitrary low value (e.g. 1) not

equal neither to zero nor infinity (if ŝ = 0 or ŝ = ∞), bracket the interval in which
there exists the root of ki (see (2.15)) corresponding to the local minumum

29: Find the root of ki (see (2.15)) in the bracketed interval. Assign this root to ŝ
30: h← h̃i, g ← g̃i, c← c̃i, d← d̃i, here the right-hand sides are calculated recursively

by (2.13) using ŝ
31: r̂ ← r̂i(ŝ,h) (see (2.21))
32: Q̂i ← Q̂i(ŝ,r̂), R̂i ← R̂i(ŝ,r̂) (see (2.22))
33: end if
34: end for

In the next subsection, we test the proposed algorithm experimentally.

2.3 Experimental Results

Algorithm 1 was tested experimentally by a Monte Carlo method [4]. Three different
experiments were carried out, each consisting of 100 runs of the algorithm with m = 10,
n = 105, and varying values of parameters Q and R. The results are depicted in Figures 1-6
(Figures 1-2, 3-4 and 5-6 represent the first, second and third experiments, respectively).

Figure 1: 100 runs of Algorithm 1 with Q =
1, R = 1, m = 10, n = 105. Averages are
plotted against a sample size of 10, 20, 50,
102, 2 · 102, 5 · 102, 103, 2 · 103, 5 · 103, 104,
2 · 104, 5 · 104, 105.

Figure 2: The same runs of Algorithm 1 as
in Figure 1. Standard deviations are plot-
ted against a sample size of 10, 20, 50, 102,
2 ·102, 5 ·102, 103, 2 ·103, 5 ·103, 104, 2 ·104,
5 · 104, 105.
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Figure 3: 100 runs of Algorithm 1 with Q =
0.25, R = 1, m = 10, n = 105. Averages are
plotted against a sample size of 10, 20, 50,
102, 2 · 102, 5 · 102, 103, 2 · 103, 5 · 103, 104,
2 · 104, 5 · 104, 105.

Figure 4: The same runs of Algorithm 1 as
in Figure 3. Standard deviations are plot-
ted against a sample size of 10, 20, 50, 102,
2 ·102, 5 ·102, 103, 2 ·103, 5 ·103, 104, 2 ·104,
5 · 104, 105.

Figure 5: 100 runs of Algorithm 1 with Q =
1, R = 0.01, m = 10, n = 105. Averages are
plotted against a sample size of 10, 20, 50,
102, 2 · 102, 5 · 102, 103, 2 · 103, 5 · 103, 104,
2 · 104, 5 · 104, 105.

Figure 6: The same runs of Algorithm 1 as
in Figure 5. Standard deviations are plot-
ted against a sample size of 10, 20, 50, 102,
2 ·102, 5 ·102, 103, 2 ·103, 5 ·103, 104, 2 ·104,
5 · 104, 105.

The fact that the average estimates of both Q and R tend to their true values and the
standard deviations of both Q and R tend to zero (as the sample size increases) verifies
the convergence of the proposed algorithm.
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3 Modelling the Impact of Cultural Participation on Social Capital 

This section considers the development of models for the impact of cultural participation on social 

capital [5]. We assume an abstract space consisting of a set of actors representing individual human 

beings and a set of cultural events representing different types of cultural events. The goal is to 

model the social impact (in terms of social capital, the concept of which we do not detail here) on 

actors deriving from cultural participation subject to the stationary flow of independent events 

(SFIE). 

3.1 Probabilities of Cultural Participation 

We introduce the frequencies of actors’ profiles, probabilities of cultural events and probabilities of 

actors’ participation in those cultural events. 

First, assuming that 𝐾 different actors’ profiles are ascertained, then the probability of a randomly 

selected actor possessing the kth profile is 𝑞𝑘, 1 ≤ 𝑘 ≤ 𝐾, here ∑ 𝑞𝑘
𝐾
𝑘=1 = 1. 

Second, we consider a set of cultural events consisting of 𝑚 different types of events. We denote 

the indicator of participation of some kth profile actor in the event of ith type as 𝜒𝑖
𝑘. Thus, 𝜒𝑖

𝑘 = 1 if 

the participation took place, and 𝜒𝑖
𝑘 = 0 if it did not. We assume, for simplicity, that one actor can 

only participate in one event at a given time. Thus, 𝜒𝑖
𝑘 ⋅ 𝜒𝑗

𝑘 = 0 if 𝑖 ≠ 𝑗. Then, conditional 

probabilities of participation in cultural events make up the matrix of probabilities of preferences: 

𝑃𝑟(𝜒𝑖
𝑘 = 1|𝑖, 𝑘) = 𝑃𝑖

𝑘,    (3.1) 

here 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑖 ≤ 𝑚. 

Given that different types of events in the set of cultural events are numbered from 1 to m, the flow 

of cultural events is presented as a sequence of numbers from 1 to 𝑚. Thus, events in time are 

considered as discrete or continuous time sequences. The SFIE of 𝑚 types can be described by a 

vector of event probabilities 𝜋 = {𝜋𝑖}𝑖=1
𝑚 , here ∑ 𝜋𝑖

𝑚
𝑖=1 = 1. Hence, the probability of the kth profile 

actor to participate in the event of ith type following from some SFIE is expressed using conditional 

probabilities (1) in the following way: 

𝑃𝑟(𝜒𝑖
𝑘 = 1|𝑘) = 𝑝𝑖

𝑘 = 𝜋𝑖 ⋅ 𝑃𝑖
𝑘,    (3.2) 

here 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑖 ≤ 𝑚. Conversely, the probability of the kth profile actor not participating is 

𝑃𝑟(∑ 𝜒𝑖
𝑘𝑚

𝑖=1 = 0|𝑘) = 1 − ∑ 𝜋𝑖 ⋅ 𝑃𝑖
𝑘𝑚

𝑖=1 .   (3.3) 

3.2 Finite-Difference Model of the Social Impact of Cultural Participation 

Let us develop the model for the simulation of the social impact of participation in cultural events 

flow. We consider the social impact of the dynamics of cultural processes as a systematic process 

that is realised through a change of social capital in conjunction with the flow of cultural events and 

the population of actors. We assume that social capital is measured by various social capital 

indexes, the set of those is denoted by 𝛩. The values of these indexes range from 0 to 𝑎, here 𝑎 > 0. 

The total social capital for a single actor, 𝐶, can then be measured as the sum of all social capital 

indexes: 𝐶 = ∑ 𝐶𝜃 .𝜃∈𝛩  

Each actor at a certain moment in time is distinguished by a certain numerical value 𝐶𝜃 of some 

social capital index before the event and a certain value 𝐶𝛥
𝜃 afterwards (assumption). Although the 

upper limit of the value of a social capital index is 𝑎, taking into account naturally existing 

differences between people, we can consider that potential social capital (PSC) is individually 

distributed and, thus, denote it for a certain actor by 𝐴𝜃, 0 < 𝐴𝜃 ≤ 𝑎, 𝜃 ∈ 𝛩. Then, important 
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information is provided by the social capital development ratio (SCDR), which describes how an 

actor is able to assimilate its PSC: 

𝐷𝜃 =
𝐶𝜃

𝐴𝜃−𝐶𝜃,    (3.4) 

here 0 < 𝐶𝜃 < 𝐴𝜃, 𝜃 ∈ 𝛩. Due to the non-linearity and limitedness of social capital (assumption), 

changes of social capital indexes are described more adequately in a multiplicative way using the 

SCDR, unlike economic-financial capital, whose changes are measured in the usual additive way. 

According to the model, actors use a randomised strategy for participating in cultural events as 

follows. We assume that 𝑤0
𝜃 and 𝑏𝜃 are certain constants; 𝑤0

𝜃 describes the change of social capital 

if there is no actor involvement in the event, and 𝑏𝜃 is the expected impact of the event on social 

capital, 𝜃 ∈ 𝛩. Hence, we denote the fact of actor participation in some cultural event taking place 

in the community during time unit 𝛥𝑡 at a certain moment in time 𝑡 by 𝜒 = 1 and no participation 

by 𝜒 = 0. The change of SCDR should depend on the fact of actor participation in the event. Thus, 

in the simplest case, one can consider that this ratio, having value 𝐷𝜃 before the event, is changed to 

value 𝐷𝛥
𝜃 = 𝐷𝜃 + 𝛥𝐷𝜃 after the event in the following way: 

𝐷𝛥
𝜃 = {

𝐷𝜃 ⋅ (1 + (𝑤0
𝜃 + 𝜉𝜃) ⋅ 𝛥𝑡) 𝑖𝑓 𝜒 = 0

𝐷𝜃 ⋅ (1 + (𝑏𝜃 + 𝜉𝜃) ⋅ 𝛥𝑡) 𝑖𝑓 𝜒 = 1
,  (3.5) 

where 𝜉𝜃 represents the overall impact of other factors (assumption), 𝜃 ∈ 𝛩. Since the impact is 

analysed through a sufficiently large number of events, it is assumed that the impact of one separate 

event is small, i.e. |𝑤0
𝜃 ⋅ 𝛥𝑡| << 1, |𝑏𝜃 ⋅ 𝛥𝑡| << 1, 𝜃 ∈ 𝛩. The fact that participation in the event is 

expected to change social capital positively and no participation is expected to change it negatively 

might be modelled by assigning certain values: 𝑤0
𝜃 ≤ 0, 𝑏𝜃 > 0, 𝜃 ∈ 𝛩. Due to the complex nature 

of the overall other factors affecting social capital, it is reasonable to consider their entire impact 

𝜉 = (𝜉𝑓𝑖𝑟𝑠𝑡_𝑖𝑛𝑑𝑒𝑥, 𝜉𝑠𝑒𝑐𝑜𝑛𝑑_𝑖𝑛𝑑𝑒𝑥, … , 𝜉𝑙𝑎𝑠𝑡_𝑖𝑛𝑑𝑒𝑥) distributed with respect to the Gaussian law 𝛮(𝜀,  𝜏), 

where 𝜀 and 𝜏 are a mean vector and a covariance matrix, respectively. The appropriate choice of 𝜀 

and 𝜏 enables to reflect the social impact of cultural participation in comparison with other factors. 

We denote a vector 𝜒 = {𝜒𝑖}𝑖=1
𝑚 , where 𝜒𝑖 is an indicator of participation in the event of ith type, 

𝜒𝑖 ∈ {0; 1}, 0 ≤ ∑ 𝜒𝑖
𝑚
𝑖=1 ≤ 1, and a vector of cultural event weights 𝑤𝜃 = {𝑤𝑖

𝜃}
𝑖=1

𝑚
, where 𝑤𝑖

𝜃 =

𝑏𝑖
𝜃 − 𝑤0

𝜃, and 𝑏𝑖
𝜃 is the expected impact of an event of ith type, 1 ≤ 𝑖 ≤ 𝑚, 𝜃 ∈ 𝛩. Eq. (3.5) can be 

rewritten as the following equation expressing the change of a certain SCDR after the event has 

occured at a certain time moment: 

𝐷𝛥
𝜃 = 𝐷𝜃 ⋅ (1 + (𝑤0

𝜃 + 𝜒𝑇 ⋅ 𝑤𝜃 + 𝜉𝜃) ⋅ 𝛥𝑡),  (3.6) 

here 𝜃 ∈ 𝛩. It should be noted that Eq. (3.6) follows the logistic regression model used for 

modelling the social impact of culture [6, 7]. 

Remark. We denote 𝛥 𝑙𝑛( 𝐷) = 𝑙𝑛( 𝐷𝛥) − 𝑙𝑛( 𝐷). Then, 

𝛥 𝑙𝑛( 𝐷) ≈
𝛥𝐷

𝐷
= (𝑤0+𝜒𝑇 ⋅ 𝑤 + 𝜉) ⋅ 𝛥𝑡,  (3.7) 

where the upper index is omitted for simplicity. 

Using Taylor’s formula: 

𝛥 𝑙𝑛( 𝐷) = 𝑙𝑛( 𝐷𝛥) − 𝑙𝑛( 𝐷) = 𝑙𝑛 (1 +
𝛥𝐷

𝐷
) =

𝛥𝐷

𝐷
+ 𝑜 (

𝛥𝐷

𝐷
). 

Now (3.7) follows because of (3.6). 

We can rewrite the relationship between the SCDR and social capital indexes (3.4) as follows: 
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𝐶𝜃 = 𝐴𝜃 ⋅
𝐷𝜃

1+𝐷𝜃
,    (3.8) 

here 𝜃 ∈ 𝛩. 

Thus, formulae (3.6) and (3.8) represent the finite-difference model of the impact of participation in 

cultural events on the social capital of actors. According to this model, each actor is characterised 

by parameters 𝐴𝜃 of its PSC, vectors of weighting parameters 𝑤𝜃 that measure the effect of 

participation in cultural events, and parameters 𝜀𝜃,  𝜏𝜃,𝜃 of normally distributed ‘noise’ representing 

other factors that have an impact on social capital (𝜃 ∈ 𝛩). 

3.3 Model of the Social Impact of Cultural Participation as a Stochastic Differential Equation 

Here we consider a mathematical model that can reveal many properties of the mechanism behind 

the social impact of culture. We assume that 𝑁 actors are influenced by the SFIE consisting of 𝑚 

types of events spread over time period 𝑇 and that the probabilities of event occurrences and actor 

participation are described by Eq. (3.1), (3.2), (3.3). For simplicity, we assume that the time interval 

𝑇 is a conjunction of discrete time units 𝛥𝑡, during which only one event from the field of cultural 

events takes place. If the unit of time 𝛥𝑡 decreases, then the number of events 𝑀 =
𝑇

𝛥𝑡
 occurring 

during the fixed period of time 𝑇 increases. It should be noted that 

𝜒𝑖 ⋅ 𝜒𝑗 = {
𝜒𝑖 ,  𝑖𝑓 𝑖 = 𝑗
0,  𝑖𝑓 𝑖 ≠ 𝑗

.    (3.9) 

Moreover, according to Eq. (3.2), the probability of the kth profile actor participating in the event of 

ith type is 𝐸𝜒𝑖 = 𝑝𝑖
𝑘 = 𝜋𝑖 ⋅ 𝑃𝑖

𝑘, 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑖 ≤ 𝑚. 

To consider the social impact of a cultural events flow that occurred during some time interval 

[0,  𝑇], we denote the total effect of a set of cultural events on individual actors by ∑(𝑤0 + 𝜒𝑇 ⋅
𝑤 + 𝜉) ⋅ 𝛥𝑡, where notations of social capital indexes and the numbers of events are omitted for 

simplicity. Then, from the central limit theorem (see, e.g., [8]), it follows that the impact of this 

flow is distributed with respect to the normal law 𝛮(𝜇, 𝜎2), where the mean is 

𝜇 = (𝑤0 + 𝑝𝑇 ⋅ 𝑤 + 𝜀) ⋅ 𝑇,   (3.10) 

 and the variance is 

𝜎2 = (𝜏 + 𝑝𝑇 ⋅ 𝑤 ⋅ 𝑤𝑇 − (𝑝𝑇 ⋅ 𝑤) ⋅ 𝑤𝑇 𝑝) ⋅ 𝑇,  (3.11) 

here 𝑝 = {𝑝𝑖
𝑘} 𝑖=1,𝑘=1

𝑚,𝐾
. It should be noted that the social capital indexes are correlated. 

Eq. (3.4) and (3.7) yield 𝛥 𝑙𝑛( 𝐷) ≈
𝛥𝐶

𝐶⋅(1−
𝐶

𝐴
)
, which implies the next proposition.  

Proposition. Let 𝑁 actors be influenced during time period [0,  𝑇] by the SFIE consisting of 𝑚 

types of events. We assume that during time unit 𝛥𝑡, only one event takes place, whose particular 

impact is small, namely |𝑤𝑖 ⋅ 𝛥𝑡| << 1, where 𝑤𝑖, 0 ≤ 𝑖 ≤ 𝑚, are certain weights of event impact, 

and that the probabilities of event occurrences and participation in the events are given by Eq. (3.1), 

(3.2), and (3.3). If the time unit 𝛥𝑡 decreases so that the number of events during the period 

increases but the probabilities (3.1), (3.2), and (3.3) remain the same, then the social capital indexes 

of each of 𝑁 individual actors follow the system of stochastic differential equations: 

𝑑𝐶𝜃 = 𝐶𝜃 ⋅ (1 −
𝐶𝜃

𝐴𝜃) ⋅ (𝜇𝜃 ⋅ 𝑑𝑡 + 𝑑𝑊𝑡
𝜃),   (3.12) 

here 𝑊𝑡
𝜃 is a Wiener process, having a zero mean and a covariance matrix computed using Eq. 

(3.11), 𝜃 ∈ 𝛩. 
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These equations represent the model with a probabilistic distribution and other abstract properties of 

social capital indexes, which can be particularly useful for studies of social impact and interactions 

of multicultural event flows. The equations are derived using assumptions and properties of a rather 

universal kind that also have applications for other modelling tasks and the simulation of social-

behavioural phenomena (see [9]). 
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4 Apibendrinimas 

Ataskaitoje pristatytas realaus laiko identifikavimo algoritmas, skirtas užtriukšmintam Gauso 

atsitiktinio klaidžiojimo modeliui. Algoritmas tiesiogiai remiasi didžiausio tikėtinumo metodu, 

panaudodamas atitinkamai parametrizuotos tikėtinumo funkcijos išvestinę. Ieškant jos šaknies, dalis 

narių yra laikomi konstantomis (gaunama alternatyvi funkcija), kas, didėjant stebėjimų skaičiui, 

leidžia išlaikyti pastovų skaičiavimų sudėtingumą. Tuo tarpu tinkamai konstantomis parinkti nariai, 

kurie yra rekursiškai perskaičiuojami naudojant naujausią parametrų įvertį bei užtriukšmintą 

stebėjimą, užtikrina, kad nėra prarandamas konvergavimas. 

Taip pat ataskaitoje pažvelgta į kultūros socialinio poveikio modeliavimą, pateikiant tam skirtą 

galimą modelį – kandidatą. Nagrinėjant tokius modelius kaip pateiktasis atsiranda filtravimo 

(prognozavimo) bei identifikavimo uždavinių poreikis potencialiai užtriukšmintų stebėjimų 

kontekste, kas nagrinėjamą sritį padaro tinkama teorinių rezultatų (algoritmų) taikymams. 

Ataskaitos turinys yra dalis esamų ir/ar būsimų straipsnių medžiagos.  
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