
Vilnius University
Institute of Data Science and

Digital Technologies
L I T H U A N I A

INFORMATICS (09 P)

IMPROVEMENT, DEVELOPMENT AND
IMPLEMENTATION OF

DERIVATIVE-FREE GLOBAL
OPTIMIZATION ALGORITHMS

Linas Stripinis

October 2019

Technical Report MII-DS-09P-19-1 October 2016 - 30

September 2020

VU Institute of Mathematics and Informatics, Akademijos str. 4, Vilnius LT-08663,
Lithuania

www.mii.lt

http://www.mii.lt

Abstract

Due to its simplicity and efficiency, the derivative-free global-search DIRECT algorithm
has received significant attention from the optimization community. Various novel ideas
and extensions of the algorithm have been proposed, including for general constrained
global optimization problems. However, the performance of DIRECT-type algorithms
highly depends on the characteristics of the optimization problem and computer imple-
mentation. Most of the publicly available DIRECT implementations are using static data
memory management, which is more straightforward, but usually also less effective due
to the difficulty predicting memory requirements in advance. Moreover, the iterative na-
ture of DIRECT-type algorithms presents difficulties for efficient parallelization and only a
few parallel DIRECT-type implementations are known. Therefore, here we introduce dy-
namic data structures for a better memory balancing and develop the first DIRECT-type
parallel implementation (pDIRECT-GLce) for generally constrained global optimization.
The effectiveness of two different pDIRECT-GLce parallel versions is evaluated solving
box and generally constrained global optimizations problems of different complexity.
The performance metrics include usual criteria such as the number of function evalua-
tions and total execution time as well as criteria of parallelization such as load balancing
and parallel efficiency.

Keywords: Global optimization, DIRECT-type algorithms, Derivative-free optimiza-
tion, DIRECT-type constraint-handling, Nonconvex optimization, Dynamic Data struc-
tures, Parallel optimization, Load balancing

MII-DS-09P-19-1 October 2016 - 30 September 2020 2

Contents

1 Accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic
data structures and parallelization . 4

2 Architecture of the DIRECT algorithm . 5
2.1 Overview of the DIRECT-GLce algorithm . 6
2.2 Design challenges of parallel DIRECT-type algorithms . 8

2.2.1 Proposed ideas to handle the parallel challenges of DIRECT . 9
2.3 Influence of data structures on the performance of DIRECT-type algorithms 11

2.3.1 Comparison of DIRECT-GLce performance with static and dynamic data
structures . 13

3 Parallel Scheme and Implementation . 14
3.1 MPI Parallel Version of pDIRECT-GLce . 14
3.2 Aggressive pDIRECT-Ce algorithm . 16

4 Numerical investigation . 17
4.1 Box-constrained global optimization . 19
4.2 General constrained global optimization. 23

5 Conclusions . 26
References . 26
Appendix Nr. 1. 32

MII-DS-09P-19-1 October 2016 - 30 September 2020 3

1 Accelerating DIRECT-GLce algorithm for constrained global op-
timization through dynamic data structures and parallelization

Simplicity and efficiency of the DIRECT algorithm attracted considerable research inter-
est, and many modifications and extensions have been proposed [LC14, PCŽ18, PSKŽ14,
PŽ13, PŽ14, SK06, SPŽ18]. An algorithm was designed as an effective global method that
avoids being trapped at local minima regions by exploring less potentially optimal hyper-
rectangles to converge globally for Lipschitz-continuous optimization problems. As di-
rect search method, DIRECT produces deterministic results without derivative informa-
tion or the Lipschitz constant of the objective function. As a consequence, DIRECT-type
methods have been successfully used in solving various multidisciplinary optimization
problems [BWG+00, BBPW02, CGP+01, PWA+08, SPŽ19, ZTW05].

Nevertheless, the DIRECT algorithm has some well-known algorithmic weaknesses,
especially evident on optimization problems with many local minima and when the so-
lution with high accuracy is sought [Jon01,PSKŽ14,SPŽ18]. Various proposals have been
introduced in the literature to overcome these sources of inefficiency (see [LLP10, LLP16,
PSKŽ14, SK06, SPŽ18] and references therein). Another source of inefficiency is related
to the space-partitioning strategy used in the DIRECT-type algorithms [Jon01]. For the
slow converging and high-dimensional problems, the challenge is to maintain the fast-
growing partitioning information efficiently. Most of the existing DIRECT-type implemen-
tations use a static data structure to store the current state of the search space partitioning.
This can lead to failure of the code if the array is insufficient to hold the necessary infor-
mation. To overcome this problem, usually, implementations will reallocate the array
to be significantly larger than needed. But such a modification can cost a considerable
amount of overhead in both execution time and space required. These issues have been
discussed, and a few versions of dynamic data structures have been proposed to over-
come them [HSS+93, HVSW09, HVWS08, HVWS09, HWR+02, HWS10].

A natural way to speed up DIRECT-type algorithms is to parallelize them. How-
ever, only very few parallel implementations of DIRECT-type algorithms are known,
developed mainly by the same group of researchers [HVSW09, HVWS08, HVWS09,
HWS10,PŽHC13,WB01]. The very first parallel version based on an “aggressive” DIRECT

algorithm [BWG+00] was introduced in [WB01], parallelized using the master-slave
paradigm. In the following works [HVSW09, HVWS08, HVWS09, HWS10] the authors
introduced modifications of the previous parallel version. The first new idea is to use
dynamic data structure [HWR+02] for a better organization of the local data. Later the
authors improved the algorithm by transforming a single start into a multi-start strategy
by initial subdividing of the feasible region D into smaller subdomains. Each subdomain
is controlled by a different master, with more partitions generated across multiple sub-
domains. Such a parallel version can scale efficiently on even larger machines. While all
these proposals are focusing on achieving better parallel efficiency, from the optimization

MII-DS-09P-19-1 October 2016 - 30 September 2020 4

perspective, introduced novelties make algorithms significantly less effective.
Finally, to the best of our knowledge all the existing parallel DIRECT-type versions are

only for box-constrained global optimization problems. Therefore, in this paper, we intro-
duce the first parallel DIRECT-type algorithm (called hereafter as pDIRECT-GLce) for gen-
erally constrained global optimization problems. The pDIRECT-GLce algorithm is imple-
mented within the MATLAB software environment, hence several well-known and broadly
used implementations of the original DIRECT algorithm (see, e.g. [BH99,FK06,Gab01]), as
well as many later DIRECT-type proposals (see, e.g. [LXC+17, LC14, LYZZ17, PŽ14]) were
developed within MATLAB too.

2 Architecture of the DIRECT algorithm

The derivative-free global-search DIRECT (DIviding RECTangles) algorithm by Jones et
al. [Jon01,JPS93] is an effective deterministic algorithm to solve global optimization prob-
lems subject to simple box-constraints

min
x∈D

f(x) (1)

where f : Rn → R denotes the objective function and the feasible region is an n-
dimensional hyper-rectangle D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}. An
objective function f(x) supposes to be Lipschitz-continuous (with unknown Lipschitz
constant) but can be non-linear, non-differentiable, non-convex, and multi-modal. The
DIRECT algorithm seeks for the global optimum by partitioning potentially optimal (the
most promising) hyper-rectangles (POH) and evaluating the objective function at the cen-
ters of these hyper-rectangles. The requirement of potential optimality is stated formally
in Definition 1.

Definition 1 (Potentially optimal hyper-rectangle) Let ci denote the center sampling point
and δi be a measure (distance, size) of the hyper-rectangleDi. Let ε > 0 be a positive constant and
fmin be the best currently known value of the objective function. A hyper-rectangle Dj , j ∈ I is
said to be potentially optimal if there exists some rate-of-change (Lipschitz) constant L̃ > 0 such
that

f(cj)− L̃δj ≤ f(ci)− L̃δi, ∀i ∈ Ik, (2)

f(cj)− L̃δj ≤ fmin − ε|fmin|, (3)

where the measure of the hyper-rectangle is

δi =
1

2
‖bi − ai‖2. (4)

In each iteration algorithms performs selection of such hyper-rectangles, which later will be
fully sampled and subdivided. Brief description of the main steps of the original DIRECT

MII-DS-09P-19-1 October 2016 - 30 September 2020 5

algorithm is given in Algorithm 1.

Initialization. Normalize the search space D to be the unit hyper-rectangle D̄.
Evaluate objective f at the center point c1 ∈ D̄. Set fmin = f(c1), xmin = c1, and
initialize algorithmic performance measures and stopping criteria.

while stopping criteria are not satisfied do
Selection. Identify the sets S of potentially optimal hyper-rectangles
(subregions of D̄) using Definition 1.

Sampling. For each hyper-rectangle j ∈ S sample and evaluate objective
functions at the centers of new hyper-rectangles along their longest
dimensions. Update fmin,xmin, and algorithmic performance measures.

Subdivision. For each hyper-rectangle j ∈ S subdivide (trisect), update
partitioned search space information and stopping criteria.

end
Return fmin,xmin, and algorithmic performance measures.

Algorithm 1: Main steps of the DIRECT algorithm

2.1 Overview of the DIRECT-GLce algorithm

All the existing parallel DIRECT-type versions are only for box-constrained global opti-
mization problems. Therefore, in this article, we developed the first parallel DIRECT-
type algorithm for generally constrained global optimization problems. Our recently
proposed DIRECT-GLce algorithm [SPŽ19] showed very competitive results among all
existing DIRECT extensions for such problems.

The original DIRECT algorithm addresses only optimization problems with bounds on
the variables. In the last decade, a few different constraint handling strategies (including
our recent DIRECT-GLce algorithm [SPŽ19]) within the DIRECT framework were proposed
for the general optimization problem [BDLM12, CRF18, LXC+17, PLL+16, PLR10]:

min
x∈D

f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

(5)

where f : Rn → R,g : Rn → Rm,h : Rn → Rr are (possibly nonlinear) continuous
functions and D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}. The feasible region
consisting of points that satisfy all the constraints is denoted by Dfeas = D ∩ Ω, where
Ω = {x ∈ Rn : g(x) ≤ 0 and h(x) = 0}. Here, it is also assumed that the objective and
all constraint functions are Lipschitz-continuous (with unknown Lipschitz constants) but
can be non-linear, non-differentiable, and non-convex.

In [SPŽ19], a detailed comparison of five state-of-the-art DIRECT-type algo-
rithms: DIRECT-GLce and DIRECT-GL-L1 both from [SPŽ19], DIRECT-L1 [Fin05],
eDIRECT-C [LXC+17] and Filter-DIRECT [CRF18] was carried out. Among them, our
recently introduced DIRECT-GLce algorithm was very competitive compared to other pro-

MII-DS-09P-19-1 October 2016 - 30 September 2020 6

posals and often outperformed other algorithms solving test and engineering problems.
One reason for this is that the DIRECT-GLce algorithm is based on a new two-step strategy
for the selection of the extended set of potentially optimal hyper-rectangles (compared to
the most of DIRECT-type methods) [SPŽ18]. In the first selection step, the set of POH is
enlarged by adding more (compared to DIRECT) medium-sized hyper-rectangles, and in
the second, closest to the current minimum point. This situation can be seen from Figs. 1
and 2, where it is clear, that DIRECT-GLce algorithm often selects a larger number of po-
tentially optimal hyper-rectangles compared to DIRECT. Also, the DIRECT-GLce algorithm

0 20 40 60 80 100
0

90

180

270

360

450

Number of iterations

N
um

be
r

of
di

ff
er

en
td

ia
m

et
er

s n = 2

n = 10

n = 25

n = 50

0 20 40 60 80 100
0

80

160

240

320

400

Number of iterations

N
um

be
r

of
se

le
ct

ed
PO

H
pe

r
it

er
at

io
n

n = 2

n = 10

n = 25

n = 50

Figure 1: The growth of the number of different diameters (left) and the num-
ber of selected potentially optimal hyper-rectangles (POH, right), obtained by the
DIRECT-GLce [SPŽ19] algorithm on the Rosenbrock test problem with different dimension-
ality (n = 2, 10, 25, and 50)

uses an auxiliary function approach, that combines information on the objective and con-
straint functions and does not require any penalty parameters. The DIRECT-GLce algo-
rithm works in two phases, where during the first phase the algorithm handles infeasible
initial points while in the second phase seeks to improve a located feasible solutions until
a global solution is reached. In first phase algorithm employs an additional procedure,
which samples the search space and minimizes not the objective function, but the sum of
constraint violations, i.e.:

min
x∈D

ϕ(x), (6)

where

ϕ(x) =
m∑
i=1

max{gi(x), 0}+
r∑
i=1

|hi(x)|, (7)

until a feasible point x ∈ Dfeas
εϕ is found, where

Dfeas
εϕ = {x : 0 ≤ ϕ(x) ≤ εϕ,x ∈ D}, (8)

and εϕ is a very small acceptable constraint violation. A separate phase for handling in-
feasible initial points is especially useful when the feasible region is small compared to

MII-DS-09P-19-1 October 2016 - 30 September 2020 7

the design space. When at least one hyper-rectangle with feasible midpoint is located
the efforts may be switched to finding better feasible solutions using new form of trans-
formed problem (5):

min
x∈D

f(x) + ξ(x, f feas
min),

ξ(x, f feas
min) =

0, x ∈ Dfeas

εϕ

0, x ∈ Dinf
εcons

ϕ(x) + ∆, otherwise,

(9)

where parameter ∆ = |f(x) − f feas
min | is equal to absolute value of the difference between

the best feasible function value found so far f feas
min and the objective value at an infeasible

midpoint. Dinf
εcons is a small tolerance for constraint function sum, which automatically

varies during the optimization process, but any detailed description of the εcons control-
ling model will not be gives in this paper.

Original DIRECT-GLce version in each iteration performs selection of potentially op-
timal hyper-rectangles twice [SPŽ18], and finds an independent sets G and L there al-
gorithm separately handles them. Version which used in this paper slightly differs com-
pared to [SPŽ19]. In the current version of DIRECT-GLce, identification of these two sets
is performed in succession and the unique union of these two sets (P = G ∪ L) will be
performed in Algorithm 1 Algorithm 1. This modification introduced seeking to reduce
data dependency in the algorithm for better parallelization. Before the Selection step
DIRECT-GLce decides in which phase algorithm works. If there exist at least one feasible
midpoint (∃x ∈ Dfeas

εϕ), algorithm activates phase two and uses (9) for identification of po-
tential optimal hyper-rectangles, otherwise algorithm works under phase one, and uses
(6) in Selection step. The rest of Sampling and Subdivision steps remains the same as in
original DIRECT. For a more detailed description of DIRECT-GLce, see [SPŽ19].

2.2 Design challenges of parallel DIRECT-type algorithms

The iterational nature of the existing DIRECT-type algorithms limits possibilities for ef-
fective parallelism [HVSW09, HVWS08, HVWS09, HWS10, PŽHC13, WB01]. The biggest
challenge is a strong data dependency between different iterations and a quite small num-
ber of selected potentially optimal hyper-rectangles (even solving higher dimensionality
problems) to process further, which does not allow to use many computational cores ef-
ficiently. In Fig. 2, the growth of the number of different diameters and the number of
selected potentially optimal hyper-rectangles (POH), obtained by the DIRECT algorithm
is illustrated. It is clear that even solving higher dimensionality problems, the number of
different diameters is limited, and therefore, the number of selected POH is quite small.

Developing a parallel DIRECT version, the first design challenge comes in the very
first Initialization step (see Algorithm 1, Algorithm 1), where the algorithm starts from a

MII-DS-09P-19-1 October 2016 - 30 September 2020 8

0 20 40 60 80 100
0

50

100

150

200

250

Number of iterations

N
um

be
r

of
di

ff
er

en
td

ia
m

et
er

s n = 2

n = 10

n = 25

n = 50

0 20 40 60 80 100
0

90

180

270

360

450

Number of iterations

N
um

be
r

of
se

le
ct

ed
PO

H
pe

r
it

er
at

io
n

n = 2

n = 10

n = 25

n = 50

Figure 2: The growth of different diameters (left) and the number of selected potentially
optimal hyper-rectangles (POH, right), obtained by the DIRECT algorithm on the Rosen-
brock test problem with different dimensionality (n = 2, 10, 25, and 50)

single center point and, therefore, produces only one evaluation task for all the acquired
workers. The situation improves when the algorithm progresses longer by subdividing
more hyper-rectangles. Load balancing is always a problem in the initial iterations, as
there are not enough hyper-rectangles to process. Moreover, for low dimensional problems
load balancing issue is more critical, as the number of different partitions grows slower
(see Fig. 2), compared to the problems of higher dimensionality.

Another important design challenge comes in the Sampling step (see Algorithm 1,
Algorithm 1), which cannot be started until the Selection step is finished (see Algo-
rithm 1, Algorithm 1) and vice versa. Only the Sampling and Subdivision (see Algo-
rithm 1, Algorithm 1) can be parallelized efficiently. The Selection step is very hard to
parallelize efficiently, especially preserving determinism of the algorithm. Usually, in the
Selection step, a load imbalance occurs with the most workers being idle. Moreover,
the cost of the Selection procedure is increasing when the algorithm processes longer
(see Fig. 6), therefore reduces the total percentage of works which can be performed in
parallel. Also, the number of selected potentially optimal hyper-rectangles in the Selec-
tion step cannot be predicted accurately in advance (see Fig. 1). When the number of
selected POH is small, this results that insufficient work will be sent to workers, and
processors will not be used efficiently, some of them possibly being idle.

2.2.1 Proposed ideas to handle the parallel challenges of DIRECT

The authors of previous works proposed to create multiple starting points for each
worker in the Initialization step. The performance analysis in [HVSW09, HVWS09] re-
vealed that such an idea improves the load balancing and the overall parallel efficiency.
However, using different size of workers on the same problem it requires an uneven size
of initial starting points, but that destroys determinism of the algorithm.

Also most of previous parallel DIRECT-type versions [HVSW09, HVWS08, HVWS09,

MII-DS-09P-19-1 October 2016 - 30 September 2020 9

HWS10, WB01] focused on improving parallel efficiency by creating more computations
in every iteration. Therefore, they used a different scheme to select potential optimal
hyper-rectangles. The authors in [BWG+00] introduced a particular scheme for the se-
lection of potentially optimal hyper-rectangles, which is called “aggressive” DIRECT. The
main idea of “aggressive” DIRECT is to select and subdivide a hyper-rectangle of every
diameter in each iteration. The aggressive version relaxed the criteria of selection of po-

0 20 40 60 80 100
0

1,200

2,400

3,600

4,800

6,000

Number of iterations

N
um

be
r

of
di

ff
er

en
td

ia
m

et
er

s n = 2

n = 10

n = 25

n = 50

0 20 40 60 80 100
0

1

2

3

4

5

6
·105

Number of iterations

To
ta

ln
um

be
r

of
f

(x
)

ev
al

ua
ti

on
s

n = 2

n = 10

n = 25

n = 50

Figure 3: The growth of the number of different diameters (left) and the total number of
objective function evaluations per iteration (right), obtained by the “aggressive” DIRECT

algorithm [BWG+00] on the Rosenbrock test function with different dimensionality (n =
2, 10, 25, and 50)

tentially optimal hyper-rectangles, thus assuring a much higher number of selected POH
per iteration (which coincides with the number of different diameters, see Fig. 3), and
therefore, requires a much higher number of function evaluations per iteration, com-
pared to DIRECT. This approach does not appear to be favorable from the optimiza-
tion point of view, since it is wasting function evaluations, by exploring “unnecessary”
(non-potentially optimal) hyper-rectangles. For more difficult (higher dimensionality)
optimization problems, iteration cost of aggressive DIRECT version grows much faster
compared to the other DIRECT-type versions (see Figs. 1 to 3). To overcome the high
cost of later iterations for larger dimension problems, a massive supercomputer may
be required. To reduce memory requirements and balance the cost of iteration, the au-
thors proposed to limit the refinement of the search-space when the measure of hyper-
rectangles reached some prescribed size. According to the authors, the latter technique
reduces the memory usage from 10% to 70%, and therefore, the algorithm can run longer
without memory allocation failure. Such an approach improves parallel efficiency by cre-
ating a massive size of work for processors in every iteration, but it will diminish the
optimization effectiveness of the DIRECT algorithm [FK06, Gab01].

MII-DS-09P-19-1 October 2016 - 30 September 2020 10

2.3 Influence of data structures on the performance of DIRECT-type algorithms

The performance of DIRECT-type algorithms highly depends on computer implementa-
tion. Most of the publicly available DIRECT implementations are using static data mem-
ory management, which is more straightforward but usually also less effective due to
the difficulty predicting memory requirements in advance. The typical data structures
are used to store a collection of objective (and constraint) function values, index num-
bers, center point coordinates, side lengths of hyper-rectangles, and so on. One of the
most broadly used publicly available DIRECT algorithm implementation [Fin04] is using
static data structures (SDS) whose size is predetermined, depending on stopping condi-
tions. All information received after space partition is stored in the contiguous blocks
of memory, as shown in the left side of Fig. 4. Using such data structures the algorithm

1, 2, 3, ..., Mmax

feval f1 f2 f3 ... fk

1, 2, 3, ..., Dmax

feval f1

f2

f3

...

fk

f1

f2

f3

...

fk

f1

f2

f3

...

fk

...

...

...

...

...

...

f1

f2

f3

...

fk

1

2

3
...

k

h

Figure 4: Information storage using static data structure (left) and dynamic data structure
(right) in DIRECT-GLce algorithm

can access quickly and easily the elements for further Selection, Sampling and Subdi-
vision steps. The content of the data structure can be modified without changing the
memory space allocated to it while there is enough allocated memory. Otherwise, the
algorithm spends extra time for re-allocating a larger contiguous block of memory and
then copying/moving existing information into this new block. The original DIRECT im-
plementation allocates a large array to store information received after Sampling and
Division steps. Allocated row vector size corresponds to one of the stopping conditions,
which is the maximal number of function evaluations. The main disadvantage of the
static data structures used in DIRECT is that the algorithm from the first iteration reserves
a large amount of memory, which slows the algorithm down and comes with an over-
head, which is proportional to the size of the allocated array. In practice, choosing the
maximum size of function evaluations is a guess, and the perfect selection of it is the
actual number of function evaluations in which the algorithm can solve the problem.
Another disadvantage of static data structures used in DIRECT is that in each iteration, the
algorithm performs unnecessary recalculations. One of the most critical tasks in DIRECT

is the Selection step, where the algorithm decides which hyper-rectangles are potentially
optimal (the most promising) for further investigation, corresponding to the lower con-

MII-DS-09P-19-1 October 2016 - 30 September 2020 11

vex hull of the cloud of red points (see Fig. 5). Usually, this procedure requires to sort
all existing hyper-rectangles by the same size of diameters. Such sorting becomes ineffi-
cient when the amount of data gets larger during optimization, especially this is visible
for problems of higher dimensionality. To sum up, implementations using static data
structures often fail in practice since it is difficult to predict memory requirements in ad-
vance. This motivates to use better structures to handle the variable amount of storage
and information required by the space partition technique.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Hyper-rectangle diameters

f
(c
i)

non-potentially optimal

potentially optimal

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Hyper-rectangle diameters

f
(c
i)

non-potentially optimal

potentially optimal

Figure 5: Selection of POH using SDS (left) and DDS (right) implementations in
DIRECT-GLce

In [HWR+02], the authors proposed the idea to use dynamic data structures (DDS).
Information received after space partition is sorted out by hyper-rectangle diameters and
stored in columns, as shown in the right side of Fig. 4. All rectangles of the same diameter
are stored in the column at any order. In [HWR+02], the authors have mentioned the idea
to sort columns by function values in descending order or insert all new data in sorted
sequences separately, but these ideas have not been investigated further. With dynamic
data structures, the selection of potentially optimal hyper-rectangles (in the Selection
step) is simplified. The selection can be performed only in the set consisting of the best
function values from each column, as shown in the right side of Fig. 5, and it can save a
lot of time compared to the previous selection strategy. Another considerable advantage
comes from the fact that Selection step is hardly parallelized, therefore the selection of
POH using dynamic data structures not only simplifies but also significantly reduces the
time needed for this step.

One of the obvious drawbacks of the dynamic data structure is a problem allocating
the columns, which size is unpredictable. There are two operations that change columns
size: first fully processed potential optimal hyper-rectangle needs to be removed from the
previous columns and newly added to a new/existing column. During the execution of
the algorithm, there can be a large number of distinct hyper-rectangle diameters, which is
unpredictable. Depending on the dimension of the problem, the initial array is allocated
of a fairly large size in the usual way. If the array provides insufficient size, new blocks of

MII-DS-09P-19-1 October 2016 - 30 September 2020 12

columns will be reallocated as needed. In practice, only a few of these columns become
large at any given time.

2.3.1 Comparison of DIRECT-GLce performance with static and dynamic data struc-
tures

The DIRECT-GLce algorithm was implemented using both static and dynamic data struc-
tures. The algorithm with static data structures (S-DIRECT-GLce) is implemented in the
MATLAB programming language and is based on Finkel’s implementation [Fin04]. The
second version (D-DIRECT-GLce) is implemented in MATLAB, but with dynamic data struc-
tures. Both implementations are stopped when the number of function evaluations ex-
ceeds 106. The test problem G19 (see Table 3 in Appendix Nr. 1. and in [SP18]) is used
in the experimental comparison. In Fig. 6 comparison of time cost of different versions
is illustrated. As it was expected, the implementation based on dynamic data structures

0 0.2 0.4 0.6 0.8 1

·106

0

2000

4000

6000

8000

10000

12000
5%

88%

2%

5%

Number of function eval.

Ti
m

e
(s

)

POH selection

Information storage

Calc. Euclidean distances

Evaluations

0 0.2 0.4 0.6 0.8 1

·106

0

30

60

90

120

150

180

210
1%

9%

8%

82%

Number of function eval.

Ti
m

e
(s

)

POH selection

Information storage

Calc. Euclidean distances

Evaluations

Figure 6: Geometric interpretation of running time(s) of two different DIRECT-GLce algo-
rithm implementations: with static data structures (left) [Fin04] and with dynamic data
structures (right) solving the G19 test problem

(D-DIRECT-GLce) significantly outperforms implementation (S-DIRECT-GLce) with static
data structures. After termination, D-DIRECT-GLce version requires 98.6% less total execu-
tion time compared to S-DIRECT-GLce version, and the difference grows with the increase
of the number of function evaluations. For the current G19 problem using D-DIRECT-GLce

evaluation of objective (and auxiliary) functions takes about 150 seconds (which corre-
spond to 82% of the total execution time) and about 578 seconds (which correspond to
only 5% of the total time) using S-DIRECT-GLce. Selection of potentially optimal hyper-
rectangles costs only 1% of total time in D-DIRECT-GLce, which is about 1.8 seconds, while
it takes around 277 times more – around 577 seconds using S-DIRECT-GLce.

MII-DS-09P-19-1 October 2016 - 30 September 2020 13

3 Parallel Scheme and Implementation

The original DIRECT algorithm begins with a single hyper-rectangle and its center point,
so there is only one candidate for the Sampling and Subdivision procedures at the first
iteration. Furthermore, in initial iterations, the number of potentially optimal hyper-
rectangles is small since the hyper-rectangles of different diameters are not generated
quickly enough. Thus, a load imbalance between parallel workers is unavoidable at the
early stage in a parallel DIRECT-type algorithm. Another difficulty is data dependency,
after every step, the results from all workers must be collected. Therefore, the Selection
and Sampling steps must be carried out sequentially, the Selection step cannot be paral-
lelized, so it must be done by one worker. To overcome the difficulties, in this section we
propose two parallel implementations of the DIRECT-GLce algorithm called pDIRECT-GLce

and Aggressive pDIRECT-Ce, similar ideas may be implemented for other DIRECT-type
algorithms.

3.1 MPI Parallel Version of pDIRECT-GLce

The parallel version of pDIRECT-GLce was implemented using a message passing inter-
face (MPI) to allocate the work across multiple processors in MATLAB software environ-
ment. Each processing element stores information on their main memory block and
data exchange achieved through message passing over the interconnection network. The
master-slave paradigm is used to implement dynamic load balancing in pDIRECT-GLce.
The scheme is illustrated in Fig. 7. One processor is a master (Worker1) which makes
all calculations for hyper-rectangle selection and controls the distribution of tasks to the
workers. As it was described previously and shown in ??, the DIRECT-GL algorithm selects
potentially optimal hyper-rectangles in two steps in each iteration. The obtained results
from both selection steps are combined into one set leaving only one hyper-rectangle
index and avoiding duplication. Since the use of dynamic data structure has reduced
Selection step time cost to 1% of the total time, the Selection calculations and decisions
are done only by the master processor. The master also performs load balancing by dis-
tributing the selected hyper-rectangles to the workers. When the workers Wi, i = 1, . . . , k

receive tasks from the master, each of them performs Sampling and Subdivision steps
sequentially, sends the results back to the master and becomes idle until further instruc-
tions will be received. If any of the termination conditions is satisfied, all workers receive
notification that the master has become inactive, and the workers will terminate them-
selves without further messaging.

In order to preserve the determinism, each iteration must be done in a row, moreover
many calculations per iteration must be done in sequential, and some of them only by one
processor and it will cause parallel overhead by keeping other computational resources
to stand idle. Sequential and parallel parts of pDIRECT-GLce is separated in blocks, see
Fig. 7. The sequential section is performed only by the master, which organizes every

MII-DS-09P-19-1 October 2016 - 30 September 2020 14

START

Normalize
the search
space D

Evaluate
objective

function at
the center

point f(c1)

If exists at least
one feasible
midpoint?

Phase I:
use (6)

Phase II:
use (9)

Identify the set
G of potential
optimal hyper-

rectangles using
DIRECT-GL

enhanced
global search

Identify the set
L of potential
optimal hyper-

rectangles using
DIRECT-GL

enhanced
local search

Find unique
union of
POH sets

J = G
⋂

L

Worker1 :
Split J and
share date

Worker2 :
Share date

...

Workerp :
Share date

Interconnection
N

etw
orks

Parallel computations

∀i ∈ J1 sample and
evaluate objective and
constraint functions

at the new midpoints

∀i ∈ J2 sample and
evaluate objective and
constraint functions

at the new midpoints

...

∀i ∈ Jp sample and
evaluate objective and
constraint functions

at the new midpoints

∀i ∈ J1
subdivide

hyper-
rectangles

∀i ∈ J2
subdivide

hyper-
rectangles

...

∀i ∈ Jp
subdivide

hyper-
rectangles

Find neccesary in-
formation from

Worker1 memory
block, for Selection step

Find neccesary in-
formation from

Worker2 memory
block, for Selection step

...

Find neccesary in-
formation from

Workerp memory
block, for Selection step

Combine local informa-
tion from all Workers

and find global data

Update
fmin,xmin

Check stop-
ping condi-

tions. Is any of
them is met?

Terminate

Sequential calculations of MASTER(Worker1)

No

Yes

No

Yes

Figure 7: Flowchart diagram of optimization platform for pDIRECT-GLce algorithm.

MII-DS-09P-19-1 October 2016 - 30 September 2020 15

iteration by making decisions and initial calculations such as normalization of the do-
main D, first objective function evaluation. The master processor runs the identification
of potentially optimal hyper-rectangles and creates a set of tasks for the workers. The
new tasks are distributed to all workers, and every worker evaluates the tasks in their
own set. The problem is that differences in evaluation times can cause some processors
to finish their tasks early and become idle, while other processors continue to work on
their tasks. For a better load balancing master gives instructions to processors having an
excess of tasks to share them with those who have the deficit. Shared data includes all
relevant information regarding certain hyper-rectangles, which must be subdivided into
the current iteration. After Sampling and Subdivision steps, shared data with all new
data received after trisection are stored inside of the new processor’s memory blocks.
Each worker finds its own local set of the least function values of each hyper-rectangle
diameter column. The master gathers all of the local sets from the other processors and
finds the global set of the least objective function values, updates information, and checks
the stopping conditions.

The pseudocode in Line 2, shows more detailed control mechanism between the mas-
ter M and the workers Wi, (i = 1, . . . , k). pDIRECT-GLce is a single start algorithm, and
only the master M performs the Initialization step, only optimization problems, and the
domain D is shared with the workers Wi. The stopping condition is also controlled only
byM , which is based on the required tolerance εpe, the maximal number of function eval-
uations Mmax and the maximal number of iterations Lmax. Whenever the master detects
that any of stopping conditions are met, it terminates allWi by sending a message to them
and returns the best objective function value and the point (fmin, xmin) which was found.

Before every iteration, M collects local sets of the best function values f(xj), (j =

1, . . . , p) of each hyper-rectangle diameter from every Wi including himself. M combines
results from all local sets and finds the global set of f(xj) and performs the Selection
step. The master splits the POH equally among all k + 1 workers and himself, with the
priority that POH stored inside any Wi or M remains there and will be subdivided first.
All workersWe, (e = 1, . . . , v < k+1), who have an excess of POH, share them with those
who have the deficit of POH Wd, (d = 1, . . . , u < k + 1). After all Wi collect necessary
instructions and data, perform the Sampling and Subdivision steps. All information
received by the last two steps is stored on the worker. Finally, all Wi find their own local
set of the best function values f(xj) and send it to M .

3.2 Aggressive pDIRECT-Ce algorithm

An aggressive selection [BWG+00] generates more potentially optimal hyper-rectangles.
Therefore, incorporation of such a selection in a parallel algorithm may help to balance
the workload. Therefore, the Aggressive pDIRECT-Ce algorithm uses the same parallel
scheme presented in Fig. 7, but the aggressive selection. The Aggressive pDIRECT-Ce al-
gorithm selects POH using only values of objective and auxiliary function evaluations for

MII-DS-09P-19-1 October 2016 - 30 September 2020 16

each size of the hyper-rectangle, i.e., the best hyper-rectangle for each size is selected. So
that the algorithm could generate the same amount of work as in the version proposed
in [HWS10], the additional selection step using Euclidean distances from the best point
found was removed. Also, instead of starting from a single hyper-rectangle as in the orig-
inal sequential algorithm, the algorithm performs initial subdivision without evaluating
objective function and checking potential optimality until a number of hyper-rectangles
become enough to distribute to the workers.

4 Numerical investigation

In this section we present the results of performance of the parallel DIRECT-type algo-
rithms on test problems which are listed in Appendix Nr. 1. Tables 2 and 3, using a
computer with 8th Generation Intel R CoreTM i7-8750H @ 2.20GHz Processor, which has
6 physical - 12 logical cores and 16 GB of main memory. Performance analysis was car-
ried out using physical cores and enabled hyper-threading. The main features of these
problems: problem number (#), name, source, dimensionality (n), number of constraint
functions in the test problem, type of constraint functions (L,NL), variable bound (D),
the number of local minima (if known), and the known minimum (f∗). Note that for the
test functions presented in Table 2, the dimensionality can be chosen on demand.

To evaluate the efficiency of parallelization we used the speed-up ratio, which shows
how much faster the algorithm runs in parallel. If T1 is the time of best sequential algo-
rithm and the parallel algorithm on p processors takes Tp time, then the speed-up ratio is
given by the formula:

S(p) =
T1

Tp
. (10)

Another metric to measure the performance of a parallel algorithm is the efficiency ratio.
The efficiency is defined as the ratio of speed-up to the number of processors. Efficiency

input : εpe, εϕ, FEmax, Kmax;
output: fmin, xmin, pe, k, m;
if M then

M receives parameters (Problem, domain D, and stopping conditions εpe,
FEmax, Kmax);

Perform Initialization step;
labSend (Wi) ; // sends problem and domain D to Wi,∀i

else
labReceive (M) ; // receives problem and domain D from M
labSend (M) ; // sends a handshaking message to M

end

MII-DS-09P-19-1 October 2016 - 30 September 2020 17

while pe > εpe and m < FEmax and l < Kmax ; // pe defined in (12)

do
if M then

labReceive (Wi) ; // receives information neccesary for the

Selection step from Wi,∀i
if any of stoping condition is met then

labSend (Wi) ; // terminate workers

output: fmin, xmin, pe, k, m;
exit;

else
Perform the Selection step and split work between the workers;
labSend (Wi) ; // sends the instructions to Wi, ∀i, which

hyper-rectangles should be subdivided

if the worker has a deficit of POH stored inside it then
labReceive (Wd) ; // wait till other We share POH

else if the worker has an excess of POH then
labSend (We) ; // share information of POH which is

excessive

end
Perform the Sampling and Division steps and store information inside
the M memory block;

end
else

labReceive (M) ; // receive instructions from M
if not a termination message then

if the worker has a deficit of POH stored inside it then
labReceive (Wd) ; // wait till other We share POH

else if the worker has an excess of POH then
labSend (We) ; // share information of POH which is

excessive

end
Perform Sampling and Division steps and store information inside the
Wi memory block;

labSend (M) ; // send neccesary data to M for the Selection

step

else
exit;

end
end

end
Algorithm 2: Pseudo code of the pDIRECT-GLce algorithm

MII-DS-09P-19-1 October 2016 - 30 September 2020 18

1 2 3 4 5 6
0

1

2

3

4

5

6

7

of workers

Sp
ee

d-
up

ra
ti

o
(a)

Ideal

Aggressive pDIRECT-Ce

pDIRECT-GLce

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

of workers

Pa
ra

lle
le

ffi
ci

en
cy

(b)

Ideal

n = 150

n = 100

n = 10

Figure 8: Speedup ratio (left) and parallel efficiency (right) on the Michalewicz test problem
after Imax = 30 with different dimensions and Tdelay = 0

ratio measures how much available processing power is being used and it is defined as

F (p) =
S

p
. (11)

Because of the iterative nature of the DIRECT-type algorithms, the parallelization
has not been widely investigated previously, and a comparison with the existing ver-
sion is complicated. A massively parallel DIRECT algorithm, which was proposed in
[HVSW09, HVWS08, HVWS09, HWR+02, HWS10], looks promising for expensive global
optimization problems with large dimensionality (n = 150). But due to the usage of an
aggressive selection scheme and additional step, which generates an extra function eval-
uation tasks for just keeping workers busy as much as possible, the existing strategy has
some limitations. Massively parallel DIRECT is dividing more sub-optimal regions, which
increases the number of function evaluations, which reduces the optimization effective-
ness of an algorithm Fig. 12. Also, to overcome the high cost of later iteration solving
more significant dimension problems Fig. 11 for the proposed algorithm may be needed
a massively parallel supercomputer.

4.1 Box-constrained global optimization

First, we have focused on a performance test on box constrained global optimization
test problems. We used the same five test problems, which are presented in Table 2 as
were used in [HWS10]. The authors in [HWS10], introduced function evaluation cost
Tε to suit the different test purposes. In our experiments, the dimension was set to n =

10, 25, 100, 150, and several different values of artificial time delay (cost) Tdelay = 0, 0.0001,
0.001, 0.01 in the evaluation of function values are used to make the test comparable
(Tε = 0.1 was used [HWS10]). Same as in [HWS10], the algorithms were stopped after
Imax = 30 iterations.

MII-DS-09P-19-1 October 2016 - 30 September 2020 19

The main factor that determines the efficiency of the parallel pDIRECT-GLce is the Se-
lection step. The size of the potentially optimal hyper-rectangle set is the main criterion
on how efficiently the work will be loaded to processors. Figs. 1 and 3 can be used to inter-
pret the difference between the aggressive and the original DIRECT-GL selection schemes,
where the number of selected POH latter the later scheme is approximately 10− 34 times
smaller in every iteration, and the difference becomes even more significant when the di-
mension is growing. Moreover, the number of POH selected by DIRECT-GL per iteration
has significant variance, and even in the late iteration, such a scheme does not ensure
massive amounts of evaluations. The problem with such an unpredictable workload is
that in some iterations, there is just not enough work happening, and the algorithm has
a high parallel overhead. Even more, data needs to be transferred to processors after the
Selection step, and the results grouped again afterward, and such communications cause
additional overhead. Therefore, sometimes solving a problem in parallel can be slower
than solving it sequentially, especially for lower dimensional test problems, where the al-
gorithm cannot generate enough work to processors, and evaluations of function values
are cheap.

Despite the difference in the cost of objective function evaluation, the number of
hyper-rectangle diameters increases equally (solving the same dimensionality problems)
using an “aggressive” selection scheme, therefore the algorithm uses the same number of
evaluations per iteration. The only criteria that determine the efficiency of the Aggressive
pDIRECT-Ce algorithm is the problem dimension and evaluation cost of the objective func-
tion. All problems, which are presented in Table 2 are cheap and the average cost of
evaluation is approximately 10−6. Fig. 8 plots speedup ratio and parallel efficiency of
Aggressive pDIRECT-Ce and pDIRECT-GLce algorithms on the Michalewicz test problem
with different dimensions n = 10, 100, 150 and original objective function evaluation cost
Tdelay = 0. Both algorithms showed similar results on small dimensions n = 10, and
the achieved efficiency is ideal using two and three cores, more computational resources
causing higher overhead, and efficiency is dropping for both algorithms. Larger dimen-
sion n = 100, 150 improves performance of the algorithms, and Aggressive pDIRECT-Ce

showed ideal results with all cores, even though evaluations are cheap.
One of the critical parameters of the parallel performance is the cost of the objective

function, in [HVSW09, HVWS08, HVWS09, HWR+02, HWS10] the authors used a fixed
time cost of Tdelay = 10−1. For the simulation of expensive objective functions, we also
used a small pause Tdelay in evaluations, we choose three different values 10−4, 10−3, 10−2

for the algorithms on the Michalewicz test problem with n = 10. The results are presented
in Fig. 9, selecting a higher value for Tdelay increases parallel efficiency for both algo-
rithms. Aggressive pDIRECT-Ce performs ideal on small dimensional test problems if
the evaluation cost is larger then 10−3. Performance analysis of pDIRECT-GLce is very
similar if objective functions are more expensive.

Despite dimension and evaluation cost, pDIRECT-GLce has another dependence on

MII-DS-09P-19-1 October 2016 - 30 September 2020 20

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

of workers

Pa
ra

lle
le

ffi
ci

en
cy

Aggressive pDIRECT-Ce

Ideal

Tdelay = 0

Tdelay = 10−4

Tdelay = 10−3

Tdelay = 10−2

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

of workers

Pa
ra

lle
le

ffi
ci

en
cy

pDIRECT-GLce

Ideal

Tdelay = 0

Tdelay = 10−4

Tdelay = 10−3

Tdelay = 10−2

Figure 9: Parallel efficiency of the algorithms on the Michalewicz test problem after Imax =
30 with n = 10 and different values of Tdelay

the objective function. The selection of potential optimal hyper-rectangles in the algo-
rithm cannot be predicted. It depends on many criteria like the number of local and
global minima, the type of function, etc. In Fig. 10, we showed performance results of
pDIRECT-GLce solving test problems, which are presented in Table 2 with the same di-
mension n = 150. The results are very similar using two and three cores, but results begin
to change using more computational cores. The algorithms differ in that pDIRECT-GLce
is a single start and produces much slower growth of different size hyper-rectangles,
which obliviously gives fewer evaluation tasks per iteration. Both differences give the
slower start of an algorithm, and parallel efficiency is low at the beginning of optimiza-
tion. In Fig. 11 an example of pDIRECT-GLce performance on the Michalewicz test problem
is shown after Imax = 100 with n = 25 and Tdelay = 0. In the initial 10 iterations, there
is not enough work to all available cores, and parallel overheads dominate in the early
stage of pDIRECT-GLce. But results are changing, when the number of iteration is increas-
ing, the algorithm produces more different box diameters and as a result, more function
evaluation tasks. Moreover, a large number of computational cores we use it results with
a slower algorithm start. The parallel efficiency has a significant variance as the number
of iterations grows, which can be explained as the result of different sizes of POH set
in our selection scheme, and even in the late iterations, such a scheme can leave many
cores to stand idle by producing only few POH in the iteration. Nevertheless, in long
iterative progress, the total effectiveness ratio of the algorithm grows closer to the ideal
parallelization.

The aggressive selection scheme seems more attractive for parallelization and can de-
liver better performance results comparing to any other selection scheme, including our
proposed algorithm. But obviously, in terms of optimization effectiveness pDIRECT-GLce
looks much more promising and can find a solution with less time and function evalua-
tions, see Fig. 12. To evaluate optimization effectiveness, we took the same Michalewicz

MII-DS-09P-19-1 October 2016 - 30 September 2020 21

1 2 3 4 5 6
0

1

2

3

4

5

6

7

of workers

Sp
ee

d-
up

ra
ti

o
(a)

Ideal

Griewank

Quartic

Rosenbrock

Schwefel

Michalewicz

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

of workers

Pa
ra

lle
le

ffi
ci

en
cy

(b)

Figure 10: Speedup ratio (left) and parallel efficiency (right) onTable 2 test problems after
Imax = 30 with n = 150 and Tdelay = 0

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of iterations

Pa
ra

lle
le

ffi
ci

en
cy

Iterational effectiveness of pDIRECT-GLce

Ideal effectiveness Using 2 cores

Using 3 cores Using 4 cores

Using 5 cores Using 6 cores

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of iterations

Pa
ra

lle
le

ffi
ci

en
cy

Increase of total effectiveness of pDIRECT-GLce

Ideal effectiveness Using 2 cores

Using 3 cores Using 4 cores

Using 5 cores Using 6 cores

Figure 11: Variation of effectiveness ratio on the Michalewicz test problem on
pDIRECT-GLce algorithm after Imax = 100 with n = 25 and Tdelay = 0

MII-DS-09P-19-1 October 2016 - 30 September 2020 22

101 102 103 104 105 106 107
−10

−9

−8

−7

−6

−5

−4

−3

Number of function of evaluations

Fu
nc

ti
on

va
lu

e
(a)

Aggressive pDIRECT-Ce

pDIRECT-GLce

10−3 10−2 10−1 100 101 102
−10

−9

−8

−7

−6

−5

−4

−3

Time (s)

Fu
nc

ti
on

va
lu

e

(a)

Aggressive pDIRECT-Ce

pDIRECT-GLce

Figure 12: Comparison of function minimization on the 10-dimensional Michalewicz test
problem. The number of function evaluations on the left and time in seconds on the right.

test problem with n = 10. The algorithms were stopped when the maximum number of
function evaluations exceeds 107. On our chosen Michalewicz test problem, Aggressive
pDIRECT-Ce was not able to locate the minima point even after 107 function evaluations,
while pDIRECT-GLce was able to find it after 34, 691 evaluations with εpe = 10−2. More-
over, the pDIRECT-GLce algorithm needs a shorter time to locate the minima.

4.2 General constrained global optimization

Unlike the massively parallel DIRECT algorithm, our proposed DIRECT-GLce can handle
constraints. The constraint-handling technique raises the cost of our algorithm with extra
calculations and constrains function evaluations. Additional required computations may
increase the parallel performance of DIRECT-type algorithms.

Following, we focus on the problems with general constraints, which presented in
Table 3. Many authors widely use all test problems in various experiments. Unfortu-
nately, all test functions are of low dimensionality (n = 2, . . . , 24) and cost of evaluations
is cheap. Table 1 shows the cost of evaluations for all test problems, while the objective
function cost is similar to Table 2 test problems which is approximately 10−6, constraints
functions are more expensive from 10 to 100 times. The performance results of the se-
quential DIRECT-GLce and Aggressive DIRECT-Ce algorithms are also presented in the
same table. Since the global minimum f∗ of all test problems are known, the algorithms
stopped when the point x̄ generated such that the percent error

pe = 100%×

f(x̄)−f∗
|f∗| , f∗ 6= 0,

f(x̄), f∗ = 0,
(12)

is smaller than the tolerance value εpe = 10−2 or maximum number of function eval-
uations exceeds 105. The DIRECT-GLce algorithm to solve low dimensional test prob-

MII-DS-09P-19-1 October 2016 - 30 September 2020 23

1 2 3 4 5 6
0

1

2

3

4

5

6

7

of workers

Sp
ee

d-
up

ra
ti

o
(a)

Ideal

pDIRECT-GLce

Aggressive pDIRECT-Ce

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

of workers

Pa
ra

lle
le

ffi
ci

en
cy

(b)

Ideal

G19

G20

G22

Figure 13: Speedup ratio (left) and parallel efficiency (right) on G19, G20, G22 test prob-
lems after Imax = 30 with Tdelay = 0

lems (n ≤ 10) requires less than a second and any efficiency in parallelization on such
problems cannot be expected. Evaluations per iteration in Aggressive DIRECT-Ce grows
much faster comparing with our algorithm, but still for low dimensional test problems
the algorithm spent only a few seconds. Evaluations per iteration is much larger in
Aggressive DIRECT-Ce and better parallel performance can be expected. Looking from
optimization effectiveness perspective, DIRECT-GLce can find better solution with less
evaluations.

is smaller than the tolerance value εpe = 10−2 or maximum number of function eval-
uations exceeds 105. The DIRECT-GLce algorithm to solve low dimensional test prob-
lems (n ≤ 10) requires less than a second, and any efficiency in parallelization on such
problems cannot be expected. Evaluations per iteration in Aggressive DIRECT-Ce grows
much faster comparing with our algorithm, but still, for low dimensional test problems,
the algorithm spent only a few seconds. Evaluations per iteration are much more exten-
sive in Aggressive DIRECT-Ce, and better parallel performance can be expected. Looking
from an optimization effectiveness perspective, DIRECT-GLce can find a better solution
with fewer evaluations.

MII-DS-09P-19-1 October 2016 - 30 September 2020 24

Table 1: Results of a sequential DIRECT-GLce and Aggressive DIRECT-Ce algorithms on Table 3 test problems and evaluation cost of
objective f and constraints g functions.

DIRECT-GLce Aggressive DIRECT-Ce

(#) fcost gcost ITER feval fmin T1 ITER feval fmin T1

G01 3.61× 10−6 1.08× 10−4 94 100, 059 −12.04 17.13 27 107, 299 −7.74 17.95
G02 9.61× 10−6 2.88× 10−5 70 101, 319 −0.24 8.45 17 110, 805 −0.18 8.61
G03 1.58× 10−6 3.08× 10−5 220 100, 317 −0.99 9.10 34 104, 769 −0.57 7.91
G04 1.28× 10−6 7.58× 10−5 98 20, 111 −30663.57 3.00 42 45, 047 −30663.57 6.20
G05 2.64× 10−6 7.08× 10−5 179 68, 287 5126.51 9.32 75 102, 137 5241.52 12.61
G06 1.76× 10−6 2.74× 10−5 70 6, 063 −6961.17 0.87 48 10, 497 −6961.17 1.32
G07 1.33× 10−6 1.04× 10−4 131 100, 285 24.62 16.01 34 104, 893 44.62 15.95
G08 1.71× 10−6 2.72× 10−5 24 959 −0.09 0.26 21 2, 009 −0.09 0.37
G09 1.79× 10−6 5.56× 10−5 155 77, 065 680.69 8.58 49 103, 359 680.83 10.77
G10 1.34× 10−6 7.70× 10−5 230 100, 655 7312.96 14.05 42 103, 957 12461.11 13.15
G11 1.33× 10−6 1.45× 10−5 47 1, 851 0.75 0.36 33 5, 445 0.75 0.66
G12 1.33× 10−6 1.45× 10−5 6 173 −1.00 0.06 6 249 −1.00 0.07
G13 1.83× 10−6 4.39× 10−5 254 100, 051 0.62 11.52 62 102, 279 0.99 10.50
G14 6.35× 10−6 3.97× 10−5 80 101, 033 −42.35 9.54 37 103, 461 −42.03a 6.34
G15 1.32× 10−6 2.74× 10−5 61 9, 415 961.71 1.11 98 100, 843 964.29 9.06
G16 1.81× 10−6 5.05× 10−4 345 100, 453 −1.90 59.73 63 101, 829 −1.74 59.74
G17 1.34× 10−6 3.95× 10−5 42 100, 523 8654.05 1.41 52 100, 585 8746.17 9.24
G18 1.33× 10−6 1.66× 10−5 115 100, 615 −0.84 22.69 36 105, 839 −0.83 22.79
G19 4.26× 10−6 8.34× 10−5 81 100, 899 113.01 13.50 22 103, 711 222.67 13.27
G20 1.57× 10−6 2.25× 10−4 63 100, 025 1.57a 31.74 14 102, 509 10.67a 34.30
G21 1.29× 10−6 7.55× 10−5 79 101, 773 500.00a 13.04 45 104, 417 500.00a 13.40
G22 1.27× 10−6 2.65× 10−4 65 102, 759 10, 000.00a 33.40 16 104, 743 16, 666.66a 33.09
G23 2.19× 10−6 9.29× 10−5 72 102, 355 −655.54a 12.67 36 105, 193 −354.51a 14.24
G24 1.31× 10−6 2.82× 10−5 48 2, 655 −5.50 0.48 39 7, 849 −5.50 1.01

a – the final solution lies outside the feasible region

M
II-D

S-09P-19-1
O

ctober
2016

-30
Septem

ber
2020

25

5 Conclusions

In Section 1, we have introduced the first parallel DIRECT-type algorithm for generally
constrained global optimization problems. Due to iterative nature of DIRECT-type algo-
rithms there exist only a few parallel DIRECT-type implementations, all them devoted
for box-constrained optimization problems. Also we use the ideas of previous par-
allel implementation of the DIRECT algorithm, and proposing alternative modification
of pDIRECT-GLce called Aggressive pDIRECT-Ce. The experimental results of two in-
troduced versions: (single-start based pDIRECT-GLce and multi-start based Aggressive

pDIRECT-Ce) revealed, that the parallel efficiency of Aggressive pDIRECT-Ce is better
compared to pDIRECT-GLce when function evaluations are cheap. Since the “aggressive”
selection scheme in Aggressive pDIRECT-Ce selects a larger number of hyper-rectangles
per iteration, this assures more computationally intensive algorithmic iterations and
better opportunities for parallelism. Moreover, a multi-start nature of the Aggressive

pDIRECT-Ce algorithm ensures that all computational cores are busy from the beginning
of the optimization process.

However, for the more expensive optimization problems, parallel efficiency of both
algorithms is similar. Moreover, due to “aggressive” selection strategy, a large number
non-potentially optimal hyper-rectangles is selected, therefore Aggressive pDIRECT-Ce

wastes function evaluations on suboptimal regions and optimization effectiveness (based
on the number of function evaluations) is significantly worse compared to pDIRECT-GLce.
Finally, both introduced parallel versions pDIRECT-GLce and Aggressive pDIRECT-Ce

preserve the determinism, where previous proposals have failed.
pDIRECT-GLce is a single-start algorithm, which gives only few evaluation tasks at

the beginning, and parallel overhead is dominating in early stage of optimization. But in
a long run, the parallel efficiency of the pDIRECT-GLce algorithm is getting closer to the
ideal.

Motivated by the promising parallel performance, in the nearest future, we plan to
develop an extension of the algorithm, by considering better-suited programming lan-
guages and frameworks for parallelization. Advanced data structures to better organize
the local data and reduce communication overhead, and a hybrid CPU - GPU scheme
will be considered.

Data access statement

Data underlying this article can be accessed on Zenodo at https://dx.doi.org/10.5281/
zenodo.1218981, and used under the Creative Commons Attribution license.

MII-DS-09P-19-1 October 2016 - 30 September 2020 26

https://dx.doi.org/10.5281/zenodo.1218981
https://dx.doi.org/10.5281/zenodo.1218981

References

[BBPW02] M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P. Wilson. Using DIRECT
to solve an aircraft routing problem. Computational Optimization and Applica-
tions, 21(3):311–323, 2002.

[BDLM12] A. Basudhar, C. Dribusch, S. Lacaze, and S. Missoum. Constrained efficient
global optimization with support vector machines. Structural and Multidisci-
plinary Optimization, 46(2):201–221, 2012.

[BFM10] E. G. Birgin, C. A. Floudas, and J. M. Martínez. Global minimization using an
augmented lagrangian method with variable lower-level constraints. Mathe-
matical Programming, 125(1):139–162, 2010.

[BG04] Lorenz T. Biegler and Ignacio E. Grossmann. Retrospective on optimization.
Computers & Chemical Engineering, 28(8):1169–1192, 2004.

[BH99] Mattias Björkman and Kenneth Holmström. Global optimization using the
DIRECT algorithm in Matlab. Advanced Modeling and Optimization, 1(2):17–37,
1999.

[BWG+00] C. A. Baker, L. T. Watson, B. Grossman, W. H. Mason, and R. T. Haftka. Par-
allel global aircraft configuration design space exploration. In A. Tentner, ed-
itor, High Performance Computing Symposium 2000, pages 54–66. Soc. for Com-
puter Simulation Internat, 2000.

[CEC08] L. C. Cagnina, S. C. Esquivel, and C. A. Coello Coello. Solving engineer-
ing optimization problems with the simple constrained particle swarm opti-
mizer. Informatica (Ljubljana), 32(3):319–326, 2008.

[CGP+01] R. G. Carter, J. M. Gablonsky, A. Patrick, C. T. Kelley, and O. J. Eslinger. Al-
gorithms for noisy problems in gas transmission pipeline optimization. Op-
timization and Engineering, 2(2):139–157, 2001.

[CRF18] M. F. P. Costa, A. M. A. C. Rocha, and E. M. G. P. Fernandes. Filter-based
direct method for constrained global optimization. Journal of Global Optimiza-
tion, 71(3):517–536, 2018.

[DM02] E. D. Dolan and J. J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, 91(2):201–213, 2002.

[DS75] Laurence Charles Ward Dixon and Giorgio P Szegö. Towards global optimisa-
tion: proceedings of a workshop at the University of Cagliari, Italy, October 1974,
volume 1. North Holland, 1975.

MII-DS-09P-19-1 October 2016 - 30 September 2020 27

[Fin04] D. E. Finkel. MATLAB source code for DIRECT. http://www4.ncsu.edu/

~ctk/Finkel_Direct/, 2004. Online; accessed: 2017-03-22.

[Fin05] D. E. Finkel. Global Optimization with the DIRECT Algorithm. PhD thesis, North
Carolina State University, 2005.

[FK06] D. E. Finkel and C. T. Kelley. Additive scaling and the DIRECT algorithm.
Journal of Global Optimization, 36(4):597–608, 2006.

[FK09] A. I. J. Forrester and A. J. Keane. Recent advances in surrogate-based opti-
mization. Progress in Aerospace Sciences, 45(1):50–79, 2009.

[FL02] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty func-
tion. Mathematical Programming, 91(2):239—-269, 2002.

[Fle87] R. Fletcher. Practical Methods of Optimization. John and Sons Chichester, 2nd
edition, 1987.

[Flo99] Christodoulos A Floudas. Deterministic global optimization: theory, methods
and applications, volume 37 of Nonconvex Optimization and Its Applications.
Springer US, 1999.

[Gab01] J. M. Gablonsky. Modifications of the DIRECT Algorithm. PhD thesis, North
Carolina State University, 2001.

[GK01] J. M. Gablonsky and C. T. Kelley. A locally-biased form of the DIRECT algo-
rithm. Journal of Global Optimization, 21(1):27–37, 2001.

[Hed05] A. Hedar. Test functions for unconstrained global optimization.
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_

files/TestGO.htm, 2005. Online; accessed: 2017-03-22.

[HPT95] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization.
Nonconvex Optimization and Its Application. Kluwer Academic Publishers,
1995.

[HSS+93] J. He, M. Sosonkina, C. A. Shaffer, J. J. Tyson, L. T. Watson, J. W. Zwolak, and
W. Hall. A hierarchical parallel scheme for global parameter estimation in
systems biology. Direct, 1993.

[HVSW09] Jian He, Alex Verstak, Masha Sosonkina, and Layne T Watson. Performance
modeling and analysis of a massively parallel DIRECT–Part 2. The Interna-
tional Journal of High Performance Computing Applications, 23(1):29–41, 2009.

[HVWS08] J. He, A. Verstak, L. T. Watson, and M. Sosonkina. Design and implementa-
tion of a massively parallel version of direct. Computational Optimization and
Applications, 2008.

MII-DS-09P-19-1 October 2016 - 30 September 2020 28

http://www4.ncsu.edu/~ctk/Finkel_Direct/
http://www4.ncsu.edu/~ctk/Finkel_Direct/
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

[HVWS09] Jian He, Alex Verstak, Layne T Watson, and Masha Sosonkina. Performance
modeling and analysis of a massively parallel DIRECT–part 1. The Interna-
tional Journal of High Performance Computing Applications, 23(1):14–28, 2009.

[HWR+02] Jian He, Layne T. Watson, Naren Ramakrishnan, Clifford A. Shaffer, Alex Ver-
stak, Jing Jiang, Kyung Bae, and William H. Tranter. Dynamic data structures
for a DIRECT search algorithm. Computational Optimization and Applications,
23(1):5–25, 2002.

[HWS10] J. He, L. T. Watson, and M. Sosonkina. Algorithm 897: VTDIRECT95: Serial
and Parallel Codes for the Global Optimization Algorithm DIRECT. ACM
Transactions on Mathematical Software, 2010.

[Jon01] D. R. Jones. The DIRECT global optimization algorithm. In Christodoulos A.
Floudas and Panos M. Pardalos, editors, The Encyclopedia of Optimization,
pages 431–440. Kluwer Academic Publishers, Dordrect, 2001.

[JPS93] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Application,
79(1):157–181, 1993.

[KPS03] D. E. Kvasov, C. Pizzuti, and Ya. D. Sergeyev. Local tuning and partition
strategies for diagonal GO methods. Numerische Mathematik, 94(1):93–106,
2003.

[KWRG11] M. Kazemi, G. G. Wang, S. Rahnamayan, and K. Gupta. Metamodel-based
optimization for problems with expensive objective and constraint functions.
Journal of Mechanical Design, 133(1):14505, 2011.

[LC14] Qunfeng Liu and Wanyou Cheng. A modified DIRECT algorithm with
bilevel partition. Journal of Global Optimization, 60(3):483–499, 2014.

[LLP10] Giampaolo Liuzzi, Stefano Lucidi, and Veronica Piccialli. A DIRECT-based
approach exploiting local minimizations for the solution for large-scale
global optimization problems. Computational Optimization and Applications,
45(2):353–375, 2010.

[LLP16] Giampaolo Liuzzi, Stefano Lucidi, and Veronica Piccialli. Exploiting
derivative-free local searches in DIRECT-type algorithms for global optimiza-
tion. Computational Optimization and Applications, 65:449–475, 2016.

[LXC+17] H. Liu, S. Xu, X. Chen, X. Wang, and Q. Ma. Constrained global optimization
via a direct-type constraint-handling technique and an adaptive metamodel-
ing strategy. Structural and Multidisciplinary Optimization, 55(1):155–177, 2017.

MII-DS-09P-19-1 October 2016 - 30 September 2020 29

[LYZZ17] Qunfeng Liu, Guang Yang, Zhongzhi Zhang, and Jinping Zeng. Improving
the convergence rate of the DIRECT global optimization algorithm. Journal of
Global Optimization, 67(4):851–872, 2017.

[LZY15] Qunfeng Liu, Jinping Zeng, and Gang Yang. MrDIRECT: a multilevel robust
DIRECT algorithm for global optimization problems. Journal of Global Opti-
mization, 62(2):205–227, 2015.

[MPR+17] Jonas Mockus, Remigijus Paulavičius, Dainius Rusakevičius, Dmitrij Šešok,
and Julius Žilinskas. Application of Reduced-set Pareto-Lipschitzian Opti-
mization to truss optimization. Journal of Global Optimization, 67(1-2):425–450,
2017.

[MW09] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algo-
rithms. SIAM Journal on Optimization, 20(1):172–191, 2009.

[NLH17] J. Na, Y. Lim, and C. Han. A modified DIRECT algorithm for hidden con-
straints in an LNG process optimization. Energy, page 488–500, 2017.

[PCŽ18] Remigijus Paulavičius, Lakhdar Chiter, and Julius Žilinskas. Global opti-
mization based on bisection of rectangles, function values at diagonals, and
a set of Lipschitz constants. Journal of Global Optimization, 71(1):5–20, 2018.

[Pin96] János D Pintér. Global optimization in action: continuous and Lipschitz optimiza-
tion: algorithms, implementations and applications, volume 6 of Nonconvex Opti-
mization and Its Applications. Springer US, 1996.

[PLL+16] G. Di Pillo, G. Liuzzi, S. Lucidi, V. Piccialli, and F. Rinaldi. A DIRECT-type
approach for derivative-free constrained global optimization. Computational
Optimization and Applications, 65(2):361–397, 2016.

[PLR10] G. Di Pillo, S. Lucidi, and F. Rinaldi. An approach to constrained global
optimization based on exact penalty functions. Journal of Optimization Theory
and Applications, 54(2):251–260, 2010.

[PSKŽ14] Remigijus Paulavičius, Ya. D. Sergeyev, Dmitri E. Kvasov, and Julius Žilin-
skas. Globally-biased DISIMPL algorithm for expensive global optimization.
Journal of Global Optimization, 59(2-3):545–567, 2014.

[PWA+08] T. D. Panning, L. T. Watson, N. A. Allen, K. C. Chen, C. A. Shaffer, and J. J.
Tyson. Deterministic parallel global parameter estimation for a model of the
budding yeast cell cycle. Journal of Global Optimization, 2008.

[PŽ13] Remigijus Paulavičius and Julius Žilinskas. Simplicial Lipschitz optimization
without the Lipschitz constant. Journal of Global Optimization, 59(1):23–40,
2013.

MII-DS-09P-19-1 October 2016 - 30 September 2020 30

[PŽ14] Remigijus Paulavičius and Julius Žilinskas. Simplicial Global Optimization.
SpringerBriefs in Optimization. Springer New York, New York, NY, 2014.

[PŽ16] Remigijus Paulavičius and Julius Žilinskas. Advantages of simplicial par-
titioning for Lipschitz optimization problems with linear constraints. Opti-
mization Letters, 10(2):237–246, 2016.

[PŽHC13] Remigijus Paulavičius, Julius Žilinskas, Juan F.R. Herrera, and Leocadio G.
Casado. A Parallel DISIMPL for Pile Placement Optimization in Grillage-
Type Foundations. In 2013 Eighth International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, pages 525–530. IEEE, 2013.

[Reg11] R. G. Regis. Stochastic radial basis function algorithms for large-scale opti-
mization involving expensive black-box objective and constraint functions.
Computers and Operations Research, 38(5):837–853, 2011.

[Reg14] R. G. Regis. Constrained optimization by radial basis function interpolation
for high-dimensional expensive black-box problems with infeasible initial
points. Engineering Optimization, 46(2):218–243, 2014.

[RL03] Tapabrata Ray and Kim Meow Liew. Society and civilization: An optimiza-
tion algorithm based on the simulation of social behavior. IEEE Transactions
on Evolutionary Computation, 7(4):386–396, 2003.

[Ser98] Yaroslav D Sergeyev. On convergence of “divide the best” global optimiza-
tion algorithms. Optimization, 44(3):303–325, 1998.

[SHL+05] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.P.Chen, A. Auger, and
S. Tiwari. Problem definitions and evaluation criteria for the cec 2006 special
session on constrained real-parameter optimization. KanGAL, pages 251–256,
2005.

[SK06] Ya. D. Sergeyev and Dmitri E. Kvasov. Global search based on diagonal
partitions and a set of Lipschitz constants. SIAM Journal on Optimization,
16(3):910–937, 2006.

[SK08] Ya. D. Sergeyev and D. E. Kvasov. Diagonal Global Optimization Methods. Fiz-
MatLit, Moscow, 2008. In Russian.

[SK17] Yaroslav D Sergeyev and Dmitri E Kvasov. Deterministic Global Optimiza-
tion: An Introduction to the Diagonal Approach. SpringerBriefs in Optimization.
Springer, 2017.

[SP18] Linas Stripinis and Remigijus Paulavičius. DIRECTLib – a library of global
optimization problems for DIRECT-type methods, v1.1, 2018.

MII-DS-09P-19-1 October 2016 - 30 September 2020 31

[SPŽ18] Linas Stripinis, Remigijus Paulavičius, and Julius Žilinskas. Improved
scheme for selection of potentially optimal hyper-rectangles in DIRECT. Op-
timization Letters, 12(7):1699–1712, 2018.

[SPŽ19] Linas Stripinis, Remigijus Paulavičius, and Julius Žilinskas. Penalty func-
tions and two-step selection procedure based DIRECT-type algorithm for con-
strained global optimization. Structural and Multidisciplinary Optimization,
59(6):2155–2175, 2019.

[SW10a] S. Shan and G. G. Wang. Metamodeling for high dimensional simulation-
based design problems. Journal of Mechanical Design, 132(5):051009, 2010.

[SW10b] S. Shan and G. G. Wang. Survey of modeling and optimization strategies
to solve high-dimensional design problems with computationally-expensive
black-box functions. Structural and Multidisciplinary Optimization, 41(2):219–
241, 2010.

[VV09] A.I.F. Vaz and L.N. Vicente. Pswarm: a hybrid solver for linearly con-
strained global derivative-free optimization. Optimization Methods and Soft-
ware, 24(4–5):669–685, 2009.

[WB01] L. T. Watson and C. A. Baker. A fully-distributed parallel global search algo-
rithm. engineering computations. Engineering Computations, 18(1/2):155–169,
2001.

[ZTW05] J. W. Zwolak, J. J. Tyson, and L. T. Watson. Globally optimised parameters
for a model of mitotic control in frog egg extracts. IEE Proceedings - Systems
Biology, 2005.

Appendixes

Appendix Nr. 1.
Test functions

Table 2: Key characteristics of the box constrained global optimization test problems

(#) Label Source Variable bounds (D) No. of local Optimum (f∗)

1 Griewank [Hed05] [−20, 30]2 multimodal 0.0
2 Quartic [Hed05] [−2, 3]n unimodal −29.816n
3 Rosenbrock [Hed05] [−2.048, 2.048]n unimodal 0.0
4 Schwefel [Hed05] [−500, 500]n unimodal 0.0
5 Michalewicz [Hed05] [0, π]n n! xx

MII-DS-09P-19-1 October 2016 - 30 September 2020 32

Table 3: Key characteristics of the general constrained global optimization test problems

(#) Label Source n Number of C. C. type Variable bounds (D) Optimum (f∗)

1 G01 [SHL+05] 13 9 L [0, 10]9 × [0, 102]3 × [0, 10] −15.0000
2 G02 [SHL+05] 20 2 NL [0, 10]n −0.8036
3 G03 [SHL+05] 10 1 NL [0, 10]n −1.0005
4 G04 [SHL+05] 5 6 NL [78, 102]× [33, 45]× [27, 45]3 30665.5386
5 G05 [SHL+05] 4 5 NL [10, 1.2× 103]2 × [−0.55, 0.55]2 5126.4967
6 G06 [SHL+05] 2 2 NL [13, 102]× [0, 102] −6961.8138
7 G07 [SHL+05] 10 8 NL [−10, 10]n 24.3062
8 G08 [SHL+05] 2 2 NL [0, 10]n −0.0958
9 G09 [SHL+05] 7 4 NL [−10, 10]n 680.6300
10 G10 [SHL+05] 8 6 NL [102, 104] × [103, 104]2 ×

[10, 103]5
7049.2480

11 G11 [SHL+05] 2 1 NL [−1, 1]n 0.7499
12 G12 [SHL+05] 3 1 NL [0.2, 10]n −1.0000
13 G13 [SHL+05] 5 3 NL [−2.3, 2.3]2 × [−3.2, 3.2]3 0.0539
14 G14 [SHL+05] 10 3 L [0, 10]n −47.7648
15 G15 [SHL+05] 3 2 NL [0, 10]n 961.7150
16 G16 [SHL+05] 5 38 NL [704.4148, 906.3855] ×

[68.6, 288.88] × [0, 134.75] ×
[193, 287.0966]× [25, 84.1988]

−1.9051

17 G17 [SHL+05] 6 4 NL [0, 4 × 102] × [0, 103] ×
[340, 420]2 × [−103, 103] ×
[0, 0.5236]

8853.5396

18 G18 [SHL+05] 9 13 NL [0, 10]8 × [0, 20] −0.8660
19 G19 [SHL+05] 15 5 NL [0, 10]n 32.6555
20 G20 [SHL+05] 24 18 NL [0, 10]n −
21 G21 [SHL+05] 7 6 NL [0, 103] × [0, 40]2 × [102, 3 ×

102] × [6.3, 6.7] × [5.9, 6.4] ×
[4.5, 6.25]

193.7245

22 G22 [SHL+05] 22 20 NL [0, 2 × 104] × [0, 106]3 ×
[0, 4 × 107] × [102, 299.99] ×
[102, 399.99]×[100.01, 3×102]×
[102, 4× 102]× [102, 6× 102]×
[0, 5× 102]3× [10−2, 3× 102]×
[10−2, 4× 102]× [−4.7, 6.25]5

236.4309

23 G23 [SHL+05] 9 6 NL [0, 3 × 102]2 × [0, 102] ×
[0, 2 × 102] × [0, 102] × [0, 3 ×
102] × [0, 102] × [0, 2 × 102] ×
[10−2, 0.03]

−400.0551

20 G24 [SHL+05] 2 2 NL [0, 3]× [0, 4] −5.5080

− no feasible solution is found so far

MII-DS-09P-19-1 October 2016 - 30 September 2020 33

	Accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization
	Architecture of the DIRECT algorithm
	Overview of the DIRECT-GLce algorithm
	Design challenges of parallel DIRECT-type algorithms
	Proposed ideas to handle the parallel challenges of DIRECT

	Influence of data structures on the performance of DIRECT-type algorithms
	Comparison of DIRECT-GLce performance with static and dynamic data structures

	Parallel Scheme and Implementation
	MPI Parallel Version of pDIRECT-GLce
	Aggressive pDIRECT-Ce algorithm

	Numerical investigation
	Box-constrained global optimization
	General constrained global optimization

	Conclusions
	References
	Appendix Nr. 1.

