Vilnius University
Institute of Data Science and
Digital Technologies
LITHUANIA

INFORMATICS (N009)

RESEARCH AND DEVELOPMENT OF AN
OPEN SOURCE GLOBAL OPTIMIZATION
SYSTEM

Vaidas Jusevicius

October 2019

Technical Report DMSTI-DS-N009-19-09

VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius
LT-08412, Lithuania

www.mii.lt

http://www.mii.lt

Abstract

We consider a research and development of an open source global optimization system.
In this work, we investigate the current state of optimization modeling systems by select-
ing four of the most prominent algebraic modeling languages (AMPL, AIMMS, GAMS, Pyomo)
and modeling systems supporting them in order to perform an extensive theoretical and
experimental analysis of their characteristics. In our theoretical comparison, we evalu-
ate how the features of reviewed languages match with requirements for modern AMLs,
while in the experimental analysis we create automated tools to generate a test model
library and tools to perform extensive benchmarks using the library created. We deter-
mine the best performing AMLs by comparing the time needed to create model instance
for specific type of optimization problem and analyze the impact that the presolve proce-
dures performed by AML have on the actual problem solving. Lastly, we provide insights
on which AMLs performed best and features that we deem important in the current land-
scape of mathematical optimization.

Keywords: Algebraic modeling languages, optimization, AMPL, AIMMS, GAMS, Py-
omo

DMSTI-DS-N009-19-09

Contents

B s N oY L ol (o) o KPP 4
2 Algebraic modeling languages ... 5
2.1 ReVIEWEd AMLS ..ot e 5
3 Comparative analysis of AMLs characteristics 6
3.1 Criteria of the practical comparison..............ooooiiiiiiiiiiiiii 6
3.2 FINAINGS ...oooii 7
4 Performance benchmark of AMLSoooiiiiiiii e 9
41 AMLstesting libraryoooo 10
4.2 Model instance creation timMe.ouuiiri e 10
4.3 Presolving in AMLS 11
4.4 Presolve impact onSOIVING ...t 12
5 Conclusions and fUture WOTKooiiiiii e 14
RO OTONCES .o 15
ApPendix NI L. oo 17
Appendix NI 2. Lo 18

DMSTI-DS-N009-19-09 3

1 Introduction

Many real-world problems are routinely solved using modern optimization tools [I
Internally, these tools use the combination of a mathematical model with an appropriate
solution algorithm to solve the problem at hand. Thus, the way mathematical models are
formulated is critical to the impact of optimization in real life.

Mathematical modeling is the process of translating real-world problems into math-
ematical formulations whose theoretical and numerical analysis can provide insight, an-
swers, and guidance beneficial for the originating application []. Algebraic mod-
eling languages (AMLs) are declarative optimization modeling languages, which bridge
the gap between model formulation and the proper solution technique []. They
enable the formulation of a mathematical model as a human-readable set of equations.
Typically an AML does not specify how the described model is solved.

The similarity of the model written in an algebraic modeling language to the math-
ematical formulation of a problem is an essential aspect which distinguishes algebraic
modeling languages from other types of modeling languages, like object-oriented (e.g.,
OptimJ), solver specific (e.g., LINGO), general purpose (e.g., TOMLAB) modeling languages.
This algebraic design approach allows practitioners without specific programming or
modeling knowledge to be efficient in describing the problems to be solved.

It is also important to note that the algebraic modeling language is then responsible
for creating a problem instance that a solution algorithm can tackle []. Since the ma-
jority of algebraic modeling languages are integral part of a specific modeling system, it is
important to isolate the responsibilities of a modeling language from an overall modeling
system.

In general, AMLs are sophisticated software packages that provide a key link be-
tween a mathematical concept of an optimization model and the complex algorithmic
routines that compute optimal solutions. AML software automatically reads a model
and data, generates an instance, and conveys it to a solver in the required form [I

From the late 1970s many AMLs were created (e.g. GAMS [], AMPL | 1)
and are still actively developed and used today. Lately new open-source competitors to
the traditional AMLs started to emerge (e.g. Pyomo [B], JuMP [B

I). Therefore we feel that a review and comparison of the traditional and emerging
AMLs is needed to examine what newcomers are bringing to the competition.

The remainder of the paper is organized as follows. In Section 2 we review basic
characteristics of algebraic modeling languages and motivate our selection of AMLs for
the current review. In Section 3 we investigate how the requirements for a modern AML
are met within each of the chosen languages. In Section 4 we examine characteristics of

AMLs using an extensive benchmark. Finally, we conclude the paper in Section 5.

DMSTI-DS-N009-19-09

2 Algebraic modeling languages

In the late 1970s, when the first algebraic modeling languages were developed, they were
game changers as they allowed separating model formulation from the implementation
details [] while keeping notation close to the mathematical formulation of the prob-
lem []. Since the data appears to be more volatile than the problem structure, most
modeling languages designers insist on data and model structure being separated [[H99].
Therefore, the central idea in modern algebraic modeling languages is the differentiation
between abstract models and concrete problem instances [. A specific model
instance is generated from an abstract model using data. This way, model and data to-
gether specify a particular instance of an optimization problem for which a solution can
be sought. This is realized by replicating every entity of an abstract model over the dif-
ferent elements of the data set, and often is referred to as a set-indexing ability of the
AML [I

Essential characteristics of a modern AML could be defined in the following

way []:
¢ problems are represented in a declarative way;
¢ there is a clear separation between problem definition and the solution process;
* there is a clear separation between the problem structure and its data.

Support for mathematical expressions and operations needed for describing non-
linear models is considered an important feature of an AML [].

Also, it is worth to observe that most interpreters included in today’s algebraic mod-
eling languages are based on automatic differentiation [], a process in which the
modeling language can compute derivatives of problems from the model description
without the assistance of the user []. This motivates us to include automatic dif-
ferentiation as an important feature of a modern AML too.

The algebraic expressions are useful not only in describing individual models but
also for describing manipulations on models and transformations of data. Thus almost
as soon as AML became available, users started finding ways to adapt model notations to
implement sophisticated solution strategies and iterative schemes. These efforts stimu-
lated the evolution within AMLs of scripting features, which include statements for loop-
ing, testing, and assignment []. Therefore, scripting capabilities is another aspect
which differentiates AMLs.

2.1 Reviewed AMLs

For this review, we have chosen four AMLs: AIMMS |], AMPL, GAMS, and Pyomo. The
selection was based on the following criteria:

DMSTI-DS-N009-19-09

¢ AMLs which won 2012 INFORMS Impact Prize award! [1;
* popularity of an AML based on NEOS Server? |] model input statistics;

* an emerging open-source alternative Pyomo was added to the list, since it may be
attractive for situations where budgets are tight or where the greatest degree of
flexibility is required — such as when new or customized algorithmic ideas are being

investigated [].

3 Comparative analysis of AMLs characteristics

In the following section, we investigate how the requirements for a modern AML de-
fined in the previous section are met by each of the chosen languages. The websites of
the AMLs and vendor documentation are used for this comparison. Any support of the
identified features and capabilities are validated against the documentation the suppliers
of the AMLs provide. In addition, an in-depth survey concluded by Robert Fourer in
Linear Programming Software Survey [] is also used as a reference.

The following AML characteristics are reviewed:

e are problems represented in a declarative way?
* does a clear separation between problem definition and the solution process exist?
* does a clear separation between the problem structure and its data exist?

Later on a more practical comparison of AML characteristics is conducted to identify
potential easy of use of AML in daily work.

3.1 Criteria of the practical comparison

For the practical comparison of the selected AMLs, a classical Dantzig Transportation
Problem was chosen []. In this problem, we are given the supplies at the factories
and the demands at the markets for a single commodity. We have also given the unit
costs of shipping the product from factories to the markets. Then, the goal is to find the
least cost shipping schedule that meets requirements at markets and supplies at factories.

The transportation problem formulated as a model in all considered AML is com-

pared based on the following criteria:
* model size in bytes;
e model size in number of code lines;

* model size in number of language primitives used;

!prize awarded to the originators of the five most important algebraic modeling languages
*free internet-based service for solving the numerical optimization problem

DMSTI-DS-N009-19-09

¢ basic model instance creation time.

Since transportation problem is a linear programming (LP) type of problem we have
chosen to measure model instance creation time as the time needed to export concrete
model instance to MPS [] format supported by most LP solvers.

For the first comparison, sample implementations of the transportation problem for

the AMLs under consideration were provided by the following sources:
* AIMMS Wikipedia page [|
¢ AMPL model in GNU Linear Programming Kit [1
* GAMS Model Library []

¢ Pyomo Gallery []

Transportation problem models in different AMLs can be seen in Appendix Nr. 2..

It should be noted that the textual representation of an AIMMS model presents the
model as a tree of attributed identifier nodes. It reflects how the model is given to the
modeler in the AIMMS IDE and is typically generated by the AIMMS IDE. Also, it is worth
to note that for the sake of simplicity, problem model samples are concrete models, i.e.,

data of the model instance is described alongside with model structure.

3.2 Findings

In all of the reviewed algebraic modeling languages problems are represented in a declar-
ative way. Furthermore, since all of them are part of a specific modeling system, a clear
separation between problem definition and the solution process in the context of the mod-
eling system exists. The separation between the problem structure and it’s data is sup-
ported in all of the reviewed languages. It should be noted that Pyomo and GAMS also allow
initiating data structures during their declaration while AIMMS and AMPL only support it
as a separate step in the model instance building process. However, while it might be
convenient for building a simple model, we do not consider the lack of direct data struc-
ture initiation as an advantage since, in real-world cases, it is rarely needed. Therefore,
we can conclude that all of the reviewed languages fulfill the basic characteristics of a
modern algebraic modeling language as defined in the previous Section 2.

It is important to note that Pyomo is a Python-based AML. Being built on top general
purpose programming language makes it fundamentally different from the competitors.
This allows researchers familiar with Python to learn, improve and use Pyomo much easier
while it is practically impossible to introduce improvements to the commercial counter-
parts.

Comparison of the characteristics for the sample Transportation Problem model im-
plemented in all the reviewed algebraic modeling languages can be seen in Table 1. To
have a more concise view, the simplification of model implementations provided in the

literature sources is made in the following way:

DMSTI-DS-N009-19-09

* all the optional comments, explanatory texts, and documentation are removed;
¢ all empty lines are excluded;

* parts of the code responsible for calling the solver and displaying results are omit-
ted;

¢ while counting AML primitives generic functions (sum, for), data loading directives
g p g g

(data), arithmetical and logical operators are excluded.

Table 1: Comparison of Transportation Problem models

Criteria AIMMS AMPL GAMS Pyomo
size in bytes 2229 683 652 1207
lines of code 68 24 31 28
primitives used 9 5 8 6

As we see from Table 1 models implemented in both AMPL and GAMS are the most com-
pact ones, while model written in AIMMS is much more verbose and Pyomo is somewhere
in the middle. The reason for AIMMS model being much more verbose is in the nature of
AIMMS modeling system, which propagates model creation using graphical user interface
(GUI) while keeping the source code of the model hidden from a modeler. Naturally,
there is not that much of the focus on how the model is stored. We can argue that while
the GUI based approach might be convenient to some of the modelers, it enforces greater
vendor lock-in and makes extensibility and maintainability of the model harder.

While comparing a number of language primitives required to create a model, AMPL
and Pyomo showed best results which allows us to predict that these modeling languages
might have a more gentle learning curve.

Therefore, we can conclude that in the context of reviewed algebraic modeling lan-
guages, AMPL allows formulating an optimization problem in the shortest way.

The creation time of the transportation problem model instance defined in each
AMLs was used as a measure for a model loading. The process was done in the following

steps:
1. loading model instance from a problem definition written in the native AML;
2. exporting model instance to MPS format;
3. measuring total execution time;
4. investigating characteristics of an instance model.

Since creators of AIMMS system did not respond to the request for an academic license, we
were not able to include AIMMS into the benchmark. Generated model instances in MPS

format can be found in models directory of our GitHub repository [JI"19].

DMSTI-DS-N009-19-09

Characteristics of the created model instances can be seen in Table 2. We can conclude
that all of the modeling languages have created a model instance using the same amount
of variables and constraints, however, the definition of non zero elements is different

between GAMS and other modeling systems.

Table 2: Characteristics of the created transportation model instances

Characteristic AMPL GAMS Pyomo
Constraints 6 6 6
Non zero elements 13 19 13
Variables 7 7 7

In Table 3 model instance creation time benchmark results are provided. We have
tried to run multiple consecutive model instance creations (10 runs, 100 runs) in order
to identify if any caching is being used by the modeling system. We can exhibit that
AMPL showed significantly better results compared to others. This allows concluding that
AMPL is the most optimized from a performance point of view. On the other hand, Pyomo
coming in last is shows the potential language still has for performance improvements.
We can also conclude that no caching of previous runs took place since in none of the
cases of multiple consecutive model instance creations lead to noticeable performance

improvement.

Table 3: Total time of consecutive transportation model instance creation runs

AML 1 run 10 runs 100 runs

AMPL 30ms 220ms 2130 ms
GAMS 170ms 1730ms 16490 ms
Pyomo 720ms 7280ms 79600 ms

4 Performance benchmark of AMLs

All of the examined AMLs support the same types of optimization problems, however
it is unclear how efficiently each AML is capable of handling large model loading and
what optimizations are applied during model instance creation. It would also be of a
great value to analyze how each of the modeling languages performs within an area of
the specific type of optimization problems (linear, quadratic, nonlinear, mixed-integer,
etc.). To give such a comparison and thoroughly examine characteristics of AMLs, a more
extensive benchmark involving much larger optimization problem models is needed.
Therefore a large and extensive library of sample optimization problems for the analyzed
AMLs has to be used.

DMSTI-DS-N009-19-09

4.1 AMLs testing library

We have chosen GAMS Model Library [] as a reference for creating such a sam-
ple optimization problem suite against which future research will be done. Automated
shell script gamslib-convert.sh was created to build such a library. It can be found in
the tools directory of our GitHub repository [J"19]. Detailed explanation on how the
test library creation tool works and issues identified in the GAMS Library are provided
in Appendix Nr. 1..

As a result of the transformation, we compiled a library consisting of 298 sample

problems in AMPL, GAMS, and Pyomo scalar model formats.

4.2 Model instance creation time

The generated library was used to determine the amount of time each modeling sys-
tem requires to create problem instance of a particular problem. For that, we decided to
write load-benchmark. sh shell script available in tools directory of our GitHub reposi-
tory [J719] which loads each model into the particular modeling system and then exports
it to the format understandable by the solvers. We have chosen .1l [] or .nlc formats
as target formats acceptable by the solvers. The benchmark measures the time modeling
system took to perform both model instance creation and export operations.

We have chosen to exclude sample problems which had conversion errors from the
benchmark (more information about them in Appendix Nr. 1.), meaning only the mod-
els which were successfully processed by all modeling systems were compared. This
reduced the scope of our benchmark to 269 models.

Figure 1: Average model instance creation time

1400 1344
1300
1200

1100
936 852

1000 838
841 826

900
764
200 719 I 745 :[

700 I]: I 6?9

600

Milliseconds

364
500 -

400

300 234 227 240 234 Z‘f 2?__9 238 236

I —
200

100

CNS DNLP LP Mcp MINLP MIP miQcp MPEC NLP Qce

AMPL = GAMS = Pyomo

DMSTI-DS-N009-19-09

10

Detailed benchmark results can be found in model-loading-times.x1lsx workbook
in the benchmark section of our GitHub repository [|I’19] while the summary of average

model instance creation time split by the problem type can be seen in Figure 1.

Figure 2: Average large model instance creation time

1200 1014
1100

1000 926

886
900 8 880
800
700

600

Milliseconds

500
400

273

292
300 I 254 = 270
200

100

LP MINLP MIP NLP

AMPL = GAMS = Pyomo

We can see the trend exhibited in the transportation problem model benchmark per-
sists. AMPL is still a definite top performer while Pyomo performs the worst. There are no
significant variations between different optimization problem types. However, the Pyomo
model instance creation time tends to vary more once working with different types of
problems. The average difference between AMPL and other contenders increases when
models become larger. For example, for the transportation problem, GAMS took 5.5 times
more to create the model instance than AMPL, and Pyomo took 24 times more.

Comparing instance creation times of large models (models having more than 500
equations, 8 such models in the testing library) reveals 11 times the difference between
AMPL and GAMS, and 38 times the difference between AMPL and Pyomo. The difference be-
tween GAMS and Pyomo stayed roughly the same - around 3.5 times. Summary of large
models instance creation time can be seen in Figure 2.

We can conclude that out of reviewed AMLs AMPL is a clear top performing AML

when it comes to model instances creation time.

4.3 Presolving in AMLs

Another performance-related feature of algebraic modeling languages is the ability to
presolve problem before providing it to the solver. The presolver can preprocess prob-
lems and simplify, i.e. reduce the problem size or determine the problem to be unfeasible.

Only two of the reviewed algebraic modeling languages provide presolving capabili-

DMSTI-DS-N009-19-09

11

Table 4: AMPL model presolving

T Models P ved Presolved Not Constraints Variables
ype Count resolve (%) Feasible reduced reduced
CNS 4 4 100.00% 0 14.63% 31.39%
DNLP 5 1 20.00% 0 0.00% 7.41%
LP 57 21 36.84% 0 17.81% 9.66%
MCP 19 17 89.47% 0 47.00% 8.56%
MINLP 21 13 61.90% 1 16.32% 9.30%
MIP 61 37 60.66% 0 19.06% 11.50%
MIQCP 5 3 60.00% 2 0.00% 2.38%
MPEC 1 1 100.00% 0 50.00% 0.00%
NLP 101 48 47.52% 2 9.71% 11.55%
Qcrp 10 6 60.00% 0 7.10% 2.55%
RMIQCP 2 0 0.00% 0 0.00% 0.00%
Total 286 151 52.80% 5 18.42% 10.73%

ties - AMPL [] and AIMMS []. Since we did not have the opportunity to evaluate
AIMMS modeling language practically, we were only able to examine AMPL presolving ca-
pabilities. In order to evaluate AMPL presolving performance, we gathered presolving
characteristics while performing model instance creation time benchmark. We have used
286 models which were successfully converted from GAMS original model to AMPL scalar
model. A detailed report of the presolving applied to the specific model can be seen in
the benchmark section of our GitHub repository [/’19] while the summary of it can be
found in Table 4.

We observed that AMPL presolver managed to simplify models in 52.8% of the cases,
out of which 5 times it was able to determine that the problem solution is not feasible, thus
even not requiring to call the solver. On average, once applied AMPL presolver managed
to reduce the model size by removing 18.42% of constraints and 10.73% of variables.

We can conclude that AMPL presolver is an efficient way to simplify larger problems
which might lead to improved solution finding performance once invoking a solver with
an already reduced problem model instance. Also, the ability to determine not feasible
models can help modelers in the problem definition process to debug and find errors in
the model definition. This allows us to argue that presolving is an important capability

of any modern algebraic modeling language.

4.4 Presolve impact on solving

In order to evaluate if AMPL presolving has a positive impact on problem solving an ad-
ditional benchmark was conducted. The benchmark included 146 out of 151 models to
which AMPL has applied presolve in the model instance creation benchmark. Five mod-
els which AMPL presolve determined to be not feasible were excluded from the bench-
mark. Shell script solve-benchmark. sh provided in tools directory of our GitHub repos-

DMSTI-DS-N009-19-09

12

itory [] was created for executing such a benchmark. The script solves each model
using one of the solvers and gathers output statistics to a report file.

We have chosen to solve models using Gurobi [] and BARON [11]
solvers. Gurobi Optimizer (v.8.1.0) was chosen for solving LP, MIP, QCP and MIQCP
type of problems. While BARON (v.18.11.12) global solver was chosen for solving NLP,
MINLP, MCP, MPEC, CNSandDNLP problems. The choice of the solvers was motivated by
the support for particular problem types [110] and the popularity of solvers
based on NEOS Server statistics [].

Two attempts to solve each model were made. One with AMPL presolver turned on
(default setting) and second one with AMPL presolver turned off. After each run solvers
statistics including iterations count, solve time (pure solve phase execution time) and
objective were gathered.

It is important to note that both BARON and Gurobi solvers have their own presolve
mechanisms so the provided model is simplified by the solver too. This might result in
very similar models being solved by the solver in spite of the AMPL presolve being turned
on or off. However, the focus was on estimating AMPL presolve impact in real life situa-
tions, so full benchmark was executed without changing default solver behaviour. Later
on an additional benchmark was made to estimate what is the impact of AMPL presolve
once solver presolve functionality is turned off.

Detailed AMPL presolve impact on solving report can be found in our GitHub reposi-
tory’s [J’19] directory benchmark file ampl-solving-times.xIsx sheet Benchmark 1. While
here in Table 5 we summarize the positive and negative impact AMPL presolve had on
solving problems iteration and time wise. Positive impact means fewer iterations or time
was needed to solve a problem once the presolve was turned on. Negative impact means

the opposite that more iterations or time was required.

Table 5: Summary of AMPL presolve impact on solving

Iterations wise Time wise Iterations wise % Time wise %

Positive 37 67 26.43% 47.86%
Neutral 74 40 52.86% 28.57%
Negative 29 33 20.71% 23.57%

During the benchmark 6 models failed to be solved due to solver limitations. A de-
tailed explanation of limitations faced is provided in the benchmark report. Two models
deemed to be not feasible and two were solved during AMPL presolve phase. Solver’s were
capable to solve 41 model during solver’s presolve phase. And for six models mismatch-
ing objective was found with AMPL presolve turned on and off. Overall AMPL presolve had
a positive impact in 26.43% of the cases iteration wise and 47.86% time wise. However it
had a negative impact in 20.71% of cases iteration wise and 23.57% time wise.

As mentioned earlier both BARON and Gurobi solvers have their own presolve mech-

anisms. In order to test what would be an impact of AMPL pesolve if the solver does

DMSTI-DS-N009-19-09

13

not attempt to presolve a problem on its own an additional benchmark was made. Since
only Gurobi allows to disable presolve functionality a subset of models previously solved
with Gurobi was chosen for the benchmark. Detailed benchmark results can be seen in
our GitHub repository’s [J19] directory benchmark file ampl-solving-times.x1sx sheet
Benchmark 2. The summary of the benchmark is provided in Table 6 and Table 7. Gurobi
was not capable to solve two MIP problems (clad and mws) in reasonable time once Gurobi
presolve functionality was turned off. Those models were excluded from the benchmark.

Table 6: AMPL presolve impact with Gurobi presolve on

Iterations wise Time wise Iterations wise % Time wise %

Positive 18 39 28.57% 61.90%
Neutral 34 0 53.97% 0.00%
Negative 11 24 17.46% 38.10%

Table 7: AMPL presolve impact with Gurobi presolve off

Tterations wise Time wise Iterations wise % Time wise %

Positive 33 44 54.10% 72.13%
Neutral 10 0 16.39% 0.00%
Negative 18 17 29.51% 27.87%

AMPL presolve had a greater positive effect both iteration wise (+22.4%) and time
wise (+10.2%) once Gurobi presolve was turned off. AMPL presolve also had less neu-
tral impact once solver presolving was off, thus leading to a conclusion that during first
benchmark some models were simplified to a very similar ones before actually solving
them.

As we can see from the benchmarks presolving done by AML has inconclusive effects
on the actual problem solving both iterations and time wise. However, positive impact is
always greater than the negative one and it especially becomes evident once solver does
not have or use it’s own problem presolving mechanisms. This allows us to conclude that
presolving capabilities of AML is an important feature of a modern algebraic modeling
language. We can also advice to choose AML having presolving capabilities in cases the

solver used to solve the problem does not have it’s own presolving mechanism.

5 Conclusions and future work

From the research, we can conclude that AMPL allows to formulate an optimization prob-
lem in the shortest and potentially easiest way while also providing the best performance
in model instance loading times. It also leverages the power of model presolving, which
is helpful for the modelers in both problem definition and efficient solution finding pro-

cesses. GAMS is a strong runner up providing a very similar to AMPL problem formula-

DMSTI-DS-N009-19-09

14

tion capabilities though running behind in the model instance creation time. AIMMS can
be considered as being on its own class of modeling languages as it has taken a purely
graphical user interface based approach. Since we were not able to examine the perfor-
mance characteristics of AIMMS due to lack of academic license, the performance aspect
remains unclear. Open source alternative Pyomo is on par with commercial competitors
in problem definition process, however Pyomo’s performance of model instance creation
is a bit behind once compared to the competitors.

In the future we would like to continue our research by expanding test models library
with more and larger models, re-running performance and presolve benchmarks and
introducing new AMLs like emerging JuMP [
review like AIMMS [].

] or ones we had no means to fully

References

[AIM19] AIMMS B.V. The AIMMS Presolver, 2019.

[BR19] Johannes Bisschop and Marcel Roelofs. AIMMS-The User’s Guide, 2019.

[Dan63] George B Dantzig. The Classical Transportation Problem. In Linear Pro-
gramming and Extensions, pages 299-315. Princeton University Press, 1963.

[DHL17] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling lan-
guage for mathematical optimization. SIAM Review, 59(2):295-320, 2017.

[FG02] Emmanuel Fragniere and Jacek Gondzio. Optimization modeling lan-
guages. Handbook of Applied Optimization, pages 993-1007, 2002.

[Fou03] Robert Fourer. AMPL : a modeling language for mathematical programming.
Thomson/Brooks/Cole, Pacific Grove, CA, 2003.

[Foul3] Robert Fourer. Algebraic modeling languages for optimization. In Encyclo-
pedia of Operations Research and Management Science, pages 43-51. Springer,
2013.

[Foul7] Robert Fourer. Linear Programming: Software Survey. OR/MS Today,
44(3), June 2017.

[GAM19a] GAMS Development Corporation. GAMS Convert, 2019.

[GAM19b] GAMS Development Corporation. GAMS Model Library, 2019.

[Gay05] David M Gay. Writing .nl files. Optimization and Uncertainty Estimation,
2005.

[Gurl9] Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2019.

DMSTI-DS-N009-19-09

[H99]

[HLW*17]

[HWW11]

[INF12]

[JP19]

[KalO4]

[LD15]

[LL14]
[1ps19]

[MMvdE+16]

[NEO19]
[Pyo19]

[Sah19]

[TSO05]

[Wik19]

Tony Hiirlimann. Mathematical Modeling and Optimization, volume 31 of
Applied Optimization. Springer US, Boston, MA, 1999.

William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodrulff,
Gabriel A. Hackebeil, Bethany L. Nicholson, and John D. Siirola. Pyomo—
optimization modeling in python, volume 67. Springer Science & Business
Media, second edition, 2017.

William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo: model-
ing and solving mathematical programs in python. Mathematical Program-
ming Computation, 3(3):219-260, 2011.

INFORMS. INFORMS Impact Prize 2012, 2012.

Vaidas Jusevi¢ius and Remigijus Paulavi¢ius. Algebraic modeling lan-
guage benchmark, 2019.

Josef Kallrath. Modeling languages in mathematical optimization, volume 88.
Springer Science & Business Media, 2004.

Miles Lubin and Iain Dunning. Computing in operations research using
julia. INFORMS Journal on Computing, 27(2):238-248, 2015.

Lopaka Lee and Louis Luangkesorn. GNU Linear Programming Kit, 2014.
Ipsolve developers. MPS file format, 2019.

Bruce A McCarl, Alex Meeraus, Paul van der Eijk, Michael Bussieck,
Steven Dirkse, and Franz Nelissen. McCarl Expanded GAMS user guide.
Citeseer, 2016.

NEOS Server. Neos Solver Access Statistics, 2019.
Pyomo. Pyomo Gallery, 2019.

N. V. Sahinidis. BARON 19.7.13: Global Optimization of Mixed-Integer

Nonlinear Programs, User’s Manual, 2019.

M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut ap-
proach to global optimization. Mathematical Programming, 103:225-249,
2005.

Wikipedia contributors. AIMMS — Wikipedia, The Free Encyclopedia,
2019.

DMSTI-DS-N009-19-09

Appendixes

Appendix Nr. 1.
Creation of AMLs testing library

The automated shell script gamslib-convert.sh availble in the tools directory of our GitHub
repository [] was created to generate AMLs testing library. The script uses GAMS Convert tool
v.25 [] to convert model in GAMS proprietary format to a scalar model in the AMPL, GAMS and Pyomo
formats. Characteristics of a sample problem models (number of equations, variables, discrete variables,
non-zero elements, non-zero nonlinear elements) are automatically extracted and noted. Sample problems
are also grouped based on optimization problem types.

The script has two execution modes - one for converting single model and another for converting all the
models in GAMS Library. An example of how transportation problem available in GAMS Library []
looks converted to GAMS scalar format can be seen in Listing 1.

Listing 1 Transportation problem converted to GAMS scalar model

Variables x1,x2,x3,x4,x5,x6,x7;
Positive Variables x1,x2,x3,x4,x5,x6;

Equations el,e2,e3,e4,e5,e6;

el.. - 0.225xx1 - 0.153*x2 - 0.162*%x3 - 0.225%x4 - 0.162*x5 - 0.126%x6 + x7
=E= 0;

e2.. x1 + x2 + x3 =L= 350;

e3.. x4 + x5 + x6 =L= 600;

ed.. x1 + x4 =G= 325;

eb.. x2 + x5 =G= 300;

eb6. x3 + x6 =G= 275;

Model m / all /;
m.limrow=0; m.limcol=0;

Solve m using LP minimizing x7;

At the time of writing, there were 423 models in the GAMS Model Library. Out of them, we eliminated
66 models which are using GAMS proprietary modeling techniques (e.g., MPSGE, BCH Facility), 20 using
general-purpose programming languages features (e.g. cycles), four models tightly coupled to CPLEX and
DECIS solvers.

We feel it is important to note that 35 models failed to be loaded by a fully licensed GAMS Convert tool
due to execution or compilation errors. Thus meaning some models in the GAMS Library are not compatible
with GAMS modeling system itself.

While performing the model instance creation benchmark, we have identified that 12 AMPL models and
29 Pyomo models generated by GAMS Convert tool had errors in them.

Listing 2 Example of a GAMS Convert error

GAMS Convert generated Pyomo suffiz syntaz

suffix ref integer IN;

Correct Pyomo suffiz syntazx

ref = Suffix(direction=Suffix.EXPORT, datatype=Suffix.INT)

Most of the Pyomo errors were caused by an incorrect GAMS Convert tool behavior where the definition

DMSTI-DS-N009-19-09

of the Suffix primitive uses AMPL but not Pyomo semantics. Example of what GAMS Convert generates and

the correct Pyomo syntax can be seen in Listing 2.
Appendix Nr. 2.
Transportation problem models

Listing 3 Transportation problem defined in AMPL format

set I;

set J;

param a{i in I};

param b{j in J};

param d{i in I, j in J};

param f;

param c{i in I, j in J} := £ * d[i,j] / 1000;

var x{i in I, j in J} >= 0;

minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];

s.t. supply{i in I}: sum{j in J} x[i,j] <= alil;

s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j];

data;

set I := Seattle San-Diego;

set J := New-York Chicago Topeka;
param a := Seattle 350

San-Diego 600;

param b := New-York 325

Chicago 300
Topeka 275;

param d : New-York Chicago Topeka :=
Seattle 2.5 1.7 1.8
San-Diego 2.5 1.8 1.4

param f := 90;

end;

DMSTI-DS-N009-19-09

18

Listing 4 Transportation problem defined in GAMS format

Set

i 'canning plants' / seattle, san-diego /

j 'markets' / new-york, chicago, topeka /;
Parameter

a(i) 'capacity of plant i in cases'
/ seattle 350
san-diego 600 /

b(j) 'demand at market j in cases'
/ new-york 325
chicago 300
topeka 275 /;
Table d(i,j) 'distance in thousands of miles'
new-york chicago topeka
seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4;

Scalar f 'freight in dollars per case per thousand miles' / 90 /;

Parameter c(i,j) 'transport cost in thousands of dollars per case';
c(i,j) = £xd(i,j)/1000;

Variable
x(i,j) 'shipment quantities in cases'
z 'total transportation costs in thousands of dollars';
Positive Variable x;
Equation
cost 'define objective function'
supply(i) 'observe supply limit at plant i'
demand(j) 'satisfy demand at market j';
cost.. z =e= sum((i,j), c(i,j)*x(i,3));
supply(i).. sum(j, x(i,j)) =1= a(i);
demand(j).. sum(i, x(i,j)) =g= b(j);

Model transport / all /;

solve transport using lp minimizing z;

DMSTI-DS-N009-19-09

Listing 5 Transportation problem defined in Pyomo format

from pyomo.environ import *

model = ConcreteModel()
model.i = Set(initialize=['seattle','san-diego'])
model.j = Set(initialize=['new-york','chicago', 'topeka'])
model.a = Param(model.i, initialize={'seattle':350, 'san-diego':600})
model.b = Param(model.j, initialize={'new-york':325, 'chicago':300, 'topeka':275})
dtab = {

('seattle', 'new-york') 2.5,

('seattle', ‘'chicago') 1.7,

('seattle', ‘'topeka') 1.8,

('san-diego', 'new-york') : 2.5,

('san-diego', 'chicago') 1.8,

('san-diego', 'topeka') 1.4,

}
model.

model.

d
£

Param(model.i, model.j, initialize=dtab)

Param(initialize=90)

def c_init(model, i, j):
return model.f * model.d[i,j] / 1000

model.c = Param(model.i, model.j, initialize=c_init)

model.

X

Var(model.i, model.j, bounds=(0.0,None))

def supply_rule(model, i):

return sum(model.x[i,j] for j in model.j) <= model.a[il

model.supply = Constraint(model.i, rule=supply_rule)

def demand_rule(model, j):

return sum(model.x[i,j] for i in model.i) >= model.b[j]

model.demand = Constraint(model.j, rule=demand_rule)

def objective_rule(model):

return sum(model.c[i,jl+*model.x[i,j] for i in model.i for j in model.j)

model.objective = Objective(rule=objective_rule, sense=minimize)

DMSTI-DS-N009-19-09

20

	Introduction
	Algebraic modeling languages
	Reviewed AMLs

	Comparative analysis of AMLs characteristics
	Criteria of the practical comparison
	Findings

	Performance benchmark of AMLs
	AMLs testing library
	Model instance creation time
	Presolving in AMLs
	Presolve impact on solving

	Conclusions and future work
	References
	Appendix Nr. 1.
	Appendix Nr. 2.

