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Notations 

A  transposed matrix 

nI  n-dimensional identity matrix 

BA �  Hadamard product of matrices � and �  

A B  direct sum of matrices � ir � ��(�) trace of quadratic matrix � � matrix of spatial correlations � covariance matrix 	 design matrix of training sample Ф(·) standard normal distribution function �(·) standard normal distribution density function 

J  Fisher information matrix 
(�) the Heaviside step function 

�(�) Dirac delta function 

�� Multivariate normal distribution 

�� Asymptotically normal distribution 

��×� Matrix-variate normal distribution 

�
�(�) the vectorization of a matrix �. 

�
�ℎ(�) the half-vectorization of a symmetric matrix � 

  

Matrices and vectors are denoted with bald letters. 

  



Abbreviations 

AER – approximation of expected risk 

AEER - approximation of expected error rate 

BDF – Bayes discriminant function 

ER – expected risk 

EER – expected error rate 

GGRF – geostatistical Gaussian random field 

GMRF – Gaussian-Markov random field 

MT – maximum likelihood method 

PBDF – plug-in Bayes discriminant function 

STL – set of training locations 

  



Introduction 

Problem formulation and its topicality 

Spatial data contain information about both the attribute of interest as well as 

its location. The location may be a set of coordinates, such as the latitude and 

longitude or it may be a small region such as a county associated with 

observable feature. Observations made at different locations may be closer in 

value than measurements made at locations farther apart, for example, the 

elevation datasets have similar elevation values close to each other; the 

majority of minerals has location-dependent distributions; house prices and 

house value assessments are established by comparisons between a house 

and similar nearby houses; water (wind) polluters generate negative 

consequences for those downstream (downwind) of their locations, etc. 

(Griffith [10]). This phenomenon is called spatial correlation (autocorrelation). 

The presence of spatial correlation means that a certain amount of 

information is shared and duplicated among neighbouring locations. This 

feature violates the assumption of independent observations which is the 

background for many classical statistical methods. Therefore, when modelling 

spatial data it is important to pay sufficient attention to the modelling of 

spatial correlation as ignoring it may affect the accuracy of the prediction 

(Maity, Sherman [41]) and classification procedures. 

The thesis focuses on discriminant analysis (sometimes called supervised 

statistical classification) for spatially correlated data. The main purpose is to 

use the Bayesian classification rule, taking into account the spatial correlation 

between the data values and assuming that the observation to be classified 

and the training sample are correlated; to apply the proposed classification 

procedure to assign Gaussian random field observation to one of several 

prescribed classes and to assess the risk (probability of misclassification in 



particular case) of classification. The risk of classification is an indicator of the 

effectiveness of a discriminant function and could be affected by rejecting 

hypothesis about existence of spatial correlation. The risk of classification 

could also be affected by anisotropy, the situation when spatial correlation is 

stronger in one direction than into another. In situation of geometric 

anisotropy two additional parameters, anisotropy ratio and anisotropy angle 

should be included. 

Spatial statistics is a relatively young science; it emerged in early 1980s 

as a hybrid discipline of mining engineering, geology, mathematics, and 

statistics (Cressie [6]). Therefore there are no many studies in the field of 

discriminant analysis of spatially correlated data. Many authors (i.e. see 

Lawoko and McLachlan [35]; Kharin [33]) have investigated the problems 

concerned with classification of dependent observations (equicorrelated 

structures, autoregressive models) but Switzer [59] was the first to treat 

classification of spatial data. Mardia [43] extended this research by including 

spatial discrimination methods in forming the classification maps. The 

application of spatial contextual (or supervised) classification methods in 

geospatial data mining is considered by Shekhar et al. [56]. However these 

authors did not analyse classification risk. The comprehensive analysis of 

classification risk associated with discriminant analysis of uncorrelated data is 

presented in Dučinskas [12]. Later Šaltytė and Dučinskas [54] proposed the 

approximation of expected risk (in particular expected error rate) for 

classification of scalar Gaussian random field observation and generalised 

these results to the multivariate spatiotemporal model (Šaltytė-Benth, 

Dučinskas [55]). But the all above mentioned papers hold the assumption of 

independence between observation to be classified and training sample. In 

practice, such an assumption is often not reasonable, especially if observation 

of interest is close to the observations from training sample. This assumption 

was rejected in Dučinskas [13], [14]. It should be noted that here only the 



mean parameters and scale parameter of covariance function are assumed 

unknown for the geostatistical Gaussian random field models with continuous 

spatial support. 

In this thesis the extension to the complete parametric uncertainty case 

in classification of univariate and multivariate geostatistical Gaussian random 

field observation is analysed. Also the extension to the multiclass case is 

performed. Finally the extensions to the problem of classification of Gaussian 

spatial data observed on lattice are made. Conditionally autoregressive 

models (CAR) are also comprehensively explored. 

Aim and objectives (problems) 

The main aim of this dissertation is to perform linear discriminant analysis for 

spatial Gaussian data via plug-in Bayes discriminant function using different 

types of covariance and to analyse the risk of classification associated with the 

proposed classifier. 

To accomplish the aim of the dissertation, the following tasks are raised: 

 To derive formulas for classification risk and analytic expressions for its 

estimators for geostatistical GRF and to investigate the properties of the 

derived formulas. 

 To derive the asymptotic approximation formulas of the expected 

classification risk for univariate and multivariate geostatistical GRF: the 

case of two classes. 

 To derive the asymptotic approximation formula for the expected error 

rate of geostatistical GRF for multiclass case. 

 To derive the actual classification risk and the asymptotic approximation 

formula for univariate and multivariate Gaussian Markov random field 

observation. 



 To implement the proposed classification methods, to analyse the 

influence of different parameters to the classification risk by using 

simulated and real data. 

Methods 

Discriminant analysis of spatial data is the basis of applied research methods. 

Many proofs in this thesis use the properties of Gaussian distribution. Taylor 

series expansion is applied to get the asymptotic approximation formulas. The 

elements of matrix calculus are adapted as well. The unknown population 

parameters are estimated using maximum likelihood method. Numerical 

experiments are carried out employing statistical computing software R and 

its packages: geoR, gstat, INLA. 

Actuality and novelty  

The novelty of the results in the thesis: 

 Closed-form expression of asymptotic covariance matrix for 

geometrically anisotropic exponential covariance model.  

 Non-parametric test for spatial geometric anisotropy. 

 Actual classification risk and asymptotic approximation of expected risk 

for complete parametric uncertainty case for univariate and 

multivariate two-class classification problem. 

 Extension to classification problem of GMRF observed over lattice and 

specified by CAR model for univariate and multivariate two-class case. 

 Multiclass classification problem of univariate GGRF observation. 

 Closed-form expression of approximation of expected risk for 

geometrically anisotropic exponential covariance model. 



Structure of the dissertation 

Dissertation consists of introduction, three chapters, conclusions and 

bibliography. The first chapter is designated for Gaussian models and their 

characteristics. It includes the issues of modelling spatial data, discusses the 

estimators for spatial models and presents a non-parametric test to detect 

geometric anisotropy. Chapter 2 presents the main results of this dissertation 

concerned with discriminant analysis of spatial data. The last chapter 

introduces the numerical experiments and applications. 

Dissemination of the results 

The results of the dissertation have been presented in 19 publications and 

both national and international conferences. 
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Chapter 1 

Gaussian models and their 

characteristics 

In this chapter we describe the most commonly used linear model for spatial 

data and its characteristics. In section 1.1 the main definitions are presented, 

the linear model and its components to be used in the thesis are described.  

This section also contains description of anisotropic data and commonly 

found forms of anisotropy, briefly discusses the methods for determining 

anisotropy. In section 1.2 the ML estimators for spatial model parameters are 

discussed. The conditions which are sufficient for the asymptotic normality 

and weak consistency of ML estimators, established by Mardia and Marshall 

[42] are presented. In the subsection 1.2.1 the ML estimators for 

geometrically anisotropic covariance are obtained. Finally, a non-parametric 

test for geometric anisotropy is presented in section 1.3. 

1.1. Modeling spatial data 

For spatial phenomena, the model is usually a random field. Gaussian random 

fields (GRF) have a dominant role in spatial statistics and especially in the 

traditional field of geostatistics (Cressie [6]; Diggle and Ribeiro [8]; Chiles and 

Delfiner [5]). Traditionally (e.g. Cressie [6]), statistical models for spatial data 

are divided into two broad classes: geostatistical models with continuous 

spatial support), and lattice models, where data occur on lattice with a 

countable set of nodes or locations. We will focus on these two types of 

Gaussian random fields in this dissertation: geostatistical Gaussian random 

fields (GGRF) and Gaussian Markov random fields (GMRF), subclass of lattice 



model for Gaussian data. Recall that a random field �(�) is said to be 

Gaussian if, for any positive integer � and any set of locations ��, ��, … , �� ∈ℝ!, the joint distribution of �(��), … , �(��) is multivariate Gaussian. One 

attractive feature of Gaussian random fields is that spatial functions of first 

two moments determine the complete distribution (Haskard 2007). Gaussian 

Markov random fields are discrete domain GRFs equipped with a Markov 

property.  

Let " ⊂ ℝ! , $ ∈ ℕ denote a spatial domain of interest and � ∈ " 

represents a location where the observations of variable � are taken. Then �(�) is an observation of � at location �. Assume that �(�) is a Gaussian 

random field observation, then the model of observation �(�) is given by a 

general linear model 

 �(�) = '(�) + )(�). (1.1) 

Here '(�) is a deterministic mean function or spatial trend, which 

captures the large-scale spatial variation and ( ) s  is an error term (small-scale 

variation) (Haining [25]) which is generated by a zero-mean GRF {)(�): � ∈ "} 

with covariance function defined by the model for all ��, �� ∈ " 

-(��, ��) = �.�/)(��), )(��)0.  
For random fields in general and for GRFs in particular, the positive 

definiteness of the covariance function is a sufficient and necessary condition 

for establishing consistent finite-dimensional distributions. 

Definition 1.1. Let � be a positive integer ant let {�3, 4 = 1. . �} be a finite set 

of spatial locations. Then for real numbers {63 , 4 = 1. . �} the function -(∙) is 

said to be positive definite if 

8 8 6369-/�3 , �90 ≥ 0�
9<�

�
3<� . 



The mean function usually is expressed as a parametric linear model '(�) = =>(�)?, where =>(�) = (1, ��(�), … , �@(�)) is a vector of non-random 

covariates, and ? = /AB, … , A@0′  is a vector of parameters. 

In the dissertation the following parametric linear mean models are 

used:  

 Constant mean model, if D = 0 and AB ≡ ' = �.�F�. 

 Trend surface mean model, if �9(�), G = 1. . D, are polynomials of 

spatial coordinates.  

 Regression mean model, if �9(�), G = 1. . D, are regressors (independent 

variables). 

An essential concept related to the analysis of spatial processes is their 

stationarity or homogeneity (Yaglom [66]). A random field is called strongly 

stationary (or strictly stationary) if all its finite-dimensional distributions are 

invariant under the arbitrary spatial shifts. This assumption is often too strict 

and hard to be verified, so it is usually weakened as follows. 

Definition 1.2. Spatial process {�(�): � ∈ "} is called stationary or 

homogeneous if it satisfies the following properties: H(�(�)) ≡ ' = �.�F� for 

all � ∈ "; -(��, ��) = -(�� − ��) = �.�/�(��), �(��)0 for all ��, �� ∈ " is a 

function of distance only; H{|�(�)|�} < ∞ for all � ∈ ". These fields are also 

known as second-order, wide-sense or weakly homogeneous fields (Yaglom 

[66]; Haining [24]; Cressie [6]). 

Covariance function -(�) of stationary random field has the following 

properties: 

1) -(M) ≥ 0,  

2) -(−�) = -(�) for all � ∈ ", 

3) -(�) ≤ -(M) for all � ∈ ". 

An important characteristic of spatial data is spatial correlation or 

autocorrelation. Spatial correlation defines how a variable relates with itself in 



relation to its position in space. The correlation function of a stationary spatial 

process is defined as O(�) = -(�)/-(0). 

Strong stationarity implies stationarity in a wide sense. The vice versa is 

in general false but it holds for the case of Gaussian processes.  

A more general assumption than stationarity leads to modelling spatial 

variation using the semivariogram and is called an intrinsic stationarity 

(Cressie [6], Haining [25]).  

Definition 1.3. Suppose �6�/�(��) − �(��)0 = 2R(�� − ��) for all ��, �� ∈ ". 
The quantity 2R(∙) which is a function of increment �� − �� is called a 

variogram and R(∙) a semivariogram (Cressie [6]). 

A variogram 2R(∙) must satisfy a property called conditional negative 

definiteness. 

Definition 1.4. For any finite set of spatial locations {�3, 4 = 1. . �} and real 

numbers {63 , 4 = 1. . �} satisfying ∑ 63�3<� = 0, the function 2R(∙) is said to be 

conditionally negative definite if 

8 8 63692R/�3 , �90 ≤ 0�
9<�

�
3<� . 

Definition 1.5. The process {�(�): � ∈ "} is called intrinsically stationary if '(�) ≡ ' for all � ∈ " and semivariogram R(��, ��) = R(�� − ��), for all ��, �� ∈ ". 
Denote the increment by T = �� − ��, then if R(T) is a function on both 

the magnitude and the direction of T, the semivariogram function is said to 

be anisotropic and if R(T) depends only on the magnitude of T then it is 

treated as an isotropic one. 

In the case of isotropic stationary processes there is a simple 

relationship between the semivariogram and covariance function  R(T) = -(M)– -(T). 



A covariance (semivariogram) of the stationary isotropic spatial process 

could be described by three parameters: nugget effect, sill and range. 

 The quantity V� = -(M) –  lim|T|→ [B -(T) is called the nugget effect.  

 The sum V� + \� is called a sill of covariance, where \� = -(M) is the 

scale parameter giving the variability of the process and usually called a 

partial sill.  

 The distance, at which the sill is reached, is often known as the range 

of the covariance function and will be denoted in this dissertation by ]. 

Anisotropy 

If the process is anisotropic, then the covariance function (or semivariogram) 

changes with respect to direction. A covariance/semivariogram formed by 

using only a certain direction-oriented pairs of observations is called 

directional covariance/semivariogram. Following Zimmerman [73] anisotropy 

can take three forms: sill anisotropy, range anisotropy and nugget anisotropy. 

Range anisotropy is usually specified as either geometric (elliptical) range 

anisotropy or non-geometric range anisotropy. Chiles and Delfiner [5], Allard 

et al. [2] discuss geometric, zonal and separable models of anisotropy. Other 

authors classify anisotropies into two forms: geometric and zonal (Journel and 

Huijbregts [32], Goovaerts [21], Cressie [6], Wackernagel [61]). Following 

these authors geometric anisotropy occurs when the range, but not the sill, of 

the covariance changes in different directions. Zonal anisotropy exists when 

the sill of covariance/semivariogram function changes with direction 

(Wackernagel [61]). Directional semivariograms corresponding different types 

of anisotropy are depicted in Figure 1. Forms of anisotropy are also discussed 

in Budrikaitė and Dučinskas [A19].  



  

Figure 1. Directional semivariograms in the case of geometric and zonal anisotropy 

 

In this thesis we will focus on the geometric anisotropy. Geometric 

anisotropy means that the correlation is stronger in one direction than it is in 

the other directions. Mathematically, if one plots the directional ranges, in 

two dimensions they would fall on the edge of an ellipse, where major and 

minor axes of ellipse correspond to the largest and shortest ranges of 

directional semivariograms. Geometric anisotropy can be reduced to the 

isotropy by a mere linear transformation of the coordinates. A description of 

the linear coordinate transformation procedure can be found in Haskard [27], 

Sherman [57]. The issues of modelling geometric and zonal spatial variation 

are also analysed in Budrikaitė and Dučinskas [A18] and Budrikaitė [A17]. 

Under the geometric anisotropy covariance function is extended by 

adding two parameters: an anisotropy ratio and an anisotropy angle.  

 The anisotropy ratio, denoted by ^, is equal to the ratio of the lengths 

of the two principal ellipse axes. This parameter is always positive, it could be 

greater or less than 1, with isotropy corresponding to ^ = 1. 

 The anisotropy angle, �, is the angle of rotation which is made by 

major axis of the ellipse (which is known as direction of anisotropy) and the 

coordinate axis _�. In other words it determines the orientation of the 

ellipse. 

The assumption of the spatial isotropy is often made in practice due to 

ease of computation and simpler interpretation. But in many applications 



spatial isotropy is not reasonable assumption, thus it is very important to 

verify the existence of anisotropy. There are formal and non-formal methods 

(graphical techniques), to determine anisotropy. The examples of non-formal 

methods are: assessing directional semivariograms, drawing rose diagrams 

(Isaak, Srivastava [31]; Ecker, Gelfand [19]), semivariogram or contour maps 

(Isaak, Srivastava [31]). Despite the fact that these methods could be easily 

implemented, they are difficult to assess and open to interpretation. 

A variety of nonparametric tests of isotropy have been proposed by Lu 

and Zimmerman [37], [38], Guan et al. [22], Maity and Sherman [41]. An 

original, simple non-parametric test statistic based on directional empirical 

semivariograms was proposed by Dučinskas and Dreižienė [A14] and is 

presented in section 1.3. 

In Weller and Hoeting [63] a comprehensive review of the different non-

parametric methods for testing isotropy is presented. Several of the 

aforementioned tests were recently implemented in the R package spTest, 

available on CRAN (Weller [62]).  

1.2. Estimators for spatial model parameters 

In practical applications the true parameters are not usually known so they 

need to be evaluated using statistical sampling. For spatial data the adapted 

classical methods, such as Maximum Likelihood (MT) and Least Squares (LS) 

methods, may be used to estimate unknown parameters. There are also 

specific methods, i.e. Pseudo-maximum likelihood (PML) method (Cressie [6], 

Gupta and Robinson [23], Johansson [30]), Coding method (Besag [4], 

Johansson [30]), Bayesian method (Lu, Zhang [39], Dučinskas, Šaltytė [11]), 

which could be used for estimation of unknown parameters. In this thesis the 

ML method for theoretical results will be used. 



Consider a sample with � observations (� > D) which comes from GRF 

and could be described by the equation (1.1). Let a� = /�(��), … , �(��)0>
  

denote a vector of observations. Then the model of a� could be specified by 

the equation a� = b� + c� with mean vector b� = /'(��), … , '(��)0>
 and 

vector of random errors  c� = /)(��), … , )(��)0. 

For a non-constant (regression or trend surface) mean model b� would 

have the expression n
μ Xβ , where 	 is called a design matrix  

 	 = d1⋮1   ��(��)⋮��(��)   …⋱…   �@(��)⋮�@(��)g. (1.2)  

The only full-rank cases, i.e. �6�h(	) = D + 1, will be analysed in this 

thesis. The term c� has a multivariate Gaussian distribution ��(M, �(i)), 

where �(i) denotes a covariance matrix which for a random vector a� is 

specified as  

  

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

( , ; ) ( , ; ) ( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; ) ( , ; )

n

n

n

n n n n n

C C C C

C C C C

C C C C

C C C C

 
 
 
 
 
 
 
 

s s θ s s θ s s θ s s θ

s s θ s s θ s s θ s s θ

Σ θ s s θ s s θ s s θ s s θ

s s θ s s θ s s θ s s θ

…

…

…

⋮ ⋮ ⋮ ⋱ ⋮

…

. (1.3) 

The elements of this matrix are the values of parametric covariance 

function defined for all �3 ∈ ", 4 = 1. . �. i ∈ Θ ⊂ ℝk  is a l × 1  vector of 

unknown covariance parameters.  

Note. For notational convenience we will omit i if it does not play an 

essential role. 

The covariance matrix for geometric anisotropy case could be factorised 

as � = \�m, where \� is a scale parameter and m = no� + � is a standardized 

covariance matrix. Here n = V�/\� is a relative nugget or noise to signal 

variance (Diggle, Ribeiro [8]) and � is a spatial correlation matrix. 



If the nuggetless covariance (V� = 0) is considered then the factorized 

covariance matrix becomes  � = \��. 

The estimators of population parameters depend on the parametric 

uncertainty level. We will discuss three different cases of parametric 

uncertainty: 

 The vector of mean parameters ? is unknown and the vector of 

covariance parameters i is known. 

 The vector of mean parameters ? and scale parameter \� are 

unknown and m is known. 

 The case of complete parametric uncertainty. In this case all mean 

and covariance parameters, ? and i, are unknown.  

In general we will denote the combined vector of unknown parameters 

by  p = (?′, i′)′. 
Since the spatial process is Gaussian then the log-likelihood function for 

vector a� is 

 ln r = (2s)t�/� − �� ln|�| − �� (a� − 	?)>�t�(a� − 	?). (1.4) 

If the vector of mean parameters β is unknown then ML estimator is  

 ?vwx = (	>�ty	)ty	>�tya�~{@[�(?, (	>�ty	)ty). (1.5) 

It is obvious that the estimator (1.5) is unbiased and efficient since 

�.�/?vwx0 = |}t�, where |} = −H ~� �� x(?)�? � = 	>�ty	 defines the information 

matrix. 

In the case � = \�m, ML estimators for ? and \� are 

 ?vwx = (	>mty	)t�	>mtya�, (1.6) 

 \�wx� = �� /a� − 	?vwx0>mt�/a� − 	?vwx0. (1.7) 

It is easy to show that  

?vwx~�@[�(?, \�(	>mt�	)t�). 



The information matrix is |} = −H ~�� �� x/?, ��0�?�?� � = ��� (	>mt�	), thus the 

estimator ?vwx is unbiased and efficient.  

The ML estimator for \� is biased since H(\�wx� ) = \�(� − D − 1) �⁄  and \�wx� ~\���t@t�� /� .  
In this dissertation the unbiased estimator of \� will be used  

 \�wx� = \�wx� � (� − D − 1)⁄ . (1.8) 

The most complicated situation is the case of complete parametric 

uncertainty. When all covariance function parameters are unknown the 

analytic solution does not exist. For GRF the asymptotic properties of ML 

estimators are established by Mardia and Marshall [43]. 

Theorem 1.1. (Mardia and Marshall [43]). Suppose a�~�(	?, �(i)). Let   ^� ≤ ⋯ ≤ ^� be the eigenvalues of the covariance matrix � and let those of  

�3 , �39  be ^k3  and ^k39 , h = 1. . �, respectively with �^�3 � ≤ ⋯ ≤ �^�3 � and 

�^�39� ≤ ⋯ ≤ �^�39�  for 4, G = 1. . l. Here �3 = ��/�i3, �39 = ���/�i3�i9. 

Moreover, suppose that as � → ∞: 

(a)   lim ^� = - < ∞, lim�^�39� = -39 < ∞ ∀ 4, G = 1. . l;  
(b) ‖�3‖t� = _ ~�t��t�� for some  � > 0, for  4 = 1. . l; 
(c)   ∀ 4, G = 1. . l,  639 = �4� � ���(������)�/�� exists, where 

 �39 = �� /�t��3�t��90 and � = /6390 is a non-singular matrix;  

(d) lim(	′	)t� = 0. 

Then the ML estimator of p = (?′, i′)′ is weakly consistent and 

asymptotically Gaussian  

 pv ~��(p, |ty).  (1.9) 

Here | = |} ⊕ |�  is an information matrix with components 

 |} = 	>�ty	, (1.10) 

 (|�)39 = ��(�ty�3�ty�9)/2. (1.11) 



It should be noted that the estimators ?v and iv are asymptotically 

independent and the asymptotic covariance matrix is simply the inverse of 

Fisher information matrix. This theorem is proved under the increasing 

domain asymptotic framework in which the minimum distance between 

sampling points is bounded away from zero and thus the spatial domain of 

observation is unbounded (Zhang, Zimmerman [69]). This is the spatial 

analogue of the asymptotics observed in time series. 

There are two other asymptotic frameworks: infill asymptotics (or fixed-

domain asymptotics) and mixed domain asymptotics (Lahiri [34]). If the infill 

asymptotics framework is considered, the spatial domain is fixed (bounded) 

and locations of observations get denser, as the number of observations 

increases (Cressie [6]). 

The mixed domain asymptotics or hybrid asymptotics (Zheng, Zhu 2012) 

is a combination of increasing domain and infill asymptotics. Here the 

sampling region grows to infinity and at the same time the distance between 

neighbouring sampling sites goes to zero (Lahiri [34]). 

The asymptotic behaviour of spatial covariance parameter estimators 

can be different under the different asymptotic spatial frameworks. For 

example, Zheng and Zhu [70] showed that under each type of asymptotics the 

rates of convergence vary and under infill asymptotics some of the model 

parameter estimators are inconsistent.  

In the thesis the ML estimators derived under the increasing domain 

asymptotic framework are considered. 

1.2.1. ML estimators for geometrically anisotropic covariance 

As it was mentioned in the case of geometric anisotropy the covariance 

matrix of a� could be expressed as (see Ecker, Gelfand [19])  

 �(i) = V�o� + \��, (1.12) 



here V� is a nugget effect, \� is a scale parameter or partial sill, � = �(�) 

denotes matrix of spatial correlations. � = (], ^, �)′ since there are three 

parameters which determines spatial correlation in the case of geometric 

anisotropy: range parameter, ], anisotropy ratio, ^, and anisotropy angle, �. 

Then the vector of covariance parameters is i = (V�, \�, �′)> = (V�, \�, ], ^, �)′. 
Lemma 1.1. Consider a�~�(	?, �(i)) and assume that conditions 

formulated in Theorem 1.1 hold. Then the ML estimator iv satisfies the 

following properties (as � → ∞): 

ˆ pθ θ   and  iv~���(i, |�t�). 

Similarly 

ˆ pβ β  and  ?v~��@[�/?, |}t�0. 

The asymptotic covariance matrix |�  is a symmetric l × l matrix (in the 

case of geometric anisotropy we have 5 covariance parameters, l = 5) with 

elements defined in (1.11). The matrix |}  is defined in (1.10). 

In order to build the asymptotic covariance matrix |�  for (1.12), we need 

to find first order partial derivatives of �(i) with respect to the 4 − �ℎ 

covariance parameter, 4 = 1. .5. To get the analytic expressions of �3  we 

choose anisotropic exponential parametric model of covariance function 

 C(ℎ, i) =  V� + \�,   ℎ = 0                                           \� 
�l¡−¢(ℎ£)� + ^�(ℎ¤)�/]¥ , ℎ ≠ 0, (1.13) 

where 

ℎ£ = /ℎ§ cos � + ℎ« sin �0/]�¬§ and ℎ¤ = /−ℎ§ sin � + ℎ« cos �0/]�¬§,  

ℎ§ = �3 − �9 , ℎ« = ­3 − ­9 , 4, G = 1. . �. �3  and ­3  denotes the X and Y 

coordinates of location �3. To get (1.13) the linear coordinate transformation 



procedure was applied. More about coordinate transformation procedure can 

be found in Sherman [57], Chiles and Delfiner [5]. 

Lemma 1.2. Consider the exponential covariance model (1.13). Then the first 

order partial derivatives, �3 = ��/�i3 , 4 = 1. .5, are   

 �� = �� �V�⁄ = o�, (1.14) 

 �� = �� �σ�⁄ = �,  (1.15) 

 �¯ = �� �α⁄ = ±�
²� � ∘ ´²,  (1.16) 

 �µ = �� �λ⁄ = − ·±�
¸ � ∘ ´·,  (1.17) 

 �¹ = �� �φ⁄ = ±�(·�t�)¸ � ∘ ´».  (1.18) 

Here ´², ´¼, ´½ are the � × � matrices with diagonal elements equal to 

0. The off-diagonal elements (4 ≠ G) are the following 

 (¾²)39 = ¿/ℎ£390� + ^�/ℎ¤390�, (1.19) 

 (¾¼)39 = /ℎ¤390� ¿/ℎ£390� + ^�/ℎ¤390�À , (1.20) 

 /¾½039 = ℎ£39ℎ¤39/¿/ℎ£390� + ^�/ℎ¤390�
, (1.21) 

ℎ£39 = /ℎ§39 �.F � + ℎ«39 F4� �0/], ℎ¤39 = /−ℎ§39 F4� � + ℎ«39 �.F �0/], 

ℎ§39 = �3 − �9 , ℎ«39 = ­3 − ­9 , 4, G = 1. . �. 

Having the expressions of partial derivatives we can build the asymptotic 

covariance matrix |� . 
The obtained expressions could be applied constructing the optimality 

criterion for the spatial sampling design (Zimmerman [74]). They will also be 

applied in the thesis for solving classification problems of spatial data. 



1.3. Non-parametric test for spatial geometric 

anisotropy 

A conventional practice when checking for isotropy is to assess plots of 

empirical semivariograms. However these graphical techniques are open to 

interpretation. Guan et al. [22] have proposed a formal approach to test 

isotropy which is based on the asymptotic joint normality of empirical 

semivariograms for multiple directions. An r�-consistent subsampling 

estimator for asymptotic covariance matrix of the empirical semivariogram is 

used to construct a test statistic. But the subsampling procedure takes a large 

amount of computing time. We propose the simpler test statistic in Gaussian 

case under the assumption of independence of the classical semivariogram 

estimators. These results are published in Dučinskas, Dreižienė [A14]. 

Suppose that spatial data are observations of a GRF modelled by the 

equation �(�) = '(�) + )(�) which is specified in (1.1) with constant mean 

model. According to Definition 1.3 recall that  
�� �6�/�(��) − �(��)0 = R(�� −

��) for all ��, �� ∈ " is called a semivariogram. We consider the geometric 

anisotropy case which means that semivariograms have the same nugget, 

same sill but different ranges in to perpendicular directions (see Wackernagel, 

2003).  

Denote by Á� = {�3 ∈ ", 4 = 1. . �} the set of locations where GRF is 

observed and use the classical semivariogram estimator proposed by 

Matheron (1962), based on the method of moments (see Cressie [6]) 

 R�(T) = �
|Â(T)| ∑ ~�(�3) − �/�90�

�
(��,��)∈Â(T) . (1.22) 

Here N(T) denotes all pairs (�3 , �9) for which �Ä, �Å ∈ Á�, �Ä − �Å = T  

and |�(T)| denotes the cardinality of the set �(T). 



To assess the hypothesis of isotropy, we choose the lag set Æ including 

spatial lags ℎ�, ℎ�, … , ℎÇ in the direction of major axis of ellipse and spatial 

lags ℎÇ[�, ℎÇ[�, … , ℎ�Ç perpendicular to that direction, i.e.  

Æ = (ℎ�, … , ℎÇ , ℎÇ[�, … , ℎ�Ç)′. 
Assume that |ℎ3| = |ℎ3[Ç|, 4 = 1. . È. 

The hypothesis of isotropy is expressed as 

¾B: R(ℎ3) = R(ℎ3[Ç), 4 = 1. . È. 

Rejecting this hypothesis means accepting geometric anisotropy. 

Set m> = (R(ℎ�), … , R(ℎ�Ç)) and let mÉ > = (R�(ℎ�), … , R�(ℎ�Ç)) be the 

vector of semivariogram estimators (1.22) obtained over Á�. 

In what follows we establish the asymptotic properties of mÉ  under an 

increasing domain framework proposed by Guan et al. [22]. Under some 

regularity conditions, it was proved that 

√�/mÉ − m0  Ë→ ��Ç (M, �Ì) as � → ∞, 

where �Ì is the asymptotic covariance matrix with elements of complex 

structure. 

Under the hypothesis of isotropy, there exists a full row rank matrix � 

such that �m = M (Lu, Zimmerman [37]). � is called a contrast matrix. Then 

under the hypothesis of isotropy it follows from continuous mapping theorem 

that 

 �/�mÉ0>(��m�>)t�/�mÉ0 Ë→ �Í
� as � → ∞, (1.23) 

where � denotes the row rank of �. 

Following Cressie [6] we have 

�6�/mÉ0 ≅ $46Ï Ð2R�(ℎ�)|�(ℎ�)| , … , 2R�(ℎ�Ç)|�(ℎ�Ç)|Ñ, 



where the approximation yields only little loss in estimation efficiency 

especially in the case of independence of the classical semivariogram 

estimators for different spatial lags. 

We propose the following estimator of �Ì  

�Ì = �$46Ï Ð2R�(ℎ�)|�(ℎ�)| , … , 2R�(ℎ�Ç)|�(ℎ�Ç)|Ñ 

and use it to form the test statistic 

 Òv = �/�mÉ0>(��m�>)t�/�mÉ0. (1.24) 

The proposed test statistic according the Slutsky theorem (Ferguson 

[20]) follows asymptotic chi-square distribution, Òv~�Í�. 

So the hypothesis ¾B is to be rejected if Òv > �Í,�� , where �Í,��  is the l-

critical value of a chi-squared distribution with � degrees of freedom. If 

Òv ≤ �Í,�� , the hypothesis ¾B is to be accepted.  

The simulation experiment demonstrating the efficacy of the proposed 

test is presented in the section 3.2. 

  



Chapter 2 

Classification of spatial GRF 

observations 

This chapter contains the main results of the dissertation. In Section 2.1 the 

general definitions related with discriminant analysis are introduced. Later the 

formulas for Bayes risk and actual risk as well as formulas for error rates and 

actual error rates for different number of populations are presented. In 

Section 2.2 the problem of classification of GGRF observation is analysed. 

Bayes risk associated with Bayes discriminant function and the asymptotic 

approximation formula of expected risk (AER) are derived. The above 

mentioned results are obtained for univariate and multivariate cases and for 

different number of populations. Finally, the closed-form expression of 

asymptotic covariance matrix for exponential covariance model is presented.  

Section 2.3 is designated for classification problem of GMRF observation into 

one of two populations. The univariate and multivariate cases are considered. 

Certain parts of this chapter are published in [A1]-[A4], [A6]-[A8], [A10]-[A13]. 

2.1. Elements of linear discriminant analysis (main 

concepts and definitions) 

Consider the problem of classification of a single GRF {�(�): � ∈ " ⊂ ℝ!} 

observation �B = �(�B), �B ∈ ", to one of � populations ΩÔ , � = 1. . � (also 

known as classes or categories). Following Beret and Calder (2016) the spatial 

location (�B) of the observation to be classified will be called the focal 

location. Based on that, we will call the above mentioned observation (�B) as 

a focal observation (FO). 



The model of FO �B in population ΩÔ  is �(�) = 'Ô(�) + )(�). Here 'Ô(�) is a 

mean function or spatial trend. The error terms ε(�) is generated by the same 

zero-mean GRF {ε(�): � ∈ D ⊂ ℝ!} with covariance function defined by the 

model for all �, � + T ∈ ", -(T) = �.�()(�), )(� + T)), � = 1. . �. 

Denote by Á� = {�3 ∈ ", 4 = 1. . �} the set of locations where training 

sample Ò = (�(��), … , �(��))′ is taken, and call it the set of training locations 

(STL). It specifies the spatial sampling design or spatial framework for training 

sample (see Shekhar et al. [56]). The Á� is partitioned into a union of � 

disjoint subsets, i.e., Á� = Á(�) ∪ … ∪ Á(�), where Á(Ô) contains �Ô  (� =∑ �Ô�Ô<� ) observations of �(�) from population ΩÔ, � = 1. . �.  
Then the training sample Ò = (Ò�>, … , Ò�> )′ is a n-dimensional vector 

composed of observations which come from different populations and let Ø 

denote the realization of training sample Ò. Then the model of training 

sample in a vector form is  

 Ò = Ù + Ú, (2.1) 

here Ù = ~'�(��), … , '�/���0, … , '�/���[⋯[�ÛÜ�[� 0, … , '�(��)�>
 and Ú is a 

n-dimensional vector of random errors )(�). 

Since the assumption of independence of training sample and the FO �B 

was rejected, the conditional �(�B) distributions will be used.  

The risk of classification: general definitions 

Let lÔ(�B|Ø), � = 1. . � denote the class-conditional probability density 

function of �B, given Ò = Ø in the population ΩÔ, describing the distribution of 

the feature vector in each population (Theodoridis [60]). The losses of 

classification or the loss function when an object from the population � is 

allocated to the population h, is denoted by r(�, h), �, h = 1. . �. The loss r(�, �) correspond to correct decisions, in practice, these are usually set equal 

to zero, although we have considered them for the sake of generality.  



The following assumptions are made: 

(A1) The prior probabilities sÔ , � = 1. . �, ∑ sÔ�Ô<� = 1, depend on �B, but 

do not depend on training sample Ò. 

(A2) The values of loss function r(�, h) are non-negative and finite. 

Moreover, they do not depend on �B or training sample configuration. 

The classification rule, given Ò = Ø, will be denoted as "�(•): Þ →{1. . �}. Then the expected loss or conditional risk (McLachlan [46]) of random 

observation �B given Ø from population ΩÔ, by prescribed classification rule is 

given by 

O/�, "�(•)0 = Hßà|�,Ôár/�, "�(�B)0â 

and the total risk is the total excepted losses 

 O/"�(•)0 = ∑ sÔ�Ô<� O/�, "�(•)0. (2.2) 

The rule minimizing the total risk (2.2) is said to be Bayes classification 

rule (McLachlan [46], Anderson [3]) and will be denoted as "�ã(•) and for the 

observation �B it could be expressed as 

 "�ã(�B) = 6�Ï �4�{k<�..�}{∑ sÔlÔ(�B|Ø, p)r(�, h)�Ô<� }. (2.3) 

Recall that p denotes the combined vector of unknown population 

parameters. Then Bayes risk, associated with Bayes classification rule (2.3) is 

 Oã = O/"�ã(•)0 = ∑ sÔHßà|Ø,Ôr/�, "�
ã(�B)0�

Ô<� .  (2.4) 

Let äÔkã (�B) denote pairwise Bayes discriminant functions  

 äÔkã (�B) = ∑ s9�9<� l9(�B|Ø, p)$(G, �, h),  (2.5) 

where $(G, �, h) = r(G, �) − r(G, h), �, h = 1. . �. Also let 
(�) be a Heaviside 

step function, 


(�) = �0, 4å � < 01, 4å � ≥ 0. 



Then the Bayes risk, defined in (2.4) and associated with (2.5) could be 

expressed as (see Dučinskas [12]) 

 Oã(p) = ∑ sÔHßà|�,Ôr(�, h) ∏ 
(äk9
ã (�B))9<�,9çk

�
Ô,k<� . (2.6) 

Since in practical situations the complete parametrical certainty of 

populations usually is not attained, the parameter estimators from training 

sample should be plugged into the Bayes discriminant function (BDF). Plug-in 

BDF will be abbreviated as PBDF.  

Let pv  denote the vector of parameters estimates. Thus replacing the 

vector of the unknown parameters of äÔkã  by the vector of estimates we get 

pairwise PBDF 

 äÉÔkã (�B) = äÔkã /�B, pv 0. (2.7) 

Definition 2.1. The actual risk, given Ò = Ø, for PBDF (2.7) is defined as 

 Oã(pv ) = ∑ sÔHßà|�,Ôr(�, h) ∏ 
(äÉk9
ã (�B))9<�,9çk .�

Ô,k<�  (2.8) 

Definition 2.2. The expectation of the actual risk with respect to the 

distribution of  Ò is called the expected risk (ER) and is designated as 

 HO = Hè/Oã(pv )0. 

The ER is useful in providing a guide to the performance of the plug-in 

classification rule because it is actually formed from the training sample. The 

ER is the performance measure to the PBDF similar as the mean squared 

prediction error (MSPE) is the performance measure to the plug-in kriging 

predictor (see Diggle e al. [9]).  

The risk of classification for � = 2 

The two-class case is a special case. The most of the author’s publications 

([A1], [A2], [A3], [A7], [A8], [A9], [A10], [A11], [A12], [A13], [A15], [A16]) deal 

with two-class case, that is the reason this case is analysed separately. 



Suppose we have a two-class case (� = 2). Then the Bayes classification 

rule is 

"�ã(�B, p) = 6�Ï �6�{Ô<�,�}{ÏÔlÔ(�B|�, p)}, 

where ÏÔ = sÔ/r(�, 3 − �) − r(�, �)0, � = 1,2.  
Since replacing the discriminant function by its monotonically increasing 

function does not influence the decision, it is more convenient to work in 

terms of log-ratios. The pairwise Bayes discriminant function based on log-

ratios will be denoted as êÔkã(�B, p). 

For the two-class case a single discriminant function is required, so we 

skip the indices from the notation of pairwise Bayes discriminant function, 

that is, ê��ã (�B) is replaced by êã(�B). Then the expression of Bayes 

discriminant function has the form 

 êã(�B, p) = �� ~��(ßà|Ø,p)
��(ßà|Ø,p)� + R∗ , (2.9) 

here R∗ = ln ~ì�ì��. According to (2.9) the observation �B, given Ò = Ø is 

allocated to the population Ω�,  if êã(�B, p) ≥ 0 and to the population Ω� 

otherwise. 

Then the Bayes risk could be evaluated by 

 Oã(p) = ∑ ∑ sÔr(�, h)íÔk�k<��Ô<� ,  (2.10) 

where for �, h = 1,2, íÔk = íÔ((−1)kêã(�B, p) < 0). Here the probability 

measure íÔ  is based on the conditional distributions of �B ∈ ΩÔ. 
Since íÔk + íÔÔ = 1 it is easy to reduce (2.10) to a single-sum function 

 Oã(p) = ∑ (sÔr(�, �) + ÏÔíîÔ)�Ô<� ,  (2.10a) 

where íîÔ = íÔ((−1)Ôêã(�B, p) > 0). 

Then the actual risk, given Ò = Ø, for PBDF is defined as  

 Oã(pv ) = ∑ ∑ sÔr(�, h)íÉÔk�k<��Ô<� ,  (2.10b) 



where for �, h = 1,2, íÉÔk = íÔ/(−1)kêã/�B, pv 0 < 00. 
 

The probability of misclassification 

We analyse the risk of classification if the general loss function is considered, 

that is, r(�, h) is a non-negative finite function. If r(�, h) = 1 − �Ôk, where �Ôk  

is the Kronecker delta, the risk becomes the probability of misclassification or 

error rate (Dučinskas [12]). Such a loss function will be called a zero-one loss 

function and it is often used if there is no possibility to evaluate the losses 

more accurately. 

For a zero-one loss function the pairwise Bayes discriminant functions, 

defined in (2.5), get the simpler expressions  

äÔkã (�B, p) = sÔlÔ(�B|Ø, p) − sklk(�B|Ø, p). 

In the following we will use the equivalent discriminant functions  

 êÔkã(�B, p) = �� ~�ï(ßà|Ø,p)
�ð(ßà|Ø,p)�  +RÔk, (2.11) 

here RÔk = ln ~ñïñð�, �, h = 1. . �, h ≠ �. According to the (2.11) the observation 

�B, given Ò = Ø, is allocated to the population ΩÔ  if êÔkã(�B, p) ≥ 0, for all �, h = 1. . �, h ≠ �.  

Then the probability of misclassification due to aforementioned Bayes 

classification rule (2.3) is (see Anderson [3]) 

 íã(p) = 1 − ∑ sÔí-Ô�Ô<� ,  (2.12) 

where í-Ô = íÔ(êÔkã(�B, p) ≥ 0, � = 1. . �, � ≠ h) corresponds to the 

conditional probability of correct classification of the observation �B ∈ ΩÔ, 
and íÔ  is a probability measure with a probability density function  lÔ(�B|Ø, p). 



Plugging in the parameters estimators into (2.12) we get PBDF (2.7).  

Then the actual misclassification probability or actual error rate could be 

defined. 

Definition 2.3. The actual misclassification probability or actual error rate 

incurred by PBDF is 

 íã(pv ) = 1 − ∑ sÔí-òÔ�Ô<� , (2.13) 

where í-òÔ = íÔ(êvÔkã/�B, pv 0 ≥ 0, � = 1. . �, � ≠ h). 

Definition 2.4. The expectation of the actual error rate with respect to the 

distribution of Ò is called the expected error rate (EER) and will be designated 

as HHO = Hè ~Oã/pv 0�. 

The probability of misclassification for � = 2 

For two-class case with zero-one loss function the discriminant function and 

misclassification probability are of the following form 

 êã(�B, p) = �� ~��(ßà|Ø,p)
��(ßà|Ø,p)� + R,  (2.14) 

where R = ln (s�/s�). 

 íã(p) = ∑ sÔíÔ�Ô<� , (2.15) 

where for � = 1,2, íÔ((−1)Ôêã(�B, p) ≥ 0). 
 

The further theoretical results will be based on the following assumption: 

 (A3) The mean models in the populations ΩÔ, � = 1. . �, are different 

parametric models bÔ(�) = =>(�)?Ô, defined in the section 2.1. 



2.2. Classification of GGRF observation 

In this section we solve classification problem of geostatistical Gaussian 

random field (GGRF) observation. We use the plug-in Bayes discriminant 

function and derive the actual classification risk and the approximation of 

expected risk for the proposed classifier. We assume a complete parametric 

uncertainty case, where all mean parameters and all covariance parameters 

are unknown and are estimated using ML method. These results are the 

extension to the ones published in Dučinskas [14], [15] where the factorised 

nuggetless covariance function was considered and the only one covariance 

parameter \� was assumed to be unknown. 

In this section we also present closed-form expression of AER for 

geometric anisotropic exponential covariance model. 

2.2.1. Univariate case 

Two-class case 

We will initially focus on the univariate two-class case for GGRF. The main 

purpose is to assign the FO �B to one of two populations Ω� or Ω�. Under the 

assumption (A3) the model of observation �(�) in the population ΩÔ  can be 

written as  

 �(�) = =>(�)?Ô + )(�), � = 1,2. (2.16) 

Then the model of training sample has the form  

 Ò = 	? + Ú, (2.17) 

where  

 	 =⊕Ô<�� 	Ô   (2.18)  



is a � × 2D design matrix composed by a direct sum of 	Ô, the �Ô × D   

matrices of regressors for training samples ÒÔ, � = 1,2 and ? = (?�> , ?�> )′ is a 2D × 1 vector of parameters. 

Let -(i) and �B(i) denote the covariance functions between the 

components of training sample and between Ò and �B, respectively. Recall 

that covariance matrix between the components of Ò  was denoted as �. 

Then let óB represent the vector of covariance between Ò and �B. 

The training sample Ò has a multivariate Gaussian distribution 

 Ò~��(	?, �). (2.19) 

Using properties of Gaussian distribution we get the conditional 

probability density function of �B in population  ΩÔ , � = 1,2 

 lÔ(�B|Ø) = å(�B|'Ô� , \�
�) (2.20) 

with conditional mean and variance  

 'Ô� = H(�B|Ò = Ø; ΩÔ) = =B> ?Ô + ôB> (Ø − 	?), � = 1,2, (2.21)

 \�� = �6�(�B|Ò = Ø; ΩÔ) = -(M) − óB> �t�óB, (2.22) 

where =B> = /��(�B), … , �@(�B)0 and ôB> = óB> �t�.  

Since -(M) = \�, óB = \�õB and �t� = \t�mty the conditional variance 

could be rewritten as 

 \�� = �6�(�B|Ò = Ø; ΩÔ) = \�(1 − õB>mtyõB).  (2.23) 

Then BDF specified in (2.9) is a linear �B function 

 êã(�B, p) = (�B − ('�� + '��)/2)′ ('�� − '��)/\�� + R∗. (2.24) 

Replacing the conditional mean and variance into (2.24) by the 

expressions given in (2.21) and (2.23) we get the following formula 

 êã(�B, p) = (�B − ôB> (Ø − 	?) − =B> o[? 2⁄ )>( =B> ot?)/Èσ� + R∗,  (2.25) 

where o[ = (o@ , o@), ot = (o@ , −o@) and  È = 1 − õB>mtyõB. 



Now, the Bayes risk, associated with this linear BDF (2.25), will be 

derived, but before that it is essential to introduce Mahalanobis distance. The 

Mahalanobis distance is important in classification problems because it 

provides a way to take into account spatial correlations when computing 

distances between populations. Let  

 $� = (ö�÷tö�÷)�
�÷� = (ö�÷tö�÷)�

��Ç  (2.26) 

be the squared conditional Mahalanobis distance between Ω� and Ω� at the 

location �B. Then the squared marginal Mahalanobis distance is specified by 

formula 

 Δ� = ('� − '�)�/\�. (2.27) 

These distances will be considered as class separation measures. Using 

(2.21) and (2.23) it is easy to show that conditional Mahalanobis distance $, 

does not depend on the realizations of training sample Ò, it depends only on 

the location of training sample elements (training sample configuration) 

$� = ù���
�÷� = ù�

Ç . 

Lemma 2.1. Suppose the assumptions (A1), (A2), (A3) hold. Then Bayes risk 

associated with BDF (2.25) for two-class case is 

 Oã(p) = ∑ {sÔr(�, �) + ÏÔΦ(−$/2 + (−1)ÔR∗/$)}�Ô<� .  (2.28) 

Proof. Since êã(�B, p) is a linear function of �B then using the properties of 

Gaussian distribution the conditional distribution of êã(�B, p) in population ΩÔ  is a conditional univariate normal distribution with mean  

HÔ/êã(�B, p)0 = (−1)Ô[�$�/2 + R∗, � = 1,2. 
and variance 

û6�/êã(�B, p)0 = $�. 

i.e. êã(�B, p)|ΩÔ~�((−1)Ô[�$�/2 + R∗, $�). 



By using the properties of normal distribution we obtain 

 Oã(p) = ∑ {sÔr(�, �) + ÏÔΦ(−$/2 + (−1)ÔR∗/$)}�Ô<� . 

Here Φ(∙) is the standard normal distribution function.  

 

In order to get plug-in BDF we have to obtain the estimators of conditional 

mean (2.21) and variance (2.23). For the case of complete parametric 

uncertainty the estimators are the following  

 '̂Ô� = =B> ?vÔ + ôýB> /Ø − 	?v0,  (2.29)

 \��� = σý�Èv.  (2.30) 

Here ?v and iv denote the estimators of ? and i, thus pv = /?v>, iv>0 

denotes the vector of population parameters estimators. Replacing the 

obtained estimators into (2.25) we get the plug-in BDF  

 êã/�B, pv 0 = /�B − ôýB> /Ø − 	?v0 − =B> o[?v 2⁄ 0>( =B> ot?v)/Èvσý� + R∗.  (2.31) 

Lemma 2.2. The actual risk for PBDF êã/�B, pv 0 is defined as 

 Oã(pv ) = ∑ ásÔr(�, �) + ÏÔΦ(þÉÔ)â�Ô<� .  (2.32) 

Here  

 þÉÔ = (−1)Ô/(6Ô − �É)sgn(=B> ot?v)/\� + R∗\��� �=B> ot?v�\�À 0, (2.33) 

 6Ô = =B> ?Ô + ôB> (Ø − 	?), � = 1,2, (2.34) 

 �É = ôýB> /Ø − 	?v0 + =B> o[?v/2. (2.35) 

Proof. In population ΩÔ  the conditional distribution of êã(�B, pv ) given Ò = Ø 

is Gaussian  

êã/�B, pv 0|ΩÔ  ~�('Ô
�, \�

� ), 

where mean and variance have the following expressions 

'Ô� = (6Ô − �É)(=B> ot?v)/\��� + R∗, 



\�
� = /=B> ot?v0�\��\��µ . 

Then the probabilities of misclassification are 

íî� = í�/êv ã(�B) < 00 = Φ Ð− '��\�
Ñ =

= Φ Ð− (6� − �É)FÏ�(=B> ot?v)\� − R∗\����=B> ot?v�\�Ñ, 
íî� = í�/êv ã(�B) ≥ 00 = Φ Ð'��\�

Ñ = 

= Φ Ð(6� − �É)FÏ�(=B> ot?v)\� + R∗\����=B> ot?v�\�Ñ. 
Using (2.10a) we complete the proof of lemma. 

Then the expected risk could be evaluated by 

 HO = Hè ~Oã/pv 0� = Hèá∑ /sÔr(�, �) + ÏÔΦ(þÉÔ)0�Ô<� â. (2.36) 

Asymptotic expansion of the expected risk 

As it was already mentioned, the actual risk and the expected risk are usually 

considered as performance measures for the plug-in BDF. Contrary to the 

actual risk, the expressions for the expected risk often are very cumbersome. 

This makes it difficult to build any qualitative conclusions. Therefore, 

asymptotic approximations of the expected risk are especially important.  

In this dissertation the approximation of expected risk (AER) based on 

asymptotic expansion is proposed. We focus on the maximum likelihood 

estimators, since the inverse of the information matrix associated with 

likelihood function of training sample well approximates the covariance 

matrix of these estimators. The asymptotic properties of ML estimators 

showed by Mardia and Marshall [42] under increasing domain asymptotic 



framework and subject to some regularity conditions are essentially exploited 

(see section 1.2). 

Consider the two-class case of complete parametric uncertainty, where ? = (?�> , ?�> ) and i = (V�, \�, ], ^, �)′ are unknown. 

Let �}(k)
, ��(k)

, h = 1,2 denote the h − �ℎ order derivatives of Oã(pv ) 

with respect to ?v and iv evaluated at the point ?v = ?, iv = i  and let �}�(�)
 

denote the matrix of the second order derivatives of Oã(pv ) with respect to 

to ?v and iv evaluated at the point ?v = ?, iv = i. Also the following 

assumption is made: 

(A4) The training sample Ò and estimator iv are statistically independent.  

Restrictive assumption (A4) is exploited intensively by many authors (see 

Zimmerman [74]; Zhu and Stein [71]), since Abt [1] showed that finer 

approximations of MSPE considering the correlation between Ò and iv  do not 

give better results. 

Let �� = �ôýB/�iv> be the � × l matrix of the first order partial 

derivatives evaluated at the point iv = i and let �(∙) be the standard normal 

distribution density function. Denote by �� = (σý��)�(�)
 the vector of the first 

order partial derivatives of \��� = -ò(M) − ó̂B> �vt�ó̂B evaluated at the point 

iv = i. 

Theorem 2.1. Suppose that observation �B to be classified by BPDF (2.31) and 

let Mardia and Marshall conditions (Theorem 1.1) and assumption (A4) hold. 

Then the approximation of ER is 

 �HO = ∑ ÏÔΦ(þÔ)�Ô<� + Ï��(þ�)$(È} + È�)/2\��, (2.37) 

 È} = �>|}ty�, |} = 	>�ty	, (2.38) 

 �> = ôB> 	 − =B> (o[ 2⁄ + R∗ot/$�), (2.39) 

 È� = ��/���|�ty��> 0 + (R∗)���> |�ty��/$�\��. (2.40) 



Proof. Expanding Oã(pv ) in the Taylor series around the point ?v = ?, iv = i 

we have 

Oã/pv 0 = Oã(p) + O}(�)Δ?v + ��(�)Δiv + 

 + �� ~/Δ?v0>�}(�)Δ?v + 2/Δ?v0>�}�(�)Δiv + /Δiv0>��(�)Δiv� + O¯, (2.41) 

where Δ?v = ?v − ?, Δiv = iv − i  and O¯ is the remainder term. 

Then we have to find partial derivatives of Oã(pv ) = ∑ ásÔr(�, �) +�Ô<�ÏÔΦ(þÉÔ)â and to evaluate them at the point ?v = ?,  iv = i. 

Partial derivatives of standard normal distribution function with respect 

to ?v and iv are 

∂Φ(þÉÔ)�?v = �/þÉÔ0 �þÉÔ�?v , 
∂Φ(þÉÔ)�iv = �/þÉÔ0 �þÉÔ�iv . 

Partial derivatives of standard normal distribution density function with 

respect to ?v and iv are 

∂φ(þÉÔ)�?v = −�/þÉÔ0þÉÔ �þÉÔ�?v , 
∂φ(þÉÔ)�iv = −�/þÉÔ0þÉÔ �þÉÔ�iv . 

Replacing the estimators ?v and iv by the true values into �/þÉÔ0 it is easy 

to show that Ï��(þ�) = Ï��(þ�), where þÔ = −$/2 + (−1)ÔR∗/$, � = 1,2. 

Then the partial derivatives of Oã(pv ) evaluated at the point ?v = ?, 
 iv = i are 

 O}(�) = Ï��(þ�) ∑ þÔ}(�)�Ô<� , (2.42) 

  O�(�) = Ï��(þ�) ∑ þÔ�(�)�Ô<� , (2.43) 

 O}(�) = Ï��(þ�) ∑ ~þÔ}(�) − þÔþÔ}(�)/þÔ}(�)0>��Ô<� , (2.44) 

 O�(�) = Ï��(þ�) ∑ ~þÔ�(�) − þÔþÔ�(�)/þÔ�(�)0>��Ô<� . (2.45) 



 O}�(�) = Ï��(þ�) ∑ ~þÔ}�(�) − þÔþÔ�(�)/þÔ}(�)0>��Ô<� . (2.45a) 

Here þÔ}(k)
 represents the h − �ℎ order partial derivatives of þÉÔ with 

respect to ?v at the point ?v = ?, iv = i, þÔ�(k)
 represents the h − �ℎ order 

partial derivatives of þÉÔ with respect to iv at the point ?v = ?, iv = i and þÔ}�(�)
 

represents the second order partial derivative of þÉÔ with respect to ?v and iv at 

the point ?v = ?, iv = i. To obtain these derivatives at first we differentiate 

(2.33)-(2.35) with respect to ?v and iv 

�þÉÔ�?v = (−1)Ô ��(ôýB> /Ø − 	?v0 − =B> o[?v/2)�?v − R∗\���/=B> ot?v0� �/=B> ot?v0�?v � \�� = 

= (−1)ÔáôýB> 	 − =Bo[ 2⁄ − R∗=Bot $ò�⁄ â/\�, 

�þÉÔ�iv = (−1)Ô  −�(ôýB> /Ø − 	?v0 + =B> o[?v/2)�iv + R∗
�=B> ot?v� �(\���)�iv 	 \�À = 

(−1)Ô  − �(ôýB> )�iv (Ø − 	?v) + R∗
�=B> ot?v� �(\���)�iv 	 \�À . 

Notice that the estimator of squared conditional Mahalanobis distance is 

$ò� = /=B> ot?v0�/\���. 

Then we evaluate these derivatives at the point ?v = ?, iv = i and get 

the following expressions 

þÔ}(�) = (−1)Ô�/\�, 

þÔ�(�) = (−1)Ô(−��> (Ø − 	?) + R∗��/($\�))/\�. 

It is easy to notice that  

∑ þÔ}(�) = 0�Ô<�  and  ∑ þÔ�(�) = 0�Ô<� . 

The application of the above formulas to (2.43)-(2.45a) yields 

 O}(�) = 0, O�(�) = 0, (2.46) 



 O}(�) = Ï�$� ~− !� − 
∗
! � ��>/\��, (2.47) 

 O�(�) = ì�!½(��)�÷� ~−��> (Ø − 	?) + �∗�
!�÷ � ~−��> (Ø − 	?) + �∗�
!�÷ �>. (2.48) 

It is easy to show that all elements of matrix �}�(�)
 are finite and under 

the assumption (A4) we get Hè/Δ?v, Δiv0 = 0. Replacing Hè(Δ?vΔ?v′) and 

Hè(ΔivΔiv′) by their asymptotic approximations, |}ty and |�ty we get the 

following approximations 

 Hè ~/Δ?v0>�}(�)/Δ?v0� ≅ ì�!½~t��t
∗ !⁄ ��÷� (�>|}t��).  (2.49a) 

Hè ~/Δiv0>��(�)/Δiv0� ≅ ì�!½(t!/�t
∗ !⁄ )�÷� ~��(���|�t���> ) + (
∗)��
� |
Ü��
!��÷� �.(2.49b) 

Then taking the expectation term by term of the right-hand side of 

(2.41), using (2.28), (2.46)-(2.49ab) and replacing moments of estimators by 

the corresponding moments of asymptotic distributions specified in (1.9)-

(1.11) we complete the proof of theorem. 

Remark 2.1. For a nuggetless factorised covariance matrix � = σ�� and for 

i = \�, which means that the only one covariance parameter (partial sill) is 

unknown, the approximation of ER specified in (2.37)-(2.40) coincides with 

one derived in Dučinskas [14] 

�HO = ∑ ÏÔΦ(þÔ)�Ô<� + Ï��(þ�)(�(	>�t�	)�>$/2È + (R∗)�/(� − 2D)$), 

where È = 1 − õB>�t�õB,  

Remark 2.2. For the case i = ^ and � = s/2 the asymptotic approximation 

of expected risk is presented in Dreižienė [A10] and is of the following form 

 �HO = Oã(p) + Ï��(−$/2 − R∗/$)$(È} + È¼)/2\��, 

 È} = �>|}ty�, |} = 	>�ty	, 

 �> = ôB> 	 − =B> (o[ 2⁄ + R∗ot/$�), 



 È¼ = ��/��¼|¼ty�¼> 0 + (R∗)��¼> |¼ty�¼/$�\��, �¼ = �ôýB � ò̂⁄ . 

The closed-form expression of AER for exponential covariance model 

In order to apply the AER formula (2.37)-(2.40) in practice there might arise 

difficulties evaluating the term È�. This term includes partial matrix and 

vector derivatives and software may fail while doing these calculations. 

Therefore having the closed-form expression of AER is significant. For this 

reason we need to find the closed-form expressions of ��, |�t� and ��. 

Suppose we have geometrically anisotropic exponential covariance 

function. Recall that the vector of unknown geometrically anisotropic 

covariance parameters is i = (V�, \�, ], ^, �)′ and then iv = (V̂�, \��, ]�, ò̂, ��)′ 
represents the vector of parameters estimators. 

The matrix �� = �ôýB/�iv′ is a � × 5 matrix composed by the first order 

partial derivatives of ôýB = �vt�ó̂B with respect to components of iv and 

evaluated at the point iv = i. Let (óB)��  and ���  denote the first order partial 

derivatives of ó̂B and �v with respect to �É3 and evaluated at �É3 = �3. Then the 

matrix ��  could be written as 

 �� = ~�ôýà���� , �ôýà�±ý� , �ôýM�ý̧ , �ôýM�·v , �ôýà�»ý  �,  (2.50) 

where 

 ∂ôýB ∂θÉ 3 = −�t����ôB + �t�(óB)�� , 4 = 1. .5⁄ . (2.51) 

For geometrically anisotropic covariance function, defined in (1.13) we 

get the following first order partial derivatives: 

 (óB)�� = M�, (2.52) 

 (óB)±� = õB, (2.53) 

 (óB)¸ = ��
²� õB ∘ ´B², (2.54) 

 (óB)· = − ��¼² õB ∘ ´B¼, (2.55) 



 (óB)» = ��(¼�t�)² õB ∘ ´B½, (2.56) 

where 

 (¾B²)9 = ¿/ℎ£B90� + ^�/ℎ¤B90�, 
 (¾¼)9 = /ℎ¤B90� ¿/ℎ£B90� + ^�/ℎ¤B90�À , 

 /¾½09 = ℎ£B9ℎ¤B9/¿/ℎ£B90� + ^�/ℎ¤B90�
, 

ℎ£B9 = /ℎ§B9 �.F � + ℎ«B9 F4� �0/], ℎ¤B9 = /−ℎ§3B F4� � + ℎ«B9 �.F �0/],  

ℎ§B9 = �B − �9, ℎ«B9 = ­B − ­9, �B and ­B are the coordinates of FB and �9  and 

­9, G = 1. . �, represent the coordinates of the G − �ℎ  Ò component. 

The first order partial derivatives of covariance matrix with respect to 

parameter �É3 evaluated at �É3 = �3 coincide with ones defined in Lemma 1.2. �3 = ��� , 4 = 1. .5. Then replacing (óB)�� by (2.52)-(2.56) and ���  by (1.14)-

(1.18) into (2.51) we get the elements of matrix ��  

�ôýB �V̂�⁄ = −�tyôB, 
∂ôýB ∂σý�⁄ = −�t��ôB + �t�õB, 

∂ôýB ∂αý⁄ = − ±�
¸� �t�(� ∘ ´²ôB − õB ∘ ´B¸), 

∂ôýB ∂λÉ⁄ = ·±�
¸ �t�(� ∘ ´¼ôB − õB ∘ ´B¼), 

∂ôýB ∂φý⁄ = ±�(·�t�)¸ �t�(� ∘ ´½]B − õB ∘ ´B½). 

To get ��  we have to differenciate \��� with respect to iv and evaluate it 

at the point iv = i. Then  

�� = σ�� + ôB> ��ôB − 2ôB> (óB)�. 

Using (2.52)-(2.56) and (1.14)-(1.18) we obtain the elements of ��: 

s�� = ôB> ôB, 



s�� = 1 + ôB> �ôB − 2ôB> õB,   
s² = − ±�

¸� /ôB> (� ∘ ´¸)ôB − 2ôB> (õB ∘ ´B¸)0, 

s¼ = − ·±�
¸ /ôB> (� ∘ ´·)ôB − 2ôB> (õB ∘ ´B·)0, 

s½ = ±�(·�t�)¸ ~ôB> /� ∘ ´½0ôB − 2ôB> /õB ∘ ´B½0�. 

Remark 2.3. The special case when the only one covariance parameter is 

unknown, i = ^, and the angle of anisotropy is set to � = s/2 is presented in 

Dreižienė [A10].  

Multiclass case 

Now consider a multiclass case (� > 2) with zero-one loss function. So the 

main goal is to solve the problem of classification of the �B given training 

sample Ò (described in section 2.1) into one of several populations. The 

model of training sample is specified in (2.17), (2.18). We consider the case of 

nuggetless covariance function with unknown parameter \� and known 

spatial correlation function. 

The pairwise BDF specified in (2.11) in this case has the expression  

 êÔkã(�B, p) = (�B − ('Ô� + 'k�)/2)′ ('Ô� − 'k�)/\�� + RÔk, (2.57) 

where 'Ô� and  \�� represent the conditional mean and variance, respectively. 

Then Bayes rule for �, h = 1. . �, h ≠ � is given by:  

 Classify �B to population ΩÔ  if êÔkã(�B, p) ≥ 0.  (2.57a) 

Replacing the conditional mean and variance into (2.57) by the 

expressions given in (2.21) and (2.23) we get the following formula for the 

pairwise BDF 

 êÔkã(�B, p) = (�B − ôB> (Ø − 	?) − 'Ôk)>$Ôk \√È⁄ + RÔk,  (2.58) 



where 'Ôk = =B> (?Ô + ?k)/2 and $Ôk stands for conditional Mahalanobis 

distance   

$Ôk = öï÷töð÷�÷ = öï÷töð÷�√Ç , �, h = 1. . �, h ≠ �. 

$Ôk could be expressed in terms of marginal Mahalanobis distance, ΔÔk  

$Ôk = ΔÔk/√È, 

where ΔÔk = öïtöð� , 'Ô = =>(�)?Ô, �, h = 1. . �, h ≠ �. 

Now, the probability of misclassification (Bayes misclassification 

probability) associated with Bayes classification rule for � > 2 will be 

derived. Let �(�; ', \�) be the probability density function of the normal 

distribution with mean ' and variance \� and set �(�; 0, 1) = �(�). 

Lemma 2.3. The probability of misclassification for � > 2 due to Bayes rule 

specified in (2.57a) is 

 íã(p) = 1 − ∑ sÔ � �(�)$�ãï�Ô<� , (2.59) 

where �Ô = {�: � ∈ O�, $Ôk� + $Ôk� /2 + RÔk ≥ 0; � = 1. . �, h ≠ �}. 

Proof. The probability of misclassification due to Bayes classification rule is 

 íã(p) = 1 − ∑ sÔí-Ô�Ô<� ,  (2.60) 

where for �, h = 1. . �, � ≠ h, í-Ô = íÔ(êÔkã(�B, p) ≥ 0) is the probability of 

correct classification of �B when it comes from ΩÔ  with mean 'Ô� and variance \��. In the above conditions it follows that  

 �B = \�� + 'Ô�,  (2.61) 

where �~�(0,1). After making the change of variables � → �B in (2.60) and 

putting (2.61), (2.21) and (2.23) into (2.58) we complete the proof of lemma. 

Recall that the case of nuggetless covariance model with known 

correlation function is considered, thus the vector of unknown population 



parameters has two components, p = (?′, \�)′. Moreover, ôB for a 

nuggetless covariance does not depend on \�, that is, ôB> = õB>�t�. Based on 

that the estimators of conditional mean and variance are 

 '̂Ô� = =B> ?vÔ + ôB> /Ø − 	?v0,  

\��� = σý�È.  

Replacing the conditional mean and variance into BDF (2.58) by their 

estimators specified above we obtain the plug-in BDF, 

 êÔkã/�B, pv 0 = /�B − ôB> /Ø − 	?v0 − '̂Ôk0>$òÔk \�√È⁄ + RÔk,  (2.62) 

where '̂Ôk = =B> (?vÔ + ?vk)/2. 

Definition 2.5. The actual error rate incurred by the plug-in Bayes 

classification rule associated with PBDF is íã(pv ) = 1 − ∑ sÔí-òÔ�Ô<� , where, 

for h = 1. . �, í-òÔ = íÔ(êÔkã/�B, pv 0 ≥ 0, � = 1. . �, h ≠ �). 

The closed-form expression for the actual error rate is presented in the 

following lemma. 

Lemma 2.4. The actual error rate incurred by plug-in Bayes classification rule 

associated with PBDF specified in (2.62) for � > 2 has the following form 

 íã/pv 0 = 1 − ∑ sÔ � �(�)$��ï�Ô<� , (2.63) 

where 

�Ô = {�: � ∈ O�, $òÔk� + /'k + õB>�t�	/?v − ?0 − '̂Ôk0$òÔk \√È⁄ + RÔk\�/\ ≥
0; � = 1. . �, h ≠ �}. 

Proof. The proof is completed by making the transformation of random 

variables (2.61) in the formulas presented in Definition 2.5. and (2.62). 

Then the next step is to derive the asymptotic approximation of EER (see 

Definition 2.4). 



The asymptotic expansion of EER for � > 2 

When spatial correlation parameters are unknown, the likelihood function is 

intractable. The ML estimators have no closed-form especially in multiclass 

case and it is impossible to obtain required moments of estimators. So the 

application of the proposed Taylor series technique is very complicate for EER 

approximation (the similar situation is for the MSPE of spatial prediction (see 

Abt [1]). That is the reason why the attention is restricted on the case of 

known spatial correlation function. 

Let �(�) be a real linear function defined on O� and let �(�), �′(�) 

denote Dirac delta function and its derivative, respectively. The Heaviside step 

function 
(�) is the integral of the Dirac delta function, i.e. 
(�) =
� �(�)$�§t� . The following properties of the Dirac delta function will be used 

further: 

(d1) �����/����0 ≡ 0,  

(d2) �����>/����0 + ������� ≡ 0, 

(d3) ������� = ��� − �B�/|�§> ��B�|, where �B is the solution of ���� = 0 and �§> �∙� = $�§�∙�/$�, 

(d4) $�
����/$� = ����. 

Let pv = �?v>, \���′ be the vector of parameters estimators. Since we deal 

with nuggetless covariance function the ? ML estimator has the following 

form: 

?v = �	>�ty	�ty	>�tyÒ , 
 ?v~��@�?, \��	>�ty	�ty�. 

We use the bias adjusted ML estimator of variance 

 \�� = /Ò − 	?v0>�ty/Ò − 	?v0 �� − �D�À ~ \���t�@� �� − �D�⁄ . 



Set Δ?v = ?v − ?, Δ\�� = \�� − \�. It is easy to show that H/Δ?v0 =
H/Δ\��Δ?v0 = 0, H�Δ\��� = 0  and û6��\��� = 2\µ/�� − �D�. 

Since EER approximation is based on Taylor series, the partial derivatives 

of actual error rate are needed, so the lemma presenting these results will be 

formulated firstly.  

Let ∇�í� and ∇�
� í� be the vector of the first order partial derivatives and 

the matrix of second order partial derivatives (Hessian) of íã�pv � with respect 

to pv  evaluated at p, respectively. Similarly, let ∇}í� ant ∇}�í�  denote the 

vector of the first order partial derivatives and the matrix of second order 

partial derivatives of íã�pv � with respect to ?v evaluated at ?, respectively. By 

í��k�
 we denote the h − �ℎ (h = 1, 2) order partial derivatives of íã�pv � with 

respect to σý� evaluated at σ�. Finally we denote by ∇}í����
 the vector of 

second order partial derivatives of íã�pv � with respect to ?v and \�� evaluated 

at values ? and σ�.  

The same notations will be used for the derivatives of other functions of 

the mentioned parameters. Let �Ôk  be the solution of the equation 

êÔkã��, p� = 0, i.e. �Ôk = − RÔk\√È $ÔkÀ + õB>�ty�Ø − 	?� + 'Ôk. Set 

lÔ��� = ���; 'Ô� , \���. 

Since äÔkã ��� ≥ 0 is equivalent to êÔkã��� ≥ 0, the relation between äÔkã ��� 

and êÔkã��� could be expressed as  

äÔkã ��� = sÔ���; 'Ô� , \��� − sk���; 'k� , \��� = 

 = sÔ���; 'Ô� , \����1 − 
�l{−êÔkã���}�. (2.64a) 

Lemma 2.5. The actual error rate derivatives with respect to pv  evaluated at 

the point pv = p, � = �Ôk  attain the following values 

 ∇�í� = 0, (2.65) 

 ∇�� í� =  ∑ ∑ sÔlÔ��Ôk�∇�êÔk��Ôk�∇�> êÔk��Ôk�k�Ô ∏ 
�êÔ9��Ôk��/êÔk>9çÔ,k�Ô<� , (2.66) 



where êÔk> = $êÔkã���/$� = $Ôk/\√È. 
Proof. It is easy to see that  

íã/pv 0 = 1 − ∑ sÔ � ∏ 
 ~êvÔkã���� lÔ���$�kçÔÔ =
1 − ∑ sÔ �∏ 
 ~äÉÔk���� lÔ���$�kçÔÔ , 

where 

äÉÔk��� = sÔ���; '̂Ô� , \���� − sk���; '̂k� , \���� = 

= sÔ���; '̂Ô� , \����/1 − 
�l{−êvÔkã���}0. 

By using (d4) we obtain  

∇�í� = − ∑ ∑ � äÔk����/äÔk���0∇�äÔk��� ∏ 
�äÔ9����$�9çÔ,k�k�Ô�Ô<� , 

By using (d1) in the above equation we obtain (2.65). The Hessian ∇�� í� 

evaluated at pv = p is equal to 

∇�� í� =
= 8 8 � �äkÔ���∇�äÔk����>/äÔk���0∇�> äÔk���� 
 ~äÔ9����9k�Ô

�
Ô<�

+ äkÔ���∇�� äkÔ����/äkÔ���0� 
 ~äÔ9����9
+ äkÔ����/äÔk���0∇�äÔk��� d 8 �9çÔ,k ~äÔ9����∇�> äÔ9��� � 
�äÔ ����

 ç9,Ô,k g!$� 

It follows from (d1), (d2) that integral of the second and third terms in 

the above square brackets are equal to 0.  

According to (d3) we have ��äÔkã � = ��� − �Ôk� ñï�ï�"ïð�|���"ïð�|. Then the proof 

of (2.66) is completed by using (d2) and (d3) to the integral of the first term. 



Recall that for nuggetless covariance model ôB> = õB>�ty does not 

depend on \�. Let ^�¬§��� be the largest eigenvalue of � and make the 

following assumptions: 

(B1) ��	>	�t� → #, as � → ∞, where # is a positively definite �D × �D matrix with finite determinant. 

(B2)  ^�¬§��� < ν < +∞, as � → ∞,  

(B3)  
�ï�ð → %Ôk, as �Ô , �k → ∞, 0 < %Ôk < ∞. 

Put &Ôk  as the D × �D matrix which is constructed by stacking � 

matrices of sizes D × D, 

'Ôk = �M@ …D × �D 1 …   M@ åÔ(@ M@� − 1 � � + 1   … M@ åk(@… h − 1 h     M@ … M@�h + 1 … � , 

where åÔ = )�� + 
ïð!ïð� *, åk = )�� − 
ïð!ïð� *, o@ and M@ are identity matrix and 

quadratic matrix of zeros, respectively. 

Set �Ôk = 	>ôB − +Ôk=B and ,Ôk9 = −RÔk ~öïtö�öïtöð� + RÔ9 + /öðtö�0/öïtö�0���Ç  . 
Theorem 2.2. Suppose that observation �B to be classified by PBDF and let 

assumptions (B1)-(B3) hold. Then the asymptotic expansion of EER is  

 HHO = íã�p� + - 2⁄ + " + _��t��, (2.64) 

where 

- = ∑ ∑ sÔ� ~
ïð!ïð + !ïð� � $Ôk�Ôk> �}�Ôkk�Ô ∏ 
�,Ôk9�/È9çÔ,k�Ô<� , 

" = ∑ ∑ 
ïð��t�@ sÔ� ~
ïð!ïð + !ïð� �k�Ô ∏ 
�,Ôk9�/$Ôk9çÔ,k�Ô<� . 

Denote by �HHO the approximation of HHO obtained from (2.64) by 

ignoring the remainder i.e. 

 �HHO = íã�p� + - 2⁄ + ". (2.64a) 



Proof. The proof is based on Taylor series expansion of íã�pv � around p and 

taking the expectation with respect to distribution of Ò and ignoring the 

terms with derivatives higher than the second order. 

Then using the moments of estimators specified above and Lemma 2.5 

we have  

 HHO = íã�p� + ��/∇�� í�û6��pv �0 2⁄ =
 íã�p� )�� ~∇}�í�û6�/?v0� + í����û6��\���* 2À + H�O¯�. (2.67) 

Then by applying (2.66) we can write 

 ∇}�í� = \√È ∑ ∑ sÔlÔ��Ô��∇}êÔk��Ôk�∇}> êÔk��Ôk�k�Ô�Ô<� × 

 ∏ 
 ~êÔ9��Ôk�� /$Ôk9çÔ,k , (2.68) 

 í���� = \√È ∑ ∑ sÔlÔ��Ô��/êÔk���0� ∏ 
 ~êÔ9��Ôk�� /$Ôk9çÔ,kk�Ô�Ô<�  (2.69) 

Note that using ∇}êÔk = $ÔkΛÔk \√È⁄ , �êÔk���> = RÔk/\� in (2.68) and 

(2.69) and inserting them into (2.67) we obtain the main term of expansion 

(2.64). It is obvious, that all third order moments of the components of 

normally distributed vector Δ?v are equal to zero and �Δ\�¯� = 8 �� − �D��⁄ = _��t��. It implies that H�O¯� = _��t��. Putting it 

into (2.67) we complete the proof of the theorem. 

The multiclass case results presented in this section are published in 

[A6]. Also the multiclass classification problem for multivariate GGRF is 

analysed in [A4] and [A5]. 

2.2.2. Multivariate case  

The case of multivariate GGRF with known spatial correlation function is 

analysed in Dučinskas [15]. Here the error rates are investigated and the 

factorised covariance function is considered. In this section the extension of 

the above mentioned result is presented. The case of complete parametric 

uncertainty for classification risk of multivariate GGRF is investigated.  



Thus the main objective here is to classify a single observation of 

multivariate GGRF {a���: � ∈ " ⊂ O�} into one of two populations ΩÔ , � = 1,2.  
The model of observation a��� in population ΩÔ  is  

a��� = �Ô>=��� + )���, 
where =��� is a D × 1 vector of non-random regressors, and �Ô  is a D × l 

matrix of parameters. The error term is generated by p-variate zero-mean  

GGRF {)���: � ∈ "} with factorized nuggetless covariance function defined by 

the following model for all �,/ ∈ " �.�{)(�), )(/)} = �(� − /)Á, where ��� − /� is the spatial correlation function and Á is the feature variance-

covariance matrix. For a given training sample Ò consider the problem of 

classification of the FO aB to one of two populations. 

The model of training sample is  

 Ò = 	� + Ú  (2.70) 

where 	 is the � × 2D design matrix, defined in (2.18), �′ = ���> , ��> � is 

a l × 2D matrix of means parameters and Ú represent the � × l matrix of 

random errors that has matrix-variate normal distribution i.e.  

Ú~��×��M, � ⊗ Á�. 
Here � = ���� has the same meaning as in the univariate case; it 

denotes the � × � matrix of spatial correlations between Ò components. Á is a l × l variance-covariance matrix between features and ⊗ denotes the 

Kronecker product of matrices. 

Notice that in population ΩÔ, the conditional distribution of aB given Ò = Ø is Gaussian with conditional mean and variance 

bÔ� = �Ô>=B + ôB> �Ø − 	��, 

Á� = ÈÁ, È = 1 − õB>�tyõB. 

Then BDF specified in (2.24) becomes 



 êã�aB, p� = �aB − �b�� + b��� 2⁄ �>Á�t��b�� − b��� + R∗. (2.71) 

And Bayes risk for the BDF (2.71) has the same form specified in (2.28) 

 Oã = ∑ {sÔr��, �� + ÏÔΦ�−$/2 + �−1�ÔR∗/$�}�Ô<� , (2.72) 

here the squared Mahalanobis distance between conditional distributions of aB for given Ò = Ø is specified as 

$� = �b�� − b���>Á�t��b�� + b���. 

Assume that true values of parameters �, Á and � are unknown 

(complete parametric uncertainty). 

Replacing the parameters by their estimators in (2.71) and using the 

expressions of conditional mean and variance we get the following PBDF  

 êã/aB, pv 0 = /aB − ôýB> /Ø − 	�v0 − =B> o[�v 2⁄ 0>ÁÉt�� =B> ot�v�/Èv + R∗, (2.73) 

Lemma 2.6. The actual risk for êã/aB, pv 0 specified in (2.73) is  

 Oã/pv 0 = ∑ ásÔr��, �� + ÏÔΦ�þÉÔ�â�Ô<� ,  (2.74) 

where 

þÉÔ = �−1�Ô ~/1Ô − 2ò 0ÁÉt��v >ot> =B + R∗Èv� ¿=B> ot�vÁÉtyÁÁÉty�v >ot> =BÈÀ .      (2.75) 

Proof. It is obvious that in the population ΩÔ  the conditional distribution of 

PBDF given Ò = Ø is Gaussian, i.e. 

 êã/�B, pv 0|ΩÔ  ~��bÔ�, σ�� �, (2.76) 

where 

 bÔ� = /�1Ô − 2ò �0ÁÉty�v >ot> =B/Èv + R∗, (2.77) 

1Ô = =B> �Ô + ôB> �Ø − 	��, � = 1. .2,  

2 = ôýB> /Ø − 	�v0 + =B> o[�v/2, 

 \�� = =B> ot�vÁÉtyÁÁÉty�v >ot> =BÈ/Èv� . (2.78) 



The proof is completed and formulas (2.74), (2.75) are obtained by using the 

equations (2.73), (2.76)-(2.78) and (2.10b). 

The asymptotic expansion of ER for � = 2 

In order to obtain the asymptotic approximation of expected risk for 

multivariate two-class case we will use maximum likelihood estimators based 

on the training sample. Let the conditions of Mardia and Marshall (Theorem 

1.1) hold. Set  

?3 = �
�(�), 4 = �
�ℎ(Á), �5 = ��
��/��′,  
dim?3 = DB = 2D�, dim4 = � = l�l + 1� 2⁄ , dim � = �. 

The log-likelihood function of Ò, specified in (2.70) is  

Λ�p� = �.�F� − 

−1/2/l ��|�|  + � ��|Á| + ��(�t�(Ò − 	�)Át�(Ò − 	�)′)0. 
Then the information matrices for the corresponding parameters are  

|} = �	>�t�	� ⊗ Át�, 
|7 = �8�> �Át� ⊗ Át��8�/2, 

|� = l�5> ��t� ⊗  �t���5/2, 
where 8� is a duplication matrix of order l� × �l�l + 1�/2�. 

Note that |75 = Hè���Λ�p�/�4��′� and the above information 

matrices are evaluated at the true values of parameters ?3, 4 and �. 

It is easy to obtain that 

|75 = ~8�> �Át� ⊗ Át���
�(Á)� ⊗ (�
�>�(�t� ⊗ �t�)�5 2⁄ ). 
Denote by | = ) |7 |75|57 |5 * and # = |t� = ) #7 #75#57 #5 * the information 

matrix and inverse of information matrix, respectively. 



Under some regularity condition, the matrix # is an approximate 

covariance of the ML estimators of covariance function parameters. Using the 

properties of the multivariate Gaussian distribution it is easy to prove that 

 ?v~��@à�?, #9 �, 4ý~AN��4,#;�, �v~��Í��, #5�. (2.79) 

Let �}�k�
, �7�k�

, �5�k�
, h = 1,2 denote the h − �ℎ order derivatives of 

Oã�pv � with respect to ?v, 4ý and �v evaluated at the point ?v = ?, 4ý = 4, �v = � 

and let �}7���
, �}5���

 and �75���
 denote the matrices of the second order partial 

derivatives of Oã�pv � with respect to ?v, 4ý and �v evaluated at the point 

?v = ?, 4ý = 4, �v = �. 

Let the assumption (A4) which claims about the independence of Ò and 

estimator of covariance parameters iv = �4ý, �v� hold. Also let �5 = �ôýB/��′ 
be the � × h matrix of partial derivatives evaluated at the point �v = �, 

<5 = �È/��′ be the h × 1 vector of partial derivatives evaluated at the point 

�v = � and let ��⋅� be the standard normal distribution density function. 

Set = 	>ôB − �o[> 2⁄ + R∗ot> $�⁄ �=B,  �B = �	>�ty	�t�,  Δb = b� − b�, �� = ��−$/2 − R∗/$�. 
Theorem 2.3. Suppose that observation aB to be classified by BPDF (2.73) and 

let the conditions from Theorem 1.1 and assumption (A4) hold. Then the 

asymptotic approximation of ER is 

�HO = Oã + Ï���á�>Oã�$ È⁄ + �l − 1�=B> otOãot> =B È$⁄ + ��/+�#70 +
���+�#5� + 2��/+¯#750â/2,  (2.80) 

where Oã = Oã�p� is Bayes risk, specified in (2.72). 

 &� = 8�> /�Át�ΔbΔb>Át� ⊗ Át�ΔbΔb>Át���R∗��È Δµ⁄ + Át�ΔbΔb>Át� ⊗
�Áty − ÁtyΔbΔb>Át� $�⁄ �08�/�$√È�,  (2.81) 

 &� = �����5> ��5#5�Δ� + �γ∗��<5> #5<5� Δ¯√È⁄ ,  (2.82) 

 &̄ = 8�> �Át�Δb ⊗ Át�Δb��R∗��<5/Δµ√È.  (2.83) 



Proof. Expanding Oã�pv � in the Taylor series around the point ?v = ?, 4ý = 4 

and �v = � up to the second order and taking expectation with respect to the 

approximate distribution specified in (2.79) we have 

 Hè�Oã� = Oã + Hè ~/Δ?v0>�}���Δ?v + 2/Δ�v0>�7���� Δ4ý + /Δ�v>0�����/Δ�v0 +
�Δ4ý�>�7 ����Δ4�� /2 + O¯,   (2.84) 

Δ?v = ?v − ?, Δ4ý = 4ý − 4,  Δ�v = �v − � and O¯ is a reminder term. After 

doing matrix algebra we have 

 O}��� = Ï��� ~�Át�ΔbΔb>Át� ⊗��>�/È + �Áty − ÁtyΔbΔb>Át� Δ�⁄ � ⊗
�ot> =B=B> ot�/Δ√È�,   (2.85) 

 O7��� = Ï���8�>  /�Át�ΔbΔb>Át� ⊗ Át�ΔbΔb>Át���R∗��È Δµ⁄ +
ÁtyΔbΔb>Áty ⊗ �Áty − ÁtyΔbΔb>Áty $�⁄ �08�/Δ√È, (2.86) 

 H/O5���0 = Ï�����5> ��5Δ� + �R∗��<5<5> �/Δ¯√È, (2.87) 

 H/O75���0 = Ï���8�> �ÁtyΔb ⊗ ÁtyΔb��R∗��<5/Δµ√È. (2.88) 

Then by using the assumption (A4) and (2.87), (2.88) and replacing 

Hè�Δ�vΔ�v>� and Hè�Δ4ýΔ�v>� by their approximations #5 and #75 we get the 

following approximations 

? ~/Δ�v0>�5���/Δ�v0� ≅ 

 Ï��������5> ��5#5�Δ� + �R∗��<5> #5<5�/Δ¯√È,  (2.89) 

H ~�Δ4ý�>�75���/Δ�v0� ≅ 

 Ï����R∗����/8�> �ÁtyΔb ⊗ ÁtyΔb�<5#750/Δµ√È.  (2.90) 

Then using (2.85), (2.86), (2.89), (2.90) in the right – hand side of (2.84), 

and dropping the reminder term, we complete the proof of Theorem 2.3. 

Remark 2.4. The problem of classification of stationary, multivariate GGRF 

observation to one of two populations is presented in [A11]. Here the 



approximation of the actual error rate is derived for factorized covariance 

matrix when all means and covariance parameters are assumed to be 

unknown. 

Remark 2.5. The problem of classifying a multivariate GGRF observation into 

one of the several populations specified by different parametric mean models 

is investigated in Dreižienė et al. [A5]. In this paper the closed-form 

expressions for the Bayes classification probability and the actual correct 

classification rate associated with plug-in Bayes classification rule are derived.  

2.3. Classification of GMRF observation 

In this section we extend the analysis to GMRF. Geostatistical models are 

applied to continuous spatial processes with directly specified Matérn type or 

other parametric covariance function models. It is well known that the models 

which include covariance matrices require a large number of computer 

operations (see Lindgren at al. [36]). In contrast to geostatistical models GMRF 

models are based on the direct specification of sparse precision matrix. They 

model the data as being related to each other through an undirected graph. 

Thus spatial interpolation and classification problems require far fewer 

calculations.  

The main difference comparing with GGRF here is the structure of 

covariance matrix. We consider the original parametric structure of covariance 

matrix proposed by de Oliveira and Ferreira [52] that is well-suited to the case 

of small samples, and ensures good frequentist properties of ML estimators of 

regression coefficients, spatial dependence and scale parameters. The 

classifier associated with PBDF is examined and the main purpose of this part 

is to derive the closed-form expression for the actual risk and the 

approximation of the expected risk (AER) associated with the aforementioned 

classifier for the case of complete parametric uncertainty. 



2.3.1 Univariate case 

In this section we focus on classification of scalar GMRF {����: � ∈ " ⊂ O�}  

observation into one of two populations Ω� or Ω�, when training sample is 

given. The model of observation ���� in populations ΩÔ , � = 1,2 has the same 

form as for GGRF, defined in (2.16) 

���� = =>���?Ô + )���, � = 1. .2. 

The main difference comparing with GGRF is that the error term )��� is 

generated on lattice by zero-mean GMRF {)���: � ∈ "} with respect to the 

neighbourhood structure that will be described later. 

Suppose that {�3 ∈ "; 4 = 0,1, … , �} is the set of spatial locations 

(nodes) where ���� observations are taken. Indexing the spatial locations by 

integers i.e. �3 = 4, 4 = 0,1, … , � denote the set of training locations by 

Á� = Á��� ∪ Á���, where Á�Ô� are the subsets of Á� that contains �Ô  
observations of ���� from ΩÔ, � = 1,2, � = �� + ��. The focal location, �B, is 

indexed by {0}. 

Assume that lattice Á�B = Á� ∪ {0} is endowed with a neighborhood 

system, �B = {�3B: 4 = 0,1. . �} and lattice Á� is endowed with a 

neighborhood system {�3: 4 = 1. . �}, where �3  denotes the collection of sites 

that are neighbours of site F3. Then define spatial weights ,Ôk > 0 (,kÔ =
,Ôk) as a measure of similarity between sites � and h and let  

@B> = �,B�, … ,,B��, @3> = �,3�, … ,,33t�,,33[�, … ,,3�), 4 = 1. . �. 

Following de Oliveira and Ferreira [52] we construct matrices  

´B = �ℎkÔB : h, � = 0,1. . �� and ´ = �ℎkÔ: h, � = 1. . �� with dimensions �� + 1� × �� + 1� and �� × ��, respectively. The elements of these matrices 

are defined as follows  

ℎkÔB = A ℎkB    4å   h = �−,kÔ   4å h ∈ �ÔB0    .�ℎ
�,4F
 ,   ℎkÔ = � ℎk     4å   h = �−,kÔ   4å h ∈ �Ô0    .�ℎ
�,4F
 ,  



where 

ℎkB = ∑ ,kÔÔ∈Âðà , h, � = 0,1. . �, 

ℎk = ∑ ,kÔÔ∈Âð , h, � = 1. . �. 

These matrices, assumed to be known, allow the modelling of different 

patterns of spatial correlation by the specification of different neighbourhood 

systems and weights (,Ôk) (de Oliveira Fereirra [52]). 

The main objective now is to classify a single observation at the focal 

location of a scalar GMRF specified on lattice Á�B . 

For simplicity, we use the following notations: 

���3� = �3,  )��3� = )3,  ���3� = �3, 4 = 0. . �.  

a = ��B, ��, … , ���>,  atB = ���, … , ���>, ctB = �)�,  … ,  )��′, 
Then let for 4 = 1. . � 

ct3 = �)B, … , )3t�, )3[�, … , )��′, at3 = ��B, … , �3t�,  �3[�, … ,  ���′. 
The full conditionals for 4 = 0,1. . �, � = 1,2 are specified as 

)3|)t3~��'3 ,  \3��, 

where '3 = ô3>ct3 ,  \3� = \�/�1 + ]ℎ3�, ô3> = ]@3>/�1 + ]ℎ3�, 

 @3> = /,3�,,33t�,  ,33[�, … ,,3�0, 4 = 1. . �. ] ≥ 0 is a spatial dependence 

parameter and \ > 0 is a scale parameter. Then c has the a multivariate 

Gaussian distribution 

c~��[�/M,  \��o�[� + ]´B�t�0. 

The precision matrix (i.e. inverse of covariance matrix) of vector c is 

/�6��c�0t� = �o�[� + ]´B�/\�, where o� denotes the identity matrix of 

� − �ℎ order. 

So, we can supplement the formulation of the classification problem: for 

a given training sample Ò = atB consider the problem of classification of the 

observation �B into one of two populations. Let Ø denote the realization of Ò. 



Put ?> = �?�> , ?�> �. Then the conditional distribution of �B given Ò = Ø  in the 

population ΩÔ , � = 1,2 is Gaussian with mean and variance 

 'Ô� = H��B|Ò = Ø|ΩÔ) = =B> ?Ô + ôB> (Ø − 	?), � = 1. .2 (2.91) 

 \�� = �6���B|Ò = Ø; ΩÔ� = \�/�1 + ]ℎB�. (2.92) 

The training sample Ò would be modelled by the joint distribution (see 

de Oliveira and Ferreira [52]) 

Ò~���	?, ��i��, 

where 	 denotes the � × 2D design matrix of training sample Ò specified in 

(2.18). The covariance matrix could be written in a factorized form, i.e. ��i� = \�#�]�,  #�]� = �o� + ]´�t� and i = �], \��>. Parameter ] 

controls the strength of correlation between the components of Ò. When ] = 0, the components of Ò become independent random variables. In the 

following for brevity we will use � = ��i� and # = #�]�. 

Recall that Bayes discriminant function (BDF) minimizing the risk of 

classification for two-class case has the following form 

 êã��B, p� = ��B − �'�� + '���/2�′ �'�� − '���/\�� + R∗, (2.93) 

with R∗ = ���Ï�/Ï��, ÏÔ = sÔ�r��, 3 − �� − r��,  ���, where sÔ , � = 1,2, are 

prior probabilities. The combined vector of population parameters p includes 

parameters ? and i, i.e. p = �?>, i>�, where  i> = �], \��.  

The risk for the BDF êã��B, p� is the same as specified in (2.10), i.e. 

Oã = ∑ ∑ sÔr��, h�íÔk�k<��Ô<� . 

The squared marginal Mahalanobis distance is Δ� = �'� − '���/\� and 

the squared conditional Mahalanobis distance between conditional 

distributions of �B given Ò = Ø is then specified by 

$� = �ö�÷tö�÷��
�÷� = Δ��1 + ]ℎB� = Δ�nB. 

In the population ΩÔ, the conditional distribution of êã��B, p� given 



Ò = Ø is Gaussian distribution with mean and variance  

H�êã��B, p�|Ò = Ø; ΩÔ) = (−1)Ô[�$� 2⁄ + R∗, 

û6��êã��B, p�|Ò = Ø; ΩÔ) = $�, � = 1. .2. 
By using the properties of the Gaussian distribution we obtain the 

closed-form expression for Bayes risk which has same form as one presented 

in (2.28). The explicit expression of the overall misclassification probability 

(special case of Bayes risk) associated with BDF for CAR model is derived in 

Dučinskas et al. 2013). 

As it follows we shall denote the ML estimators of parameters by ?v, iv 

and put pv = /?v>, iv>0, where  iv> = �]�, \���. Then using (2.91), (2.92) we get 

the estimators of conditional mean and conditional variance 

 '̂Ô� = =B> ?vÔ + ôýB> /Ø − 	?v0, � = 1,2, (2.94) 

 \��� = \��/�1 + ]�ℎB�. (2.95) 

Then by replacing the parameters with their estimators in (2.93) we 

form the PBDF 

êã/�B, pv 0 = 

 /�B − ôýB> /Ø − 	?v0 − =B> o[?v 2⁄ 0>� =B> ot?v��1 + ]�ℎB�/\�� + R∗. (2.96) 

Definition 3.1. The actual risk for PBDF êã/�B, pv 0 specified in (2.96) is 

defined as  

 Oã/pv 0 = ∑ ásÔr��, �� + ÏÔΦ�þÉÔ�â�Ô<� , (2.97) 

where the argument of Φ�∙� is 

 þÉÔ = �−1�Ô/�6Ô − �É�sgn�=B> ot?v�/\� + R∗\��� �=B> ot?v�\�À 0, (2.98) 

 6Ô = =B> AÔ + ôB> �Ø − 	?�, � = 1,2, (2.99) 

 �É = ôýB> /Ø − 	?v0 + =B> o[?v/2. (2.100) 

  



The Asymptotic Approximation of ER 

Applying the asymptotic properties of the ML estimators established by 

Mardia and Marshall [43] (see Theorem 1.1) we conclude that the ML 

estimator pv  is weakly consistent and asymptotically Gaussian, i.e. 

 pv ~���@[��p, |ty�, (2.101) 

here the expected information matrix is given by 

 | = |} ⊕ |�, (2.102) 

where 

 |} = 	′�ty	, (2.103) 

 |� = �� )� − 2��# + ��#� ���# − ��/\����# − ��/\� �/\µ *. (2.104) 

or  

|� = �� d ]� ∑ ~ ¼��[²¼����t�3<� −] ∑ ¼���[²¼�����t�3<�−] ∑ ¼���[²¼�����t�3<� �/\µ g. 

where λ� ≥ λ� ≥ ⋯ ≥ λ� are the ordered eigenvalues of ´. 

Using the results of Theorem 1.1, the following asymptotic conclusions are 

valid  

 ?v~���@/?, o}0, iv~����i, o��, Hè/Δi/Δ?v0′0 ≅ 0 

where  

 o} = σ��	>#ty	�t� (2.105) 

 o� = |�ty = ��B
� �Í/#C0t��Í#�� ) � \µ⁄ �−��# + �� \�⁄�−��# + �� \�⁄ � − 2��# + ��#�*. (2.106) 

It could also be written in terms of eigenvalues 



(� = ��B
²�Ð)� ∑ D��EFD�GÜ�� *�t)∑ D��EFD�GÜ�� *�Ñ d � \µ⁄ ] ∑ ¼���[²¼�����t�3<�

] ∑ ¼���[²¼�����t�3<� ]� ∑ ~ ¼��[²¼����t�3<�
g. 

Let O}�k�
, O��k�

, h = 1,2 denote the h − �ℎ order derivatives of Oã�pv � 

with respect to ?v and iv evaluated at the point ?v = ?, iv = i and let �}����
 

denote the matrix of the second order partial derivatives of Oã�pv � with 

respect to ?v and iv evaluated at the point ?v = ?, iv = i and let the 

assumption (A4) hold.   

Let �� = �ôýB/�i′ be the � × 2 matrix and �� = �\���/�iv′ two 

component vector of partial derivatives evaluated at the point iv = i. Hence 

we have 

 �� = �@B, M��/�1 + ]ℎB��,  �� = �−\��ℎB, 1�/�1 + ]ℎB�. (2.107) 

Put Æ> = α@B> 	 �1 + αTB�⁄ − =B> �o[ 2⁄ + Rot/$�� and 3> = �ℎB, −1/\���. 

Theorem 2.2. Suppose that observation �B is to be classified by BPDF and let 

the conditions from Theorem 1.1 and the assumption (A4) hold. Then the 

approximation of ER is 

�HO = Oã�p� + Ï���−$/2 − R∗/$�$�È} + È² + �R∗��È�/$��/2,  

where 

È} = Æ>�	>#	�t�ÆnB, 
È² = 2�@B> #@B/�nB̄ �� ��#� − ��� #����  

È� = 3>o�3/nB�. 
Proof. Expanding Oã�pv �  in the Taylor series around the point ?v = ? and 

iv = i, we have 

Oã/pv 0 = Oã�p� + �}���Δ?v + �����Δiv + �� ~/Δ?v0>�}���Δ?v + 2/Δ?v0>�}����Δiv +
/Δiv0>�����Δiv� + O¯,  (2.108) 



where Δ?v = ?v − ?, Δiv = iv − i, and O¯ is the remainder term. 

By using similar arguments as in Theorem 2.1 we obtain 

 �}��� = 0, ����� = 0, (2.109) 

 �}��� = Ï�$��− $ 2⁄ − R∗ $⁄ �ÆÆ>/\��, (2.110) 

 ����� = ì�!½�����÷� ~−�H> �Ò − 	?� + �∗�
!�÷ � ~−�H> �Ò − 	?� + �∗�
!�÷ �>. (2.111) 

It is easy to show that all elements of matrix �}����
 are finite. From (2.106) 

we have the following approximation 

Hè ~/Δ?v0>�}���/Δ?v0� ≅ ��/�}����	>�ty	�ty0 = \���/�I����	>#ty	�ty0. 
Then using the assumption (A4) and replacing Hè/ΔivΔiv′0 by its 

asymptotic approximation o�  we get the following approximation 

Hè ~/Δiv0>�����/Δiv0� ≅ ��/�����o�0 =
Ï�$��−$/2 − R∗ $⁄ �������i|�t��i>� + �R∗����> o��� $�\��⁄ � \��⁄ .  (2.112) 

Then taking the expectation term by the term of the right–hand side of 

(2.108) with the dropped residual term, using (2.28), (2.107), (2.109)-(2.112), 

and replacing the moments of estimators by the corresponding 

approximations specified in (2.101)-(2.106) we complete the proof of 

theorem. 

2.3.2 Multivariate case 

In present section we are concerned with classification problems for a 

multivariate GMRF. Mardia [44] introduced a multivariate GMRF, and more 

recently Jin et al. [29], Sain and Cressie [53] explored these models. We focus 

on a subclass of a multivariate GMRF with parametrical structure proposed by 

Pettit et al. [49]. They extended the univariate spatial model to the 

multivariate one, maintaining computational simplicity but modelling the 

essential aspects of dependence between the multivariate components and 



spatial dependence between sites. De Oliveira and Ferreira [52] showed that 

this parametric structure is well-suited to the case of small samples and 

ensures good frequentist properties of ML estimators of parameters.  

We consider two-class case with zero-one loss function. The main 

objective is to classify a single observation of multivariate GMRF {����: � ∈" ⊂ O�} when the training sample is given. The model of observation a��� is  a��� = �Ô>=��� + ε���, 

where =��� is a D × 1 vector of non-random regressors and �Ô  is a D × l 

matrix of parameters, � = 1,2. The error term is generated by p-variate zero-

mean multivariate stationary GMRF {)���: � ∈ "} and is specified with respect 

to the undirected graph which is described in the Section 2.2.2. 

Suppose that � denotes the l × l correlation type matrix with ones on 

the diagonal and off-diagonal entries {−^39} but plays a role of a precision 

matrix. Hence putting the matrix element equal to zero, gives conditional 

independence between the components of a. The full conditionals for 4 = 0. . �  are specified as 

 )3|)t3~��'Ô3 , �3�, (2.113) 

 'Ô3 = /ô3> ⊗ o�0)t3 , � = 1,2, �3 = J3�t�. (2.114) 

Here ô3> = ]@3>/�1 + ]ℎ3� and n3 = \�/�1 + ]ℎ3�. Then the covariance 

matrix of vector a = �aB> , a�> , … , a�> � is  

�6��a� = \��o�[� + ]´B�t� ⊗�t�. 

Denote a training sample in vector form by Ò = atB and in matrix form 

by Ò∗ = �a�, … , a��>. Design matrix 	 for training sample Ò is specified in 

(2.18). Then under some regularity conditions (Mardia [44]), the joint 

distribution for training sample in vector form is  

Ò~�����
�(�>	>), \�#(]) ⊗�t�) 

and in matrix form follows � × l matrix Gaussian distribution 



Ò∗~��×��	�, \�#�]� ⊗�t��, 

where �> = ���> , ��> � and #�α� = �o� + α´�t� denotes the spatial correlation 

matrix for Ò. 

For a given training sample realization Ò = Ø  �Ò∗ = Ø∗�, the conditional 

distribution of observation aB in population ΩÔ  is p-variate Gaussian  

 �aB|Ò = Ø; ΩÔ�~���'Ô� , Á��, (2.115) 

 where for � = 1,2 

  'Ô� = �Ô>=B + /ôB> ⊗ o�0/Ø − vec�	��0 =  

 = �Ô>=B + /ôB> ⊗ o�0�Ø∗ − 	��>ôB, (2.116) 

 Á� = ρB�t�. (2.117) 

In the following let íBÔ  denote the conditional distribution specified in 

(2.115)-(2.117), for � = 1,2. The squared Mahalanobis distance between the 

populations based on the conditional distribution for the observation taken at 

location �B is $� = �b�B − b�B�>��b�B − b�B�/nB, where bÔB = �Ô>=B, � = 1,2.  

Then Bayes discriminant function minimizing the probability of 

misclassification is formed by log-ratio of conditional likelihood of distribution 

specified in (2.115)-(2.117), that is 

êã�aB, p� = �1 + ]ℎB� )aB − �� �b�� + b���*> ��b�� − b���/\� + R, (2.118) 

where  R = ln �s�/s��. Using (2.116), (2.117) and replacing Ø∗ by Ò∗ in (2.118) 

we get  

 êã�aB, p� =  

 = �1 + ]ℎB��aB − ôB> �Ò∗ − 	�� − =B> o[�/2�>�=B> ot�/\� + R. (2.119) 

Lemma 2.8. Bayes error rate for êã�aB, p� specified in (2.119) is 

íã = 8 sÔΦ�−$/2 + �−1�ÔR/$��
Ô<� . 



Proof. The proof of Lemma 2.8 is analogous to the proof of Lemma 2.1. Recall, 

that the Bayes error rate for êã�aB, p� is defined as íã = ∑ sÔíÔ��−1�Ôêã�aB� ≥ 0��Ô<� . The conditional distribution of êã�aB, p� in population Ω�, given Ò = Ø, is Gaussian with mean and variance  

HÔ/êã�aB, p�0 = �−1�Ô[�$�/2 + R, � = 1,2. 
û6�/êã�aB, p�0 = $�. 

Then using the properties of normal distribution we complete the proof 

of lemma. 

In this section we assume that the true values of parameters � and \� 

are unknown and the ML estimators �v and \�� based on Ò are used. Then the 

vector of parameters that are to be estimated and the vector of their 

estimators are denoted by p = ��, \�� and pv = /�v, \��0, respectively. After 

replacing p by pv  in (2.119), we get the PBDF  

 ê/aB, pv 0 = �1 + ]ℎB� × 

 × ~aB − /Ò∗ − 	�v0>ôB − �v >o[> =B/2�>��v >ot>  =B/\�� + R. (2.120) 

Then the actual error rate for BPDF êã/aB, pv 0 is defined as 

 íã/pv 0 = ∑ sÔíBÔ/�−1�Ôêã/aB, pv 0 > 00�Ô<� . (2.121) 

Lemma 2.9. The actual error rate for PBDF specified in (32) is 

 Pã/pv 0 = ∑ sÔΦ�þÉÔ��Ô<� , (2.122) 

where  

 þÉÔ = �−1�Ô ��[²Oà�~§à� /�ïtoE�v �⁄ 0[ôà� 	/ù�v0���v�oÜ� =à[
�ý�
�ý¿=à� oÜ�v��v�oÜ� =à��[²Oà�   (2.123) 

with ∆�v = �v − �. 



Proof. Proof of lemma is established by essentially exploiting the proof of 

Lemma 2.8, formulas (2.120), (2.121) and properties of multivariate Gaussian 

distribution. 

In order to derive the approximation of expected error rate (AEER) we 

will use the ML estimator of the regression coefficients 2D × l matrix 

�v = �	>#ty	�t�	>#tyÒ∗ and the bias adjusted ML estimator of feature 

covariance matrix 

\�� = )Ò − �
�~/	�v0>�*> #t� ⊗�t�(Ò − �
�((	�v)′))/(�l − 2D). 

Using the properties of the matrix-variate normal distribution it is easy 

to show that  

 �v~��@×���, σ��	>#ty	�t� ⊗�t�� (2.124) 

and 

 \��~ ��Q����t�@���t�@ . (2.125) 

Theorem 2.3. Suppose that observation aB to be classified by BPDF specified 

in (2.120). Then the approximation of EER is 

�HHO = 8 sÔΦ�−$/2 + �−1�ÔR/$� + s���−$/2 − R/$� ×�
Ô<�  

{+B>�ã+B$/hB + �l − 1�=B> ot�ãot> =B/�hB$� + 2R�/$��l − 2D�}/2, 

where  

&B = 	>ôB − �o[> /2 + Rot/$��=B, 

hB = 1/�1 + ]ℎB�. 

Proof. Let Δ�v = �v − �, Δ\�� = \�� − \�. Using (2.124)-(2.125) it is easy to 

show (e.g. Magnus and Neudecker [40]) that 

 Hè/Δ�v0 = 0, Hè�Δ\��� = 0, Hè/Δ\��Δ�v0 = 0 (2.127) 



and 

 Hè ~�
�/R�v >0 ~�
�/R�v >0�>� = �ã ⊗ �, (2.128) 

 Hè�R\��� = \µ/��l − 2D�. (2.129) 

For the proof of theorem we use the following notations. Let �É²} 

designate the elements of �v. Denote by  

íã����], A� = �í�pv �/��É²},  

íã����]A, R�� = ��í�pv �/��É²}��É
� ,  
í���� = �í�pv �/�\�39,  

í���� = ���í�pv �/��\�� and  

íã,�����]A� = ��í�pv �/��É²}�\��  

the partial derivatives of í�pv � with respect to the corresponding parameters 

evaluated at �v = �, \�� = \�. Analogous notations will be used for partial 

derivatives of þÉÔ , � = 1,2. 

 Make a Taylor expansion of íã�pv �  at the points �v = � and  \�� = \� 

up to the second order partial derivatives and use the Lagrange remainder 

term. Taking the expectation with respect to the distribution of Ò and using 

(2.127) we get 

 Hèáí/pv 0â = íã�p� +  /∑ ∑ íã����]A, R��HèáΔ�É²}Δ�É
�â�},�<��@²,
<� +
í����Hè{Δ\��}0/2 + O¯,  (2.13) 

where O¯ is the expectation of remainder term. Note that 

 s���þ�� = s���þ��. (2.131) 

By using the chain rule and equation (2.131) we have  

íã����]A, R�� = 

 s���þ�� ∑ �−1�Ô ~þÔþÔã����]A�þÔã����R�� − þÔã����]A, R����Ô<� , (2.132) 

 í���� = s���þ�� ∑ �−1�Ô ~þÔ/þÔ����0� − þÔ������Ô<� . (2.133) 



Taking the appropriate partial derivatives by elements of matrices, we have 

 þÔã����]A� = 

 = �−1�Ô�	>ôB − �o[> /2 + Rot> /$��=B�|²}��>ot=B/�$hB\��,  (2.134) 

 ∑ þÔã����]A, R�� =�Ô<� �\��t�/=B> ot|²
ot> =B −
=B> ot|²}��>ot> =B=B> ot|
��t��>ot> =B/$�hB0/�$hB�, (2.134) 

 þÔ���� = �−1�ÔR=B> ot��ty��>ot=B> /�$¯hB\��, (2.135) 

 ∑ þÔ���� =�Ô<�  �=B> ot��ty��>ot> =B − =B> ot���>ot> =B=B> ot��>ot> =B/$�hB\µ�/�$hB�, (2.136) 

where |39 is matrix of zeroes except element �4, G� that is equal to 1. 

Remember, that the Lagrange remainder is the third-order polynomial 

with respect to the components of Δ�v and Δ\��. Coefficients of this 

polynomial are the third-order partial derivatives of íã�pv � with respect to 

components of �v and \�� estimated in the neighbourhood of their true values. 

It is obvious from (2.124) and (2.125), that all third order moments of 

normally distributed components of Δ�v are equal to 0 and all third order 

moments of Δ\�� components are of order _�1/���. Third order partial 

derivatives of Φ�þÉÔ� with respect to elements of �v and \�� are bounded by 

the uniformly bounded functions in the neighbourhood of point �v = �, \�� =\�. So we can scrap O¯ in (2.130). 

Finally, putting (2.131-2.136) into (2.130) and using (2.128), (2.129) we 

complete the proof of the theorem. 

  



Chapter 3 

Numerical experiments and 

applications 

This chapter demonstrates the results of numerical experiments with 

simulated data and the application to the real data. In section 3.1 the 

empirical power for proposed non-parametric test is calculated. Section 3.2 

examines the influence of different covariance parameters and Mahalanobis 

distance to the proposed AER. Univariate two-class and multiclass cases are 

analysed. For the two-class case the comparison of AER values using a 

symmetric and asymmetric training sample plan is done. For the multiclass 

case calculations are performed for grouped and mixed training sets of 

locations. Actual error rate and its approximation are also accomplished for 

GMRF. Section 3.3 illustrates the effects of two different spatial sampling 

designs on AER. In section 3.4 the classification problem for real data is 

solved. The calculations were performed by geoR, gstat and INLA: free and 

open-source packages for geostatistical analysis included in statistical 

computing software R (http://www.r-project.org/). R is a language and 

environment which provides a wide variety of statistical and graphical 

techniques, and is highly extensible. It allows users to add additional 

functionality by defining new functions. 

The results presented in this section are published in [A6], [A9], [A12], [A14], 

3.1. The efficacy of non-parametric test 

In this section the efficacy analysis of the proposed non-parametric test for 

isotropy (Section 1.3) is presented. The numerical experiment is performed 



with simulated data, where geometrically anisotropic GRFs were simulated 

using package geoR. The empirical power of test is examined for different 

number of simulations. Also the comparison for different È, the largest 

number of lags in one direction, is presented. 

Consider the case with " being integer regular 2-dimensional lattice. Set ℎ> = �ℎ§ , ℎ«� for each ℎ ∈ ". Simulations are done on 10 × 10 square grid, 

thus the sample size is � = 121. We generate the realizations from zero-

mean, stationary GRF. The case of nuggetless covariance model, -�ℎ� =\���ℎ�, with geometric anisotropic spatial Gaussian correlation function 

��ℎ� = 
�lá−�ℎ§� + ^�ℎ«��/]�â is considered. Suppose that the anisotropy 

angle � is equal to  
ñ�. 

We will start with È = 2, |ℎ�| = |ℎ¯| = 1 and |ℎ�| = |ℎµ| = 2. It implies 

that only two lags are used. Then we build the contrast matrix and calculate 

the test statistic specified in (1.24) 

� = ~1 00 1   −1 00 −1�, 

SÉ = 12 8 /R��ℎ3� − R��ℎ3[��0� Ð R���ℎ3�|�(ℎ3)| + R��(ℎ3[�)|�(ℎ3[�)|Ñ��
3<� . 

Its approximate distribution is the ��� distribution. ��ℎ3� and ��ℎ3[�� 

represent the pairs �F3 , F9� for a certain lag and |��ℎ3�|, |��ℎ3[��| are the 

numbers of such pairs in two orthogonal directions (see Figure 2).  

  



   

Figure 2. Sampling pairs for directional semivariograms: the main direction of anisotropy, � = 0B, and the orthogonal direction, � = ñ� 

As a performance measure of the proposed test statistic we considered 

the empirical power of test (frequency of rejecting ¾B for simulated 

geometric anisotropic Gaussian data) with significance level, l = 0.05. For 

various values of anisotropy ratio ^ and range parameters ], three simulation 

procedures of size î = �150, 300, 600� are performed. Table 1 shows that 

empirical power of test increases with increasing of range parameter, but 

empirical power is not influenced by the anisotropy ratio. So we propose to 

use our test statistic for the particular cases of geometrically anisotropic 

spatial Gaussian data. 

Table 1. Empirical powers of test for simulated data 

   
 M=150 

  1 4 7 10 13 16 

2 0.03 0.57 0.69 0.8 0.81 0.83 
4 0.04 0.53 0.69 0.83 0.81 0.85 
6 0.05 0.53 0.75 0.79 0.79 0.78 
8 0.02 0.59 0.76 0.70 0.75 0.87 
10 0.07 0.53 0.69 0.73 0.80 0.84 

 M=300 

2 0.06 0.56 0.68 0.76 0.81 0.82 
4 0.04 0.48 0.72 0.77 0.77 0.84 
6 0.06 0.58 0.71 0.76 0.77 0.84 
8 0.05 0.53 0.67 0.76 0.78 0.82 
10 0.05 0.51 0.69 0.78 0.8 0.78 

 M=600 

2 0.05 0.57 0.71 0.76 0.8 0.83 
4 0.03 0.54 0.71 0.75 0.78 0.81 
6 0.04 0.53 0.73 0.76 0.82 0.83 



8 0.05 0.54 0.72 0.76 0.8 0.81 
10 0.05 0.52 0.67 0.79 0.8 0.84 

Increasing the number of lags (È = 5 and È = 10) yields the increase of 

empirical power. Analysing the contents of Table 2 we notice that for È = 10 

even for small range values the empirical power is aproximately 50%.  

Table 2. Empirical powers of test with different lags number and various values of range and 

anisotropy ratio 

   
 K=2 

  1 4 7 10 13 16 

2 0.03 0.57 0.69 0.80 0.81 0.83 

4 0.04 0.53 0.69 0.83 0.81 0.85 

6 0.05 0.53 0.75 0.79 0.79 0.78 

8 0.02 0.59 0.76 0.70 0.75 0.87 

10 0.07 0.53 0.69 0.73 0.80 0.84 

 K=5 

2 0.17 0.78 0.84 0.87 0.94 0.94 

4 0.18 0.76 0.91 0.82 0.91 0.87 

6 0.19 0.75 0.87 0.87 0.91 0.87 

8 0.12 0.76 0.87 0.91 0.88 0.90 

10 0.13 0.75 0.83 0.85 0.92 0.89 

 K=10 

2 0.52 0.94 0.91 0.97 0.89 0.92 

4 0.49 0.96 0.93 0.89 0.95 0.94 

6 0.47 0.92 0.89 0.93 0.93 0.89 

8 0.44 0.91 0.91 0.91 0.89 0.89 

10 0.59 0.96 0.91 0.92 0.88 0.93 

 

3.2. The analysis of AER accuracy and influence of 

statistical parameters to AER  

GGRF two-class case 

In order to investigate the performance of the proposed plug-in Bayes 

discriminant function, to analyse the influence of covariance parameters and 

to evaluate the accuracy of the derived AER, a simulation study was carried 

out. Consider the case of classification the scalar observation �B to one of two 

populations, ΩU, � = 1,2. With an insignificant loss of generality the case with 



zero-one loss function, i.e. r��, h�  &  1 I  �Ôk, �, h & 1, 2 is analysed. Also the 

equal-sized training samples with equal prior probabilities are assumed, �� = �� = 4, s� & s� & 1/2 . 

The observations are assumed to arise from a stationary Gaussian 

random field with constant mean and nuggetless covariance function given by -�ℎ, i� & \���ℎ�, where σ� is the unknown variance (partial sill) and ��ℎ� is 

a spatial correlation function. The exponential geometric anisotropic 

correlation function with unknown range parameter, α, unknown anisotropy 

ratio, ^, and known anisotropy angle � =  s/2,  specified by 

��ℎ� = 
�lá−¢ℎ§� + ^�ℎ«�/]â, 

is considered. Here ℎ§ = �3 − �9 , ℎ« & ­3 I ­9 , 4, G & 1. . . �.  

Hence, the vector of unknown covariance parameters has three 

components, i.e. i = �σ�, λ, α�>.  

The training sample Ò = �Òy> , ÒC>�> & ������, �����, … , ������> is 

observed on a regular 2-dimensional lattice with unit spacing.  

Consider the case �B = �1,1� and fixed set of training locations Á� which 

is partitioned into the union of 2 disjoint subsets, i.e., Á� = Á��� ∪ Á���. Two 

different STL W� and W� are analysed: 

W� = ¡X��� = {�1,2�, �2,2�, �2,1�, �2,0�,, Á��� & *�1,0�, �0,0�, �0,1�, �0,2�,¥, 

W� = ¡X��� = {�1,2�, �2,1�, �1,0�, �0,1�,, Á��� & *�0,0�, �0,2�, �2,2�, �2,0�,¥. 

The distributions of Á� are presented in Figure 3. 

 

Figure 3. Two different STL, where  ● represents the elements of  Á��� and * represents the 

elements of Á���. 



In order to realise AER formula some functions included into geoR were 

used, i.e. function grf() was used for simulation of Gaussian random field; 

variog() was applied for calculating values of empirical semivariogram etc. 

However, it should be noted that most of the calculations were done using 

the R programming language. For example, the geoR package contains a 

varcov.spatial() function that calculates an isotropic covariance matrix, and 

there is no function which creates anisotropic covariance matrix, so it is 

necessary to create a procedure that allows the anisotropy parameters to be 

included in the covariance function structure. 

The values of AER specified in (2.37)-(2.40) are calculated for various 

values of parameters λ and α. The results of the calculations with Δ = 1 are 

presented in Table 3 and Table 4. Analysing the contents of the tables we can 

conclude that for both STL, AER values are decreasing with the increase of 

anisotropy ratio ^ and are decreasing with the increase of range parameter ]. 

It means the higher level of anisotropy, the lower are the values of AER. And 

the stronger spatial correlation yields the lower AER values. 

Table 3. Values of AER for STL W� with Δ = 1 and various ^ and ]. 

 α 

λ 0.6 0.8 1.2 1.6 2 2.4 2.8 3.2 

1 0.328438 0.307256 0.270947 0.240968 0.215754 0.194206 0.175548 0.159223 

2 0.334138 0.313996 0.281444 0.255017 0.232404 0.212669 0.195248 0.179737 

3 0.334396 0.313624 0.280805 0.254897 0.232919 0.213723 0.196722 0.181530 

4 0.333937 0.313140 0.280474 0.254719 0.232910 0.213868 0.196990 0.181895 

5 0.333237 0.312551 0.280198 0.254600 0.232881 0.213904 0.197076 0.182018 

6 0.332543 0.312004 0.279944 0.254496 0.232850 0.213913 0.197112 0.182072 

7 0.331927 0.311540 0.279721 0.254400 0.232816 0.213911 0.197128 0.182101 

8 0.331398 0.311157 0.279533 0.254314 0.232781 0.213903 0.197135 0.182116 

9 0.330946 0.310840 0.279378 0.254238 0.232747 0.213892 0.197136 0.182124 

10 0.330559 0.310576 0.279249 0.254173 0.232716 0.213879 0.197134 0.182128 

 

  



Table 4. Values of AER for STL W� with Δ = 1 and various ^ and ] 

 α 

λ 0.6 0.8 1.2 1.6 2 2.4 2.8 3.2 

1 0.330108 0.310382 0.276753 0.248792 0.224998 0.204422 0.186405 0.170478 

2 0.335293 0.316316 0.286035 0.261460 0.240264 0.221588 0.204943 0.189991 

3 0.335625 0.316118 0.285660 0.261593 0.241000 0.222838 0.206599 0.191959 

4 0.335198 0.315747 0.285613 0.261787 0.241399 0.223403 0.207291 0.192748 

5 0.334506 0.315202 0.285500 0.261927 0.241684 0.223781 0.207734 0.193236 

6 0.333814 0.314669 0.285326 0.261978 0.241861 0.224032 0.208032 0.193564 

7 0.333199 0.314210 0.285141 0.261971 0.241960 0.224194 0.208232 0.193789 

8 0.332669 0.313828 0.284971 0.261935 0.242008 0.224295 0.208368 0.193946 

9 0.332217 0.313511 0.284823 0.261886 0.242026 0.224357 0.208458 0.194056 

10 0.331831 0.313247 0.284698 0.261836 0.242026 0.224393 0.208519 0.194134 

 

Comparing the values of two STL it was noticed that the symmetric STL 

(W�) was more optimal than asymmetric STL (ξ�) by the AER minimum criterion 

since the values of the ratio �HOZ� /�HOZ�for all parametric structures is 

greater than 1 [A12]. 

The influence of the anisotropy ratio on the approximation of expected 

error rates in classification of GGRF observation with nuggetless and known 

correlation function is studied in [A15]. Here AER values for different 

Mahalanobis distance and various anisotropy ratios are calculated. 

GGRF multiclass case  

Now an example of classifying a scalar observation �B for three class case will 

be carried out. In this example observations are assumed to arise from 

stationary GGRF with constant mean and isotropic exponential covariance 

function given by -�ℎ� = σ� exp{−ℎ/]}. The set of training locations Á�� that 

forms the third order neighbourhood for FB = �0,0� is considered. We will 

analyse two different STL: with grouped labels (STLG) and mixed labels 

(STLM). The distributions of STLG and STLM are shown in Figure 4. 

  



STLG STLM 

  

Figure 4. STL Á�� with different labels distributions. The points indicated by A, B and C 

belong to Á���, Á��� and Á�¯�, respectively. Sign × denotes FB. 

All of the simulations have considered small training sample sizes, 

i.e. �Ô = 4 and equal prior probabilities sÔ = �̄ , � & 1. .3. 

1000 simulations (runs) were performed for each STL. For each 

simulated training sample the actual error rate íã�pv � specified in Lemma 2.4 

(2.63) was calculated. Expected error rate obtained by averaging actual error 

rates over runs is denoted by HHO]]]]]]. AEER derived in Theorem 2.2 is also 

calculated and its accuracy is evaluated by ^ = |�HHO − HHO]]]]]]|. 
We considered parametric structure with '� = �, '� & 0, '¯ I 3� and \� = 1, then Δ�� = �,  Δ�¯ & 4�,  Δ�¯ & 3�. So � represents the level of 

separation between classes and is called the separation step. 

Table 5 contains the values of AEER, HHO]]]]]] calculated for various levels of 

spatial correlation and class separation specified by parameters ] and �. They 

show that HHO and its approximation decreases as values of these 

parameters increases for both labels distributions. That is quite logical, since 

Mahalanobis distances |$Ôk| between classes are proportional to �/√È, 

È = 1 − õB
>�tyõB and È decreases as ] increases. So the separation between 

classes increases with increasing of α and �.  



Slight difference in AEER and HHO]]]]]] decreasing rates could be caused by 

increasing of the asymptotic expansion remainder values for the strongly 

correlated cases.  

Table 5. AEER and HHO]]]]]] values for different ] and � 

] 

b 

0.5 1 1.5 2 2.5 3 3.5 4 

ST
LG

 A
EE

R
 1 0.37768 0.20695 0.12516 0.07692 0.04460 0.02397 0.01190 0.00545 

2 0.30566 0.14607 0.07632 0.03612 0.01489 0.00533 0.00163 0.00044 

3 0.25606 0.10991 0.04781 0.01700 0.00489 0.00114 0.00021 0.00003 

HHO]]]]]]
 1 0.41488 0.22851 0.13270 0.07926 0.04604 0.02497 0.01263 0.00591 

2 0.35213 0.16729 0.08409 0.04084 0.01731 0.00669 0.00228 0.00065 

3 0.30367 0.13187 0.05636 0.02115 0.00676 0.00188 0.00040 0.00007 

ST
LM

 A
EE

R
 1 0.37474 0.20388 0.12249 0.07452 0.04265 0.02258 0.01102 0.00495 

2 0.30188 0.14293 0.07363 0.03415 0.01374 0.00478 0.00142 0.00037 

3 0.25275 0.10737 0.04584 0.01590 0.00444 0.00100 0.00017 0.00002 

HHO]]]]]]
 1 0.42585 0.24952 0.15246 0.10027 0.06332 0.04002 0.02274 0.01283 

2 0.40950 0.22844 0.13768 0.08506 0.05517 0.02940 0.01727 0.00768 

3 0.39864 0.22117 0.13910 0.08201 0.05133 0.02975 0.01607 0.00879 

 

The values of accuracy, �, are depicted in Figure 5. It shows the 

advantage of STLG against STLM. It means that proposed approximation of 

EER is more precise when classes are not mixed over the region. 

 

Figure 5. Comparison of � for different labels distributions and ] = 2 

The described results are published in Dučinskas and Dreižienė [A12] and 

Dučinskas et al. [A6]. 
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Summing up, the results of numerical analysis give us strong arguments 

to expect that the proposed approximation of the expected risk (or expected 

error rate) could be effectively used for the performance evaluation of the 

plug-in Bayes rule applied to classification of spatial Gaussian process 

observation in particular parametric structure cases and even small training 

samples. 

GMRF two-class case 

The similar calculations are done for GMRF observation. The values of the 

actual risk and the approximation of the expected risk (section 2.3) in the 

finite training sample case are calculated and the influence of statistical 

parameters is demonstrated. The case �� = �� = 60, s� = s� = 1/2 and r��, h�  =  1 − �Ôk, �, h = 1, 2 is considered. The simulations of GMRF were 

performed by INLA, the package included in R. The parameters to be varied in 

the simulation experiment are the spatial dependence parameter, ], and the 

marginal Mahalanobis distance, Δ. 

Assume that GMRFs are sampled on the 11 × 11 regular unit spacing 

lattice Á��B with the focal location in the centre of the lattice (see Figure 6). 

Here we use the power distance weights of the form ,39 = $39t�, where $39 

refers to the Euclidean distance between sites 4 and G, and � is any positive 

integer. 

For the simulations, the true values of the parameters are fixed at A� = 0, A� = 1, \� = 1. Numerical illustration of the estimates of parameters 

is presented in Table 6. This table shows that for all selected values of the 

spatial dependence parameter ], there are no significant biases of the 

considered estimators. 

 



 

Figure 6. Set of training locations with focal location. The points indicated by ●  and ○ 

belong to Á��� and  Á���, respectively 

Table 6. ML estimates of A, \� and Mahalanobis distance $ with $ò for various values of ].  

 ] Aò� Aò� \�� $ò $ 

0.1 -0.00093 1.00875 1.00861 1.34530 1.29724 
0.2 -0.00047 1.00824 1.00861 1.59157 1.53808 
0.3 -0.00005 1.00774 1.00861 1.80306 1.74600 
0.4 -0.00071 0.99931 0.98609 1.99365 1.93168 
0.5 -0.00019 0.99941 0.98609 2.16557 2.10100 
0.6 0.00840 0.99145 0.99907 2.26333 2.25767 
0.7 0.00739 0.99129 0.99907 2.41081 2.40414 
0.8 0.00649 0.99116 0.99907 2.54989 2.54219 
0.9 -0.00300 1.01759 1.04422 2.71571 2.67312 
1 -0.00284 1.01755 1.04422 2.84076 2.79793 

The approximation of expected risk (AER) (Theorem 2.2.) is also 

calculated and the accuracy of the AER is evaluated by relative error 

^ = |�HO − HO]]]]|/HO]]]]. Table 7 shows the values of the AER and HO]]]] calculated 

with respect to ] and ∆. The results show that all AER and HO]]]] values are 

decreasing while ] and ∆ are increasing. That means the greater separation 

between classes and the greater spatial dependence parameter give better 

accuracy of the proposed AER. 

Figure 6 shows that the accuracy of the AER is sufficiently stable with 

respect to the increase in α. However, it was noticed that the general trend 

for the relative error of the AER is an increase in the distance between 

populations. 

 



Table 7. ER]]]] and AER values for different values of α and different class separation (Δ) 

 

α 

HO]]]] AER 

Δ=0.5 Δ=1 Δ=2 Δ=0.5 Δ=1 Δ=2 

0.1 0.37319 0.25877 0.09775 0.37348 0.25937 0.09842 

0.2 0.35053 0.22129 0.06228 0.35084 0.22181 0.06273 

0.3 0.33151 0.19160 0.04056 0.33172 0.19205 0.04086 

0.4 0.31482 0.16733 0.02683 0.31501 0.16767 0.02700 

0.5 0.29993 0.14699 0.01791 0.30010 0.14726 0.01802 

0.6 0.28642 0.12966 0.01203 0.28659 0.12993 0.01211 

0.7 0.27407 0.11486 0.00815 0.27424 0.11505 0.00819 

0.8 0.26269 0.10204 0.00553 0.26284 0.10218 0.00557 

0.9 0.25211 0.09081 0.00377 0.25227 0.09098 0.00380 

1 0.24223 0.08103 0.00258 0.24240 0.08117 0.00260 

 

 
Figure 6. Relative error of the AER for various values of α and three values of R. 

3.3. The influence of sample size to the AER 

The results presented in section 3.2 are based on small training samples, e.g., � = 8. It is obvious that increasing training sample the better classification 

accuracy could be achieved, since the greater training sample gives more 

information about population parameters. As it was mentioned in the section 

1.1 there are three ways to increase the training sample: increasing domain 

asymptotics framework, infill asymptotics and mixed domain asymptotics. 
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This numerical experiment is considered to investigate the influence of 

training sample increase on AER using infill asymptotics and increasing 

domain frameworks.  

Assume that " is a regular 2-dimensional lattice with unit spacing. 

Consider the case FB = �4, 4� and eight fixed STL a��, � & 1, 2, where 1 

denotes infill asymptotic sampling framework, 2 denotes increasing domain 

asymptotic sampling framework and � represents the size of training sample, � & 8, 16, 32, 98. For example a�c contains 8 neighbors of FB, a��d contains 

16 neighbors of FB, and so on. a�� is partitioned into a union of two disjoint 

subsets, i.e., a�� = a��� ∪ a���, where a�Ô�, � & 1,2 is the subset of a�� that 

contains �9 locations of feature observations from ΩÔ  and let ��  &  ��. 

  

  

Figure 7. Infill asymptotic sampling framework with different training sample sizes � & *8, 16, 32,98,; the symbols ●,  and △ represent a���, a��� and �B, respectively. 

Figure 7 represents STL for infill asymptotic sampling framework (a��), 

here extra locations are taken from between observed locations. The STL for 

increasing domain asymptotic sampling framework �a��),  are shown in figure 



8. In this case the extra locations are taken by increasing the domain of 

observations. 

 

 

Figure 8. Increasing domain asymptotics sampling framework with different training sample 

sizes � & *8, 16, 32,98,; the symbols ●,  and △ represent a���, a��� and �B, respectively. 

With an insignificant loss of generality the case with s9 = 0,5 and 

r�4, G� & 1 I �39 , 4, G & 1, 2  is considered. Observations are assumed to arise 

from stationary GRF with different constant mean and common nuggetless 

covariance function given by -�ℎ� = \���ℎ�, where \� is variance (partial sill) 

and ��ℎ� = 
�lá−¢ℎ§� + ^�ℎ«�/]â is the exponential geometric anisotropic 

correlation function with anisotropy ratio ^ and anisotropy angle � = s/2. 

We consider the case with unknown mean and anisotropy ratio parameters. 

Figure 9 shows the values of AER using infill asymptotics and increasing 

domain asymptotics sampling frameworks. AER are calculated assuming 

Mahalanobis distance between marginal distributions Δ = 1 and ] = 0.6, \� = 1. The results show that less values of AER are obtained using increasing 

domain sampling framework. AER values are decreasing while training sample 



size increases for both sampling frameworks and for both isotropic and 

anisotropic cases �^ = 1 6�$ ^ = 2). 

 

Figure 9. AER values using different asymptotic frameworks: isotropic case (^ = 1),  
anisotropic case (^ = 2) 

 

Table 8 shows the ratio of AER calculated using an increasing domain 

asymptotic sampling framework (�HO3�f) to infill asymptotic sampling 

framework (�HO3�g). It is obvious that �HO3�f /�HO3�g increases while ] is 

increasing for all training sample sizes. This leads to the conclusion that for 

greater ] values and greater training sample size the infill asymptotics 

sampling framework gives lower values of AER in comparison with the 

increasing domain asymptotics sampling framework. 

Table 8. �HO3�f/�HO3�g   with different ]  values and fixed Δ = 1 and  ^ = 1. 

α 

�HOh�f/�HOh�g 

N=16 N=32 N=98 N=338 

0.8 0.9954 0.9947 0.9925 0.9920 
1.2 0.9960 0.9962 0.9955 0.9960 
1.6 0.9972 0.9983 0.9988 1.0001 
2.0 0.9981 1.0000 1.0015 1.0034 
2.4 0.9987 1.0014 1.0037 1.0061 
2.8 0.9992 1.0025 1.0055 1.0084 
3.2 0.9996 1.0035 1.0070 1.0104 
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3.4. Application of PBDF to the mapping of 

presence and absence of zebra mussels in the 

Curonian Lagoon 

The zebra mussel (Dreissena polymorpha) is a small freshwater mussel (see 

Figure 10). They are commonly found on the bottom of ships and eat the 

algae that are food for fish. Nevertheless the zebra mussels process up to one 

litre of water per day, per mussel and could be used to improve water clarity. 

These are the reasons why scientists are interested in mussels. They are trying 

to control the mussels and to be able to cultivate them in the certain areas. 

The Curonian Lagoon is a large (1.584h��), shallow (average depth 3.8m) 

coastal waterbody connected to the Baltic Sea by the narrow Klaipeda Strait. 

Currently, zebra mussels are highly abundant in the Curonian Lagoon, 

occupying the littoral zone down to 3–4m depth and occurring on both hard 

substrates and soft bottoms (Zaiko, Daunys [68]). 

 

Figure 10. Zebra mussels 

The main purpose of this section is to apply the proposed discriminant 

functions to the mapping of presence and absence of zebra mussels in the 

Curonian Lagoon; to build the model with minimal misclassification error; to 

analyse the influence of spatial correlation to the misclassification errors. 

The training sample consists of � = 39 observations (see Fig. 11). The 

red dots, �� = 22, represent the locations (stations in the Curonian Lagoon) 



were zebra mussels were not found, and the grey dots, �� = 17, represent 

the presence of zebra mussels. In addition three variables were observed at 

those locations: salinity, water renewal time and depth. All these variables 

could be used for classification and the remaining ones could be included into 

design matrix as covariates. 

 

 

Figure 11. The set of training locations. Red ● and grey � dots represent absence and 

presence of zebra mussel, respectively 

At first it is necessary to verify if the data are spatially correlated. Moran 

I index, one of the oldest statistics used to examine spatial autocorrelation, 

shows significant spatial correlation for all variables. The existence of spatial 

correlation could also be confirmed by semivariograms (see Figure 12). 

Table 9. The values of Moran I index 

 
Depth Salinity Water renewal time 

Moran I 0.586 0.954 0.886 

p-value 4.69E-06 2.62E-12 3.13E-11 

 



 

Figure 12. Semivariograms for the observed variables 

Spatial information could be included into the model through different 

ways. Firstly it could be included through the covariance matrix. Then it could 

be done through the mean model involving coordinates of the locations into 

the design matrix. For example, the first order trend surface model includes 

coordinates of spatial locations. Then the design matrix has the following 

form 

1 0 0 0

... ... ... ... ... ...

1 0 0 0

0 0 0 1

... ... ... ... ... ...

0 0 0 1

1 1

n1 n1

n1+1 n1+1

n n

x y

x y

x y

x y

 
 
 
 

  
 
 
  
 

X . 

Lastly, spatial information could be used for the estimation of prior 

probabilities. The simplest way is to assume that the populations are 

equiprobable, that is, s� = s�, but in this situation this does not seem 

reasonable, because the training samples are of a different size and the area 

of interest (spatial domain ") is large enough. The better decision is to take 

the sizes of ÒÔ  into acount. Since the total number of elements in the training 

sample Ò is �, and �� and �� of them belong to Ò� and Ò�, respectively, then 

the prior probabilities could be evaluated by sÔ = �ï� , � & 1. .2 (Theodoritis 

2009). Another way is to include only the nearest neighbours of �B. Then 

Depth Salinity Water renewal time 



sÔ = �àï�à , where �BÔ  is the number of nearest neighbours of �B in population 

ÒÔ , � = 1. .2 and �B = �B� + �B�.  

For every observed variable different means models were used: 

constant mean model, first order trend surface model and other more 

complicated models which include coordinates and other covariates. In total 

15 different models were analysed. 

Let us start with univariate case of GMRF where the covariance is 

defined as � = \��o� + ]´�t�. Let \� be the unknown parameter and ] is a 

known and equal to 0.5. To construct the matrix ´ a different number of 

neighbours was included according to the maximum allowed distance ($�¬§) 

and the spatial weights of the form ,39 = $39t�, where $39 refers to the 

Euclidean distance, were used. The formula (2.96) was realised and according 

to the sign of êã��B, pv � the decision was made. To evaluate the 

performance of the discriminant function the cross validation procedure was 

applied. 

Table 10 shows the results for the variable Depth. There the probabilities 

of correct classification are presented. These probabilities were calculated for 

different mean models and for different number of neighbours. The last 

column corresponds to the situation with no spatial correlation. The 

remaining columns correspond to the situations with different number of 

neighbours. The best model which gives greatest (73.7%) correct classification 

probability is  

jklmn = 	? + )���, 

where 	? is the first order trend surface model. Spatial information in this 

model is included through covariance, where only closest neighbours are 

used, through prior probabilities which are obtained using the same set of 

neighbours, and through mean model. 

  



Table 10. Correct classification probabilities for variable Depth 

Neighborhood structure 

Distance $opq = 0.1 $opq = 0.2 $opq = 0.3 $opq = 0.4 
�. Fl6�46�  �.��
�6�4.� 

Number of neighbours [4-16] [15-35] [24-38] [36-38] 0 

M
e

a
n

 m
o

d
e

l ~1 0.718 0.641 0.641 0.641 0.385 

~1+XY 0.737 0.658 0.684 0.711 0.632 

~1+XY+Restime 0.711 0.605 0.632 0.632 0.447 

~1+XY+Salinity 0.718 0.667 0.641 0.641 0.538 

~1+XY+Restime+Salinity 0.692 0.692 0.692 0.692 0.692 

 

Performing the classification by the variable Salinity and including Depth and 

Water renewal time as covariates we get very similar results (see Table 11), 

but this time the best model which gives the greatest (74.4%) correct 

classification probability is  

XrUstsmu = 	? + )���, 

where 	? is the constant mean model. It means that spatial information is 

not included into the mean model, but it is a component of covariance and it 

is also used to evaluate prior probabilities.  

 

Table 11. Correct classification probabilities for variable Salinity 

Neighbourhood structure 

Distance $opq = 0.1 $opq = 0.2 $opq = 0.3 $opq = 0.4 $opq = 0 

Number of neighbours [4-16] [15-35] [24-38] [36-38] 0 

M
e

a
n

 m
o

d
e

l 

~1 0.744 0.692 0.692 0.692 0.590 

~1+XY 0.684 0.658 0.658 0.658 0.526 

~1+XY+Depth 0.615 0.590 0.615 0.615 0.436 

~1+XY+WRT 0.667 0.667 0.667 0.667 0.692 

~1+XY+Depth+WRT 0.615 0.590 0.641 0.641 0.615 

 



Using Water renewal time for classification we get the results which are 

presented in the Table 12. The best model here, which gives the greatest 

(76.9%) correct classification probability, is  

vkwmsxk = 	? + )���, 

where 	? is the constant mean model.  

Table 12. Correct classification probabilities for variable Water renewal time 

  

Neighborhood structure 

 
Distance $opq = 0.1 $opq = 0.2 $opq = 0.3 $opq = 0.4 $opq = 0 

 
Number of neighbors [4-16] [15-35] [24-38] [36-38] 0 

M
e

a
n

 m
o

d
e

l ~1 0.769 0.744 0.718 0.692 0.538 

~1+XY 0.684 0.684 0.632 0.605 0.474 

~1+XY+Depth 0.667 0.667 0.615 0.590 0.462 

~1+XY+Salinity 0.667 0.667 0.667 0.641 0.564 

~1+XY+Depth+Salinity 0.667 0.641 0.615 0.615 0.564 

 

Analysing Figure 13 it is ease to notice that including spatial correlation 

into covariance gives higher correct classification probabilities. The influence 

of prior probabilities is depicted in Figure 14. The upper line corresponds to 

the case of equiprobable populations. The bottom line shows the correct 

classification probabilities when priors are estimated icluding only nearest 

neighbours but not the whole training sample. 

 

Figure 13. The influence of spatial correlation 
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Figure 14.  The influence of prior probabilities  

The analogous calculations are done for GGRF (see Table 13). Here spherical 

covariance model was used.  

Table 13. Correct classification probabilities for geostatistical model 

Variable 

Distance 

Neighborhood structure 

$opq = 0.1 $opq = 0.2 $opq = 0.3 $opq = 0.4 $opq = 0 

No of neighbours [4-16] [15-35] [24-38] [36-38] 0 

Depth 

~1 0.684 0.658 0.658 0.658 0.447 

~1+XY 0.632 0.579 0.605 0.605 0.421 

~1+XY+Restime 0.684 0.579 0.579 0.553 0.526 

~1+XY+Salinity 0.658 0.632 0.658 0.632 0.579 

~1+XY+WRT+Salinity 0.658 0.632 0.632 0.605 0.500 

Water 
renewal 

time 

~1 0.711 0.711 0.684 0.684 0.553 

~1+XY 0.658 0.658 0.684 0.632 0.579 

~1+XY+Depth 0.605 0.579 0.579 0.579 0.553 

~1+XY+Salinity 0.658 0.684 0.658 0.658 0.526 

~1+XY+Depth+Salinity 0.684 0.711 0.737 0.763 0.526 

Salinity 

~1 0.737 0.684 0.711 0.737 0.632 

~1+XY 0.711 0.658 0.658 0.632 0.526 

~1+XY+Depth 0.684 0.632 0.632 0.632 0.368 

~1+XY+WRT 0.711 0.684 0.658 0.684 0.526 

~1+XY+Depth+WRT 0.632 0.553 0.605 0.605 0.553 
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Conclusions 

 Closed-form expression of asymptotic covariance matrix for 

geometrically anisotropic exponential covariance model is obtained.  

 The proposed non-parametric test for detecting geometric anisotropy 

is easy to implement and could be used as an alternative to the ones 

proposed by other authors. The simulation study has shown that the 

empirical power of the test is increasing with the increase of the range 

parameter which determines the level of spatial correlation. 

 The derived AER and AEER formulas could be applied as a target 

function constructing the optimality criterion for the spatial sampling 

design. 

 A simulation study to examine accuracy of the proposed classifiers and 

to investigate the influence of population parameters to AER was 

included. According to the results the conclusions could be made: 

… 
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