
Vilnius University
Institute of Data Science and

Digital Technologies
L I T H U A N I A

INFORMATICS (09 P)

IMPROVEMENT, DEVELOPMENT AND
IMPLEMENTATION OF

DERIVATIVE-FREE GLOBAL
OPTIMIZATION ALGORITHMS

Linas Stripinis

October 2018

Technical Report MII-DS-09P-18-1 October 2016 - 30

September 2020

VU Institute of Mathematics and Informatics, Akademijos str. 4, Vilnius LT-08663,
Lithuania

www.mii.lt

http://www.mii.lt

Abstract

We consider a box-constrained global optimization problem with a Lipschitz-continuous
objective function and an unknown Lipschitz constant. The well known derivative-free
global-search DIRECT (DIvide a hyper-RECTangle) algorithm performs well solving such
problems. However, the efficiency of the DIRECT algorithm deteriorates on problems with
many local optima and when the solution with high accuracy is required. To overcome
these difficulties different regimes of global and local search are introduced or the algo-
rithm is combined with local optimization. In first part we investigate a different direc-
tion of improvement of the DIRECT algorithm and propose a new strategy for the selection
of potentially optimal rectangles, what does not require any additional parameters or lo-
cal search subroutines. An extensive experimental investigation reveals the effectiveness
of the proposed enhancements.

Applied optimization problems often include constraints. Although the well-known
derivative-free global-search DIRECT algorithm performs well solving box-constrained
global optimization problems, it does not naturally address constraints. We develop a
new algorithm DIRECT-GLce for general constrained global optimization problems in-
corporating two-step selection procedure and penalty function approach in our recent
DIRECT-GL algorithm. The proposed algorithm effectively explores hyper-rectangles with
infeasible centers which are close to boundaries of feasibility and may cover feasible re-
gions. An extensive experimental investigation revealed the potential of the proposed
approach compared with other existing DIRECT-type algorithms for constrained global
optimization problems, including important engineering problems.

Keywords: Global optimization, DIRECT-type algorithms, Derivative-free optimiza-
tion, DIRECT-type constraint-handling, Nonconvex optimization

MII-DS-09P-18-1 October 2016 - 30 September 2020 2

Contents

1 Introduction . 4
2 Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT 4

2.1 The selection of the most promising hyper-rectangles . 5
2.1.1 Potentially optimal hyper-rectangles in the original DIRECT algorithm. 5
2.1.2 Selection of the most promising hyper-rectangles in other DIRECT-type algo-

rithms . 5
2.2 Extended set of potentially optimal hyper-rectangles . 6

2.2.1 DIRECT-GL algorithm . 8
2.2.2 Numerical investigation . 10

3 Penalty functions and two-step selection procedure based DIRECT-type algorithm for con-
strained global optimization . 15

3.1 DIRECT-type methods for general optimization problem . 16
3.2 Experimental investigation of the exact L1 penalty strategy within DIRECT-GL algo-

rithm . 17
3.3 DIRECT-GLce algorithm for generally constrained global optimization problems 24

3.3.1 Handle the case with infeasible initial regions . 24
3.3.2 Algorithmic steps . 28
3.3.3 Comment on the running time . 32

3.4 Comparison with other DIRECT-type approaches for constrained global optimization 32
3.4.1 Comparison with eDIRECT-C algorithm . 32
3.4.2 Comparison with filter-based DIRECT algorithm . 36

3.5 Comparison on four engineering problems. 37
4 Conclusions . 38
References . 40
Appendix Appendix A . 46
Appendix Nr. 1. 47

MII-DS-09P-18-1 October 2016 - 30 September 2020 3

1 Introduction

We consider a box-constrained global optimization problem of the form

min
x∈D

f(x) (1)

where f : Rn → R denotes the objective function and the feasible region is an n-
dimensional hyper-rectangle D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}.
We also assume, that the objective function f(x) is Lipschitz-continuous, but can be
non-linear, non-differentiable, non-convex, and multi-modal. DIRECT is a popular
partitioning-based Lipschitz optimization [HPT95,PŽ07,PŽ09,PŽ14,PŽG10,Pin96a,SS00]
algorithm extending ideas of Piyavskii [Piy67] (independently rediscovered also by Shu-
bert [Shu72]) algorithm to multidimensional derivative-free optimization. The DIRECT

algorithm [JPS93] seeks a global optimum by partitioning potentially optimal (the most
promising) hyper-rectangles and evaluating the objective function at the centers of these
hyper-rectangles. Simplicity and efficiency of the DIRECT algorithm attracted consider-
able research interest. Although most of DIRECT-type algorithms use hyper-rectangular
partitions [GK01,LC14,LZY15,LLP10a,LLP10b], simplicial partitions (DISIMPL algorithm)
[PSKŽ14, PŽ13, PŽ14] have several advantages [PŽ16]. Central sampling of the objec-
tive function can be changed to diagonal approach sampling at the endpoints of diago-
nal [KPS03, SK06, SK08, SK17]. A trisection of hyper-rectangles is usually used to reuse
the objective function values at the center or endpoints of diagonals in descendant subre-
gions. However, a bisection can ensure better shapes of hyper-rectangles with a smaller
variety of sizes in different dimensions than trisection which produces sizes differing by
three times, but a specific sampling strategy is necessary to enable the reuse of sample
points [PCŽ16].

2 Improved scheme for selection of potentially optimal hyper-
rectangles in DIRECT

The original DIRECT algorithm has two main weaknesses [LYZZ17,LLP16,PSKŽ14,SK06].
First, on problems with many local minima, DIRECT sometimes spends an excessive num-
ber of function evaluations exploring suboptimal local minima, thereby delaying the dis-
covery of the global minimum. To address this issue, a two-phase globally-biased tech-
nique was proposed [PSKŽ14, SK06]. Second, DIRECT usually gets close to the global
optimum quickly, but it can be slow to converge with a high accuracy. To overcome the
latter issue, a two-phase locally-biased technique [LZY15] or hybrid versions of DIRECT-
type algorithms enriched with the use of local searches [LLP10a,LLP16] can be employed.
In this section, we propose an alternative strategy to overcome both drawbacks without
the need to use local solvers or use two-phase scheme which requires the introduction of
new parameters.

MII-DS-09P-18-1 October 2016 - 30 September 2020 4

2.1 The selection of the most promising hyper-rectangles

The essential step in DIRECT-type algorithms is identification of potentially optimal (the
most promising) hyper-rectangles of the current partition, which at the iteration k is de-
fined as

Pk = {Di
k : i ∈ Ik},

where Di
k = [ai,bi] = {x ∈ Rn : 0 ≤ aij ≤ xj ≤ bij ≤ 1, j = 1, . . . , n, ∀i ∈ Ik} and Ik

is the index set identifying the current partition Pk. The next partition Pk+1 is obtained
after the subdivision of the selected potentially optimal hyper-rectangles from the current
partition Pk.

2.1.1 Potentially optimal hyper-rectangles in the original DIRECT algorithm

To make the selection of potentially optimal hyper-rectangles in the future iterations,
DIRECT assesses the goodness based on the lower bound estimates for the objective func-
tion f(x) over each hyper-rectangle Di

k. The requirement of potential optimality is stated
formally in Definition 1.

Definition 1 (Potentially optimal hyper-rectangle) Let ci denote the center sampling point
and δi be a measure (distance, size) of the hyper-rectangleDi

k. Let ε > 0 be a positive constant and
fmin be the best currently known value of the objective function. A hyper-rectangle Dj

k, j ∈ Ik is
said to be potentially optimal if there exists some rate-of-change (Lipschitz) constant L̃ > 0 such
that

f(cj)− L̃δj ≤ f(ci)− L̃δi, ∀i ∈ Ik, (2)

f(cj)− L̃δj ≤ fmin − ε|fmin|, (3)

where the measure of the hyper-rectangle is

δi =
1

2
‖bi − ai‖2. (4)

The hyper-rectangle Dj
k is potentially optimal if the lower Lipschitz bound for the

objective function computed by the left-hand side of (2) is the smallest one with some
positive constant L̃ among the hyper-rectangles of the current partition Pk. In (3) the
parameter ε is used to protect from an excessive refinement of the local minima [JPS93,
PSKŽ14].

2.1.2 Selection of the most promising hyper-rectangles in other DIRECT-type algo-
rithms

In the original DIRECT algorithm, the size of a hyper-rectangle is measured by the Eu-
clidean distance from its center to a corner or equivalently by a half length of a diagonal
(see (4)). In DIRECT-l [GK01], the measure of a hyper-rectangle is instead evaluated by

MII-DS-09P-18-1 October 2016 - 30 September 2020 5

the length of its longest side. Such a measure corresponds to the L∞-norm and allows
the DIRECT-l algorithm to group more hyper-rectangles with the same measure. Thus,
there are fewer distinct measures and therefore, less potentially optimal hyper-rectangles
are selected. Moreover, in DIRECT-l at most one hyper-rectangle from each group is se-
lected, even if there are more than one potentially optimal hyper-rectangle in the same
group. This allows reduction of the number of divisions within a group. The results
presented in [GK01] and extended in [PSKŽ14] suggest that DIRECT-l performs well for
lower dimensional problems, which do not have too many local and global minima.

The main principle of an aggressive version of DIRECT [BWG+00] is to select and di-
vide a hyper-rectangle of every measure (δi) in each iteration. The aggressive version
requires many more function evaluations than the other versions of DIRECT since the cri-
teria for choosing hyper-rectangles to be divided have been relaxed. Although this ap-
proach does not appear to be favorable for simple test problems, more difficult problems
may be easier solved by this strategy on a large parallel supercomputer [BWG+00].

In the PLOR algorithm [MPR+17], the set of all Lipschitz constants (herewith the set
of potentially optimal hyper-rectangles) is reduced to just two: the maximal and the min-
imal ones. In such a way the PLOR approach is independent of any user-defined parame-
ters and balances equally local and global search during the optimization process.

A two-phase globally [PSKŽ14, SK06] and locally-biased [LZY15] algorithms at one
of the phases work in the same as the original DIRECT algorithm, i.e., during the selection
procedure considers all hyper-rectangles from the current partition. However, in the sec-
ond phase, they limit the selection of potentially optimal hyper-rectangles based on their
measures. The globally-biased versions constrain themselves to the larger subregions
(primary addressing the first weakness), while the locally-biased version constrains itself
to the smaller ones and in such a way addresses the second weakness of DIRECT-type
algorithms.

2.2 Extended set of potentially optimal hyper-rectangles

In this section, we present a new way to identify the extended set of potentially optimal
hyper-rectangles. Using a new two-step based strategy, we enlarge the set of the best
hyper-rectangles by adding more medium-measured hyper-rectangles with the smallest
function value at their centers and additionally, closest to the current minimum point.
The first extension forces the algorithm to work more globally (compared to the selection
procedure used in DIRECT), while the second part assures faster and broader examination
around the current minimum point. In such way, we address both weaknesses of DIRECT
staying in the same algorithmic framework. Let’s state it formally.

Let Lk be the set of all different indices at the current partition Pk, corresponding
to the groups of hyper-rectangles having the same measure (δk). The minimum value
lmin
k ∈ Lk corresponds to the group of hyper-rectangles having the smallest measure δmin

k .
The maximum value lmax

k of Lk corresponds to the group of hyper-rectangles having the

MII-DS-09P-18-1 October 2016 - 30 September 2020 6

largest measures δmax
k , i. e., lmax

k = max{Lk} < ∞. Finally, let lik ∈ Lk be the index of
the group the hyper-rectangle Di

k belongs to. Having this, in Definitions 2 and 3 we for-
malize new strategies for identification of an extended set of potentially optimal hyper-
rectangles from the current partition Pk.

Definition 2 (Enhancing the global search)

• Step 1 Find an index j ∈ Ik and a corresponding hyper-rectangle Dj
k, such that

Dj
k = arg max

j
{ljk : j = arg min

i∈Ik: lmin
k ≤lik≤l

max
k

{f(ci)}}. (5)

• Step 2 Set lmin
k = ljk + 1. If ljk ≤ l

max
k repeat from Step 1; otherwise terminate.

At Step 1, the hyper-rectangle containing the minimum point (xmin) is selected. If there
are several hyper-rectangles with the same lowest objective value f(ci), the preference is
given to hyper-rectangles with the largest ljk value, i.e., a bigger size measure. After this,
in Step 2, the minimum value lmin

k = ljk + 1 is increased; thus all hyper-rectangles from
the groups with indices lower than the updated lmin

k (measures of these hyper-rectangles
belonging to these groups are smaller than the measure of the lmin

k group) are not con-
sidered in the recurrent Step 1. A geometrical interpretation and comparison of the orig-
inal DIRECT and the globally enhanced (let us call DIRECT-G) versions are shown in the
left-hand side and middle graphs in Figure 1. By this strategy, we extend the number
of medium-measured potentially optimal hyper-rectangles and force DIRECT-G to work
more globally. Let us stress, that opposed to the aggressive DIRECT version, by Defini-
tion 2 DIRECT-G will not consider hyper-rectangles from the groups where the minimum
function value is larger compared to the minimum value from the larger groups.

Definition 3 (Enhancing the local search)

• Step 1 At each iteration k, evaluate the Euclidean distance from the current minimum point
(xmin) to other sampled points:

d(xmin, ci) =

√√√√ n∑
j=1

(xmin
j − cij)2 (6)

• Step 2 Apply the procedure described in Definition 2 in (5) using distances d(xmin, ci)

instead of objective function values.

A geometrical interpretation of the selection of potentially optimal hyper-rectangles us-
ing the locally enhanced strategy is shown on the right-hand side of Figure 1. By this
strategy, we extend the number of potentially optimal hyper-rectangles locating close
to the current minimum point (xmin). Moreover, by this strategy, we select the closest
hyper-rectangles from various measures.

MII-DS-09P-18-1 October 2016 - 30 September 2020 7

0 0.2 0.4 0.6 0.8

−1.0

−0.75

−0.5

−0.25

0.0

0.25

δki

f
(c
i)

DIRECT

0 0.2 0.4 0.6 0.8

−1.0

−0.75

−0.5

−0.25

0.0

0.25

δki

Global enhancement

non-potentially optimal

potentially optimal

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

δki

d
(x

m
in
,c
i)

Local enhancement

Figure 1: Geometric interpretation of the selection of potentially optimal hyper-rectangles
by using DIRECT (on the left-hand side), DIRECT-G (middle), and the locally enhanced
strategy (on the right-hand side) on the Shekel 5 test problem in the fifth iteration of
corresponding algorithms/strategies

2.2.1 DIRECT-GL algorithm

In this subsection, we introduce a new DIRECT-type algorithm (let us call DIRECT-GL).
The key feature of DIRECT-GL is that DIRECT-GL performs the identification of potentially-
optimal hyper-rectangles twice in every iteration. First, by using Definition 2 the globally
enhanced set of potentially optimal candidates is determined and fully processed (sam-
pled and partitioned). Second, by using Definition 3 the locally enhanced set is identified
and fully processed (sampled and partitioned) again. Thus, our new approach is based on
“Divide the best” strategy [Ser98] and it has the everywhere-dense type of convergence
(like other DIRECT-type algorithms [FK06, JPS93, PCŽ16, PSKŽ14, SK06]). This follows
from the fact that, that using Definitions 2 and 3, DIRECT-GL always selects for partition-
ing hyper-rectangles from the group (lmax

k) with the largest measure δmax
k . Since each

group contains only a finite number of hyper-rectangles, after a sufficient number of it-
erations, all hyper-rectangles will be partitioned. Such a procedure will be repeated with
a new group of the largest hyper-rectangles and so on until the largest hyper-rectangles
will have the measure smaller than the required tolerance ε.

The complete description of the DIRECT-GL algorithm is shown in Algorithm 1. The
input for the algorithm is one (or few) stopping criteria: required tolerance (εpe), the
maximal number of function evaluations (Mmax) and the maximal number of DIRECT-GL
iterations (Kmax). After termination, DIRECT-GL returns the found objective value fmin

and the solution point xmin together with algorithmic performance measures: final tol-
erance – percent error (pe), the number of function evaluations (m), and the number of
iterations (k).

MII-DS-09P-18-1 October 2016 - 30 September 2020 8

input : εpe, Mmax, Kmax;
output: fmin, xmin;

1 Initialize k = 1, m = 1, Ik = {1}, fmin = f(c1), xmin = c1;
2 while pe > εpe and m < Mmax and k < Kmax do // pe defined in Eq. (7)
3 Identify the index set J1k ⊆ Ik of potentially optimal hyper-rectangles using

Definition 2;
4 Set xmin

old = xmin;
5 foreach i ∈ J1k do
6 Subdivide (trisect) hyper-rectangle Di

k and update Ik;
7 Evaluate f at the centers of the new hyper-rectangles;
8 Update fmin, xmin, pe and m;
9 end

10 if xmin 6= xmin
old then

11 Calculate distances d(xmin, ci), i ∈ Ik to all sampled points; // using Eq. (6)
12 Set xmin

old = xmin;
13 else
14 Calculate distances d(xmin, ci) to newly sampled points;
15 end
16 Identify the index set J2k ⊆ Ik of potentially optimal hyper-rectangles using

Definition 3;
17 foreach i ∈ J2k do
18 Subdivide (trisect) hyper-rectangle Di

k and update Ik;
19 Evaluate f at the centers of the new hyper-rectangles;
20 Update fmin, xmin, pe and m;
21 end
22 Increase k = k + 1 and check if condition described in lines 10-15;
23 end
24 return fmin, xmin, pe, k, m;

Algorithm 1: Pseudo code of the DIRECT-GL algorithm

MII-DS-09P-18-1 October 2016 - 30 September 2020 9

2.2.2 Numerical investigation

The introduced DIRECT-G and DIRECT-GL as well as the original DIRECT algorithm
(Finkel’s implementation [Fin04]) were implemented in the MATLAB programming lan-
guage. Note, that for the DIRECT algorithm potentially optimal hyper-rectangles can be
identified in at least two different ways: using modified Graham’s scan algorithm [BH99]
or the rule described by Lemma 2.3 in [Gab01]. Usually this does not impose signifi-
cant differences, but occasionally it can have, e.g., when a higher precision is required.
The selection procedure of potentially optimal hyper-rectangles in DIRECT-GL differs sig-
nificantly, however, this does not have a notable difference to the overall performance,
compared with the procedure used in DIRECT. This means, that for the identification of
the same quantity of potentially optimal hyper-rectangles DIRECT and DIRECT-GL spent a
similar amount of time.

We compare the efficiency of the algorithms on the Hedar test set [Hed05], which con-
sist of 27 global optimization test functions. Some of test problems have several variants,
e.g., Bohachevsky, Hartman, Shekel, and some of them can be tested for different dimen-
sionality. In Table 1 we report main features of these problems: problem number (No.),
name, dimensionality (n), feasible region (D), the number of local minima (if known), and
the known minimum (f∗). Whenever the global minimum point lies at the initial sam-
pling point for any tested algorithm the feasible region was modified (increased). These
modified problems are marked with the star sign *.

Note, that the most of test problems from the Hedar test set are multimodal, therefore
suitable to investigate how introduced modifications help to overcome the first weakness.
Since all the global minima f∗ are known for all Hedar test problems in advance, inves-
tigated algorithms were stopped either when the point x̄ was generated such that the
percent error

pe = 100%×

f(x̄)−f∗
|f∗| , f∗ 6= 0,

f(x̄), f∗ = 0,
(7)

is smaller than the tolerance value εpe, or when the number of function evaluations ex-
ceeds the prescribed limit of 106. In our investigation, four different values for εpe were
considered: 10−2, 10−4, 10−6, 10−8. By doing this, we investigate algorithm’s ability to
avoid the second weakness. The comparison is based on the number of function evalua-
tions and the best (smallest) number for each problem is shown in bold font.

The results of experiments are given in Table 2. First, observe that DIRECT-G and
DIRECT-GL perform on average much better (see Aver. (overall)) compared to DIRECT.
Especially this is evident when a lower percentage error (pe) (higher accuracy) is sought.
Observe, that original DIRECT on average performs better only for simpler (unimodal) test
problems (see Aver. (unimodal)). That is mainly because the set of potentially optimal
hyper-rectangles in DIRECT-G, DIRECT-L and DIRECT-GL is larger per iteration. Conse-
quently, a greater number of function evaluations is needed.

MII-DS-09P-18-1 October 2016 - 30 September 2020 10

Table 1: Key characteristics of the Hedar test problems

Problem Problem Dimension Feasible region No. of local Optimum
No. name n D minima f∗

1, 2, 3 Ackley* 2, 5, 10 [−15, 35]n multimodal 0.0
4 Beale 2 [−4.5, 4.5]2 multimodal 0.0
5 Bohachevsky 1* 2 [−100, 110]2 multimodal 0.0
6 Bohachevsky 2* 2 [−100, 110]2 multimodal 0.0
7 Bohachevsky 3* 2 [−100, 110]2 multimodal 0.0
8 Booth 2 [−10, 10]2 unimodal 0.0
9 Branin 2 [−5, 10]× [10, 15] 3 0.39789
10 Colville 4 [−10, 10]4 multimodal 0.0
11, 12, 13 Dixon & Price 2, 5, 10 [−10, 10]n unimodal 0.0
14 Easom 2 [−100, 100]2 multimodal −1.0
15 Goldstein & Price 2 [−2, 2]2 4 3.0
16 Griewank* 2 [−600, 700]2 multimodal 0.0
17 Hartman 3 [0, 1]3 4 −3.86278
18 Hartman 6 [0, 1]6 4 −3.32237
19 Hump 2 [−5, 5]2 6 −1.03163
20, 21, 22 Levy 2, 5, 10 [−10, 10]n multimodal 0.0
23 Matyas* 2 [−10, 15]2 unimodal 0.0
24 Michalewicz 2 [0, π]2 2! −1.80130
25 Michalewicz 5 [0, π]5 5! −4.68765
26 Michalewicz 10 [0, π]10 10! −9.66015
27 Perm 4 [−4, 4]4 multimodal 0.0
28, 29 Powell 4, 8 [−4, 5]n multimodal 0.0
30 Power Sum 4 [0, 4]4 multimodal 0.0
31, 32, 33 Rastrigin* 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
34, 35, 36 Rosenbrock 2, 5, 10 [−5, 10]n unimodal 0.0
37, 38, 39 Schwefel 2, 5, 10 [−500, 500]n unimodal 0.0
40 Shekel, m = 5 4 [0, 10]4 5 −10.15320
41 Shekel, m = 7 4 [0, 10]4 7 −10.40294
42 Shekel, m = 10 4 [0, 10]4 10 −10.53641
43 Shubert 2 [−10, 10]2 760 −186.73091
44, 45, 46 Sphere* 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
47, 48, 49 Sum squares* 2, 5, 10 [−10, 15]n unimodal 0.0
50 Trid 6 [−36, 36]6 multimodal −50.0
51 Trid 10 [−100, 100]10 multimodal −210.0
52, 53, 54 Zakharov* 2, 5, 10 [−5, 11]n multimodal 0.0

MII-DS-09P-18-1 October 2016 - 30 September 2020 11

For small dimensional problems (see Aver. (n ≤ 3)), DIRECT requires on average from
4.5 times (when εpe = 10−2) to 175 times more function evaluations (when εpe = 10−8)
compared to DIRECT-GL. Also DIRECT-L showed an advantage comparing with DIRECT.
Observe, that DIRECT-G performed worst with εpe = 10−2 and εpe = 10−4. Again, for
most of these problems DIRECT was able to converge after a small number of iterations.
Therefore, by extending the set of potentially optimal hyper-rectangles only globally en-
hanced (DIRECT-G) is not very efficient for low-dimensional problems. However, when
εpe = 10−6 and εpe = 10−8 was used, DIRECT-G performed significantly better compared
to DIRECT.

For higher dimensional (see Aver. (n ≥ 4)) and multimodal problems (see Aver.
(multimodal)) both introduced versions performed significantly better compared to
DIRECT, and the best results were obtained using DIRECT-GL. Finally, in total DIRECT failed
for 30.1% (65/216) cases, most of which when a lower percent error tolerance was re-
quired (10−6 and 10−8) and optimization problems were more challenging. Meanwhile,
DIRECT-G, DIRECT-L and DIRECT-GL in total failed on 18.1% (39/216),24% (52/216) and
9.2% (20/216) cases, accordingly.

MII-DS-09P-18-1 October 2016 - 30 September 2020 12

Table 2: Number of function evaluations using DIRECT, DIRECT-G and DIRECT-GL algorithms solving Hedar test problems
Problem DIRECT DIRECT-G DIRECT-L DIRECT-GL

No./εpe 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

1 225 443 655 909 773 1,385 2,301 3,463 751 1,343 2,239 3,377 1,197 2,123 3,571 5,415
2 8,845 11,289 14,619 17,757 10,611 19,137 31,459 47,065 138,165 146,359 158,897 174,231 19,403 35,175 55,843 84,979
3 80,927 > 106 > 106 > 106 90,089 151,575 240,677 350,075 > 106 > 106 > 106 > 106 180,707 306,089 486,459 702,121
4 655 1,143 1,823 2,835 283 591 891 1,347 357 721 1,119 1,615 183 395 591 833
5 327 457 551 845 435 607 739 1,129 435 611 743 1,133 729 847 1,115 1,767
6 345 489 589 897 441 617 749 1,139 855 1,025 1,155 1,545 727 845 1,113 1,765
7 693 1,073 1,645 2,099 623 935 1,407 2,057 459 787 1,119 1,595 685 1,113 1,665 2,139
8 295 511 917 1,295 301 489 901 1,221 283 395 699 1,015 345 509 831 1,087
9 195 377 38,455 > 106 255 365 603 841 333 457 755 1,079 333 579 859 1,239
10 6,585 18,261 24,485 67,695 104,315 120,077 128,847 162,751 9,465 18,915 21,405 23,197 1,623 2,809 3,539 5,371
11 481 597 1,143 1,969 403 477 973 1,489 373 537 971 1,349 235 393 823 1,297
12 18,237 19,407 23,065 32,229 14,531 17,135 23,955 29,471 213,759 215,109 221,133 230,409 13,109 16,501 22,951 31,213
13 365,221 458,743 > 106 > 106 990,493 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

14 32,859 59,347 297,571 > 106 336,879 337,069 337,169 337,477 377 623 741 1,097 495 817 1,085 1,679
15 191 305 10,437 > 106 209 357 553 789 269 415 603 839 223 367 555 789
16 9,215 9,341 9,341 9,505 12,519 12,711 12,711 12,965 1,753 1,965 1,965 2,249 2,067 2,375 2,375 2,799
17 199 4,165 88,883 > 106 369 669 819 1,493 325 621 931 1,623 379 1,049 1,199 2,431
18 571 182,623 > 106 > 106 1,529 4,063 6,903 12,163 1,557 4,249 7,027 12,237 4,793 8,793 13,207 19,879
19 293 997 54,487 > 106 211 355 593 965 211 359 555 927 279 485 657 1,143
20 127 155 267 401 189 225 407 585 149 221 399 577 189 263 459 581
21 705 1,021 1,921 2,845 1,587 2,563 4,325 6,253 1,533 2,485 4,193 6,101 2,349 4,361 6,329 10,149
22 5,589 10,431 18,475 28,461 11,149 18,801 30,673 44,013 10,303 17,555 28,761 41,505 16,179 29,945 48,049 74,815
23 107 209 391 935 111 225 379 825 65 179 281 477 101 211 357 557
24 67 109 109 109 97 179 179 179 97 179 179 179 129 235 235 235
25 14,077 215,127 > 106 > 106 5,491 7,105 7,819 7,819 > 106 > 106 > 106 > 106 2,445 4,619 5,575 5,575
26 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 601,433 608,113 611,077 611,077
27 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

28 13,675 67,515 309,427 > 106 11,589 50,149 320,073 > 106 5,135 34,179 321,343 > 106 7,045 24,591 85,235 202,795
29 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 364,693 > 106 > 106 > 106 147,105 905,027 > 106 > 106

30 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 13,243 > 106 > 106 > 106 101,181 763,635 > 106 > 106

31 987 1,181 1,565 1,833 2,897 3,087 3,333 3,631 24,883 25,053 25,327 25,533 811 1,109 1,507 1,803
32 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 180,429 184,247 192,151 196,343
33 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Continued on next page

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

13

Table 2 Continued from previous page

Problem DIRECT DIRECT-G DIRECT-L DIRECT-GL

No./εpe 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

34 1,621 1,913 3,005 4,019 389 619 2,285 3,883 313 471 679 1,471 579 727 1,143 1,657
35 19,693 24,681 35,575 41,687 20,363 28,293 46,005 68,065 > 106 > 106 > 106 > 106 25,395 38,633 72,735 86,043
36 169,191 215,435 267,741 308,715 53,193 83,559 146,087 273,021 > 106 > 106 > 106 > 106 95,405 167,319 268,591 403,207
37 255 447 597 1,195 371 567 691 1,153 807 989 1,105 1,555 659 971 1,235 1,709
38 27,543 30,307 31,199 39,487 637,379 640,081 640,743 645,519 > 106 > 106 > 106 > 106 556,495 561,599 562,903 568,483
39 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

40 155 255 > 106 > 106 781 1,419 2,477 3,803 731 1,365 2,389 3,697 1,227 2,025 3,433 5,209
41 145 4,875 > 106 > 106 755 2,017 3,737 5,377 697 1,953 3,645 5,273 1,141 2,845 4,741 6,623
42 145 4,939 > 106 > 106 715 1,977 3,493 5,111 709 1,949 3,443 5,047 1,151 2,871 4,789 7,137
43 2,967 3,867 68,667 > 106 4,089 4,219 4,393 4,603 369 535 807 1,079 425 735 951 1,341
44 209 417 633 1,211 191 337 481 785 173 309 449 743 391 549 737 1,103
45 4,653 10,583 20,123 44,099 2,287 4,113 6,335 10,933 2,573 3,963 6,103 10,175 4,357 8,249 11,011 18,225
46 99,123 205,013 614,749 > 106 16,857 28,243 47,529 76,723 20,115 28,727 46,803 75,211 35,721 63,399 94,991 155,511
47 107 195 321 623 143 251 391 705 143 251 391 567 191 337 525 759
48 833 1,489 2,463 3,827 1,951 3,271 5,267 7,745 1,857 3,165 5,153 7,237 2,919 4,701 7,523 11,031
49 7,795 14,691 22,651 34,735 16,523 24,489 37,645 53,647 13,563 22,427 34,919 48,637 24,763 41,781 63,413 89,543
50 4,897 207,399 > 106 > 106 5,077 10,069 17,411 26,079 12,149 23,015 42,051 60,457 7,795 15,735 26,059 38,929
51 66,615 > 106 > 106 > 106 22,201 251,255 > 106 > 106 261,301 608,797 742,935 > 106 36,525 119,093 174,059 299,163
52 237 303 653 949 295 329 709 1,023 249 281 605 779 345 413 889 1,123
53 > 106 > 106 > 106 > 106 377,737 602,319 613,251 > 106 5,465 9,725 15,591 22,243 6,429 9,967 17,665 23,891
54 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 94,175 151,287 268,999 317,611 115,073 184,033 320,267 394,467

Aver. (overall) 184,591 236,891 369,800 493,577 199,253 211,822 235,896 263,322 226,023 265,436 277,382 298,068 114,887 150,622 170,131 186,799
Aver. (unimodal) 115,099 126,330 170,648 176,480 195,439 199,961 207,523 220,482 373,655 374,537 376,095 378,051 194,300 202,406 214,502 228,328
Aver. (multimodal) 208,913 275,588 439,503 604,561 200,588 215,973 245,826 278,316 174,351 227,251 242,832 270,074 87,092 132,498 154,601 172,263
Aver. (n ≤ 3) 2,290 3,828 25,335 262,245 15,760 15,942 16,246 16,685 1,480 1,666 1,905 2,278 509 759 1,064 1,533
Aver. (n ≥ 4) 319,846 409,809 625,371 665,211 335,394 357,192 398,862 446,311 392,619 461,136 481,767 517,525 199,748 261,812 295,568 324,254
Failed 9 11 18 26 8 9 10 12 11 13 13 15 4 4 6 6

Concluded

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

14

3 Penalty functions and two-step selection procedure based
DIRECT-type algorithm for constrained global optimization

Many constrained optimization problems are formed from an engineering design pro-
cess, where systems are often modeled with nonlinear and multimodal behavior, being
low or high dimensional, computationally cheap or expensive. Another difficulty of real
world engineering problems is constraints, which often allow feasible solutions only in
a small subset of the design space, or split the feasible region in many non-intersecting
subsets. In most cases practical engineering problems are complex and difficult to solve
by traditional optimization methods. Many real world problems in engineering and ap-
plied sciences can be formulated as nonlinear programming global optimization prob-
lems [BG04, Flo99, Pin96b, SW10b].

We are seeking the global solution of the general nonlinear programming problem:

min
x∈D

f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

(8)

where f : Rn → R,g : Rn → Rm,h : Rn → Rr are (possibly nonlinear) continuous
functions and D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}.

The feasible region consisting of points that satisfy all the constraints is denoted
by Dfeas = D ∩ Ω, where Ω = {x ∈ Rn : g(x) ≤ 0 and h(x) = 0}. We also as-
sume, that all functions are Lipschitz-continuous (with unknown Lipschitz constants),
but can be non-linear, non-differentiable, and non-convex. The original DIRECT algo-
rithm [JPS93], as well as various modifications [LC14,PCŽ16,PSKŽ14,PŽ13,PŽ14,SK06],
addresses optimization problems only with bounds on the variables. The first DIRECT-
type approach for problems with general constraints was proposed by one of the orig-
inal DIRECT authors [Jon01]. A few years later, the comparison of three different con-
straint handling strategies withing the DIRECT framework was carried out [Fin05]. The
first three strategies revealed disadvantages of handling infeasible hyper-rectangles and
opened many ways for researchers to improve existing and create new strategies. Only
in recent years, several promising extensions of the original DIRECT algorithm have been
proposed [BDLM12, CRF17, LXC+17, PLR10, PLL+16] for general engineering global op-
timization problems.

In this paper we introduce the extension for general engineering optimization prob-
lems to our recently proposed DIRECT-GL [SPŽ17] algorithm, which is based on a new
strategy (compared to the most of DIRECT-type methods) for the selection of the extended
set of potentially optimal hyper-rectangles (POH). The proposed DIRECT-GLce algorithm
uses an auxiliary function approach, that combines information on the objective and con-
straint functions and does not require any penalty parameters. The DIRECT-GLce algo-

MII-DS-09P-18-1 October 2016 - 30 September 2020 15

Table 3: Summary of the main algorithmic characteristics of DIRECT-type methods for (8)
optimization problem

Step/Algorithm DIRECT-L1 eDIRECT-C filter-based DIRECT DIRECT-GLce

Selection of po-
tentially optimal
hyper-rectangles
(POH)

Original DIRECT

strategy
Novel DIRECT-type
constraint-handling
technique that sep-
arately handles
feasible and infeasi-
ble cells

Modified strategy,
uses three sets:
one from feasible,
one from infeasible
non-dominated and
one from infeasible
dominated points

Uses two step se-
lection procedure
from DIRECT-GL

algorithm [SPŽ17]

Partitioning scheme Original DIRECT tri-
section strategy

Based on Voronoi di-
agrams for partition
the design space in
Voronoi cells

Trisection strategy
using the rules of
“preference point”
and “preference
order” described in
Definition 5 [CRF17]

Original DIRECT tri-
section strategy

Local minimization
procedure

– In MATLAB imple-
mentation uses
fmincon

– Only in the version:
DIRECT-GLce-min

Input parameters Balance parameter ε,
penalty parameters
pi

Balance parameter ε,
acceptable constraint
violation εϕ

Balance parameter
ε, filter control pa-
rameters, acceptable
constraint violation
εϕ

Acceptable con-
straint violation
εϕ

rithm works in two phases, where during the first phase the algorithm handles infeasible
initial points while in the second phase seeks to find a feasible global solution. A separate
phase for handling infeasible initial points is especially useful when the feasible region is
small compared to the design space. When feasible solutions are located the efforts may
be switched to finding better feasible solutions.

3.1 DIRECT-type methods for general optimization problem

In this subsection, we review and summarize existing DIRECT-type methods for (8) opti-
mization problems.

The first DIRECT-type approach for problems with general constraints was presented
in [Jon01]. The author extended the original DIRECT algorithm to handle nonlinear in-
equality constraints by using an auxiliary function that combines information on the ob-
jective and constraint functions in a special manner.

Second DIRECT-type approach is based the Neighborhood Assignment Strategy
(NAS) [Gab01]. The idea of this strategy is to change the value of the objective func-
tion at the infeasible point x̄ /∈ Dfeas with the objective value attained in the feasible point
from the neighborhood of x̄. Such a strategy does not allow the DIRECT algorithm to move
beyond the feasible region. As the NAS strategy does not use all the available informa-
tion, such as constraint violations, it is slower in general compared to other approaches
and should be used only for optimization problems with hidden constraints.

Another strategy is based on the exact L1 penalty functions [Fle87]. An exact L1

MII-DS-09P-18-1 October 2016 - 30 September 2020 16

penalty approach is a transformation of the original constrained problem (8) to the form:

min
x∈D

f(x) +

m∑
i=1

max{pigi(x), 0}+

r∑
i=1

pi+m|hi(x)|, (9)

where pi are penalty parameters. Comparison in [Fin05] showed promising results. The
biggest drawback is the requirement for the users to set penalty parameters for each con-
straint function. In practice, choosing penalty parameters is very important task and can
have a huge impact on the performance of the algorithm [Fin05, LXC+17, PŽ14, PŽ16].

Recently, two new approaches based on penalty functions were proposed: EPGO

[PLR10] and DF-EPGO [PLL+16]. The main feature of these algorithms is an automatic up-
date rule for the penalty parameter and under the weak assumptions, the penalty param-
eters are updated only a finite number of times. Another recently proposed DIRECT-type
approach filter-based DIRECT [CRF17] aims to minimize the constraint violations and the
objective function value simultaneously. While other strategies work only with one gen-
eral set of all hyper-rectangles, filter-based DIRECT algorithm adapts filter methodology
from [FL02] and splits the main set into three separate sets. The filter strategy prioritizes
the selection of potentially optimal candidates: first hyper-rectangles with feasible center
points are selected, followed by those with infeasible but non-dominated center points,
and finally by those that have infeasible and dominated center points.

A metamodel-based [FK09,SW10a,SW10b] constrained DIRECT-type global optimiza-
tion algorithm (eDIRECT-C) was recently also proposed in [LXC+17]. One of the main
differences and features of the algorithm is employed Voronoi diagrams for partitioning
the design space in Voronoi cells. Voronoi cells have irregular boundaries and eDIRECT-C

generates a set of random points to describe the cells. In order to speed up the conver-
gence, the algorithm employs a pure greedy search on the objective metamodel f̂. Also
eDIRECT-C separately handles feasible and infeasible cells.

The summary of discussed and proposed algorithms is presented in Table 3.

3.2 Experimental investigation of the exact L1 penalty strategy within
DIRECT-GL algorithm

In [SPŽ17], the comparison of DIRECT-GL algorithm against the original DIRECT as well
as several other well-known DIRECT-type approaches was carried out on a class of well-
known box-constrained global optimization test problems from [Hed05]. The results re-
vealed, that for simpler (lower dimensional and unimodal) problems the original DIRECT
algorithm performs well, but for more challenging (higher dimensional and multimodal)
problems DIRECT-GL performs significantly faster compared to other tested DIRECT-type
approaches. Motivated by the potential of the DIRECT-GL algorithm, we integrate the
exact L1 penalty function strategy within DIRECT-GL and call the extended algorithm
DIRECT-GL-L1. In the first implementation, for each constraint the penalty parameters
for L1 functions are kept fixed during the optimization process. Analogously to [PŽ14]

MII-DS-09P-18-1 October 2016 - 30 September 2020 17

we use three different penalty parameters (p = 10, p = 102, and p = 103) for all constraint
functions. Algorithmic comparison was carried out using a collection of 56 generally
constrained test problems. Key characteristics of the used optimization test problems are
summarized in Appendix Nr. 1., Table 13. Description of all test problems used in this
and subsequent section in a Matlab format is provided in the online resource [SP18]. Note
that problem G12* has the global minimum point in the center of the feasible region, thus
we have modified bound constraints in the same way as in [LXC+17]. Since all the global
minima f∗ are known for all collected test problems in advance, tested algorithms were
stopped either when a point x̄ was generated such that the percent error

pe ≤ εpe, (10)

where

pe =

f(x̄)−f∗
|f∗| , f∗ 6= 0,

f(x̄), f∗ = 0,

often εpe = 10−4, or when the number of function evaluations exceeds the prescribed
limit of 106.

MII-DS-09P-18-1 October 2016 - 30 September 2020 18

Table 4: The number of function evaluations solving optimization problems described in Table 1 and using different algorithms

Cons. DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc DIRECT-GLce

Label n type p = 10 p = 102 p = 103 p = 10 p = 102 p = 103

1 Bunnag 1 4 L 1, 067 1, 067 1, 067 9, 789 15, 903 15, 903 1,059 7, 271

2 Bunnag 2 4 L 5, 341 5, 341 5, 341 156, 317 > 106 > 106 3,663 18, 733

3 Bunnag 3 5 L 5, 873 5, 873 5, 873 36, 389 > 106 > 106 5,675 45, 483

4 Bunnag 4 6 L 9, 433 12, 475 12, 531 8, 935 > 106 > 106 5,779 42, 467

5 Bunnag 5 6 L 29, 211 29, 211 29, 211 > 106 > 106 > 106 23,079 91, 445

6 Bunnag 6 10 L > 106 > 106 > 106 > 106 > 106 > 106 > 106 567,027

7 Bunnag 7 10 L > 106 > 106 > 106 > 106 > 106 > 106 > 106 60,775

8 G01 13 L 11a 11a 11a 7a 7a 7a > 106 787,405

9 G02 20 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

10 G04 5 NL 43a 43a 1, 799 33a 33a 675 5, 907 21, 355

11 G06 2 NL 75a 119a 289a 51a 97a 297a 3,461 6, 017

12 G07 10 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

13 G08 2 NL 179a 471 471 327a 589 589 471 1, 507

14 G09 7 NL 70, 935a 136, 009 88, 995 106 106 106 40,879 89, 301

15 G10 8 NL 11a 11a 11a 57a 57a 205a > 106 561,857

16 G12* 3 NL 85 85 85 111 111 123 85 85

17 G16 5 NL 154, 361 153, 101 155, 553 > 106 > 106 > 106 129,901 183, 779

18 G18 9 NL 116, 767 120, 457 120, 481 334, 065 105,881 291, 835 449, 643 381, 387

19 G19 15 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

20 G24 2 NL 1, 277 1, 277 1, 277 7, 865 140, 241 > 106 709 2, 963

21 Genocop 9 4 L 27a 27a 27a 13a 13a 13a 3,191 11, 583

22 Genocop 10 4 L 4, 515 4, 509 4, 509 14, 093 > 106 > 106 4,331 26, 293

23 Genocop 11 4 L 49, 811 52, 145 52, 153 > 106 > 106 > 106 41,351 467, 887

24 Gold.&Price 2 NL 135a 447 487 119a 447 1, 809 441 2, 765

25 Himmelblau 5 NL 95a 95a 4, 525a 67a 67a 3, 243a 5,305 22, 835

26 Horst 1 2 L 789 1, 051 1, 051 287a 3, 689 273, 019 967 4, 169

27 Horst 2 2 L 437a 703 703 265a 10, 829 > 106 433 2, 625

Continued on next page

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

19

Table 4 Continued from previous page

Cons. DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc DIRECT-GLce

Label n type p = 10 p = 102 p = 103 p = 10 p = 102 p = 103

28 Horst 3 2 L 495 495 495 289 289 289 495 495

29 Horst 4 3 L 2, 201 2, 809 2, 809 33, 101 > 106 > 106 2,021 7, 535

30 Horst 5 3 L 1, 695a 3, 013 3, 761 4, 503a > 106 > 106 2,041 7, 263

31 Horst 6 3 L 543a 4, 195 11, 251 333a 9, 351a > 106 4,085 11, 215

32 Horst 7 3 L 1, 213 1, 677 1, 677 581 12, 341 > 106 1, 129 7, 931

33 hs021 2 L 125 125 125 89 89 89 125 125

34 hs021mod 7 L 11a > 106 > 106 7 > 106 > 106 > 106 344, 979

35 hs024 2 L 581 837 837 7a 7a 7a 555 2, 813

36 hs035 3 L 2, 027 2, 027 2, 027 1, 529 1, 495 1,463 1, 929 6, 473

37 hs036 3 L 1, 443 1, 443 1, 443 727 727 727 1, 443 1, 443

38 hs037 3 L 11a > 11a 963 7a 7a 7a 739 7, 179

39 hs038 4 L 9, 417 4, 301 4,283 7, 401 5, 885 5, 557 8, 867 8, 875

40 hs044 4 L 20, 845 27, 017 59, 485 138, 947 > 106 > 106 5, 047 26, 065

41 hs076 4 L 8, 929 8, 935 8, 935 30, 037 149, 679 155, 061 3,509 15, 763

42 s224 2 L 295a 943a 737 7a 333 223 823 1, 309

43 s231 2 L 337 337 337 999 1, 029 1, 003 331 331

44 s232 2 L 11a 75a 1, 145 19a 57a > 106 1,069 5, 601

45 s250 3 L 33a 75a 2,651 25a 49a 9, 431 3, 891 7, 333

46 s251 3 L 11a 11a 963 7a 7a > 106 733 7, 101

47 T1 2 NL 1,221 1, 921 1, 921 3, 345 8, 229 8, 229 1, 373 2, 933

48 T1 3 NL 75, 105 16, 625 16, 333 66, 137 > 106 > 106 26, 643 8,297

49 T1 4 NL 180, 383 189, 595 277, 587 127, 087 > 106 > 106 192, 951 47,431

50 T1 5 NL 310, 195a 520, 803 616, 925 > 106 > 106 > 106 253, 805 78,257

51 T1 6 NL 394, 497 708, 017 698, 917 > 106 > 106 > 106 239, 697 135,843

52 T1 7 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 221,603

53 T1 8 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 206,365

54 T1 9 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 370,913

55 T1 10 NL > 106 > 106 > 106 > 106 > 106 > 106 > 106 635,847

56 zecevic2 2 L 545 815 815 1, 533 2, 961 7, 079 1, 081 2, 763

Continued on next page

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

20

Table 4 Continued from previous page

Cons. DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc DIRECT-GLce

Label n type p = 10 p = 102 p = 103 p = 10 p = 102 p = 103

Aver.(overall) 516, 137 418, 516 312, 676 636, 793 682, 036 705, 836 240, 727 153,341

Aver.(n ≤ 3) 443, 498 241, 614 42, 175 526, 485 409, 504 494, 361 2,283 4, 331

Aver.(n ≥ 4) 580, 337 547, 705 520, 763 705, 260 879, 914 853, 840 433, 021 273,510

Aver.(LP cons.) 398, 612 308, 194 158, 096 528, 508 612, 280 650, 601 125, 135 78,962

Aver.(NLP cons.) 692, 335 558, 644 520, 906 764, 540 752, 595 754, 704 406, 577 260,058

unsolved (total) 28 21 15 34 37 38 12 3

unsolved (infes.sol.) 19 11 5 17 12 7 0 0

unsolved (> 106) 9 10 10 17 25 31 12 3

a – the final solution lies outside the feasible region
Concluded

Table 5: The number of function evaluations needed by algorithms to find a feasible point

Label n m+ r a DIRECT-GLce DIRECT-GL-L1 DIRECT-L1

ϕ(x) ϕN (x) p = 10 p = 102 p = 103 p = 10 p = 102 p = 103

8 G01 13 9 0.0111% 4,050 4, 270 4, 340 4, 036 4, 340 4, 626 4, 244 4, 776
11 G06 2 2 0.0066% 102 102 1, 431 575 122 1, 521 547 112
12 G07 10 8 0.0003% 927 1, 628 847 1, 318 1, 660 449 531 813
15 G10 8 6 0.0010% 3, 394 1,813 > 106 > 106 > 106 > 106 > 106 > 106

1e G03 10 1 0.0000% 1,381 1,381 4, 037 3, 393 1, 413 > 106 > 106 > 106

2e G05 4 5 0.0000% 6, 329 5, 658 8, 635 5,507 6, 331 > 106 > 106 > 106

a is the estimated ratio between the feasible region and the search space.

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

21

0 0.2 0.4 0.6 0.8 1

·106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

Pr
op

or
ti

on
of

pr
ob

le
m

s
so

lv
ed

Data profile

DIRECT-GL-L1 (p = 10) DIRECT-L1 (p = 10)

DIRECT-GL-L1 (p = 102) DIRECT-L1 (p = 102)

DIRECT-GL-L1 (p = 103) DIRECT-L1 (p = 103)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance ratio, α
Pr

op
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

Performance profile on [1, 10]

Figure 2: Data profiles (left) and performance profiles (right) of DIRECT-GL-L1 and
DIRECT-L1 algorithms on the whole set of optimization problems described in Table 1

Experimental results are presented in Table 4 (the best results are given in bold).
Here, in the second column (Label) we report the name of the problem, while in the
third one – the dimensionality (n) of the problem. In the fourth column (Cons. type) we
specify type of constraints: linear (L) or nonlinear (NL). Next, in the consecutive columns
the total number of function evaluations are reported using four different algorithms:
DIRECT-GL-L1, DIRECT-L1, DIRECT-GLc, and DIRECT-GLce, accordingly. Note, that the
DIRECT-GLc and DIRECT-GLce algorithms are extensions of the DIRECT-GL-L1 algorithm
and fully described in Section 3.3.

The exact L1 penalty function approach integrated within DIRECT-GL (DIRECT-GL-L1
algorithm) gives on average (Aver.(overall)) significantly better results compared to
DIRECT-L1. However, none of tested fixed penalty parameters for L1 penalty function
can ensure the convergence to the feasible solution for all tested problems. Contrary to
DIRECT-L1 which works better using smaller penalty parameters (p = 10), the better per-
formance of DIRECT-GL-L1 is achieved when larger penalty parameter values are used.
When larger penalty values (p = 103) are used the DIRECT-L1 algorithm fails for 67.9%

(38/56) cases, while DIRECT-GL-L1 fails only for 28.6% (16/56) cases accordingly. Also,
larger penalty parameter values reduce the chance of obtaining a solution from the infea-
sible region. On the other hand, larger penalty values can bias the algorithm away from
the boundary of the feasible region where the solution is often located.

Another important feature, that even for low-dimensional test problems (n ≤ 3)
DIRECT-L1 with (p = 103) fails for 36% (9/25) cases, but the DIRECT-GL-L1 algorithm have
none such cases at all. Moreover, the smallest dimensionality when DIRECT-L1 exceeds

MII-DS-09P-18-1 October 2016 - 30 September 2020 22

the maximal number of function evaluation is equal to n = 2, while using DIRECT-GL-L1

the lowest dimensionality when the algorithm failed to converge withing the budged
is equal to n = 7. When solving problems with linear (L) constraints using DIRECT-L1

the maximal number of function evaluation is exceeded for 51.5% (17/33) cases, while
for DIRECT-GL-L1 this happens for 9.1% (3/33) cases accordingly. To sum up, while the
lower penalty values give a better performance for DIRECT-L1 algorithm, larger penalty
values suit better within DIRECT-GL-L1 scheme.

We also evaluate the performance of the algorithms using performance [DM02] and
data profiles [MW09] with the convergence test (10). Performance profiles designed to
compare the performance of algorithms (solvers) using a performance ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
. (11)

Here tp,s > 0 is a performance measure (the number of function evaluations in our case)
obtained for each problem p from a benchmark set P by an algorithm s from a set of
algorithms S. The performance profile of an algorithm s ∈ S is the fraction of problems
where the performance ratio is at most α

ρs(α) =
1

|P|
size{p ∈ P : rp,s ≤ α}, (12)

where |P| is the cardinality of P . Thus, a performance profile is a cumulative distribution
function for the performance ratio. Performance profiles seek to capture how well the
algorithm performs compared to other algorithms in S on the set of problems from P .
Algorithms with high values for ρs(α) are preferable. On the other hand, performance
profiles do not provide the percentage of problems that can be solved with a given budget
of function evaluations. The data profiles are designed to provide this information. The
data profile defined in a such way

ds(α) =
1

|P|
size{p ∈ P : tp,s ≤ α}, (13)

shows the percentage of problems that can be solved with α function evaluations.
Figure 2 shows the performance and data profiles of DIRECT-GL-L1 and DIRECT-L1

algorithms on the whole set of optimization problems described in Table 1. The data
profiles show that DIRECT-GL-L1 algorithm outperforms DIRECT-L1 with all penalty pa-
rameter values for all sizes of the computational budget. Moreover, the performance dif-
ferences between the DIRECT-GL-L1 and DIRECT-L1 algorithms tend to be larger when
the computational budget is bigger. The performance profiles reveal, that all three
DIRECT-GL-L1 algorithm variations solve ≈ 30% with the best efficiency, while only
≈ 10% using any of DIRECT-L1 variations. DIRECT-GL-L1 guarantees quite better per-
formances in terms of solved problems and number of function evaluations, and that

MII-DS-09P-18-1 October 2016 - 30 September 2020 23

these performances are improved by combining the DIRECT-L1 algorithm with two-step
selection of potentially optimal candidates.

3.3 DIRECT-GLce algorithm for generally constrained global optimization
problems

3.3.1 Handle the case with infeasible initial regions

In this section, we present a new way to handle hyper-rectangles with infeasible centers.
In the first extension of DIRECT-GL-L1, we consider a situation when initial sampling
points are infeasible and finding at least one feasible point can be costly. In such a situ-
ation DIRECT-type algorithms: DIRECT-GL-L1 and DIRECT-L1 are likely to fail in finding
feasible points in a reasonable number of function evolutions. For such a situation we em-
ploy an additional procedure into DIRECT-GL-L1 scheme, which samples the search space
and minimizes not the original objective function, but the sum of constraint violations,
i.e.:

min
x∈D

ϕ(x), (14)

where

ϕ(x) =

m∑
i=1

max{pigi(x), 0}+

r∑
i=1

pi+m|hi(x)|, (15)

until a feasible point x ∈ Dfeas
εϕ is found, where

Dfeas
εϕ = {x : 0 ≤ ϕ(x) ≤ εϕ,x ∈ D}. (16)

Penalty parameters pi are simply set to 1 and εϕ is a very small acceptable constraint vio-
lation. The authors of the eDIRECT-C algorithm use a very similar idea, but for treating the
constraints equally, they recommend to normalize every constraint function. And in the
same step they sample the search space and minimize the sum of normalized constraint
violations ϕN (x), i.e.,

min
x∈D

ϕN (x). (17)

In Table 5 we present the impact of this procedure on the selected subset of test problems
(from Tables 12 and 13) having a small feasible region. For problems G03, G05, G10 the
L1 penalty based approaches can fail to produce a feasible solution within 106 function
evaluations, but using (14) or (17) we avoid such a situation.

By the second extension to DIRECT-GL-L1, we transform problem (9) to (18):

min
x∈D

f(x) + ξ(x, f feas
min),

ξ(x, f feas
min) =

0, x ∈ Dfeas
εϕ

ϕ(x) + ∆, otherwise,

(18)

MII-DS-09P-18-1 October 2016 - 30 September 2020 24

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

b)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

c)

Tollerance for constraints (εcons)

Solution point

Infeasible points

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

d)

Infeasible region

Feasible region

Feasible points

Figure 3: Geometric interpretation of DIRECT-GLce algorithm on T1 (n = 2) test prob-
lem in a) the fifth iteration, b) the sixth iteration, c) the seventh iteration, d) the eighth
iteration.

MII-DS-09P-18-1 October 2016 - 30 September 2020 25

0 0.2 0.4 0.6 0.8 1

·106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

Pr
op

or
ti

on
of

pr
ob

le
m

s
so

lv
ed

Data profile

DIRECT-GLce DIRECT-GL-L1(p = 103)

DIRECT-GLc DIRECT-L1(p = 10)

DIRECT-GL-L1(p = 10) DIRECT-L1(p = 102)

DIRECT-GL-L1(p = 102) DIRECT-L1(p = 103)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance ratio, α
Pr

op
or

ti
on

of
pr

ob
le

m
s

so
lv

ed

Performance profile on [1, 10]

Figure 4: Data profiles (left) and performance profiles (right) of DIRECT-GLce, DIRECT-GLc,
DIRECT-GL-L1 and DIRECT-L1 algorithms on the whole set of optimization problems de-
scribed in Table 1

i.e., instead of the exact L1 penalty approach, we introduce an auxiliary function
ξ(x, f feas

min) which depends on the sum of constraint functions and only one parameter
∆ = |f(x) − f feas

min |, which is equal to absolute value of the difference between the best
feasible function value found so far f feas

min and the objective value at an infeasible center
point. The main purpose of the parameter ∆ is to forbid the convergence of the algorithm
to infeasible regions by penalizing objective value obtained at infeasible points. In such a
way, formulation (18) does not require any penalty parameters and determine the conver-
gence of the algorithm to a feasible solution. Note, that the value of ξ(x, f feas

min) is updated
during the algorithm when a smaller value of f feas

min is found. This comes with a slight per-
formance overhead (see Section 3.3.3 for more info on this), compared to DIRECT-GL-L1,
which uses the fixed penalty values during the entire minimization process. The new
algorithm with these two extensions is called DIRECT-GLc.

Note, that at the beginning of the search the difference between f feas
min and the global

solution f∗ can be large, and therefore the value of ξ(x, f feas
min) can be increased too much.

We take into account this by modifying (18) to (19):

min
x∈D

f(x) + ξ̃(x, f feas
min),

ξ̃(x, f feas
min) =

0, x ∈ Dfeas

εϕ

0, x ∈ Dinf
εcons

ϕ(x) + ∆, otherwise,

(19)

MII-DS-09P-18-1 October 2016 - 30 September 2020 26

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance ratio, α

Pr
op

or
ti

on
of

pr
ob

le
m

s
so

lv
ed

Performance profile on [1, 10]

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance ratio, α

Pr
op

or
ti

on
of

pr
ob

le
m

s
so

lv
ed

Performance profile on [1, 10]

Figure 5: Performance profiles of DIRECT-GLce, DIRECT-GLc, DIRECT-GL-L1 and
DIRECT-L1 algorithms solving problems with linear (left) and nonlinear (right) constraints
from Table 1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance ratio, α

Pr
op

or
ti

on
of

pr
ob

le
m

s
so

lv
ed

Performance profile on [1, 10]

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance ratio, α

Pr
op

or
ti

on
of

pr
ob

le
m

s
so

lv
ed

Performance profile on [1, 10]

Figure 6: Performance profiles of DIRECT-GLce, DIRECT-GLc, DIRECT-GL-L1 and
DIRECT-L1 algorithms solving n ≤ 3 (left) and n ≥ 4 (right) problems from Table 1

MII-DS-09P-18-1 October 2016 - 30 September 2020 27

where Dinf
εcons = {x : f(x) ≤ f feas

min , εϕ < ϕ(x) ≤ εcons,x ∈ D} and εcons is a small tol-
erance for constraint function sum, which automatically varies during the optimization
process. More detailed behavior of εcons is described in Algorithm 2, lines 19–28. With the
introduction of this modification, the new DIRECT-GLce algorithm divides more hyper-
rectangles with the center points lying close to the boundaries of the feasible region, i.e.
potential solution. A geometrical illustration of εcons parameter is shown in Fig. 3.

Experimental performance using both introduced methods are presented in Table 4.
No constraint violation was allowed in this experiment and the parameter εϕ was set to 0.
First, it is easy to notice that for the low-dimensional test problems (n ≤ 3) the number of
function evaluations is most often smaller for DIRECT-GLc algorithm 46.3% (26/56), also
DIRECT-GL-L1 algorithm looks more promising with bigger penalty parameters solving
the same test problems. εcons parameter in DIRECT-GLce algorithm requires more function
evaluations for simpler test problems (low dimension and with linear constrains) com-
paring with other algorithms, but solving more complicated test problems DIRECT-GLce

is much more promising. The main advantage of εcons parameter can be seen solving
higher-dimensional and nonlinear (NL) test problems, where DIRECT-GLce outperforms
other methods in average function evaluations and solved problems. Also looking in a
general context, DIRECT-GLce requires less function evaluations and fails to solve only 3
test problems from which for 2 the algorithm reached the region of the global solution
and only for one 20-dimensional test problem the algorithm was not able to locate the
region.

Figures 4 to 6 show the data and performance profiles for all the algorithms in the
interval [1, 10]. The data profiles from Fig. 4 display that introduced DIRECT-GLc and
DIRECT-GLce algorithms significantly outperform all previously tested exact L1 penalty
function based approaches, and the performance differences increase even more when
the computational budget is bigger. The performance profiles in Fig. 4 reveal that
DIRECT-GLc algorithm has the most wins and it can solve about 50% of the problems with
the highest efficiency. The difference is even bigger for simpler problems (with linear
constraints or n ≤ 3), where the probability that DIRECT-GLc is the optimal solver is close
to 0.6 (see Figs. 5 and 6). However, solving more challenging problems (with nonlinear
constraints and n ≥ 4) DIRECT-GLce outperforms other algorithms and the performance
difference increases as the performance ratio increases. Also, if we choose being within
a performance ratio of 10 of the best algorithm, then DIRECT-GLce is also the most effec-
tive algorithm, with the exception for simpler problems (n ≤ 3), where DIRECT-GLc is the
leader.

3.3.2 Algorithmic steps

The complete description of the DIRECT-GLce algorithm is given in Algorithm 2 and ad-
ditionally is presented in a flowchart in Fig. 7. The input for the algorithm is one (or few)
stopping criteria: required tolerance (εpe), the maximal number of function evaluations

MII-DS-09P-18-1 October 2016 - 30 September 2020 28

input : εpe, εϕ, FEmax, Kmax;
output: f feasmin , xfeas

min, pe, k, fe;

1 Initialize k = 1, fe = 1, fmin = f(x1), xk
min = x1, εcons = 1, cardlimit = 10× n3, ς = 0, Ik = {1};

2 if ∃xc ∈ Dfeas
εϕ then

3 Update f feasmin , xfeas
min and pe;

4 end
5 while pe > εpe and fe < FEmax and k < Kmax do // pe defined in Eq. (7) and (21)

6 if ∃xc ∈ Dfeas
εϕ

then // Phase II

7 Improve the best feasible point: S = {f(xc) + ξ̃(xc, f feasmin),xc ∈ D, c = 1, . . . , fe};
8 else // Phase I

9 Find feasible point: S = {ϕ(x),xc ∈ D, c = 1, . . . , fe};
10 end
11 Identify the (index) set Gk ⊆ Ik of POH using S in DIRECT-GL enhanced global search ; // Step:

Selection of POH

12 foreach p ∈ Gk do
13 Subdivide (trisect) hyper-rectangle Dp

k and update Ik ; // Step: Partitioning scheme

14 Evaluate f at the centers of the new hyper-rectangles;
15 Update fe;
16 end
17 if ∃xc ∈ Dfeas

εϕ
then // Phase II

18 Update f feasmin , xfeas
min, xk

min and pe;
19 if εcons == εϕ and ς ≥ 10 then // Control model of εcons
20 Iteration stagnate, restart εcons = 1 and;
21 extend limit of card(Dinf

εcons
): cardlimit = cardlimit × 10; // Where card(·) cardinality of set

22 else if Dinf
εcons

== and εcons × 3 ≤ 10 then
23 Increase tolerance of constraints: εcons = εcons × 3;
24 else if card(Dinf

εcons
) ≥ cardlimit and εcons/3 ≥ εϕ then

25 Reduce tolerance of constraints: εcons = εcons/3;
26 else if card(Dinf

εcons
) ≥ cardlimit and εcons/3 ≤ εϕ then

27 Set tolerance of constraints: εcons = εϕ;
28 end
29 else // Phase I

30 Update xk
min;

31 end
32 if ‖xk

min − xk−1
min ‖ ≥ 10−6 then

33 Calculate distances d(xk
min,x

c), xc ∈ D, c = 1, . . . , fe ;
34 ς = 0;
35 else
36 Calculate distances d(xk

min,x
c), xc ∈ D, c = feold, . . . , fenew;

37 ς = ς + 1;
38 end
39 E = {d(xk

min,x
c),xc ∈ D, c = 1, . . . , fe};

40 Identify the (index) set Lk ⊆ Ik of POH using E in DIRECT-GL enhanced local search ; // Step:

Selection of POH

41 foreach p ∈ Lk do
42 Subdivide (trisect) hyper-rectangle Dp

k and update Ik ; // Step: Partitioning scheme

43 Evaluate f at the centers of the new hyper-rectangles;
44 Update fe;
45 end
46 if ∃xc ∈ Dfeas

εϕ
then // Phase II

47 Update f feasmin , xfeas
min, pe, xk

min and increase k = k + 1;
48 else // Phase I

49 Update xk
min and increase k = k + 1;

50 end
51 end
52 return f feasmin , xfeas

min, pe, k, fe;

Algorithm 2: Pseudo code of the DIRECT-GLce algorithm

MII-DS-09P-18-1 October 2016 - 30 September 2020 29

Initialization. Normalize the search
space D to an n-dimensional hyper-

rectangle and evaluate objective
function at the center point f(c1)

Is c1

feasible
point?

Phase 1:
Find a feasible point

Phase 2: Improve the feasible point

Step 1:
a) Identify globally enhanced set of potentially opti-
mal candidates
b) Subdivide (trisect) potentially optimal hyper-
rectangles
c) Evaluate f at the centers of the new hyper-
rectangles and update f feas

min , xfeas
min, pe, xk

min if needed
d) Run checks on constraint tolerance parameter
εcons

Step 2:
a) Identify locally enhanced set of potentially opti-
mal candidates
b) Subdivide (trisect) potentially optimal hyper-
rectangles
c) Evaluate f at the centers of the new hyper-
rectangles and update f feas

min , xfeas
min, pe, xk

min if needed

Is stopping
criteria met? Termination

NO

YES

YES

NO

Figure 7: Flowchart of the DIRECT-GLce algorithm

MII-DS-09P-18-1 October 2016 - 30 September 2020 30

0 0.2 0.4 0.6 0.8 1

·106

0

0.4

0.8

1.2

1.6

·104

Number of function eval.

Ti
m

e
(s

)
G02 test problem

DIRECT-L1

DIRECT-GL-L1

DIRECT-GLce

0 0.2 0.4 0.6 0.8 1

·106

0

0.6

1.2

1.8

2.4

·104

Number of function eval.
Ti

m
e

(s
)

G06 test problem

DIRECT-L1

DIRECT-GL-L1

DIRECT-GLce

Figure 8: Geometric interpretation of running time(s) using different DIRECT-type meth-
ods on a few test problems

(FEmax) and the maximal number of DIRECT-GLce iterations (Kmax). After termination,
DIRECT-GLce returns the found objective value f feas

min and the solution point xfeas
min together

with algorithmic performance measures: the final tolerance – percent error (pe), the total
number of function evaluations (fe), and the total number of iterations (k).

DIRECT-GLce uses the new two-step based strategy for the selection of potentially
optimal hyper-rectangles, which is presented in [SPŽ17]. The DIRECT-GLce performs the
selection twice in each iteration, first the globally enhanced set of potentially optimal
candidates is determined and fully processed (sampled and partitioned), see Algorithm 2,
lines 11–16, second the locally enhanced set is identified and fully processed, see lines 32–
45.

The algorithm operates in two phases, which depends on whether a feasible point in
Dfeas is already found or not, see lines 6–10. If it is not yet found, the algorithm minimizes
only sum of constraint violation (15) and attempts to find a feasible point. After such a
point is found, the algorithm switches to the second phase and minimizes Problem (19).
Lines 19–28 are controlled by constraint tolerance parameter εcons determining infeasible
points which will not be penalized at all. In the proposed strategy, the number of such
points (the cardinality of the setDinf

εcons), cannot exceed 10×n3, if this happens εcons should
be reduced. In the opposite case when the cardinality of the setDinf

εcons is zero, εcons should
be increased. We set the boundaries for the rate of change 10−4 ≤ εcons ≤ 10.

MII-DS-09P-18-1 October 2016 - 30 September 2020 31

3.3.3 Comment on the running time

Figure 8 shows running times of different algorithms (DIRECT-L1, DIRECT-GL-L1,
DIRECT-GLce) from 1 to 106 function evaluations for G02, G06, and G19 test problems.
It is observed that DIRECT-L1 requires more running time for small dimensional test
problems comparing with DIRECT-GL-L1 and DIRECT-GLce algorithms. In this case the
algorithm works faster than with other schemes of potential optimal hyper-rectangles se-
lection [SPŽ17]. However, for higher dimensional test problems the proposed strategy
makes the algorithm faster than DIRECT-L1.

3.4 Comparison with other DIRECT-type approaches for constrained global op-
timization

In this section, we present an exhaustive comparison of the newly proposed DIRECT-GLce

algorithm with other existing DIRECT-type algorithms devoted to (8) problems.

3.4.1 Comparison with eDIRECT-C algorithm

First, we perform comparison against the recently proposed eDIRECT-C [LXC+17] algo-
rithm. Authors compared their eDIRECT-C vs. CORBA [Reg14], ConstrLMSRBF [Reg11],
CiMPS [KWRG11], and DIRECT-L1 [Fin05] algorithms. The numerical experiments re-
vealed the potential of eDIRECT-C algorithm for expensive constrained problems in terms
of the convergence speed, the quality of final solutions and the success rate. We use two
versions of DIRECT-GLce: the first is presented in Section 3.3, while the second version is
based on DIRECT-GLce and is enriched with a local minimization procedure (let us call
the algorithm DIRECT-GLce-min). To perform the comparison as fair as possible, we use
the same 13 test problems from [LXC+17]. Key characteristics of these constrained global
optimization test problems (G01–G13) are listed in Appendix Nr. 1., Tables 1 and 13.
Note that several of these test problems: G03, G05, G11, G13 contain equality constraints,
which we transform (by the same strategy as in [LXC+17]) into two inequality constraints

h(x) = 0→

h(x)− εh ≤ 0

−h(x)− εh ≤ 0,
(20)

where εh > 0 is set to 10−4. The stopping criterion is the same relative error (7) as we
used in the previous analysis. In these experiments allowed constraint violation εϕ = 0

was used. In [LXC+17] the maximal allowed number of function evaluations was set
to 1000. According to the authors, eDIRECT-C was developed primarily for expensive
constrained global optimization problems, in which a simulation of the problem may
require several hours or even days. Thus, the eDIRECT-C algorithm requires much more
running time than the other compared methods, especially this is the case for higher
dimensional problems. On the contrary, in Section 3.3 we showed that our approach

MII-DS-09P-18-1 October 2016 - 30 September 2020 32

Table 6: Comparison of different algorithms for 13 test problems (see Tables 12 and 13 for
the description) from [LXC+17]

Label Criteria eDIRECT-C DIRECT-GLce DIRECT-GLce-min

fmin −14.9998 −14.9991 −15.0000
8 G01 feval 148 787, 405 4, 153

SR 1 − −
fmin −0.2480 −0.2246 −0.3148

9 G02 feval > 1, 000 > 106 > 106

SR 0 − −
fmin −30, 665.5385 −30, 663.5708 −30,665.5387

10 G04 feval 65 21, 355 25
SR 1 − −
fmin −6, 961.8137 −6, 961.1798 −6,961.8139

11 G06 feval 35 6, 017 129
SR 1 − −
fmin 24.3062 24.3332 24.3062

12 G07 feval 152 > 106 1, 161
SR 1 − −
fmin −0.0958 −0.0958 −0.0958

13 G08 feval 154 1, 507 115
SR 1 − −
fmin 785.6795 680.6928 680.6301

14 G09 feval > 1, 000 89, 301 41
SR 0 − −
fmin 7, 049.2484 7, 049.8749 7,049.2480

15 G10 feval 105 561, 857 3,607
SR 1 − −
fmin −1.0000 −0.9999 −1.0000

16 G12 feval 52 85 17
SR 1 − −
fmin −0.9989b −1.0004 −1.0004

1e G03 feval 145 251, 547 251, 547
SR 0 − −
fmin 5, 145.8149b 5, 126.5089 5,126.4967

2e G05 feval 413 6, 861 5, 629
SR 0 − −
fmin 0.7499 0.7499 0.7499

3e G11 feval 33 1, 929 447
SR 1 − −
fmin 0.6472 0.0539 0.0539

4e G13 feval > 1, 000 458, 239 100, 171
SR 0 − −

No. of unsolved pr. 5 2 1

b reported result do not satisfying the stopping criterion (7)

MII-DS-09P-18-1 October 2016 - 30 September 2020 33

works faster compared to DIRECT-L1 and the difference increases for larger problems.
Thus, we use the maximum limit equal to 106 function evaluations for our algorithm.
The obtained results are given in Table 6. Here, fmin is the minimal objective function
value found by the corresponding algorithm; feval is the number of objective function
evaluations required by an algorithm to reach the solution within specified accuracy; and
SR (Success rate) records the number of success runs among the total 10 runs. Note, that
our approach is deterministic and there is no requirement to run our algorithm several
times.

First, observe that DIRECT-GLce algorithm solves 11/13 of test problems while
eDIRECT-C solves only 8/13. When we combine DIRECT-GLce with the local search pro-
cedure in DIRECT-GLce-min algorithm, the hybridized algorithm outperforms eDIRECT-C
by both criteria: the number solved problems 12/13 and the quality of the final solution.
Moreover, the incorporated local minimization procedure into DIRECT-GLce-min signif-
icantly reduces the total number of function evaluations compared to DIRECT-GLce, but
eDIRECT-C required the smallest number of function evaluations on the average. On the
other hand, authors in [LXC+17] stated that eDIRECT-C requires much more running time
compared to other algorithms used in the comparison, therefore the number of function
evaluations criterion alone does not represent the real performance of the algorithms very
well.

MII-DS-09P-18-1 October 2016 - 30 September 2020 34

Table 7: Comparison between algorithms on 20 test problems from [CRF17]

filter-based DIRECT DIRECT-GLc DIRECT-GLce DIRECT-GLce-min

Label feval fmin feval fmin feval fmin feval fmin

5e P01 25, 425 0.3989 110, 507 0.0294 117, 367 0.0294 5, 115 0.0293
6e P02(a) 697, 169 −22.4449 200, 000 −397.0353 200, 000 −397.1477 1, 083 −400.0000
7e P02(b) 421, 197 53.6867 200, 000 −397.0353 200, 000 −397.1469 200, 000 −400.0000
8e P02(c) 724, 337 −38.7948 200, 000 −701.4834 200, 000 −701.4834 1, 075 −750.0000
9e P02(d) 16, 715 −399.9661 19, 491 −399.9612 54, 769 −399.9661 19 −400.0000
10e P03(a) 1, 109, 995 −0.3832 94, 197 −0.3887 117, 665 −0.3887 117, 665 −0.3887
11e P05 1, 009 201.1593 819 201.1593 819 201.1593 819 201.1594
12e P09 2, 203 −13.4018 1, 387 −13.4018 8, 271 −13.4014 71 −13.4019
13e P12 6, 665 −16.7388 23 −16.7380 23 −16.7381 5 −16.7389
14e P13 10, 583 195.3399 41, 509 189.3578 41, 431 189.3578 2, 063 189.3466
15e P14 1, 967 −4.5140 1, 695 −4.5140 9, 409 −4.5139 13 −4.5142
16e P15 105 0.0000 181 0.0000 181 0.0000 181 0.0000
17e P16 151 0.7050 97 0.7050 97 0.7050 7 0.7049
57 P03(b) 347 −0.3889 461 −0.3887 985 −0.3887 11 −0.3888
58 P04 543 −6.6662 311 −6.6662 1, 949 −6.6662 11 −6.6667
59 P06 1, 323 376.3002 1, 223 376.3002 1, 791 376.3062 7 376.2919
60 P07 1, 417 −2.8282 425 −2.8282 2, 705 −2.8282 13 −2.8284
61 P08 883 −118.7010 1, 197 −118.6892 1, 947 −118.6898 7 −118.7052
62 P10 587 0.74183 319 0.7418 2, 455 0.7418 7 0.7418
63 P11 5 −0.5000 11 −0.5000 11 −0.5000 11 −0.5000

Average 151, 131 43, 693 48, 094 16, 409
of unsolved 5 3 3 1

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

35

3.4.2 Comparison with filter-based DIRECT algorithm

In the second part, we compare the proposed algorithms with the filter-based DIRECT

algorithm [CRF17]. Note, that in this comparison we omit two other DIRECT-type algo-
rithms based on the exact penalty functions: EPGO, DF-EPGO, as comparison with them
was already carried out in [CRF17].

We consider the same 20 global optimization test problems (P01(x)–P16) see Tables 1
and 13 in Appendix Nr. 1. for the detailed description) used in [CRF17] and collected
from [BFM10]. In order to provide as fair as possible comparison, in the same vein as
in [CRF17] we have performed algebraic manipulation aiming to reduce the number of
variables and equality constraints:

• Test problems P02(a), P02(b) and P02(c) after reformulation contain 5 variables and
10 inequality constraints. In the original problem formulation there were 9 vari-
ables, 4 equality and 2 inequality constraints.

• Test problem P02(d) after reformulation contains 5 variables and 12 inequality con-
straints. In the original problem formulation there were 10 variables, 5 equality and
2 inequality constraints.

• Test problem P05 after reformulation contains 2 variables, 2 equality and 2 inequal-
ity constraints. In the original problem formulation there were 3 variables and 3
equality constraints.

• Test problem P09 after reformulation contains 3 variables and 9 inequality con-
straints. In the original problem formulation there were 6 variables, 3 equality and
3 inequality constraints.

• Test problem P12 after reformulation contains 1 variable and 2 inequality con-
straints. In the original problem formulation there were 2 variables and 1 equality
constraints.

• Test problem P14 after reformulation contains 3 variables and 4 inequality con-
straints. In the original problem formulation there were 4 variables, 1 equality and
2 inequality constraints.

• Test problem P16 after reformulation contains 2 variables and 6 inequality con-
straints. In the original problem formulation there were 5 variables and 3 equality
constraints.

In [CRF17] authors stopped considered algorithms when the point x̄ was generated such
that the percent error (p̃e):

p̃e =
|f(x̄)− f∗|

max{1, |f∗|}
< 10−4, (21)

MII-DS-09P-18-1 October 2016 - 30 September 2020 36

Table 8: The best solutions obtained by the algorithms for problem E01

xi, gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 3.5000 3.5003 3.5000
x2 0.7000 0.7000 0.7000
x3 17.0000 17.0000 17.0000
x4 7.3000 7.3001 7.3000
x5 7.7153b 7.8000 7.8000
x6 3.3502 3.3505 3.3502
x7 5.2867 5.2867 5.2867
g1(x) −0.0739 −0.0740 −0.0739
g2(x) −0.1980 −0.1981 −0.1980
g3(x) −0.4992 −0.4992 −0.4992
g4(x) −0.9046 −0.9015 −0.9015
g5(x) −4.78× 10−6 −8.77× 10−5 −1.40× 10−13

g6(x) 2.53× 10−6† −7.11× 10−5 −3.57× 10−14

g7(x) −0.7025 −0.7025 −0.7025
g8(x) 0.0000 −2.25× 10−5 −2.89× 10−14

g9(x) −0.5833 −0.5833 −0.5833
g10(x) −0.0513 −0.0513 −0.0513
g11(x) −6.48× 10−7 −0.0108 −0.0109

fmin 2994.4711a 2996.5498 2996.3481
feval 118 110, 387 233

a – result is outside the feasible region
b – variable bound constraint violation
† – constraint is violated

or when the number of iterations exceeds the prescribed limit of 200. Note that although
all considered algorithms belong to DIRECT-type class, the cost of one iteration can vary
significantly. Therefore, we stopped our tested algorithms either when (21) was satisfied
or when the maximal number of function evaluations equal to 200, 000 was reached. In
the same vein as in [CRF17] allowed constrain violation εϕ was set to 10−4. The obtained
experimental results are presented in Table 7. Our algorithms failed to locate solution
point with required tolerance (21) only for 3/20 of test problems (highlighted in red color
in colored version) and none of those 3 problems was solved by filter-based DIRECT algo-
rithm among with 2 others. Our enriched version with a local minimization procedure
DIRECT-GLce-min failed only on P02(b) test problem, where the algorithm converges to a
local minimum point.

3.5 Comparison on four engineering problems

In this section, we conclude our experimental investigation by applying the algorithms
from the previous section to four important real-world engineering problems. The de-
tailed description of these engineering problems can be found in [LXC+17], while in Ap-
pendix A we provide the short description and mathematical formulations. The same

MII-DS-09P-18-1 October 2016 - 30 September 2020 37

stopping rule (10) as in the previous section is used. No constraint violation was allowed
in this experiments and the parameter εϕ was set to 0. Note, that some of the problems
contain integer variables, thus by the same analogy to [LXC+17], we regard them as con-
tinuous ones.

Tables 8 to 11 list the best found solutions and the total number of function evalua-
tions using each of the algorithms solving four engineering problems. We note that using
the eDIRECT-C algorithm sometimes obtained solution is better compared to ours, but in
all these cases the reported solution point violates constraints of the problem. Possibly
this is within constraint violation tolerances allowed by the authors of eDIRECT-C, but
our algorithms provide final solutions without any constraint violation. As we tried to
maintain the same number of decimals across the manuscript, we acknowledge that some
provided rounded solution points can slightly violate constraints. For the NASA speed
reducer design problem (E01) (see Table 8), the variable bounds for x5 are 7.8 ≤ x5 ≤ 8.3,
however the value of x5 from the reported optimal solution point for eDIRECT-C algo-
rithm is equal to x5 = 7.71532.

A similar situation is when solving the Pressure vessel design problem (E02). The
variable x1 is bounded within 1 ≤ x1 ≤ 1.375, but the fifth constraint function g5(x) :

1.1 − x1 ≤ 0 reduces the feasible interval to 1.1 ≤ x1 ≤ 1.375. However, the value of x1

for the reported optimal solution point using eDIRECT-C is equal to x1 = 1.
Once again, we notice the similar situation solving Tension spring design problem

(E03). The reported optimal solution point for eDIRECT-C algorithm violates the constrain
g1(x) : 1− x32x3

71875x41
≤ 0. At the solution point the feasible value of the first constraint should

be non-positive, but the reported value is g1(x) = 0.0012 > 0.
Only in Three-bar truss design problem (E04) reported optimal solution point for

eDIRECT-C algorithm did not violate any constraint. Our DIRECT-GLce-min version ob-
tained the identical solution point. In overall view, our algorithms for all engineering
problems are able to locate solution points which meet the stopping rule (7) and satisfy
all the constraints.

4 Conclusions

In Section 2 we introduced a new strategy for the selection of the extended set of po-
tentially optimal hyper-rectangles in the DIRECT-type algorithmic framework. Using the
proposed DIRECT-GL approach two well-known weaknesses of DIRECT-type algorithms
were addressed. The experimental results confirmed the well-known fact that while for
simpler problems DIRECT performs well, for more challenging (higher dimensional) and
multimodal problems the proposed modified DIRECT-GL performs significantly faster.
Moreover, since the set of potentially optimal hyper-rectangles is larger (compared to
DIRECT), DIRECT-GL scheme looks promising for more efficient parallelization too.

In Section 3, we introduced a new strategy for constrained optimization problems in

MII-DS-09P-18-1 October 2016 - 30 September 2020 38

Table 9: The best solutions obtained by the algorithms for problem E02

xi, gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 1.0000 1.1001 1.1000
x2 0.6250 0.6250 0.6250
x3 51.8135 56.9978 56.9948
x4 84.5786 50.9916 51.0013
g1(x) −2.89× 10−14 −1.31× 10−14 −6.17× 10−14

g2(x) −0.1307 −0.0813 −0.0813
g3(x) −0.1046 −76.9749 −4.77× 10−8

g4(x) −155.4215 −189.0084 −188.9988
g5(x) 0.1000† −7.05× 10−5 −1.41× 10−13

g6(x) −0.0250 −0.0250 −0.0250

fmin 7006.7816a 7164.3701 7163.7395
feval 412 129, 097 73

a – result is outside the feasible region
† – constraint is violated

Table 10: The best solutions obtained by the algorithms for problem E03

xi, gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 0.0517 0.0518 0.0517
x2 0.3567 0.3602 0.3569
x3 11.2882 11.1026 11.2934
g1(x) 0.0012† −1.20× 10−5 −3.80× 10−10

g2(x) −2.61× 10−6 −2.73× 10−6 −1.68× 10−10

g3(x) −4.0568 −4.0574 −4.0510
g4(x) −0.7277 −0.7253 −0.7276

fmin 0.0127a 0.0127 0.0127
feval 292 20, 845 11

a – result is outside the feasible region
† – constraint is violated

Table 11: The best solutions obtained by the algorithms for problem E04

xi, gi eDIRECT-C DIRECT-GLce DIRECT-GLce-min

x1 0.7887 0.7840 0.7887
x2 0.4083 0.4218 0.4083
g1(x) −1.52× 10−12 −2.43× 10−5 −1.52× 10−12

g2(x) −1.4641 −1.4488 −1.4641
g3(x) −0.5359 −0.5512 −0.5359

fmin 263.8958 263.9158 263.8958
feval 26 21, 331 11

MII-DS-09P-18-1 October 2016 - 30 September 2020 39

the DIRECT-type algorithmic framework. Two well-known weaknesses of DIRECT-L1 al-
gorithms were addressed in the proposed approaches. First, we have demonstrated that
the exact L1 penalty function based new DIRECT-GL-L1 algorithm gives on average sig-
nificantly better results compared to DIRECT-L1. Moreover, the performance differences
between DIRECT-GL-L1 and DIRECT-L1 algorithms tend to be larger when solving harder
problems.

Next, instead of the exact L1 penalty approach, we introduced an auxiliary function
based approach in the DIRECT-GLc and DIRECT-GLce algorithms, which does not require
any penalty parameters. The proposed DIRECT-GLc and DIRECT-GLce algorithms sig-
nificantly outperform all previously tested exact L1 penalty function based approaches,
and the performance differences increases when the computational budget is larger. The
DIRECT-GLc algorithm has the most wins, and it can solve about 50% of the problems with
the highest efficiency. However, solving more challenging problems (with nonlinear con-
straints and n ≥ 4) DIRECT-GLce outperforms other algorithms, and the performance
difference increases as the performance ratio increases. Also solving higher-dimensional
test problems, DIRECT-GLce outperforms the original DIRECT-L1 algorithm in running
speed.

To improve the solution accuracy and improve the efficiency solving high-
dimensional problems, we have enriched DIRECT-GLce with a local minimization pro-
cedure and called the new algorithm DIRECT-GLce-min. The further experimental in-
vestigation revealed the advantage of the DIRECT-GLce and DIRECT-GLce-min algorithms
over most test problems and four engineering problems comparing with recent relevant
approaches DIRECT-L1, filter-based DIRECT, and eDIRECT-C.

One of the most significant challenges of the partitioned based DIRECT-type ap-
proaches is dealing with optimization problems with equality constraints. Proposed
DIRECT-GLce showed promising results solving such problems, but effectiveness strongly
depends on the allowed equality constraints violation.

Finally, as global optimization problems are computationally expensive, one of the
primary upcoming goals is to develop and investigate a parallel version of our algorithm.
There are very few works devoted to the parallelization of the DIRECT-type methods. One
of the primary motivations stems from the fact that the set of potentially optimal hyper-
rectangles in our algorithms is larger (compared to DIRECT), thus we can expect better
efficiency compared to existing parallel DIRECT-type approaches.

Data access statement

Data underlying this article can be accessed on Zenodo at https://dx.doi.org/10.5281/
zenodo.1218981, and used under the Creative Commons Attribution license.

MII-DS-09P-18-1 October 2016 - 30 September 2020 40

https://dx.doi.org/10.5281/zenodo.1218981
https://dx.doi.org/10.5281/zenodo.1218981

References

[BDLM12] A. Basudhar, C. Dribusch, S. Lacaze, and S. Missoum. Constrained efficient
global optimization with support vector machines. Structural and Multidisci-
plinary Optimization, 46(2):201–221, 2012.

[BFM10] E. G. Birgin, C. A. Floudas, and J. M. Martínez. Global minimization using an
augmented lagrangian method with variable lower-level constraints. Mathe-
matical Programming, 125(1):139—-162, 2010.

[BG04] Lorenz T. Biegler and Ignacio E. Grossmann. Retrospective on optimization.
Computers & Chemical Engineering, 28(8):1169–1192, 2004.

[BH99] Mattias Björkman and Kenneth Holmström. Global optimization using the
DIRECT algorithm in Matlab. Advanced Modeling and Optimization, 1(2):17–37,
1999.

[BWG+00] C. A. Baker, L. T. Watson, B. Grossman, W. H. Mason, and R. T. Haftka. Par-
allel global aircraft configuration design space exploration. In A. Tentner, ed-
itor, High Performance Computing Symposium 2000, pages 54–66. Soc. for Com-
puter Simulation Internat, 2000.

[CEC08] L. C. Cagnina, S. C. Esquivel, and C. A. Coello Coello. Solving engineer-
ing optimization problems with the simple constrained particle swarm opti-
mizer. Informatica (Ljubljana), 32(3):319–326, 2008.

[CRF17] M. F. P. Costa, A. M. A. C. Rocha, and E. M. G. P. Fernandes. Filter-based
direct method for constrained global optimization. Journal of Global Optimiza-
tion, in press, 2017.

[DM02] E. D. Dolan and J. J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, 91(2):201–213, 2002.

[Fin04] D. E. Finkel. MATLAB source code for DIRECT. http://www4.ncsu.edu/

~ctk/Finkel_Direct/, 2004. Online; accessed: 2017-03-22.

[Fin05] D. E. Finkel. Global Optimization with the DIRECT Algorithm. PhD thesis, North
Carolina State University, 2005.

[FK06] D. E. Finkel and C. T. Kelley. Additive scaling and the DIRECT algorithm.
Journal of Global Optimization, 36(4):597–608, 2006.

[FK09] A. I. J. Forrester and A. J. Keane. Recent advances in surrogate-based opti-
mization. Progress in Aerospace Sciences, 45(1):50–79, 2009.

[FL02] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty func-
tion. Mathematical Programming, 91(2):239—-269, 2002.

MII-DS-09P-18-1 October 2016 - 30 September 2020 41

http://www4.ncsu.edu/~ctk/Finkel_Direct/
http://www4.ncsu.edu/~ctk/Finkel_Direct/

[Fle87] R. Fletcher. Practical Methods of Optimization. John and Sons Chichester, sec-
ond edition edition, 1987.

[Flo99] Christodoulos A Floudas. Deterministic global optimization: theory, methods
and applications, volume 37 of Nonconvex Optimization and Its Applications.
Springer US, 1999.

[Gab01] J. M. Gablonsky. Modifications of the DIRECT Algorithm. PhD thesis, North
Carolina State University, 2001.

[GK01] J. M. Gablonsky and C. T. Kelley. A locally-biased form of the DIRECT algo-
rithm. Journal of Global Optimization, 21(1):27–37, 2001.

[Hed05] A. Hedar. Test functions for unconstrained global optimization.
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_

files/TestGO.htm, 2005. Online; accessed: 2017-03-22.

[HPT95] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization.
Nonconvex Optimization and Its Application. Kluwer Academic Publishers,
1995.

[Jon01] D. R. Jones. The DIRECT global optimization algorithm. In Christodoulos A.
Floudas and Panos M. Pardalos, editors, The Encyclopedia of Optimization,
pages 431–440. Kluwer Academic Publishers, Dordrect, 2001.

[JPS93] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Application,
79(1):157–181, 1993.

[KPS03] D. E. Kvasov, C. Pizzuti, and Ya. D. Sergeyev. Local tuning and partition
strategies for diagonal GO methods. Numerische Mathematik, 94(1):93–106,
2003.

[KWRG11] M. Kazemi, G. G. Wang, S. Rahnamayan, and K. Gupta. Metamodel-based
optimization for problems with expensive objective and constraint functions.
Journal of Mechanical Design, 133(1):14505, 2011.

[LC14] Qunfeng Liu and Wanyou Cheng. A modified DIRECT algorithm with
bilevel partition. Journal of Global Optimization, 60(3):483–499, 2014.

[LLP10a] Giampaolo Liuzzi, Stefano Lucidi, and Veronica Piccialli. A DIRECT-based
approach exploiting local minimizations for the solution for large-scale
global optimization problems. Computational Optimization and Applications,
45(2):353–375, 2010.

MII-DS-09P-18-1 October 2016 - 30 September 2020 42

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

[LLP10b] Giampaolo Liuzzi, Stefano Lucidi, and Veronica Piccialli. A partition-based
global optimization algorithm. Journal of Global Optimization, 48(1):113–128,
2010.

[LLP16] Giampaolo Liuzzi, Stefano Lucidi, and Veronica Piccialli. Exploiting
derivative-free local searches in DIRECT-type algorithms for global optimiza-
tion. Computational Optimization and Applications, 65:449–475, 2016.

[LXC+17] H. Liu, S. Xu, X. Chen, X. Wang, and Q. Ma. Constrained global optimization
via a direct-type constraint-handling technique and an adaptive metamodel-
ing strategy. Structural and Multidisciplinary Optimization, 55(1):155–177, 2017.

[LYZZ17] Qunfeng Liu, Guang Yang, Zhongzhi Zhang, and Jinping Zeng. Improving
the convergence rate of the DIRECT global optimization algorithm. Journal of
Global Optimization, 67(4):851–872, 2017.

[LZY15] Qunfeng Liu, Jinping Zeng, and Gang Yang. MrDIRECT: a multilevel robust
DIRECT algorithm for global optimization problems. Journal of Global Opti-
mization, 62(2):205–227, 2015.

[MPR+17] Jonas Mockus, Remigijus Paulavičius, Dainius Rusakevičius, Dmitrij Šešok,
and Julius Žilinskas. Application of Reduced-set Pareto-Lipschitzian Opti-
mization to truss optimization. Journal of Global Optimization, 67(1-2):425–450,
2017.

[MW09] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algo-
rithms. SIAM Journal on Optimization, 20(1):172–191, 2009.

[NLH17] J. Na, Y. Lim, and C. Han. A modified DIRECT algorithm for hidden con-
straints in an LNG process optimization. Energy, page 488–500, 2017.

[PCŽ16] Remigijus Paulavičius, Lakhdar Chiter, and Julius Žilinskas. Global opti-
mization based on bisection of rectangles, function values at diagonals, and
a set of Lipschitz constants. Journal of Global Optimization, (1):1–17, 2016.

[Pin96a] J. D. Pintér. Global Optimization in Action (Continuous and Lipschitz Optimiza-
tion: Algorithms, Implementations and Applications). Kluwer Academic Pub-
lishers, Dordrecht, 1996.

[Pin96b] János D Pintér. Global optimization in action: continuous and Lipschitz optimiza-
tion: algorithms, implementations and applications, volume 6 of Nonconvex Opti-
mization and Its Applications. Springer US, 1996.

[Piy67] S. A. Piyavskii. An algorithm for finding the absolute minimum of a function.
Theory of Optimal Solutions, 2:13–24, 1967. in Russian.

MII-DS-09P-18-1 October 2016 - 30 September 2020 43

[PLL+16] G. Di Pillo, G. Liuzzi, S. Lucidi, V. Piccialli, and F. Rinaldi. A direct-type
approach for derivative-free constrained global optimization. Computational
Optimization and Applications, 65(2):361–397, 2016.

[PLR10] G. Di Pillo, S. Lucidi, and F. Rinaldi. An approach to constrained global
optimization based on exact penalty functions. Journal of Optimization Theory
and Applications, 54(2):251–260, 2010.

[PSKŽ14] Remigijus Paulavičius, Yaroslav D. Sergeyev, Dmitri E. Kvasov, and Julius
Žilinskas. Globally-biased DISIMPL algorithm for expensive global opti-
mization. Journal of Global Optimization, 59(2-3):545–567, 2014.

[PŽ07] R. Paulavičius and J. Žilinskas. Analysis of different norms and correspond-
ing Lipschitz constants for global optimization in multidimensional case. In-
formation Technology and Control, 36(4):383–387, 2007.

[PŽ09] Remigijus Paulavičius and Julius Žilinskas. Global optimization using the
branch-and-bound algorithm with a combination of Lipschitz bounds over
simplices. Technological and Economic Development of Economy, 15(2):310–325,
2009.

[PŽ13] Remigijus Paulavičius and Julius Žilinskas. Simplicial Lipschitz optimization
without the Lipschitz constant. Journal of Global Optimization, 59(1):23–40,
2013.

[PŽ14] Remigijus Paulavičius and Julius Žilinskas. Simplicial Global Optimization.
SpringerBriefs in Optimization. Springer New York, New York, NY, 2014.

[PŽ16] Remigijus Paulavičius and Julius Žilinskas. Advantages of simplicial par-
titioning for Lipschitz optimization problems with linear constraints. Opti-
mization Letters, 10(2):237–246, 2016.

[PŽG10] Remigijus Paulavičius, Julius Žilinskas, and Andreas Grothey. Investigation
of selection strategies in branch and bound algorithm with simplicial parti-
tions and combination of Lipschitz bounds. Optimization Letters, 4(2):173–183,
2010.

[Reg11] R. G. Regis. Stochastic radial basis function algorithms for large-scale opti-
mization involving expensive black-box objective and constraint functions.
Computers and Operations Research, 38(5):837–853, 2011.

[Reg14] R. G. Regis. Constrained optimization by radial basis function interpolation
for high-dimensional expensive black-box problems with infeasible initial
points. Engineering Optimization, 46(2):218–243, 2014.

MII-DS-09P-18-1 October 2016 - 30 September 2020 44

[RL03] Tapabrata Ray and Kim Meow Liew. Society and civilization: An optimiza-
tion algorithm based on the simulation of social behavior. IEEE Transactions
on Evolutionary Computation, 7(4):386–396, 2003.

[Ser98] Yaroslav D Sergeyev. On convergence of “divide the best” global optimiza-
tion algorithms. Optimization, 44(3):303–325, 1998.

[SHL+05] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.P.Chen, A. Auger, and
S. Tiwari. Problem definitions and evaluation criteria for the cec 2006 special
session on constrained real-parameter optimization. KanGAL, pages 251–256,
2005.

[Shu72] B. O. Shubert. A sequential method seeking the global maximum of a func-
tion. SIAM Journal on Numerical Analysis, 9:379–388, 1972.

[SK06] Yaroslav D. Sergeyev and Dmitri E. Kvasov. Global search based on diagonal
partitions and a set of Lipschitz constants. SIAM Journal on Optimization,
16(3):910–937, 2006.

[SK08] Ya. D. Sergeyev and D. E. Kvasov. Diagonal Global Optimization Methods. Fiz-
MatLit, Moscow, 2008. In Russian.

[SK17] Yaroslav D Sergeyev and Dmitri E Kvasov. Deterministic Global Optimiza-
tion: An Introduction to the Diagonal Approach. SpringerBriefs in Optimization.
Springer, 2017.

[SP18] Linas Stripinis and Remigijus Paulavičius. DIRECTLib – a library of global
optimization problems for DIRECT-type methods, v1.1, 2018.

[SPŽ17] Linas Stripinis, Remigijus Paulavičius, and Julius Žilinskas. Improved
scheme for selection of potentially optimal hyper-rectangles in direct. Op-
timization Letters, 2017.

[SS00] R. G. Strongin and Ya. D. Sergeyev. Global Optimization with Non-Convex Con-
straints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dor-
drecht, 2000.

[SW10a] S. Shan and G. G. Wang. Metamodeling for high dimensional simulation-
based design problems. Journal of Mechanical Design, 132(5):051009, 2010.

[SW10b] S. Shan and G. G. Wang. Survey of modeling and optimization strategies
to solve high-dimensional design problems with computationally-expensive
black-box functions. Structural and Multidisciplinary Optimization, 41(2):219–
241, 2010.

MII-DS-09P-18-1 October 2016 - 30 September 2020 45

[VV09] A.I.F. Vaz and L.N. Vicente. Pswarm: a hybrid solver for linearly con-
strained global derivative-free optimization. Optimization Methods and Soft-
ware, 24(4–5):669–685, 2009.

Appendixes

Appendix A
The mathematical formulations of engineering problems
NASA speed reducer design problem [LXC+17, RL03]. Minimize the overall weight subject to con-

straints on bending stress of the gear teeth, surface stress, transverse deflections of the shafts and stresses
in the shafts. This problem has seven design variables and eleven constraints The optimization problem is
formulated as following:

min f(x) = 0.7854x1x
2
2(3.3333x

2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x27) + 7.4777(x36 + x37)

+ 0.7854(x4x
2
6 + x5x

2
7)

s.t. g1(x) =
27

x1x22x3
− 1 ≤ 0, g2(x) =

397.5

x1x22x
2
3

− 1 ≤ 0,

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0, g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(x) =
((745x4

x2x3
)2 + 16.9× 106)0.5

110x36
− 1 ≤ 0,

g6(x) =
((745x5

x2x3
)2 + 157.5× 106)0.5

85x37
− 1 ≤ 0,

g7(x) =
x2x3
40
− 1 ≤ 0, g8(x) =

5x2
x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0, g10(x) =

1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤
x7 ≤ 5.5.

Pressure vessel design problem [KWRG11, LXC+17]. Minimize the total cost of material, forming and
welding of a cylindrical vessel. This problem has four design variables and six constraints The optimization
problem formulated as following:

min f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4

+ 19.84x21x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx23x4 −
4

3
πx33 + 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0, g5(x) = 1.1− x1 ≤ 0,

g6(x) = 0.6− x2 ≤ 0

where 1 ≤ x1 ≤ 1.375, 0.625 ≤ x2 ≤ 1, 25 ≤ x3 ≤ 150, 25 ≤ x4 ≤ 240.
Tension/compression spring design problem [KWRG11,LXC+17]. Minimize the weight subject to con-

straints on minimum deflection, shear stress, surge frequency and limits on outside diameter. This problem

MII-DS-09P-18-1 October 2016 - 30 September 2020 46

has three design variables and four constraints. The optimization problem formulated as following:

min f(x) = x21x2(x3 + 2)

s.t. g1(x) = 1− x32x3
71875x41

≤ 0,

g2(x) =
x2(4x2 − x1)

12566x31(x2 − x1)
+

2.46

12566x21
− 1 ≤ 0,

g3(x) = 1− 140.54x1
x3x22

≤ 0, g4(x) =
x1 + x2

1.5
− 1 ≤ 0

where 0.05 ≤ x1 ≤ 0.2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.
Three-bar truss design problem [LXC+17, RL03]. Minimize the volume subject to stress constraints.

This problem has two design variables and three constraints. The optimization problem formulated as fol-
lowing:

min f(x) = 100(2
√
2x1 + x2)

s.t. g1(x) =

√
2x1 + x2√

2x21 + 2x1x2
2− 2 ≤ 0,

g2(x) =
x2√

2x21 + 2x1x2
2− 2 ≤ 0,

g3(x) =
1

x1 +
√
2x2

2− 2 ≤ 0

where 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Appendix Nr. 1.
Test problems with linear and nonlinear constraints

Table 12: Key characteristics of the optimization test problems with equality constraints

(#) Label Source n C. type Variable bounds (D) Optimum (f∗)

1e G03 [LXC+17] 10 NL [0, 10]n −1.0005
2e G05 [LXC+17] 4 NL [10, 1, 200]2 × [−0.55, 0.55]2 5126.4967
3e G11 [LXC+17] 2 NL [−1, 1]n 0.7499
4e G13 [LXC+17] 5 NL [−2.3, 2.3]2 × [−3.2, 3.2]3 0.0539
5e P01 [BFM10] 5 NL [−5, 5]n 0.0293
6e P02(a) [BFM10] 9 NL [0, 100]× [0, 500]8 −400.0000
7e P02(b) [BFM10] 9 NL [0, 600]× [0, 500]8 −600.0000
8e P02(c) [BFM10] 9 NL [0, 100]× [0, 500]8 −750.0000
9e P02(d) [BFM10] 10 NL [0, 300]2 × [0, 100] × [0, 200] × [0, 100] ×

[0, 300]× [0, 100]× [0, 200]2 × [0, 3]
−600.0000

10e P03(a) [BFM10] 6 NL [0, 1]4 × [10(− 5), 16]2 0.3888
11e P05 [BFM10] 3 NL [0, 9.422]× [0, 5.903]× [0, 267.42] 201.1600

12e P09 [BFM10] 6 L [10(− 5), 3]× [10(− 5), 4]2 × [0, 2]2 × [0, 6] −13.4020
13e P12 [BFM10] 2 NL [0, 2]× [0, 3] −16.7390

14e P13 [BFM10] 3 NL [10(− 5), 34]× [10(− 5), 17]× [100, 300] 189.3500

15e P14 [BFM10] 4 L [10(− 5), 3]× [10(− 5), 4]× [0, 2]× [0, 1] −4.51420

16e P15 [BFM10] 3 NL [10(− 5), 12.5]× [10(− 5), 37.5]× [0, 50] 0.0000
17e P16 [BFM10] 5 L [0, 1.5834]× [0, 3.625]× [0, 1]× [0, 3]× [0, 4] 0.7049

MII-DS-09P-18-1 October 2016 - 30 September 2020 47

Table 13: Key characteristics of the constrained global optimization test problems

(#) Label Source n C. type Variable bounds (D) Optimum (f∗)

1 Bunnag 1 [VV09] 4 L [0, 3]n 0.1117

2 Bunnag 2 [VV09] 4 L [0, 4]n −6.4049
3 Bunnag 3 [VV09] 5 L [0, 3]× [0, 2]× [0, 4]× [0, 4]× [0, 2] −16.3657
4 Bunnag 4 [VV09] 6 L [0, 1]5 × [0, 20] −213.0470
5 Bunnag 5 [VV09] 6 L [0, 2]× [0, 8]× [0, 2]× [0, 1]× [0, 1]× [0, 2] −11.0000
6 Bunnag 6 [VV09] 10 L [0, 1]n −268.0146
7 Bunnag 7 [VV09] 10 L [0, 1]n −39.0000
8 G01 [LXC+17] 13 L [0, 10]9 × [0, 100]3 × [0, 10] −15.0000
9 G02 [LXC+17] 20 NL [0, 10]n −0.8036
10 G04 [LXC+17] 5 NL [78, 102]× [33, 45]× [27, 45]3 −30665.5386
11 G06 [LXC+17] 2 NL [13, 100]× [0, 100] −6961.8138
12 G07 [LXC+17] 10 NL [−10, 10]n 24.3062

13 G08 [LXC+17] 2 NL [0, 10]n −0.0958
14 G09 [LXC+17] 7 NL [−10, 10]n 680.6300

15 G10 [LXC+17] 8 NL [100, 10, 000]× [1, 000, 10, 000]2 × [10, 1, 000]5 7049.2480

16 G12* [LXC+17] 3 NL [0.2, 10]n −1.0000
17 G16 [SHL+05] 5 NL [704.4148, 906.3855]× [68.6, 288.88]× [0, 134.75]×

[193, 287.0966]× [25, 84.1988]

−1.9051

18 G18 [SHL+05] 9 NL [0, 10]n −0.8660
19 G19 [SHL+05] 15 NL [0, 10]n 32.6555

20 G24 [SHL+05] 2 NL [0, 3]× [0, 4] −5.5080
21 Genocop 9 [VV09] 3 L [0, 10]n −2.4714
22 Genocop 10 [VV09] 4 L [0, 3]× [0, 10]× [0, 10]× [0, 1] −4.5280
23 Genocop 11 [VV09] 6 L [0, 5]× [0, 8]× [0, 5]× [0, 1]× [0, 1]× [0, 2] −11.0000
24 Goldstein & Price [NLH17] 2 NL [−2, 2]n 3.5389

25 Himmelblau [CEC08] 5 NL [78, 102]× [33, 45]× [27, 45]3 −31025.5602
26 Horst 1 [HPT95] 2 L [0, 3]× [0, 2] −1.0625
27 Horst 2 [HPT95] 2 L [0, 2.5]× [0, 2] −6.8995
28 Horst 3 [HPT95] 2 L [0, 1]× [0, 1.5] −0.4444

Continued on next page

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

48

Table 13 Continued from previous page

(#) Label Source n C. type Variable bounds (D) Optimum (f∗)

29 Horst 4 [HPT95] 3 L [0.5, 2]× [0, 3]× [0, 2.8] −6.0858
30 Horst 5 [HPT95] 3 L [0, 1.2]× [0, 1.2]× [0, 1.7] −3.7220
31 Horst 6 [HPT95] 3 L [0, 6]× [0, 5.0279]× [0, 2.6] −32.5784
32 Horst 7 [HPT95] 3 L [0, 6]× [0, 3]× [0, 3] −52.8769
33 hs021 [VV09] 2 L [2, 50]× [−50, 10] −99.9599
34 hs021mod [VV09] 7 L [2, 50] × [−50, 50] × [0, 50] × [2, 10] × [−10, 10] ×

[−10, 0]× [0, 10]

4.0400

35 hs024 [VV09] 2 L [0, 5]n −1.0000
36 hs035 [VV09] 3 L [0, 3]n 0.1111

37 hs036 [VV09] 3 L [0, 20]× [0, 11]× [0, 15] −3300.0000
38 hs037 [VV09] 3 L [0, 42]n −3456.0000
39 hs038 [VV09] 4 L [−10, 10]n 0.0000

40 hs044 [VV09] 4 L [0, 5]n −15.0000
41 hs076 [VV09] 4 L [0, 1]× [0, 3]× [0, 1]× [0, 1] −4.6818
42 s224 [VV09] 2 L [0, 6]× [0, 11] −304.0000
43 s231 [VV09] 2 L [−10, 10]n 0.0000

44 s232 [VV09] 2 L [0, 100]n −1.0000
45 s250 [VV09] 3 L [0, 20]× [0, 11]× [0, 42] −3300.0000
46 s251 [VV09] 3 L [0, 42]n −3456.0000
47 T1 (n = 2) [Fin05] 2 NL [−4, 4]n −3.4641
48 T1 (n = 3) [Fin05] 3 NL [−4, 4]n −4.2426
49 T1 (n = 4) [Fin05] 4 NL [−4, 4]n −4.8989
50 T1 (n = 5) [Fin05] 5 NL [−4, 4]n −5.4772
51 T1 (n = 6) [Fin05] 6 NL [−4, 4]n −6.0000
52 T1 (n = 7) [Fin05] 7 NL [−4, 4]n −6.4807
53 T1 (n = 8) [Fin05] 8 NL [−4, 4]n −6.9282
54 T1 (n = 9) [Fin05] 9 NL [−4, 4]n −7.3484
55 T1 (n = 10) [Fin05] 10 NL [−4, 4]n −7.7460
56 zecevic2 [VV09] 2 L [0, 10]n −4.1249
57 P03(b) [BFM10] 2 NL [10(− 5), 16]n 0.3888

58 P04 [BFM10] 2 NL [0, 6]× [0, 4] −6.6666
Continued on next page

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

49

Table 13 Continued from previous page

(#) Label Source n C. type Variable bounds (D) Optimum (f∗)

59 P06 [BFM10] 2 NL [0, 115.8]× [10(− 5), 30] 376.2900

60 P07 [BFM10] 2 NL [−2, 2]n −2.8284
61 P08 [BFM10] 2 NL [−8, 10]× [0, 10] −118.7000
62 P10 [BFM10] 2 NL [0, 1]n 0.7417

63 P11 [BFM10] 2 NL [0, 1]n −0.5000

Concluded

M
II-D

S-09P-18-1
O

ctober
2016

-30
Septem

ber
2020

50

	Introduction
	Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT
	The selection of the most promising hyper-rectangles
	Potentially optimal hyper-rectangles in the original DIRECT algorithm
	Selection of the most promising hyper-rectangles in other DIRECT-type algorithms

	Extended set of potentially optimal hyper-rectangles
	DIRECT-GL algorithm
	Numerical investigation

	Penalty functions and two-step selection procedure based DIRECT-type algorithm for constrained global optimization
	DIRECT-type methods for general optimization problem
	Experimental investigation of the exact L1 penalty strategy within DIRECT-GL algorithm
	DIRECT-GLce algorithm for generally constrained global optimization problems
	Handle the case with infeasible initial regions
	Algorithmic steps
	Comment on the running time

	Comparison with other DIRECT-type approaches for constrained global optimization
	Comparison with eDIRECT-C algorithm
	Comparison with filter-based DIRECT algorithm

	Comparison on four engineering problems

	Conclusions
	References
	Appendix Appendix A
	Appendix Nr. 1.

