
Vilnius University
Institute of Mathematics and

Informatics
L I T H U A N I A

INFORMATICS (09 P)

NUMERICAL ANALYSIS AND
OPTIMIZATION OF ALGORITHMS FOR

PROBLEMS WITH BIG COMPUTATIONAL
COSTS.

Rima Kriauzienė

October 2018

Technical Report MII-DS-09P-18-7

VU Institute of Mathematics and Informatics, Akademijos str. 4, Vilnius LT-08663,
Lithuania

www.mii.lt

http://www.mii.lt

Abstract

This report follows two problems. First, we propose a general methodology for solv-
ing optimisation problems when there is a big number of processes available. Second
problem is to construct and investigate parallel solvers for three dimensional problems
described by elliptic operators of fractional powers. This report contains a formulation of
problems, methodology of solving these problems, experimental results, conclusions.

Keywords: multi-level parallelisation, load balancing, heterogeneous computing,
parallel optimization, simplex downhill method, Wangs algorithm, finite difference
method, fractional diffusion, finite volume method, parallel numeri- cal algorithms,
MPI, scalability, multigrid.

MII-DS-09P-18-7 2

Contents

1 Introduction . 4
1.1 The object of research. 4
1.2 The goal and objectives of the research . 4
1.3 Presentation and approbation of results . 4

2 Formulation and parallelisation strategies of the first problem . 5
2.1 Balancing of workload distribution . 6
2.2 Example . 8
2.3 Parallelisation scheme . 9
2.4 Experimental results . 10
2.5 Conclusions . 11

3 Formulation of the second problem . 12
3.1 PDE Equivalent Models and Approximations of the Fractional Problem 12

3.1.1 Reduction to a pseudo-parabolic PDE problem . 12
3.2 Integral representation of the solution of problem (11) . 13

3.2.1 Approximation of the solution of problem (11) using rational approximations 13
3.3 Comparison of accuracy . 14
3.4 Parallel algorithms and their efficiency. 15

3.4.1 Parallel pseudo-parabolic solver. 15
3.4.2 Parallel integral solver. 16
3.4.3 Conclusions . 17

References . 17

MII-DS-09P-18-7 3

1 Introduction

Objects of research are parallel algorithms and large-scale optimization problems. The
main goal is to construct and investigate parallel algorithms for optimization problems
in the case with the main constrains are defined by the differential equations and for
problems with the fractional powers of elliptic operator. These problems are computa-
tionally costly. The numerical costs of data processing are increasing. The technology
that allows solving such problems today is parallel computing. The main interest is
the creation of technology that can address a variety of tasks that have the following
characteristics: large amounts of data and large size of computations, because the tasks
one needed to be solved very quickly, especially when solving optimisation problems.

Scalability and efficiency analysis of parallel algorithms are studied.

1.1 The object of research

Parallel algorithms for problems with big computational costs and large-scale optimiza-
tion problems.

1.2 The goal and objectives of the research

1. The investigation and analysis of non-classical parallel algorithms.
2. The investigation of optimization problems in the case with the main constrains are
defined by the differential equations.
3. Construction of the methodology of research:
3.1. The choice and analysis of mathematical models.
3.2. The choice and implementation of computational and parallel algorithms.
4. Theoretical research:
4.1. The approximation of mathematical models by discrete algorithms.
4.2. The formulation of optimization problems and theoretical analysis of their solving
algorithm.
4.3. Construction of the parallel algorithms and scalability analysis.
5. Empirical investigation:
5.1. The solution and analysis of non-local problems.
5.2. The solution and analysis of problems with the fractional powers of elliptic operator.
5.3. The solution of problems of finding coefficients for special boundary conditions.
6. The analysis and generalization of obtained data, formulation of the conclusions.

1.3 Presentation and approbation of results

Conferences

1. DAMSS: 9th international workshop on data analysis methods for software sys-
tems, November 30–December 2, 2017, Druskininkai.

MII-DS-09P-18-7 4

2. MMA2018: 23nd international conference, May 29-June 1, 2018, Sigulda, Latvia.

3. 3rd NESUS Winter School and PhD Symposium 2018, 22nd-25th January
2018, Zagreb, Croatia. Topic of speech was "Numerical analysis and opti-
mization of parallel algorithms for problems with big computational costs."
http://nesusws.irb.hr/images/BookofAbstracts.pdf

Publications

1. Čiegis, R.; Starikovicius, V.; Margenov, S.; Kriauziene, R. A scalability analysis of
different parallel solvers for 3D fractional power diffusion problems. Concurrency
and computation: practice and experience. (revised)

2. Kriauzienė, R., Bugajev, A., Čiegis, R. A three-level parallelisation scheme and
application to the optimisation problems. IEEE Transactions on Parallel and Dis-
tributed Systems.

Proceedings of other conferences:

1. Čiegis, R., Starikovičius, V., Margenov, S., Kriauzienė, R. 2018. A comparison of
accuracy and efficiency of parallel solvers for fractional power diffusion problems.
Parallel Processing and Applied Mathematics: 12th international conference, PPAM
2017, Lublin, Poland, September 10–13, 2017. Basel, Springer International Publish-
ing, pp. 79-89, ISBN 9783319780238. eISBN 9783319780245. (Lecture Notes in Com-
puter Science, ISSN 0302-9743, eISSN 1611-3349 ; Vol. 10777). DOI: 10.1007/978-3-
319-78024-5_8.

2 Formulation and parallelisation strategies of the first problem

We propose a general methodology for solving optimisation problems when there is a big
number of processes available. In this research we investigate a three-level parallelisation
algorithm for optimisation problems, different parallelisation levels create different chal-
lenges. At the first level of parallelisation we assume that there exist parallel alternatives
to the original sequential modelling algorithm. The first level of parallelisation becomes
a part of a new parallel algorithm and the degree of parallelism can be selected dynam-
ically during the computations. The parallelilasation speed-up on the first level is not
linear, it can lower the efficiency of the whole parallelisation. In this paper as an exam-
ple we consider the parallelised simplex downhill method. On the second level, a set of
computational tasks with different computational sizes is defined. The work amount dis-
tribution between tasks is non-uniform – this makes the parallelisation challenging. This
leads to necessity of third level, because a proper load balancing must be performed. As
an example we investigate the case when M partial differential equations are solved. The
computational sizes of these tasks are non-equal because different discretisation sizes
must be used for each equation in order to achieve the same level of errors. The third
level defines parallel algorithms to solve tasks from the second level. As an example
MII-DS-09P-18-7 5

Problem

Subproblem 1

Task 1

p1 p2 ...

Task 2 ... Task M

Subproblem 2

Task 1

p1 p2 ...

Task 2 ... Task M

Subproblem K

Task 1

p1 p2 ...

Task 2 ... Task M

Level 1

Level 2

Level 3

Figure 1: Three level parallelisation scheme.

we take Wang’s algorithm to parallelise the solution of systems of linear equations with
tridiagonal matrices [Wan81]. . This level can be used alone, however, it is limited due to
Amdahl’s law. We presented a general methodology, which combines the parallelisation
of a local optimisation algorithm with a standard two level parallelisation. This is a new
three-level parallelisation scheme 1.

As an example, it can be M different PDEs Lju = 0, 1 ≤ j ≤ M , which are approx-
imated numerically with LhjU = 0, 1 ≤ j ≤ M with solutions uh. Solutions depend on
parameters q1, q2, . . . , qm. The optimization problem

min
q1,q2,...,qm

F (uh1(q1, q2, . . . , qm), . . . , uhM (q1, q2, . . . , qm)).

2.1 Balancing of workload distribution

Let a parallel system has P processors. On the first level we can generate up to K blocks
V1, . . . , VK of computational tasks. Each block consists of M tasks

Vk = {v1(Xk), v2(Xk), . . . , vM (Xk)}, k = 1, . . . ,K,

where Xk defines a set of parameters for the Vk block. For each task vj the prediction
of computation time tj(p), p ≤ pj , j = 1, . . . ,M is given. Here we assume that the
monotonicity condition

tj(p2) < tj(p1), for p̃1 < p2 ≤ P̄j (1)

is satisfied, and we assume that P̄j is a global minimum

tj(p) ≥ tj(P̄j), for p > P̄j . (2)

We define the maximum number of processes P̃j which satisfies the efficiency condi-
tion

tj(1)

p tj(p)
≥ Emin, for p ≤ P̃j , (3)

MII-DS-09P-18-7 6

where Emin ∈ [0, 1] is a given efficiency lower bound. Estimates (2) and (3) give the
maximum number of processes Pj that is allowed to be used to solve the j-th task

Pj = min (P̄j , P̃j). (4)

Figure 2: The speed-ups of Wang’s parallel algorithm for different number of processes p
and sizes J of systems.

In Fig. 2, we present speed-up’s of Wang’s algorithm for different sizes of linear sys-
tems J . As we see from presented curves the speed-up is not linear, if it was linear, the
parallelisation on the third level alone would be sufficient. So, in our case the linear model
is especially unsuitable. That’s why we introduce the time function which interpolates
the empirical data.

We propose hybrid multi-level approach, which combines all three strategies to-
gether, which improves the scalability.

We consider the following main minimisation problem: find the optimal value k0 of
task blocks

T0(k0) = min
1≤k≤K

TB (P/k) /Γ(k), (5)

Γ(k) = kγk, 0 < γk ≤ 1, where TB(p) defines the optimal time for solving one block of M
tasks using p processes:

TB(P) = min
(p1,...,pM)∈S

max
1≤m≤M

tm(pm), (6)

where a set S of feasible processors distributions is defined as

S = {(p1, . . . , pM) : pm ≤ Pm, m = 1, . . . ,M, p1 + . . .+ pM ≤ P} .

We propose the algorithm of workload balancing 3. This algorithm takes parameters
K, M , problem sizes, number of processes and the array to store the processes distribu-
MII-DS-09P-18-7 7

1: Set p[m] = 1, for m = 1, . . . ,M
2: P = P −M
3: Compute tm(p[m]), for m = 1, . . . ,M
4: stop = 0
5: while P > 0 & stop == 0 do
6: find j such that tj(p[j]) = max

1≤m≤M
tm(p[m])

7: if p[j] == Pj then
8: stop = 1
9: else

10: p[j] = p[j] + 1
11: P = P − 1
12: end if
13: end while

Figure 3: The algorithm for distribution of P processes between M tasks

tion between problems. We assume that P is bigger than M and is dividable by K. First,
we give one process per problem and then the rest of processes are iteratively distributed
by selecting the longest of tasks. Here we see a special check if additional processes will
not give better (bigger) speed-up, in this case we just leave same of processes unused.
Also the number of processes is limited by efficiency requirement, which means it is not
allowed increase the number of processes per task vj if it makes the calculations efficiency
smaller than the selected constant Emin.

2.2 Example

The linear one-dimensional Schrödinger equation with some initial-boundary conditions
in a finite space domain

i
∂u

∂t
+
∂2u

∂x2
= 0, x ∈ (a, b), t ∈ [0, T]

u(x, 0) = u0(x) (7)

Llu(a) = 0, Lru(b) = 0.

The boundary conditions approximation

∂nu = −e−i
π
4

m+1
2∑

k=1

qk

u−

m−1
2∑

k=1

qk+1qk+(m+3)/2ϕk

 , (8)

where ∂nu is the normal derivative, the number of parameters m ∈ N is odd and ϕk is
obtained from

dϕk(x, t)

dt
+ qk+(m+3)/2ϕk(x, t) = u (x, t) , x = a, b, k = 1, . . . , [m/2].

MII-DS-09P-18-7 8

Then we formulate an optimization problem

min
q1,q2,...,qm

max
1≤j≤M

‖uj − uhj (q1, q2, . . . , qm)‖∞

Assuming that uj is known, each value of functional that is being minimized requires to
solve M different equations. All M equations can be solved independently.

2.3 Parallelisation scheme

First level of parallel algorithm.
As a local optimizer Nelder-Mead algorithm [NM65] is used. During each iteration we
can have these different scenarios

• Reflection (one point: fR)

• Expansion (two points: fR, fe)

• Contraction (two points: fR, fc)

We propose to compute all three points simultaneously, in our parallelization scheme
that means parameter K is equal 3. We change the order of computations, which let us
paralyse simplex method.

Second level of parallel algorithm.
We compute functional

max
1≤j≤M

‖uj − uhj (q1, q2, . . . , qm)‖∞ = F (q1, q2, . . . , qm), (9)

where uh approximation error should be small comparing to F .
Uj with different j can be computed independently, computation of maximum is

small comparing to computations of finding solutions and computational errors. This
leads to efficient parallel calculation of solutions.

Different PDEs can require different discretization sizes in order to achieve the same
level of errors. This leads to unequal computational costs for different problems leading
to loss of parallel efficiency.

Third level of parallel algorithm.
The system of linear equations

b0x0 + c0x1 = d0,

aixi−1 + bixi + cixi+1 = di, i = 1, . . . , N − 2

aN−1xN−2 + bN−1xN−1 = dN−1,

(10)

where ai, bi, ci, di are complex numbers.
Linear equations with tridiagonal matrix are solved using Wang’s algorithm.

MII-DS-09P-18-7 9

This level let us to perform the workload balancing at the second level of our algo-
rithm. We assign different numbers of processes for different problems with different
computational costs.

2.4 Experimental results

We have three different sized benchmarks 1.

Table 1: Benchmarks with different sizes

Benchmark 1 Benchmark 2 Benchmark 3

Eq. J ×N Eq. J ×N Eq. J ×N
1 8000× 40000 1 8000× 20000 1 8000× 10000
2 4000× 20000 2 4000× 20000 2 2000× 20000
3 2000× 20000 3 4000× 10000 3 2000× 10000
4 2000× 10000 4 2000× 10000 4 1000× 20000

The results of first benchmark are in Table 2. We can see how processes are distributed
in these cases. As for parameter k, we choose it just by calculating with equal 1, equal 3
and selecting the best of them. The parameter k is selected automatically. The exception
is the last column that was made for demonstration purposes. It shows what efficiency
of the parallel algorithm is obtained only for two level template.

As we see, if P = 128; k = 1 then only 70 processes are used. However, the result is
very similar to P = 64, additional 6 (almost 10%) processes decreased the computation
time only by 0.3%, which means that these additional resources were used very ineffi-
ciently. Also, there are experimental times, actual times and speed-ups. There are some
differences between real and our model values. The experimental time is smaller than
model time.

The Gantt chart 4 shows theoretical model (which is based on experiments) time,
that is needed to obtain the solutions of different equations. The workload distribution
becomes closer to uniform as the number of processes is increased.

Table 2: The results of first benchmark.

p 16 32 64 96 128 128

k = 1 k = 2 k = 3 K = 1

Eq. 1 10 22 50 34 29 56
Eq. 2 3 5 8 8 7 8
Eq. 3 2 3 4 4 4 4
Eq. 4 1 2 2 2 2 2

Model time 11.145 5.784 3.614 2.742 2.272 3.605
Exp. time 11.003 5.394 3.608 2.719 2.308 3.600
Speed-up 12.68 25.86 38.66 51.31 60.44 38.75

MII-DS-09P-18-7 10

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

Eq
u

at
io

n
s

Seconds
0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

Eq
u

at
io

n
s

Seconds

Figure 4: Benchmark 1 T values with p = 16(left) and p = 64(right)

There are results with efficiency requirement 3. The results in this table indicate that
even with efficiency limitation Emin = 0.75 the proposed three-level approach lets to
maintain a big number of parallel processes active. The last column in this table with
K = 1 represents the results for the two-level approach (without the first level). This
approach would have the limited parallelisation possibilities.

Table 3: The results of benchmark 1 with Emin > 0

p 128

Emin 0.75 0.8 0.6
k = 3 k = 3 K = 1

Eq. 1 26 19 42
Eq. 2 7 5 8
Eq. 3 4 3 4
Eq. 4 2 1 2

Model time 2.45 3.17 3.84
Exp. time 2.49 3.08 3.76
Speed-up 56.03 45.37 37.11

2.5 Conclusions

Comparing to one level parallelization the proposed algorithm with three levels greatly
expands the number of processes that can be used.

Workload balancing was analysed, model-based approach performs balancing well
enough for practical purposes. The model prediction times are close to times of the real
computational experiments.

We propose the heuristic with parameter Emin which guarantees that the efficiency
of calculations on the third level is not lower than the value of Emin. This heuristic is not
optimal, however, for considered cases we show that it is sufficient.

MII-DS-09P-18-7 11

3 Formulation of the second problem

Let Ω be a bounded domain in R3, with boundary ∂Ω. Given a function f , we seek u such
that

Lβu = f, X ∈ Ω (11)

with some boundary conditions on ∂Ω, 0 < β < 1 and the elliptic operator:

Lu = −
3∑
j=1

∂

∂xj

(
k(X)

∂u

∂xj

)
.

In our paper we use the following definition of fractional power operators. Let us
denote by {φk}, k = 1, 2, . . . , N the orthonormal basis

Lφk = λkφk.

For convenience, here we restrict to the case of finite number of modes typical for discrete
approximations. Then the fractional powers of the elliptic operator are defined by (cf.
[NOS15b, NOS15a])

Lβu =
N∑
k=1

λβkwkφk, (12)

where wk = (u, φk).
This definition can be used for direct solution of problem (11) by the Fourier method.

However, in general, implementation of this approach is very expensive. It requires the
computation of all eigenvectors and eigenvalues of large matrices. However, when the
problem with fractional power of Laplace operator is solved in a rectangular domain,
then the basis functions are known in advance and FFT techniques can be applied. In
this paper, we formulate such 3D test problem and use the Fourier algorithm to obtain
benchmark solutions. These benchmark solutions are used to study the convergence and
accuracy of numerical solution algorithms, which are presented in the next section.

3.1 PDE Equivalent Models and Approximations of the Fractional Problem

3.1.1 Reduction to a pseudo-parabolic PDE problem

The solution of the non-local problem (11) is sought as a mapping [Vab16]:

V (X, t) =
(
t(L− δI) + δI

)−β
f,

where L ≥ δ0I , δ = γδ0, 0 < γ < 1. Thus, it follows that V (X, 1) = L−βf . The function V
satisfies the evolutionary pseudo-parabolic problem

(tG+ δI)
∂V

∂t
+ βGV = 0, 0 < t ≤ 1, (13)

V (0) = δ−βf, t = 0,
MII-DS-09P-18-7 12

where G = L− δI . Thus, instead of the non-local problem (11), we solve a local pseudo-
parabolic problem (13) (formally in R4). We use the following Crank-Nicolson scheme
for the discretization in time [ČT14]:

(tn−1/2Gh + δIh)
V n
h − V

n−1
h

τ
+ βGhV

n−1/2
h = 0, 0 < n ≤M, (14)

V 0
h = δ−βfh,

where Gh = Lh − δIh, V n−1/2
h = (V n

h + V n−1
h)/2 and tn−1/2 = (tn−1 + tn)/2. In order to

solve (14), M discrete 3D subproblems need to be solved.

3.2 Integral representation of the solution of problem (11)

The second algorithm we consider here is based on an integral representation of the non-
local operator (12) using the local elliptic operators of the following form (cf. [BJ15]):

L−β =
2 sin(πβ)

π

[∫ 1

0
y2β−1(I + y2L)−1dy +

∫ 1

0
y1−2β(y2I + L)−1dy

]
. (15)

We apply a quadrature scheme based on a graded partition of the integration interval
[0, 1] to resolve the singular behaviour of y2β−1:

y1,j =

(j/M)
1
2β if 2β − 1 < 0,

j/M if 2β − 1 ≥ 0,
j = 0, . . . ,M.

A similar partition is used to resolve the singularity of y1−2β . The integrals (15) are ap-
proximated as

L−βh fh =
2 sin(πβ)

π

[M∑
j=1

y2β1,j − y
2β
1,j−1

2β

(
Ih + y21,j−1/2Lh

)−1
fh (16)

+
M∑
j=1

y2−2β2,j − y2−2β2,j−1
2− 2β

(
y22,j−1/2Ih + Lh

)−1
fh

]
.

Note that local 3D elliptic subproblems (Ih + y2jLh)−1f and (y2j Ih + Lh)−1f can be
solved independently, 2M in total.

3.2.1 Approximation of the solution of problem (11) using rational approximations

In this case, the approximate solution is defined as in [HLM+16], namely,

Ũh = c0A
−1
h fh +

m∑
j=1

ci(Ah − djI)−1fh, (17)

MII-DS-09P-18-7 13

where Ah = ch2Lh, the coefficients cj and dj are defined by solving the global optimiza-
tion problem to find the best uniform rational approximation r∗m(t),

rm(t) = c0 +

m∑
j=1

cjt

t− dj
,

min
rm

max
t∈[0,1]

∣∣t1−β − rm(t)
∣∣ = max

t∈[0,1]

∣∣t1−β − r∗m(t)
∣∣.

Let us define the error of the best uniform rational approximation as

εm(β) = max
t∈[0,1]

∣∣t1−β − r∗m(t)
∣∣.

Then we have the following error bound

‖Ũh − Uh‖Ah ≤ εm(β)‖fh‖A−1
h
.

Some examples of obtained approximations and results of numerical experiments are
provided in [HLM+16].

3.3 Comparison of accuracy

In this work, we have compared selected numerical algorithms in terms of accuracy using
the following 3D test problem:

Lβu = f(~x), ~x ∈ Ω = [0, 1]× [0, 1]× [0, 1]

with β = 0.25, Laplace operator L = ∆ and

f(~x) = e
−
(
x1−0.5
0.25

)6

e
−
(
x2−0.5
0.25

)6

e
−
(
x3−0.5
0.25

)6

.

On sufficiently fine uniform grid (N = 512) we have computed reference solution with
the Fourier method.

Solving the test problem with the integral method (16), we have usedM = N integra-
tion points. In order to have the same number of local elliptic problem to be solved, we
have used M = 2N time steps in computations with the pseudo-parabolic method (14).
Method of rational approximation (17) was used with m = 5. Obtained errors in the
maximum norm are presented in Table 4.

Some conclusions follow from Table 4. In accordance with the theory, the Fourier
method converges exponentially and it is very fast when it can be applied. However, in
this study, we are interested in methods, which can be used in non-rectangular domains
for general elliptic operators. Results of the tests with pseudo-parabolic and integral
algorithms show the second order convergence in accordance with the approximation
properties of employed numerical schemes for smooth solutions (such as one selected
for our tests). However, one needs to remember that in general for solutions of nonlocal
MII-DS-09P-18-7 14

Table 4: Errors in maximum norm

N Fourier Pseudo-parabolic Integral Rational approximation

16 1.66 · 10−4 4.05 · 10−3 1.70 · 10−3 2.67 · 10−3

32 2.94 · 10−7 1.21 · 10−3 5.00 · 10−4 6.68 · 10−4

64 8.88 · 10−13 3.34 · 10−4 1.23 · 10−4 7.08 · 10−4

128 0 8.62 · 10−5 3.05 · 10−5 4.32 · 10−3

256 0 2.18 · 10−5 7.66 · 10−6 7.51 · 10−3

problems we have the lack of boundary regularity. Then the convergence rate of discrete
solutions is reduced and depends on β.

Accuracy of the solutions obtained by the method of rational approximation is lim-
ited by the approximation error. If needed, more accurate approximations with m = 6, 7

should be used. However, determination of coefficients cj and dj for arbitrary β is a
non-trivial task [HLM+16]. This makes the application of this method less practical.

3.4 Parallel algorithms and their efficiency

In this section we consider the parallelization of pseudo-parabolic and integral algo-
rithms and compare their parallel performance. All tests were performed on the ”Avi-
tohol” cluster at Institute of Information and Communication Technologies (IICT) of the
Bulgarian Academy of Sciences (http://www.iict.bas.bg/avitohol/). The cluster con-
sists of 150 HP Cluster Platform SL250S GEN8 servers. Each computational node has
2 Intel R© Xeon R© processors E5-2650v2 @ 2.6GHz (8 cores each) and 64GB RAM. Com-
putational nodes are interconnected via the fully non-blocking 56Gbps FDR InfiniBand
network. We have used up to 32 nodes (512 cores) in our parallel tests.

3.4.1 Parallel pseudo-parabolic solver

The constructed finite volume scheme (14) implies that this numerical algorithm ad-
vances in pseudo-time solving one discrete 3D problem at each time step. M such prob-
lems need to be solved in total. However, they need to be solved sequentially, one after
another. Hence the pseudo-parabolic algorithm does not have parallelism in the intro-
duced dimension, i.e. in pseudo-time.

Thus our parallelization template is reduced only to the second level. We solve in
parallel 3D elliptic subproblems. A standard domain decomposition method is applied.
The discrete mesh Ωh of size Nx1 × Nx2 × Nx3 is partitioned into sub-domains, which
are allocated to different processes. In this work, we use the parallel algebraic multigrid
solver BoomerAMG from the well-known HYPRE numerical library [FY02, FJY06] as a
preconditioner for the parallel conjugate gradient method. We use default BoomerAMG
parameter settings for 3D elliptic problems.

Parallel performance results on strong scaling of the developed pseudo - parabolic
solver are presented in Table 5. Here, p = nd×nc is the number of used parallel processes,

MII-DS-09P-18-7 15

http://www.iict.bas.bg/avitohol/

corresponding to computing with nd nodes and nc cores per node. Here, P1 × P2 × P3

defines the topology of partitioning, while DOF/p = Nx1×Nx2×Nx3/p shows the degrees
of freedom per process, i.e., the number of unknowns per core. The total wall time Tp is
given in seconds. We show the total BoomerAMG setup time Tset, i.e. summed up for
all time steps, and the total solution time Tsol of the parallel conjugate gradient solver
with Niter iterations in total. Finally, we present the obtained values of parallel speed-up
Sp = T1/Tp and parallel efficiency Ep = Sp/p. We also calculate and present the scaled
parallel efficiency

Êp =
Niter(p)

Niter(1)
Ep

to remove the effect of slight increasing number of CG iterations.

Table 5: Total wall time Tp, speed-up Sp, and efficiency Ep solving the test problem with
parallel pseudo-parabolic solver and Nx1 = Nx2 = Nx3 = 128, M = 256.

p nd × nc P1 × P2 × P3 DOF/p Tp Tset Tsol Niter Sp Ep Êp

1 1× 1 1× 1× 1 2.1 · 106 2986.4 1723.5 967.7 1626 1.00 1.00 1.00
2 1× 2 1× 2× 1 1.0 · 106 1954.3 1277.2 531.9 1757 1.53 0.76 0.83
4 1× 4 1× 2× 2 5.2 · 105 1122.9 763.0 284.2 1811 2.66 0.66 0.74
8 1× 8 2× 2× 2 2.6 · 105 618.1 413.0 166.2 1957 4.83 0.60 0.73
16 1× 16 2× 4× 2 1.3 · 105 381.8 242.7 111.0 1969 7.82 0.49 0.59
32 2× 16 4× 4× 2 6.6 · 104 216.0 142.8 58.8 1989 13.83 0.43 0.53
64 4× 16 4× 4× 4 3.3 · 104 142.6 99.1 39.0 2024 20.95 0.33 0.41
128 8× 16 4× 8× 4 1.6 · 104 112.2 78.4 32.2 2082 26.61 0.21 0.27
256 16× 16 4× 8× 8 8.2 · 103 111.2 76.0 34.6 2138 26.86 0.10 0.14
512 32× 16 8× 8× 8 4.1 · 103 152.8 107.2 46.4 2162 19.55 0.04 0.05

The setup costs of parallel BoomerAMG preconditioner are large: 2-3 times big-
ger than the elapsed times of parallel CG iterations. For structured meshes, geometric
multigrid methods should be considered as preconditioners. However, applied parallel
multigrid preconditioner is robust for the solved problem, i.e. the number of iterations is
quite stable. It increases only slightly with the number of parallel processes. Our study
have also shown that 3D partitioning is better than 2D partitioning mainly due to slightly
smaller setup costs of parallel BoomerAMG preconditioner.

Degradation of the efficiency of the parallel algorithm is clearly seen when the num-
ber of processes is increased. This effect is well known for parallel linear solvers with
decreasing DOF/p and increasing amount of communications.

3.4.2 Parallel integral solver

Solution of the non-local fractional diffusion problem (11) is transformed into a com-
putation of two sums (16). Corresponding 3D elliptic subproblems can be solved inde-
pendently, what gives a first level of parallelization. On a second level, each 3D elliptic
subproblem can be also solved in parallel.

In the two-level parallel algorithm, parallel processes are split into some number of
MII-DS-09P-18-7 16

groups. Values yj of sums (16) can be distributed between these groups of processes
statically or dynamically. For each received yj value, corresponding group of processes
solves the 3D elliptic problem

(Ih + y2jLh)−1f or (y2j Ih + Lh)−1f

using the domain decomposition method. To implement the two-level parallel algorithm,
we use the parallel programing templates [ČSTR16] and the parallel algebraic multigrid
solver BoomerAMG from the well-known HYPRE numerical library [FY02, FJY06] as a
preconditioner for the parallel conjugate gradient method.

Parallel performance results on strong scaling of the developed integral solver are
presented in Table 6. Here, p = nd × nc is the number of used parallel processes, cor-
responding to computing with nd nodes and nc cores per node, g is the number of used
groups of processes, P1×P2×P3 denotes the topology of domain decomposition. “Mem”
is the amount of memory used by the solver in GB. The total wall time Tp is given in sec-
onds. sg is the standard deviation of solution times of g groups, where Tp is the maximum.
We also show the maximal total BoomerAMG setup time Tset, i.e. summed up for all yj
tasks received by some group, and the maximal total solution time Tsol of the parallel
conjugate gradient solver with Niter iterations in total. Finally, we present the obtained
values of parallel speed-up Sp = T1/Tp and efficiency Ep = Sp/p.

Some conclusions follow from Table 6. First, the parallel integral solver with one
group (g = 1) is only slightly slower than the parallel pseudo-parallel solver. We remind
here that the same number of 3D elliptic subproblems is solved in these tests and solution
obtained with integral solver is much more accurate (see Table 4). Interesting to note, that
there is a noticeable difference in the number of CG iterations - Niter.

The setup times of parallel BoomerAMG preconditioner are relatively smaller for the
integral solver. Although, they are still very significant and exceed the time of CG itera-
tions. As one can see, the setup times are minimal when g = p, i.e. 3D elliptic subprob-
lems are solved sequentially. However, in this case the memory requirements of integral
solver are growing very fast, because up 16 3D elliptic problems need to be solved on
one node simultaneously. Third, our tests have shown that a static cyclic distribution can
be used for yj tasks on the first level of parallelization, since obtained values of standard
deviation sg are quite small.

3.4.3 Conclusions

The performance results of the parallel integral solver are very promising. The computa-
tions in the forth extended dimension are formulated in this algorithm as evaluation of
two integral sums (16). The calculation of these sums is easily parallelizable, and requires
minimal amount of communication.

MII-DS-09P-18-7 17

Table 6: Total wall time Tp, speed-up Sp, and efficiency Ep solving the test problem with
parallel integral solver and Nx1 = Nx2 = Nx3 = 128, M = 128.

p nd × nc g × P1 × P2 × P3 Mem Tp sg Tset Tsol Niter Sp Ep

1 1× 1 1× 1× 1× 1 1.6 3183.6 0.0 1676.0 1353.6 2467 1.00 1.00
2 1× 2 2× 1× 1× 1 3.1 1586.1 0.2 836.7 678.6 1238 2.01 1.00
2 1× 2 1× 1× 2× 1 1.6 2090.4 0.0 1266.2 746.0 2655 1.52 0.76
4 1× 4 4× 1× 1× 1 5.9 846.5 5.7 457.6 354.4 617 3.76 0.94
4 1× 4 2× 1× 2× 1 3.3 1076.1 4.9 649.1 387.6 1328 2.96 0.74
4 1× 4 1× 1× 2× 2 1.9 1189.8 0.0 745.7 404.2 2790 2.68 0.67
8 1× 8 8× 1× 1× 1 11.2 475.3 5.4 270.3 185.3 310 6.70 0.84
8 1× 8 4× 1× 2× 1 6.6 578.0 5.0 347.2 210.5 667 5.51 0.69
8 1× 8 2× 1× 2× 2 3.9 620.5 3.9 381.5 217.0 1390 5.13 0.64
8 1× 8 1× 2× 2× 2 2.6 653.3 0.0 398.2 233.1 2958 4.87 0.61

16 1× 16 16× 1× 1× 1 23.1 277.2 8.3 154.3 112.3 158 11.49 0.72
16 1× 16 8× 1× 2× 1 12.9 331.8 3.4 206.2 114.5 338 9.60 0.60
16 1× 16 4× 1× 2× 2 8.7 365.7 4.8 214.3 139.7 700 8.71 0.54
16 1× 16 2× 2× 2× 2 6.3 379.5 1.0 210.6 154.5 1483 8.39 0.52
16 1× 16 1× 2× 4× 2 5.1 405.8 0.0 234.4 156.6 2997 7.85 0.49
32 2× 16 32× 1× 1× 1 26.7 146.2 7.9 74.1 65.2 81 21.77 0.68
32 2× 16 16× 1× 2× 1 15.8 173.3 5.9 102.0 65.8 172 18.37 0.57
32 2× 16 8× 1× 2× 2 10.4 184.6 2.5 109.3 69.1 350 17.24 0.54
32 2× 16 4× 2× 2× 2 7.2 191.2 1.2 106.3 77.8 739 16.65 0.52
32 2× 16 2× 2× 4× 2 6.6 203.5 0.9 117.6 78.5 1505 15.64 0.49
32 2× 16 1× 2× 4× 4 5.0 231.7 0.0 141.3 83.2 3034 13.74 0.43
64 4× 16 64× 1× 1× 1 26.8 74.3 5.6 37.0 33.4 41 42.83 0.67
64 4× 16 8× 2× 2× 2 7.9 96.9 1.0 53.5 39.7 376 32.85 0.51
64 4× 16 1× 4× 4× 4 6.0 150.7 0.0 94.6 54.0 3084 21.13 0.33
128 8× 16 128× 1× 1× 1 26.9 38.6 4.1 19.0 17.2 21 82.39 0.64
128 8× 16 16× 2× 2× 2 8.1 48.8 1.1 27.2 19.8 187 65.24 0.51
128 8× 16 1× 4× 8× 4 6.3 117.4 0.0 73.8 43.4 3141 27.12 0.21
256 16× 16 256× 1× 1× 1 26.8 20.4 3.0 9.2 9.3 11 155.80 0.61
256 16× 16 32× 2× 2× 2 9.1 25.0 1.1 13.9 10.3 96 127.57 0.50
256 16× 16 1× 4× 8× 8 7.3 117.3 0.0 71.6 46.8 3257 27.15 0.11
512 32× 16 256× 1× 2× 1 13.7 12.8 1.8 6.4 5.1 12 247.80 0.48
512 32× 16 64× 2× 2× 2 9.6 13.2 0.9 7.0 5.6 48 241.98 0.47
512 32× 16 1× 8× 8× 8 9.3 162.2 0.0 99.5 62.4 3310 19.63 0.04

References

[BJ15] A. Bonito and Pasciak J. Numerical approximation of fractional powers of
elliptic operator. Mathematics of Computation, 84, 2015.

[ČSTR16] R. Čiegis, V. Starikovičius, N. Tumanova, and M. Ragulskis. Application of
distributed parallel computing for dynamic visual cryptography. The Journal
of Supercomputing, 72(11):4204–4220, 2016.

[ČT14] R. Čiegis and N. Tumanova. On construction and analysis of finite difference

MII-DS-09P-18-7 18

schemes for pseudoparabolic problems with nonlocal boundary conditions.
Mathematical Modelling and Analysis, 19(2):281–297, 2014.

[FJY06] R. Falgout, J. Jones, and U. Yang. The design and implementation of Hypre,
a library of parallel high performance preconditioners. In Numerical Solution
of Partial Differential Equations on Parallel Computers, part III, volume 51 of Lec-
ture Notes in Computational Science and Engineering, pages 264–294, Springer,
Berlin, Heidelberg, 2006.

[FY02] R. Falgout and U. Yang. Hypre: A library of high performance precondition-
ers. In Computational Science 2002. International Conference (ICCS, Amsterdam,
The Netherlands, April 21–24, 2002) Proceedings, part III, volume 2331 of Lecture
Notes in Computer Science, pages 632–641, Berlin, Heidelberg, 2002. Springer.

[HLM+16] S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, and Y. Vutov. Optimal
solvers for linear systems with fractional powers of sparse SPD matrices.
arXiv:submit/1751899, 2016.

[NM65] J.A. Nelder and R. Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[NOS15a] R. Nochetto, E. Otárola, and A. Salgado. A PDE approach to numerical frac-
tional diffusion. Proceedings of the 8th ICIAM, Beijing, China, pages 211–236,
2015.

[NOS15b] R.H. Nochetto, E. Otárola, and A.J. Salgado. A PDE approach to fractional
diffusion in general domains: a priori error analysis. Foundations of Computa-
tional Mathematics, 15(3):733–791, 2015.

[Vab16] P. Vabishchevich. Numerical solving unsteady space-fractional problems
with the square root of an elliptic operator. Mathematical Modelling and Anal-
ysis, 21(2):220–238, 2016.

[Wan81] H.H. Wang. A parallel method for tridiagonal equations. ACM Transactions
on Mathematical Software (TOMS), 7(2):170–183, 1981.

MII-DS-09P-18-7 19

	Introduction
	The object of research
	The goal and objectives of the research
	Presentation and approbation of results

	Formulation and parallelisation strategies of the first problem
	Balancing of workload distribution
	Example
	Parallelisation scheme
	Experimental results
	Conclusions

	Formulation of the second problem
	PDE Equivalent Models and Approximations of the Fractional Problem
	Reduction to a pseudo-parabolic PDE problem

	Integral representation of the solution of problem (11)
	Approximation of the solution of problem (11) using rational approximations

	Comparison of accuracy
	Parallel algorithms and their efficiency
	Parallel pseudo-parabolic solver
	Parallel integral solver
	Conclusions

	References

