
Vilnius University
Institute of Mathematics and

Informatics
L I T H U A N I A

INFORMATICS (09 P)

RESEARCH AND DEVELOPMENT OF AN
OPEN SOURCE GLOBAL OPTIMIZATION

SYSTEM

Vaidas Jusevičius

October 2018

Technical Report MII-DS-09P-18-1 October 2017 - 30

September 2021

VU Institute of Data Science and Digital Technologies, Akademijos str. 4, Vilnius
LT-08663,
Lithuania

www.mii.lt

http://www.mii.lt

Abstract

We consider a research and development of an open source global optimization system.
There exists a quite large and solid selection of the commercial optimization modeling
systems available for end users, however open source alternatives are basically non ex-
istent or significantly lacking in the features offered by their commercial counterparts.
Most of the missing functionality is observed in the features related to interaction with
modeling system and feedback from the solvers. To bridge this gap we consider build-
ing an open source modeling system based on top of the best open source optimization
modeling elements currently existing in the world. In the first part we investigate current
state and issues in the optimization modeling field by selecting most prominent algebraic
modeling languages and modeling systems and performing an extensive both theoretical
and experimental investigation of them.

Keywords: Modeling systems, Modeling languages, Optimization, AIMMS, AMPL, GAMS,
PYOMO

MII-DS-09P-18-1 October 2017 - 30 September 2021 2

Contents

1 Introduction . 4
2 Algebraic modeling languages . 5
3 Review criteria . 6
4 Summary of findings . 7
5 Conclusions . 9
References . 10

MII-DS-09P-18-1 October 2017 - 30 September 2021 3

1 Introduction

In this review we explore and compare existing algebraic modeling languages most fre-
quently used for describing mathematical optimization problems [NEO18]. In the last
few decades, there were multiple algebraic modeling languages created, and new ones
are still being developed (e.g., Pyomo).

Therefore there is a need to review and summarize the current state of the opti-
mization modeling languages by comparing characteristics and performance of the most
widely used algebraic modeling languages and expect it to provide insights on what is
still missing and where the research and development might be focused in the year to
come.

Numerous real-world problems are solved routinely by optimization tools. Many de-
cision problems can benefit from an optimization-type approach. Indeed, the paradigm
of optimization seems to be well adapted to needs in different domains such as, eco-
nomics, engineering, management or physics. In many applications, it is quite natural to
formulate the problem as a choice of one solution from a set of possible solutions [FG02].

Mathematical modeling is the art of translating problems from an application area
into tractable mathematical formulations whose theoretical and numerical analysis pro-
vides insight, answers, and guidance useful for the originating application [KPH04]. Op-
timization modeling languages bridge the gap between model formulation and the ap-
propriate solution technique [FG02].

Algebraic modeling languages, being a type of optimization modeling languages,
store the knowledge about a model, they define the problem and usually do not specify
how to solve it. They are declarative languages. The problem is flattened, i.e., all vari-
ables and constraints become essentially one-dimensional, and the model is written in an
index-based formulation, using algebraic expressions in a way which is close to the math-
ematical notation [KPH04]. The similarity of the model written in an algebraic modeling
language to the mathematical formulation of a problem is a very important aspect which
distinguishes algebraic modeling languages from other types of modeling languages, like
object-oriented (e.g. OptimJ), solver specific (e.g. LINGO), general purpose (e.g. TOMLAB)
modeling languages. This algebraic design approach allows mathematicians without a
specific programming or modeling knowledge to be efficient in describing problems to
be solved.

It is also important to note that the algebraic modeling language is then responsible
for creating a problem instance that a solution algorithm can work on [KPH04]. Since
majority of a algebraic modeling languages are proprietary and integral part of a specific
modeling system it is important to isolate the responsibilities of a modeling language
from an overall modeling system.

So in general we can conclude that algebraic modeling languages are sophisticated
software packages that provide a key link between an analyst’s mathematical conception

MII-DS-09P-18-1 October 2017 - 30 September 2021 4

of an optimization model and the complex algorithmic routines that seek out optimal
solutions. Algebraic modeling language software automatically reads and interprets a
model and data, generates an instance, and conveys the instance to a solver in the re-
quired form [Fou13].

2 Algebraic modeling languages

Algebraic modeling languages were game changers because they allowed optimizers to
separate model formulation from implementation details [KPH04] while keeping nota-
tion close to the mathematical formulation of problem [FG02].

Since the data appears to be more volatile than the problem structure, most modeling
languages designers insist on data and model structure being separated [H9̈9]. So central
idea in modern algebraic modeling languages is differentiation between abstract models
and concrete problem instances [HWW11].

An abstract model separates the declaration of a model from the data used to gen-
erate a specific model instance [HWW11]. Model and data together specify a particular
instance of an optimization problem for which a solution can be sought. This is real-
ized by replicating every entity of an abstract model over the different elements of the
data set. This is often referred to as a set-indexing ability of the algebraic modeling lan-
guage [FG02].

Model instances are usually defined in MPS format [FG02]. MPS file [MIP11] format
allows to standardize the formulation of linear programs. MPS format can be used today
to formulate mixed integer, quadratic or stochastic optimization problems [FG02]. Virtu-
ally all LP solvers accept input of model instances expressed in simple text file formats,
especially the MPS format dating back many decades and various linear LP formats that
resemble textbook examples complete with + and = signs [Fou17a].

So basic characteristics of a modern algebraic modeling language could be defined in
a following way [KPH04]:

• problems are represented in a declarative way;

• there is a clear separation between problem definition and the solution process;

• there is a clear separation between the problem structure and its data.

Here it must be noted that one of the most important characteristics of modern alge-
braic modeling languages is their ability to describe non-linear models [KPH04]. So we
consider the support for mathematical expressions and operations needed for describing
non-linear models an important feature of an algebraic modeling language.

Also it is worth to observe that most interpreters included in todays algebraic mod-
eling languages are based on automatic differentiation [FG02], a process in which the

MII-DS-09P-18-1 October 2017 - 30 September 2021 5

modeling language can generate derived information from the model description with-
out assistance of the user [KPH04]. This motivates us to include automatic differentiation
as an important feature of a modern algebraic modeling language too.

The algebraic expressions that are useful in describing individual objectives and con-
straints are also useful in describing manipulations of models and transformations of
data. Thus almost as soon as modeling languages became available, users started find-
ing ways to adapt model notations to implement sophisticated solution strategies and
iterative schemes. These efforts stimulated the evolution within algebraic modeling lan-
guages of scripting features, which include statements for looping, testing, and assign-
ment [Fou13]. So at least a minimal support for scripting capabilities is another interest-
ing aspect of a algebraic modeling language to investigate.

For this review we have chosen four different algebraic modeling languages: AIMMS,
AMPL, GAMS and Pyomo. The selection was based on language recognition in scientific
community and it’s usage popularity. So the winners of 2012 INFORMS Impact Prize
[INF12], a prize awarded to the originators of the five most important algebraic mod-
eling languages were considered. Also the popularity of a language based on NEOS
Server [NEO18], a free internet-based service for solving numerical optimization prob-
lem, input statistics was taken into consideration. Finally an emerging open-source al-
ternative Pyomo was added to the list, since it might be attractive for situations where
budgets are tight or where the greatest degree of flexibility is required – such as when
new or customized algorithmic ideas are being investigated [Fou17a].

3 Review criteria

In the following review we investigate how the the requirements for a modern algebraic
modeling language defined in the previous section are met within each of the chosen lan-
guages. Modeling language websites and vendor documentation are used for theoretical
comparison. Support of the identified features and capabilities are validated against the
documentation algebraic modeling language creators provide. An in depth survey con-
cluded by Robert Fourer in Linear Programming Software Survey [Fou17b] is also used
as a reference.

For the practical comparison of the chosen algebraic modeling languages a classical
Dantzig Transport Problem was chosen [Dan63].

In this problem, we are given the supplies at several plants and the demands at sev-
eral markets for a single commodity, and we are given the unit costs of shipping the
commodity from plants to markets. The economic question is: how much shipment
should there be between each plant and each market so as to minimize total transport
cost [Ros18].

The problem formulated as a model in all the reviewed languages is compared based
on the following criteria:

MII-DS-09P-18-1 October 2017 - 30 September 2021 6

• model size in bytes

• model size in number of code lines

• model size in number of language primitives used

• basic model instance creation time i.e. time needed to export concrete model in-
stance to MPS format

• extended (larger data set based) model instance creation time

Sample Transportation Problem model implementations for discussed languages
provided by the following sources AIMMS Wikipedia [Wik18], GNU Linear Program-
ming Kit [LL14], GAMS Model Library [GAM18], Pyomo Gallery [Pyo18] are used.

It should be noted that the textual representation of an AIMMS model presents the
model as a tree of attributed identifier nodes. It reflects the way in which the model is
presented to the modeler in the AIMMS IDE, and is typically generated by the AIMMS
IDE.

Also it is worth to note that for the sake of simplicity problem model samples are
concrete models i.e. data of the model instance is described alongside with model struc-
ture.

4 Summary of findings

All of the reviewed modeling languages belong to the algebraic modeling language fam-
ily so problems are represented in a declarative way. Furthermore since all of them are
part of overall modeling system a clear separation between problem definition and the
solution process in the context of the modeling system exists.

Separation between the problem structure and it’s data is supported in all of the re-
viewed languages. It should be noted that GAMS and Pyomo also allows to initiate data
structures during their declaration while AIMMS and AMPL only supports it as a separate
step in model instance building process. However, while it might be convenient for build-
ing a simple model we do not consider lack of direct data structure initiation as an ad-
vantage since in real world cases it’s rarely needed.

So we can conclude that all of the reviewed languages fulfill basic characteristics of a
modern algebraic modeling language as defined in the previous section.

Comparison of the characteristics for the sample Transportation Problem model im-
plemented in all the reviewed algebraic modeling languages can be seen in the Table 1.
To have a more concise view the simplification of model implementations provided in the
literature sources is made. All the optional comments, documentation and explanatory
texts are removed. All empty lines are excluded. Parts of the code responsible for calling
the solver and displaying results are omitted.

MII-DS-09P-18-1 October 2017 - 30 September 2021 7

While counting language primitives generic functions (sum, for), data loading direc-
tives (data), arithmetical and logical operators are excluded.

Table 1: Comparison of Transport Problem models

AIMMS AMPL GAMS Pyomo
size in bytes 2229 683 652 1207
lines of code 68 24 31 28
primitives used 9 5 8 6

As we see from the table above models implemented in both AMPL and GAMS are the
most compact ones, while model written in AIMMS is much more verbose and Pyomo is
somewhere in the middle.

The reason for AIMMS model being much more verbose is in the nature of AIMMS mod-
eling system, which propagates model creation using graphical user interface (GUI) while
keeping source code of the model hidden from a modeler. So it is natural that there is not
that much of the focus on how the model is actually stored. We can argue that while GUI
based approach might be convenient to some of the modelers it enforces greater vendor
lock-in and makes extensibility and maintainability of the model harder.

Pyomo model being larger in file size is mostly caused by the usage of a generic pur-
pose programing language Python as building base of Pyomo modeling system. Basic
Python language constructs are not optimized to a specific modeling domain as is in case
of AMPL and GAMS languages.

While comparing number of language primitives required to create a model AMPL
and Pyomo showed best results which allows us to predict that these modeling languages
might have a more gentle learning curve.

So we can conclude that in the context of reviewed algebraic modeling languages
AMPL allows to formulate an optimization problem in the shortest and potentially easiest
to learn way.

For performance benchmark, creation of an instance of the transportation problem
model defined in each of the algebraic modeling languages was measured. The process
was done in the following steps: 1) loading model instance from a problem definition
written in the native language of the modeling system; 2) exporting model instance to
MPS format; 3) measuring total execution time 4) investigating characteristics of an in-
stance model. Multiple iterations of this process were executed to measure the impact of
possible data caching and other improvements being used by the modeling system. Since
creators of AIMMS system did not respond to the request for an academic license we were
not able to include AIMMS in to the benchmark. Benchmark was executed under Windows
10 operating system and free licensed versions of the modeling systems.

Characteristics of the created model instances can be seen in the Table 2. We can
conclude that all of the modeling languages have created a model instance using same
amount of variables and constraints, however the definition of non zero elements is dif-

MII-DS-09P-18-1 October 2017 - 30 September 2021 8

ferent between GAMS and other modeling systems.

Table 2: Transport Problem Model Characteristics

Pyomo GAMS AMPL
Constraints 6 6 6
Non zeros 13 19 13
Variables 7 7 7

In the Table 3 model instance creation time measured in milliseconds is provided.
We can exhibit that AMPL showed significantly better results compared to others. This
allows to conclude that AMPL is the mostly optimized performance wise. On the other
hand, Pyomo coming in last is not a big surprise as it is build on top of interpreted pro-
gramming language Python which in itself adds significant overhead to model loading
process. We can also conclude that there is very little or none caching of previous runs
being done, since in none of the systems multiple consequent model instance creations
lead to a observable performance improvement.

Table 3: Model Instance Generation Time

1 10 100
Pyomo 720 7280 79600
GAMS 170 1730 16490
AMPL 30 220 2130

5 Conclusions

From the current research we can conclude that AMPL allows to formulate an optimization
problem in the shortest and potentially easiest way while also being the best performing
in simple model instance loading times. GAMS is a strong runner up and AIMMS can be
considered as being of it’s own class of modeling languages as it has taken a pure graph-
ical user interface based approach. Open source alternative Pyomo does not run that far
behind while limitations imposed by an interpreted general purpose programming lan-
guages it is built on top (Python) leads to the significant performance downsides.

In order to give a more detailed comparison and thoroughly examine characteristics
of algebraic modeling languages a more extensive benchmark involving much larger op-
timization problem models is needed. It would also be of a great benefit to analyze how
each of the modeling languages performs within an area of the specific type of optimiza-
tion problems (linear, non linear, global, mixed integer, quadratic, etc.). So a large and
extensive library of sample optimization problems for the analyzed algebraic modeling
languages is needed.

We have chosen GAMS Model Library [GAM18] as a reference for creating such a
sample optimization problem suite against which future research will be done. To build

MII-DS-09P-18-1 October 2017 - 30 September 2021 9

such a library automated scripts were created which convert each of the sample prob-
lems provided in the GAMS modeling library to a scalar model in the AMPL, GAMS and
Pyomo formats. Characteristics of a sample problem models (number of equations, vari-
ables, discrete variables, non zero elements, non zero non linear elements) are automati-
cally extracted and noted. Sample problems are also grouped into optimization problem
types. In the future work a benchmark using created optimization problem library will
be performed to investigate how each of the modeling languages handles optimization
problems of different sizes and types. This should give us a solid background to draw
final conclusions about each of the algebraic modeling languages and possible future im-
provements to be included in the building of an open source optimization system.

References

[Dan63] George B Dantzig. The Classical Transportation Problem. In Linear Program-
ming and Extensions, pages 299–315. Princeton University Press, 1963.

[FG02] Emmanuel Fragniere and Jacek Gondzio. Optimization modeling languages.
Handbook of Applied Optimization, pages 993–1007, 2002.

[Fou13] Robert Fourer. Algebraic Modeling Languages for Optimization. In Encyclope-
dia of Operations Research and Management Science, pages 43–51. Springer, 2013.

[Fou17a] Robert Fourer. Linear Programming: Software Survey. OR/MS Today, 44(3),
June 2017.

[Fou17b] Robert Fourer. Linear Programming Software Survey. https:

//www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/

Linear-Programming-Software-Survey, 2017. (Online; accessed 2018-08-24).

[GAM18] GAMS Development Corporation. GAMS Model Library. https://www.gams.
com/latest/gamslib_ml/libhtml/index.html, 2018. (Online; accessed 2018-
08-07).

[H9̈9] Tony Hürlimann. Mathematical Modeling and Optimization, volume 31 of Applied
Optimization. Springer US, Boston, MA, 1999.

[HWW11] William E. Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo: Model-
ing and solving mathematical programs in Python. Mathematical Programming
Computation, 3(3):219–260, September 2011.

[INF12] INFORMS. INFORMS Impact Prize 2012. https://www.informs.org/

About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-2012,
2012. (Online; accessed 2018-08-24).

MII-DS-09P-18-1 October 2017 - 30 September 2021 10

https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Linear-Programming-Software-Survey
https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Linear-Programming-Software-Survey
https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Linear-Programming-Software-Survey
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://www.informs.org/About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-2012
https://www.informs.org/About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-2012

[KPH04] Josef Kallrath, Panos M. Pardalos, and Donald W. Hearn, editors. Model-
ing Languages in Mathematical Optimization, volume 88 of Applied Optimization.
Springer US, Boston, MA, 2004.

[LL14] Lopaka Lee and Louis Luangkesorn. GNU Linear Programming Kit. https://
github.com/cran/glpk/blob/master/inst/doc/transport.mod, 2014. (On-
line; accessed 2018-08-07).

[MIP11] MIPLIB Developers. MPS input format. http://miplib.zib.de/miplib3/

mps_format.txt, 2011. (Online; accessed 2018-08-07).

[NEO18] NEOS Server. Neos Solver Access Statistics. https://neos-server.org/neos/
report.html, 2018. (Online; accessed 2018-03-25).

[Pyo18] Pyomo. Pyomo Gallery. https://github.com/Pyomo/PyomoGallery, 2018.
(Online; accessed 2018-08-07).

[Ros18] Richard E. Rosenthal. A GAMS Tutorial. https://www.gams.com/latest/

docs/UG_Tutorial.html, 2018. (Online; accessed 2018-08-07).

[Wik18] Wikipedia contributors. AIMMS — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=AIMMS&oldid=836119826,
2018. (Online; accessed 2018-08-08).

MII-DS-09P-18-1 October 2017 - 30 September 2021 11

https://github.com/cran/glpk/blob/master/inst/doc/transport.mod
https://github.com/cran/glpk/blob/master/inst/doc/transport.mod
http://miplib.zib.de/miplib3/mps_format.txt
http://miplib.zib.de/miplib3/mps_format.txt
https://neos-server.org/neos/report.html
https://neos-server.org/neos/report.html
https://github.com/Pyomo/PyomoGallery
https://www.gams.com/latest/docs/UG_Tutorial.html
https://www.gams.com/latest/docs/UG_Tutorial.html
https://en.wikipedia.org/w/index.php?title=AIMMS&oldid=836119826

	Introduction
	Algebraic modeling languages
	Review criteria
	Summary of findings
	Conclusions
	References

