

Vilnius University

Institute of Data Science and Digital Technologies

Cognitive Computing Group

PhD of Science in Informatics – 09P

Research subject:

Deep Learning for Image Recognition

Research Supervisor:

Prof. Dr. Olga Kurasova

Research consultant:

Dr. Doc. Ernestas Filatovas

Convolutional Neural Networks for object detection in

optical satellite imagery

Povilas Gudzius

2018 10 22

 2

Table of Contents

Research aim and objectives ... 3

Research tasks ... 3

Satellite imagery specifications compared to ImageNet .. 4

Why Convolutional Neural Networks? ... 5

CNN overview ... 6

Practical experiment: “U-net architecture for semantic segmentation” 13

Experimen findings ... 16

References .. 24

 3

Research aim

Design an accurate Convolutional Neural Network (CNN) architecture for object

detection in satellite imagery.

Research objectives

The objective of this research is to: explore and develop advanced methodologies of

image recognition in satellite imagery such as Convolutional Neural networks to derive

a computationally efficient way to process large amounts of pixels-based data

collected from high-resolution optical satellites and detect objects with >90% accuracy.

Practical application: Financial services industry. Investment decisions in the financial

services industry requires precise, accurate, high quality and timely data. Remote

sensing data such as satellite imagery can provide an extremely powerful material

information supporting investment decisions. Number of objects (e.g. vehicles) per

given Area of Interest (AOI) can become financially material information.

Research tasks

1. Upon the full academic literature review, explore the list of conventional

Convolutional Neural Network architectures applied in object recognition of ImageNet;

2. Conduct a comparison between architectures and define the significant features of

each architecture with a particular relevance to satellite imagery dataset;

3. Based on this analysis suggest two most appropriate CNN architectures for object

detection and segmentation problems in optical satellite imagery;

4. Build the selected CNN architectures in Python to be trained on the Satellite imagery

dataset using GPU’s on Google Cloud Platform environment;

5. Conduct a practical real-life experiment of the selected CNN networks and conclude

with the architecture most suitable for object detection in satellite imagery.

 4

Satellite imagery

Satellite imagery is produced by commercial, public and private satellites operating in

2,000km above the Earth at the Lower Earth Orbit (LEO). Key differences and

implications between using satellite imagery compared to the on-the-ground imagery

are: wavelength, perspective, resolution and availability. All of these factors represent

and important challenges when trying to adapt existing object recognition

methodologies used in ImageNet to this particular type of data. We provide further

details on those challenges and limitations below. We will also consider them when

evaluating an optimal CNN architecture of this problem.

Unlike the other computer vision problems where you are given RGB or grayscale

images, when processing satellite data most frequently we have to deal with the

satellite data that is given both in visual and lower frequency regions. Wavelength

frequency (RGB and M Band) and non-traditional data set is yet to be fully utilized via

the Machine Learning techniques. Instead of just collecting RGB images we are able

to use RGB, M Band and A band range of waves to our training sets as per Figure 1

[13].

On one hand it carries more information, on another it is not really obvious how to use

this extra data properly. This unique dataset property might represent one of the

research challenges/problems for further investigation.

Figure 1 – Rage of multispectral bands that can be acquired by the satellite [13]

 5

Figure below gives four examples of the data range that can be adopted for our data

and training set: RGB, P-Band, M-Band and A-band. We are yet to explore the most

efficient set of algorithms that can take a full advantage of this unique imagery

properties to maximise the accuracy of classification exercise [14]. It’s a rich multi-

dimensional training set:

Figure 2 – example of spectral bands used in object recognition

2) Perspective - that means that the perspective images are always from the top-down

perspective and object parameters on the ground will always be subject to how they

look from above [14]. Figure 3 illustrates the point visually:

Figure 3 – Object of ImageNet vs Satellite imagery

3) Resolution of satellite imagery varies from 5m per pixel to 30cm per pixel (ultra-

high-resolution imagery), compared to ImageNet where you have millions of pixels

 6

within 30cm range, the parameters of deep learning models and training of them are

also impacted [B16];

Machine learning methods

As per table below, we can see that CNN methods are providing a promising >90%

accuracy in multispectral optical satellite imagery already [32]. Experiment conducted

by Langvist et al has investigated 9 different conventional computer vision techniques

and applied those models for satellite imagery data sate in particular. As we can see

from the example below (Figure 6), only OBIA, Knowledge-based method and

Single/Multi CNN’s were methods that provided >90% accuracy.

Figure 6 - Comparison table of classification accuracy (%) compared to other methods [32]:

This accuracy, however, is presented for the large objects such as buildings, roads,

vegetation fields and water reservoirs. Additionally, considering the fact that this

experiment conducted by Langvist was done using low resolution satellite imagery

(3m per pixel) and our objective of this research will be using much higher-resolution,

this provides motivation that CNN’s might also be an appropriate deep learning

methodology to detect smaller objects is high-resolution satellite imagery (30cm) such

as vehicles, ships or planes. We further continue our analysis focusing purely on

Convolutional Neural Networks architectures in search for suitable architectures and

topologies for object detection in satellite imagery.

 7

Convolutional Neural Networks

Convolutional neural networks were first proposed in 1980 by Fukushima [32] (called

NeoCognitron) and then refined by LeCun [32]. Convolutional networks [B3], also

known as convolutional neural networks from or CNNs, are a specialized kind of neural

network for processing data that has a known grid-like topology. Examples include

time-series data, which can be thought of as a 1-D grid taking samples at regular time

intervals, and image data, which can be thought of as a 2-D grid of pixels.

Convolutional networks have been tremendously successful in practical applications.

The name “convolutional neural network” indicates that the network employs a

mathematical linear operation called convolution. Convolution operation is the dot

product of two vectors in the given matrix of number, in our case it’s pixel brightness.

If vectors a = [a1, a2, …, an] and b = [b1, b2, …, bn] the convolution can be defined as

[B4]:

Convolutional neural networks are simply neural networks that use convolution in

place of general matrix multiplication in at least one of their layers (B3). The above

computation is applied to the matrix of pixels (convolution filter) and the output is

delivered to the “destination pixel” as illustrated in the Figure 8 below:

Figure 8 – illustration of convolution operation

 8

Recently, CNNs have been shown to be successful in object recognition [32] object

detection, scene parsing [33] and scene classification [33] tasks. For the purpose of

this research we will predominantly focus on CNN’s application to object recognition

problems. We will then further investigate its applicability to a particular type of dataset:

optical satellite imagery.

Convolutional Neural Network (CNN) architecture

Neurons within the CNN are comprised of axon from neuron (input), activation

function and output axon:

Figure 9 – Neural in the CNNN [B8]

The main difference between Convolutional Neural Networks and basic Neural

Network is that neurons between layers are not fully connected. In the architecture of

CNN, neurons are limited to their “receptive fields” also called Kernel or Filter. As the

name suggests, the C layer computes a spatial convolution of the outputs of the C-

1’th layer (in this example it is an input layer):

Figure 10 – Kernel K1 and K2 convoluting an output to C1 and C2 respectively [B4]

 9

Kernel K1 and K2 are operating a convolution operation of their respective “receptive

fields” and providing an output to the next layer, C1 and C2. Convolution operation in

CNN is defined as “dot product” of the matrix of values imported from Kernel’s

receptive field of the input layer [B3]. All neurons of the convolutional layer share the

identical feature matrix (or weights, or filter, or Kernel) and are of an identical

dimensionality.

These constraints reduce sharply the number of parameters to learn and therefore

enables CNN’s to extract features in a significantly more computationally efficient

way. In addition to that, another key advantage of CNN-based algorithms is that they

do not require prior manual feature extraction, thus resulting in higher generalization

capabilities.

To illustrate the parameters of CNN architecture we are using the example diagram

in the Figure 1 below. In this example we are processing 227x227x3 dimensional

matrix of pixels from RGB image using Convolutional Neural Network (CNN). This

network consists of five convolutional layers, each followed by a pooling layer and

three fully connected layers:

Fig. 1. The CaffeNet architecture used in this work. The boxes show the size of each feature layer

and, for fully connected layers, the size of the output. Most receptive fields are 3×3, maxpool layers

are not shown. [B24]

Traditional Convolutional Neural Network components: Input layer, Convolutional

blocks for feature extraction (Conv, ReLU, Pool), Classification (Flatten, Fully

connected, Softmax):

 10

1) Convolutional layers: are the most important ones. They compute the convolution

of the input image with the weights of the network. Neurons in the first hidden layer

view only a small image window, and learn low-level features. Those in deeper

layers view (indirectly) larger portions of the image, and are able to learn more

expressive features by combining low-level ones. Each layer is characterized by a

few hyper-parameters: the number of filters to learn, their spatial support, the stride

between different windows and an optional zero-padding which controls the size of

the layer output.

This formula can be directly applied to our kernel operation using the Convolution

Theorem ([B4]:

Figure 14 – Convolution theorem formula [B4]

This equation is the 2D discrete convolution theorem for discrete image data.

Here x denotes a convolution operation, F denotes the Fourier transform, F^(-1) the

inverse Fourier transform, and 2p^(-2) is a normalization constant.

2) Pooling layers: reduce the size of the input layer through some local non-linear

operations, for example maxpooling max(), so as to reduce the number of

parameters to learn and provide some translation invariance. The most relevant

hyper-parameters are the support of the pooling window and the stride between

different windows.

Max pooling will take the most significant parts of our receptive field matrix which will

narrow down the matrix and reduce computational complexity of our model.

 11

3) Normalization (or activation) layers: inspired by inhibition schemes present in the

real neurons of the brain, aim at improving generalization. Examples of activation

functions are: Sigmoid, tanh, ReLu, Leaky ReLU, Maxout, ELU. Activation functions

allow our model to learn non-linear functions

4) Fully-connected layers: are typically used as the last few layers of the network. By

removing constraints, they can better summarize the information conveyed by lower-

level layers in view of the final decision. Despite full connectivity, their complexity is

still affordable thanks to the previous size- reducing layers.

Hyperparameters of CNN to tune your network: (good Andrew Karpathy –

working content on CNN hyperparameters)

 Activation functions (Sigmoid, tanh, ReLu, Leaky ReLU, Maxout, ELU)

 Number of features

 Number of Neurons

 Window Stride pace (1-pixel, 2-pixel stride)

 Filter configuration (size, dimensions, number of filters)

 Zero padding (how big on corners of the image, or mirror padding, other

padding)

 Pooling (alternative to Max pooling, other pooling)

 Lully connected layer setup (Softmax/Sigmoid/derivative)

 Regularization Strength, Learning rate

 Weight initialization

 Optimisation: (SGD, SGD+momentum, Adagrad, RMSprop, Adam – all have

learning rate as a hyperparameter, step-up-decay

 12

U-net architecture experiment:

“Semantic Segmentation in Satellite imagery of light vehicles using U-net”

Following from the review of the most commonly used CNN architectures, we have

derived that Semantic Segmentation is the appropriate methodology to apply to our

research problem. Given the limitations and specific parameters of satellite imagery

[B4], segmentation task will allow us to detect vehicles in 30cm resolution by

deploying polygon mask layer on top of the object within the given coordinates.

Objectives of the experiment:

1) Replicate the theoretical design of the structure of the U-net network as described

in the “U-net” section under “CNN architectures”;

2) Build a U-net Convolutional Neural Neutwork in Python using machine learning

libraries such as Keras, Pytorch, Tensorflow, Pandas, Scipy and Numpy;

3) Setup the Google Cloud Platform “Virtual Machine” GPU’s to be able to train,

optimize and validate our models;

4) Acquire a publicly available high-resolution satellite imagery and using QGIS

geospatial data management software manually label at least 20,000 polygons of

objects (light vehicles/cars) for training and validation;

5) Train the U-net on the RGB band training set and test various hyper-parameters

to discover the most accurate configuration. Conduct experiments with

hyperparameters such as: epochs, training size, batch size and activation function;

6) Use Jaccard metric to measure the precise pixel accuracy of real-life object

polygons vs the predicted ones. Additionally, use the manual object count metric to

assess the object count accuracy;

7) Analyze, compare and conclude the findings of the experiments.

 13

Step 1 - Replicate the theoretical design of the structure of the U-net network as

described in the “U-net” section under “CNN architectures”

Our fully convolutional model is based on the U-Net architectures [B14], where low-

level feature maps are combined with higher-level ones, which enables precise

localization. This type of network architecture was especially designed to effectively

solve image segmentation problems. Due to this reason this architecture has been

chosen as a default architecture for our research problem. Visual representation of

the structure is depicted in the Figure below:

Figure 17 – Visual representation of a standard U-net architecture [B12]

Typical convolutional neural network architecture involves increasing the number of

feature maps (channels) with each max pooling operation. In our network we

decided to keep a constant number of 64 feature maps throughout the network. This

choice was motivated by two observations [B14]:

1) Firstly, we can allow the network to lose some information after the down-

sampling layer because the model has access to low level features in the up-

sampling path;

 14

2) Secondly, in satellite images there is no concept of depth or high-level 3D

objects to understand, so a large number of feature maps in higher layers

may not be critical for good performance.

In the tables below, we provide the breakdown of created network architecture and

breakdown per layer:

Figure 8: Layers description Figure 9: U-net architecture

As per tables above, system architecture is pretty straightforward with a standard

components such as CONV, RELU, MaxPool, CONCAT and SIGMOID activation.

 15

STEP 2 - Build a U-net Convolutional Neural Neutwork in Python using machine

learning libraries such as Keras, Pytorch, Tensorflow, Pandas, Scipy and Numpy

In order to be able to experiment with various CNN architectures and hyperparameters

we had to build our own U-net in practice. As a starting point we have used the U-net

framework from Kaggle competition “DSTL feature detection” [B15] and then

customized the U-net to our specific requirements. Libraries on Python with

TensorFlow backend deployed: Keras, Pylab, Numpy, Pandas, Sklearn and Scipy:

Figure 18: Machine learning libraries, Jupyter Notebook screenshot

Figure 18: Code of the U-net layers, Jupyter Notebook screenshot

 16

STEP 3 - Setup the Google Cloud Platform GPU’s on the Virtual Machine to be able

to train, optimize and validate our models

STEP 4 - Acquire a publicly available high-resolution satellite imagery and using

QGIS geospatial data management software manually label at least 20,000 polygons

of objects (light vehicles/cars) for training and validation

STEP 5 - Train the U-net on QGIS training set and test various hyper-parameters

In order to find the right architecture and configuration of the U-net at total number of

17 experiments were conducted applying various combinations of hyperparameters.

Further details of the experiments’ findings are provided in the “Step 7” section on

this paper. Purpose of the experiments were to test the accuracy of the prediction by

re-adjusting the configuration of hyperparameters below:

 Batch size

 Pixel window mosaic “ISZ”

 Number of Epochs

 Training and Validation size

 Activation functions: ReLu vs LeakyRelu

 Gradient methods (e.g. Adam)

 17

Figure 28: Screenshot of the python code from our test Jupyter Notebook framework

STEP 6 - Use Jaccard metric to measure the precise pixel accuracy of real-life object

polygons vs the predicted ones. Additionally, use the manual object count metric to

assess the object count accuracy.

The prediction for vehicle recognition was evaluated independently using Average

Jaccard Index (also known in literature as Intersection-over-Union). The Jaccard index

[B17] is a measure of overlap or similarity between two contour areas, and is defined

as:

Where J is the Jaccard index, A and B are two overlapping contour areas [B16]

Figure 29 - visualization of Jaccard metric [B16].

Jaccard metric is a great measure to access the precise accuracy of the semantic

segmentation-based methods for object detection. It is, however, predominantly

utilized in the medical applications [B12] where for example cell types are to be

determined in the imagery generated by a microscope [B12].

 18

Limitation 1: Jaccard metric allows to examine the prices accuracy of prediction and

we use it for the purpose of fine-tuning our U-net. However, the end objective is not to

match pixels perfectly, but is simply to detect an object. Jaccard metric might be too

sensitive in our case. We simply need to intersect more than 51% of pixels of a single

polygon to detect an object.

Limitation 2: polygons in the training set have been measured manually and might not

perfectly fit the contours of an object. We estimate at least 20% of pixels to be

inaccurately marked in the training as a human-error and therefore even predicted

accurately might provide lower accuracy rate of the network.

In order to address these two limitations of Jaccard metric we will generate a manual

"Number of cars per given Area of Interest (AOI)" index as best real-life approximation

of our U-net model accuracy. We've selected a random sample of satellite imagery

with 288 objects and conducted a manual car count as per below:

Figure 29: Predicted image (left), training set (right), screenshot from our Jypyter Notebook random
imagery output after the U-net with ~64% accuracy was trained

STEP 7 - Analyze, compare and conclude the findings of the experiment

Total number of 17 experiments where conducted. Each experiment consisted of

training the neaural network with exactly the same training set data and fine-tuning its

configuration, and hyperparameters. Most significant findings are analyzed below:

 19

Figure (table) 27: example matrix of U-nets experiments and findings

Finding number 1: Winning U-net. the highest Jaccard metric validation accuracy

reached was 63.90% using 50 number of epochs for the backpropagation and the

training set. Winning U-net parameters: Batch_size: 128, pixel frame: 160x160, 2%

polygon qualification to the training set, ReLU as an activation function at each of the

Conv layer, 50 epochs of training:

Figure 28: Winning U-net configuration

Finding number 2: Real-life accuracy. As discussed in “Step 6” of the experiment,

Jaccard metric is not the most representative metric give our research problem. After

manual object count examination, we have established that 63.90% Jaccard metric

accuracy is equivalent to an impressive 94.09% of object count measure:

SpaceNet 30cm high-res optical satellite imagery (RGB) 1.5km2

Number of manually market car polygons AOI 288

Number of objects that U-net model predicted accurately 271

Number of objects were detected 17

Number of objects detected yet nor marked in the training set 28

Model accuracy 94.09%

Jaccard Index of best performed U-net 63.90%

Figure (table): results of “Manual Object Count Examination”

There is no study that examines the human error in satellite imagery object

classification/detection task, however for the indicative purposes we can compare with

the study conducted by Russakovsky in 2014 [B9] which concludes that human-level

accuracy/estimated human classification error is 5.1% by a trained human annotator

in ImageNet classification. That results in 94.9% accuracy. Even though ImageNet

 20

dataset classification task, by nature is more complex, we could state that our

designed U-net CNN architecture provides a close-to-human accuracy for object count

problems.

Finding number 3: Above human performance. Interestingly enough, in addition to

finding number 2, we can argue that our U-net architecture is some cases provided

“better-than human accuracy” since it has detected 28 objects within the given manual

test sample that were not discovered by human annotator. Meaning that vehicles that

were partially covered by a tree, or a shadow or otherwise hard to detect in satellite

imagery by human eye – were in fact detected by our algorithm. Illustrated example:

Figure 29: Predicted image (left), training set (right), screenshot from our Jypyter Notebook

Finding number 4: Epochs. We have trained multiple U-nets with the similar

configuration using different number of epochs to establish what is the optimal amount

between the required number of epochs and accuracy/loss function:

Figure 29: Epochs vs accuracy curve of a winning U-net architecture training process (TensorBoard)

 21

We can see that beyond 25 epochs for this network, the accuracy rate curve starts

plateau and further training has only incremental improvement to accuracy rate.

Also, less efficient network was trained for 150 epochs. As we can see from the figure

below it has never reached the accuracy of our winning network configuration,

however, it keeps on upgrading accuracy rate up until 60th epoch, beyond that point

model starts to overfit. To conclude, 1) efficient networks are able to train faster and

2) an optimal number of two-way backpropagations is to be conducted between 25-

50 times for network to be trained if considering computational restrains.

Figure: Experiment results visualization via TensorBoard, (top curve – our winning U-net architecture,

bottom curve an alternative less effective architecture (reaching a max of 61.72% Jaccard coefficient

after 150 epochs).

 22

Finding number 5: Batch_size. Significant increase in the overload of the batch size

(size of training batch) gives only an incremental improvement in the accuracy rate.

As per our experiments 12 and 13 illustrated below figure it accrued 47.99% for 256

images per training batch vs 51.49% for 512 per training batch:

Figure: Table of training batch sizes experiments

Finding number 7: Pixel_frame. The size of the initial cropped mosaic of the satellite

imagery matters. Conceptually speaking the larger the frame (in pixels) the more

contextual information the feature map can absorb for a single object (or a part of it).

It comes at a heavy computational cost and the maximum pixel matrix we were able

to run on our GPU with 30GB of RAM was 160x160:

Figure: Table of training pixel_frame experiments

160x160 configuration was also a part of the winning U-net architecture. This also

suggests that for further experimentation, there might be a potential to further improve

the accuracy of the model by expanding the pixel_frame (“ISZ”mosaic size) since it

provides the freature maps with more of the contextual information that is valuable

especially at the first derivative features. For this we would have to upgrade to a more

powerful GCP computational infrastructure.

 23

Finding number 6: Speed. The positive aspect of relatively small pixel_frame

however, is speed. As per experiment 12 illustrated below (batch size: 256, pixel

frame: 80) it took only 18 epochs to reach 49.63% Jaccard coefficient (as well as took

at least 4 times less time (apprx. 35s) to backpropagate for each epoch compared to

a model with 160x160 pixel frame:

Figure: Experiment 12, accuracy improvement during training

This might be a useful piece of finding when examining the optimal U-net architecture

between computational cost, speed and accuracy. Particularly relevant metrics when

looking at its applications to the financial markets.

Final conclusion:

The most efficient network for our research problem is the NET. It provides the

accuracy and effectively reaches close to human 94% accuracy and sometimes

exceeds it.

 24

--

Bibliography

[B1] LeCun, Y. (1989). Generalization and network design strategies. Technical

Report, CRG-TR-89-4, University of Toronto. 326, 345

[B2] LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I.,

Henderson, D., Howard, R. E., and Hubbard, W. (1989). Handwritten digit recognition:

Applications of neural network chips and automatic learning. IEEE Communications

Magazine, 27(11), 41–46. 362

[B3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT

Press, 2016, 800 pp, ISBN: 0262035618, Convolutional Networks, pp.330

[B4] - S. Lipschutz; M. Lipson (2009). Linear Algebra (Schaum’s Outlines) (4th ed.).

McGraw Hill. ISBN 978-0-07-154352-1.

[B5] - A Krizhevsky, I Sutskever, GE Hinton (2012), “Imagenet classification with deep

convolutional neural networks”. Advances in neural information processing systems,

1097-1105

[B6] - K Simonyan, A Zisserman (2014), “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” arXiv preprint arXiv: 1409.1556

[B7] - C Szegedy, W Liu, Y Jia, P Sermanet, S Reed (2014), “Going deeper with

convolutions”

[B8] - Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (2015), “Deep Residual

Learning for Image Recognition”

[B9] – O Russakovsky, D Hao S Jonathan K/ Sanjee, S. Sean, M. Zhiheng, H. Andrej,

A. Khosla, M.Bernstein, C. BergLi Fei-Fei, “ImageNet Large scale visual recognition

challenge”

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-154352-1
https://arxiv.org/search/cs?searchtype=author&query=He%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Ren%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sun%2C+J

 25

[B10] - Alfredo Canziani, Adam Paszke, Eugenio Culurciello (2017) An Analysis of

Deep Neural Network Models for Practical Application,

[B11] - Long, Jonathan, Evan Shelhamer, and Trevor Darrell. (2015) ”Fully

convolutional networks for semantic segmen- tation.” Proceedings of the IEEE

Conference on Com- puter Vision and Pattern Recognition

[B12] - Ronneberger, Olaf, Philipp Fischer and Thomas Brox (2015) ”U-net:

Convolutional networks for biomedical image segmentation.” International Conference

on Medical Image Computing and Computer-Assisted Intervention. Springer

International Publishing

[B13] - Sabour, Sara, Frosst, Nicholas, and Hinton, Geoffrey E. Dynamic routing

between capsules. In Advances in Neural Information Processing Systems, pp. 3857–

3867, 2017.

[B14] - Dilin Wang, Qiang Liu (2017), “AN OPTIMIZATION VIEW ON DYNAMIC

ROUTING BE- TWEEN CAPSULES” Department of Computer Science, University of

Texas at Austin

[B15] https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection

[B16] https://registry.opendata.aws/spacenet/

[B17] - Jaccard, P. 1912. The distribution of the flora in the alpine zone. New

Phytologist 11 37–50.

[B18] Längkvist, Martin, et al. "Classification and segmentation of satellite

orthoimagery using convolutional neural networks." Remote Sensing 8.4 (2016): 329

[B19] Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land Use Classification

in Remote Sensing Images by Convolutional Neural Networks; (2016)  

https://arxiv.org/search/cs?searchtype=author&query=Canziani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Paszke%2C+A
https://registry.opendata.aws/spacenet/

 26

[B20] Castelluccio, Marco, et al. "Land use classification in remote sensing images by

convolutional neural networks." (2015).

[B21] Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil in the

details: Delving deep into convolutional nets,” in British Machine Vision Conference,

2014

[B22] Wang, Haipeng, et al. "Application of deep-learning algorithms to MSTAR data."

Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International.

IEEE, 2015.

[B23] Abdullah, Qassim, et al. "New Standard for New Era: Overview of the 2015

ASPRS Positional Accuracy Standards for Digital Geospatial Data." Photogrammetric

Engineering & Remote Sensing 81.3 (2015): 173-176.

[B24] Längkvist, Martin, et al. "Classification and segmentation of satellite

orthoimagery using convolutional neural networks." Remote Sensing 8.4 (2016): 329.

