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Abstract

We consider a box-constrained global optimization problem with a Lipschitz-continuous
objective function and an unknown Lipschitz constant. The well known derivative-free
global-search DIRECT (DIvide a hyper-RECTangle) algorithm performs well solving such
problems. However, the efficiency of the DIRECT algorithm deteriorates on problems with
many local optima and when the solution with high accuracy is required. To overcome
these difficulties different regimes of global and local search are introduced or the algo-
rithm is combined with local optimization. In first part we investigate a different direc-
tion of improvement of the DIRECT algorithm and propose a new strategy for the selection
of potentially optimal rectangles, what does not require any additional parameters or lo-
cal search subroutines. An extensive experimental investigation reveals the effectiveness
of the proposed enhancements.

Keywords: Global optimization, DIRECT-type algorithms, Derivative-free optimiza-
tion
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1 Introduction

We consider a box-constrained global optimization problem of the form

min
x∈D

f(x) (1)

where f : Rn → R denotes the objective function and the feasible region is an n-
dimensional hyper-rectangle D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}.
We also assume, that the objective function f(x) is Lipschitz-continuous, but can be
non-linear, non-differentiable, non-convex, and multi-modal. DIRECT is a popular
partitioning-based Lipschitz optimization [HPT95, PŽ07, PŽ09, PŽ14, PŽG10, Pin96, SS00]
algorithm extending ideas of Piyavskii [Piy67] (independently rediscovered also by Shu-
bert [Shu72]) algorithm to multidimensional derivative-free optimization. The DIRECT

algorithm [JPS93] seeks a global optimum by partitioning potentially optimal (the most
promising) hyper-rectangles and evaluating the objective function at the centers of these
hyper-rectangles. Simplicity and efficiency of the DIRECT algorithm attracted consider-
able research interest. Although most of DIRECT-type algorithms use hyper-rectangular
partitions [GK01,LC14,LZY15,LLP10a,LLP10b], simplicial partitions (DISIMPL algorithm)
[PSKŽ14, PŽ13, PŽ14] have several advantages [PŽ16]. Central sampling of the objec-
tive function can be changed to diagonal approach sampling at the endpoints of diago-
nal [KPS03, SK06, SK08, SK17]. A trisection of hyper-rectangles is usually used to reuse
the objective function values at the center or endpoints of diagonals in descendant subre-
gions. However, a bisection can ensure better shapes of hyper-rectangles with a smaller
variety of sizes in different dimensions than trisection which produces sizes differing by
three times, but a specific sampling strategy is necessary to enable the reuse of sample
points [PCŽ16].

2 Improved scheme for selection of potentially optimal hyper-
rectangles in DIRECT

The original DIRECT algorithm has two main weaknesses [LYZZ17,LLP16,PSKŽ14,SK06].
First, on problems with many local minima, DIRECT sometimes spends an excessive num-
ber of function evaluations exploring suboptimal local minima, thereby delaying the dis-
covery of the global minimum. To address this issue, a two-phase globally-biased tech-
nique was proposed [PSKŽ14, SK06]. Second, DIRECT usually gets close to the global
optimum quickly, but it can be slow to converge with a high accuracy. To overcome the
latter issue, a two-phase locally-biased technique [LZY15] or hybrid versions of DIRECT-
type algorithms enriched with the use of local searches [LLP10a,LLP16] can be employed.
In this section, we propose an alternative strategy to overcome both drawbacks without
the need to use local solvers or use two-phase scheme which requires the introduction of
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new parameters.

2.1 The selection of the most promising hyper-rectangles

The essential step in DIRECT-type algorithms is identification of potentially optimal (the
most promising) hyper-rectangles of the current partition, which at the iteration k is de-
fined as

Pk = {Di
k : i ∈ Ik},

where Di
k = [ai,bi] = {x ∈ Rn : 0 ≤ aij ≤ xj ≤ bij ≤ 1, j = 1, . . . , n, ∀i ∈ Ik} and Ik

is the index set identifying the current partition Pk. The next partition Pk+1 is obtained
after the subdivision of the selected potentially optimal hyper-rectangles from the current
partition Pk.

2.1.1 Potentially optimal hyper-rectangles in the original DIRECT algorithm

To make the selection of potentially optimal hyper-rectangles in the future iterations,
DIRECT assesses the goodness based on the lower bound estimates for the objective func-
tion f(x) over each hyper-rectangle Di

k. The requirement of potential optimality is stated
formally in Definition 1.

Definition 1 (Potentially optimal hyper-rectangle) Let ci denote the center sampling point
and δi be a measure (distance, size) of the hyper-rectangleDi

k. Let ε > 0 be a positive constant and
fmin be the best currently known value of the objective function. A hyper-rectangle Dj

k, j ∈ Ik is
said to be potentially optimal if there exists some rate-of-change (Lipschitz) constant L̃ > 0 such
that

f(cj)− L̃δj ≤ f(ci)− L̃δi, ∀i ∈ Ik, (2)

f(cj)− L̃δj ≤ fmin − ε|fmin|, (3)

where the measure of the hyper-rectangle is

δi =
1

2
‖bi − ai‖2. (4)

The hyper-rectangle Dj
k is potentially optimal if the lower Lipschitz bound for the

objective function computed by the left-hand side of (2) is the smallest one with some
positive constant L̃ among the hyper-rectangles of the current partition Pk. In (3) the
parameter ε is used to protect from an excessive refinement of the local minima [JPS93,
PSKŽ14].
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2.1.2 Selection of the most promising hyper-rectangles in other DIRECT-type algo-
rithms

In the original DIRECT algorithm, the size of a hyper-rectangle is measured by the Eu-
clidean distance from its center to a corner or equivalently by a half length of a diagonal
(see (4)). In DIRECT-l [GK01], the measure of a hyper-rectangle is instead evaluated by
the length of its longest side. Such a measure corresponds to the L∞-norm and allows
the DIRECT-l algorithm to group more hyper-rectangles with the same measure. Thus,
there are fewer distinct measures and therefore, less potentially optimal hyper-rectangles
are selected. Moreover, in DIRECT-l at most one hyper-rectangle from each group is se-
lected, even if there are more than one potentially optimal hyper-rectangle in the same
group. This allows reduction of the number of divisions within a group. The results
presented in [GK01] and extended in [PSKŽ14] suggest that DIRECT-l performs well for
lower dimensional problems, which do not have too many local and global minima.

The main principle of an aggressive version of DIRECT [BWG+00] is to select and di-
vide a hyper-rectangle of every measure (δi) in each iteration. The aggressive version
requires many more function evaluations than the other versions of DIRECT since the cri-
teria for choosing hyper-rectangles to be divided have been relaxed. Although this ap-
proach does not appear to be favorable for simple test problems, more difficult problems
may be easier solved by this strategy on a large parallel supercomputer [BWG+00].

In the PLOR algorithm [MPR+17], the set of all Lipschitz constants (herewith the set
of potentially optimal hyper-rectangles) is reduced to just two: the maximal and the min-
imal ones. In such a way the PLOR approach is independent of any user-defined parame-
ters and balances equally local and global search during the optimization process.

A two-phase globally [PSKŽ14, SK06] and locally-biased [LZY15] algorithms at one
of the phases work in the same as the original DIRECT algorithm, i.e., during the selection
procedure considers all hyper-rectangles from the current partition. However, in the sec-
ond phase, they limit the selection of potentially optimal hyper-rectangles based on their
measures. The globally-biased versions constrain themselves to the larger subregions
(primary addressing the first weakness), while the locally-biased version constrains itself
to the smaller ones and in such a way addresses the second weakness of DIRECT-type
algorithms.

2.2 Extended set of potentially optimal hyper-rectangles

In this section, we present a new way to identify the extended set of potentially optimal
hyper-rectangles. Using a new two-step based strategy, we enlarge the set of the best
hyper-rectangles by adding more medium-measured hyper-rectangles with the smallest
function value at their centers and additionally, closest to the current minimum point.
The first extension forces the algorithm to work more globally (compared to the selection
procedure used in DIRECT), while the second part assures faster and broader examination
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around the current minimum point. In such way, we address both weaknesses of DIRECT
staying in the same algorithmic framework. Let’s state it formally.

Let Lk be the set of all different indices at the current partition Pk, corresponding
to the groups of hyper-rectangles having the same measure (δk). The minimum value
lmin
k ∈ Lk corresponds to the group of hyper-rectangles having the smallest measure δmin

k .
The maximum value lmax

k of Lk corresponds to the group of hyper-rectangles having the
largest measures δmax

k , i. e., lmax
k = max{Lk} < ∞. Finally, let lik ∈ Lk be the index of

the group the hyper-rectangle Di
k belongs to. Having this, in Definitions 2 and 3 we for-

malize new strategies for identification of an extended set of potentially optimal hyper-
rectangles from the current partition Pk.

Definition 2 (Enhancing the global search)

• Step 1 Find an index j ∈ Ik and a corresponding hyper-rectangle Dj
k, such that

Dj
k = arg max

j
{ljk : j = arg min

i∈Ik: lmin
k ≤lik≤l

max
k

{f(ci)}}. (5)

• Step 2 Set lmin
k = ljk + 1. If ljk ≤ l

max
k repeat from Step 1; otherwise terminate.

At Step 1, the hyper-rectangle containing the minimum point (xmin) is selected. If there
are several hyper-rectangles with the same lowest objective value f(ci), the preference is
given to hyper-rectangles with the largest ljk value, i.e., a bigger size measure. After this,
in Step 2, the minimum value lmin

k = ljk + 1 is increased; thus all hyper-rectangles from
the groups with indices lower than the updated lmin

k (measures of these hyper-rectangles
belonging to these groups are smaller than the measure of the lmin

k group) are not con-
sidered in the recurrent Step 1. A geometrical interpretation and comparison of the orig-
inal DIRECT and the globally enhanced (let us call DIRECT-G) versions are shown in the
left-hand side and middle graphs in Figure 1. By this strategy, we extend the number
of medium-measured potentially optimal hyper-rectangles and force DIRECT-G to work
more globally. Let us stress, that opposed to the aggressive DIRECT version, by Defini-
tion 2 DIRECT-G will not consider hyper-rectangles from the groups where the minimum
function value is larger compared to the minimum value from the larger groups.

Definition 3 (Enhancing the local search)

• Step 1 At each iteration k, evaluate the Euclidean distance from the current minimum point
(xmin) to other sampled points:

d(xmin, ci) =

√√√√ n∑
j=1

(xmin
j − cij)2 (6)

• Step 2 Apply the procedure described in Definition 2 in (5) using distances d(xmin, ci)

instead of objective function values.
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A geometrical interpretation of the selection of potentially optimal hyper-rectangles us-
ing the locally enhanced strategy is shown on the right-hand side of Figure 1. By this
strategy, we extend the number of potentially optimal hyper-rectangles locating close
to the current minimum point (xmin). Moreover, by this strategy, we select the closest
hyper-rectangles from various measures.
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Figure 1: Geometric interpretation of the selection of potentially optimal hyper-rectangles
by using DIRECT (on the left-hand side), DIRECT-G (middle), and the locally enhanced
strategy (on the right-hand side) on the Shekel 5 test problem in the fifth iteration of
corresponding algorithms/strategies

2.2.1 DIRECT-GL algorithm

In this subsection, we introduce a new DIRECT-type algorithm (let us call DIRECT-GL).
The key feature of DIRECT-GL is that DIRECT-GL performs the identification of potentially-
optimal hyper-rectangles twice in every iteration. First, by using Definition 2 the globally
enhanced set of potentially optimal candidates is determined and fully processed (sam-
pled and partitioned). Second, by using Definition 3 the locally enhanced set is identified
and fully processed (sampled and partitioned) again. Thus, our new approach is based on
“Divide the best” strategy [Ser98] and it has the everywhere-dense type of convergence
(like other DIRECT-type algorithms [FK06, JPS93, PCŽ16, PSKŽ14, SK06]). This follows
from the fact that, that using Definitions 2 and 3, DIRECT-GL always selects for partition-
ing hyper-rectangles from the group (lmax

k ) with the largest measure δmax
k . Since each

group contains only a finite number of hyper-rectangles, after a sufficient number of it-
erations, all hyper-rectangles will be partitioned. Such a procedure will be repeated with
a new group of the largest hyper-rectangles and so on until the largest hyper-rectangles
will have the measure smaller than the required tolerance ε.

The complete description of the DIRECT-GL algorithm is shown in Algorithm 1. The
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input for the algorithm is one (or few) stopping criteria: required tolerance (εpe), the
maximal number of function evaluations (Mmax) and the maximal number of DIRECT-GL
iterations (Kmax). After termination, DIRECT-GL returns the found objective value fmin

and the solution point xmin together with algorithmic performance measures: final tol-
erance – percent error (pe), the number of function evaluations (m), and the number of
iterations (k).

input : εpe, Mmax, Kmax;
output: fmin, xmin;

1 Initialize k = 1, m = 1, Ik = {1}, fmin = f(c1), xmin = c1;
2 while pe > εpe and m < Mmax and k < Kmax do // pe defined in Eq. (7)
3 Identify the index set J1k ⊆ Ik of potentially optimal hyper-rectangles using

Definition 2;
4 Set xmin

old = xmin;
5 foreach i ∈ J1k do
6 Subdivide (trisect) hyper-rectangle Di

k and update Ik;
7 Evaluate f at the centers of the new hyper-rectangles;
8 Update fmin, xmin, pe and m;
9 end

10 if xmin 6= xmin
old then

11 Calculate distances d(xmin, ci), i ∈ Ik to all sampled points; // using Eq. (6)
12 Set xmin

old = xmin;
13 else
14 Calculate distances d(xmin, ci) to newly sampled points;
15 end
16 Identify the index set J2k ⊆ Ik of potentially optimal hyper-rectangles using

Definition 3;
17 foreach i ∈ J2k do
18 Subdivide (trisect) hyper-rectangle Di

k and update Ik;
19 Evaluate f at the centers of the new hyper-rectangles;
20 Update fmin, xmin, pe and m;
21 end
22 Increase k = k + 1 and check if condition described in lines 10-15;
23 end
24 return fmin, xmin, pe, k, m;

Algorithm 1: Pseudo code of the DIRECT-GL algorithm

2.2.2 Numerical investigation

The introduced DIRECT-G and DIRECT-GL as well as the original DIRECT algorithm
(Finkel’s implementation [Fin04]) were implemented in the MATLAB programming lan-
guage. Note, that for the DIRECT algorithm potentially optimal hyper-rectangles can be
identified in at least two different ways: using modified Graham’s scan algorithm [BH99]
or the rule described by Lemma 2.3 in [Gab01]. Usually this does not impose signifi-
cant differences, but occasionally it can have, e.g., when a higher precision is required.
The selection procedure of potentially optimal hyper-rectangles in DIRECT-GL differs sig-
nificantly, however, this does not have a notable difference to the overall performance,
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compared with the procedure used in DIRECT. This means, that for the identification of
the same quantity of potentially optimal hyper-rectangles DIRECT and DIRECT-GL spent a
similar amount of time.

We compare the efficiency of the algorithms on the Hedar test set [Hed05], which con-
sist of 27 global optimization test functions. Some of test problems have several variants,
e.g., Bohachevsky, Hartman, Shekel, and some of them can be tested for different dimen-
sionality. In Table 1 we report main features of these problems: problem number (No.),
name, dimensionality (n), feasible region (D), the number of local minima (if known), and
the known minimum (f∗). Whenever the global minimum point lies at the initial sam-
pling point for any tested algorithm the feasible region was modified (increased). These
modified problems are marked with the star sign *.

Note, that the most of test problems from the Hedar test set are multimodal, therefore
suitable to investigate how introduced modifications help to overcome the first weakness.
Since all the global minima f∗ are known for all Hedar test problems in advance, inves-
tigated algorithms were stopped either when the point x̄ was generated such that the
percent error

pe = 100%×


f(x̄)−f∗

|f∗| , f∗ 6= 0,

f(x̄), f∗ = 0,
(7)

is smaller than the tolerance value εpe, or when the number of function evaluations ex-
ceeds the prescribed limit of 106. In our investigation, four different values for εpe were
considered: 10−2, 10−4, 10−6, 10−8. By doing this, we investigate algorithm’s ability to
avoid the second weakness. The comparison is based on the number of function evalua-
tions and the best (smallest) number for each problem is shown in bold font.

The results of experiments are given in Table 2. First, observe that DIRECT-G and
DIRECT-GL perform on average much better (see Aver. (overall)) compared to DIRECT.
Especially this is evident when a lower percentage error (pe) (higher accuracy) is sought.
Observe, that original DIRECT on average performs better only for simpler (unimodal) test
problems (see Aver. (unimodal)). That is mainly because the set of potentially optimal
hyper-rectangles in DIRECT-G, DIRECT-L and DIRECT-GL is larger per iteration. Conse-
quently, a greater number of function evaluations is needed.

For small dimensional problems (see Aver. (n ≤ 3)), DIRECT requires on average from
4.5 times (when εpe = 10−2) to 175 times more function evaluations (when εpe = 10−8)
compared to DIRECT-GL. Also DIRECT-L showed an advantage comparing with DIRECT.
Observe, that DIRECT-G performed worst with εpe = 10−2 and εpe = 10−4. Again, for
most of these problems DIRECT was able to converge after a small number of iterations.
Therefore, by extending the set of potentially optimal hyper-rectangles only globally en-
hanced (DIRECT-G) is not very efficient for low-dimensional problems. However, when
εpe = 10−6 and εpe = 10−8 was used, DIRECT-G performed significantly better compared
to DIRECT.

For higher dimensional (see Aver. (n ≥ 4)) and multimodal problems (see Aver.
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Table 1: Key characteristics of the Hedar test problems

Problem Problem Dimension Feasible region No. of local Optimum
No. name n D minima f∗

1, 2, 3 Ackley* 2, 5, 10 [−15, 35]n multimodal 0.0
4 Beale 2 [−4.5, 4.5]2 multimodal 0.0
5 Bohachevsky 1* 2 [−100, 110]2 multimodal 0.0
6 Bohachevsky 2* 2 [−100, 110]2 multimodal 0.0
7 Bohachevsky 3* 2 [−100, 110]2 multimodal 0.0
8 Booth 2 [−10, 10]2 unimodal 0.0
9 Branin 2 [−5, 10]× [10, 15] 3 0.39789
10 Colville 4 [−10, 10]4 multimodal 0.0
11, 12, 13 Dixon & Price 2, 5, 10 [−10, 10]n unimodal 0.0
14 Easom 2 [−100, 100]2 multimodal −1.0
15 Goldstein & Price 2 [−2, 2]2 4 3.0
16 Griewank* 2 [−600, 700]2 multimodal 0.0
17 Hartman 3 [0, 1]3 4 −3.86278
18 Hartman 6 [0, 1]6 4 −3.32237
19 Hump 2 [−5, 5]2 6 −1.03163
20, 21, 22 Levy 2, 5, 10 [−10, 10]n multimodal 0.0
23 Matyas* 2 [−10, 15]2 unimodal 0.0
24 Michalewicz 2 [0, π]2 2! −1.80130
25 Michalewicz 5 [0, π]5 5! −4.68765
26 Michalewicz 10 [0, π]10 10! −9.66015
27 Perm 4 [−4, 4]4 multimodal 0.0
28, 29 Powell 4, 8 [−4, 5]n multimodal 0.0
30 Power Sum 4 [0, 4]4 multimodal 0.0
31, 32, 33 Rastrigin* 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
34, 35, 36 Rosenbrock 2, 5, 10 [−5, 10]n unimodal 0.0
37, 38, 39 Schwefel 2, 5, 10 [−500, 500]n unimodal 0.0
40 Shekel, m = 5 4 [0, 10]4 5 −10.15320
41 Shekel, m = 7 4 [0, 10]4 7 −10.40294
42 Shekel, m = 10 4 [0, 10]4 10 −10.53641
43 Shubert 2 [−10, 10]2 760 −186.73091
44, 45, 46 Sphere* 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
47, 48, 49 Sum squares* 2, 5, 10 [−10, 15]n unimodal 0.0
50 Trid 6 [−36, 36]6 multimodal −50.0
51 Trid 10 [−100, 100]10 multimodal −210.0
52, 53, 54 Zakharov* 2, 5, 10 [−5, 11]n multimodal 0.0
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(multimodal)) both introduced versions performed significantly better compared to
DIRECT, and the best results were obtained using DIRECT-GL. Finally, in total DIRECT failed
for 30.1% (65/216) cases, most of which when a lower percent error tolerance was re-
quired (10−6 and 10−8) and optimization problems were more challenging. Meanwhile,
DIRECT-G, DIRECT-L and DIRECT-GL in total failed on 18.1% (39/216),24% (52/216) and
9.2% (20/216) cases, accordingly.
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Table 2: Number of function evaluations using DIRECT, DIRECT-G and DIRECT-GL algorithms solving Hedar test problems
Problem DIRECT DIRECT-G DIRECT-L DIRECT-GL

No./εpe 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

1 225 443 655 909 773 1,385 2,301 3,463 751 1,343 2,239 3,377 1,197 2,123 3,571 5,415
2 8,845 11,289 14,619 17,757 10,611 19,137 31,459 47,065 138,165 146,359 158,897 174,231 19,403 35,175 55,843 84,979
3 80,927 > 106 > 106 > 106 90,089 151,575 240,677 350,075 > 106 > 106 > 106 > 106 180,707 306,089 486,459 702,121
4 655 1,143 1,823 2,835 283 591 891 1,347 357 721 1,119 1,615 183 395 591 833
5 327 457 551 845 435 607 739 1,129 435 611 743 1,133 729 847 1,115 1,767
6 345 489 589 897 441 617 749 1,139 855 1,025 1,155 1,545 727 845 1,113 1,765
7 693 1,073 1,645 2,099 623 935 1,407 2,057 459 787 1,119 1,595 685 1,113 1,665 2,139
8 295 511 917 1,295 301 489 901 1,221 283 395 699 1,015 345 509 831 1,087
9 195 377 38,455 > 106 255 365 603 841 333 457 755 1,079 333 579 859 1,239
10 6,585 18,261 24,485 67,695 104,315 120,077 128,847 162,751 9,465 18,915 21,405 23,197 1,623 2,809 3,539 5,371
11 481 597 1,143 1,969 403 477 973 1,489 373 537 971 1,349 235 393 823 1,297
12 18,237 19,407 23,065 32,229 14,531 17,135 23,955 29,471 213,759 215,109 221,133 230,409 13,109 16,501 22,951 31,213
13 365,221 458,743 > 106 > 106 990,493 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

14 32,859 59,347 297,571 > 106 336,879 337,069 337,169 337,477 377 623 741 1,097 495 817 1,085 1,679
15 191 305 10,437 > 106 209 357 553 789 269 415 603 839 223 367 555 789
16 9,215 9,341 9,341 9,505 12,519 12,711 12,711 12,965 1,753 1,965 1,965 2,249 2,067 2,375 2,375 2,799
17 199 4,165 88,883 > 106 369 669 819 1,493 325 621 931 1,623 379 1,049 1,199 2,431
18 571 182,623 > 106 > 106 1,529 4,063 6,903 12,163 1,557 4,249 7,027 12,237 4,793 8,793 13,207 19,879
19 293 997 54,487 > 106 211 355 593 965 211 359 555 927 279 485 657 1,143
20 127 155 267 401 189 225 407 585 149 221 399 577 189 263 459 581
21 705 1,021 1,921 2,845 1,587 2,563 4,325 6,253 1,533 2,485 4,193 6,101 2,349 4,361 6,329 10,149
22 5,589 10,431 18,475 28,461 11,149 18,801 30,673 44,013 10,303 17,555 28,761 41,505 16,179 29,945 48,049 74,815
23 107 209 391 935 111 225 379 825 65 179 281 477 101 211 357 557
24 67 109 109 109 97 179 179 179 97 179 179 179 129 235 235 235
25 14,077 215,127 > 106 > 106 5,491 7,105 7,819 7,819 > 106 > 106 > 106 > 106 2,445 4,619 5,575 5,575
26 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 601,433 608,113 611,077 611,077
27 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

28 13,675 67,515 309,427 > 106 11,589 50,149 320,073 > 106 5,135 34,179 321,343 > 106 7,045 24,591 85,235 202,795
29 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 364,693 > 106 > 106 > 106 147,105 905,027 > 106 > 106

30 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 13,243 > 106 > 106 > 106 101,181 763,635 > 106 > 106

31 987 1,181 1,565 1,833 2,897 3,087 3,333 3,631 24,883 25,053 25,327 25,533 811 1,109 1,507 1,803
32 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 180,429 184,247 192,151 196,343
33 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

Continued on next page
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Table 2 Continued from previous page

Problem DIRECT DIRECT-G DIRECT-L DIRECT-GL

No./εpe 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

34 1,621 1,913 3,005 4,019 389 619 2,285 3,883 313 471 679 1,471 579 727 1,143 1,657
35 19,693 24,681 35,575 41,687 20,363 28,293 46,005 68,065 > 106 > 106 > 106 > 106 25,395 38,633 72,735 86,043
36 169,191 215,435 267,741 308,715 53,193 83,559 146,087 273,021 > 106 > 106 > 106 > 106 95,405 167,319 268,591 403,207
37 255 447 597 1,195 371 567 691 1,153 807 989 1,105 1,555 659 971 1,235 1,709
38 27,543 30,307 31,199 39,487 637,379 640,081 640,743 645,519 > 106 > 106 > 106 > 106 556,495 561,599 562,903 568,483
39 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106

40 155 255 > 106 > 106 781 1,419 2,477 3,803 731 1,365 2,389 3,697 1,227 2,025 3,433 5,209
41 145 4,875 > 106 > 106 755 2,017 3,737 5,377 697 1,953 3,645 5,273 1,141 2,845 4,741 6,623
42 145 4,939 > 106 > 106 715 1,977 3,493 5,111 709 1,949 3,443 5,047 1,151 2,871 4,789 7,137
43 2,967 3,867 68,667 > 106 4,089 4,219 4,393 4,603 369 535 807 1,079 425 735 951 1,341
44 209 417 633 1,211 191 337 481 785 173 309 449 743 391 549 737 1,103
45 4,653 10,583 20,123 44,099 2,287 4,113 6,335 10,933 2,573 3,963 6,103 10,175 4,357 8,249 11,011 18,225
46 99,123 205,013 614,749 > 106 16,857 28,243 47,529 76,723 20,115 28,727 46,803 75,211 35,721 63,399 94,991 155,511
47 107 195 321 623 143 251 391 705 143 251 391 567 191 337 525 759
48 833 1,489 2,463 3,827 1,951 3,271 5,267 7,745 1,857 3,165 5,153 7,237 2,919 4,701 7,523 11,031
49 7,795 14,691 22,651 34,735 16,523 24,489 37,645 53,647 13,563 22,427 34,919 48,637 24,763 41,781 63,413 89,543
50 4,897 207,399 > 106 > 106 5,077 10,069 17,411 26,079 12,149 23,015 42,051 60,457 7,795 15,735 26,059 38,929
51 66,615 > 106 > 106 > 106 22,201 251,255 > 106 > 106 261,301 608,797 742,935 > 106 36,525 119,093 174,059 299,163
52 237 303 653 949 295 329 709 1,023 249 281 605 779 345 413 889 1,123
53 > 106 > 106 > 106 > 106 377,737 602,319 613,251 > 106 5,465 9,725 15,591 22,243 6,429 9,967 17,665 23,891
54 > 106 > 106 > 106 > 106 > 106 > 106 > 106 > 106 94,175 151,287 268,999 317,611 115,073 184,033 320,267 394,467

Aver. (overall) 184,591 236,891 369,800 493,577 199,253 211,822 235,896 263,322 226,023 265,436 277,382 298,068 114,887 150,622 170,131 186,799
Aver. (unimodal) 115,099 126,330 170,648 176,480 195,439 199,961 207,523 220,482 373,655 374,537 376,095 378,051 194,300 202,406 214,502 228,328
Aver. (multimodal) 208,913 275,588 439,503 604,561 200,588 215,973 245,826 278,316 174,351 227,251 242,832 270,074 87,092 132,498 154,601 172,263
Aver. (n ≤ 3) 2,290 3,828 25,335 262,245 15,760 15,942 16,246 16,685 1,480 1,666 1,905 2,278 509 759 1,064 1,533
Aver. (n ≥ 4) 319,846 409,809 625,371 665,211 335,394 357,192 398,862 446,311 392,619 461,136 481,767 517,525 199,748 261,812 295,568 324,254
Failed 9 11 18 26 8 9 10 12 11 13 13 15 4 4 6 6
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3 Conclusions

We introduced a new strategy for the selection of the extended set of potentially opti-
mal hyper-rectangles in the DIRECT-type algorithmic framework. Using the proposed ap-
proach two well-known weaknesses of DIRECT-type algorithms were addressed. The ex-
perimental results confirmed the well-known fact that while for simpler problems DIRECT
performs well, for more challenging (higher dimensional) and multimodal problems the
proposed modified DIRECT-GL performs significantly faster. Moreover, since the set of
potentially optimal hyper-rectangles is larger (compared to DIRECT), DIRECT-GL scheme
looks promising for more efficient parallelization too.
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