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Abstract The automated identification system of vessel movement receives enormous 

amounts of data that need to be analyzed to make the proper decision on vessel 

movement. A vast number of vessels make the process of abnormal movement detection 

time-consuming and complicated for human analysts and rapid-response algorithms for 

the decision support system have to be developed to detect the abnormal vessel 

movement in intense maritime traffic areas. This paper extends the previous study on a 

self-organizing map application for stream data, received by maritime automated 

identification system, processing. With the view to maintain the quality of the algorithm 

results, data batching strategies for the neural network retraining are investigated to 

detect anomalies in streaming maritime traffic data. Authors estimate the strategies 

performance on model precision as well as learning rate parameter change; present an 

experimental investigation that has been performed using the real data set. The results 

obtained show that proposed model retraining strategies allow decreasing model 

training time by half while keeping the model sensitivity and precision at minor change. 

Keywords Marine traffic anomaly detection · Neural network retrain strategy · 

Retrain speed-up · Learning rate parameter estimation 

1 Introduction 

The maritime industry is one of the main sectors in Europe. The total gross weight of 

goods transported as part of EU short sea shipping is estimated at almost 1.9 billion 

tonnes of goods in 2016, an increase of 2.6% from the previous year. Despite that the 

sector is one of the most important areas of human activity, it is one of the most 

dangerous. The growth of maritime traffic in ports and their surroundings raises the 

traffic and security control problems and increases the workload for traffic control 

operators. As the traffic becomes more intense to prevent maritime incidents also 

becomes very important and more difficult task. To deal with the problem, 

technological solutions can be applied [28]. Nowadays, the navigation technology is 

highly developed: the vessels are considerably bigger, faster and are safer in typical 

situations. However, in non-typical situations, huge numbers of vessels make the 

process of abnormal movement detection time-consuming and error-prone for human 

analysts [27]. Data mining and visual analytics are becoming very important to extract 

useful knowledge from the increasingly available information on vessels and their 

movements. This enables the automatic detection of anomalies, the prediction of vessel 

routes, the understanding and mapping of activities at sea. 

The scientific community is actively working on the development of algorithms for 

modelling the regular maritime traffic in ports and surroundings, to improve safety at 

sea and security in navigation. Anomaly or abnormal movement detection is one of the 

technique available that improves the domain safety and security. The obtained 

knowledge can help spotting suspicious vessel movements and provide additional 

information to traffic control operators. In this paper, anomalies are defined as 
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deviations from the normal state. A maritime trajectory includes motion data, auxiliary 

data (e.g., speed, rotation, meteorological data) for a ship, and such trajectories can be 

used for anomalous event detection [7]. Anomalies are detected as deviations between 

the vessel’s registered live data and the history based potential sea region data. 

Therefore, most of the existing methods for abnormal movement detection in maritime 

traffic are not suitable for massive stream data processing. They can hardly be applied 

in the decision support system because of the high computational cost. To this end, rapid 

self-learning algorithms for the decision support system have to be developed to detect 

the abnormal movement in stream data of intense maritime traffic areas. 

The paper is structured as follows. In Section 2, the related works on the abnormal 

movement detection in maritime traffic and the state-of-the-art solutions are reviewed. 

Section 3 introduces a motivation background for this research. The experimental 

results of the proposed retraining strategies are demonstrated in Section 4. The last 

section concludes the paper. 

2 Review 

In this section, we will present maritime anomaly detection task and review some recent 

research results in this area. 

The anomalous vessel movement can be defined as an unreasoned movement deviation 

from the sea lanes, trajectory, speed or other traffic parameters [12]. As most of the 

vessels have the automated identification system (AIS) installed, giving the static and 

dynamic information about the vessel movement, the detection of traffic anomaly 

comes as the task of data analysis and outlier detection. Traffic data is analysed in point-

based or trajectory-based manner [21]. 

In the first case, every single data point (message from the vessel to the AIS) or a group 

of them is treated as an independent point. For this purpose, the analysed geographical 

area is subdivided into independent cells with related AIS messages. These data points 

in the grid are analyzed using so-called signature based or rule-based techniques. The 

idea of these techniques is the employment of various association rules to detect specific 

movement changes [18]. Zhu applied database management, data warehouse, and data 

mining technologies to analyse AIS data [30]. Deng in [5] extended the features and 

inserted time stamps. These extensions enabled to employ Markov model for 

supplementation of rules. While declaring the point-based analysis, Pallotta et al. in [16] 

have proposed to use a sliding time window to estimate the relationship between 

successive AIS data points. The obtained waypoints are clustered using Density-Based 

Spatial Clustering of Applications with Noise methodology and employed for anomaly 

detection and movement prediction. There, despite the claims about point-based 

analysis, the authors have implemented the idea of updating the traffic knowledge from 

the input of AIS messages and the use of historical knowledge. The same clustering 

methodology was explored in [1]. Here, the historical spatiotemporal data is analysed 

to detect waypoints of routes. 

The main weakness of point-based techniques is the analysis of movement short-term 

history or disregard of history even. The planned and purposing vessel movement 

should generate highly-correlated AIS data, and this can be used for movement anomaly 

detection. On the other hand, a limited number of analysed data points means real-time 

calculation and decision making. This quality makes point-based anomaly detection 

techniques attractive for real-time tasks. Nevertheless, at the moment the prevalence of 

these techniques is quite limited. 



DMSTI-DS-07T-xx-<ataskaitos nr.> 4 

 

Trajectory-based techniques treat the entire traffic data sequence as a whole. Several 

research directions are analysed in the literature related to the analysis of vessel 

trajectories: maritime traffic pattern mining, ship collision risk assessment [22], and 

maritime anomaly detection [14], [29], [19], identification the types of ships [20], 

combating abalone poaching [4]. 

In the case of trajectory-based detection, models of normal movement are created (using 

the entire trajectory data, not part of it) and the anomalies are detected as movement 

data inadequacy to the model. Thus, these techniques are characterised by a huge 

amount of AIS data to analyse. This property requires some data pre-processing like 

compression or clustering. 

In [26] a piece-wise linear segmentation is applied to compress the data of vessel 

trajectories, then the similarity of trajectories (for detection of anomalies) is performed 

using alignment kernels (dynamic time warping and edit distances, namely). The model 

by Lei [14] defines spatial, sequential, and behavioural features of the vessel movement. 

The movement anomaly is detected as the outlying features of the trajectory model, and 

the degree of suspiciousness is evaluated. The geometrical properties of the trajectory 

are employed in [24]. Here, the vessel trajectory is compared with the graph search-

based path and the difference is estimated by a final score. The threshold value of the 

score is employed as the decision and labelling value. Another trajectory-based analysis 

techniques can be found in [17], [13], [23]. 

Analysis of the entire trajectory gives the advantage of the historical movement data, 

which can be important for anomaly detection. However, full data analysis requires 

much more complicated algorithms like neural networks, for example. This complicates 

the application of trajectory-based analysis for real-time tasks. Also, such algorithms 

are sensitive to missing data (lost AIS messages, for example). 

A comprehensive and categorizing review on maritime anomaly detection can be found 

in [12], [3], [19]. 

Analysis of full trajectory data and anomaly detection will require data-driven 

approaches like artificial neural network-based or statistical approaches. These 

approaches can perform in an unsupervised or semi-supervised manner (i.e. do not need 

labelled data) and can cope with large amounts of data. The issue of real-time 

calculations should be solved using the idea of incremental modelling (retraining, re-

estimating, etc.): the model of vessel movement should be updated with respect to 

recent data to avoid of complete remodelling or model retraining. 

3 Motivation 

Noting that the vessel movement can be treated differently regarding the context. For 

example, if the ship is quite distant from the seaport then even high decline from its 

course cannot be indicated as an anomaly: weather condition, stormy sea, etc. may have 

great influence on vessel trajectory. On the other hand, is vessel movement is observed 

at the seaport surroundings even small deviation from the course may be thought as 

abnormal vessel activity. To this purpose method used for traffic anomaly detection has 

to have a feature that allows different region scaling at different maritime traffic 

observation areas. Such scaling property has a self-organising map (SOM) method. 

SOM is a neural network-based method that is trained in an unsupervised way using a 

competitive learning [10], [9], [11], [6], [8]. This type of neural networks can be used 

for both visualisation and clustering of multidimensional data [15]. 
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In the previous research [25] the modified SOM algorithm for maritime vessel 

movement data classification into normal and abnormal classes is presented. The 

modification is achieved by incorporating virtual pheromone intensity calculations at 

the last epoch of model training. During the model validation stage, the pheromone 

intensity threshold is established by applying a gradient descent method. The 

dependence of the network neighbouring function on the classification results was 

investigated, the best classification accuracy is achieved using the Mexican hat 

neighbouring function. The influence of different SOM grid dimensions on the 

classification results of the proposed algorithm has been investigated. It was proved 

experimentally that the algorithm achieved the best precision using grid dimension 

25x25. This knowledge will be further used as a starting point for network data batching 

and training strategies investigation presented in this paper. 

With the growth of maritime traffic especially near the seaports, the complete retraining 

of the SOM algorithm becomes costly in terms of training time. The need for algorithm 

retrain is quite straightforward: the more vessel movement data is observed and fed to 

the algorithm the better precision of the algorithm is. Besides, retraining ensures the 

inclusion of the most recent movement data that reflects actual conditions and context. 

To maintain high algorithm precision and sensitivity, approaches to data streaming, 

batching and model retrain strategies has to be explored [2]. In this article, authors 

explore three model train strategies. Strategy I presents data batching and algorithm 

training whenever the new batch becomes available as if no model history data would 

be available. Strategy II presents algorithm performance while using pre-trained model 

parameters on previously trained data with the newly arriving data batches. Strategy III 

presents different data batch shuffling techniques and the use of previously pre-trained 

model parameters. All three strategies investigate the learning rate parameter influence 

on the model performance and train time as well. The above presented strategies should 

be investigate due to the nature of the vessel data passed to AIS system. Data passed 

from a vessel can be viewed as a stream that contains facts regarding vessel movement 

trajectories. Those may depend on seasonal data, the shipping routes, schedules and so 

on. Thus, the abnormality detection model has to be developed by analysing vessel 

movement trajectories (as well as historical data) in an incremental manned based on 

the up-to-date data it receives. 
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4 Experiments 

In this section, we present a detailed description of the SOM network retraining 

strategies and results of the experiments using real data sets. 

4.1 Data Preparation 

The detailed description of the previous study of SOM size and modification by 

introducing the SOM evaporation functions are presented in [25]. Data from the region 

of medium maritime traffic at the Klaipeda seaport were selected for the analysis of the 

proposed retraining strategies of the SOM network. During the experiments, two data 

sets were used: Cargo vessels and Passenger vessels. Each item (point) of vessel’s 

streamed data is described by longitude, latitude, heading, vessel speed, wind direction, 

wind speed, wave direction, and wave height values. The Cargo data set is represented 

by 180300 and the Passenger data set is described by 43879 vessel movement 

observation items that were registered in a streamed manner. All experiments in this 

section were carried out with the Cargo data set; later the data batching strategies were 

tested on the Passenger data set (see Table 8). 

At first, 20% of the Cargo vessel data set is randomly selected for the general model 

error evaluation. Then, the resulting 80% of the data set items are used for the data 

batching Strategy investigation. Those 80% of data items are split in such manner: 20% 

of this part of data is used for Strategy testing and the rest 80% of data were used for 

T1, T2, and T3 data batch splitting. Batches are used in the experiments to imitate the 

continuous data arrival with the view to investigate different SOM network retraining 

strategies and learning rate parameter selection. The scheme of data split is shown in 

Figure 1. 

All the data items are sorted with respect to data send time ascending. The SOM 

network of size 25x25 is taken according to the SOM size investigation published in 

[25]. 

4.2 Training Strategies of the SOM Network 

Strategy I. For the SOM network training and validation, we use T1, T2 and T3 data 

batches. The learning rate parameter is set to 0.5. Then, after the network is 
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trained and validated with the T1 data batch, the new data is fed to the network in such 

way: the T1 and T2 batch data are merged together and the algorithm is trained from 

the initial random state using all items from T1 and T2. The same scheme is applied 

with the T3 data batch. 

In order to get the best network performance, the learning rate parameter can be 

adjusted. Initial investigation let us to divide the learning rate parameter search into 

these intervals and step sizes: in the interval [0.005;0.04] step is set to 0.005; in the 

interval [0.04;0.1] step size is increased to 0.01; and in the interval [0.1;0.5] step size is 

set to 0.1 (see Table 1). In such way, the training experiment of the Strategy I is repeated 

while every learning parameter value is tested in order to achieve the best algorithm 

performance. After the model is trained, it is being tested with the model test data set 

and the data set that allows to evaluate the general model error. The best-obtained model 

characteristics with model test data set are presented in Table 1 (bold line). 

The statistics of the best Strategy I model using test data for general model error 

estimation and test data for model error estimation is presented in Table 2. The time 

needed for the algorithm retraining is 40769 seconds. 

Strategy II. The initial algorithm trained 10 times with the T1 batch data. During each 

training, the weights of the SOM network were generated randomly, and the best 

performing network has been selected while keeping fixed learning rate parameter at 

the value of 0.5. The performance of the investigated network on repetitive Strategy II 

(using only T1 data set) model evaluation and testing is presented in Table 3. The line 

marked in bold shows the best network obtained. Quite a small deviation of the 

precision and the sensitivity rates shows the network stability. Then, the best-obtained 

network parameters are used as an initial weights for the network to be trained with T2 

batch data. Finally, imitating the new data portion arrival, the best model obtained with 

T2 batch data is retrained with the T3 batch data. The results of the additional 

experiment have shown that best performance network is obtained with learning rate 

0.025. 

The statistics of the best model with model test and general model error evaluation data 

is presented in Table 4. The time needed for the model training is 18229 seconds. 
Table 1 Selection of learning rate 

Learning rate TP FP TN FN Precision Sensitivity 

0.005 924 519 26648 757 0.6403 0.5497 
0.010 943 505 26662 738 0.6512 0.5610 
0.015 957 498 26669 724 0.6577 0.5693 
0.020 963 487 26680 718 0.6641 0.5729 
0.025 968 478 26689 713 0.6694 0.5758 
0.030 976 471 26696 705 0.6745 0.5806 
0.035 986 468 26699 695 0.6781 0.5866 
0.040 998 461 26706 683 0.6840 0.5937 
0.050 1025 445 26722 656 0.6973 0.6098 
0.060 1066 413 26754 615 0.7208 0.6341 
0.070 1109 394 26773 572 0.7379 0.6597 
0.100 1197 303 26864 484 0.7980 0.7121 
0.200 1431 135 27032 250 0.9138 0.8513 
0.300 1486 81 27086 195 0.9483 0.8840 
0.400 1500 55 27112 181 0.9646 0.8923 
0.500 1510 52 27115 171 0.9667 0.8983 
0.600 1507 54 27113 174 0.9654 0.8965 
0.700 1502 59 27108 179 0.9622 0.8935 
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Table 2 Training Strategy I performance at learning rate 0.5 
Stage TP FP TN FN Precision Sensitivity 

Testing (model error) 1510 52 27115 171 0.9667 0.8983 
Testing (general error) 1868 69 33890 233 0.9644 0.8891 

Table 3 Strategy II performance on model test data 
No. TP FP TN FN Precision Sensitivity 

1 1364 241 26926 317 0.8498 0.8114 
2 1329 280 26887 352 0.8260 0.7906 
3 1359 252 26915 322 0.8436 0.8084 
4 1364 274 26893 317 0.8327 0.8114 
5 1356 253 26914 325 0.8428 0.8067 
6 1335 253 26914 346 0.8407 0.7942 
7 1314 251 26916 367 0.8396 0.7817 
8 1332 258 26909 349 0.8377 0.7924 
9 1367 237 26930 314 0.8522 0.8132 
10 1338 240 26927 343 0.8497 0.7960 

    max 0.8522 0.8132 

    min 0.8260 0.7817 

    average 0.8413 0.8011 

    stdev 0.0079 0.0115 

Strategy III. The scheme of the model training validation and testing is the same as that 

in Strategy II description except of two things. Firstly, from T2 and T3 batches, there 

are produced 4 data batches (Tm2-Tm5) every containing quarter of both of T2 and T3 

data (see Table 5). Secondly, as previously described, after every model training and 

validation, the parameters of the best obtained model are used for every next Tm2-Tm5 

batch training, except the model training data aggregation. For every retraining test data 

for model error estimation of data is used as described in previous Strategy I and 

Strategy II. The half of items 
Table 4 Retraining Strategy II performance at learning rate 0.025 

Stage TP FP TN FN Precision Sensitivity 

Testing (model error) 1500 98 27069 181 0.9387 0.8923 
Testing (general error) 1836 122 33837 265 0.9377 0.8739 

from Tm2-Tm5 data batches is compound of items from T2 and T3 as shown in Table 

5 (Tm2-Tm5) while another part of data is selected proportionally, with respect to that 

data points attached to the previous best model SOM winning neurons. Approach 

guarantee that the knowledge of frequently passed sea regions is incorporated into the 

next model training because it is not frequent for the ships to change their sea routes. 

Experiments have depicted that the best model is obtained with the learning rate being 

0.03. 

Table 5 Partitioning of data set (Strategy III) 
Data batches % of train and 

validation data 
New data items All data itms 

T1 60% 69235 69235 
Tm2 10% 11539 23078 
Tm3 10% 11539 23078 
Tm4 10% 11539 23078 
Tm5 10% 11539 23078 

The statistics of the Strategy III best model obtained using test data for general model 

error estimation and test data for model error estimation is presented in Table 6. 
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Table 6 Retraining Strategy III performance at learning rate 0.003 
Stage TP FP TN FN Precision Sensitivity 

Testing (model error) 1527 73 27094 154 0.9544 0.9084 
Testing (general error) 1866 91 33868 235 0.9535 0.8881 

The time needed for the algorithm retraining was 27854 seconds. The summary of 

relative time needed for the training Strategies I-III is presented in Table 7. 

Table 7 Retraining Strategies I-III performance on Cargo data set 
Strategy Precision Sensitivity Relative time 

Strategy I 0.9644 0.8891 1 
Strategy II 0.9377 0.8739 0.4471 
Strategy III 0.9535 0.8881 0.6832 

The same data batching Strategies I-III described above has been tested on the 

Passenger data set as well. The results are presented in Table 8. 
Table 8 Retraining Strategies I-III performance on Passenger data set 

Strategy Precision Sensitivity Relative time 

Strategy I 0.9795 0.8897 1 
Strategy II 0.9802 0.8870 0.4478 
Strategy III 0.9817 0.8888 0.6817 

From the results shown in Table 7 and Table 8 it can be seen that by applying different 

SOM model retraining Strategies, while keeping the same data batch sizes, it is possible 

to substantially decrease the time for maritime traffic abnormal movement detection 

while retraining the model precision and sensitivity at very high values. The results 

obtained show that the SOM network could be retrained in halftime while keeping 

precision and sensitivity at almost the same high values. The results presented in Table 

8 prove the correctness of the training strategies investigation. 

5 Conclusions 

In this article, three different unsupervised SOM network retraining strategies have been 

presented and investigated. It was shown that the SOM network could be retrained in 

halftime while keeping model precision and sensitivity varying not more than 3% in 

unusual maritime traffic detection. 

The results of the performed experiments show that: 

– if the model is trained from initial random weights of the SOM network the best 

performance is observed, however the training time is the longest. Model precision 

reaches 0.979 and sensitivity 0.889 at learning rate 0.5. 

– if the model is trained on top of the pre-trained model weights the precision and 

sensitivity slightly drops but the training time decreases by half at learning rate 

0.025. 

– if the model is trained on top of the pre-trained model weights and newly arrived 

data batch is proportionally mixed with that winning neurons, training time can be 

decreased by one third while keeping the same model performance at learning rate 

0.03. 

The independent experiment on different data set confirms results correctness and 

allows to conclude that by applying batched data the SOM network training can be 

shortened to halftime by selecting learning rate parameter from the interval [0.025;0.03] 

while keeping the same model performance. 
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