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Abstract 

The Compact Muon Solenoid (CMS) is one of the experiments at the CERN Large 

Hadron Collider (LHC). CMS is a general-purpose detector able to record particle 

collisions up to 40 million times each second. 40 MHz rate results in approx 40 Tb/s, 

however journey of recorded CMS data is long and only small fraction makes to the 

final step - physics analysis.  

Chain of automated and semi-automated processes filter, reconstruct, calibrate and 

verify data before it can be used for physics analysis. Data certification process starts 

with data aggregation in histograms, plots and various statistical quantities, and 

finishes with manual data quality assessment and decision. During the last step 

multiple experts review and evaluate (certify) data as being ``good'' or ``bad''. This 

results in high manpower demand and occasional involuntary human errors. Data 

certification process consists of online (to determine possible problems during the 

data taking, only the fraction of data is used) and offline (not constrained in time full 

data set analysis including physics data reconstruction).  

Main goal of this research is to investigate the applicability and provide the 

comparison of various supervised machine learning techniques for offline data 

certification process automation. Removal or significant reduction of manual labor 

and exclusion of human errors from the CMS data certification process are the main 

motivations of this research. 

Keywords: CERN CMS, Data certification, Supervised machine learning, Neural 

network 
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1 Introduction 
 

Data Quality Monitoring (DQM) is one of the central and the critically important 

projects of the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron 

Collider (LHC). Main goal of the DQM is to provide and support a single end-to-end 

process for reliable certification of the recorded data. The certification process 

comprises of multiple parts, starting from filling and handling multiple histograms 

and scalar monitor elements and finishing with the list of ``good'' list of runs and 

lumisections. The goal of the DQM is to discover and pinpoint errors, problems 

occurring in detector hardware or reconstruction software, early, with sufficient 

accuracy and clarity to maintain good detector and operation efficiency [10]. 

 

While online DQM process only the small fraction of sampled data for immediate 

response and provides just technical Detector Performance Group (DPG) histograms, 

the offline DQM examines the full dataset and generates both DPG and physics POG 

(Physics Objects Group) histograms. Output is being accumulated into the ROOT [4] 

format file and displayed to shifters and experts by using DQMGUI application [12]. 

Then the certification process involves shifters for monitoring various sets of 

histograms in online and offline and marking collected data as "good" or "bad" and 

providing comments. Certification is made on run (data taking session) and 

luminosity section (lumisection) levels. Lumisection is a data sample of 

approximately 23 seconds of data-taking. Final decision is made by the data 

certification group experts by cross-checking assessments and generating the final list 

of good data [3] also known as GoldenJSON. Data quality flags, comments and other 

related information is stored in Run Registry database [11]. 

 

Since the start of the experiment in 2008 the CMS DQM processes and tools have 

been worked out and are stable. A decade of data taking have accumulated the 

sufficient amount of labeled DQM data. This allows the scientists to examine the 

possibility to automate the final step of the data certification process by using the 

recent advances in Machine Learning algorithms for binary classification. In the 

current system, hundreds of different histograms come as an input and the output is 

one of ``good'' or ``bad'' for each lumisection. 

2 Related Work 
 

Currently, there are several initiatives trying different approaches for the data 

certification and anomaly detection. One of the most advanced research is done by 

Yandex School of Data Analysis [2]. They investigate applicability of deep neural 

networks for anomaly detection and classification. Predictive power of neural network 

is quite high - ROC AUC score equals to 0.96. The research is based on data collected 



DMSTI-DS-07T-18-1 6 

 

in 2010 by CERN CMS experiment. In this paper we use newer and bigger dataset 

and compare other supervised machine learning algorithms. 

3 Methodology 
 

Data used in this research was collected by CERN CMS [7] experiment at LHC 

during 2016 data-taking. CMS DQM group provides aggregated data of JetHT2016 

dataset and so-called GoldenJSON. JetHT2016 dataset is widely used at CMS for 

machine learning research. Dataset contains around 160,000 lumisections. 

GoldenJSON is a JSON file which contains labels for lumisections. Labels are 

``good'' or ``bad'' meaning if lumisection is good for further physics analysis or not. 

Each lumisection consists of 401 parameters (histograms) which are vectors of 7 

numbers (mean, RMS and 5 quantiles of the histogram). So in total each lumisection 

has 2807 features. There are several other parameters used for data preprocessing but 

not for training, for example run number and lumisection number, etc. 

 

Data preprocessing consists of two steps: merging dataset with GoldenJSON and 

feature normalization. We used standard score normalization to center and scale data 

so that distribution of each feature has a mean value 0 and standard deviation of 1. 

3.1 Class Imbalance Problem 
 

Dataset contains very small amount (1.8%) of so-called ``bad'' lumisections, hence 

class distribution ratio is 49:1. Therefore, multiple tactics are used to deal class 

imbalance: class weights penalty, stratified fold cross validation and rank based 

performance metrics (see Section 3.3). 

 

First of all, we introduced class weights during training of a model. Additional penalty 

for classification mistakes can affect model to pay more attention to minority class. 

 

Secondly, we use stratified cross validation to preserve percentage of samples for each 

class during cross validation. Natural distribution of classes in train and test splits 

helps model to fight class imbalance during training. However, classical stratified 

cross validation is limited to a certain number of splits. We decided to use 

StratifiedShuffleSplit [5] as it gives randomized folds. Using the randomized folds 

model can be validated multiple times while keeping same train-test split ratio. 

3.2 Classification Methods 
 

Five methods were selected for a comparison: Support Vector Machine, Random 

Forest, Naive Bayes, Gradient Boosted Trees and Artificial Neural Network. We 

chose popular methods from these categories: probabilistic, ensemble and 

hierarchical. 

 

Support Vector Machine (SVM) We use scikit-learn [5] implementation of Support 

Vector classifier. However after series of tries SVM turned out to be inappropriate for 

the task. Large number of high-dimensional training data badly affected performance, 

therefore this method was eliminated from further development and evaluation. 
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Random Forest (RF) We use scikit-learn implementation of Random Forest 

classifier. The forest has 64 trees with depth of 7 layers, these are hand-picked 

parameters. 

 

Gradient Boosted trees (XGB) We use XGBoost [8] implementation for gradient 

boosted decision trees. Same as with Random Forest, we hand-picked several 

parameters to improve performance: number of trees is 64 with max depth of 7 layers. 

 

Gaussian Naive Bayes (NB) We use scikit-learn implementation of Gaussian Naive 

Bayes algorithm for classification. The method trains very fast, but its predictive 

power is too poor for this task. 

 

Artificial Neural Network (ANN) We use Keras [9] library and Tensorflow 

backend. Neural network consists of 3 hidden layers. Each regular densely-connected 

NN layer uses rectified linear unit (ReLU) activation function and is followed by 

Dropout layer. Output layer uses sigmoid activation function (see Fig. 1). Early 

stopping is used to avoid overfitting and stop training when validation accuracy 

begins to decrease.  
 
 
 
 
 
 
 
 

 

Fig. 1. Neural network schema 
 
 

3.3 Performance Metrics 
 

To determine the performance of different methods we use three performance 

measures: accuracy (ACC), F1 score and Receiver Operating Characteristic (ROC) 

with Area Under Curve (AUC). For curiosity only, we track training time as well. 

 

Threshold based. Accuracy (ACC) is a very simple and an intuitive method as it 

measures actual predicted values. However, that makes ACC poor metric for 

imbalanced data. 

 

F1 score is a weighted average of precision and recall. Both false positives and false 

negatives are taken into account which makes F1 score usually more useful than 

accuracy. 

 

Rank based. Receiver Operating Characteristic (ROC) with Area Under Curve (AUC) 

measures how well positive cases are ordered before negative cases [6]. That makes it 

a great metric to evaluate model performance having uneven class distribution. 

 

4 Experimental Results 
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Experimental Setup. Software used: Python (v3.6), Keras (v2.1.5), Tensorflow (v1.7), 

XGBoost (v0.71), scikit-learn (v0.19.1). Hardware used: PC with NVIDIA GPU 

(GeForce GTX 1080 Ti) and virtual machine (8 cores 2.2 GHz, 16 GB RAM) 

 

Primary task of this research is to compare supervised machine learning models and 

find the most applicable for data certification. Each model was cross-validated for 10 

times. Support Vector Classifier was eliminated at early stage due to excessive 

training time. Naive Bayes classifier was eliminated second, because of poor 

performance for this task. Other 3 models show good performance with ROC AUC 

score over 0.95. The best model which works almost out-of-the-box is Gradient 

Boosted Trees (XGB) with average ROC AUC score 0.987. Average ROC AUC 

scores are shown in Fig. 2. Full details about each model and each metric is in Table 

1. Best scores are in bold. 
 

 

 

Fig. 2. Average ROC AUC using shuffle stratified 10 fold cross validation 

 

 

 

 

Table 1. Performance metrics. Mean scores and standard deviations (±) 
 

 AUC       ± ACC      ± F1      ± time       ± 
XGB 0.987 0.004 0.997 0.000 0.998 0.000 108.09 2.621 
Random Forest 0.970 0.004 0.980 0.001 0.990 0.000 44.925 2.490 
ANN 0.954 0.005 0.961 0.015 0.979 0.008 130.236 38.413 
Naive Bayes 0.706 0.008 0.971 0.002 0.985 0.001 10.529 1.289 

         

 
 
 
 

Secondary task follows the hypothetical automatic classification process in a way 

that model is trained on historical data and only then it is used to classify the new 

incoming data. In order to mimic this use-case we sorted dataset time wise and split 

into 80:20. All models were trained using same split. Fig. 3 shows ROC curves with 

AUC value. All models perform quite well with 94+% AUC score. 
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Fig. 3 ROC curves with AUC of sorted dataset and split of 80:20 
 

5 Conclusions and Future Works 
 

 

In this paper we ran experiments with 5 classification methods and compared their 

performance on CERN CMS JetHT2016 dataset. Best performing model is Gradient 

Boosted Trees which ROC AUC score equals 0.987. It seems to be a sufficient score 

already, but due to imbalanced class distribution (98.2% to 1.8%) it is barely better 

than "most popular class" classifier. Since only manual search of hyper-parameters 

was performed, therefore we believe that full potential of deep neural network is not 

yet discovered. Further grid-search of hyper-parameters (learning rate, dropout rate, 

batch size, number of neurons, hidden layers, epochs, etc) should be done to improve 

performance and predictive power. 
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