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Abstract

Extensible programming languages are languages whose features (syntax or semantics)
can be added by users without modifying the compiler of the language. Reflectively
extensible programming (REP) languages are a subset of such languages, where exten-
sions for the language are defined using the same language and which can be mixed with
regular code. This report serves as the second part of the final dissertation: the report
contains the theoretical details of a novel parsing method called Earley Virtual Machine.
This parsing method provides sufficient features to parse a REP language.
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1 Extensible parsing with Earley Virtual Machines

1.1 Earley Virtual Machines

1.1.1 Introduction to Earley Virtual Machines

Earley Virtual Machines (or EVM for short) is a new approach to parsing that is based on
virtual machines and is heavily inspired by Earley parser.

The core idea behind EVM is to separate the two grammar representations used by
the parser: the user writers source grammars in a plain-text format which are then parsed
an compiled into compiled grammars that are then executed by the parser.

EVM consists of the following elements, each of which will be described in more
detail in future chapters:

• Source grammars are parser grammars in plain text format. These grammars are
written by the user of the parser and describe the parsed language in terms of gram-
mar rules. Additionally, source grammars may contain the abstract syntax tree con-
struction instructions, which allow to control the process of AST construction in fine
detail.

• Compiled grammars or grammar modules are internal representation of source
grammars. As the name implies, compiled grammars are compiled from source
grammars. Compiled grammars contain sequence of low-level instructions that
drive the parsing process.

• The interpreter is one of the primary elements of EVM. It interprets or executes the
instructions contained in one or more grammar modules. As a result, an abstract
syntax tree is constructed based on the parse input. The process of interpreting
compiled grammars is synonymous to parsing the input data in the context of EVM.

• States. EVM state is an internal structure utilized by the interpreter that tracks ex-
ecution of the interpreter. These EVM states have a close resemblance to the Earley
parser states. There may exist one EVM state per each terminal symbol.

• Fibers. EVM fibers have a close relationship to Earley parser items. Each fiber rep-
resents a task of grammar rule execution. A fiber may be thought of as a thread of
a general purpose programming language in which one grammar rule is executed.

• The fiber queue is a queue of fibers that are ready for execution. The interpreter
works by removing the first fiber from the queue and keeps executing it until it
yields. At which point the next fiber is removed from the queue and execution of it
commences. Empty fiber queue indicates a parse error.

MII-DS-07T-17-16 4



1.1.2 EVM grammars

Much like formal grammars, basic EVM grammars consist of production rules, where each
production rule defines how to parse a single non-terminal symbol.

More formally, a basic EVM grammar is a set of productions in form sym→ body, where
sym is a non-terminal symbol and body is a grammar expression.

A grammar expression is defined recursively as:

• a is a terminal grammar expression, where a is a terminal symbol.

• A is a non-terminal grammar expression, where A is a non-terminal symbol.

• ε is an epsilon grammar expression.

• (e) is a brace (grouping) grammar expression, where e is a grammar expression.

• e1e2 is a sequence grammar expression, where e1 and e2 are grammar expressions.

EVM compiled grammar is a tuple 〈instrs,rule_map〉. instrs is the sequence of instruc-
tions that represents the source grammar. rule_map is mapping from non-terminal sym-
bols to locations in the instruction sequence, which represents entry points for the gram-
mar program. It is used to determine the start locations of compiled rules for specific
non-terminal symbols.

1.1.3 EVM states

An EVM state is a structure that tracks the progress of interpreter at a particular point in
the terminal symbol input sequence. Each EVM state has an index that corresponds to
appropriate position of the input sequence.

Each EVM state Si is a tuple 〈susp, trace,reductions〉, where:

• i is the position of the input sequence.

• susp is a list of suspended tasks at position i. When one rule calls another, the caller
is suspended until one or more of the callees complete. Each entry of the suspended
task list is a pair 〈 f iber,symbol_map〉, where f iber is the suspended fiber. symbol_map

represents the reason of the suspension: it contains the set of non-terminal symbols
that the callee expects to parse. Upon parsing any of these symbols, the caller fiber
is resumed by adding it’s copy to the fiber queue (thus signalling that the target
non-terminal symbol has been parsed successfully and the parsing of caller rule
may resume).

• trace is the execution trace set (or ETS for short). It is a set of pairs 〈ip,stack〉. When-
ever a new fiber is created (either by calling a new non-terminal symbol or by re-
suming a suspended fiber), the instruction pointer ip and the stack of the candi-
date fiber is checked against the ETS. If the pair is not present in the ETS, then the
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creation of the fiber commences and this pair is added to the ETS. Otherwise, the
creation of the fiber is aborted. This mechanism ensures that the input position is
parsed with the same grammar rule and the same context only once, thus avoid-
ing exponential parsing complexity found in certain variations of recursive descent
parser. The ETS also blocks infinite left recursion.

• reductions is a multimap that stores successful reductions that originate from
state/offset i. The key of the multimap is a non-terminal symbol that indicates
the target symbol, where the value of the map is a tuple 〈o f f set1, priority,value〉.
o f f set1 indicates the end position of the reduction. priority indicates the priority
of the reduction. This value is used in conjunction with negative reductions and is
described in more detail later. value is the user-specified value of the reduction. It
usually contains the AST node of the reduction, or when delayed semantic actions
are used, the label of the reduction. The primary purpose of the reductions is to store
the intermediate parsing results. Additionally it is used to merge reductions whose
starting positions, ending positions and non-terminal symbols match. This avoids
the exponential complexity explosion in case of ambiguous grammars/inputs.

1.1.4 EVM fibers

A fiber represents the task of parsing a single non-terminal symbol. Whenever a non-
terminal symbol needs to be parsed, one or more fibers are created to parse the symbol.
More specifically, a fiber is a tuple 〈origin,o f f set, ip〉:

• origin is the origin input position of the fiber. It indicates the starting position of
the target non-terminal symbol in the terminal symbol input sequence. This value
is used when completing reductions: a successful non-terminal symbol reduction is
recorded in reductions variable of state Sorigin. Additionally, appropriate suspended
threads of state Sorigin are resumed in state So f f set .

• o f f set indicates the input position of current fiber. When a single terminal symbol
is parsed successfully, the current fiber is advanced by increasing this offset by 1.

• ip indicates instruction pointer of the current fiber.

1.1.5 EVM interpreter

1.1.5.1 Parsing terminal symbols

Terminal symbols in EVM are parsed with instruction i_match_char. This instruc-
tion has a single operand that contains a jumptable. This jumptable consists of pairs
〈symbol, target_ip〉, where symbol is a terminal symbol to be matched. target_ip is the tar-
get instruction pointer to jump to if the symbol is matched successfully.
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Table 1: Terminal symbol sequence parsing example

Grammar rule Instruction sequence

S -> a b c

...
20: i_match_char a -> 21
21: i_match_char b -> 22
22: i_match_char c -> 23
23: i_reduce S, 0
24: i_stop
...

In most basic cases, this instruction can be used only with a single entry in it’s jumpt-
able. However, when using subset construction optimization, multiple i_match_char
instructions can be merged into one by combining their jumptables.

In case of a successful terminal symbol match, the ip of current fiber is set to the
appropriate instruction pointer provided in the jumptable. Additionally, the current fiber
is advanced by increasing it’s o f f set by 1.

In case of matching failure (when no terminal symbol in the jumptable matches the
one in the o f f set position of the input), the current fiber is immediately discarded: the
execution of the fiber is halted and the fiber yields.

An example of a simple source grammar and it’s instruction sequence is provided in
table 1.

1.1.5.2 Parsing non-terminal symbols

Parsing of non-terminal symbols in EVM is significantly more involved. Multiple instruc-
tions are used to facilitate matching of non-terminal symbols:

• i_call_dyn S is used to initiate parsing of non-terminal symbol S. This instruction
creates one or more fibers. The instruction pointers of newly created fibers are set
to entry points of the compiled rules that define non-terminal symbol S. origin of
the new fibers is set to o f f set of the caller. Finally, newly created fibers are added
to the fiber queue. It is important to note, that fiber creation process is still sub-
ject to the ETS rules: multiple i_call_dyn invocations to the same non-terminal
symbol S will not result in additional fiber creation. After executing i_call_dyn

instruction, the caller fiber continues it’s execution normally.

• i_match_sym S1→ ip1, ...,Sn→ ipn is used to match successful non-terminal sym-
bol parses, that have been previously initiated by i_call family of instructions.
Whenever a i_match_sym is executed, the current fiber is suspended by adding
it to the list of suspended fibers susp in state So f f set . Additionally, the interpreter
attempts to pre-emptively resume the suspended fiber in case any of the target
non-terminal symbols have been successfully parsed prior to executing the current
i_match_sym instruction.

• i_reduce S, prio is used to perform reduction of the non-terminal symbol S. Firstly,
MII-DS-07T-17-16 7



Table 2: Non-terminal symbol sequence parsing example

Grammar rule Instruction sequence

S -> A B C

...
30: i_call_dyn A
31: i_match_sym A -> 32
32: i_call_dyn B
33: i_match_sym B -> 34
34: i_call_dyn C
35: i_match_sym C -> 36
36: i_reduce S, 0
37: i_stop
...

this instruction records the presence of new reduction with priority prio in state
Sorigin. In case that there have been other reductions with same length and non-
terminal symbol in state Sorigin, but with greater priority, the current reduction is
abandoned. This mechanism is used to implement negative reductions that can be
used to exclude certain undesirable parses (for example, certain keywords can be
excluded from identifiers). If the reduction is not abandoned, then this instructions
finds all the suspended fibers in state Sorigin that have been waiting for S and at-
tempts to resume them. After completing i_reduce instruction, the current fiber
continues executing normally.

• i_stop instruction discards the current fiber.

A simple example of matching several non-terminal symbols is provided in table 2.

1.1.5.3 Resuming suspended fibers

EVM fibers can be resumed in two circumstances: during i_match_sym or i_reduce
instruction execution. In both cases, the suspended fibers can be resumed with the fol-
lowing steps:

1. The suspended thread is duplicated.

2. ip of the copy is set to target instruction pointer, which is retrieved from
symbol_map.

3. o f f set of the copy is set to o f f set of the fiber that executes i_reduce. In case of
pre-emptive resumption in i_match_sym, the new o f f set value is retrieved from
reductions entry in state So f f set .

4. The new fiber is traced, by recording it’s presence in state’s So f f set execution trace
set. If a matching entry already exists, the resumption of the fiber is aborted.

5. The new fiber is added to the fiber queue to be executed later by the interpreter.
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Table 3: Basic source grammar compilation rules

Grammar element Instruction sequence

Grammar:
G = {P1, ..., Pn}

i_call_dyn main
i_match_sym main→ laccept

laccept :
i_accept
i_stop
code(P1)
...
code(Pn)

Production rule:
P→ e

code(e)
i_reduce P, 0
i_stop

Terminal grammar expression:
a

i_match_char a→ ipnext

Non-terminal grammar expression
(dynamic):
A

i_call_dyn A
i_match_sym A→ ipnext

Epsilon grammar expression:
ε

Brace grammar expression:
(e)

code(e)

Sequence grammar expression:
e1e2

code(e1)
code(e2)

1.1.6 Compiling basic EVM grammars

The rules for compiling basic source grammars to corresponding instruction sequences
are proved in table 3. The notation code(e) refers to corresponding sequence of instruc-
tions when compiling grammar element e. Instruction i_accept signals the interpreter
that a matching input has been parsed. main is the name of starting non-terminal symbol
of the grammar that is being compiled.

1.2 General purpose computation in EVM

The current model of EVM is quite flexible and can be extended to support general pur-
pose computation during parsing. This general purpose computation may be used to
imperatively control the parsing process and thus implement some of the required func-
tionality to support data-dependant constraints.

EVM fibers already support stacks that can be used to store intermediate general
purpose computation results. The following instructions are required, to enable general
purpose execution during parsing:

• i_br ip. Unconditional branch to instruction pointer ip.

• i_bz ip. Conditional branch to instruction pointer ip. The branch condition value
MII-DS-07T-17-16 9



is popped from the top of current fiber stack.

• i_pop. Remove and discard top stack element of the current fiber.

• i_peek n. Duplicate stack element n and push it to the top of the stack.

• i_int_add. Integer addition. Pop two values from top of the stack, add them as
integers and push the result to top of the stack.

• i_int_sub. Integer subtraction.

• i_int_neg. Integer negation.

• i_int_push. Push immediate integer constant to top of the stack.

• i_int_more. Integer comparison.

• i_str_push. Push reference of string constant to the stack.

• i_call_foreign id, n. Call foreign method identified by index id with n argu-
ments. Push the result of the call to the stack. Foreign methods are methods imple-
mented in host environment of EVM and can be used to extend the functionality of
EVM without having to directly modify the way EVM is implemented.

• ...

The list of instructions is non-exhaustive and additional instructions may be added
based on requirements.

1.3 Improving source grammar flexibility

1.3.1 Regular right hand sides in production rules

Regular right hand sides is a feature commonly found in recursive descent and Packrat
family of parsers [For02]. It allows the usage of regular operators in right hand sides
of production rules. This simplifies the definition of new grammars, as repeated and
optional grammar elements no longer need to be expressed solely via alternation and
recursion.

To support such operators in EVM grammars, the definition of EVM grammar ex-
pression needs to be expanded. In addition to exiting grammar expressions, the following
elements are too considered to be grammar expressions:

• e? is optional grammar expression, where e is a grammar expression.

• e+ is one-or-more grammar expression, where e is a grammar expression.

• e∗ is zero-or-more grammar expression, where e is a grammar expression.

• e1|e2 is alternative grammar expression, where e1 and e2 are grammar expressions.
MII-DS-07T-17-16 10



Table 4: Regular operator compilation rules

Grammar element Instruction sequence

Optional grammar expression:
e?

i_fork lend
code(e)
lend :

One-or-more grammar expression:
e+

lstart : code(e)
i_fork lstart

Zero-or-more grammar expression:
e∗

lstart : i_fork lend
code(e)
i_br lstart

lend :

Alternative grammar expression:
e1|e2

i_fork lother
code(e1)
i_br lend
lother: code(e2)
lend :

Figure 1: A grammar that defines simple expressions with binary operators

S -> E
E -> E "+" F | E "-" F | F
F -> F "*" T | F "/" T | T
T -> "0" | "1"

All of these new grammar elements can be implemented in EVM by adding one ad-
ditional instruction:

• i_fork ipnew instruction clones (forks) the current fiber and sets the instruction
pointer of the new fiber to ipnew. The newly created fiber is scheduled to be exe-
cuted by adding it to the fiber queue, while the existing one continues executing
normally.

The rules for compiling the new operators into instruction sequences are provided in
the table 4.

1.3.2 Rule and operator precedence

Almost every existing programming language supports the notion of binary operators
with differing precedences. In grammars such operators with different precedences are
commonly implemented via operator expression hierarchies, as shown in fig. 1. Each
different operator precedence level gets a separate non-terminal symbol, under which
operators with that precedence level are defined. While such operator with precedence
definition method is simple and easy to understand, it quickly becomes cumbersome
when dealing with real-world programming languages, such as C++, Ruby and similar,
which often have over 15 different levels of operator precedences.

Furthermore, extending such language grammars to include additional operators be-
comes difficult, especially when the new operator has a precedence level that is in be-
MII-DS-07T-17-16 11



tween of two existing neighbour precedence levels. In that case, a new non-terminal
symbol for the new operator precedence level has to be defined and the existing rule that
defines lower precedence operators has to be updated to use the newly defined operator.

Because definition of operators (either unary, or binary) is such a fundamental task
when defining new grammars for programming languages, newer parser generators and
language translation frameworks often allow specifying the precedences of operators di-
rectly either by assigning each operator a numeric precedence value, or using operator
definition order to infer the precedence of each operator [EKV09]. As such, it would be
beneficial for EVM to support specification of operator precedence levels natively, espe-
cially because one of the goals of EVM is to support adaptable grammars that can be
extended dynamically during runtime.

In EVM the term operator precedence is generalized to rule precedence, as any gram-
mar rule can have an explicit precedence value. All rules that have no explicit precedence
definition have default precedence value of 0.

When compiling source grammars, the precedences are stored in rule_map entry of
the compiled grammar. As a result, rule_map contains a multimap from non-terminal
symbols to rule instruction entry point and rule precedence pairs.

Furthermore, instruction for invoking non-terminal symbols i_call_dyn needs to
be extended to include minimum rule precedence operand, which is then used to filter out
rules with lower precedence than requested. Source grammar compiler can make use
of this operand when detecting that a grammar rule is recursively invoking itself: in
that case only rules with greater precedence in comparison to the precedence of current
rule should be invoked. Such mechanism emulates the behaviour of operator hierarchy
without having to explicitly define it.

Changing just i_call_dyn to support rule precedences is insufficient however, be-
cause i_match_sym instruction has no notion of rule precedence and as such will in-
terpret any successful match of target non-terminal symbol as a valid one, even when
the the callee expects only a non-terminal symbol with a specific minimum precedence.
Therefore, a new instruction is needed to match non-terminal symbols with a specified
precedence:

• i_match_dyn S, precmin instruction matches successful parses only of non-terminal
symbol with minimum precedence precmin. Just like the original i_call_dyn, it
suspends the current fiber and attempts to pre-emptively resume it by checking the
existing reductions in state So f f set . When resuming the fiber, it’s instruction pointer
is set to ip+1.

1.3.3 Specifying operator associativity

Operator associativity can be considered as a separate edge case of rule precedence. Left
associative operator E+E means that the left non-terminal E can be expanded recursively
into itself, while the right E has to be expanded into expression only with higher prece-
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Figure 2: Rewritten grammar that defines simple expressions with binary operators

S -> E
E[10] -> *E "+" E
E[10] -> *E "-" E
E[20] -> *E "*" E
E[20] -> *E "/" E
E[30] -> "0" | "1"

Table 5: Updated non-terminal symbol compilation rules

Grammar element Instruction sequence
Non-terminal grammar expression (non-recursive):
A

i_call_dyn A, 0
i_match_sym A→ ipnext

Non-terminal grammar expression (recursive):
A

i_call_dyn A, prec+1
i_match_dyn A, prec+1

Non-terminal associative grammar expression (recursive):
∗A

i_call_dyn A, prec
i_match_dyn A, prec

dence. As such, operator associativity specification can be implemented using operator
precedence mechanism.

A new grammar element needs to be added to grammar expression to indicate when
a non-terminal symbol is allowed to recursively expand into itself:

• ∗A is non-terminal associative grammar expression, where A is a non-terminal sym-
bol. When used in a production rule whose head is A, this grammar expression
indicates, that ∗A can be expanded recursively with current production rule.

As indicated above, by default all recursive non-terminal invocations are non-
associative. This is because if user were to forget to explicitly specify associativity of
E +E expression, it would become ambiguous, as it could be interpreted both as left and
right associative at the same time.

The example grammar in fig. 1 can now be rewritten using explicit rule precedences
and non-terminal associative symbols into the one shown in fig. 2. New operators can
be added as needed by specifying new production rules with explicit precedences. When
adding new operators, no existing rules need to be changed or altered in any way.

The updated rules for generating instruction sequences for non-terminal symbols
are provided in table 5. prec value refers to the precedence of the current rule that is
being compiled. By default this value is 0, if not specified explicitly with square bracket
notation.

1.4 Parsing with regular lookahead

1.4.1 Fixed length lookahead

Parsing lookahead is a useful feature that can simplify specifying grammars. When
using a parser in scannerless mode, lookahead becomes mandatory, as it is needed to
MII-DS-07T-17-16 13



Table 6: Fixed length lookahead example

Grammar rule Instruction sequence

A -> a+ &b

40: i_match_char a -> 41
41: i_fork 40
42: i_match_char b -> 43
43: i_advance -1
44: i_reduce A
45: i_stop

Figure 3: Grammar rule that defines identifier using fixed length lookahead

id -> [a-zA-Z_] [a-zA-Z_0-9]* &[^a-zA-Z_0-9]

Table 7: Fixed length lookahead compilation rules

Grammar element Instruction sequence
Fixed length lookahead:
&e

code(e)
i_advance −length(e)

implement greedy-matching when defining language tokens. For example, identifier
can be defined as a sequence of alphanumerical characters that terminates on first non-
alphanumerical symbol. As such, in order to correctly specify the termination point of an
identifier, single-character lookahead is required.

In EVM fixed length lookahead could be mostly implemented already using the ex-
isting i_match_char instruction that is used to match terminal symbols. All what is
needed is to backtrack to correct correct input offset after performing lookahead. This
could be implemented using a new instruction:

• i_advance n instruction advances current fiber by n symbols. This operand may
be negative to perform fixed length backtracking.

To make use of this instruction, the definition of grammar expression needs to be
extended to include:

• &e is positive lookahead grammar expression, where e is a grammar expression.

An example usage positive lookahead operator is provided in table 6. Figure 3 shows
an example where positive lookahead can be used in a real-world scenario when defining
identifiers.

The rule for compiling fixed-length lookahead grammar expressions is provided in
table 7. length(e) refers to the character (terminal symbol) length of grammar expression
e.

1.4.2 Variable length lookahead

Variable length lookahead in EVM can be implemented with a similar fashion. However,
the difficulty in this case is not knowing how many terminal symbols to backtrack after
MII-DS-07T-17-16 14



Table 8: Variable length lookahead compilation rules

Grammar element Instruction sequence

Variable length lookahead:
&e

i_push_offset
code(e)
i_pop_offset

performing the lookahead operation. As such, this information can be recorded and used
dynamically by leveraging general purpose computation capability of EVM.

To support variable length lookahead, two additional instructions are required:

• i_push_offset pushes the o f f set value of the current fiber to it’s stack.

• i_pop_offset pops the o f f set value of the current fiber from it’s stack.

The rules for compiling variable length lookahead grammar expressions is provided
in table 8. It is important to note that both fixed and variable length lookahead share
the same notation. As such, it is up to source grammar compiler to determine when
the lookahead operation is fixed length and to use the appropriate compilation rule. It
is also possible to use variable length lookahead even in situations where fixed length
lookahead would be more suitable, but with additional performance cost, as variable
length lookahead makes use of fiber’s stack.

1.5 Parsing with data dependant constraints

1.5.1 EVM grammar language

We have already shown that EVM is capable of performing general purpose computa-
tion and hinted that conditional control transfer can be used to drive the parsing process.
However, the current grammar language that is only capable of specifying simple pro-
duction rules that are composed from grammar expressions. Therefore, in order to be
able to make use of conditional control transfer, the source grammar language needs to
be extended to include control flow statements.

Table 9 presents the updated grammar elements and their instruction sequence com-
pilation rules. The list of new grammar elements is non-exhaustive and doesn’t include
additional variations of existing elements (for example, various integer operations can be
implemented in similar fashion to integer addition just by changing the final instruction).

Every variable defined within rule body is assigned a stack slot. A stack slot is a
position in fiber’s stack where the value for the variable is stored. stack_slotv refers to the
stack slot number for variable v.

In the new grammar language, all grammar elements are divided into several cate-
gories:

• Top level declarations are used to define new grammar rules.
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• Statements are used to control execution flow. In the extended grammar language,
the bodies of rules are composed of statements.

• Expressions are used to perform general purpose computations, much like in tra-
ditional programming languages.

• Grammar expressions are used to perform parsing. Grammar expressions can be
executed by using parse statement.

Grammar rule definitions are now extended to support parameters that can be used
to control execution flow. To implement this, additional instruction changes are required:

• i_call_dyn instruction needs to be extended to include the argument number to
copy to the callee. The copied arguments are discarded from the caller’s stack frame
after the call is complete.

• i_reduce_r (reduce and return) instruction needs to be created to allow returning
values from the callee. It behaves exactly the same as i_reduce, but also pops a
value from the current fiber’s frame and stores it in reductions entry of state Sorigin.
This value can be accessed later by i_match_dyn_r instruction.

• i_match_dyn_r instruction behaves exactly the same as i_match_dyn, but also
pushes the return value of the callee to the current fiber’s stack.

parse and other control statements can be mixed and matched to parse complex data
dependant grammars that cannot be parsed with traditional context-free parsers. For
example, table 10 show how to parse fixed length fields, commonly found in binary for-
mats.

1.5.2 Matching input against dynamic content

While the mechanism for dependant parsing described in previous chapter is powerful,
but it is not sufficient to parse languages like XML: in order to be able to parse XML it is
necessaries to be able to extract a fragment of parsed input and then use that extracted
fragment for further matching.

As a result, two additional additions to grammar expression are required:

• v@e is a capturing grammar expression, where e is a grammar expression and v is a
name (identifier) for a new variable. After successfully matching e, this operator
will store the range (the start end end offsets) of the matched input.

• = v is a dynamic match grammar expression, where v is a variable that stores input
range. This operator is used to match input against the one that is referenced by the
range.

To implement these new constructs, only one new instruction is needed:
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Table 9: Extended grammar language elements and their compilation rules

Element name Syntax Instruction sequence

Grammar rule

rule sym(arg1, ...,argn)
stmt1
...
stmtn

end

code(stmt1)
...
code(stmtn)
i_reduce sym, 0
i_stop

Block statement
stmt1
...
stmtn

code(stmt1)
...
code(stmtn)

If statement
if cond

body
end

code(cond)
i_bz lend
code(body)
lend :

Parse statement parse grammar_expr code(grammar_expr)

Return statement return expr
code(expr)
i_reduce_r sym, 0
i_stop

While statement
while cond

body
end

lstart : code(cond)
i_bz lend
code(body)
i_br lstart

lend :
Variable declaration statement var v = expr code(expr)

Integer addition expression e1 + e2

code(e1)
code(e2)
i_int_add

Integer constant expression value i_push_int value
Variable read expression v i_peek stack_slotv

Variable write expression: v = e
code(e)
i_poke stack_slotv

Parameterized non-terminal
grammar expression

A(arg1,arg2, ...,argn)

code(arg1)
code(arg2)
...
code(argn)
i_call_dyn A, precmin, n
i_match_dyn A, precmin

• i_match_range pops two integer values from the fiber’s stack that represents in-
put range and attempts to match the input at current position against the characters
referenced by the range. In case of a successful match, the current fiber is advanced
by the length of the range. In case of a failure, the current fiber is discarded. This
instruction is fairly unique in EVM, as it is the only one that can match more that
one terminal symbol at the same time.

A grammar rule example that can match simplified XML tags is provided in fig. 4.
This rule combines multiple key elements of EVM to successfully parse XML tags: fixed
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Table 10: Parsing fixed length fields

Grammar rule Instruction sequence

rule field(n)
while n > 0
parse "a"
n = n - 1

end
end

10: i_peek 0
11: i_push_int 0
12: i_int_more
13: i_bz 20
14: i_match_char a -> 15
15: i_peek 0
16: i_push_int 1
17: i_int_sub
18: i_poke 0
19: i_br 10
20: i_reduce "field", 0
21: i_stop

Figure 4: Simplified XML tag grammar rule

rule xml_element()
parse "<" start@([a-zA-Z_] [a-zA-Z_0-9]* &[^a-zA-Z_0-9]) xml_attrs ">"
parse (*xml_element)*
parse "</" =start ">"

end

Table 11: Rules for compiling capturing and dynamic match grammar expressions

Grammar element Instruction sequence

Capturing grammar expression:
v@e

i_push_offset
code(e)
i_push_offset

Dynamic match grammar expression:
= v

i_peek stack_slotv0
i_peek stack_slotv1
i_match_range

length lookahead, associative non-terminals, dynamic matching.
Rules for compiling newly added grammar expressions into instruction sequences

are provided in table 11. stack_slotv0 and stack_slotv1 refer to the stack slot indices of
values produced by i_push_offset instructions.

1.6 Abstract syntax tree construction

1.6.1 Automatic AST construction

EVM in it’s current iteration cannot be called a parser, as it only currently performs input
recognition. As such, for EVM to be truly useful and applicable, there needs to be a way
to construct the abstract syntax tree of the matched input.

There are multiple ways of how AST can be constructed in EVM, and in this section
we describe automatic AST construction that requires no grammar modifications or any
additional input from the user to be able to construct the AST.

Such method of AST construction can be implemented by augmenting the definition
of EVM fiber: an additional stack can be added to each fiber that can store children nodes
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of the current non-terminal symbol that is being parsed. To make use of such stack, the
following instructions would need to be updated:

• i_reduce A, prio in addition to performing reduction, additionally constructs the
AST node for the non-terminal symbol that is being reduced. The newly con-
structed node is composed from nodes found in children node stack. Additionally,
the node is tagged with non-terminal symbol A. Furthermore, the source range for
the non-terminal can be added by including a copy of the pair 〈origin,o f f set〉, as
origin refers to the starting position and o f f set refers to the current (and thus end-
ing) position of the non-terminal. Finally, i_reduce registers the newly constructed
node.

• i_match_dyn additionally adds the corresponding node index to the child AST
stack, thus making these indices available during AST node construction in
i_reduce instruction.

It is important to note, that EVM is capable of parsing ambiguous grammars, in
which case the AST size may grow exponentially. To avoid this, shared packed parse
forests (or SPPFs for short) can be used [Sco08]. In SPPFs subtrees that refer to alternative
parse paths are packed into a single ambiguous node.

The key difficulty in constructing such SPPFs within EVM is that corresponding re-
ductions may not happen sequentially: it is entirely possible that two reductions that
refer to alternative parses may be separated by several, completely unrelated reductions.
As such, the SPPF cannot be constructed in a single pass, as any node that was previously
constructed may become ambiguous as more reductions complete.

Therefore, a layer of indirection is necessary to ensure that nodes can be changed
from non-ambiguous to ambiguous after they have been constructed. In EVM’s case,
each node is assigned a unique index. Nodes in EVM internally are referred by storing
and passing these indices around: the child node stack of each fiber stores node indices
and i_reduce instruction uses node indices to compose new nodes. The actual node
data (such as child node vectors) are stored separately.

To allow the changing of node type, the node registration process within i_reduce

is used:

• If a reduction is unique (i.e. there are no other reductions that share the same
source interval and the same non-terminal symbol), then a normal child node is
constructed. Then it is assigned a unique index and this index is stored within
reductions entry in appropriate state.

• If a reduction is non-unique (or ambiguous), then a normal child node is created and
it is assigned a unique index. However, this time the existing node is converted to
ambiguous packed node, and the newly created node is added as it’s child.

The conversion of non-ambiguous node to ambiguous node works by duplicating
the target node, assigning it a new unique index and changing the target node’s type to
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ambiguous. The duplicate of the original is then added as the only child of the converted
node.

These node registration and conversion processes ensure that the node references are
not broken when node conversion occurs. This enables incremental construction of SPPFs
when there is no prior knowledge of which nodes will become ambiguous.

While this approach of AST construction is simple, it has two primary flaws:

• Inclusion of undesirable AST child nodes. EVM is primarily a scannerless parser,
and as such will be used to parse whitespace. It is not uncommon to define a
non-terminal symbol for recognising whitespace and then using that within other
grammar rules. As such, during automatic AST construction, nodes that represent
whitespace will be added to the resulting AST, possibly unnecessarily increasing
the overall size of AST and littering it with nodes that carry no semantic informa-
tion.

• Rigid and inflexible AST node type. Every normal node of the AST currently shares
the same type and thus the same structure. Such behaviour however may not be
desirable, as different non-terminal symbols represent different language elements
with unique behaviours. Furthermore, it is common to use the AST to store seman-
tic information when performing semantic analysis of the AST during later stages
of compilation. Current node model has no space reserved for such semantic infor-
mation and changing the node type would require changing the internals of EVM
itself. The most flexible way to use the parsed result would be to convert the EVM
AST to possibly polymorphic user-defined AST type that includes all the necessary
fields and behaviours to perform semantic analysis.

Because of the flaws of this AST construction method, other alternatives should be
investigated.

1.6.2 Manual AST construction

Manual AST construction is the polar opposite of the automatic AST construction: instead
of requiring the EVM to define and construct the AST automatically, the responsibility of
the AST definition and construction is moved completely to the user.

As EVM supports general purpose computation, it would be logical to assume that
this method could be extended to enable manual and imperative construction of the AST.

Firstly, the EVM grammar language needs to be extended with the following con-
structs:

• v : E is a capturing non-terminal grammar expression, where v is the variable name
for storing the captured result and E is one of available non-terminal grammar ex-
pressions (plain or associative).
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Table 12: Grammar rule for parsing and AST node construction of binary addition

Grammar rule Instruction sequence

rule expr[10]
parse l:*expr "+" r:expr
return <add l r>

end

60: i_call_dyn "expr", 10
61: i_match_dyn_r "expr", 10
62: i_match_char ’+’ -> 63
63: i_call_dyn "expr", 11
64: i_match_dyn_r "expr", 11
65: i_str_push "add"
66: i_peek 0
67: i_peek 1
68: i_new_node 2
69: i_reduce_r "expr", 0
70: i_stop

• <name arg1 ... argn> is a node construction expression. Node is constructed with
head name and arguments arg1 ... argn. Arguments can be other nodes, integer
values or string values.

Additional instruction i_new_node n is needed that constructs new AST node with n

arguments/children. The head (type) of the node must be provided in the stack before
pushing arguments. As a result, i_new_node will always pop n+ 1 elements from the
stack. This instruction is needed to implement node construction expression. However it
can be implemented as a foreign call as well.

Example usage of manual AST construction is provided in table 12.
To avoid exponential AST growth in ambiguous cases, similar mechanism for con-

structing SPPFs as described in previous section should be used. i_new_node should
return a node index and i_reduce_r should include the node registration logic that
would enable the merger of ambiguous subtrees into packed nodes.

However, it is known that the grammar is unambiguous or that the ambiguity would
be minimal, then direct node references could be used and i_reduce_rwould no longer
need to include the node registration logic. Furthermore, nodes could be constructed in
the host environment via foreign calls, thus allowing user to manually define and use
different node types where desirable. That way, both weaknesses of automatic AST node
construction could be avoided at a cost of having to manually specify (both within the
grammars and possibly within the host environment) of how to construct the AST.

Even though this approach has numerous advantages of the automatic AST construc-
tion, one key flaw still persists:

• Wasted resources during speculative parsing. As EVM performs parsing breadth
first, quite a few parse paths get discarded. Consider parsing expression 2+ 3 ∗ 4.
Upon parsing the 2+ 3 portion of the input, a complete addition node would be
constructed and stored within reductions entry of S1. However, this node would be
never used, as eventually the remainder of input would be parsed and two addi-
tional nodes would be constructed (one for 3∗4 and one for the whole expression).
The problem here is twofold: highly speculative nature of EVM and too eager con-
struction of the resulting nodes. The problem becomes even more significant when
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Figure 5: Grammar rule for parsing argument list separated by commas

rule arg_list
parse (a0:arg ("," a1:arg)*)?
return <arg_list a0 *a1>

end

using more "heavy" nodes that contain fields that are meant to be used during later
stages of compilation, source ranges for error reporting and other information. In
that case both the memory usage of unused nodes and the time it takes to construct
them may become a significant performance drain of overall parsing process.

As such, it would be useful, if node construction could be delayed only until the
parser is sure that the node won’t be discarded.

1.6.3 Delayed semantic actions

1.6.3.1 The arguments for delayed semantic actions

Delayed semantic actions [JM11] is an attempt to avoid too eager computation within
non-terminal rules that may not contribute to the parsing result in the Yakker parser
[JMW10]. In this section we present an adaptation of delayed semantic actions for EVM.

The core idea behind delayed semantic actions is to separate parsing into two distinct
phases:

• Early and non-deterministic phase, that performs parsing and constructs an execu-
tion history.

• Late and deterministic phase, that consumes the execution history and uses it to
execute necessary semantic actions (possibly for AST construction).

Consider the example in table 12. It contains three semantic actions, whose execution
can be delayed: the assignment of l variable, the assignment of r variable and finally the
construction of the AST node. In case of EVM, delaying these 3 actions would mean that
fiber’s stack in many situations would become optional thus making fiber suspension
process more efficient, as it’s no longer necessary to both allocate and store the stacks of
suspended fibers.

The advantage of delaying AST construction becomes even more apparent in the
example provided in figure 5. Both operators in EVM that provide repetition (+ and ∗)
are implemented in EVM by using i_fork instruction, which makes a copy of the current
fiber with altered instruction pointer. In case that the actual argument list consists of n

elements, EVM will perform n forks and reductions in arg_list rule alone. As a result, n+1

arg_list nodes will be constructed, out of which n will be never used again (assuming
that the grammar is non-ambiguous). As such, delaying AST construction is of vital
importance in EVM.
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1.6.3.2 Constructing execution history labels

As mentioned previously, the core idea behind delayed semantic actions is to construct
execution history composed of labels that somewhat mirrors the structure of AST, but
with one key difference: whereas the AST nodes are heavyweight and contain significant
amount of information, the individual labels are small and lightweight. Then these labels
can be replayed (either in separate late phase, or in parallel during parsing), thus executing
the semantic actions that have been previously delayed.

Several different label types are required:

• Tag label is a unary label. It stores a reference to the previous label and a general
purpose numeric value. The semantic meaning of the numeric value depends on
other nearby labels.

• Call label is a binary label that indicates a call branch. It stores a reference to the
previous label and a reference to the reduction label of the callee.

• Normal reduction label is a unary label that indicates a successful non-ambiguous
reduction. Stores a reference to the previous label and the reduction tag. Reduction
tag is a value that uniquely identifies a reduction. Normal reduction label may be
mutated to ambiguous reduction label.

• Ambiguous reduction label is a binary label that indicates an ambiguous reduction.
Stores two references to reduction labels, which may too be ambiguous.

• Resolved reduction label is a 0-ary label that stores the result of the reduction, which
is computed by executing corresponding delayed actions. Normal and ambiguous
reduction labels can be mutated into resolved labels after they have been replayed.
The use of resolved labels avoids replaying the same reduction labels several times.

• Nil label is a 0-ary label that terminates tag or call label chain.

• Range label is a unary label that that holds a source range. Used when parsing lan-
guage tokens to hold starting and ending position of a token, thus avoiding the
need for two separate tag labels.

To facilitate the construction of labels, a definition of a Fiber is extended to include
a current label label. General purpose stack is not used for holding labels, as the fiber’s
stack is a variably sized structure, thus requiring separate allocation.

Furthermore, additional instructions and existing instruction changes are required:

• i_trace tag constructs a new tag label 〈label, tag〉 and sets the label of the current
fiber to the newly constructed one. This instruction is used to delay execution of
statements and expressions within rule definition.

• i_trace_offset sets label to 〈label,o f f set〉. It it used to capture the current pars-
ing location so it may be used when replaying labels.
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• i_trace_range sets label to 〈label,origin,o f f set〉. It it used to capture the input
range of the current non-terminal so it may be used when replaying labels.

• i_reduce A and i_reduce_r A now construct a normal reduction label l1 =

〈label,A〉. Then this label is registered by checking if the new reduction is ambigu-
ous. In case that this is true, then existing reduction label l0 is duplicated and a new
ambiguous label 〈l0, l1〉 is constructed in place of the old one.

• i_match_sym, i_match_dyn, i_reduce and i_reduce_r now construct a call
label when resuming suspended fibers.

All newly constructed fibers (usually with i_call* family of instructions) are ini-
tialized with nil label.

1.6.3.3 Compilation of grammars that use delayed semantic actions

The rules for compiling grammars with delayed semantic actions are provided in table
13.

A fully capturing parse statement is a parse statement that contains a single captur-
ing grammar expression that captures the entire input of a non-terminal symbol. It is
meant to be used in language token definitions. A fully capturing parse statement is
an optimized variation of the original parse statement. If a rule contains a single parse
statement and the grammar expression of that statement is a capturing one, then the orig-
inal parse statement may be substituted with a fully capturing one. This is an important
optimization for parsing tokens, as it avoids the need for processing. In other words,
the i_trace_range instruction when compiling the statement is only added as a suf-
fix. This becomes especially important when using i_trace_range in conjunction with
subset construction optimization.

labelnext in table 13 refers to the next label index. Labels in capturing non-terminal
grammar expressions are indexed from 100 to differentiate them from the ones generated
with i_trace_offset instruction. These labels are referred to as action labels as they
refer to a delayed action (in this case, assignment of a variable). Action labels are specifi-
cally defined to be locally, but not globally unique. That means that in every non-terminal
rule action labels are numbered from 100. This further aids when performing instruction
subset constructions, as i_trace instructions with the same tag may be merged together.

1.6.3.4 Replaying labels

Execution history labels are created within EVM, often by using specialized label creation
instructions. However, they can be replayed outside of EVM, possibly in the host envi-
ronment. This reduces AST construction difficulty, as native data structures and method-
/function calls may be used to construct the AST.

When the EVM completes parsing, the reduction label of starting symbol may be
found in reductions entry of state S1, whose length matches the total length of the input.
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Table 13: Rules for compiling grammars with delayed semantic actions

Element name Grammar element Instruction sequence

Fully capturing parse statement parse r@grammar_expr
code(grammar_expr)
i_trace_range

Delayed return statement return expr
i_reduce_r sym, 0
i_stop

Capturing grammar expression v@e
i_trace_offset
code(e)
i_trace_offset

Capturing non-terminal
grammar expression

v : E
code(E)
i_trace labelnext

This label is the result of parsing and can be used independently of EVM to perform
semantic action playback.

The label playback process consists of several steps:

1. Collection. During the collection step, labels for a single non-terminal symbol are
collected into an array (essentially flattening a linked list of labels into array). The
first label in the resulting array is always the normal (non-ambiguous) reduction
label that contains the unique reduction tag. The rest of the labels are added to the
array in the order they were constructed. Call labels are added to the resulting array
without traversing the callee labels.

2. Replay function selection. Once the label sequence is collected, the replay function
based on the non-terminal symbol tag is selected. Every non-terminal rule has a cor-
responding replay function that can be used to replay labels for that non-terminal
rule.

3. Execution. The appropriate replay function is invoked. Within it’s body, the nec-
essary local variables are initialized and label array is iterated over and the corre-
sponding semantic action for each label is executed. This step may invoke label
playback recursively when resolving call labels.

4. Disambiguation. If the original reduction label was ambiguous, then disambigua-
tion function is invoked, which has to produce a single value from all possible al-
ternatives. When constructing SPPFs, the result of disambiguation step is a SPPF
node that combines all possible alternatives.

5. Resolution. The original reduction label is replaced with a resolved label that stores
the result of the playback.

Depending on the current label, a different action is performed during the resolution
step:

• For call labels, the label playback process is invoked recursively. The resulting re-
solved label is recorded as the previous label.
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Table 14: Grammar rule and the corresponding instruction sequence for binary addition
when delayed semantic actions are used

Grammar rule Instruction sequence

rule expr[10]
parse l:*expr "+" r:expr
return <add l r>

end

60: i_call_dyn "expr", 10
61: i_match_dyn_r "expr", 10
62: i_trace 100
63: i_match_char ’+’ -> 64
64: i_call_dyn "expr", 11
65: i_match_dyn_r "expr", 11
66: i_trace 101
67: i_reduce_r "expr", 0
68: i_stop

Figure 6: The replay function for binary addition in Ruby programming language

def action_expr(replay)
l = nil
r = nil
each_action(replay) do |action_id|
case action_id
when 100
l = prev_result

when 101
r = prev_result

end
end
return create_add_node(l, r)

end

• For range labels, the label is only recorded as the previous label.

• For tag labels, the appropriate semantic action is executed based on the numeric
value of the tag.

• Other labels may not be encountered in a properly constructed execution history
during the execution step.

The grammar rule example provided in table 12 can now be compiled into a different
instruction sequence, shown in table 14, when delayed semantic actions are used.

The replay function for the rule, implemented in Ruby programming language is
shown in fig. 6. The method each_action iterates over the collected labels (starting
from the 2nd label). prev_result accesses the resolved value of the previous resolved
label. create_add_node is a user defined method that constructs the binary addition
AST node. It is important to note, that the replay function can be implemented in any
language and it is not in any way bound just to Ruby programming language. For exam-
ple, the same replay function can be implemented in C programming language, as shown
in fig. 7.
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Figure 7: The replay function for binary addition in C programming language

void action_expr(replay_t* replay) {
node_t* l = NULL;
node_t* r = NULL;
REPLAY_ITERATE(label, replay) {
switch (label_action_id(label)) {
case 100:
l = (node_t*) replay_prev_result(replay);
break;

case 101:
r = (node_t*) replay_prev_result(replay);
break;

}
}
return create_add_node(l, r);

}

1.7 Parsing reflective grammars

One of the key reasons of choosing Earley parser as basis for constructing the parsing
method for a REP language is it’s flexibility and limited need for grammar preprocessing.
In this chapter we describe how EVM can be extended to support adaptable grammars.
The approach for implementing adaptable grammar support in EVM is inspired by ??.

1.7.1 Dynamic grammar composition

Because EVM is primarily a scannerless parser, dynamic syntactic extension can be
achieved by dynamically loading additional grammars during the parsing process. EVM
grammars are composed out of grammar rules, so dynamic syntactic extension would
consist of extending the active set of grammar rules.

The current version of EVM is fairly dynamic: non-terminal symbols are invoked via
i_call_dyn instruction, which spawns possibly several fibers to parse the target non-
terminal. The successful completion of a non-terminal is detected by a corresponding
i_match_dyn instruction. There is no reason why the list of active grammar rules used
by these instructions has to be static. By adding additional instructions that manipulate
this list it would be possible to dynamically extend or constrain the active language that
is begin parsed.

Unfortunately, a single global list of active grammar rules is insufficient to correctly
parse any context-free grammar, as the statement for grammar rule activation may be
ambiguous. Which means that in such situation a parser must be able to parse the same
input with two separate sets of grammar rules: one in case the the recognised statement
meant activation of new grammar rules and another if that was just an ordinary state-
ment. Therefore, the active list of grammar rules has to be bound to a specific fiber.

To avoid having to make multiple copies of the active grammar rules, the target lan-
guage can be divided into domains. A domain is a part of a grammar. Each grammar
rule is assigned a set of domains. Each fiber has a set of active domains. If the set of rule
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Table 15: Additional grammar language elements to support reflective grammars

Element name Element syntax
Domain definition domain dom1

Grammar rule with domain annotation

@domains dom1 dom2 dom3
rule name
stmt1
...
stmtN

end

Domain activation statement

with_domains dom1 dom2 dom3
stmt1
...
stmtN

end

domains is a subset of fiber’s active domains, then that grammar rule is considered to be
active within the context of the domain. By manipulating the set of active domains it is
possible to dynamically extend and constrain the current language.

Additionally, this method of grammar division and domain activation can be used
to eliminate certain flaws present in traditional parsers: for example, there is no reason
why break should be a reserved keyword in C programming language. Because break
keyword is meaningless outside of loop and switch constructs, it should only be recog-
nised as a keyword inside of bodies of such constructs. However, due to lexer and parser
limitations that is not the case. However, by using EVM it would become possible to dy-
namically activate the rule for break keyword only inside a looping construct body. Sim-
ilarly, the return keyword (and the grammar rule for it) could be activated only within a
function body and so on.

1.7.2 Extensions to EVM grammar language

To enable domain manipulation within EVM, additional grammar elements are required.
They are listed in table 15:

• Domain definitions are used to create new domains within a grammar.

• Domain annotations for grammar rules allow specifying the domain set under
which the grammar rule should be considered active. If the domain annotation
is not provided, then the rule is considered to be always active.

• Domain activation statements are used to temporarily activate new domains. If
there there are parse statements within domain activation body, then the active do-
main set is inherited by the callees.

Example of a simplified grammar that uses domains to enable break statement only
within the body of a loop statement is provided in fig. 8.

By adding every rule of a language extension to a specific domain, it is possible to
enable or disable the entire language extension with a single statement.
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Figure 8: Example domain usage

domain loop

@domains loop
rule statement
parse "break"

end

rule while_loop
parse "while" expr
with_domains loop
parse statement+

end
parse "end"

end

1.7.3 Compiling EVM grammars with domains

The most complex operation in EVM regarding domains is new domain activation. It
is not enough just to add a simple instruction pair to enable and disable new domains:
with_domains statements may be nested recursively, as such repeated domain activa-
tions should not affect the active domain set. Similarly, upon leaving the with_domains
block, the only those domains should be disabled, which have been previously enabled
within the same block.

Therefore, the following new instructions are required to enable domain support in
EVM:

• i_dom_push_active pushes the active domain set to the stack of the current fiber.

• i_dom_enable dom enables the domain dom by adding it to the active domain set.

• i_dom_enable_dyn pops the target domain from the stack and enables it by
adding the domain to the active domain set.

• i_dom_disable dom disables the domain dom by removing it from the active do-
main set.

• i_dom_restore n restores the active domain set by retrieving it from stack slot n

of the current fiber.

These instructions can be used to compile the with_domains statement, as shown in
table 16. stack_slotdom refers to the stack slot that contains the previous active domain set
pushed by i_dom_push.

1.7.4 Loading multiple grammar modules in EVM

Whenever using EVM to parse a language, the base variant of that language most likely
will be contained in a single compiled grammar module that will be loaded into EVM
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Table 16: Rule for compiling domain activation statement

Element name Grammar element Instruction sequence

Domain activation
statement

with_domains dom1 ... domn

body
end

i_dom_push_active
i_dom_enable dom1
...
i_dom_enable domn

code(body)
i_dom_restore stack_slotdom

during EVM initialization. Language extensions then could be contained in separate
grammar modules that can be both generated and loaded dynamically during parsing.

Loading multiple grammar modules in EVM is not trivial, as each grammar mod-
ule has it’s own address space. To support multiple address spaces within EVM the
instruction pointer can be extended to include the module index. That way each in-
struction pointer in EVM that is store internally (for example, the ip of a fiber) is a pair
〈idmod , ip〉, where idmod is the module index and ip is relative instruction pointer to the start
of the module. All existing instructions would use relative instruction pointers (such as
i_fork, i_match_char, etc).

In practise, for performance reasons several bits of instruction pointer can be reserved
for storing the module index. That way the instruction pointer could remain word-sized.

Additionally, all the grammar rules of any language extension should belong to a
corresponding extension domain. That way language extensions could be enabled dy-
namically only for desired scopes with i_dom_enable_dyn instruction.

Additional instructions that work with absolute instruction pointers may be added
in future if necessary for performance reasons.

1.7.5 Parsing reflective grammars in EVM

The mechanisms described in this chapter can be used to implement adaptable/reflective
grammars by applying the following steps:

1. Define the base language. During this step grammar for the base programming
language should be defined. This could an existing programming language (such
as C) or entirely new one.

2. Define the extension metalanguage within the base language. EVM does not pro-
vide a specific extension metalanguage, as the extension metalanguage should be
defined to match the syntax of the base language (however, the extension metalan-
guage could be designed to be similar to the EVM grammar language). The ex-
tension metalanguage should include extension activation construct for activating
defined language extensions.

3. Implement compilation of metalanguage language extension node into a grammar
module as described in this chapter. If the extension language matches EVM gram-
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mar language, then the rules for compiling EVM grammar language elements can
be used directly to implement this compilation step.

4. Implement the extension activation construct by adding a foreign call, which would
lookup the target extension grammar module in host environment. After finding
the target grammar module, it should be loaded into EVM. The foreign call should
return the domain index for the extension. The domain of the extension then can
be activated with i_dom_enable_dyn instruction within the extension activation
construct. At this point EVM becomes capable of parsing constructs defined in the
previously specified extension.

1.8 EVM performance improvements

In this chapter we describe several EVM optimizations that significantly increase the
overall parsing performance (both in term of CPU time and memory usage).

1.8.1 Garbage collection of suspended fibers

EVM currently creates a state for every input position where other non-terminal rules are
invoked with i_call instruction family. This state information is then used to record ex-
ecution trace, to store reduction information and the most importantly to park suspended
fibers so they may be resumed later. All this information over time adds to a significant
amount. However, not all of it is needed for further parsing. There are several important
observations to make:

• Most states and fibers after suspension will be never needed during parse again.
As such, some states that are unnecessary, together with the suspended fibers they
contain, may be discarded before the parsing process completes.

• The only the reduction instructions access variables from previous states.

• State index sid of a fiber is always equal or higher to the lowest value sid in the fiber
queue. In other words, new fibers are always created with monotonically increasing
state indices.

Based on these observations, the following optimizations can be made:

• Execution trace sets may be discarded from states with indices from interval
[1,sidmin), where sidmin is the lowest state index in fiber queue Q. These sets are
only needed in states where new fibers may be created to avoid creating duplicate
fibers. Because new fibers are created with monotonically increasing state indices,
the sets are no longer needed.

• Unreachable states with indices [2,sidmin) may be discarded completely.
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A state with index sid is reachable if there exists a fiber (either running or suspended)
with origin state index origin equal to sid. As such, mark-and-sweep garbage collector
may be employed to identify reachable and unreachable states.

Such garbage collector will discard all states with the fibers they contain that are
not part of any parse rule/active reduction that can be traced back to the starting non-
terminal symbol. To reduce the garbage collector’s performance impact to the parsing
process, the garbage collector could be run every n parsed terminal symbols.

1.8.2 Eliminating dynamic non-terminal call indirection

Rules for parsing non-terminals in EVM are invoked with i_call_dyn and then are
matched with i_match_dyn instruction. However, both of these instructions perform
significant amount of redundant work:

• The list of candidate rules is fetched from rule_map map.

• The candidate rules are filtered based on current active domain set.

• The candidate rules are filtered based on minimum rule precedence.

If the the activate domain set for a specific call is known during compile time, then
the instruction pointers for target rule entry points and reduction tags can be com-
puted during compile time. As such it becomes no longer necessary to perform dy-
namic rule lookup and filtering during parse time. Therefore dynamic instructions
i_call_dyn and i_match_dyn can be replaced into corresponding static ones: i_call
and i_match_sym.

i_call iptarget , n is a new instruction that invokes non-terminal rule with entry point
iptarget and n arguments.

1.8.3 On-demand instruction subset construction

1.8.3.1 Importance of subset construction

EVM is based on Earley parser and therefore inherits some of it’s flaws. One of the main
reasons why Earley parser in it’s original form is not used for parsing programming lan-
guages is it’s inefficiency.

One of the more common tasks of parsing programming languages is parsing expres-
sions. Even older programming languages (such as C++) have huge operator hierarchies
with many precedence levels. For example, C++ language has:

• 12 arithmetic operators.

• 6 comparison operators.

• 3 logical operators.
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• 6 bitwise operators.

• 10 compound operators.

• 7 member and pointer operators.

That’s a total of 44 distinct operators. This list does not include around 20 more op-
erators that are more difficult to classify. This means, that if EVM was used to implement
a C++ parser and if every operator was defined in a separate rule, every time an expres-
sion could be encountered, EVM would create around 50 fibers to parse a single expres-
sion. Roughly a quarter of these expressions are prefix operators, so corresponding fibers
would be discarded as soon as the first character was parsed. The remaining fibers would
be suspended to parse the first operands of unary (postfix) and binary operators. After
completing that operand and parsing the character(s) that represent the binary operator
(such as +, -, *, etc), all but one of the remaining fibers would be discarded.

This is a huge issue that prevents usage of EVM for any practical application. 50
fiber creations, 35 suspensions, additional 35 fiber creations after resuming the suspended
fibers just to parse a single binary expression. This problem also affects the original Ear-
ley parser. To combat this inefficiency, an efficient variation of Earley parser has been
produced.

The way EVM currently operates can be similar to a non-deterministic finite au-
tomaton: just like a NFA can be in multiple states at the same time, so does EVM can
execute multiple fibers at the same time. But it is well known that any NFA can be con-
verted into DFA by applying the process known as subset construction. The Faster Earley
Parser [MH96] or Efficient Earley Parser with Regular Right-hand Sides [JM10] are both
based on this algorithm. By applying such parsing algorithms to parse C++, it would no
longer take 50 distinct fibers (or items in Earley parser case) to parse a single expression:
all 50 grammar rules could me merged into 1 optimized rule.

Because EVM is unique that it uses instruction sequences to represent grammars, the
traditional subset construction or their modifications for Earley parser cannot be applied
directly to EVM. Furthermore, EVM is capable of loading and enabling additional gram-
mars during parsing, therefore subset construction needs to applied on-demand for only
those grammar rules that are about to be used for parsing. As such, specialized subset
construction algorithm for EVM grammar modules that supports all existing features of
EVM needs to be created.

1.8.3.2 Instruction ε-closures

The first step of subset construction is computation of an ε-closure. ε-closure in automata
theory is a set of states in NFA reachable from initial state by ε transitions. The ε-closure
always includes the initial state as well.

Similarly, in EVM we can define instruction ε-closure as a set of instruction pointer
and active domain set pairs, which are reachable from initial instruction pointer with
initial activate domain set by executing only unordered instructions.
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unordered instructions are instructions whose order of execution doesn’t affect the
outcome of computation (or parsing). For example, i_call and i_fork are unordered
instructions, because a block of such instructions can be executed in any order without
affecting the result.

For efficiency reasons, i_dom_enable is considered to be partially unordered. By
including this instruction into the set of unordered instructions, it can be optimized away
completely by tracking the changes of current active domain set. This way the overhead
of being able to parse adaptable grammars can be mostly eliminated (adaptable gram-
mars still need to compiled into grammar modules and then loaded into EVM).

Instruction closure computation begins with a set of initial domain addresses. A domain
address is an instruction pointer and active domain set pair. All of the initial domain ad-
dresses are placed into a queue. Then appropriate actions are executed for each element
of the queue based on the instruction which is referenced by instruction pointer of the
current element.

There are two possible actions:

• continue da action adds the domain address da to the queue if it’s not already
present.

• relevant da action adds the domain address da to the resulting instruction closure
set.

The actions to be executed for each instruction are provided in table 17. ip and ads

refer to instruction pointer and active domain set of the current entry correspondingly.
entries(A,ads) refers to the set of rule entry points for non-terminal A with current active
domain set ads.

1.8.3.3 Merging instruction ε-closures

The goal of merging instruction ε-closures is twofold: merger of similar instructions to
avoid duplicate computation and elimination of dynamic elements that can reduce pars-
ing performance.

Because of the second goal, dynamic instructions like i_call_dyn and
i_match_dyn are replaced with their static counterparts. In general, all instructions
are merged based on instruction merger key. If two instructions share the same instruction
merger key then they can be merged into a single instruction. The instruction merger
keys can be derived from rules provided in table 18.

Once the merger keys have been computed for all instructions in the ε-closure, simi-
lar instructions can be merged. Each type of instructions is merged differently:

• i_match_chars table instructions are merged by merging their jumptables: tran-
sitions that share the same character are merged by computing their ε-closure and
optimizing it. The resulting instruction is a i_match_chars.
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Table 17: Rules for computing instruction closures

Instruction Action
i_br target continue 〈target,ads〉

i_call target, n

If call visitation is disabled:
relevant 〈ip,ads〉
continue 〈ip+1,ads〉

If call visitation is enabled:
continue 〈target,ads〉
continue 〈ip+1,ads〉

i_call_dyn A, n

If call visitation is disabled:
relevant 〈ip,ads〉
continue 〈ip+1,ads〉

If call visitation is enabled:
continue 〈target,ads〉,∀target ∈ entries(A,ads)
continue 〈ip+1,ads〉

i_dom_disable dom continue 〈ip+1,ads\dom〉
i_dom_enable dom continue 〈ip+1,ads∪dom〉

i_fork target
continue 〈target,ads〉
continue 〈ip+1,ads〉

i_reduce A, n
relevant 〈ip,ads〉
continue 〈ip+1,ads〉

i_stop
All others relevant 〈ip,ads〉

Table 18: Rules for computing instruction merger keys

Instruction Merger key
i_call target, n 〈”call”,n〉
i_call_dyn A, n 〈”call”,n〉
i_match_chars table 〈”match_chars”〉
i_match_dyn A, precmin 〈”match_syms”〉
i_match_syms table 〈”match_syms”〉
i_reduce A, prio 〈”reduce”,A〉
i_reduce_r A, prio 〈”reduce_r”,A〉
All others:
instr arg1, ...,argn

〈instr,arg1, ...,argn〉

• i_match_dyn and i_match_syms instructions are merged into a single
i_match_syms. The merger process works similarly to the merger of
i_match_chars: instructions are merged by merging their jumptables. In case
of i_match_dyn (which has no jumptable argument), jumptables are computed
based on i_match_dyn operands and active domain set. Then transitions that
share the same non-terminal symbol are merged by computing their ε-closure and
optimizing it.

• i_call and i_call_dyn are merged into a single i_call_opt or a i_call in-
struction. This is done by computing ε-closure of entry points of the target non-
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terminal. If optimized instruction sequence for resulting ε-closure already exists,
then a direct call with i_call to that instruction sequence is generated. Otherwise
i_call_opt closure is generated. closure refers to the target ε-closure. This in-
struction is used to avoid subset construction of the entire grammar module. Only
upon executing i_call_opt the optimized (subset constructed) version for the
closure is generated, thus making instruction subset construction process only run
on-demand.

• i_reduce A instructions are merged simply based on reduction non-terminal into
a single i_reduce instruction. This way duplicate reductions with the same non-
terminal get eliminated.

Other instructions are merged by adding them to instruction blocks and merging
matching prefixes of these blocks. Instruction block is a sequence of instructions
that terminates with a terminator instruction. All control transfer instructions are
block terminator instructions. That includes instructions like i_br, i_match_chars,
i_match_syms, etc. This is necessary, because many EVM instructions are executed
sequentially and have no way to transfer control to arbitrary position.

Once instructions are merged, they can be outputted to a target grammar module.
Resulting instructions are outputted in a specific order:

1. Unordered instructions: i_call and i_reduce.

2. n−1 i_fork instructions for the following n ordered instructions.

3. n ordered instructions.

4. i_stop instruction if n = 0.

An example of optimized (subset constructed) instruction sequence is provided in
table 19. The resulting instruction sequence is longer, however it is more deterministic.
For example, it can be seen at offset 16 of optimized instruction sequence, that prefixes for
addition and multiplication have been merged successfully and that it will take a single
instruction at offset 16 to match the binary operator, at which point parsing diverges
based on matched operator.

1.9 Conclusions

In this chapter we have presented Earley Virtual Machines: a virtual machine-based and
Earley parser inspired parsing method that:

• Can parse arbitrary context-free grammars.

• Supports regular right hand sides in production rules.

• Supports regular lookahead.
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Table 19: Subset construction example

Source grammar Compiled grammar Optimized grammar

rule A[0]
parse A "+" *A

end

rule A[5]
parse A "*" *A

end

rule A[10]
parse "b"

end

10: i_call_dyn "A", 1
11: i_match_dyn "A", 1
12: i_match_char ’+’ -> 13
13: i_call_dyn "A", 0
14: i_match_dyn "A", 0
15: i_reduce "A0", 0
16: i_stop

20: i_call_dyn "A", 6
21: i_match_dyn "A", 6
22: i_match_char ’+’ -> 23
23: i_call_dyn "A", 5
24: i_match_dyn "A", 5
25: i_reduce "A1", 0
26: i_stop

30: i_match_char ’+’ -> 31
31: i_reduce "A2", 0
32: i_stop

01: i_call 30
03: i_fork 25
05: i_match_syms "A1" -> 7,
"A2" -> 16

07: i_match_chars ’+’ -> 9
09: i_call 38
11: i_match_syms "A0" -> 13,
"A1" -> 13, "A2" -> 13

13: i_reduce "A0"
15: i_stop
16: i_match_chars ’*’ -> 18,
’+’ -> 9

18: i_call 30
20: i_match_syms "A1" -> 22,
"A2" -> 22

22: i_reduce "A1"
24: i_stop
25: i_match_chars ’b’ -> 27
27: i_reduce "A2"
29: i_stop
30: i_fork 36
32: i_match_syms "A2" -> 34
34: i_match_chars ’*’ -> 18
36: i_match_chars ’b’ -> 27
38: i_fork 42
40: i_match_syms "A1" -> 7,
"A2" -> 16

42: i_match_chars ’b’ -> 27

• Supports adaptive grammars by dynamically loading end enabling new grammars
during parsing.

• Provides multiple means for abstract syntax tree construction.

• Supports data-dependant constraints.

• Supports subset construction optimization that can be used to increase determinism
and reduce number of dynamic elements executed during parsing.

All of these EVM features provide sufficient means for implementing a parser for a
REP language.
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