
VILNIUS UNIVERSITY

Bronius Skūpas

A METHOD FOR SEMI-AUTOMATIC EVALUATION
AND TESTING OF PROGRAMMING ASSIGNMENTS

Summary of Doctoral Dissertation
Technological Sciences, Informatics Engineering (07 T)

Vilnius, 2013



Doctoral dissertation was accomplished at Institute of Mathematics and Informatics
of Vilnius University in the period from 2008 to 2012.

Scientific Supervisor

Prof. Dr. Valentina Dagienė (Vilnius University, Technological Sciences,
Informatics Engineering – 07 T).

The dissertation will be defended at the Council of the Scientific Field of
Informatics Engineering at the Institute of Mathematics and Informatics
of Vilnius University:

Chairman

Prof. Dr. Albertas Čaplinskas (Vilnius University, Technological Sciences,
Informatics Engineering – 07 T).

Members:

Prof. Dr. Habil. Juozas Augutis (Vytautas Magnus University, Physical Sciences,
Mathematics – 01 P),
Prof. Dr. Eduardas Bareiša (Kaunas University of Technology, Technological
Sciences, Informatics Engineering - 07 T),
Prof. Dr. Habil. Genadijus Kulvietis (Vilnius Gediminas Technical University,
Technological Sciences, Informatics Engineering – 07 T),
Dr. Virginijus Marcinkevičius (Vilnius University, Technological Sciences,
Informatics Engineering – 07 T).

Opponents:

Prof. Dr. Dalė Dzemydienė (Mykolas Romeris University, Technological Sciences,
Informatics Engineering – 07 T),
Prof. Dr. Habil. Rimantas Šeinauskas (Kaunas University of Technology,
Technological Sciences, Informatics Engineering – 07 T).

The dissertation will be defended at the public session of the Scientific Council of
the Scientific Field of Informatics Engineering in the auditorium number 203 at the
Institute of Mathematics and Informatics of Vilnius University, at 1 p.m. on the 11th

of February, 2013.

Address: Akademijos st. 4, LT-08663 Vilnius, Lithuania.

The summary of the doctoral dissertation was distributed on the 11th of January 2013.

A copy of the doctoral dissertation is available for review at the Library of Vilnius
University.



VILNIAUS UNIVERSITETAS

Bronius Skūpas

PUSIAU AUTOMATINIO PROGRAMAVIMO UŽDUOČIŲ
VERTINIMO IR TESTAVIMO METODAS

Daktaro disertacijos santrauka
Technologijos mokslai, Informatikos inžinerija (07 T)

Vilnius, 2013



Distertacija rengta 2008–2012 m. Vilniaus universiteto Matematikos ir informatikos
institute.

Mokslinė vadovė

prof. dr. Valentina Dagienė (Vilniaus universitetas, technologijos mokslai,
informatikos inžinerija - 07 T).

Disertacija ginama Vilniaus universiteto Matematikos ir informatikos
instituto Informatikos inžinerijos mokslo krypties taryboje:

Pirmininkas

prof. dr. Albertas Čaplinskas (Vilniaus universitetas, technologijos mokslai,
informatikos inžinerija – 07 T).

Nariai:

prof. habil. dr. Juozas Augutis (Vytauto Didžiojo universitetas, fiziniai mokslai,
matematika — 01 P),
prof. dr. Eduardas Bareiša (Kauno technologijos universitetas, technologijos
mokslai, informatikos inžinerija – 07 T),
prof. habil. dr. Genadijus Kulvietis (Vilniaus Gedimino technikos universitetas,
technologijos mokslai, informatikos inžinerija — 07 T),
dr. Virginijus Marcinkevičius (Vilniaus universitetas, technologijos mokslai,
informatikos inžinerija — 07 T).

Oponentai:

prof. dr. Dalė Dzemydienė (Mykolo Romerio universitetas, technologijos mokslai,
informatikos inžinerija – 07 T),
prof. habil. dr. Rimantas Šeinauskas (Kauno technologijos universitetas,
technologijos mokslai, informatikos inžinerija — 07 T).

Disertacija bus ginama viešame Informatikos inžinerijos mokslo krypties tarybos
posėdyje 2013 m. vasario 11 d. 13 val. Vilniaus universiteto Matematikos ir
informatikos institute, 203 auditorijoje.

Adresas: Akademijos g. 4, LT-08663 Vilnius, Lietuva.

Disertacijos santrauka išsiuntinėta 2013 m. sausio 11 d.

Disertaciją galima peržiūrėti Vilniaus universiteto bibliotekoje.



Relevance
Software development is increasing rapidly, and the demand for informa-

tion technology (IT) professionals is growing. Many future IT professionals
are introduced to the field in the form of basics of programming at school.

Teaching programming is a difficult process because it is associated with
creative thinking, strictly formalized tasks, and practical programming assign-
ments. The students have to be trained to create not only running, but also
qualitatively designed, reliable, properly functioning programs. Testing and
evaluation of programs developed by the students requires a lot of teacher’s
efforts and time.

In this work automatic program testing is defined as dynamic testing, based
on black-box testing with tests prepared in advance. In order to use automatic
program testing, programming tasks often are specified in detail, i.e. the re-
quired data input and output formats are introduced. This allows evaluating
by applying the fact-verification method. Accurately identified verifiable fact
is defined as an evaluation criterion.

Automatic programming assignments testing can be used in the teach-
ing process, during programming exams, professional programming knowledge
tests during recruitment and programming competitions.

Many authors note that fully automated testing, based on static and
dynamic analysis, can not be completely fair. Therefore common practice is to
use semi-automated testing of programming assignments, which is a mixture
of automatic testing and manual evaluation and provides greater flexibility in
use of automated testing benefits.

This thesis focuses on the exploration of possibilities of using a semi-
automatic testing system for programming assignments in schools, distance
education, as well as competitions and exams. Common evaluation errors are
analyzed as well. The research is focused on creating a new method of evalua-
tion for programming assignments in order to achieve high quality evaluation
in acceptable time and the justification of the evaluation to the user.

Research object
The research object of this work is automatic and semi-automatic testing

systems for programming assignments, their architectures, operating methods
and algorithms, and interaction with the users.

Aim and Objectives
The aim of the dissertational work is to develop a method for semi-automatic

evaluation and testing of programming assignments that would improve system-
evaluator interaction in order to increase the efficiency and the quality of the
evaluation and to implement it into a prototype of semi-automatic evaluation
system.

5



The objectives of the dissertation are the following:

1. To perform analysis of theoretical and experimental research in the area
of automatic and semi-automatic testing systems for programming as-
signments.

2. To investigate architectures, user interfaces and functionalities of au-
tomatic and semi-automatic testing systems for programming assign-
ments, and to classify the encountered problems of these systems from
methodological and architectural points of view.

3. To propose a method for semi-automatic evaluation and testing of pro-
gramming assignments to enable more efficient and higher quality eval-
uation than the other known methods.

4. To perform the constructive research of the proposed method, and to
investigate and evaluate the new opportunities provided by this method.

Research Methods
Constructive research was chosen as the key method for the research. Kasa-

nen et al. (1993) states six phases of the constructive approach: (1) finding a
practically relevant problem with research potential; (2) obtaining general and
comprehensive understanding of the topic; (3) innovating, i.e., constructing a
solution idea; (4) demonstrating that the solution works; (5) showing the the-
oretical connections and the research contribution of the solution concept; (6)
examining the scope of applicability of the solution.

In practice I performed the steps of research in other sequence and my
process was both iterative and recursive. The main reason for this was that I
started research seven years ago and I innovated some of solutions for several
times. Exam rules and requirements have been changed as well.

I selected the problem of creating a high quality and efficient evaluation
method for programming assignments. For phase (2) I performed analyzed
publications and surveys and publicly available tools. Some of the tools were
used for competitions, during classes. Other systems are online systems and
they were analyzed by exploring their publicly available functionalities. Some
of the tools were analyzed by the documentation, as the tools themselves
were not publicly available. Data about automatic evaluation systems and
tasks, suitable for such systems, was collected and summarized. Information
retrieval, systematic literature review, analysis, benchmarking and general-
ization techniques were used in the research step. Software system analysis,
classification and generalization were used in research of architectures used in
evaluation systems.

The innovative idea generated in phase (3) was based on the possibility
to include interactivity into the semi-automatic assessment of programming
assignments. I made the assumption that the iterative process of fixing errors
and black box testing provided results can help the evaluator to decide the
level of the achievements of the student.

6



For phase (4) I developed a software system for the semi-automatic evalu-
ation of programming assignments, which was used for the experimental ma-
turity exam evaluation in 2006. Testing this innovative idea in the real world
was successful. The system for semi-automatic evaluation of programming as-
signments was used in the evaluation of programming exam submissions since
2006. It was improved several times through the years and it is under constant
development.

For phase (5) I used quantitative research methods and expert interview-
ing techniques to evaluate the experimental software and effectiveness of the
method . Quantitative and qualitative analysis was performed on the exam
and on the experimental evaluation results which helped to draw conclusions
about the influence of the method on the evaluation quality.

In phase (6) I assumed, that the improved method for semi-automatic eval-
uation can be applied for other evaluation systems for programming
assignments. I analyzed the required changes to include the new approach
into the Learning Management System Moodle Edujudge plugin.

Scientific Novelty
1. I presented a new programming assignment evaluation method. Repe-

tition of the evaluation process which is foreseen in the method allows
precise diagnosis of errors in the program being evaluated.

2. The proposed new user interface solutions allow the evaluator to obtain
more meaningful feedback messages from the automatic testing system.

3. The proposed method is more efficient than other known semi-automatic
evaluation methods.

Defended Statements
1. The proposed method for semi-automated testing and evaluation of

programming assignments allows more efficient evaluation than the
manual evaluation method.

2. The programming assignment evaluation results generated by the
evaluation systems based on the proposed method for semi-automated
testing and evaluation for programming assignments demonstrate the
same quality level as the one achieved by manual evaluation and
outperforms that of automatic evaluation.

Structure of the Dissertation
The dissertation consists of the terms and abbreviations section, six chap-

ters, list of references and two appendices. It is written in Lithuanian.

7



1. Introduction
The first chapter is introductory. It contains the research problem and its

relevance, research objectives and tasks, research methods, scientific novelty
and defended statements.

2. Overview of surveys, software and assignments in
Automatic Evaluation Systems for Programming As-
signments

In this chapter, the main directions of development of methods used in
automatic and semi-automatic assessment for programming assignments are
presented and described.

Teaching has long been studied in the field of Computer Aided Assessment
(CAA) access. However, open questions, algorithms, and program evaluation
often requires significantly more time than the test questions with implicit
assessment.

In analysis of development of automatic assessment systems for program-
ming assignments recent reviews and surveys made by Ala-Mutka (2005);
Douce et al. (2005); Ihantola et al. (2010); Liang et al. (2009); Queirós and
Leal (2012); Romli et al. (2010) were used.

Beginning of automatic evaluation for programming assignments was found
in Hollingsworth (1960) paper. In summary, automated assessment of pro-
gramming assignments has been practiced since programming has been taught.

There are two main areas of use for automatic evaluation systems for pro-
gramming assignments: curricular and competitive. However my analysis of
requirements for systems have found that exam requirements are somehow
different from typical curricular system.

Douce et al. (2005) identified three generations of automatic evaluation
systems for programming assignments. Research of automated assessment
systems is constantly growing and it is possible to find relation between as-
sessment systems generations and objects of research.

First generation of systems activated researches in following area: possibil-
ities and concepts of automatic evaluation; a high-level programming language
support in systems; possible options for system expansion.

When second generation of systems were presented researches in following
areas were initiated: multi-language support in automatic evaluation systems;
semi-automatic testing and grading support systems; feedback improvement
for users; content (tasks, tests, student) management; static analysis, pro-
gramming style analysis; use of systems in programming competitions; an
independent use of the system by student.

Third-generation systems opened up new areas of research: web interface
possibilities for automatic evaluation systems; cloud computing and remote
servers use for testing; the ability to use multiple programming languages for
the same task; diversity of feedback for the user; plagiarism detection; various

8



ideas for assessment improvement; management of taught courses and inte-
gration into learning management environments; automatic test generation;
interoperability for automatic testing systems.

Most of these areas of research are still actively discussed in articles.
Last researches mainly explore the systems integration to learning manage-

ment systems, automatic test generation and system interoperability problems.

Approaches used in Automatic Evaluation
Ala-Mutka (2005) analyses set of automated evaluation systems for program-
ming assignments and proposes classification model. Distinction is made be-
tween two methods of program analysis - static and dynamic.

Dynamic analysis allows analysing execution results, discovering errorous
constructs. Evaluation can use following:

• functionality analysis;
• performance analysis;
• student ability to test;
• other features (use of programming language constructs, data structures,

etc.).
Static analysis is used for:
• coding style assessment;
• syntax and some semantic errors;
• calculation of some metrics for source code (source code comment rate,

etc.)
• program design and interface assessment;
• use of datastructures;
• keyword search;
• program structure analysis;
• plagiarism detection.
Systems are divided into fully automatic and semi-automatic. Fundamen-

tal difference between them is in evaluation algorithm as both of them use
automated testing. In semi-automated system final score depends on human
evaluator who uses automatic testing results and makes final decisions on eval-
uation of individual components in the final assessment.

There are also solutions where the applications are collected in the assess-
ment of other students. Thus attract the number of reviews quickly handle
large volumes students work in universities.

The automated testing of programming assignments usually is based on
black box approach. Evaluation is based on analysis of results provided by
tested program. Correct results are aggregated to some score by aggregation
function. Most popular aggregation functions include partial scoring, all-or-
nothing and partial all-or-nothing.

Black box testing is one of the most popular, but problems are known for
long time. For example E. Dijkstra (1972) criticized it claiming that "program

9



testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence".

The main criticism for black-box testing can be visually shown in Ishikawa
type diagram of problems and their causes (Fig. 1).

Expected score differs 

from the actual score

Incorrect programs

 interesting and original 

problem solving 

approaches

Error

incapable of identifying 

nature and dimension

Program design

might not be 

identified

Efficiency

Scoring may be 

inadequate
does not 

identify quality

incapable of 

identifying

Figure 1: Ishikawa type diagram of problems and their causes
visualizes black-box testing problems

Analysis of popular automatic evaluation systems
Author carried out analysis of several popular automatic evaluation systems.
Information was collected about the systems in the literature, system web-
sites, and publicly available documentation. Some of systems were analysed
in action. Others were accessible only to commercial users and data gathered
from articles.

Studied systems University of Valladolid Programming Training System
(UVA Online Judge), EduJudge system, U.S.A. Computing Olympiad Train-
ing Site (USACO training program), Warwick University student evaluation
system (BOSS Online Submission System), University of Nottingham stu-
dent evaluation systems (Ceilidth, CourseMarker), International Informatics
Olympiad’2002 competition system (IOI’2002 Contest and Grading System),
Lithuania Olympiad in Informatics competition system, prototype of Lithua-
nia maturity exam system.

Analysis showed that most systems have their own specific task descrip-
tion format. This causes problems to migrate tasks from system to another.
Although the IMS Global Learning Consortium has proposed questions and
tests XML storage scheme for IMS QTI, but at moment it is not acceptable
for programming tasks. Learning object model of the IEEE LOM as the basis
for programming tasks should be appropriate, but programming task requires

10



extra data (test data, results, test program, time constraints, etc.), which is
not supported at moment.

Another common feature of systems - the majority of systems use black-box
testing dynamic analysis methodology. They program performance measured
by whether presented data sets the program gives the correct answers. So,
when designing tasks, substantial time should be devoted to evaluation of the
scheme selection, selection of good test data.

A large part of the systems does not provide localization capabilities.
The system value is raised by semi-automatic evaluation availability. Both

dynamic and static analysis currently are incapable to evaluate programs in all
aspects. This can be needed to evaluate not functioning programs. Therefore,
opportunity for teachers to intervene in the assessment of student work is very
important. Interaction of automated testing with manual evaluation was not
under research in studied systems and articles.

Assignments suitable for automatic evaluation
Programming assignments were classified in several ways: according to data
input and output methods that are suitable for automatic evaluation and ac-
cording to the algorithms required to solve them.

Assignment classification based on input and output method:
• data read and the output written from/to standard I/O file;
• data read and the output written from/to specified files;
• I/O carried out through specified library;
• only output of the program is submitted.
Assignment classification by algorithms
UVA OnlineJudge automatic evaluation system and the database of prob-

lems were used for possible analysis of algorithms expected to be implemented
in the solutions. The main source for problem solving algorithms was
http://www.algorithmist.com/. Research was made on 656 tasks. The
analysis result is presented in fig. 2.

3. Development of semi-automatic evaluation method
When designing Maturity exam of Information Technology in Lithuania

(IT VBE – lith. Informacinių technologijų valstybinis brandos egzaminas) it
was decided that the submitted programs designed by graduating high-school
students should be evaluated if they do not compile. It was also agreed that
the evaluation should be positive, i.e. the points should only be given for
the skills demonstrated by the student. From the exam requirements it was
clear that evaluation should be either manual or semi-automated. Manual
evaluation was excluded due to limited number of evaluators and the limited
time resources.

When considering the possibilities of applying semi-automated evaluation
for evaluation of IT VBE submissions, it was raised hypothesis that deeper

11

http://www.algorithmist.com/


25

40

180

17

135

87

16

39

12

97

3

2

3

Simulation 

Sorting 

Math 

Searching 

Graph Theory 

Dynamic Programming 

Greedy 

Computational Geometry 

String algorithms 

Ad Hoc 

Grids 

Computational Biology 

Combinatorial Game Theory 

Figure 2: Task classification by algorithms

analysis of the process of manual evaluation of programs designed by the stu-
dents would enable to create a new semi-automated testing and evaluation
method which would have the same quality and precision as manual evalua-
tion but higher efficiency.

Long observation of IT teachers evaluating programs manually as well as
observation of the students searching for mistakes in their programs served
as a premise for stating the hypothesis above. The process of designing a
short program (i.e. not longer than 100 lines) is similar to that of designing
complicated software systems – program modification alternates with program
testing with some specific data.

I attempted to benefit from the experience of evaluation in Lithuanian
Olympiads in Informatics. However it turned out that the demands of the
exam are different from that of the Olympiads:

1. The evaluation system should operate in the environment as similar as
possible to that used during the exams by the students (Windows OS,
localized FreePascal compiler).

2. The task cannot be considered as partially solved if the program passes
just some of the grading tests. The tasks are rather simple and the
reasons for each failure should be identified.

3. The program with minor mistakes (missing punctuation mark, unde-
clared variable, etc.) cannot be assigned few or no points because of
those mistakes only.

4. There is no need to support the role of the student in the exam evaluation
system, because the student cannot observe his/her score directly during
the exam.

There were defined the following most important functional requirements
for the IT VBE evaluation system:

12



Possibilities 

for 

improvement

Submission to programming assignment (program)

Manual evaluationAutomatic evaluation and testing

Dynamic analysisStatic analysis

Semi-automatic evaluation and testing

Results of semi-automatic 

evaluation and testing (PAR)

Results of manual 

evaluation (RR)

Results of automatic 

testing and evaluation 

(AR)

Figure 3: Scheme illustrating suggestions how to improve the
evaluation process

During the evaluation semi-automated evaluation system should provide
the administrator functionality to:

• load task specification together with tests into the system;
• modify task evaluation criteria;
• to compose, assign and present to the evaluator an evaluation package

containing a set of submitted programs to be evaluated;
• to assign an evaluation package to another evaluator;
• to observe and record the outcome of evaluation process.

Semi-automated evaluation system should provide the following function-
alities for evaluating a submitted program:

• to be able to execute statistical analysis plug-ins and provide the results
to the evaluator;

• to automatically test the submitted program using black-box testing;
• to present the results of automated testing and the program being eval-

uated to the evaluator;
• allow to modify the program being evaluated and to retest the modi-

fied program without changing scores assigned by automated testing; to
display the successfully passed tests, to visualize the changes made by
the evaluator and to allow to restore the initial version of the submitted
program;

13



• to allow to fill/modify the scores obtained from semi-automated testing
if automated testing did not assign any points to the program;

• to allow to fill/modify the manual evaluation scores.

There were also added non-functional requirements. Those will not be
emphasized in the formalized problem statement in this thesis, because their
implementation is not so abstract. Here are the most important ones:

Semi-automated evaluation system should allow:

• to evaluate incomplete programs in a positive manner;

• to help finding the exact location of an error;

• to provide clear feedback messages to the user-evaluator;

• to operate fast;

• to allow the evaluator to comfortably experiment with the program being
evaluated.

The requirements of the system to exam specification

Each assignment given in the exam should satisfy the following requirements:

• problem formulation should contain set of values (domains) of input and
output data.

• problem formulation should contain clear definition of data input/output
flows as well as data input/output format requirements.

• sample solutions should be known beforehand and the computer working
time of sample program solving the task is acceptable with all possible
input data sets.

• there should be prepared tests (input/output data sets) which can illus-
trate the correctness of the solution in various cases.

• it should be known the way how to verify the correctness of output of
the solution.

• manual grading instruction should be prepared.

When preparing for automated evaluation test data sets have to be pre-
pared as well as the checker (i.e. the program verifying the correctness of
output provided by the program being evaluated to a test data set) has to
designed and implemented.

Test data sets should satisfy the following:

• short and understandable to the evaluators;

• to identify possible incorrect solutions;

• to demonstrate the functionality of the program in various situations.

14



The criteria for alternative and semi-automated evaluation should be
prepared. It is highly important to prepare and specify the grading scheme.
However preparing the criteria for alternative grading is not an easy task,
because:

The Criteria have to be clear and unambiguous to the evaluators, precisely
corresponding to possible task solutions, assigning points for the skills
demonstrated by the student;

The Points for the criteria should correspond to the exam matrix.

Due to the reasons above the pilot evaluation is often arranged in order to
specify the evaluation schemes before starting the real evaluation session.

The semi-automatic evaluation method improvements imple-
mented in the IT VBE Evaluation System

After formalizing the problem and emphasizing the role of the evaluator (i.e.
dissociating from many roles common in various grading systems) there was
created the prototype of semi-automated evaluation system which implemented
the grading of one program. In the system there was implemented safe black-
box testing, reviewing the program under evaluation and collecting scores from
manual grading.

Black-box testing 

and static analysis

Manual evaluation

Submission

Scoring schema 

used for report

Black-box testing 

and static analysis

Manual evaluation

Submission

Evaluator makes 

experiments with 

code

Are the errors 

clear for 

evaluator?

yes

no

Scoring schema 

used for report

Figure 4: Semi-automated program testing process improve-
ment

After some experiments with the evaluation system being developed it was
observed that for the evaluators it is not easy to find a mistake in the program.
In such case the evaluators used to open the program in some widely accepted

15



IDE and started experimenting there. However most IDE’s do not provide
functionalities for testing the program with group of tests. This observation
suggested the idea to transfer some IDE functionalities to the evaluation sys-
tem. The first and the essential improvement was the following: program text
review component was replaced by program text editing component and there
was added a button allowing batch retesting of the modified program. This
improvement is illustrated in fig. 4.

The evaluators appreciated the improvement however new problems oc-
curred: the evaluators couldn’t recall all the modifications they made to the
program. Testing results had been changed as well. Therefore it was decided
to implement into the system the functionality which would allow to store
the original submission and to log program text modifications made by the
evaluator. Two tile windows containing the original submitted program and
the modified program (fig. 5) were added as functionality to the evaluation
system.

Figure 5: The screen-shot of IT VBE evaluation system display-
ing original and modified program texts

It was decided to store separately the results of automated testing of the
original program. Thus the scores of the experimental (i.e. modified programs)
testing is separated from the grading process. Those scores provide informa-
tion about the impact of modifications to program functionality; however the
weight of the modifications as well as impact to semi-automated evaluation is
decided by human evaluator.

Fig. 6 contains conceptual class diagram which clearly separates testing
scores of the originally submitted program and the modified program.

When improving the prototype iteratively it turned out that the evalua-
tors need more clear feedback about why the program output is not correct.
Typical checkers (output correctness verification programs) did not provide

16



Assignment

OriginalSubmission

InputData

CorrectSolutionOutputCorrectnessChecker

OutputFormatChecker

EvaluatorOriginalSubmissionAutomaticTestingResults

ModifiedSubmission

ManualEvaluationResults

SemiAutomaticEvaluationResults

1

1

1

1

1

1

EvaluationScheme

1 1

TestGroup

TestCase

1

1

1..*

1

1..*1

Submission

Criterion

0..*

1

1

1

0..*

1

1

1

11

11

1

1

11

-s
e
le
c
t

*

0..*

Sandbox

-test

1*
-assign

1 *

*

-modify
*

* -iniciateRetesting *

Submission

*

-a
s
s
ig
n

*
*

-a
s
s
ig
n

*

*

-stebi

*

ModifiedSubmissionAutomaticTestingResults

*

-observe

*

-uses*

*

AutomaticTestingResults

Figure 6: Class diagram of the evaluation system prototype

17



the efficient feedback: they only identified the output file line which differs
from unique correct answer line. It was concluded that in order to provide
better diagnose the correspondence of the output format to the required out-
put format described in the problem formulation. Lexical analyzer is a good
solution to that problem. However development of lexical analyzer for each
task is time consuming. Therefore it was decided to decompose checker by
forwarding the evaluation to two other programs: the program verifying out-
put format correctness and the simplified program verifying output correctness
(fig. 7)

Student program 

generated output file for 

test No X

Correct answer file 

for test No X
Input file for test No X

Points for test No X

Feedback for test No X

Output file format checking (for this task)

Grading program (for this task)

Is format correct?

No

Yes

Figure 7: The improved black-box testing method component:
the program evaluating the correctness of program forwards the
evaluation to two other programs

Thus instead of creating a lexical analyzer for each task there was cre-
ated one lexical analyzer and output formatting requirements were given to
the analyzer in a form of configuration data. The output correctness verifi-
cation program was simplified because in case of unique solutions for most
assignments it was enough to compare files ignoring repeated whitespaces.

The evaluation system was complemented with static analysis plug-ins and
some of those performed automated evaluation of programming style. After
several evaluation system improvement iterations its component scheme is as
illustrated in fig. 8.

The Development of IT VBE Practical Task Evaluation System
IT VBE syllabus allowed to use Pascal as well as C++ programming languages
during the maturity exam. The flexibility allowing the students to choose
between two programming languages stimulated adaptation of the evaluation
system to the new situation.

18



«executable»

Evaluator data view

«executable»

Administration of evaluators

«library»

Manual evaluation components; text editor

«table»

Student submissions and points

«library»

Automatic evaluation

«executable»

Static analysis plugins

«library»

Local storage of student submissions and

points

«library»

Submission compilation

«library»

Submission runing sandbox«library»

Submission output automatic evaluation

«table»

Assignments and tests

Figure 8: Component scheme of semi automated testing system

There were developed many systems for automated testing of students’
programs. Often they are multilingual, i.e. they can be used for testing pro-
grams written in different languages. However this is common for the systems
that use dynamic analysis and in particular black-box testing. Adaptation of
other systems is a complicated process as it requires extensive analysis of each
newly added language, it also requires complicated programming, and there-
fore such adaptation is rarely performed. The adaptability of semi-automated
evaluation systems to new programming languages has not been investigated.
Multilingualism is common in programming contests, however rear in pro-
gramming exams.

I conducted an empirical research of theoretical possibilities to adapt cur-
rent IT VBE semi-automated practical task evaluation system to new program-
ming languages. The analysis and modification of IT VBE was performed.
The programming language choices of some winners of Lithuanian informatics
Olympiads were investigated; the survey of some selected students was per-
formed and analyzed. There were assessed the threats of multilingualism in IT
VBE to the fairness of evaluation. Methodology for diagnosing and decreasing
such threats was prepared as well.

After analyzing IT VBE program evaluation system it was concluded that
the system is closely related to Pascal programming language: it does not
allocate task based on programming language, program text display and mod-

19



ification component uses Pascal syntax highlighting, it is closely related to
FreePascal compiler, programming style analysis is performed using special
static analysis plug-in which is not suitable for other programming languages.

After preliminary analysis of IT VBE evaluation system, there was per-
formed a comprehensive analysis of source code of all the system as well of its
all modules: The following modules were identified as strongly connected with
Pascal programming language:

• storage of student programs module;
• user interface functionality that enables display and review of the orig-

inal and the modified programs;
• student program compilation module;
• student program execution module;
• student program static analysis plug-ins.

When modifying the evaluation system, I made efforts not change the user
interface significantly and to maintain the system functionality. The majority
of changes were made not in the commonly used user interface parts.

Static analysis plug-ins caused major difficulties when adapting the system
to the new programming language. Some plug-ins were disabled due to limited
possibilities to use them with several languages. An example of such disabled
plug-in is programming style evaluation plug-ins. One of the reasons for this
decision was that there are many commonly accepted C++ coding style and
program text layout conventions and it is hard to find common rules except
for being consistent. On the other hand Codeblocks IDE which is used during
the exam provides automatic source code layout.

4. Experimental part
For the experimental study of the method, IT VBE practical task eval-

uation software was used. The software has been used for the evaluation of
maturity exam for six years. Each year around 2,400 programs developed dur-
ing graduation exam by high school graduates are evaluated using the software
with the implemented method. All the programs submitted for evaluation are
graded twice. In case of significant (3 or more points) difference in mark-
ing between different evaluators, the submission is re-evaluated by the third
evaluator. The latest mark is accepted as final.

The team of evaluators consist of about 30 people. The evaluation session
lasts one week (five working days). Evaluators are selected from IT teachers
working at middle schools and high schools as well as university teachers. The
team of evaluators is rather stable: annually change up to three evaluators.

During the evaluation, the evaluators get the packages with student sub-
missions each package containing 10 submissions. The packages are distributed
randomly however the same evaluator cannot get the same package for a sec-
ond time.

20



Experimental Research of the First Defended Statement

Defended Statement No1. The evaluation of submissions (programs) to IT
VBE practical assignments is more effective (i.e. faster) by applying the im-
proved semi-automated evaluation method if compared to that using manual
evaluation.

Quantitative statistical research was chosen to test the hypothesis. It was
tested the speed of evaluation by evaluating 50 programs designed by high
school students both in the proposed semi-automated evaluation and manually.
The evaluators answered the questions about the time spent for evaluation.

It has been experimentally investigated the average time it takes for the
evaluator to evaluate a package containing submissions of ten students using
IT VBE practical task evaluation software and the average time it takes if the
evaluator is provided only a standard IDE.

The choice of the evaluators and measurement of their working time was
seriously considered, because:

• the efficiency of different evaluators is different. The amount of evalu-
ated programs during one week evaluation session differs twice between
the fastest and the slowest evaluators.

• the efficiency of the evaluators rises during the evaluation week. This
is due to the improving evaluation software usage skills and due to the
adaptation to evaluate the programs solving particular task.

• there is possibility to conduct the experiment of manual evaluation,
because the work is very intense, the time for the evaluation of maturity
exam submissions is strictly limited and all the submissions have to be
evaluated during the evaluation session.

To the experiment there were invited five average speed evaluators. The
difference in the amount of evaluated programs during the evaluation session
did not exceed 70. The working speed of the evaluators that participated in the
research is presented in fig. 9: the average amount of the evaluated programs
equals 190.

The evaluators participating in the experiment were asked to conduct ex-
perimental manual evaluation one month after the evaluation session was over.
This ensured that the skills to evaluate concrete task gained during the IT VBE
exam evaluation would be lost to some extent. The survey of the evaluators
conducted right before the experiment revealed that they little remembered
evaluation criteria and instructions as well as typical mistakes encountered in
the submitted programs.

The five packages to be evaluated during the experiment were chosen from
the IT VBE practical task submission packages assigned for evaluation on the
morning of the second day of the evaluation week. The motivation for this
was that during the first day much time is spend to improving evaluation
instructions, trial evaluation. Regular evaluation starts on the second day.

The second criterion for choosing the packages was assigned grades. The

21



0

1

2

3

4

5

6

12 13 14 15 16 17 18 19 21 22 23 26 29 30

Number of packages (aprox. 10 programs/package)

N
u

m
b

er
 o

f 
ev

al
u

at
o

rs

Figure 9: Histogram of the working speed of the evaluators in
2012 during IT VBE evaluation session. The evaluators invited
to the experiment are shaded black.

submissions that are evaluated fastest are those which pass all the tests suc-
cessfully or those alike to "Hello world" program (i.e. containing no solution).

The third criterion for the choice of the package was the requirement that
at least one of the evaluators participating in the research had evaluated it
during the exam session. This (i.e. the same packages were given to the
same evaluators for re-evaluation) was done deliberately to ensure that the
packages contain submissions requiring the same amount of efforts to evaluate
them. The evaluators stated that they did not recall that they had already
graded those packages.

After comparing the required evaluation time of each of the five evaluators
(table: 1) if can be stated that manual evaluations of an evaluation package
requires 43 to 117% more working time. The decrease of the evaluation time
using the proposed semi-automated evaluation method and the corresponding
software is significant and confirms the first hypothesis.

Experimental Research of the Second Defended Statement

The quality of evaluation of IT VBE practical tasks using the proposed semi-
automated testing method is not worse than or the same as that using manual
or fully automated evaluation.

The defended statement was investigated using qualitative research, com-
parative analysis and surveys. Several different research methods were chosen
because it was required to compare the quality of evaluation using very differ-
ent evaluation methods.

The author of the thesis claims that the evaluation performed by a high
quality expert can be considered as benchmark. Many evaluation criteria ap-
plied when evaluating submitted programs cannot be implemented automati-

22



Evaluator No. of
programs
evaluated in
eval. session

Semi-
automated
evaluation,
hours

Manual
evaluation,
hours.

Time ratio,
manual/semi-
aut.

A 140 01:38 02:20 1.43
B 210 01:15 01:50 1.47
C 180 01:20 02:35 1.94
D 210 00:50 02:00 2.40
E 160 00:53 01:55 2.17

Total 05:56 10:40 1.80

Table 1: Comparative data of time required for evaluation when evalu-
ating a package of ten programs in the semi-automated and the manual
ways

cally. Moreover modern programming languages are improved to be convenient
for the user, therefore only the user can fully understand the peculiarities of
the program designed by another user.

A comparative analysis of final grades of 50 evaluated programs was per-
formed. One part of grades was obtained by manual evaluation during the
above described experimental research. The other part of grades was obtained
by applying semi-automated evaluation during the evaluation session of IT
VBE. Responses of the evaluators to the survey were also included into the
research. IT VBE evaluators indicated in the open questions of the survey
that using IT VBE semi-automated evaluation system allows them "to per-
form evaluation faster". The respondents considered the evaluation system as
an aid to manual evaluation, i.e. the user interface and the functionalities do
not influence the quality of evaluation.

During the evaluation of IT VBE submissions, the submissions which were
graded with 2 or more points difference by two different evaluators are assigned
for grading for the third time. When comparing manual and semi-automated
evaluation results, 12% of submissions (6 cases) had 2 or more point difference
and were re-evaluated. This is a lower number than in IT VBE evaluation
session in 2012, where 22.8% submissions were re-evaluated. It can be con-
cluded that the grades assigned by manual and semi-automated evaluation
are similar and this proves the second defended statement that the quality of
semi-automated evaluation using the proposed method is not worse than that
of manual evaluation.

Comparison of quality of evaluation IT VBE practical task submissions
when applying IT VBE semi-automated evaluation software to that of auto-
mated evaluation

I analyzed IT VBE’2010 practical task submissions with maximum points
from at least one evaluator for all alternative criteria. Table 2 contains the
data about the scope of the exam and the number of analyzed programs.

23



Submitted total Submissions with points for altern. criteria

First task 1224 34
Second Task 1019 62

Both tasks 2243 96

Table 2: Statistical data about the submissions of IT VBE’2010

Submissions described above were chosen for the research because the eval-
uators considered them to be close to the working ones (otherwise those sub-
missions would not have received many alternative points). Such programs
comprise about 5% from all submissions and confirm the assumption that the
quality of automated evaluation is not satisfactory for the evaluation of IT
VBE.

This research revealed different attitudes of the evaluators, because not
in all cases both evaluators assigned full points for alternative criteria. The
criteria for which such grades differed were investigated more thoroughly. The
reasons for different grading were ambiguous criteria and subjectivity of the
evaluators. An example of ambiguous criterion could be "Global variables are
not used". If a program included a global array different evaluators interpreted
that differently. Another example could be the criterion "Initializing sum
variable". Some evaluators assumed that global variables do not have to be
initialized, because they are initialized automatically by FreePascal compiler.

I also analyzed typical errors and the reasons why the programs did not get
the points for testing. The following reasons were discovered: using different
dialects of Pascal, inattentive commenting, errors done in a hurry (e.g. wrong
file names).

Another interesting founding was that the difference between grades as-
signed during the third and the second evaluation was lower than between
the grades assigned during the second and the first evaluation. This can be
explained by the increasing qualification of the evaluators for the given task.

I also analysed histogram of semi-automatic evaluation results for the year
2010 exam. Use of improved method enabled to spread results wider in the his-
togram. This helps to rank students in better way, so the quality of evaluation
is better.

The summarized results of the experimental research are as follows:

• The developed IT VBE practical task evaluation software has imple-
mented the proposed semi-automated testing and evaluation method.

• Approximately 10 000 programs have been evaluated using this system
since 2006.

• The evaluation efficiency increase obtained by applying the proposed
semi-automated testing and evaluation method has been investigated.
It has been concluded that the evaluation is performed 1.4–2.2 times

24



faster if the proposed semi-automated evaluation is applied instead of
manual evaluation.

• I analyzed evaluation quality when applying the new semi-automated
testing and evaluation method. The analysis confirmed that the evalu-
ation quality when using the proposed evaluation method is not lower
than that when using manual evaluation, and the evaluation quality is
lower if compared to typical automated and semi-automated evaluation
(especially if the programs being evaluated are not functional).

5. Possible Applications of Proposed Semi-Automated
Evaluation Method

The proposed improved semi-automated evaluation method does not cre-
ate separate class of evaluation methods and software, but rather should be
considered as collection of improvements to typical semi-automated evalua-
tion systems. Therefore it is easily implementable into other semi-automated
evaluation systems with clearly defined teacher-evaluator role.

In order to confirm the assumption above there were made the experiments
with e-learning environment Moodle plug-in. That was made in accordance
with Edujudge project. The required software enabling the suggested method
was implemented in the plug-in and it turned out that this was rather easy from
the technical point of view. Most problems arose from the fact that the use of
data from the teachers’ side had to be changed. The teacher role did not have
a foreseen functionality neither to edit the submissions of the students, nor to
evoke the automated program testing module. Therefore in the experimental
Edujudge module the teacher and the student roles intertwined.

Implementation of distributed response evaluation program did not cause
problems. It was partly because the module is very isolated and has no direct
relationship with the whole system, makes no direct changes to the database
and works only on demand of the central testing system part. The main
problem remained to ensure delivery of detailed feedback to the students and
the teachers.

Other direction of application of new semi-automatic method may have
good educational implication. The quality of feedback is highly important
factor of learning efficiency. Often the feedback consists of summary of testing
(passed/failed tests), the number of assigned points and a phrase from pre-
defined dictionary. Meanwhile, the application of this method can allow to
return the corrected functioning program in a form of feedback. The sequence
in which the evaluator made the corrections until the program started func-
tioning is also important. If that sequence is returned as feedback it can show
the student the way the evaluator was thinking and searching for bugs and
mistakes and teach the student to search for mistakes as well.

25



Results and Conclusions
• I investigated and classified the functionalities of modern automatic and

semi-automatic programming assignments testing systems and discov-
ered that this class of software still encounters a lot of problems, the
systems are being improved and new testing systems are being devel-
oped.

• There is little research on semi-automated evaluation systems in the
scientific papers. I discovered no research on the interaction between
the evaluation results provided by the automatic evaluation system and
the manual evaluation results.

• Improvements to semi-automatic evaluation method presented in this
work allows the evaluator to use automatic testing system interactively,
to carry out the experiments with the program being evaluated, to an-
alyze interactively the consequences of the errors discovered in the pro-
grams of the students, and to consider the weights of the mistakes made
by the students.

• Lithuanian Information Technology State Matura exam practical task
assessment software presented in this work implements the proposed
semi-automatic evaluation method. The system has been used success-
fully by the National Examination Centre; it is constantly being im-
proved, adapted to the changing needs.

• I compared the effectiveness of manual evaluation method to proposed
semi-automated evaluation method. The efficiency increased from 1.4
to 2.2 times.

• Qualitative analysis of evaluation results shows that results obtained
by using the proposed semi-automatic evaluation method and the auto-
matic testing differ significantly. It was confirmed that the application
of the proposed method resulted in higher quality of evaluation.

The Practical Value of the Results
The created method has been implemented into the Evaluation system for

Lithuanian Information Technology Maturity Exam. This raised the efficiency
of the evaluation several times.

The method has also been also been implemented and tested in the Edu-
judge plug-in to the learning management system Moodle. The experiment
confirmed that the improved semi-automatic evaluation method can be easily
implemented in other systems.

26



List of Literature, referenced in this Summary

Ala-Mutka, K. (2005). A survey of automated assessment approaches for
programming assignments. Computer Science Education, 15(2):83–102.
8, 9

Douce, C., Livingstone, D., and Orwell, J. (2005). Automatic test-based assess-
ment of programming: A review. ACM Journal of Educational Resources
in Computing, 5(3):1–13. 8

Hollingsworth, J. (1960). Automatic graders for programming classes. Com-
munications of the ACM, 3(10):528–529. 8

Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. (2010). Review of
recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli Calling International Conference on Com-
puting Education Research, Koli Calling ’10, pages 86–93, New York, NY,
USA. ACM. 8

Kasanen, E., Lukka, K., and Siitonen, A. (1993). The constructive approach
in management accounting research. Journal of Management Accounting
Research, 5:243 – 264. 6

Liang, Y., Liu, Q., Xu, J., and Wang, D. (2009). The recent development
of automated programming assessment. In Computational Intelligence
and Software Engineering, 2009. CiSE 2009. International Conference
on, pages 1 –5. 8

Queirós, R. and Leal, J. P. (2012). Programming exercises evaluation systems
- an interoperability survey. In CSEDU (1), pages 83–90. 8

Romli, R., Sulaiman, S., and Zamli, K. (2010). Automatic programming assess-
ment and test data generation a review on its approaches. In Information
Technology (ITSim), 2010 International Symposium in, volume 3, pages
1186 –1192. 8

27



Presentations in Scientific Conferences
• 12th International Conference on Computer Systems and Technologies,

CompSysTech’2011, Vienna, Austria, Vienna University of Technology.
• 2nd International Conference Social Technologies’2011: ICT for Social

Transformations, Vilnius, Lithuania, Mykolas Romeris University,
Faculty of Social Informatics.

• 15th International Scientific Conference "Computer Days – 2011",
Klaipėda, Lithuania, Klaipėda University.

• 10th International Conference on Computing Education Research, "Koli
Calling 2010", Koli National Park, Finland.

• 51st Conference of the Lithuanian Mathematical Society, 2010, Šiauliai,
Lietuva, Šiauliai University.

• 14th Annual Conference on Innovation and Technology in Computer
Science Education ITiCSE’2009, Paris, France, Université Pierre et
Marie Curie.

• 14th International Scientific Conference "Computer Days – 2009",
Kaunas, Lithuania, Kaunas University of Technology.

• 8th International Conference on Computing Education Research, "Koli
Calling 2008", Koli National Park, Finland.

Publications printed in the peer-reviewed periodicals:
• SKŪPAS Bronius (2011). Pasikeitimų IT valstybiniame brandos

egzamine analizė. Informacijos mokslai, ISSN 1392-0561, 57, 115–123.

• SKŪPAS Bronius (2010). Feedback improvement in automatic
program evaluation systems. Informatics in Education, ISSN 1648-5831,
Vol. 9, N. 2, 229–237.

• SKŪPAS Bronius (2010). Automatinio ir pusiau automatinio
vertinimo ypatumai IT valstybiniame brandos egzamine. Lietuvos
matematikos rinkinys, ISSN 0132-2818, 51, 154–159.

• POHL Wolfgang, BURTON Benjamin A., DAGIENE Valentina,
SKŪPAS Bronius, FAKCHAROENPHOL Jittat, FORIŠEK Michal,
HIRON Mathias, OPMANIS Martinš, van der VEGT Willem (2010).
Get Involved! The IOI Workshop 2010, Its Goals and Results.
Olympiads in Informatics, ISSN 1822-7732, Vol. 4, 158-169.

• SKŪPAS Bronius, DAGIENĖ Valentina, REVILLA Miguel (2009).
Developing Classification Criteria for Programming Tasks. ACM
SIGCSE Bulletin, ISSN 0097-8418, Vol. 41, N. 3, 373–373

• SKŪPAS Bronius (2009). Automatinio mokinių programų vertinimo
sistemų lyginamoji analizė. Informacijos mokslai, ISSN 1392-0561, 50,
147–152.

28



Other publications:
• DAGIENĖ Valentina, SKŪPAS Bronius (2011). Semi-Automatic

Testing of Program Codes in the High School Student Maturity Exam.
Proceedings of the 12th International Conference on Computer Systems
and Technologies, (ACM International Conference Proceedings Series
Vol. 578), ISBN 978-1-4503-0917-2, 564–569.

• VERDÚ Maria P., VERDÚ Elena, de CASTRO Juan P., PÉREZ
Maŕıa Á., REGUERAS Luisa M., DAGIENĖ Valentina, SKŪPAS
Bronius (2010). Making a Contest with Edujudge and Questourna-
ment. Edujudge System Handbook: How to Organize Programming Com-
petitions in Moodle Courses, ISBN 978-84-937580-4-2, 99–128.

• SKŪPAS Bronius, DAGIENĖ Valentina (2010). Observations from
Semi-Automatic Testing of Program Codes in the High School Stu-
dent Maturity Exam. Proceedings of the 10th Koli Calling International
Conference on Computing Education Research, ISBN 978-1-4503-0520-4,
31–36.

• DAGIENĖ Valentina, DAGYS Viktoras, SKŪPAS Bronius (2009).
..EduJudge“ projektas programavimo kompetencijoms gerinti.
Kompiuterininkų dienos–2009, Informacinės ir komunikacinės
technologijos mokykloje, 162–164.

• SKŪPAS Bronius, DAGIENĖ Valentina (2008). Is Automatic
Evaluation Useful for the Maturity Programming Exam? Proceedings of
8th International Conference on Computing Education Research, ISBN
978-1-60558-385-3, 117–118.

About the Author
Bronius Skūpas was born in Lithuania in Vilnius on 20 August 1974.
In 1992, he graduated from Vilnius 41 secondary school. In 1996 he

acquired Bachelor’s Degree in Informatics from Vilnius University Faculty of
Mathematics. He gained Master’s Degree in Informatics at Vilnius University
Faculty of Mathematics in 1998. In 2011 he gained qualification of a senior
teacher of Information Technology.

From 2008 to 2012 he has been at PhD studies in Vilnius University
Institute of Mathematics and Informatics.

29



Reziume

Darbo aktualumas
Programinės įrangos kūrimo tempai spartėja ir tam reikalingi vis nauji

informacinių technologijų (IT) profesionalai: projektuotojai, programuotojai,
testuotojai. Šie būsimi darbuotojai dar mokyklose supažindinami su IT prad-
menimis, programavimo pagrindais. Jie taip pat mokosi savarankiškai, tęsia
mokslus aukštosiose mokyklose.

Programavimo mokymas yra sudėtingas procesas, nes jis sietinas ir su
kūrybišku mąstymu, ir su griežtai formalizuojamomis užduotimis, praktiniais
programavimo darbais. Mokiniai ir studentai (toliau mokiniai) turi būti moko-
mi kurti ne tik veikiančias, bet ir kokybiškai suprojektuotas, patikimas, teisin-
gai veikiančias programas. Mokinių sukurtų programų patikrinimas bei įver-
tinimas reikalauja daug mokytojo ar dėstytojo pastangų ir laiko.

Siekiant galimybės daliai vertinimo kriterijų taikyti automatinį programų
testavimą programavimo užduotys yra griežčiau specifikuojamos, t.y. tiksliai
nurodoma, iš kokių duomenų ir kokius rezultatus reikia gauti, dažnai nurodo-
mi darbo metodai ar dalis naudotinų algoritmų. Tai leidžia vertinimo metu
taikyti faktų tikrinimo metodą. Tiksliai identifikuotas galimas patikrinti fak-
tas vadinamas vertinimo kriterijumi.

Vertinimo kriterijų, tinkamų automatiniam testavimui, atpažinimas yra
svarbus, nes jis leidžia vertinti darbus efektyviau. Taip pat tai leidžia sukurti
mokymo modelius, kuriuose didžioji techninio darbo dalis atliekama automa-
tizuotai ir mokytojas gali koncentruotis į svarbiausias mokymo problemas.

Automatinis programavimo užduočių sprendimų testavimas aktualus ne
vien tik mokymo proceso metu, bet ir per programavimo egzaminus, pro-
fesinius programavimo žinių patikrinimus, priimant į darbą, organizuojant
programavimo varžybas.

Daug autorių pastebi, kad visiškai automatinis testavimas, besiremiantis
statine bei dinamine analize, negali būti pilnai objektyvus. Todėl pasitelkia-
mas pusiau automatinis testavimas, kuris leidžia lanksčiau naudotis automa-
tinio testavimo privalumais.

Darbe tiriamos galimybės naudoti pusiau automatinio mokinių parašytų
programų testavimo sistemas programavimo mokymo mokyklose, nuotolinio
mokymo, taip pat varžybų ir egzaminų kontekstuose. Taip pat analizuotos
pasitaikančios vertinimo klaidos. Pasinaudojant žinomais vertinimo procesais
sukurtas naujas metodas tikslesniam ir greitesniam testavimui bei vertinimui.

Darbo tikslai ir uždaviniai
Darbo tyrimų objektas yra automatinės ir pusiau automatinės programa-

vimo užduočių testavimo sistemos, jų architektūra, veikimo metodai ir algo-
ritmai, sąveika su vartotojais.

30



Darbo tikslas: išanalizavus esamas automatines ir pusiau automatines pro-
gramavimo užduočių vertinimo sistemas susisteminti architektūrinius sprendimus
ir sukurti vertinimo metodą, kuris patobulintų sistemos-vertintojo sąveiką ir
padidintų vertinimo efektyvumą ir kokybę.

Darbo uždaviniai:

1. Atlikti automatinių ir pusiau automatinių programavimo užduočių tes-
tavimo sistemų teorinių ir eksperimentinių pasiekimų analizę.

2. Ištirti automatinių ir pusiau automatinių programavimo užduočių tes-
tavimo sistemų savybes, jų sąsajų su vartotojais ypatumus bei teikiamas
paslaugas, išskirti ir susisteminti šių programų sistemų metodines ir ar-
chitektūrines problemas.

3. Pasiūlyti patobulintą metodą pusiau automatiniam programavimo už-
duočių vertinimui ir testavimui, kuriuo remiantis būtų galima pagerinti
darbų vertinimo kokybę bei efektyvumą.

4. Atlikti pasiūlyto metodo tyrimą konstravimu ir įvertinti metodo teikia-
mas naujas galimybes.

Darbo rezultatų aprobavimas
Sukurtas metodas pritaikytas Lietuvos valstybinio informacinių technolo-

gijų brandos egzamino praktinės dalies vertinimo sistemoje. Jo naudojimas
kelia egzamino vertinimo efektyvumą keletą kartų.

Metodas taip pat bandytas su virtualios mokymosi sistemos Moodle siste-
mos Edujudge įskiepiu, sukurtu pagal ES finansuotą projektą. Įskiepis tobulin-
tas siekiant mokytojo komfortiškesnio vertinimo ir mokiniui aiškesnių vertini-
mo rezultatų pateikimo. Įsitikinta, kad metodas gali būti nesunkiai diegiamas
ir kitose sistemose.

Skaityti 3 pranešimai Lietuvos konferencijose, 6 pranešimai tarptautinėse
konferencijose. Publikuoti 6 straipsniai recenzuojamuose periodiniuose lei-
diniuose ir 4 straipsniai atspausdinti tarptautinių konferencijų leidiniuose ir
patalpinti ACM duomenų bazėje. Be to, yra 2 publikacijos knygose.

Disertacijos struktūra
Darbą sudaro: terminų ir santrumpų žodynėlis, penkios pagrindinės dalys

– skyriai, išvados ir rezultatai, naudotos literatūros sąrašas ir priedai.
Pirmajame skyriuje pateikiamas darbo įvadas. Pristatomas darbo aktu-

alumas, tyrimų objektas, darbo tikslai ir uždaviniai, tyrimų metodai, mokslinis
naujumas, praktinė darbo reikšmė, ginami teiginiai ir darbo aprobavimas.

Antrajame skyriuje pateikiama informacija apie automatines ir pusiau au-
tomatines programų testavimo sistemas, pateikiama medžiaga apie atliktą šias
sistemas aprašančių straipsnių analizę. Taip pat pateikiama informacija apie

31



dabartinių sistemų klasifikavimą, jų veikimo principus ir pasirinktų sistemų
lyginamoji analizė.

Trečiajame skyriuje detalizuojamas tyrimo konstravimu darbo planas, iške-
liamos darbinės hipotezės, abstrahuojami reikalavimai kuriamam metodui,
paaiškinami konkrečios kurtos sistemos techniniai reikalavimai ir metodo kūri-
mo eiliškumo tvarka pateikiami projektiniai metodo sprendimai. Taip pat pris-
tatoma, kaip kintantys reikalavimai egzamino vertinimui ir vykdymui įtakoja
metodo sprendimus, bei grąžina į sistemos perprojektavimo fazę.

Ketvirtajame skyriuje pateikiama informacija apie atliktus eksperimen-
tinius sukurto metodo efektyvumo ir jo taikymo kokybės tyrimus.

Darbo pabaigoje pateikiamas rezultatų apibendrinimas ir išvados.
Prieduose pateikiama: egzamino sąlygų ir vertinimo schemų pavyzdžiai,

klausimynas vertintojams.

Trumpos žinios apie autorių
Bronius Skūpas gimė 1974 m. rugpjūčio 20 d. Vilniuje. 1992 m. baigė Vil-

niaus 41-ąją vid. mokyklą (dabar Karoliniškių gimnazija). 1996 m. Vilniaus
universiteto matematikos fakultete įgijo informatikos bakalauro kvalifikacinį
laipsnį. 1998 m. Vilniaus universiteto matematikos fakultete įgijo informatikos
magistro kvalifikacinį laipsnį. 2001 m. Vilniaus licėjuje įgijo informatikos
vyresniojo mokytojo kvalifikacinę kategoriją. 2011 m. Vilniaus licėjuje įgi-
jo informacinių technologijų mokytojo metodininko kvalifikacinę kategoriją.
2008–2012 m. doktorantas Vilniaus universiteto Matematikos ir informatikos
institute.

32


