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Introduction

Research Area and Topicality of the work
Optimization problems in research and practice are known from ancient times. Nowa-
days a lot of various optimization methods help us solve optimization problems in
various fields such as chemistry, biology, biomedicine, operational research, etc.

Normally it is easier to solve optimization problems having some specific proper-
ties of objective function such as linearity, convexity, differentiability, etc. However,
there are a lot of practical problems that do not satisfy such properties or even cannot
be expressed in an adequate mathematical form. Moreover non-convex optimization
problems may have several local solutions, and finding the best one is a hard task.
Therefore, it is popular to use random search optimization methods in solving such
optimization problems.

Modern parallel computing technologies allow us to solve optimization problems
requiring a lot of computational recourses. The relevant problem is decomposition
of the optimization problem into independent tasks and their optimal distribution
among processors with respect to minimize costs of communication between proces-
sors.

The area of this research work is random search global optimization methods, their
parallelization and application in solving practical global optimization problems.

Research Object
The research object of the work is as follows:

• random search algorithms for global optimization;

• parallel computing systems;

• methods for generation of random numbers’ sequences.

The Aim and Tasks
The aim of the dissertation is to modify existing random search algorithms for global
optimization and propose new parallel algorithms in order to solve global optimiza-
tion problems more efficiently. The following tasks were formulated in order to reach
the aim:

1. to review the existing random search algorithms for global optimization and
define the group of algorithms to be investigated;

2. to investigate opportunities and existing methods for generation of random
numbers in parallel computing systems;

3. to modify and parallelize relevant algorithms in order to solve global optimiza-
tion problems more efficiently with respect to software and hardware being used
and the problem being solved;

4. to investigate experimentally the efficiency of proposed algorithms;
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5. to compare the achieved results with other well known random search algorithms
for global optimization;

6. to investigate the opportunities of application of the proposed algorithms for
solution of practical global optimization problems.

Scientific Novelty
Modification of the Particle Swarm Optimization algorithm for Multiple Gravity
Assist problem, based on reduction of the search area has been proposed. Several
strategies to exchange data between processors in parallel version of Particle Swarm
Optimization algorithm have been investigated.

The algorithm for local multi-objective optimization, based on single agent
stochastic search strategy, has been proposed and incorporated into Non-dominated
Sorting Genetic Algorithm, thus developing a hybrid algorithm for global multi-
objective optimization.

The strategy to parallelize Pareto ranking of solutions in multi-objective opti-
mization algorithms has been proposed and applied to develop a parallel version of
the algorithm, suited for computations in both distributed and shared memory paral-
lel computing systems. The efficiency of parallel algorithm has been experimentally
investigated by solving multi-objective optimization problems on up to 2048 proces-
sors.

Defending Propositions
1. Appropriate reduction of the search space can significantly increase the perfor-

mance of Particle Swarm Optimization algorithm when solving Multiple Gravity
Assist problem.

2. The proposed hybrid algorithm for global multi-objective optimization effi-
ciently solves various multi-objective optimization problems used in the ex-
perimental investigation.

3. The proposed strategies for modification and parallelization of Non-dominated
Sorting Genetic Algorithm solves efficiently multi-objective optimization prob-
lems on high performance computing systems.

4. Proposed random search global optimization algorithms solve efficiently Multi-
ple Gravity Assist and multi-objective Competitive Facility Location problems.

Approbation and Research Publications
Results of the research have been published in 6 scientific papers: 4 articles in the
periodical scientific publications; 2 articles in the proceedings of scientific conferences.
The main results have been presented in 10 national and international scientific
conferences and workshops.
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The Contents of the Work
The dissertation consists of introduction, 3 main parts and the general conclusions.
The dissertation also includes a list of figures, list of notations and abbreviations,
and the list of references. The scope of the work is 106 pages that include 37 figures,
10 tables and 4 algorithms. The list of references consists of 77 sources.

1 Random Search Methods for Global Optimization
Global optimization problems can be found in various fields of science and industry,
i.e. mechanics, economics, operational research, control engineering, project man-
agement, etc. In general, global optimization is a branch of applied mathematics
that deals with finding “the best available” (usually minimum or maximum) values
of a given objective function. Without reducing the generality we will focus on the
case of minimization, since any maximization problem can be easily transformed to
a minimization one.

Mathematically, a global optimization problem with d variables is to find the value

f∗ = min
x∈D

f(x) (1)

and a decision vector x∗ ∈ D such that

f(x∗) = f∗, (2)

where f(x) is an objective function which is subject to minimization while variable
vector x = (x1, x2, . . . , xd) varies in a search space D ∈ Rd, and d defines the number
of variables.

Relevant application of global optimization is solution of Multiple Gravity Assist
(MGA) problem. This problem is very important in analysis and planning of mission
of launching a spacecraft along a trajectory which leads to some astronomical body.
The aim of the mission is to land on or to put the spacecraft into orbit of the body.
Global optimization methods are used to help trajectory planners in choosing the best
decision on the starting date and other relevant parameters subject to minimization
of costs of the mission.

There are a lot of methods and algorithms proposed to solve various optimiza-
tion problems, including MGA, however dissertation is focused on random search
algorithms. One of them is Single Agent Stochastic Search (SASS).

SASS is based on selection of new solution within neighborhood of the best so-
lution found so far. A neighbor solution is calculated by adding random vector ξ to
the solution x which has the best fitness value. The vector ξ is generated utilizing
Gaussian perturbations. If the new candidate solution x′ = x + ξ does not improve
fitness value of solution x then the opposite candidate solution x′′ = x−ξ is evaluated.
The values of bias and standard deviation of the random perturbation are adjusted
dynamically depending on successes and failures in selection of neighbor solutions.

SASS has been designed for local single-objective optimization. One of the most
popular random search algorithm Another relevant random search algorithm is Parti-
cle Swarm Optimization (PSO). PSO is population-based algorithm, and begins with
a population (swarm) of randomly generated candidate solutions (particles). Parti-
cles “fly” through the search space with velocities which are dynamically adjusted
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according to historical behaviors – the best position that is found by a particular
particle and the best position which is found by the whole swarm.

Another relevant population-based optimization algorithm is Genetic Algorithm
(GA). Algorithm begins with population of randomly generated candidate solutions
(parents). New candidate solutions (offsprings) are generated by applying crossover
operator to the randomly selected parent solutions. Obtained offsprings are mutated
by making small changes of values of variables.

Real-world optimization problems often deal with more than one objective func-
tions that are conflicting to each other – improvement of one objective can lead to
deterioration of another. Such type of optimization problems are known as Multi-
objective Optimization Problems.

Mathematically, a multi-objective optimization problem with d variables and m
objectives in the objective vector

F (x) = (f1(x), f2(x), . . . , fm(x)) (3)

is to simultaneously optimize all objectives:

F ∗ = min
x∈D

F (x). (4)

Since there exist conflicts among objectives, it is natural that a single best solution
according to all objectives does not exists. However, a set of Pareto optimal solutions,
which cannot be improved by any objective without reducing the quality of any
another, may be found.

In multi-objective optimization two different solutions can be compared by their
dominance relation. They can be related to each other in a couple of ways: either
one dominates the other or none of them is dominated by the other.

It is said that solution x1 dominates solution x2 if

(1) solution x1 is not worse than x2 by all objectives and

(2) solution x1 is strictly better than x2 by at least one objective.

The relation is denoted by x1 � x2 and mathematically can be described as

x1 � x2 ⇔

{
∀i ∈ (1, . . . ,m) fi(x1) ≤ fi(x2)

∃j ∈ (1, . . . ,m) fj(x1) < fj(x2)
(5)

If (5) is satisfied then solution x1 is dominator of solution x2. The solution which
has no dominators is called non-dominated or Optimal in Pareto sense. If neither
x1 � x2 nor x2 � x1 is not satisfied then the solutions x1 and x2 are called indifferent
and denoted by x1 ∼ x2.

The set of all non-dominated solutions are called Pareto Set, and the correspond-
ing set of objective vectors – Pareto Front.

Global multi-objective optimization methods are relevant in solving Competitive
Facility Location (CFL) problems. Consider several firms which provide some goods
or service to customers in a certain geographical area. One of the firms, called the
expanding firm (denoted by A) wants to locate new facilities in order to increase
its market share in that area. The new facilities may capture customers that were
served by the other firms as well as customers which were served by the preexisting
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facilities of the expanding firm. Therefore, the expanding firm is also interested in
minimizing the lost of market share of its preexisting facilities. Thus firm A faces a
bi-objective optimization problem.

Usually it is hard and time consuming to find the true Pareto front therefore a lot
of multi-objective optimization algorithms are try to approximate the Pareto-optimal
front.

One well known random search algorithm for multi-objective global optimization
is Non-dominated Sorting Genetic Algorithm (NSGA-II). It is based on obtaining a
new offsprings’ population Q by applying genetic operators to the parent solutions
from population P . Both populations P and Q are then merged into one population
R, which individuals are sorted according to Pareto ranks and reduced by remov-
ing half most dominated solutions. The reduced population R is used as a parent
population P in the next generation.

2 Modification and Parallelization of the Algorithms

Modification and Parallelization of PSO algorithm
PSO algorithm has been modified by involving the reduction of the search area.
Suppose the primary search area is

D = [xLB1 , xUB
1 ]× [xLB2 , xUB

2 ]× . . .× [xLBd , xUB
d ], (6)

where xLB1 , xLB2 , . . . , xLBd and xUB
1 , xUB

2 , . . . , xUB
d are respectively lower and upper

bounds for values of variables x1, x2, . . . , xd, d – the number of variables. The new
search area

D̃ = [x̃LB1 , x̃UB
1 ]× [x̃LB2 , x̃UB

2 ]× . . .× [x̃LBd , x̃UB
d ] (7)

is calculated by

x̃LBi = pgi − δi,
x̃UB
i = pgi + δi, (8)
δi = cr(x

UB
i − xLBi ),

where pgi – value of i-th variable of the best solution found so far, cr ∈ (0, 1) –
coefficient of the reduction, i = 1, 2, . . . , d. The smaller reduction coefficient leads to
a smaller new search area.

Reduction of the search area is performed after a predefined number EG of func-
tion evaluations. After the reduction, optimization process continues by generating
population of candidate solutions, satisfying new search area D̃. The reduction pro-
cedure is illustrated in Figure 1.

PSO requires a lot of computational resources, especially if large population is
used. On the other hand population-based algorithms are intrinsically parallel. The
population of particles can be divided into subpopulations and distributed among
the processors for evaluation of values of objective functions.

The main performance bottleneck in parallel computational environment is often
communication latency between processors. Therefore, it is very important to design
an efficient strategy for data exchange among processors in order to obtain efficient
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parallel algorithm. The following strategies to exchange data between processors
have been investigated in the dissertation.

Synchronous master-slave (sMS). One of processors (the master) controls data
exchange. At the end of iteration the master processor gathers solutions from all
processors, identifies the best one and distributes it among all processors. The master
processor has to wait while all processors finish their iteration and then start data
exchange procedure. The master processor has computational work too.

All-to-all (AtA). Each processor sends its best known solution to all other pro-
cessors and receives information about the best solution from all others. Each pro-
cessor continues to the next iteration with the best solution that is known after data
exchange.

Hierarchic scatter (HS). Master processor gathers information from all proces-
sors in hierarchic fashion. Master processor identifies the best solution and sends it
back to all processors following the hierarchic fashion.

Asynchronous master-slave (aMS). This strategy is similar to sMS strategy.
The difference is that the master processor has no computational work. It just waits
while others finish their iteration and request for data exchange. The master receives
solutions from the slaves, determines the best solution and sends it back to the slave
requesting data exchange. Algorithm does not stop to wait for all processors.

Multi-Objective Single Agent Stochastic Search
Single Agent Stochastic Search (SASS) has been successfully used as a local search
strategy in evolutionary algorithms for single-criteria optimization problems. In order
to apply it for multi-objective optimization a new version called Multi-Objective
Single Agent Stochastic Search (MOSASS) has been developed.

MOSASS algorithm begins with an initial solution x, and an empty archive A for
storing non-dominated solutions. A new solution x′ is generated in the same way as
in SASS, objective vector F(x′) is evaluated, and the dominance relation between x′
and x is evaluated. In the case of x′ � x, the present solution x is changed to x′ and
the algorithm continues to the next iteration. Otherwise, if x′ does not dominate x
and is not dominated by any solution in A∪ {x} then the archive A is supplemented
by x′ and algorithm continues to the next iteration. If solution x′ is dominated by
any member of A∪{x}, then x′ is rejected and the opposite solution x′′ is investigated
in the same way as x′. If archive size exceeds the size limit NA then the half most
crowded individuals are removed.

(1) (2) (3)

Figure 1: Reduction of the search area
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Figure 2: Generation of neighbor solution in MOSASS (left) and MOSASS/P (right)
algorithms

If either a present solution x is changed or the archive is supplemented then the
iteration is assumed to be successful, otherwise – failed. The mean and standard
deviation parameters are dynamically adjusted as in SASS algorithm.

A strategy which is used in selecting neighbor solution can play an important role
in random search techniques. In SASS as well as in MOSASS a neighbor solution is
generated by changing values of all variables of x without any probabilistic choice.
Therefore it is a large probability that obtained neighbor solution x′ or x′′ differs
from its precursor x by all parameters. However, sometimes it is necessary to make
only a slight modification of the current solution – to alter only one variable in order
to obtain a solution which would dominate its precursor or at least would be non-
dominated by other solutions. This is especially important in a later stage of the
algorithm when almost optimal solutions are used to produce new ones. In order
to approve (or disprove) this modification, MOSASS has been modified by involving
the probability in generating a neighbor solution. The modification has been done
by generating a neighbor solution using

ξi =

{
N(bi, σi), if r < πLS ,

0, otherwise,
(9)

where r is a random number uniformly generated in [0, 1] and πLS ∈ (0, 1] is a pre-
defined parameter. The larger p value is, the larger probability that the particular
variable will be changed. The modified version of MOSASS algorithm has been
called by MOSASS/P. The main difference in generation of neighbor decision vec-
tor in algorithms MOSASS and MOSASS/P is shown in Figure 2, where the most
likely neighbor decision vectors x′ to be generated by MOSASS (on the left) and
MOSASS/P (on the right) are illustrated (xi = 0.5, πLS = 0.5, σ = 0.1 and bi = 0,
i = 1, 2).

There is also possible situation that all coordinates will remain unchanged. Then
the generation of the new solution is repeated until at least one variable is changed.

In order to improve some performance metrics of original NSGA-II algorithm a hy-
brid algorithm, based on performing the local search towards a set of non-dominated
decision vectors, has been developed. The hybrid algorithm begins with an initial
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parent population P , consisting of N decision vectors randomly generated over the
search space. Further, the algorithm continues with the following processes:

(1) A new child population, of the size N , is generated by applying genetic opera-
tions to the individuals of the parent population. The uniform crossover that
combines pairs of parent population individuals, and mutation with mutation
rate equal to 1/d are used.

(2) Parent and child populations are combined into one 2N-size population, and
each decision vector evaluated by counting the number of its dominators.

(3) The obtained population is reduced to the size of N by removing the required
number of most dominated individuals.

(4) The counter of NSGA-II generations G is increased by one. If the value of G
does not exceed the predefined number, then the algorithm returns to the first
step. Otherwise the algorithm continues to the next step.

(5) An auxiliary set PL of k decision vectors is created from the population P . Non-
dominated decision vectors are chosen to be included into the set PL. If |PL| > k
then |PL| − k decision vectors are randomly removed from PL. Otherwise, if
|PL| < k, then k − |PL| randomly chosen dominated decision vectors are added.

(6) All decision vectors in PL are locally optimized by performing a predefined
number of MOSASS or MOSASS/P iterations for each decision vector. Since
MOSASS as well as MOSASS/P returns a set of non-dominated decision vec-
tors and |PL| decision vectors are optimized, |PL| sets are resulted from the
local optimization. All these sets are combined into one set together with the
population P , which is reduced to the size of N . The same scheme as in third
step is used to perform the reduction.

(7) The algorithm continues to the first step by reseting the generations counter G
to 0, and using the obtained population as the parent population for performing
NSGA-II generation.

Depending on the local search algorithm (MOSASS or MOSASS/P) used, the derived
hybrid algorithm has been denoted by NSGA-II/LS and NSGA-II/LSP respectively.
The number of NSGA-II iterations after which the local search is performed, the size
of the auxiliary set PL, and the number of local search iterations are given as input
parameters.

Parallelization of NSGA-II
Most of the published parallel versions of NSGA-II are based on master-slave strate-
gies and parallelization of function evaluations. On the other hand NSGA-II can be
separated into 3 parts:

(1) evaluation of objective functions;

(2) Pareto ranking;

(3) other computations.
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The first part – the evaluation of the objective functions – is frequently the largest
part of the algorithm and intrinsically parallel. Therefore the easiest way to paral-
lelize NSGA-II is to evaluate the objectives by distributing the population among
all processors and leave the remaining parts sequential. We denote the parallel algo-
rithm developed following this strategy by ParNSGA/PE (Parallel NSGA based on
Parallelization of Evaluations).

This strategy is good if evaluation of objectives requires relatively large amount
of time. For example if it requires 99% of execution time of sequential algorithm
the maximum speed-up of the parallel algorithm will be 100. But if evaluations of
functions require 95% or 90% of the execution time the maximum speed-up of the
algorithm is respectively 20 or 10. These estimations are based on Amdahl’s law.

Another part of the algorithm requiring relatively large computational time is
part (2) – Pareto ranking. Therefore optimization and parallelization of this part
can increase the maximum speed-up of the algorithm.

The population R consisting of 2 N-sized populations P and Q must be Pareto
ranked in every iteration of NSGA-II. Lets denote by r(P,Q) the vector, representing
the number of dominators of each individual in P between individuals in Q:

r(P,Q) = (r1, r2, . . . , r|P |), (10)

where
ri = |{y ∈ Q : y � xi, xi ∈ P}|, (11)

and i = 1, 2, . . . , |P |.
Thus the ranks of all individuals of P can be described as

r(P, P ) + r(P,Q), (12)

and ranks of all individuals of Q can be described as

r(Q,Q) + r(Q,P ). (13)

Computation of r(P,Q) requires N2 Pareto comparison operations as each indi-
vidual from P must be compared with each individual of Q. The same complexity
has computation of r(Q,P ). Computations of r(P, P ) and r(Q,Q) requires N(N − 1)
Pareto comparisons per each, as it is not necessary to compare individual with itself.
Therefore ranking of P

⋃
Q requires

2N2 + 2N(N − 1) = 2N(2N − 1) (14)

Pareto comparison operations.
Proposition. If solution x1 dominates solution x2 then Pareto rank of solution

x1 is strictly lower than Pareto rank of solution x2.
The proof, illustrated in Figure 3, follows from the transitivity property of the

dominance relation.
Taking into account the proposition and the fact that new parent population P

is created by removing the most dominated solutions, we can state that it is not
necessary to calculate r(P, P ) in any generation except the first one. We just need to
calculate r(P,Q), r(Q,Q) and r(Q,P ). Doing so the number of Pareto comparisons in
any generation is reduced by N(N − 1) except the first generation which complexity
does not changes.
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Figure 3: Illustration of proposition about Pareto ranks

Taking into account this statement, three strategies to parallelize NSGA-II algo-
rithm have been proposed.

ParNSGA/HR-1. The population P is sent to all processors following the hier-
archic scatter fashion. Each processor generates a part of offsprings’ population Qi

of the size N/p (where p is the number of processors), evaluates objective values and
sends information back to the master processor in hierarchic fashion. In each step of
gathering data a partial Pareto ranking is performed as shown in Figure 4.

In this strategy all processors have to wait while 1st processor calculates r(P,Q) at
the final step of data transfer. Another strategy ParNSGA/HR-2 has been proposed
in order to avoid such an idle time.

Figure 4: Scheme of ParNSGA/HR-1
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ParNSGA/HR-2. In contrast with the ParNSGA/HR-1, processors additionally
calculate r(P,Qi) in the first step of data exchange procedure (i – the number of
processor). Although the processors have additional data (Pareto ranks of individuals
of P ) which must be transferred, it is not necessary to perform N2 Pareto comparison
operations at the end of data transfer procedure. The scheme of ParNSGA/HR-2 is
given in Figure 5.

In both strategies described above the processors generate offsprings’ subpopu-
lations and send them whole. At the end of generation, a part of offsprings are
rejected.

ParNSGA/HR-R. Performing the procedure r(Q,P ) in the first step of data send-
ing procedure, solutions from Qi, with Pareto ranks larger than maximum Pareto
rank in P , are removed. Doing so the population Qi is reduced thus reducing costs
requiring for transferring data and performing Pareto ranking.

Although ParNSGA/HR-1, ParNSGA/HR-2 and ParNSGA/HR-R parallelize
Pareto ranking without additional cost of communication, non-master processor may
be idle for some time. On the one hand it could be insignificant performing computa-
tions on several or several tens of processors, on the other hand the idle time can be
relative long when using several hundreds or thousands of processors. For compar-
ison the strategy ParNSGA/DR (Distributed Ranking) which reduces the idle time
but increases costs for communication has been proposed. The strategy is based on
the following process:

(1) The master processor distributes the parent population among the slaves fol-
lowing the hierarchic fashion.

(2) Each processor generates an appropriate part Qi of offsprings’ population Q.

Figure 5: Scheme of ParNSGA/HR-2
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Figure 6: Scheme of ParNSGA/DR

(3) The master processor gathers subpopulations Qi from the slaves, combines them
into one population Q and distributes it among the slaves.

(4) Each processor evaluates the corresponding subpopulation Qi ∈ Q by perform-
ing r(Qi, Q), r(Qi, P ) and r(P,Qi).

(5) The master processor gathers all the information about Pareto ranks, counts
the total values of Pareto ranks of each individual in P ∪Q and distributes them
among slaves.

(6) Now all processors have the whole set P ∪ Q including the information about
Pareto ranks, and can continue with rejecting most dominated solutions and
proceeding to the next iteration (2nd step).

The scheme of ParNSGA/DR is given in Figure 6.

Application of NSGA-II to Solve Discrete
CFL Problem
In discrete CFL problem locations for the new facilities must be selected from a
set of candidate demand points L = {l1, l2, . . . , lr}. Thus the search space D can be
described as the set of all subset of L such as |X| = s:

D = {X ⊂ L : |X| = s}, (15)

where s – the number of facilities expected to be located (the number of variables).
Following the classical scheme of NSGA-II, the algorithm begins with genera-

tion of parent population P (0) consisting of N individuals – subsets of L satisfying
equation (15).
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Each individual X(3) of offsprings’ population Q(k) is generated by applying
crossover operations to the individuals X(1) and X(2) from P (k). The crossover is
performed following the equation:

X(3) ⊂
(
X(1) ∪X(2)

)
. (16)

Mutation of i-th variable of offspring X(3) is performed by changing its value
x
(3)
i ∈ L, to

l ∈
(
L \ x(3)i

)
, (17)

On one hand the location l can be chosen at random from all possible candidate
locations, however such a strategy leads to chaotic mutation. Therefore, we proposed
to define a neighborhood of variable x(3)i – a subset L(h)(x

(3)
i ) ⊂ L of h locations which

are nearest to the location x
(3)
i , and perform mutation within the neighborhood as

follows:
x
(3)
i = l ∈ L(h)(x

(3)
i ) : l 6= x

(3)
j , j = 1, . . . , r. (18)

An important factor is the value of h which can vary from 1 to |L|. Usage of large
values leads to chaotic mutation similar as using (17), while usage of lower values of
h leads to inclusion of less scattered locations.

The local search algorithm based on selection of neighbor solution and aimed to
improve Pareto front obtained by NSGA-II algorithm has been proposed. A single
iteration of the algorithm consists of randomly choosing a single solution X from an
approximation of Pareto set P̃ found so far, and generation of a neighbor solution X ′

using (18). After a neighbor solution X ′ is generated and the values of objectives are
evaluated, the dominance relation against other members of P̃ is evaluated. If X ′ is
not dominated by any other member of Pareto set, it is added to P̃ and all solutions
which are dominated by X ′ are removed from P̃ :

P̃ ← {X ∈ P̃ : X ′ � X} ∪ {X ′}. (19)

The number of function evaluations we want to devote to local search must be defined
in advance.

3 Experimental Investigation

Solution of MGA Problem Using PSO
PSO with reduction of the search area has been experimentally investigated and
compared with original PSO by solving MGA problem. Different population sizes
(20, 40, 60, 80, and 100 particles) and different reduction coefficients (0.15, 0.05, and
0.01) have been investigated. Due to the stochastic nature of the algorithm, each
experiment has been performed 100 times using different initial populations, and
average values have been evaluated. The quality of the algorithm has been evaluated
by probability to achieve an acceptable solution – a solution which objective value is
lower than 5.308.

Probabilities to achieve acceptable solution using original PSO and PSO with
different reduction coefficients (1.5, 0.5, and 0.01) are given in Figure 7. Quality of
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Figure 7: Probability to achieve acceptable solution using different population size
and reduction coefficient

solution hardly depends on population size – more particles in population leads to
larger probability to achieve acceptable solution. Reduction of the search area gives
significant advantage. Best results have been achieved using reduction coefficient
0.01 and 100 particles in population – acceptable solution has been achieved in all
100 independent runs. However using smaller population it is better to use reduction
coefficient 0.05 due to error of solution that is achieved after 10000 iterations using
small population.

Once the best sequential strategy and the best population size have been selected,
the sequential algorithm has been compared to the four parallel strategies. The
average sequential execution time using 100 particles in population has been 141.08
seconds. Using parallel computing methods it was reduced to 18.02 seconds using
HS strategy and 13.6 seconds using aMS strategy on 16 processors. Comparison of
speed-up an efficiency of the algorithm using synchronous data exchange strategies
and different number of processors are given in Figure 8. The best speed-up and
efficiency of synchronous strategies have been achieved using HS strategy.

Speed-up and efficiency achieved with aMS strategy have been compared with
HS strategy which seems to be the best of all synchronous strategies. Results, given
in Figure 9, showed that performing computations on a small number of processors
(2, 4 or 6) synchronous strategy produces better speed-up and efficiency. Therefore,
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it is useful to get computational work for all processors. On the other hand if the
number of processors is larger (8 or more) it is useful to leave one processor without
computational work, but only for management of communication (aMS strategy).

Investigation of NSGA-II/LS and NSGA-II/LSP
The proposed memetic algorithms NSGA-II/LS and NSGA-II/LSP have been ex-
perimentally investigated by solving a set of 26 multi-objective optimization prob-
lems. The quality of the algorithms has been measured by 5 metrics: Pareto Size
(PS); Hypervolume (HV); Coverage of Pareto Fronts (C); Inverted Generational Dis-
tance (IGD); Pareto Spread (∆).

The first set of experiments was aimed at choosing the appropriate number (EG)
of function evaluations after which local search is performed, and the number (NL) of
function evaluations to be performed during each local search. A set of 36 different
combinations of parameters (EG, EL) has been used. The results of the investigation
are presented in Table 1, where the numbers of test functions for which particular
set of parameters (EG, EL) was the best by hyper-volume metric are given. From
the table we can see that it is worth to perform local search every 500–2000 function
evaluations. The number of function evaluations, performed in each local search,
should be 300–500. We have chosen a median point – (1000,400) as an appropriate
parameter set (EG, EL) for further experiments.

The second experiment was dedicated to investigate performance of proposed
algorithms NSGA-II/LS and NSGA-II/LSP. The performance of the algorithms has
been compared with each other and with classical NSGA-II, implemented as given in
literature. All three algorithms have been performed for 100 independent runs on all
26 test functions. The crossover probability equal to 0.8, mutation rate equal to 1/d
and population size equal to 100 have been used for NSGA-II. Local optimization
has been performed after every 10 NSGA generations (1000 function evaluations) for
400 function evaluations, as this combination of parameters gives the best statistical
results in previous experiment. A set of 10 decision vectors have been selected for
local optimization. The probability in generating new decision vector in NSGA-
II/LSP was chosen to be equal to 1/d – the same as mutation rate in NSGA-II.

Each algorithm was evaluated by counting the number of test problems for which
the evaluated algorithm gives the best result according to a particular metric of

19



Figure 10: Comparison of the algorithms by number of problems solved best.

performance. All three algorithms were evaluated according to all five performance
metrics used in the experimental investigation. The results are illustrated in Fig-
ure 10, where the vertical axis represents the number of problems which were solved
best, and horizontal axis – performance metric. Different columns in a group rep-
resent different algorithms: NSGA-II, NSGA-II/LS and NSGA-II/LSP respectively.
As illustrated in the figure, NSGA-II gives best Pareto size values for 7 test prob-
lems, while NSGA-II/LS was the best for 8, and NSGA-II/LSP – for 11. According
to coverage metric, NSGA-II was the best for 5, NSGA-II/LS – for 5, NSG-II/LSP
– for 14 test problems, and for 1 test problem all three algorithms gives zero values
of coverage metric. According to HV and δ, the best algorithm was NSGA-II/LSP,
and the worst – NSGA-II/LS. According to IGD, the worst algorithm NSGA-II. Al-
gorithm NSGA-II/LSP solves best the largest number of test problems according to
all performance metrics.

The performance of NSGA/LSP has been compared with performance of
Multi-objective Optimization Evolutionary Algorithm based on Decomposition
(MOEA/D). MOEA/D has been recognized as the best algorithm for solution of
test problems UP1–UP10, In CEC 2009 Special Session and Competition. Both al-
gorithms NSGA/LSP and MOEA/D have been ran for a certain time period – 20
seconds. Each experiment has been repeated 100 times on test problems UP1, UP2,
UP3, UP4, UP7, UP8 and UP10 and average results have been evaluated. Perfor-
mance of the algorithms has been evaluated by Hypervolume metric, which has been

Table 1: Numbers of test problems for which particular set of parameters (EG, EL)
were the best by HV value

EL EG

500 1000 2000 3000 4000 5000
50 1 1 0 0 0 0
100 0 0 0 0 0 0
200 1 1 0 2 1 3
300 2 1 1 0 1 0
400 1 3 0 0 0 0
500 0 3 1 0 0 2
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measured at discrete time moments – 3-th, 5-th, 10-th, 15-th and 20-th second of the
experiment. Results of the experiments are presented in Figure 11, where the hori-
zontal axis in each graph represents time moments, and the vertical axis – value of
Hyper-Volume. Different graphs represent different test problem and different curves
– different algorithm. The results show that NSGA/LSP produces better results for
almost all test functions within fixed time period. MOEA/D was significant better
for one test problem – UP3, however MOEA/D was unable to find any evaluable
approximation of Pareto front of test problem UP10 within 20 seconds.

 0.4

 0.5

 0.6

 0.7

0 3 5 10 15 20

HV

Time (s)

UP1

MOEA/D

NSGA-II/LSP

 0.4

 0.5

 0.6

 0.7

0 3 5 10 15 20

HV

Time (s)

UP2

 0.3

 0.4

 0.5

 0.6

 0.7

0 3 5 10 15 20

HV

Time (s)

UP3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 3 5 10 15 20

HV

Time (s)

UP4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 3 5 10 15 20

HV

Time (s)

UP7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 3 5 10 15 20

HV

Time (s)

UP8

 0

 0.1

0 3 5 10 15 20

HV

Time (s)

UP10

Figure 11: Values of HV, obtained by MOEA/D and NSGA-II/LSP within fixed
time period
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Investigation of Strategies to Parallelize NSGA-II
Parallel algorithms ParNSGA/PE, ParNSGA/HR-1, ParNSGA/HR-2 and
ParNSGA/HR-R have been experimentally investigated by solving multi-objective
optimization problem ZDT1 with 2 objectives and 10 variables. The size of popu-
lation was 512 and the number of generations performed – 250. Ten independent
runs have been made to estimate duration of the execution. The evaluations of
functions last about 90% of the sequential algorithm duration. Computations
have been performed on 2, 4, 8, 16, 32 and 64 processors and the speed-up of
the algorithm has been measured. Hardware, containing 16 Intel(R) Core(TM)
i5 CPU 760 @ 2.80GHz nodes with 4 cores on each and 4GB of RAM has been
used during experimental investigation. The results of the experiments (Figure 12)
show that the proposed strategies give significant impact to the speed-up of the
algorithm. Using ParNSGA/PE the speed-up on 64 processors was 8.86 while
speed-up of ParNSGA/HR-1, ParNSGA/HR-2 and ParNSGA/HR-R was 12.41,
16.9 and 23.25 respectively. Reduction of offsprings’ population in ParNSGA/HR-R
gives a significant advantage – the speed-up increases by 37.2% comparing with the
the ParNSGA/HR-2.

Solution of CFL Problem Using Parallel NSGA-II
Performance of parallel NSGA-II has been also investigated by solving Competitive
Facility Location (CFL) problem.

In the first instance the performance of two parallel algorithms ParNSGA/DR
and ParNSGA/HR which utilize distributed memory parallel programming model
has been investigated. The multi-objective competitive facility location problem has
been solved using two different sizes of the population: 256 and 512 individuals.
It was expected to locate 5 new facilities, therefore the number of variables of the
problem was 10 as each facility has two coordinates. Later the number of facilities
expected to locate has been increased to 25 thus increasing to 50 the number of
problem variables. The algorithm has been performed for 250 generations in each
experiment. Depending on population size and the number of problem variables,
duration of sequential algorithm varies from around 18 minutes (locating 5 facilities
using population of 256 decision vectors) to more than 12 hours (locating 25 facilities
using population of 2048 decision vectors). The number of processors varies up to
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Figure 12: The speed-up of parallel NSGA-II algorithm using different strategies
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Figure 13: The speed-up of the algorithms when solving CFL problem with 10 vari-
ables using different population sizes: 256 (left) and 512 (right)

the maximum so that the workload (generation of child population and evaluation
of objective functions) could be equally divided among all processors – up to 256
processors for population of 256 individuals, and up to 512 processors for population
of 512 individuals. The results of the investigation are presented in Figure 13. Results
show that reduction of offsprings’ population gives significant advantage in both HR
and DR strategies. Using 256 individuals population, algorithm ParNSGA/HR-R
gives better performance utilizing parallelization of Pareto ranking without additional
cost for communication, but forces processors to be idle. When the size of the
population has been increased to 512 individuals, the performance of both algorithms
was similar when 256 processors have been used, however ParNSGA/DR-R gives
advantage against ParNSGA/HR-R when 512 processors have been used. It could
be explained as overmuch large idle time of processors using large population in
ParNSGA/HR-R.

Another experimental investigation has been performed to investigate the influ-
ence of utilization of shared memory parallel programing model to the performance of
the algorithm. The same optimization problem has been solved using ParNSGA/DR-
R. Two different populations consisting of 1024 and 2048 individuals have been inves-
tigated by performing computations on different number of processors which varies
up to 1024 and 2048 depending on the size of the population. Different number of
threads per shared memory processing unit (4 and 16 threads) have been also inves-
tigated. Results of the investigation are presented in Figure 14. Results show that
utilization of shared memory parallel programing model gives significant advantages
to the performance of the algorithm when using up to 512 processors for population
of 1024 individuals and up to 1024 processors for population of 2048 individuals. In-
creasing the number of processors to the maximum, the performance falls down using
either 4 or 16 threads per processor. Note that using the maximum number of pro-
cessing units the workload per processor is very small comparing with initialization
an synchronization costs using shared memory parallel programming subroutines.

Consequently the number of problem variables has been increased from 10 to 50
thus increasing five times the computational costs per processor. The size of the
population has been chosen to be 1024 individuals and the number of processors
varies up to 1024 as before while investigating the performance of the algorithms
with the population of the same size. Results of the investigation are illustrated
in Figure 15. Results show that hybrid distributed-shared memory algorithm gives
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Figure 14: The speed-up of the algorithms when solving CFL problem with 10 vari-
ables using different population sizes: 1024 (left) and 2048 (right)
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Figure 15: The speed-up of the algorithms when solving CFL problem with 50 vari-
ables using different population of 1024 individuals

significant advantage, moreover using more threads per shared memory processing
unit, the hybrid algorithm was more superior comparing with the algorithm which
utilizes distributed memory parallel programing model only.

Solution of Discrete CFL Problem Using NSGA-II
The performance of NSGA-II when solving discrete CFL problem has been experi-
mentally investigated using real geographical and population data. It was supposed
that each of firms has 3 preexisting facilities located in the most populated demand
points. A set of candidate demand points L consists of required number of the re-
maining largest demand points including those in which facility of firm B is already
located.

Four different configurations of parameters of the problem have been investigated
(see Table 2) which vary on the number of facilities expected to locate (number of
variables, r) and the number of candidate locations (size of the search space, k).

The value of attractiveness that customers from demand point i feels to the facil-
ity j has been calculated by

aij =
qj

1 + dij
, (20)
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Table 2: Four configuration of parameters of the discrete CFL problem.

I II III IV
r 3 3 5 10
k 100 500 100 500

where dij is a distance between i-th demand point and j-th facility, and qj is a pre-
defined value of quality of j-th facility. Quality values qi, i = 1, 2, . . . , 6 of preexisting
facilities have been chosen to be (57, 60, 59, 45, 56, 36). All new facilities have been
assumed to be of the same quality qn = 35. In particular case, if quality values of
all facilities (new and pre-existing) are equal, the patronizing behavior become the
distance-based, what means that all customers from a demand point are served by
the closest facility. This variant of the model has been also investigated.

A complete enumeration algorithm has been used to determine true Pareto fronts
of CFL problem with first three configurations of parameters. NSGA-II with pop-
ulation size of 250 individuals and pure random mutation has been run for 250
generations to investigate the opportunities to approximate Pareto fronts. One hun-
dred independent runs have been performed to obtain average values of performance
metrics.

The optimization problem seems to be quite simple as it requires C3
100 function

evaluations to perform the complete enumeration, however it requires around 15
minutes (using Intel(R) Core(TM) i5 CPU 760 @ 2.80GHz hardware). Increasing
value of k to 500 increases the number of of function evaluations to C5

500 and the
complete enumeration algorithm requires around 18 hours. Increasing the number of
facilities expected to locate from 3 to 5 (third configuration of parameters), duration
of computations increases to around 78 hours.

Although, depending on initial parameters, time required to perform complete
enumeration increases up to 78 hours in any of these three cases Pareto front can be
quite precisely approximated by classical version NSGA-II algorithm within 25000
function evaluations – the maximum value of Inverted Generational Distance (IGD)
metric was less than 0.004.

More intractable was the problem with the last configuration of parameters –
expecting to choose location for 10 facilities from the set of 500 candidates. Since
it was almost impossible to perform the complete enumeration in reasonable time,
an approximation of true Pareto front has been constructed from all approximations
(around 1500) obtained by all experiments made during the investigation.

The average value of IGD was 0.0144. In order to improve the performance of the
algorithm the local mutation strategy (see eq. (18)) with different values of parameter
h (3, 5, 10, 20 and 30) has been utilized. The results of the investigation are presented
in Figure 16 (left), where different columns represent different models of behavior of
customers: distance-based and attractive-based. The results show that change of the
value has significant impact on the value of IGD, and it is worth to use h = 10.

Further an impact of incorporation of local search algorithm into NSGA-II has
been investigated. The same CFL problem has been solved by performing NSGA-II
with local mutation strategy and h = 10 for 24000, 20000, 15000 and 10000 function
evaluations (240, 200, 150, 100 generations respectively). The remaining evaluations
have been used for local search. Results of the investigation presented in Figure 16
(right) show that devotion of function evaluations to local search can significantly
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Figure 16: Values of IGD, obtained using different values of parameter h (left) and
devoting different number of function evaluations for the local search (right)

improve quality of final Pareto front approximation. From the results we can see
that it is worth to devote 5000–10000 function evaluations to local search.

General Conclusions
1. The modification of Particle Swarm Optimization algorithm, based on reduction

of the search area has been proposed. Results of the experimental investigation
showed that appropriate reduction of the search area can increase performance
of the algorithm by 25% when solving Multiple Gravity Assist problem.

2. Experimental investigation of parallel Particle Swarm Optimization algorithm
showed that the best performance is achieved using asynchronous strategy,
based on devotion of one processors for management of communication.

3. The multi-objective local search algorithm has been developed by modifying
single-objective local search strategy for multi-objective optimization. The de-
veloped algorithm has been incorporated into Non-dominated Sorting Genetic
Algorithm thus developing a hybrid algorithm for global multi-objective opti-
mization. Results of the experimental investigation showed that the proposed
algorithm solves better than classical genetic algorithm from 53% to 77% test
problems, depending on performance metric.

4. Several strategies to parallelize Pareto ranking in multi-objective optimization
algorithms have been proposed and experimentally investigated. Results of the
investigation showed that usage of the proposed strategies can increase speed-up
of the parallel algorithm 1.6 times.

5. The strategy for mutation in genetic algorithm when solving Competitive Fa-
cility Location problem has been proposed and investigated. The local search
based on the proposed strategy has been developed and investigated. Results of
the experimental investigation showed that appropriate usage of the proposed
strategy for mutation and the local search algorithm can increase performance of
genetic algorithm by ∼43% when solving competitive facility location problem.
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ATSITIKTINĖS PAIEŠKOS GLOBALIOJO OPTIMIZAVIMO
ALGORITMŲ LYGIAGRETINIMAS

Tyrimų sritis ir darbo aktualumas
Optimizavimo uždaviniai moksle ir praktikoje kyla dar nuo antikinių laikų. Yra pasiū-
lyta daug įvairių optimizavimo metodų, skirtų spręsti optimizavimo uždaviniams,
kylantiems įvairiose srityse, tokiose kaip chemija, biologija, biomedicina, operacijų
tyrimas ir pan.

Paprastai efektyviausiai sprendžiami uždaviniai, turintys tam tikras savybes,
tokias kaip tikslo funkcijų tiesiškumas, iškilumas, diferencijuojamumas ir pan. Tačiau
ne visi praktikoje kylantys optimizavimo uždaviniai tenkina šias savybes, o kartais
iš vis negali būti išreiškiami adekvačia matematine išraiška. Be to, optimizavimo
uždaviniai, kurių tikslo funkcijos netenkina iškilumo savybės, gali turėti daug lokalių
sprendinių, kurių geriausiojo radimas yra sudėtingas uždavinys. Dėl šių priežasčių
yra populiarūs atsitiktinės paieškos optimizavimo metodai, kurių įvairovė apima tiek
optimizavimą pagal vieną kriterijų, tiek daugiakriterį optimizavimą.

Šiuolaikinės technologijos lygiagrečiųjų skaičiavimų srityje leidžia išspręsti daug
skaičiavimo resursų reikalaujančius optimizavimo uždavinius. Aktuali problema yra
optimalus uždavinio suskaidymas į viena nuo kitos nepriklausomas užduotis, siekiant
optimaliai paskirstyti darbą procesoriams ir minimizuoti duomenų perdavimo kaštus.
Sprendžiant optimizavimo uždavinius atsitiktinės paieškos algoritmais yra aktualu
užtikrinti, kad skirtingi procesoriai generuotų skirtingas atsitiktinių skaičių sekas.
Ši problema ypač aktuali naudojant bendrosios atminties lygiagrečiųjų skaičiavimų
sistemas.

Todėl šio darbo tyrimų sritis yra atsitiktinės paieškos globaliojo optimizavimo
algoritmai, jų lygiagretinimas ir taikymas praktikoje pasitaikantiems uždaviniams
spręsti.

Tyrimų objektas
Disertacijos tyrimų objektas yra:

• atsitiktinės paieškos globaliojo optimizavimo algoritmai;

• lygiagrečiųjų skaičiavimų sistemos;

• atsitiktinių skaičių sekų generavimo metodai.

Darbo tikslas ir uždaviniai
Darbo tikslas – modifikuoti esamus ir pasiūlyti naujus atsitiktinės paieškos glob-
aliojo optimizavimo lygiagrečiuosius algoritmus, siekiant efektyvesnio optimizavimo
uždavinių sprendimo. Siekiant šio tikslo buvo sprendžiami tokie uždaviniai:

• apžvelgti esamus atsitiktinės paieškos globaliojo optimizavimo metodus ir algo-
ritmus bei jų lygiagretinimo būdus, išskirti tiriamų algoritmų grupę;
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• ištirti atsitiktinių skaičių generavimo lygiagrečiųjų skaičiavimų sistemose gal-
imybes ir metodus;

• siekiant efektyvesnio optimizavimo uždavinių sprendimo, modifikuoti ir išlygia-
gretinti tiriamus algoritmus, atsižvelgiant į sprendžiamą uždavinį, techninę ir
programinę įrangą;

• eksperimentiniu būdu ištirti pasiūlytų algoritmų efektyvumą;

• gautus rezultatus palyginti su kitais rezultatais, gautais gerai žinomais atsitik-
tinės paieškos algoritmais;

• ištirti pasiūlytų algoritmų taikymo galimybes sprendžiant įvairių tipų už-
davinius.

Mokslinis darbo naujumas
Pasiūlyta dalelių spiečiaus optimizavimo algoritmo modifikacija erdvėlaivių skrydžių
trajektorijų optimizavimui, grįsta leistinosios paieškos srities mažinimu. Ištirtos ke-
lios informacijos apsikeitimo tarp kompiuterių dalelių spiečiaus optimizavimo lygia-
grečiajame algoritme strategijos.

Pasiūlytas lokaliojo daugiakriterio optimizavimo algoritmas, grįstas vieno agento
stochastinės paieškos strategija. Pasiūlytas lokaliojo optimizavimo algoritmas įkom-
ponuotas į gerai žinomą globaliojo daugiakriterio optimizavimo genetinį algoritmą,
taip gaunant hibridinį globaliojo daugiakriterio optimizavimo algoritmą.

Pasiūlyta sprendinių vertinimo (rangavimo) daugiakriterio optimizavimo algo-
ritmuose lygiagretinimo strategija. Pasiūlytos strategijos pagrindu išlygiagretintas
daugiakriterio optimizavimo genetinis algoritmas, skirtas tiek paskirstytosios, tiek
bendrosios atminties lygiagrečiųjų skaičiavimų sistemoms. Algoritmo efektyvumas
eksperimentiniu būdu ištirtas sprendžiant daugiakriterio optimizavimo uždavinius,
skaičiavimams naudojant iki 2048 procesorių.

Ginamieji disertacijos teiginiai
1. Tinkamas leistinosios srities siaurinimas gali ženkliai padidinti dalelių spiečiaus

optimizavimo algoritmo efektyvumą sprendžiant erdvėlaivių trajektorijų opti-
mizavimo uždavinį.

2. Pasiūlytas hibridinis daugiakriterio globaliojo optimizavimo algoritmas efek-
tyviai sprendžia eksperimentiniam tyrimui naudotus daugiakriterio optimizav-
imo testo uždavinius.

3. Pasiūlytos daugiakriterio genetinio algoritmo modifikacijos ir lygiagretinimo
strategijos leidžia efektyviai spręsti optimizavimo uždavinius didelio našumo
lygiagrečiųjų skaičiavimų sistemose.

4. Pasiūlyti algoritmai efektyviai sprendžia erdvėlaivių skrydžių trajektorijų opti-
mizavimo ir konkuruojančių objektų vietos parinkimo uždavinius.
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Darbo rezultatų aprobavimas
Pagrindiniai disertacijos rezultatai paskelbti 6 mokslinėse publikacijose: 4 periodini-
uose recenzuojamuose mokslo žurnaluose; 2 konferencijų pranešimų medžiagoje.

Disertacijos rezultatai pristatyti 4 nacionalinėse ir 6 tarptautinėse konferencijose
ir seminaruose.

Disertacijos struktūra
Disertaciją sudaro įvadas, 3 skyriai ir bendrosios išvados. Papildomai disertacijoje
pateikta: naudotų žymėjimų ir santrumpų sąrašas, iliustracijų sąrašas ir literatūros
sąrašas. Bendra disertacijos apimtis yra 106 puslapiai, kuriuose pateikta 37 paveik-
slai, 10 lentelių ir 4 algoritmai. Disertacijoje remtasi 77 literatūros šaltiniais.

Bendrosios išvados
Išsprendus darbe suformuluotus uždavinius gautos tokios išvados:

1. Įgyvendinta dalelių spiečiaus optimizavimo algoritmo modifikacija, grįsta leisti-
nosios srities mažinimu. Eksperimentiniu tyrimu nustatyta, kad tinkamas
leistinosios srities mažinimas gali padidinti algoritmo efektyvumą iki 25 %
sprendžiant erdvėlaivių skrydžių trajektorijų optimizavimo uždavinį.

2. Lygiagrečiojo dalelių spiečiaus optimizavimo algoritmo eksperimentinis tyrimas
parodė, kad geriausias algoritmo spartinimo koeficientas pasiekiamas lygiagreti-
nant asinchroninę dalelių spiečiaus optimizavimo algoritmo versiją, vieną iš pro-
cesorių išskiriant informacijos mainų užtikrinimui.

3. Pasiūlytas lokaliojo daugiakriterio optimizavimo algoritmas, modifkuojant
vieno agento stochastine paiešką grįstą algoritmą. Siūlomas algoritmas įkom-
ponuotas į daugiakriterį genetinį algoritmą, taip sudarant hibridinį globaliojo
daugiakriterio optimizavimo algoritmą. Eksperimentiniu tyrimu nustatyta, kad
pasiūlytas algoritmas sprendžia geriau už klasikinį daugiakriterio optimizavimo
genetinį algoritmą nuo 53 % iki 77 % testo uždavinių, priklausomai nuo vertin-
imo kriterijaus.

4. Pasiūlytos sprendinių vertinimo daugiakriterio optimizavimo algoritmuose ly-
giagretinimo strategijos. Eksperimentinio tyrimo rezultatai parodė, kad siūlo-
mos algoritmo lygiagretinimo strategijos gali padidinti lygiagrečiojo algoritmo
spartinimo koeficientą 1,6 karto.

5. Pasiūlyta mutavimo genetiniame algoritme strategija, taikytina sprendžiant
konkuruojančių objektų vietos parinkimo uždavinį. Pasiūlytos strategijos pa-
grindu įgyvendintas lokaliojo optimizavimo algoritmas. Eksperimentinis tyri-
mas parodė, kad tinkamas siūlomos mutacijos strategijos ir lokaliosios paieškos
naudojimas gali padidinti genetinio algoritmo efektyvumą ∼43 %, sprendžiant
konkuruojančių objektų vietos parinkimo uždavinį.
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