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Abstract 

The research area of the thesis is the application of data mining in healthcare and 

medicine. When applying data mining in medicine, additional problems such as 

varied information representation formats, semantic interoperability and patient 

privacy have to be resolved. The object of the dissertation research is the process 

and methods of data mining in medicine. The following topics are directly 

associated with this subject: medical data preprocessing methods, medical 

images processing, and multi-relational data mining. The key goal of the thesis 

is to develop and explore methodology for the application of data mining 

methods in medicine and healthcare, which would increase the efficiency of data 

analysis. Achieving this goal, the following tasks have been completed: analysis 

of the existing methodologies and process models, creation and trial of the data 

mining application methodology for the medical domain, developing the 

supporting diagnosing models and medical data processing methods. 

In this thesis, a new application methodology CRISP-MED-DM was 

developed, which is based on the industry standard Cross-Industry Standard 

Process for the Data Mining. The CRISP-MED-DM was successfully applied 

for predictive modeling in cardiology and oncology domains. In addition, a new 

blood flow echocardiography image processing technique was developed, which 

enables semi-automation of aortic valve stenosis degree diagnostics. In addition, 

a new similarity measure for multi-relation clustering was proposed. The 

research results of the work revealed new opportunities in the application of data 

mining methods in the medical domain. 
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Reziumė 

Disertacijos tyrimų sritis yra duomenų tyryba medicinoje ir sveikatos apsaugos 

sistemoje. Duomenų tyrybos metodų taikymus medicinoje lemia keletas 

papildomai spręstinų uždavinių, tokių kaip medicininės informacijos pateikčių 

įvairovė, semantinio sąveikumo problemos, pacientų duomenų apsaugos 

lemiami apribojimai. Pagrindinis darbo tyrimų objektas yra duomenų tyrybos 

taikymo medicinoje procesas. Su šiuo objektu tiesiogiai susiję specializuoti 

medicininių duomenų apdorojimo metodai, medicininių vaizdų apdorojimas, 

multireliacinė duomenų tyryba. Pagrindinis disertacijos tikslas yra sukurti ir 

įvertinti duomenų tyrybos taikymo metodiką, kuri leistų padidinti duomenų 

tyrybos medicinoje ir sveikatos apsaugos srityse efektyvumą. Siekiant šio tikslo 

buvo iškelti ir sprendžiami šie uždaviniai: egzistuojančių metodikų ištyrimas, 

specializuotos duomenų tyrybos metodikos sukūrimas ir aprobavimas sukuriant 

diagnostinius modelius ir reikalingus medicininių duomenų apdorojimo 

metodus.  

Šioje disertacijoje sukurta Cross-Industry Standard Process for the Data 

Mining metodikos versija, pavadinta CRISP-MED-DM. Ji buvo sėkmingai 

panaudota taikant prognostinę duomenų tyrybą kardiologijoje ir onkologijoje. 

Pasiūlyta kraujo srauto echokardiografijos vaizdų apdorojimo metodika, kuri 

leidžia iš dalies automatizuoti aortos vožtuvo stenozės laipsnio diagnostiką. Taip 

pat sprendžiant multireliacinių duomenų klasterizavimo uždavinį buvo pasiūlyta 

nauja panašumo metrika. Darbe atliktų tyrimų rezultatai atskleidė naujas 

duomenų tyrybos metodų taikymo galimybes medicinoje. 
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Introduction 

Research Context and Motivation 

The healthcare domain is known for its ontological complexity and variety of 

medical data standards and variable data quality (Cios & Moore, 2002; Chen, et 

al., 2006; Bodenreider, 2008; Esfandiari, et al., 2014). With the addition of 

patient data privacy issues, making an effective and practically usable medical 

knowledge discovery is of ongoing importance over recent decades. Modern 

clinical practices also undertake a transformation not only in diagnosis and 

treatment methods, but also in the understanding of health and illness concepts, 

moving from disease-oriented problem solving to a patient-centric approach, 

where computer-aided knowledge discovery methods play an important role 

(Rudnick, 2004).  

Although data mining methods and tools have already been applied in 

various domains for more than 40 years, their applications in healthcare are 

relatively young. R.D. Wilson et al. (Wilson, et al., 2004) have started to classify 

and collect medical publications where knowledge discovery and data mining 

techniques were applied or researched from 1966 until 2002.  

Starting from the twentieth century, many countries have chosen e-Health as 

a prioritized national program, which in essence proposes to benefit from the 

standardized aggregation of patients’ clinical information and healthcare 

services rendered by providing instant access to this information for healthcare 

professionals as well as to patients themselves (Castro, 2009; Stroetmann, et al., 

2011). According to the strategic plans of EU member states, the USA and many 

other nations from all continents, a considerable amount of investments are 

allocated to enable the global computerization of healthcare data. Taking a linear 

progression would propose that in 10 years all new medical encounters will be 

thoroughly digitalized, at least in the developed countries. For the first time in 

history, the research community is going to get a full set of a person’s medical 
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history from the birth date until the decease date. This anticipated scenario 

forecasts a tremendous potential for machine learning and in particular for data 

mining applications in healthcare. 

Problem Statement 

The application of data mining in healthcare raises additional challenges which 

require specific methods, tools, and methodology. Moreover, cross-domain 

knowledge is of key importance to achieve practical results. The rapid progress 

in the computerization of the healthcare industry gave a vast amount of 

heterogeneous, both structured and unstructured, data available for research and 

secondary use. There are hundreds of algorithms implemented to classify, 

cluster, and find hidden patterns in data. However, domain specific issues of 

healthcare are still to be resolved. As it was discussed by Cios et al., Bellazi et 

al., Špečkauskienė et al. (Cios & Moore, 2002; Bellazzi & Zupan, 2008; 

Špečkauskienė & Lukoševičius, 2009), specific problems shall be resolved to 

successfully apply data mining methods. According to their studies, without 

resolving depersonalization, multi-relational and media data pre-processing, 

clinical data heterogeneity, and quality issues, data mining application is sub-

optimal or impossible.  

The surveys conducted by the data mining community KDNuggets 

(Piatetsky-Shapiro, 2014) in 2009 and 2014 have revealed the most widely used 

data mining application methodology is the Cross-Industry Standard Process for 

the Data Mining (CRISP-DM). However, due to its generic purpose CRISP-DM 

is not well suited for applications in the medical domain. Furthermore, a survey 

of university hospitals (Niakšu and Kurasova, 2012) has revealed that frequently 

data mining research projects remain theoretical, have no clinical follow-up, and 

rarely go beyond the institutions directly involved in the research. In order to 

apply data mining methods for clinical data, the researchers shall additionally 

resolve the problems related to patient privacy, semantic interoperability, 

heterogeneous data sources, and unstructured data presented in text or media 

formats. 
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Thus, there is a need for a methodology with a data mining process model to 

tackle the problems of the medical domain. Such methodology shall address the 

following issues: methodological application of predictive and explorative data 

mining methods for computer-aided medical diagnosis, unstructured data pre-

processing, feature extraction, and multi-relational data mining. 

Tasks and Objectives of the Research 

The main goal of this thesis is to develop and evaluate a medical domain specific 

methodology for predictive and explorative data mining in medicine and 

healthcare. The methodology shall address the issues typical for data mining in 

medicine, by defining the activities and the deliverables to tackle them. In 

addition, an evaluation model is needed to provide the compliance assessment 

to the methodology.  

In order to achieve this goal, the following objectives and corresponding 

tasks have been formulated: 

1. To analyze the existing data mining application methodologies by 

investigating data mining as part of a knowledge discovery process 

model. 

2. To propose a novel, specific to the medical domain, data mining 

application methodology, which resolves the issues of the existing 

methodologies.  

3. To evaluate the proposed data mining methodology in several medical 

specialty domains by creating the required medical data, such as 

diagnostic images, multi-relational data, analysis and processing 

methods. 

4. To propose a multi-relational clustering method implementation for 

mining data in a multi-relational format. 
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Practical Significance of the Results 

The practical significance of the thesis is as follows: 

 The proposed CRISP-MED-DM methodology facilitates a data mining 

process in the medical domain by proposing the improved reference 

model and the compliance evaluation method. 

 The proposed BRCA1 gene mutation prediction model can be used as a 

decision support tool, to indicate the gene mutation risk before an 

expensive genetic test is carried out. 

 The proposed echocardiography image analysis and feature extraction 

method and its software implementation allows automating the labor-

intensive manual systole tracing performed by cardiologists when 

assessing aortic stenosis. The created aortic valve stenosis predictive 

model can be used as a decision support tool. 

 The proposed and implemented distance metric can be applied to any 

exploratory analysis problem in a multi-relational environment, which 

cannot be reduced to a “single-table” form without a significant loss of 

information. The developed software calculates the distance matrix for 

multi-relational objects. 

Research Methods 

The exploratory research and systematic literature review were used to analyze 

and apply the results of other research. Various methods of statistical analysis, 

operation research, data mining, and image processing techniques were applied. 

Experimental research was used to evaluate the proposed methods and compare 

them with alternative approaches. 

Statements to be Defended 

1. The data mining methodology CRISP-DM can be specialized and 

extended to improve data mining performance in the medical domain. 
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2. Applying CRISP-MED-DM to create the breast cancer susceptibility 

gene BRCA1 prediction model improves the model’s accuracy.  

3. The application of CRISP-MED-DM with the novel echocardiography 

image transformation techniques results in a highly accurate aortic valve 

stenosis prediction model sufficient for aortic valve stenosis grading.  

4. The partitioning clustering with the proposed multi-relational similarity 

measure is more precise in multi-relational settings where data 

generalization to one-table format leads to information loss. 

Scientific Novelty and Results 

The scientific novelty and results of the thesis are as follows: 

1. A novel data mining application methodology CRISP-MED-DM is 

created. It defines tasks and activities to resolve the issues typical to the 

medical domain. Application of the CRISP-MED-DM allowed the 

BRCA1 gene mutation risk prediction model’s accuracy to improve from 

0.88 to 0.94, sensitivity from 0.67 to 0.83. 

2. A novel method for cardiology echocardiography image analysis, 

transformation and feature extraction is created, allowing the prediction 

of the aortic valve stenosis grade. The proposed method implements 

semi-automated systole cycle tracing and provides the cardiologists a 

time saving of up to two minutes per patient. The derived aortic valve 

stenosis predictive model has 100 % sensitivity and specificity for the 

research dataset. 

3. A novel similarity (distance) measure for multi-relational data is created. 

The proposed metric when compared with a propositionalized dataset 

clustering and multi-relational clustering with RTED metric showed 

higher clustering accuracy with silhouette values of 0.21–0.31 against 

0–0.16 (propositionalized) and 0.15–0.23 (RTED). 
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Approval of the Research 

The main results of the thesis were presented and approved at the following 

scientific conferences. 

International conferences: 

1. Data mining applications in healthcare: research vs practice. 10th 

International Baltic Conference on Databases and Information Systems 

(DB&IS 2012), July 8-11, 2012, Vilnius, Lithuania; 

2. Data mining approach to predict BRCA1 genes mutation.16th 

International Scientific Conference of the Lithuanian Computer 

Society ”Computer Days - 2013”, September 19-21, 2013, Šiauliai, 

Lithuania. 

3. Calculating distance measure for MRDM clustering. 16th Multi-

conference on Information Society, Conference on Data Mining and Data 

Warehouses (SiKDD-2013), October 7th, 2013, Ljubljana, Slovenia; 

4. A systematic literature review of Data Mining applications in healthcare. 

14th International Scientific Conference „Web Information Systems 

Engineering (WISE - 2013), October 13-15, 2013, Nanjing, China; 

5. Applying Operational Research and Data Mining to Performance Based 

Medical Personnel Motivation System. 2nd Scientific Conference eHealth 

Summit Austria “Outcomes Research: The benefits of health IT”, May 

22-23, 2014, Vienna, Austria.  

6. Mining Aortic Valve Stenosis Data using CRISP-MED-DM 

Methodology. 10th Annual South East European Doctoral Student 

Conference (DSC2015), September 18-19, Thessaloniki, Greece. 

Regional conferences: 

1. Challenges of data analysis and data mining in healthcare domain. 3rd 

National Young Scientists Conference of the Lithuanian OR Society 

“Operational research for business and social processes” (LOTD–2010), 

October 1st, 2010, Vilnius, Lithuania; 
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2. Application of multi-relational data mining in medicine. 1st Young 

Scientists Conference of Academy of Sciences of Lithuania 

„Interdisciplinary research in physical and technological sciences“, 

February 8th, 2011. Vilnius, Lithuania, Award for the best paper; 

3. Mathematical modelling of time-related blood velocity changes in human 

aorta. 54th Conference of Lithuanian Mathematical Society, June 19-20, 

2013, Vilnius, Lithuania; 

List of Publications 

Articles in the reviewed scientific periodical publications: 

1. Niakšu, O.; Balčiūnaitė, G.; Kizlaitis, R. J.; Treigys P. Semi-automation 

of Doppler Spectrum Image Analysis for Grading Aortic Valve Stenosis 

Severity. Methods of Information in Medicine. 2015 (accepted), ISSN: 

0026-1270 (IF: 2.248). 

2. Niakšu, O. CRISP Data Mining Methodology Extension for Medical 

Domain. Baltic Journal of Modern Computing. 2015. Vol. 3, 2: 92-109, 

ISSN: 2255-8942. 

3. Niakšu, O.; Gedminaitė, J. & Kurasova, O. Data mining approach to 

predict BRCA1 gene mutation, Computational Science and Techniques, 

2013, vol. 1, 155-170, ISSN: 2029-9966.  

4. Miškinis, P.; Niakšu, O.; & Valuntaitė, V. Mathematical Modelling of 

Time-Related Blood Velocity Changes in Human Aorta. Laboratorinė 

medicina. 2013, 15(4), 182 – 187, ISSN: 1392-6470. 

5. Niakšu, O. Duomenų tyryba medicinoje: taikymas, problemos ir 

galimybės. Visuomenės sveikata. 2014, vol. 4(67), 9-19, ISSN: 1392-

2696. 

6. Niakšu, O., & Žaptorius, J. Applying operational research and data 

mining to performance based medical personnel motivation 

system. Studies in health technology and informatics, 2014, vol. 198, 63-

70, IOS Press, Inc., ISSN: 0926-9630. 

7. Niakšu, O.; Skinulytė, J. & Duhaze, H. G. A Systematic Literature 

Review of Data Mining Applications in Healthcare. Workshop 
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proceedings of Web Information Systems Engineering Conference – 

WISE 2013, Springer 2014 Lecture Notes in Computer Science,  2014, 

313-324, ISBN 978-3-642-54369-2. 

Articles in other peer-reviewed editions:  

1. Niakšu, O. & Kurasova, O. Data Mining Applications in Healthcare: 

Research vs Practice, Databases and Information Systems BalticDB&IS, 

Local Proceedings, 2012, 58-70, ISSN: 1613-0073; 

2. Niakšu, O. Calculating distance measure for MRDM clustering. 

Proceedings of the 16th International Multi-conference “Information 

Society – IS 2013”, 2013, vol. A, 192-194, ISBN: 978-961-264-066-8. 

Outline of the Dissertation 

The text of the thesis consists of 3 chapters, conclusions, references, list of 

publications and appendixes. Each chapter is provided with an introduction 

(except introduction and conclusions). The total scope of this thesis is 154 pages 

(without annexes), 44 figures, 22 tables. 

Chapter 1 outlines in detail the issues of data mining in medicine and 

healthcare. In addition, the results of a literature analysis and university 

hospitals’ survey are provided. 

A novel process model for data mining and knowledge discovery in the 

medical domain is proposed in Chapter 2. Further, the theoretical part of the 

proposed process model’s evaluation in the fields of Oncology and Cardiology 

is described. Moreover, a novel multi-relational clustering method, supporting 

the multi-relational nature of medical data, is proposed.  

Chapter 3 provides experimental results of the proposed methods. The 

first two sections present use-cases of the applied methodology for predictive 

data mining in the Oncology and Cardiology domains. The third section 

illustrates the usage of multi-relational clustering.  

The Conclusions section presents the main conclusions of the thesis. The 

Annexes section provides the outcome of data mining application in Cardiology 

domain — the aortic valve stenosis predictive model in PMML format. 
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CHAPTER 1  

 

Data Mining in Healthcare and 

Medicine: overview and analysis 

1.1. Introduction 

The tendency in recent decades to computerize the process of disease treatment 

ensures a more rapid accumulation of medical information. Information 

technologies are actively used in the sector of health protection. National 

electronic health records systems and medical imaging archives are implemented 

all over the world. Health care institutions implement and deploy hospital 

information systems (HIS), radiological picture reviewing and archiving 

systems (PACS), laboratory information systems (LIS), and others. Medical 

information systems (hereinafter – MIS) accumulate a structured medical history 

of a patient which includes classified attributes, such as diagnosis, patient 

demographic data, vital functions, test results, and unstructured data, such as 

images and video files. Analysis and mining of this data are strategically 

significant to the health sector and important to each patient. An intellectual 

analysis of the accumulated data offers new instruments for the following tasks: 

faster patient diagnosis, selection of optimal treatment, prediction of treatment 

duration and its outcome, determination of complication risks, and optimization 

of healthcare facility resources. 

Compared to other science and engineering disciplines, data mining 
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(DM) is in its infancy. Over the past decade, the application of DM in 

biomedicine has also been actively investigated. A noticeable increase in the 

number of publications and presentations at conferences indicates the relevance 

of this topic. Although it is not the first decade that methods of DM are being 

applied in medicine globally, practical application beyond research is still 

considered to be innovative and challenging. 

In this chapter, a definition, tasks and methods of DM are described, with 

a focus on applicability in medicine. Section 1.4 gives a perspective of advanced 

DM techniques, such as multi-relational data, streaming data and text mining, 

with respect to the heterogeneous nature of medical data. Section 1.5 provides 

literature analysis on the uniqueness of DM in medicine. Section 1.6 outlines the 

outcomes of the field survey, on the practical usage of DM methods in university 

hospitals in a set of developed and emerging economy countries.  

1.1.1. Literature Analysis Methods  

The references were selected according to the following search criteria: “data 

mining in medicine”, “data mining in healthcare”, “biomedical data 

classification”, “biomedical data analysis”, “medical statistics”, “analysis of 

medical information systems data”, “medical ontology” as well as combining 

the terms listed.  

A great part of this information was selected from the databases 

ScienceDirect and MedLink. Priority was given to publications after the year 

2005. Earlier publications, which review the fundamental aspects of data 

analysis and mining, were also used. 

Information from healthcare provider organizations was obtained while 

working in cooperation with the Vilnius University Hospital Santariškės Clinics, 

the Hospital of Lithuanian University of Health Sciences Kauno Clinics, the 

Klaipėda University Hospital, and university hospitals of Germany, Switzerland, 

South African Republic and Albania.  
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1.2. Defining Data Mining 

While DM methods have been applied since the sixties, the term “data mining” 

first appeared circa 1990. There are numerous definitions of DM. U. Fayyad, G. 

Piatetsky-Shapiro et al. defined DM as an endeavor of finding useful patterns in 

data (Fayyad, et al., 1996) and complements the notion of the term knowledge 

discovery in databases (KDD). Since the nineties, the terms have been used 

interchangeably by statisticians, data analysts, and information systems experts. 

Encyclopedia Britannica defines DM as “the process of discovering interesting 

and useful patterns and relationships in large volumes of data” (Clifton, 2010) 

with the subfields of predictive modeling, descriptive modeling, pattern mining 

and anomalies mining.  

The notion of DM used in this thesis is a part of the knowledge discovery 

process that uses data analysis methods such as statistics, machine learning and 

artificial intelligence to attain new non-trivial knowledge, e.g. prediction values, 

hidden patterns, and dependencies. According to this definition, the aim of DM 

is extracting new knowledge and deeper insight into a given dataset (often a 

large-scale dataset), which may continue to be used for decision making. 

DM overlaps with other disciplines, particularly statistics. There is no 

strict demarcation line, as both disciplines partly employ the same methods. 

However, a few differences can be named. In practice, statistical methods are 

commonly used for primary data analysis, and DM – for secondary data analysis. 

The most important differences are: 

 In statistics, a formulated hypothesis is tested by means of 

statistical methods. DM allows using induction methods while 

formulating hypotheses from available data. 

 Statistics usually examines a sample of the population. DM, on 

the contrary, often analyses data of the whole population.  

 Formal mathematical methods are used in statistics and the use 

of imprecise heuristic methods is avoided. DM methods are 

based on mathematics; however, heuristic, local solution search 

and other approximate methods which focus on the tasks 
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containing large volumes of data, categorical variables or poor 

quality of the data under investigation are widely applied.  

K. Waljee et al. (Waljee, 2013) differentiate predictive research from 

exploratory research in medicine. According to the authors, explanatory research 

typically applies statistical methods to validate an initially raised hypothesis, 

whereas predictive research applies statistical methods and data mining 

techniques without an a priori hypothesis. Approaching a problem without a 

specific predefined hypothesis, helps research from overlooking unexpected 

predictor attributes and may lead to less biased results.  

The first international conference on the subject of DM was organized by 

ACM in the USA in 1995.The concept “data mining” was registered in the 

Medical Subject Headings (MeSH) term dictionary in 2009.  

Application of the techniques related to DM in the medical field initially 

had a slow growing pace. However, recently an exponential amount of 

publications in the subject can be observed. The number of DM related 

publications has increased from five publications per year in the early nineties 

to around 879 in the year 2013. 

Medical information can be expressed as static information, recording an 

instantaneous state of a patient, e.g. test results, diagnosis; dynamic – 

echocardiogram data, graphic – radiographs, three-dimensional graphic – 

computed tomography 3D models. Mining of these multiple data requires the 

adaptation of specialized methods, standards and tools ensuring interoperability, 

data warehousing, and more generally a detailed application methodology. 

1.3. Data Mining Tasks and Methods 

Depending on their purpose of application, DM methods are divided into two 

groups: methods for prediction and methods for data characterization. 

Characterization tasks are aimed at finding patterns and associations, while 

prediction tasks are meant to predict certain events or certain unknown values 

within the relevant sphere of interests. The main methodological difference is 

that prediction requires a specific variable (class) to be included into the primary 
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data. The solution can be numeric or categorical; respectively, DM methods for 

prediction are divided into regression and classification. 

A full list of DM tasks has not been well established yet. However, 

typically, information sources (Chen, et al., 2006) distinguish the following 

tasks: classification, clustering, prediction, association analysis, visualization, 

and link analysis. DM methods can be divided into three main categories: 

 supervised learning technique; 

 unsupervised learning technique; 

 other. 

The first category of “supervised learning technique” includes the tasks 

of classification and prediction. The second category of “unsupervised learning 

technique” is assigned to the tasks of clustering and association rules mining. 

Visualization, outlier detection and link analysis are not classified as “supervised 

learning technique” or “unsupervised learning technique”.  

A list of the most popular DM methods and techniques according to a 

survey conducted by KDNuggets (Piatetsky-Shapiro, 2014) is as follows: 

 decision trees and decision rules (classification); 

 regression; 

 clustering; 

 descriptive statistics; 

 visualization; 

 link analysis; 

 sequence mining; 

 neural networks (classification); 

 support vector machine; 

 Bayes classification. 

Solving DM tasks includes the selection of appropriate algorithms. Both 

the selection of DM method and algorithm, and parameterization of the optimal 

algorithm shall depend on the task objectives of the analysis and characteristics 

of the available data.  
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Over the past decade, a certain experience of applying DM methods in 

medicine has been gained. Esfandiari, Babavalian et al. (Esfandiari, et al., 2014) 

systematically reviewed publications addressing DM applications in medicine 

for structured data analysis. According to the authors, the most popular DM tasks 

and methods applied to the medical domain included classification methods: 

decision trees, neural networks, decision rules, SVM; clustering methods: 

k-means and hierarchical clustering; association mining: A priori association 

rules mining. A description of the most often used DM tasks is provided below. 

According to Houston et al. (Houston, et al., 1999), for diagnostic 

purposes, neural networks, decision trees, decision rules are widely applicable. 

Methods of association rules mining are applied to the cost analysis (Silver, et 

al., 2001) and combinations of various prediction algorithms are widely used in 

order to predict the patient's condition and probability of recovery (Bellazzi & 

Zupan, 2008). 

Classification methods are used to assign objects to the predetermined 

classes. The class role is played by a selected attribute in the data set determining 

an object. In statistics, the attribute is called the dependent variable. While 

classifying the objects, the algorithm creates a classification model, which can 

be further adapted to new data. For example, the diagnostic model of breast 

cancer developed by means of the classification algorithm may continue to be 

applied to the decision-making support system for the purpose of the diagnosis 

of a patient whose data were not used to create the prediction model. 

Classification is a two-step process consisting of training and testing steps. 

During the training step, the algorithm analyses the data meant for learning and 

creates a classification model. During testing, the accuracy of the model is 

checked using another data set. The most popular classification methods: 

decision trees, Bayes classifications and artificial neural networks. 

Clustering is defined as an unsupervised learning technique. This means 

that in the process of clustering a priori knowledge of the group (cluster) the 

object it belongs to is unnecessary. By applying heuristic techniques, the 

clustering algorithm classifies objects into a default number of groups according 
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to the similarity of data. The similarity measure can be selected considering 

attributes characterizing the object. In order to evaluate the similarity of the 

objects, distance metrics are often used: Euclidean, Manhattan, Jacquard, etc. 

The most common clustering methods: hierarchical and partitional clustering. 

The association rules mining method was proposed by Piatetsky-Shapiro 

in 1991. Sometimes called a market basket analysis method, it allows finding 

non-trivial patterns in the data. Association rules define the relationships 

between the data elements. A typical example: during the analysis of the market 

basket a pattern has been established showing that buyers who bought bread and 

butter also bought milk. The most common a priori algorithm provides two input 

parameters: rule support and confidence. 

Association rule confidence is the proportion of the data set to which this 

rule applies. For example, an 80 % rule confidence would mean that 80 % of 

customers who bought bread and butter also bought milk. Association rule 

support is the proportion of data set which provides the condition for the rule. 

For example, 20 % rule support would mean that a total of 20 % of customers 

bought bread and butter. 

1.3.1. Data Mining as a Part of Knowledge Discovery Process 

The process of intellectual data analysis using DM methods is iterative (Azevedo 

& Lourenco, 2008). The DM community has proposed a variety of DM process 

models: CRISP-DM, introduced by consortium of private companies and 

supported by European Commission project ESPRIT (Chapman, et al., 2000), 

process model by U. Fayyad et al. (Fayyad, et al., 1996), process model by P. 

Cabena et al. (Cabena, et al., 1998), process model by K. J. Cios et al.  (Cios & 

Moore, 2002), and SEMMA introduced by SAS Institute, Inc (Matignon, 2007).  

The mostly frequently used and referred methodology for the DM process 

is CRISP-DM. It defines a process model, which decomposes DM into six 

phases: business understanding, data understanding, data preparation, modeling, 

evaluation and deployment. The methodology provides each phase with an 

input, output, and strategy of execution. CRISP-DM treats the DM process as a 
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classic project, which has a defined goal and key constraints – time, resources 

and scope. Since the project already has a formulated goal, CRISP-DM does not 

focus on the task formulation. However, as emphasized by Baylis (Baylis, 1999), 

DM in medicine begins precisely from the correct formulation of the task, when 

clinicians along with data analysis experts formulate the problematic area and 

by analyzing the scope of activity and data available in medical information 

systems, formulate the problem as well as the technical task.  

A detailed CRISP-DM description and the introduced novel extension 

CRISP-MED-DM for the medical domain are provided in Chapter 2.  

While dealing with the tasks formed by healthcare professionals, the main 

objective of the DM specialist is to find and apply appropriate DM methods able 

to discover relationships among attributes, and to develop an appropriate model. 

DM has a wide range of instruments and a few methods can be equally 

well suited for the same purpose. For this reason, it may be impractical to 

consider all alternative methods, and the choice of a particular method is 

determined not only by the results of objective analysis, but, as Bellazzi et al. 

stated (Bellazzi & Zupan, 2008), also by the intuition of the DM expert. 

1.4. Advanced Data Mining Techniques 

Most data mining methods have been developed to deal with a structured 

dataset with the attributes typed as numeric, nominal or bit data. The healthcare 

domain provides a wide choice of data types and representations. Medical 

information systems store structured data in relational databases and 

non-structured data, such as text, image and video files in binary object 

repositories. Following the adoption of recent interoperability standards, such as 

HL7 CDA and HL7 FHIR, there is a tendency to store structured clinical data in 

XML objects or plain XML text files. To mine data stored in those 

representations, non-standard DM techniques are required. In this section, 

multi-relational data mining, data stream mining, text mining, multimedia 

mining, and the intersection of DM and Operational Research are described. 
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1.4.1. Multi-relational Data Mining 

In contrast to the traditional DM approach, multi-relational data mining 

(MRDM) looks for patterns in multiple tables (relations). MRDM methods 

include the relational association rule discovery, decision tree induction, 

clustering, regression, and other classification tasks. MRDM is successfully used 

in the area of bioinformatics, chemistry, marketing and others (Dehaspe, et al., 

1998; Dzeroski, 2010). 

In a straightforward approach of projecting a MRDM task into single-

table DM task, loss of information or meaning can occur, but MRDM has the 

capacity to take into account background knowledge (domain knowledge 

represented in first-order statements). The DM approaches that discover patterns 

in a certain single table are referred to as attribute-values or propositional 

learning approaches (Dzeroski, 2010). A more comprehensive approach is to 

upgrade propositional DM algorithms to a multi-relational case. The example of 

such an upgrade for multi-relational clustering is presented in 

Sections 2.7 and 3.3. 

Historically, the advances of MRDM are related to the techniques of 

Inductive logic programming (ILP), which are based on a subset of first-order 

predicate calculus (Dzeroski, 2010; Muggleton, 1991). The task of ILP can be 

defined as concept learning from positive and negative examples and 

background knowledge. Relational patterns are stated in more expressive 

language than the patterns that are defined on a single data table. Relational 

patterns are expressed in subsets of first-order logic, called differently as 

predicates or relational logic.  

Most commonly, ILP has focused on learning in the normal (or strong or 

explanatory) ILP setting: given background knowledge B, a set of examples  

𝐸 = 𝑃 ∪ 𝑁, where 𝑃 – postivie examples, 𝑁 – negative examples. The objective 

is to find a hypothesis H, such that ∀𝑒 ∈ 𝑃: 𝐵 ∧ 𝐻  𝑒  (posterior sufficiency) 

and ∀𝑒 ∈ 𝑁: 𝐵 ∧ 𝐻  𝑒 (prior satisfiability), meaning H is complete and 

consistent with respect to the set of training examples 𝑃 and 𝑁 and given 

background knowledge 𝐵. 
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An example of the classification rule for predicting influenza, could be 

“IF 80 % of differential conditions = True THEN Influenza = True” (Table 1). 

This rule written in logical program syntax is as follows:  

INFLUENZA(Pn, High Fever, Sore throat, Muscle pain, headache, eye pain, 

fatigue, dry cough)  sum(positive_symptoms(Pn, High Fever, Sore throat, 

Muscle pain, headache, eye pain, fatigue, dry cough) > 5.6 

 

Table 1. Patients influenza symptoms 
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Influenza 

P1 M 5 Y Y N N Y N Y Y 39 Y 

P2 F 30 N N Y N N N Y Y 37 N 

P3 M 32 N N N N N N N Y 37 N 

P4 F 45 Y Y Y N N N N Y 29.5 Y 

P5 M 50 N Y N N N Y Y N 37.5 N 

 

Considering additional data available in relation “Family relationship” 

shown in Table 2, a more complex predictive rule, based on multi-relational data 

is induced: 

INFLUENZA(Pn, High Fever, Sore throat, Muscle pain, headache, eye pain, 

fatigue, dry cough)  sum(positive_symptoms(Pn, High Fever, Sore throat, 

Muscle pain, headache, eye pain, fatigue, dry cough) > 5.6  

(Familly_members(Pn, Pk)  INFLUENZA(Pk) = True ) 

Table 2. Next of kin relationship 

ID1 ID2 Relation type 

p1 p2 Son 

p1 p3 Son 

p2 p3 Wife 

p4 p5 Husband 

 

The example illustrates in simple terms the potential of multi-relational 
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inference. On the other hand, aggregating multiple tables through joins or 

generalization, can cause information loss, which was discussed in detail by 

Kramer, Lavrac et al. and Knobbe, Haas et al. (Kramer, et al., 2001; Knobbe, et 

al., 2001). 

Van Laer and De Raedt (Van Laer & De Raedt, 2001) presented a generic 

approach for upgrading propositional algorithms to relational ones. The idea is 

to upgrade only the key notions, while keeping as much of the original algorithm 

as possible. For partitioning clustering, the key notions are distance measures, 

for rule induction – the refinement operator. Taking this approach, the MRDM 

algorithm represents a special case of a propositional algorithm for a multi-

relational environment. Sections 2.7 and 3.3 illustrate this approach in more 

detail. 

Extending the key notions to multi-relational data (e.g., defining distance 

measures for portioning clustering methods) requires considerable insight and 

creativity (Kramer, et al., 2001). Efficiency concerns are also very important, as 

it is often the case that even testing a given relational pattern for validity is 

computationally expensive, let alone searching a space of such patterns for valid 

ones.  

1.4.2. Intersection of Data Mining and Operations Research 

The ultimate goal of Operations Research (OR) is to optimally solve decision 

problems (Olafsson, et al., 2008). In order to induce optimal decisions, we need 

to understand the structure of the application system by modelling it and by 

providing algorithmic solutions for deriving decisions. OR, like DM, is a multi-

disciplinary field. It employs mathematical modelling, optimization, statistical 

analysis, and computer science. As a formal discipline OR is older than DM, 

with the onset in the 1950s. However, the initial works of C. Babbage (Babbage, 

1832) on transport cost optimization are originally dated back to the 1840s. 

There is a growing interest in the intersection of OR and DM. A number 

of publications, revealing successful application and integration of both 

approaches highlight the benefits from the integration (Corne, et al., 2012; 
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Meisel & Mattfeld, 2010; Olafsson, et al., 2008).  

DM can be perceived as an extension of the OR problem solving 

methodology, which is supported by the research of DM algorithms within the 

OR community (Olafsson, et al., 2008; Smith & Gupta, 2000). The practical 

cooperation of OR and DM usage is visualized in Fig. 1 . OR uses information 

about the structure as an input and delivers a derived decision. DM compliments 

this process by delivering the information, given the application data. According 

to S. Meisel (Meisel & Mattfeld, 2010), there are three principle types of 

synergies, where OR and DM can benefit each other. Under the first category is 

OR increasing DM efficiency; under the second, DM increasing OR 

effectiveness by replacement, and finally DM increasing OR effectiveness by 

refinement.  

 
Fig. 1. Synergy of Operation research and DM application (Meisel & Mattfeld, 2010) 

First, the efficiency of certain steps of the DM process can be increased 

by employing OR methods. OR can be considered for the optimum pre-

processing method or a method to algorithmically optimize DM modelling. 

Second, DM is merely replacing OR. Finally, the last, and most promising 

method is refining OR with the support of DM. This method results in more 

effective decision making by refining initial decision models, by employing DM. 

In a closed-loop system, the information provided by DM is used for decision 

solution refinement with respect to measurement and decision attributes. 

Use-case application of this method, where DM is not replacing OR, but 
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instead, it is integrated into the broader process model is described by Niakšu 

and Žaptorius (Niakšu & Žaptorius, 2014), where the authors proposed a method 

for creating a performance based motivation system for healthcare provider 

organizations personnel. The method aims to ensure cost-effectiveness, 

employee motivation and social balance. A multi-criteria decision support 

method is proposed for healthcare provider organizations performance related 

remuneration model creation. In addition, DM methods for the determination of 

performance indicators to be used, and for the subsequent monitoring of the 

achieved results, are proposed.  

1.4.3. Text Mining 

Text-mining (TM), known also as Knowledge Discovery from Text (KDT), is 

considered the method of extracting interesting patterns from a large text 

database for discovering knowledge (Dorre, et al., 1999). Text-mining shares the 

same analytical functions as data-mining, and also applies analytic functions 

from natural language (NL) and information retrieval (IR) techniques (Hotho, et 

al., 2005). 

A Text Mining system is composed of three major components: 

a) Information Feeders connects to any web site, streamed source 

or internal document collections and enables the relationship 

between different textual collections and the tagging modules.  

b) Intelligent Tagging is responsible for text reading and selecting 

relevant information. It applies to any type of tagging on the 

documents such as statistical tagging, semantic or structural 

tagging.  

c) Business Intelligence Suite consolidates the information from 

disparate sources, allowing for simultaneous analysis of the 

entire information background. 

According to their tasks, TM can be divided into two major categories, 

algorithms and formal frameworks. The algorithms are task-oriented 

pre-processing approaches that visualize the process of creating a structured 
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document representation. This involves a preparatory target or problem that 

needs to be solved. The formal frameworks are pre-processing approaches that 

rely on methods deriving from analyzing complex phenomena. This can also be 

applied to natural language texts. Such approaches involve classification 

schemes, probabilistic models, rule-based system approaches, and other 

methodologies. 

There is a significant difference between Text Mining (TM) and Text 

Retrieval (TR) or Information Retrieval (IR). TM discovers new information 

from text, through searching for patterns across datasets. The results of the TM 

process are patterns, connections, profiles or trends, and in order to find the 

information we do not necessarily have to read the documents. On the contrary, 

IR helps users find documents that go with their information necessities. The 

outcome of the information retrieval process is the documents, and in order to 

understand it, we still need to read the documents.  

Known applications of TM and IR in the medical domain are the 

summarization and tagging of unstructured clinical documentation, e.g. referral 

letter, discharge summary, radiology report. 

1.4.4. Multimedia Mining 

Multimedia DM is an emerging active research area, where the necessity for 

finding tools to extract hidden useful knowledge that is embedded within the 

multimedia collections is essential for many applications. A vast amount of 

clinical data is represented in image, video or audio format, which can be used 

for automated information retrieval. 

In a database system, there is always a database management system to 

administer all the data in the database. However, when the data are unstructured, 

we do not have a management system, but a collection of multimedia data. 

Multimedia mining methods are used to index unstructured data, by retrieving 

its descriptive information. Thus, the multimedia indexing and retrieval involves 

the indexing and retrieval of a single, non-text modality of data, such as an 

image, video, or audio.  
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An echocardiography image processing and mining use case is described 

in Sections 2.6 and 3.2.  

1.4.5. Data Streams Mining 

Traditionally, DM is concerned with static data, residing in databases and 

repositories. However, the emergence of continuous electronic data from 

sensors, sensor networks, web logs and others requires a different DM approach. 

Such data are called data streams. Linear and sub linear techniques, producing 

approximated DM results have been proposed to handle streaming data, and the 

following techniques have emerged: projection, sampling, group testing, tree 

method, and robust approximation. According to M. M. Gaber et al. (Gaber, et 

al., 2005), notable data stream mining tasks are as follows: 

 Managing the continual flow of data streams: The flow of data 

in data streams is of a continuous nature. As a result, it requires 

novel management and analysis techniques that can deal with the 

constant, rapid flow of data elements. Examples of those are 

mining of Intensive Care unit data (Catley, et al., 2009; Ramon, 

et al., 2007). 

 Unrepressed memory requirements: Data stream sources require 

the uninterrupted flow of data. Sensors and handheld devices do 

not have sufficient memory to run traditional DM techniques 

which require the results be continuous in the memory during the 

time of data processing. An example of those is mining data from 

home care systems, which aggregate data from the medical 

devices and sensors used by patients in their daily environment. 

 Altering detection and modeling of mining results over time: 

Keeping track of the change of DM results is considered to be 

more important in this field rather than the DM results alone. 

Considering the high volume of data coming from various 

sources, the modeling of the change is not trivial. 

Mining of streaming data utilizes different solutions using well-
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established computational and statistical approaches. These solutions are 

categorized into task-based and data-based ones (Aggarwal, 2007). The 

data-based solutions search for only a subset of the whole dataset or convert the 

data horizontally or vertically into a smaller size data representation, whereas 

the task-based solutions utilize techniques from computational theory in order 

to reach the most efficient solution. 

The data-based techniques consist of gathering the whole dataset or 

selecting a subset of the incoming stream for analysis. The most popular data-

based data stream mining techniques are as follows: 

 Sampling: choosing a subset of a dataset for analysis using 

probability theory. 

 Load Shedding: overlooking a continuous amount of streaming 

data. 

 Sketching: indiscriminate projection of a set of features to be 

analyzed. 

 Synopsis-Data Structure: transformation of the incoming stream 

into a compressed form. 

 Aggregation: calculating statistical measures that capture the 

characteristics of data. 

The task-based techniques are based on existing DM algorithms, 

upgrading them to address the computational challenges of data stream 

processing. The most popular task-based data stream mining techniques are as 

follows: 

 Approximation algorithms. Data stream mining is assumed to be 

a hard computational problem, and an approximate solution with 

the error bounds is proposed. Approximation for frequent pattern 

discovery in a data stream have been used in Pragarauskaitė’s 

work (Pragarauskaitė, et al., 2013). 

 Sliding window techniques. The key idea is to concentrate data 

analysis on the most recent data (window) and a summarized 

version of the old ones. 
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1.5. Application of Data Mining in Medicine and 

Healthcare 

1.5.1. Historical Perspective 

Collection of medical information and its routine statistical analysis has been 

carried out since the middle ages. The first known medical publication analyzing 

medical statistics was published in 1662 in London (Graunt, 1939). In 1863, 

F. Nightingale (Nightingale, 1863), a pioneer of modern medical care, had 

complained in her notes about the lack of health records and their desultory 

storage in hospitals, which used to impede analysis of treatment cost and 

effectiveness. In 1977, the Congress of the United States published a study 

“Policy Implications of Medical Information Systems” (Office of Technology 

Assesment. Congress of the United States., 1977). The study proposed that 

medical information systems could be used for educational purposes to help 

medical professionals in the provision of health services and increase the 

efficiency of treatment and HPO (health provider organization) activity. The 

study authors stated that eventually such systems would provide information and 

knowledge that was previously inaccessible to researchers and healthcare 

governing bodies. Since the year 2000, regional and national electronic health 

records systems, which aim to collect all relevant patient medical records, have 

been actively deployed worldwide.  

 

Fig. 2. Estimated hospital based EHR adoption rate (Accenture, 2010) 
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According to an Accenture market study (Accenture, 2010), the annual 

EHR and EMR growth is estimated by 5–8 % per year. The estimated hospital-

based Electronic Medical Records systems adoption is shown in Fig. 2. 

1.5.2. Aims and Objectives of DM in Medical Domain 

As it was shown, the importance of stored medical information was understood 

a few centuries ago. When data is collected electronically, in addition to the 

standard calculation of statistical indicators inherent in healthcare, healthcare 

can benefit from DM methods. 

As stated by Baylis (Baylis, 1999), the key to the successful mining of 

medical data is the correct identification of HPO activity or clinical problem. In 

the literature overview works of Belazzi and Zupan, Cios and Moore (Bellazzi 

& Zupan, 2008; Cios & Moore, 2002), the DM methods usually perform 

biomedical data regression, clustering, classification and visualization tasks, in 

order to facilitate decision-making for healthcare professionals. According to the 

most recent and sound systematic literature overview, performed by Esfandiari 

et al. (Esfandiari, et al., 2014), four main application areas of DM application in 

medicine can be defined: 

1. Increasing the efficiency and elimination of the human factor: 

deals with tasks for diagnosis of certain diseases where accuracy 

is essential. 

2. Reduction of time and cost: applicable when conventional diag-

nostic methods take a long time or are very expensive.  

3. Medical decision support system: uses a multi-process automa-

tion, e.g. prediction models and expert systems; applied as assis-

tance for less experienced or lower-skilled medical staff. 

4. Knowledge extraction: used for the extraction of new knowledge 

or hypotheses. 

The authors concluded that DM application studies aiming for efficiency 

improvement, hidden knowledge extraction, and medical decision support are 

equally popular, scoring 27–28 % each. 
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Fewer dissemination gained studies are devoted to resource optimization 

(reduction of time and cost). An example of DM and Operations Research 

methods’ application for healthcare management tasks is described in the study 

of Niakšu and Žaptorius (Niakšu & Žaptorius, 2014), where the authors 

proposed a method for creating a performance based motivation system for 

healthcare provider organizations personnel.  

Another approach to determine the objectives of DM in healthcare is to 

relate them to the process of patient treatment, as the decision supporting 

activities. The clinical treatment process model as described by J. M. Wehlou 

(Wehlou, 2014) includes a patient’s history assessment, diagnostic activities, 

actual treatment, and patient’s condition follow-up (Fig. 3). 

 

Fig. 3. Clinical process model. The 3rd and the 4th phases are iterative. 

In addition, standalone medical tasks of screening, monitoring, and 

chronic disease management can be defined. Horizontal managerial tasks, such 

as resource optimization, quality control, adherence to the protocols and 

treatment plans are also to be considered. 

Generalizing both approaches, the objectives of DM usage in medicine 

can be generalized into two main groups: treatment resources optimization 

(healthcare management domain), and treatment quality improvement (medical 

treatment and research domains). We present objectives of DM applications in 

the medical domain grouped by the goals in Table 3. 



Data Mining in Healthcare and Medicine: overview and analysis 

 

28 

Table 3. Goals and objectives of DM in medicine 

Goals Objectives 

Optimization of treatment 

resources 
 Identification of opportunities for 

potential cost reduction and revenue 

enhancement (Silver, et al., 2001); 

 Dependence of length of stay (LOS) at a 

hospital on the patient‘s demographic 

data, anamnesis, selected method of 

treatment, and other factors (Baylis, 

1999; Yeh, et al., 2011); 

 Prediction of rehospitalisation; 

 Prediction of postoperative 

complications and their probabilities; 

 Prediction of  medical staff efficiency 

indicators (Niakšu & Žaptorius, 2014); 

 Identification of unnecessary medical 

interventions; 

 Identification of improper prescriptions 

Improvement of treatment 

quality 
 Early diagnosis of diseases (screening) 

 Evaluation of probable complications; 

 Modelling the progress of disease 

(Tanwani, et al., 2009); 

 Determining associations of specific 

clinical attributes in order to adjust the 

diagnosis or select a plan of treatment; 

 Generalizing multidimensional 

biomedical data recorded in real-time in 

order to facilitate decision-making 

(Stacey & McGregor, 2007); 

 Analysis of the quality of biomedical 

datasets (Bellazzi & Zupan, 2008): 

 Determination of dataset completeness; 

 Determination of dataset fragmentation; 

 Diagnosis setting or adjustment of 

diagnosis; 

 Formation of medical expert systems 

database; 

 Prediction of medication effectiveness; 

 Micro-array analysis for task solving; 

 Early diagnosis of diseases; 

 Selection of individual treatment; 

 Determination of the probability of 

disease occurrence. 
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1.5.3.  Issues and Challenges of Data Mining in Medicine and 

Healthcare 

The DM and more general knowledge discovery problems in medicine have 

been well covered by the works of R. Belazzi & B. Zupan, K. J. Cios & 

G.W. Moore, I. Yoo et al. and others (Bellazzi & Zupan, 2008; Canlas Jr, 2009; 

Cios & Moore, 2002; Koh & Tan, 2005; Yoo, et al., 2012). The domain specific 

problems distinguish the process of DM in medicine and set it apart from other 

subject areas. R. Bellazi and B. Zupan stated that if DM were a simple process, 

the problems of information management would have been solved long ago. 

As the listed authors emphasized, the practical application of DM in 

medicine meets a number of barriers: technological, interdisciplinary 

communication, ethics, and protection of patient data. In addition, there are 

several well-known problems of biomedical data, such as inaccurate and 

fragmented information. Examples of inaccurate information: measurements of 

vital functions were performed when the patient was not in a rest position; test 

sample required for testing was taken in non-sterile conditions; lab equipment 

calibration errors. Fragmented information includes cases when the available 

patient data is non-sufficient for definitive results.  

Another unique characteristic of DM in medicine is the usage in making 

decisions critical to human life. Therefore, as K. Cios and W. Moore noted (Cios 

& Moore, 2002), the results of a selected DM method must be descriptive, i.e. 

presented with explanations, so that medical experts can understand how these 

results were obtained. In terms of explicitness, some DM methods, such as 

decision trees, are more preferable than others, e.g. neural networks. 

Analysis of the data within the framework of several medical specialties 

raises additional challenges. In medicine, semantically the same concept may 

have multiple names and different identifiers in different code systems. Let us 

consider a hypothetical example. The department of anatomical pathology in a 

hospital uses Anatomical Pathology Laboratory Information Systems, in which 

SNOMED-CT nomenclature is used. While the cardiology department uses a 

cardiology information system, which has the ICD-10 and ICD-PT 
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classifications installed and expanded according to the needs of the cardiologists. 

In addition, cardiologists are the users of radiological systems. Radiological 

systems are computerized but not integrated with the cardiology system. 

Radiology images and patient data are stored in the DICOM format, whereas for 

disease classification the ICD-10 code system is used. The prediction task 

requires the patient's clinical information, combining information accumulated 

in all the related departments. At this point we are facing a data interoperability 

problem. Before applying DM algorithms, the data have to be semantically 

mapped using common ontology. In order to use radiology test results, it is 

necessary to use computerized image processing algorithms, and possibly to 

apply text mining for the textual description of the findings, results and 

complications sections in the unstructured parts of clinical documentation.  

In the cases where information systems use standard biomedical 

classifiers, nomenclatures, and ontologies, the semantic interoperability task 

projects to the definition of a common ontology. However, it is impossible, when 

healthcare institutions use the extended, proprietary or regional versions of 

classifiers, which are not identical to the international versions. In such cases, 

DM and medical informatics specialists have to create data transformation 

methods to ensure correct semantic data mapping.  

Returning back to the example of a hypothetical hospital, the problem of 

medical information systems’ interoperability also needs to be addressed. As the 

information systems of cardiologists, pathologists and radiologists are not 

integrated, the integration of these systems is required. Medical informatics 

offers a range of interoperability standards. Lithuanian eHealth Strategy 

stipulates medical data exchange standard HL7 version 3 for this purpose. 

However, the standard has not been applied in practice yet. In theory, modern 

medical information systems have to support industrial medical data exchange 

standards and profiles, like HL7, HL7 CDA, DICOM, IHE PIX, IHE XDS and 

to rely on international classifiers and nomenclature. In practice, the situation 

can be opposite. According to our survey (Niakšu & Kurasova, 2012), the 

medical information system being used in Lithuania does not support data 
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exchange standards. Therefore, successful application of DM methods faces an 

additional challenge – integration of information systems. The integration of 

systems should be understood in a broad sense, ranging from data exchange 

architecture and ending with semantic data integrity.  

The interoperability issues become more complex while integrating 

systems and data from different countries. The researchers and practitioners are 

provided with a set of overlapping standards, some of which are more common 

in Europe and others in the United States and Australia.  

Other common issues of DM in medicine are ethics and patient 

confidentiality. The legislation protecting personal privacy prohibits the use of 

patients’ clinical information without their consent. This complicates the use of 

clinical information for research purposes. This problem is solved by data 

depersonalization (Nitzlnader & Schreier, 2014). This is done by separating 

clinical data from demographic data identifying the patient. Datasets used for 

research must not include patient's name, passport or insurance ID numbers or 

other identifying attributes. 

In some countries, where legislation of equal opportunities is fully 

developed, ethical problems are not limited to data depersonalization. For 

instance, the decisions of the United States for the provision of services cannot 

be made in accordance with the criteria of race, gender or age. As these 

demographic characteristics of the patient are very important and are often used 

in DM research projects, the application of the research results, which had 

included such data, may become problematic.  

Another widely spread issue is the incorrect and fragmented information 

problem. The selection of efficient algorithms and construction of accurate 

prediction models with high specificity and sensitivity requires assessing the 

completeness and reliability of clinical data. Overall data quality is affected by 

inaccurate measurements, human or equipment errors. For these reasons, it is 

essential to consider larger samples of clinical data. Thus, by ignoring atypical 

data outliers, the impact of imprecise data on the results of the analysis is 

reduced. 
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Most of the problems in the medical domain correlate to the generic 

issues and challenges of the KDD process described in the seminal work of 

Fayaad et al. (Fayyad, et al., 1996). By analyzing and comparing them to the 

problems and issues outlined above, a structural mapping of Fayaad’s generic 

issue list and specific medical domain problems is provided in Table 4. 

Table 4. Mapping Fayaad’s and medical domain issues and challenges 

General Fayaad’s DM issues and 

challenges 

Medical domain specific issues and 

challenges 

 Massive datasets and high 

dimensionality 

 Medical data interoperability 

 Incorrect and fragmented 

information problems 

 User interaction and prior 

knowledge 

 Patient data privacy 

 Overfitting and assessing 

statistical significance 

 

 Missing data  Incorrect and fragmented 

information problems 

 Understandability of patterns  Requirement for DM 

modelling outcomes 

interpretability 

 Managing changing data and 

knowledge 

 Multidisciplinary collaboration 

 Integration  Medical data interoperability 

 Incorrect and fragmented 

information 

 Patient data privacy 

 Nonstandard, multimedia, and 

object-oriented data 

 Medical media data pre-

processing and feature 

extraction 

 Medical data interoperability 

 

 

1.5.4. Conceptualization and Exchange of Clinical Data 

Since the beginning of the twentieth century, hospitals have been executing 

routine monitoring and recording of their performance. International and 

national health care organizations issue metrics and indicators, which reflect 

preoperative hospitalization time, postoperative complications rate, bed turnover 

rate, lethality, patient flow, etc. The metrics necessary for the calculation of the 

indicators are collected in paper or electronic forms. In the case of electronic 
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data collection, the HPO can analyze the information stored in real time and 

make appropriate management decisions (Paulus, et al., 2008). Thus, one of the 

aims of making information available electronically is to support management 

decisions of the HPO. For example, the Kaiser Permanente Hospital in the 

United States is continuously measuring both the indicators of the patient's 

health and medical personnel work efficiency, which are further analyzed and 

used for the treatment process improvement, evaluation of the personnel work 

quality, for comparative analysis and research (Paulus, et al., 2008). 

Clinical data modelling and medical ontologies are emerging disciplines. 

Formalized clinical modelling are addressed by open standard specification 

openEHR (Beale, et al., 2006), its derivative European standard CEN 13606, and 

HL7 standard ISO 13972 (Schloeffel, et al., 2006). HL7 provides a two-layer 

validation process, with HL7 Reference Information Model, and its introduced 

Detailed Clinical Models as described in ISO 13972 standard. HL7 employs 

UML version 2 as a graphical modelling representation with ISO 21090 defined 

data types.  

The openEHR related standards imply a framework for universal clinical 

data modelling, based on archetypes and templates, created by a consensus of 

the clinical community.  

Archetypes are the shareable specifications of clinical information. 

OpenEHR defines archetype as a re-usable, formal definition of domain level 

information, defined in terms of constraints on an information model (Beale, et 

al., 2006; Kalra, et al., 2005). An example of the archetype “blood pressure” is 

shown in Fig. 4 (Heard, 2008).  

An archetype template is a set of related archetypes with a common usage 

scenario. For example, the archetypes for blood pressure, weight and blood sugar 

may be used to record a routine screening of diabetic person. 
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Fig. 4. OpenEHR archetype “Blood Pressure” (Heard, 2008) 

All clinical modelling standards rely on medical terminology. Every term 

in openEHR archetype or detailed clinical model can refer to a standard 

terminology. Coded terminologies in healthcare are used to ensure semantic 

interoperability and decision support.  

Much attention has been paid to the semantic analysis of existing formal, 

semi-formal and informal ontologies and investigation of their integrity 

(Bodenreider, 2008). The principle problems being solved are the creation of 

medical decision support systems and medical information system 

interoperability with respect to various terminologies used.  

O. Bodenreider indicates (Bodenreider, 2008) the following most 

commonly used biomedical terminologies: ICD, LOINC, SNOMED, FMA, GO, 

RxNorm, MeSH, NCI Thesaurus, and UMLS. Table 5 shows the number of 

concepts within the listed thesaurus, classifiers, nomenclatures and ontologies: 

Table 5. The most popular biomedical term thesaurus and ontologies 

Title Number of 

concepts 

International Classification of Diseases, ICD 12.318 

Logical Observation Identifiers, Names and Codes, LOINC 46.406 

SNOMED Clinical Terms, SNOMED CT 310.314 

Foundational Model of Anatomy, FMA ~72.000 

Gene Ontology, GO 22.546 
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Title Number of 

concepts 

Catalogue of Clinical Drugs - RxNorm 93.426 

Medical Subject Headings, MeSH 24.767 

National Cancer Institute, NCI Thesaurus 58.868 

Unified Medical Language System, UMLS 1,4 M 

 

Since 1986, the United States National Library of Medicine has been 

generating an integral biomedical ontology UMLS (Unified Medical Language 

System). 

The UMLS is a generalizing biomedical ontology. The UMLS provides 

tools for healthcare professionals and researchers to select and integrate 

information from different electronic biomedical sources, starting from patients’ 

electronic health records systems, and ending with knowledge sources 

(databases). The UMLS version 11 contains over 1.4 million concepts and 

6 million links. Conceptions unify synonyms from 100 different classification 

systems, such as MeSH, ICD-10, ICD-9-CM and SNOMED. 

The UMLS consists of the following components: 

 Metathesaurus – UMLS database, which consists of a glossary 

of concepts and terms, lists of relationships, as well as links to 

external vocabularies (classifications);  

 Semantic Network – a set of categories and their relationships, 

which are represented in the definitions of entries in the 

Metathesaurus;  

 Specialist Lexicon – a lexicographic vocabulary used in natural 

language processing; 

 Software Tools. 

The UMLS is particularly useful when integrating multiple data sources 

it is necessary to deal with the problem of multiple terms for a single concept. 

An example is the concept of a disease – “Addison's disease”. This concept, 

depending on the classification system, may also be referred to as “Primary 
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hypoadrenalism”, “Primary adrenocortical insufficiency”, “E27.1”, etc. 

 

Fig. 5. Mapping model of UMLS concept “Addison's disease” (Bodenreider, 2012) 

All names and codes represented in Fig. 5 are completely or partially 

identical to the concept “Addison's disease”.  

Currently, Lithuania has not yet implemented national medical records, 

which would enable data exchange in unified and standardized formats. 

However, national information systems administered by the National Health 

Insurance Fund control and provide HPOs with the following classifications: 

 ICD-10-AM - International Statistical Classification of 

Diseases and Related Health Problems, Tenth Revision, 

Australian Modification;  

 ACHI - Australian Classification of Health Interventions; 

 List of large and small operations;  

 Diagnose related groups (DRG); 

 National Social Insurance reimbursed services;  

 Classifier of Lithuanian medical doctors;  

 Classifier of Lithuanian health care institutions. 

In order to successfully transmit data between different information 

systems, medical data transmission standards are used. HL7 is a standard system 

defining clinical and administrative patient data exchange and integration. A 

standard HL7 version 2, which is the most commonly used structured patient 

data exchange format, enables electronic messaging for the exchanging of 

administrative, financial and clinical information of a patient. As HL7 version 2 

was created in the 1980s, its syntax is not designed for modern service oriented 

architecture. In 2005, the subsequent HL7 version 3 was proposed, and in 2014 
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a draft specification of HL7 FHIR was introduced. HL7 version 3 is based on a 

formal HDF methodology and refers to an object-oriented paradigm. HL7 Fast 

Healthcare Interoperability Resources is the most recent to date standards 

framework provided by HL7. FHIR combines previous versions and introduces 

the latest web standards to support RESTful architectures, mobile phone apps, 

cloud communications, and EHR-based data sharing. 

It is planned to build a Lithuanian national eHealth system 

interoperability backbone based on the HL7 FHIR standard. Another important 

clinical data structuring and capturing standard, constituting a part of HL7 

version 3, is HL7 CDA. The HL7 Clinical Document Architecture is an XML 

syntax standard specifying the coding, structure and semantics of clinical 

documents and ensuring unified clinical document structure. The HL7 CDA 

standard solves the problem of clinical document exchange between HPO, 

regional and national medical information systems. 

1.6. Data Mining Uptake in Healthcare Facilities 

Heterogeneous information systems, a variety of terminologies, semantic 

interoperability, data quality issues, and patient data privacy constraints are the 

most important reasons limiting deployment and use of DM in healthcare 

provider organizations.  

In order to evaluate the practical usage of DM in healthcare, we have 

conducted a survey of tertiary hospitals in five countries (Niakšu & Kurasova, 

2012). Countries from diverse economic development regions were selected to 

represent hospitals with unlike economic potential. The qualitative assessment 

of the survey results has been compared with quantitative literature analysis in 

the field of DM applications in the medical domain. 

Surveying tertiary level healthcare facilities, which conduct scientific and 

commercial research studies, allowed us to draw conclusions on actual DM 

application activities, and to understand what the gap was between the data 

analysis experts’ community and healthcare practitioners and scientists. The 

outcome of this comparative analysis suggested that a relatively low percentage 
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of academic research efforts result in practical DM applications in healthcare. 

Thomson Reuters Web of Science (Thomson Reuters Web of Science, 2014), 

Google Scholar (Google Inc., 2014) and PubMed (National Center for 

Biotechnology Information, 2009) databases were used to analyze the number 

and distribution of scientific publications related to DM in medicine in the last 

decade.  

The PubMed database is comprised of more than 21 million citations for 

biomedical literature from Medline, life science journals, and online books. 

PubMed is operated by the National Healthcare Library of U.S. and indexes all 

publications classifying its content with the help of MESH structured vocabulary 

(National Library of Medicine, MeSH, 2015). Using MESH vocabulary terms 

as a search parameter in the PubMed database guaranties that not only search 

wording matching publications will be found, but also its matching synonymic 

wording or previously used terms. MESH term, named as “data mining” is 

mapped to other similar concepts like “text mining”. The term “data mining” has 

been appended to the vocabulary only in 2010 and the former terms e.g. 

“Information Storage and Retrieval” are mapped to the latest one. A search 

criterion “data mining” was used to retrieve a number of publications and books 

within the medical domain with the assigned MESH heading and MESH term 

“data mining”. The first publication is dated 1984, however the second one 

appears only after a 10 year interval in 1994. This search resulted in 424 

publications.  

The Web of Science has been providing access to more than 12,000 journals 

in a variety of subject areas. It also includes citations to conference proceedings. 

The advanced search filter allows the use of logical operations, search restricted 

to the selected subject areas, and the search scope. The following search query 

was used for further analysis:  

(TS=(DM) AND TS=(medic* OR clinical OR healthcare)) AND Document 

Types=(Article OR Abstract of Published Item OR Proceedings Paper) 

Refined by: [excluding] Web of Science Categories=( OPERATIONS 

RESEARCH MANAGEMENT SCIENCE OR TELECOMMUNICATIONS ) 
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Timespan=1996-2012. Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, 

CPCI-SSH. Lemmatization=On  

This search resulted in 238 publications. 

Google Scholar provides a scholarly literature search service across many 

disciplines and sources, including theses, books, abstracts and articles. However, 

it is not limited to scientific publications only. Google Scholar indexes content 

items published since 1993. Google’s search filter allows the use of logical 

operations AND, OR, NOT, a restricted search only in the selected subject areas, 

and search scope (title of the publication or whole text). The following search 

query was used for further analysis:  

Search in the title: “data mining” AND (medical OR clinical OR medicine OR 

healthcare) 

The choice of searching in the whole article text was rejected due to the 

fact that many DM centric publications have keywords “medicine” or 

“healthcare” in the text with a purpose to illustrate DM usage.  

The distribution of publications found in Web of Knowledge, Google 

Scholar and PubMed databases starting from 1996 to 2012 is shown in Fig. 6. 

 
Fig. 6. Trend lines of DM applications in medicine related publications 

As it is seen from the explanation of the queries searched in the databases, 

the results are not directly comparable and are used to illustrate a constant 

increasing interest of the academic society in DM applications in the medical 

domain. 
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1.6.1. Surveying DM Applications in Healthcare Facilities 

As shown above, the volume of medical related DM research increases from 

year to year. Hypothetically, one can suppose that DM usage penetration is 

increasing accordingly.  

Due to the fact that the healthcare sector is very diverse and its entities as 

well as actors have different objectives and activities, they employ different 

methods and tools in their operations. The initial experience of interviewing 

healthcare institutions suggested that the highest probability of DM usage is in 

tertiary hospitals, which have tight relations with the academic society and 

participate in scientific and commercial research on a regular basis. Therefore, 

the analysis scope was limited to tertiary hospitals, representing different levels 

of economic development, and having a different magnitude of electronically 

available patient related data. Hospitals from the following countries 

participated in the survey: South African Republic, Lithuania, Switzerland, 

Albania, and Germany.  

1.6.2. Preparation and Conducting the Survey 

The respondents of the survey were briefed on the purpose and terms used in the 

questionnaire. Early feedback indicated that hospitals’ IT departments could 

better identify actual applications of DM deployed in IT systems used by the 

organization. Whereas medical representatives were minimally knowledgeable 

about what exactly DM is and how or if it is used in the institution. Taking this 

diverse interviewing audience into consideration, questions were formulated in 

a comprehensible way for a broader range of respondents with a medical or IT 

background. The final questionnaire, which was distributed to the hospitals is as 

follows: 

1. Have you heard about practical applications of DM in medicine? 

2. Do you know any research projects in your hospital using DM 

methods? 

3. Have you or your colleagues been involved in a DM research project, 

aiming to identify new patterns or finding new rules for patient 
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diagnostics, prediction of treatment results or other. If yes, please 

provide a brief summary of research aim and the results. 

4. If DM methods have been used, was your experience successful? 

Please comment. 

5. Has the clinical decision support IT system been used in your 

hospital? 

6. Please specify which clinical specialties could benefit by using DM 

methods on collected patient clinical data in your hospital (choose 

from the list). 

7. What type of clinical research is your hospital involved in? 

8. Are you or your colleagues potentially interested in the benefits DM 

could provide to you? 

9. How many years has patient data been collected in IT systems in your 

organization? 

10. Please specify what clinical patient information is stored in IT 

systems (HIS, EHR, EMR, RIS, etc.). Select from the list: 

Observations, Lab results, Radiology reports, Anamnesis, Surgery 

reports, Discharge summary, Visit summary, Nursing data (vitals), 

Medication used (for inpatients). 

11. Mark medical IT systems used in your organization. Select from the 

list: EMR / EPR, HIS. 

12. RIS/PACS, LIS, Specific clinical information systems, Emergency 

IS, OP clinic information system, Blood bank information system, 

Clinical decision support system, Pathology information system. 

13. Specify what standard nomenclature is used in your organization 

(e.g. ICD9, ICD10, SNOMED-CD, LOINC). Select from the list: 

Patient diagnosis, Pathologic diagnosis, Procedure coding, 

Laboratory coding. 

14. Are you interested in international clinical DM research projects?  

15. Specify the clinical specialty or problem you are interested in. 

1.6.3.  Method of Survey 

The survey was conducted according to methodical guidelines of the Centre for 

Health Promotion of University of Toronto (Centre for Health Promotion of 

University of Toronto, 1999). A call for survey was openly published in the 

eHealth news portal eHealthServer.com (eHealthServer.com, 2012). The survey 

was prepared in both online questionnaire and offline forms. Hospitals were 

asked that at least two respondents from each institution should fill out the 
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questionnaire; a person in charge of medical services, e.g. medical 

superintendent, director of medicine, head of the clinical department and a 

person in charge of Information Technology e.g. chief of the IT department. 

Initially, the enquiries were sent to the officials of the hospitals in eight 

countries.  

1.6.4. Analysis of Survey Results  

 Out of fourteen respondents, twelve confirmed that they had heard about 

practical applications of DM. However, after response validation, only nine 

positive answers could be qualified. However, even out of the remaining nine 

respondents with positive answers only four were familiar with practical 

examples of such usage, totaling 29 % of the respondents. The survey answers 

suggested that the majority of medical respondents have no information about 

DM research initiatives and applications in their own facilities. The selected 

method of surveying two or more representatives from each facility has shown 

that typically medical specialists, who are not engaged in DM projects in their 

own institution, would have no information about it. The summary of the survey 

results is presented in Table 6. In any case where 70 % or more respondents 

answered positively, then the answer is averaged as “Yes”; if more than 40 %, 

but less than 70 % - the answer is averaged as “Differs”, and the 

remaining – averaged as “No”. 

Table 6. Summary of survey answers.  

Summarized questions 

 

Hospitals of 

developing 

countries  

Hospitals of 

emerging 

countries 

Hospitals of 

western 

countries 

IT Clinical IT Clinical IT Clinical 

Understanding, practical usage and interest 

Good understanding of 

DM concept 

Yes Differs No No Yes Differs 

Awareness of practical 

use 

No No No No Differs No 

Hands-on DM 

applications 

Differs No No No Yes No 

Interest in the topic Yes Yes Yes Yes Yes Yes 

Clinical specialties All All All All All All 
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Availability of electronic data for research 

Number of years data is 

electronically captured 

4-13 years 1-3 years 5-15 years 

Variety of medical 

information systems used 

to capture and operate 

with patient related data 

patient 

demographics, 

radiology 

images, partly 

lab results, 

partly detailed 

clinical data, 

billing data 

patient 

demographics, 

limited 

radiology 

images, partly 

billing data 

patient 

demographics, 

radiology 

images, lab 

results, detailed 

clinical data, 

billing data 

 

Evaluating the benefits of gained DM experience, 50 % of respondents, 

who declared a personal involvement in DM projects, were satisfied with the 

results achieved and 50 % had a neutral opinion of the project success.   

The interest in getting additional information on potential DM benefits 

was expressed by 86 % of respondents, regardless of their initial experience with 

DM.  

The analysis of electronic data availability for DM purposes showed us 

the correlation between depicted years of clinical data collection in a facility 

with the level of the institutions’ economic state. Each surveyed hospital is 

presented as a separate column in Fig. 7. The data collection timeframe values 

spread is 1–15 years with the mean values: 1 year in developing countries, 

8.6 years in emerging countries, and 10 years in western countries.  

All respondents have identified that a hospital information system is in 

use; electronic medical record systems are used in 60 % of facilities and 

radiology imaging systems in 83 %.  

 
Fig. 7. Clinical patient data collected electronically in hospitals 
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The usage of standard terminologies varies depending on national 

legislation. The usage of ICD-9 and ICD-10 is common for coding diagnoses. 

However, other nomenclatures, critical for DM applications to code 

procedure/intervention, laboratory tests, and pathology diagnoses, are either 

partly implemented or not implemented at all. 

1.6.5. Summary of the Survey Results 

All the respondents confirmed that they are aware of practical DM applications 

in medicine. However, only 29 % of respondents were able to provide an 

example of such usage. 

 There was a noticeable confusion in differentiating DM and statistics 

concepts among healthcare professionals, and very rarely was DM treated by 

them as a practically valuable tool for clinical purposes.  

 The respondents from healthcare facilities with a relatively recent 

adoption of IT in the patient treatment process tended to mix statistical reporting 

and DM, hospital information systems, Electronic medical record systems and 

decision support systems.  

 Regardless of understanding and experience of DM, 86 % of respondents 

expressed their interest in the DM topic and 93 % confirmed their intent to 

participate in international DM research projects and to be informed about DM 

applications in the future.  

1.7. Generalization and Conclusion 

DM application in the healthcare domain is known for its complexity, which is 

due to data heterogeneity, overlapping clinical data exchange and modelling 

standards, complex data structures, ambiguous semantics, ethical, social and 

legal constraints. That makes the effective medical knowledge discovery an 

evolving subject with a growing interest of academics and medical practitioners. 

The analysis of publications in the field of DM application in the medical 

domain has shown a steady growth since its accountable beginning. In the early 

nineties, up to five publications were produced during one year, and more than 
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400 publications in 2013. A tremendous growth of interest and scientific 

advancement took place in the last decade. Therefore, literature analysis has 

shown that DM is used to support patient treatment quality improvement and 

healthcare management optimization objectives. A variety of DM methods 

including classification, clustering, association analysis, visualization, and link 

analysis have been successfully used in different clinical specialties.  

The survey of university hospitals revealed that the majority of their 

medical personnel has minimal awareness of DM practical usage and its 

possibilities. All the respondents from the largest surveyed university hospitals 

confirmed to be familiar with DM applications in healthcare, however only 29 % 

were capable of providing any example of practical DM application. The survey 

identified a considerable potential for further DM application penetration due to 

an increasing amount of patient clinical data collected in healthcare provider 

organizations.  

It was shown that DM perception and deployment in healthcare facilities 

is beyond its steady growth in the academic research field. More attention should 

be paid to the domain specific issues of DM application in healthcare.  

In the next chapter, a systematic approach of DM application in the 

medical domain is investigated. A novel methodology, which improves and 

specializes the industry standard methodology CRISP-DM for the medical 

domain is proposed. Furthermore, it is thoroughly applied for predictive DM in 

oncology and cardiology and for descriptive DM in meta-analysis of PubMed 

database publications.  
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CHAPTER 2  

 

Systematic Application of Data Mining 

and Data Analysis Methods in Medical 

Domain 

2.1. Introduction 

To transform the DM endeavor from a unique artisan act to a systematic 

engineering process, a robust methodological framework is required. There are 

few standard generic process models describing the steps of DM analysis. Since 

1990, a number of domain independent process models, application 

methodologies, and industry standards have been proposed. The Cross Industry 

Standard Process for DM (CRISP-DM), “Sample, Explore, Modify, Model and 

Assess” (SEMMA) process model, and Predictive Model Markup Language 

(PMML) are the most prominent (Piatetsky-Shapiro, 2014). However, there are 

no established standards or methodologies for DM applications in medicine. 

N. Esfandiari et al. have analyzed (Esfandiari, et al., 2014) 291 papers 

with the aim of extracting knowledge from structural medical data published 

between 1999 and 2013 in 90 journals. The authors concluded that the 

application of DM in medicine lacks standards in the knowledge discovery 

process. The standards for data pre-processing could unify data gathering and 

integration, while standards for DM post-processing could unify the models’ 

deployment. Finally, an overall DM process methodology specific to the medical 
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domain would benefit multi-disciplinary process participants for better-aligned 

collaboration.  

In the following sections, a review of the existing knowledge discovery 

process models and available DM standards is provided. 

The CRISP-DM, SEMMA and Fayyad process models are described. The 

CRISP-DM process model, as the most comprehensive available framework, is 

analyzed in more detail. Then, an extension of this methodology is proposed, 

called CRISP-MED-DM, which is based on the analysis of the needs and unique 

features of DM in the medical domain. Finally, a few case studies are provided 

in Cardiology, Oncology and medical literature meta-analysis domains. 

2.2. Methodologies for Data Mining Applications 

The CRISP-DM methodology, the SEMMA set of core DM activities, and 

Fayaad’s knowledge discovery in databases process model, are the most popular 

systematic knowledge discovery process handling guidelines for the DM 

analyst. 

2.2.1. Fayaad’s Knowledge Discovery in Databases Process 

Model 

The interactive and iterative KDD process model was introduced by Fayyad, 

Piatetsky et al. (Fayyad, et al., 1996).  

 

Fig. 8. Summarized KDD process steps according Fayyad, Piatetsky et al.  

Fayaad’s process model shown in Fig. 8 includes nine steps:  

1. Understanding the application domain: it involves pertinent prior 

knowledge and the objectives of the application. 

2. Constructing a target dataset: consists of choosing a dataset or 

focusing on a subset of variables or samples of data on which the 

discovery is to be carried out. 
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3. Data clean-up and pre-processing: consists of basic operations, 

such as eliminating noise or outliers if necessary, gathering the 

necessary information to model or account for noise, coming to a 

decision on strategies for treating missing data fields, and 

accounting for time sequence information and changes known, as 

well as making a decision on DBMS issues, such as schema, data 

types and mapping of unknown and missing values.   

4. Data trimming and projection: consists of finding practical 

features to represent the data, depending on the objective of the 

task, and using transformation methods or dimensionality 

reduction to decrease the effective number of variables that are 

being considered, or to get invariant representations for the data. 

5. Selecting the function of DM: involves choosing the purpose of 

the model derived by the algorithm of DM (e.g., classification, 

summarization, clustering and regression). 

6. Selecting the DM algorithm: involves choosing the method to be 

used for searching for patterns in the data, such as choosing which 

parameters and models may be appropriate, (e.g., the categorical 

data models are different from models on vectors over reals) and 

matching a certain DM method with the general criteria of the 

KDD process (e.g., the user might be more interested in 

understanding the model than in its predictive capabilities). 

7. Data mining: involves looking for patterns of interest in a certain 

representational form or a set of similar representations, including 

regression, classification rules or trees, clustering, dependency, 

sequence modeling, and line analysis. 

8. Interpretation: involves interpreting the found patterns and 

possibly returning to any of the prior steps, as well as the possible 

visualization of the patterns extracted, removing the irrelevant or 

unnecessary patterns, and translating the useful ones into terms 

comprehensible by users. 
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9. Utilizing discovered knowledge: involves incorporating this 

knowledge into the system’s performance, taking actions based on 

the knowledge, or merely documenting it and reporting it to the 

interested parties, as well as inspecting and resolving potential 

conflicts with previously supposed (or extracted) knowledge.  

The strength of the process model is in its explicit simplicity, which 

makes it generically applicable to all possible knowledge discovery domains. 

However, the authors of the process model have provided a generic guideline, 

with no formal methodology or accompanying toolset. Nevertheless, this 

process model is one of the most referenced and used for general KDD purposes, 

and it became the base model for other more detailed models. 

2.2.2. SEMMA Process Model 

The acronym SEMMA stands for Sample, Explore, Modify, Model, Assess, and 

refers to the proprietary generic DM process model, proposed by the SAS 

Institute Inc. (Azevedo & Lourenco, 2008). SEMMA was initially created to 

support the software application SAS Enterprise Miner. Later on, its usage 

stretched beyond the boundaries of SAS software. SEMMA is limited to the core 

activities of DM processes and does not cover other phases of KDD, such as 

business understanding and deployment. Moreover, it is also poorly supported 

with documentation, and implementation guides.  
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Fig. 9. SEMMA process model (original from SAS Institute) 

As it is shown in Fig. 9, the SEMMA process model consists of five main 

phases: 

1. Sample. This process begins with the sampling of data, e.g., 

choosing the data set for modelling. The data set must be large 

enough to hold sufficient information to retrieve, yet small enough 

to be utilized efficiently. Data partitioning is also dealt with in this 

phase. 

2. Explore. This phase covers the data understanding through 

determining the predictable and unpredictable relationships 

between variables, as well as the abnormalities, with the help of 

visualization data. 

3. Modify. This phase includes methods to choose, create and 

transform the variables in preparation for the data modeling. 

4. Model. This phase focuses on applying various modeling 

techniques (DM) on the prepared variables for creating models 
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that tend to provide the desired outcome. 

5. Assess. This phase involves the evaluation of the modeling 

results, which demonstrates the reliability and effectiveness of the 

created models. 

SEMMA does not provide a reference model, detailed guideline or 

compliance evaluation model. Therefore, it cannot be considered as a 

methodology, but rather as a process model, focused on the core tasks of DM. 

2.2.3. Cross-Industry Standard Process for Data Mining 

According to the online poll conducted by the international DM community 

KDNuggets in 2014 (Piatetsky-Shapiro, 2014), the most referenced and used in 

practice DM methodology is CRISP-DM. According to G. Piatetsky-Shapiro: 

“CRISP-DM remains the most popular methodology for analytics, DM, and data 

science projects, with a 43 % share in the latest KDnuggets poll…” (Piatetsky-

Shapiro, 2014; Azevedo & Lourenco, 2008).  

The Cross Industry Standard Process for Data mining (CRISP-DM) is a 

general purpose methodology which is industry independent, technology 

neutral, and it is said to be the de facto standard for DM (Chapman, et al., 2000; 

Olson & Delen, 2008). Notably, CRISP-DM is an informal methodology, since 

it does not provide the rigid framework, evaluation metrics, or correctness 

criteria. However, the methodology provides the most complete toolset to date 

for DM practitioners.  

The first version of the CRISP-DM specification was developed by a 

consortium of European and American private companies in 1996, aiming to 

create a non-proprietary and freely available standardized process model and a 

toolset for DM application engineering. The current version includes the 

methodology, reference model, and implementation user guide. The 

methodology defines phases, tasks, activities and deliverables. 
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Fig. 10. Phases of the original CRISP-DM reference model 

As is shown in Fig. 10, the CRISP-DM proposes an iterative process flow, 

with non-strictly defined loops between phases, and an overall iterative cyclical 

nature of the DM project itself. The outcome of each phase determines which 

phase has to be performed next. The six phases of CRISP-DM are as follows. 

Phase 1: Business understanding 

The preliminary phase highlights the understanding of the objectives of 

the data analysis project and the conversion of these requirements, from the 

perspective of the subject area, and the problem formulated into a definition of 

the DM problem. In this phase, the initial plan of achievement of goals is 

determined, defining the success criteria. 

Phase 2: Data understanding 

This phase starts with the gathering of initial data and access to the 

dataset. Problems of data quality must be identified and the initial assumptions 

of which datasets can be of interest for further steps are made. 

Phase 3: Data preparation 

The data preparation phase covers all the activities that are required for 
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preparing the final dataset. The activities of the data preparation phase heavily 

depend on the features and the quality of the original raw data. Some of the 

characteristic tasks of data preparation involve choosing the tables, attributes 

projections and records, attributes transformation, normalization, noise 

elimination and sampling. 

Phase 4: Modelling 

In this phase, a suitable selection of modelling techniques, algorithms, or 

combinations thereof is done. Generally, for the same task, there are a few 

possible modelling methods available. Some of the methods have specific data 

quality constraints or data types. Consequently, this step is often performed in 

an iterative way until the chosen model quality criteria is achieved. The model 

quality is formally assessed. In order to evaluate the quality of the model, there 

are metrics used which are popular in DM and statistics, e.g. sensitivity, 

accuracy, specificity, ROC curve, and cumulative gain chart. Sensitivity – 

positive results properly classified as such in the results set. Accuracy – the 

percentage of properly classified objects. Specificity – negative results correctly 

classified as such in the results set. The relationship between sensitivity and 

specificity may be assessed with the help of a ROC curve (Receiver Operating 

Characteristic) or a numerical expression of the area under the curve (AUC). 

Cumulative Gain charts display the percentage of positive responses predicted 

by the models versus the percentage of the population. 

Phase 5: Evaluation 

The evaluation phase already has a technically high-quality formed model 

or several models. Prior to the final deployment of the model, it is essential to 

carefully evaluate it, to review the model construction steps, and make sure that 

business objectives are properly achieved. The final result of this phase – the 

choice of whether the DM results may be used in practical settings. 

Phase 6: Deployment  

The deployment phase stipulates the utilization of the results of DM. 

Model generation is not the last step of the DM project. Despite the cases where 

the objective of a DM project was to learn more about the data available, the 
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acquired knowledge should be structured and presented to the end user in an 

understandable form. Depending on the set of requirements, the deployment 

phase may involve, for the simplest case, a report or deployment of a repeated 

DM process. Often, it will be the end user, rather than the data analyst who will 

carry out the deployment activities. It is important that the end user anticipates 

the actions needed to be carried out in order to get the practical benefits of the 

generated DM model. 

The CRISP-DM reference model describes the generic tasks and 

deliverables for each phase. The implementation guide details the task to the 

activities level, offering additional warnings, remarks and hints. The generic 

tasks and deliverables of the CRISP-DM reference model are outlined in Table 7. 

Table 7. Generic tasks and outputs of the original CRISP-DM reference model 

 

Generic tasks Deliverables 

Business understanding phase 

Determine Business 

Objectives 

Background 

Business Objectives 

Business Success Criteria 

Assess Situation 

Inventory of Resources 

Requirements 

Assumptions, and Constraints 

Determine DM Goals 

 

DM Goals 

DM Success Criteria 

Produce Project Plan 

 

Project Plan 

Initial assessment of Tools and Techniques 

Data Understanding phase 

Collect Initial Data Initial Data Collection Report 

Describe Data Data Description report 

Explore Data Data Exploration report 

Verify Data Quality Data Quality Report 

Data Preparation phase 

Select Data Rationale for Inclusion/ Exclusion 

Clean Data Data Cleaning Report 

Construct Data Derived Attributes Generated Records 

Integrate Data Merged Data 

Format Data Reformatted Data 

Dataset Dataset Description 
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The authors of the CRISP-DM reference model (Chapman, et al., 2000) 

stated “…future extensions and improvements are both desirable and 

inevitable…”. In the next section, the enhanced version CRISP-MED-DM for 

the application in medicine is proposed, where the unique features of the domain 

are addressed.  

2.3. Standards and Technologies in Data Mining 

Usage of industry standards help to achieve interoperability and leverage the 

reuse of DM project results. PMML, XMLA, and JavaDM API are the currently 

available standards for technological DM activities.  

2.3.1. Predictive Model Mark-up Language 

PMML refers to predictive DM markup language maintained by the Data Mining 

Group (DMG, 2014), an independent, vendor led consortium. PMML is an open 

Modelling phase 

Select Modelling 

Techniques 

Modelling Technique Modelling 

Assumptions 

Generate Test Design Test Design 

Build Model 

Parameter Settings 

Models 

Model Descriptions 

Assess Model 
Model Assessment Revised Parameter 

Settings 

Evaluation phase 

Evaluate Results 
Assessment of DM Results 

Approved Models 

Review Process Review of Process 

Determine Next Steps 
List of Possible Actions 

Decision 

Deployment phase 

Plan Deployment Deployment Plan 

Plan Monitoring and 

Maintenance 

Monitoring and Maintenance Plan 

Produce Final Report 
Final Report 

Final Presentation 

Review Project 
Experience 

Documentation 
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standard for defining and sharing predictive models of DM. PMML allows for 

formalizing predictive models and provides the means for interoperability of 

DM software. It allows researchers to create a predictive model using a single 

software package and then apply this model in another information system, such 

as a hospital information system or clinical decision support system. 

The latest version 4.2.1 was introduced in February of 2014 (DMG, 

2014), in addition to predictive modelling it supports text mining and clustering. 

PMML uses XML syntax. The structure of a model is defined by an XML 

schema. A few DM models can be described in a single PMML XML document. 

In the PMML document each model shall be uniquely identified by name or by 

functionName, which DM method (classification, clustering), and 

algorithmName.  

PMML includes features to expose the quality parameters of the models. 

These descriptive parameters are useful for the evaluation of a model’s validity. 

An optional attribute isScorable enables indicating if the model should be 

deployed and processed normally or, if the attribute is set to false, then the model 

is intended for information purposes only and should not be used to generate 

results.  

2.3.2. XMLA - XML for Analysis 

XML for Analysis (XMLA) is an open industry standard for data access and 

analysis, introduced and maintained by XMLA Council with Microsoft, 

Hyperion and SAS (Microsoft, Hyperion, SAS, 2001).  

XMLA provides a set of XML Message Interfaces, based on SOAP, to 

define the data access interaction between a client application and an analytical 

data provider (OLAP and DM). XMLA consists of two SOAP methods: Execute 

and Discover. The Execute method executes commands in MDX, DMX or SQL 

with properties provided in XML syntax. The Discover method obtains 

information and metadata from a Web service.  

2.3.3. Java Data Mining API 

Java DM API (JDM) is a technology which enables integration of DM 
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techniques into Java applications. The Public Draft of the standard was released 

in 2002. Currently, it is maintained under Java community Process (Oracle, 

2011). The standard leverages other industry standards, i.e. CWM, SQL/MM, 

JCX, and PMML. The JDM specifies mining functions: classification, 

regression, attribute ranking, association, clustering, and feature extraction. The 

list of supported algorithms is growing. Currently JDM supports the following 

DM methods: K-Means, Decision Trees, SVM, and Feed-Forward Neural 

Networks. JDM have the following main objectives: 

 model building; 

 scoring using models; 

 creation, storage, access and maintenance of data to support DM 

results; 

 providing seamless interface for DM tasks. 

In addition, JDM methods support import/export to PMML, model 

testing, batch and real-time scoring.  

JDM provides test metrics for model performance evaluation. For 

classification models, accuracy, confusion-matrix, lift, and receiver-operating 

characteristics are available to access the model performance; R-squared and 

RMS errors are provided for regression models. 

2.4. Data Mining Application Methodology for 

Medical Domain 

There is a lack of specific and detailed framework for conducting DM analysis 

in medicine. The DM application issues in medicine and healthcare are described 

in Section 1.5.3. A number of papers addressed the uniqueness of DM in health 

care (Bellazzi & Zupan, 2008; Canlas Jr, 2009; Koh & Tan, 2005; Cios & Moore, 

2002). All of those papers suggested the need for additional activities to be 

considered in the knowledge discovery process within the medical domain. 

2.4.1. Related Work 

There are few known works contributing to the topic. Catley et al. (Catley, et al., 
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2009) proposed an extension of the CRISP-DM process model to support 

temporal data abstraction. The enhancements proposed by the authors adopts 

CRISP-DM to the needs of DM application for data streams generated by 

intensive care unit equipment.  

Špečkauskienė and Lukoševičius (Špečkauskienė & Lukoševičius, 2009) 

proposed a generic KDD process model for the medical domain. The proposed 

methodology and software tool emphasis optimization of a dataset and selection 

of the best performing DM algorithm and its parameterization. For datasets 

optimization, the authors do recommend techniques such as feature extraction, 

sampling and data set stratification to balance it with regards to the class 

attribute. In terms of the selection of the DM algorithm, it is proposed to test all 

available algorithms for the specific task and data type and to compare their 

results with the metrics of sensitivity, specificity, ROC AUC, and F-measure. 

The process flow of the methodology is shown in Fig. 11. 

 

Fig. 11. Špečkauskienė and Lukoševičius methodology (Špečkauskienė & Lukoševičius, 

2009) 
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However, the proposed methodology is limited to overall 

recommendations on the dataset preprocessing and providing an iterative 

algorithm selection and parameterizing process flow. It does not address the 

specific issues of data mining applications in the medical domain listed in 

Section 1.5.3 Issues and Challenges of Data Mining in Medicine. Therefore, the 

process flow proposed by the authors can be treated mostly as a greedy DM 

application approach, which allows semi-automation of typical classification or 

regression tasks for structured datasets, whilst selecting the winning model with 

the best pre-defined model’s evaluation criteria values. 

Furthermore, the authors did not aim to provide either a complete and 

detailed process flow, or a formal evaluation model. 

2.4.2. Extension of CRISP-DM data mining methodology for 

medical domain 

The CRISP-DM is a hierarchical process methodology, which provides an 

extendable framework going from generic to specific. The methodology 

proposes third and fourth abstraction layers for mapping generic models to 

specialized models (Fig. 12). The medical domain is proposed as the application 

domain context for the mapping. According to CRISP-DM specification 

(Chapman, et al., 2000), mapping for the future type of extension shall be used 

to ensure specialization of the generic process model according to a pre-defined 

context for future systematic use. 

The following recommendations for extending or specializing 

CRISP-DM have been used: 

1. Analyze specific context. 

2. Remove any details not applicable to the context. 

3. Add any details specific to the context. 

4. Specialize generic contents according to concrete characteristics of 

the context. 

5. Rename generic contents to provide more explicit meanings in the 

context. 
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Fig. 12. Hierarchical breakdown structure of CRISP-DM methodology (Chapman, et al., 

2000) 

As it was described in Section 1.5.3, the following issues shall be 

considered when applying DM in the medical domain: 

1. heterogeneous medical information systems; 

2. semantic data interoperability; 

3. mining complex datasets: multi-relational, stream data, text and 

multimedia; 

4. incomplete and fragmented data; 

5. ethical, social and legal constraints. 

In order to enhance CRISP-DM, specialized tasks and activities 

addressing the issues listed above, were introduced.  

Another shortcoming of CRISP-DM is a lack of metrics or evaluation 

criteria, which allow for assessing the compliance of a DM project against the 

requirements of the methodology. To address these issues, a compliance 

assessment method is proposed. The method enables the evaluation of a DM 

project in a simple and practical way, determining to which extent it was handled 

in the frame of the CRISP-DM. 

To address the outlined limitations of CRISP-DM and propose specific 

tasks for the medical domain a novel CRISP-MED-DM specialized 

methodology reference model is proposed. 

Phase 1 “Business understanding” and Phase 2 “Data understanding” are 
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the phases where the DM project is being defined and conceptualized. The rest 

are implementation phases, which aim to resolve the tasks being set in the first 

phases. As in the original CRISP-DM, the implementation phases are highly 

incremental and iterative. However, the changes in Phase 1 or 2 lead to the 

change of project objectives and available resources. Therefore, any significant 

change in these phases shall be regarded as an incremental project restart. 

The introduced general tasks, activities and deliverables of 

CRISP-MED-DM are outlined in the following sections.  

2.4.3. CRISP-MED-DM Phase 1 and Phase 2 

The first phase “Business understanding” was renamed “Problem 

understanding” to avoid ambiguous meanings within two different perspectives, 

i.e. clinical application domain, and healthcare management application domain. 

In addition, the task “Define Objectives” has been split into “define clinical 

objectives” and “define healthcare management objectives”. Addressing the 

issue of patient data privacy, a new activity under “Assess situation” was 

introduced: “Assess patient data privacy and legal constraints”. Addressing the 

issue of heterogeneous data source systems, the activity of “Evaluate data 

sources and integrity” was added. The general tasks (GT) and activities of 

Phase 1 are shown in Fig. 13. 

In the second phase “Data Understanding”, a new general task “Prepare 

for data collection” was introduced. Issues of transport, semantic and functional 

interoperability were considered. The wealth of medical data formats are 

considered through the introduced activity of non-standard data pre-processing 

design, which includes the support of multi-relational data, temporal, 

unstructured text and media data. The definitions of medical nomenclatures, 

classifiers and ontologies used in data is substantial for further data pre-

processing. 
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Enhanced activities are marked with * 

Fig. 13. Phase 1 “Problem Understanding” general tasks and activities. 

Finally, the definition and analysis of clinical data models and clinical 

protocols used in data source systems shall be carried out. The general tasks and 

activities of Phase 2 are shown in Fig. 14. 

 

Enhanced activities are marked with * 

Fig. 14. Phase 2 “Data Understanding” general tasks and activities. 



Application of Data Mining and Data Analysis Methods in Medicine 

 

64 

2.4.4. CRISP-MED-DM Phase 3 and Phase 4 

A vast body of experimental DM literature demonstrates that the most resource 

intensive step is data pre-processing. According to Q. Yang (Yang & Wu, 2006), 

up to 90 percent of the DM cost is in pre-processing (data integration, data 

cleaning, etc.). This is very true in the medical domain as well.  Therefore, the 

third phase “Data Preparation” has major changes.  

The original CRISP-DM task “select data” had limitations for practical 

application in the medical domain. First, it is mostly assumed for a single-table 

static data format. Second, it lacks activities to handle data conversion and 

unification of the medical terminologies being used, and lacks activities to 

integrate stand-alone medical information systems. The new general task 

“Prepare data” with the following activities was introduced: 

 implement interfaces of stand-alone systems; 

 prepare medical terminologies mapping; 

 analyze and preprocess data from different sources, based on the 

agreed clinical data models and protocols. 

In addition, a new general task “Extract data” was added to the process 

model. It includes the activities for unstructured data pre-processing, to facilitate 

feature extraction and prepare for the DM modelling step. The activities of the 

task are as follows: 

 text data processing; 

 media data processing: 

o image data processing; 

o video data processing; 

o audio data processing; 

o other signal data processing. 

The original CRISP-DM task “Select data” was enhanced with feature 

selection using statistical and DM techniques and data sampling activities. The 

activity stipulates the usage of feature extraction and dimensionality reduction 

techniques to define possible attribute sets for modeling activities. Predictive 

DM methods require separate training, validating and testing datasets, therefore 
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data sampling activity was introduced. 

Missing data is a very common issue for clinical data. In addition, errors 

due to faulty sensors and laboratory and monitoring equipment interfaces shall 

be identified through outliers’ detection and semantic analysis. Automated 

semantic error analysis is typically based on business rules, implementing 

min/max checks, block lists, gender, and age dependency checks. These 

activities have been reflected under the general task of “Clean data”.  

Within the “Data integration” task, the activity of changing the data 

abstraction level was added. This activity is required for temporal data. For 

example, intensive care units’ equipment may generate thousands of data items 

per second. Thus, methods of temporal abstraction have to be used prior to actual 

DM modeling activities. 

Multi-relational data requires either propositionalization of data to a 

single-table format or will imply the use of multi-relational DM techniques, such 

as inductive logics programming (ILP). In the first case, conversion from multi-

table to single-table must take place. 

Finally, formatting data tasks, including data formatting for the specific 

DM software environment, and complex conversions to first-logic predicates 

used in ILP. In addition, data stratification activity was added, because of its 

importance in predictive DM (Spečkauskienė & Lukoševičius, 2009). The 

described general tasks and activities of phase 3 are shown in Fig. 15. 

According to CRISP-DM, the Modelling phase is iterative and 

recursively returns back to the data preparation phase. In addition, there is an 

iteration within the Modelling phase between the tasks “Build Model” and 

“Assess Model”. However, the process flow of these iterations is not defined in 

the reference model and is not self-evident.  
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Enhanced activities are marked with * 

Fig. 15. Phase 3 “Data Preparation” general tasks and activities. 

Špeckauskiene et al. (Špečkauskienė & Lukoševičius, 2009) proposed an 

iterative 11-step DM process model, tailored for finding the optimum modelling 

algorithm. The authors proposed the following flow: 

1. To collect and access a series of classification algorithms.  

2. To analyze the dataset.  

3. To sort out algorithms appropriate for the dataset. 

4. To test the complete dataset using a selection of classification 

algorithms with the standard parameter values.  

5. To select the best algorithms for further analysis. 

6. To train the selected algorithms with a reduced dataset, 

eliminating attributes that have proven uninformative while 

constructing and visualizing decision trees. 

7. To adjust the standard values of the algorithms using the optimal 

set of data assembled for each algorithm of the most useful data 

identified in step 6. 

8. To evaluate the results. 

9. To mix the attribute values of the dataset in a random order. 

10. To perform steps 6 and 7 with a new set of data. 

11. To evaluate and compare the performance and efficiency 
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of the algorithms. 

This approach is resource intensive, but it can be automated by a 

specialized software support offered by the authors. The proposed method is 

based on a greedy trial of all possible modelling algorithms and their parameters. 

This might be inefficient or even not feasible with big datasets, streaming data, 

or unstructured data. Thus, the findings of the authors were partially applied in 

CRISP-MED-DM. Particularly, the iterative selection of a set of feasible 

modelling techniques, opposition to a few modelling techniques; iterative 

parameterizing of the selected modelling algorithms; and usage of predefined 

quality metrics to identify rejected, accepted, and the best performing model 

(Fig. 16). 

According to C. Catley (Catley, et al., 2009), collaborative DM methods 

(e.g. method ensembles, method chains) may provide a higher performance. 

Accordingly, a new activity “Define optimum model or model ensemble” was 

introduced. 

Finally, in order to prepare for the Deploying phase, the resulting models 

have to be prepared for use in external decision support or scoring systems. One 

of the available possibilities is to export the resulting model or set of models in 

PMML format. Moreover, an exported interoperable model definition may be 

used by other researchers for further external validation. As was shown by 

D. G. Altman (Altman, et al., 2009), validation studies are of great importance 

to crosscheck and ensure overall objective performance of the derived predictive 

models. 

The described general tasks and activities of phase 4 are shown in Fig. 16. 
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Enhanced activities are marked with * 

Fig. 16. Phase 4 “Modelling” general tasks and activities. 

2.4.5. CRISP-MED-DM Phase 5 and Phase 6 

The activities of the original CRISP-DM Evaluation and Deployment phases 

cover the medical domain well and can be used for a variety of projects and 

research objectives. Therefore, these phases remain with no significant changes. 

Frequently, creating new predictive models for the medical domain, the 

current golden standard exists, against which the outcomes of DM modelling 

shall be verified and crosschecked.  

The general tasks and activities of Phase 5 are shown in Fig. 17. 

 

Enhanced activities are marked with * 

Fig. 17. Phase 5 “Evaluation” general tasks and activities. 
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Deployment phase remains with no changes, as shown in Fig. 18 . 

 

Fig. 18. Phase 6 tasks “Deployment” general tasks and activities. 

The developed CRISP-MED-DM methodology has been used and 

assessed in predictive DM research projects in the oncology and cardiology 

domains. These case studies are presented in Chapter 3. 

2.4.6. CRISP-MED-DM Compliance Assessment Model 

Assessing, monitoring and improving the quality of DM processes requires not 

only a well-established process model, but also reliable and valid measurement 

and assessment models. A number of possible assessment models with respect 

to CRISP-MED-DM are defined for this purpose.  

The goal to assess how compliant the DM project is to the methodology 

requires that activities and their outcomes shall be measurable. Measurement 

issues at this level may relate to specific process model activities or deliverables. 

However, regardless of which process measurements are applied, they should 

support the quality objectives of the whole KDD process. 

DM projects are very different with respect to DM goals and methods, 

data structure complexity, and data volume, thus, it is impossible to define a 

strict standard for the methodology compliance assessment. Bearing that in 

mind, the proposed assessment model possesses certain flexibility.  

The following assumptions set the common ground and eligibility for a 

KDD project, where CRISP-MED-DM methodology could be fruitfully applied 

and evaluated: 

 The DM goals are well defined. 

 Project participants have the domain and DM competences. 

 Existing DM methods and algorithms will be used, and tools to 
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apply them are available. Creation of new DM algorithms or 

their extension is possible; however it remains beyond the scope 

of the methodology. 

 Research data is legally and technically available to conduct 

research.  

2.4.6.1. Assessment and evaluation model 

Two evaluation strategies are proposed. The first one is based on the 

presumption that each phase of the process model has the same importance. An 

exception is made for the last phase “Deployment”, the activities of which shall 

be treated as a utilization of the actual DM process results. 

The second proposed approach is based on the sequential nature of the 

CRISP-DM process model. The outcomes of each phase define and shape the 

consequent phase. To accommodate that principle in the evaluation model, we 

assign gradually decreasing weights from the first to the last phase. For the 

weight distribution between phases, an arbitrary quadratic function formula was 

used. 

The CRISP-MED-DM activities and their related deliverables have 

different significance to the process. The required, required if applicable, 

optional and conditionally required activities shall be distinguished. All but 

optional activities are valid metrics for quantified evaluation.  

In the first evaluation strategy, each phase except the Deployment phase 

is assigned with 10 commutative points, representing the maximum score 

achieved when all non-optional activities of CRISP-MED-DM have been 

completed. Dependent on the amount of activities per phase, each phase’s non-

optional activity is evaluated with certain points as stipulated in Table 8. 

In the second evaluation strategy, each phase is evaluated differently. 

Accordingly, each phase’s non-optional activity is evaluated with the points 

derived from the cumulative score of the phase divided by the number of 

activities in it. 
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Table 8. Scoring CRISP-MED-DM activities 

Phase Number 

of activi-

ties in 

phase 

1st strategy 2nd strategy 

Activity 

evaluation 

points 

Un-

weighted 

evaluation 

max points 

Activity 

evaluation 

points 

Weighted 

progressive 

evaluation 

max points 

Problem understand-

ing 

9 1.11 10 4.00 36 

Data understanding 9 1.11 10 2.78 25 

Data preparation 15 0.67 10 1.07 16 

Modelling 9 1.11 10 1.00 9 

Evaluation 3 3.33 10 1.33 4 

Deployment 4 2.50 10 0.25 1 

 

The list of CRISP-MED-DM tasks, activities, deliverables and metrics 

according to the 1st strategy is provided in Table 9. 

2.4.6.2. Evaluation of compliance assessment 

CRISP-DM and accordingly the CRISM-MED-DM reference model include 

many activities not related directly to the DM process, but rather to the phases 

of the knowledge discovery process, especially its management and 

organizational part. These activities are important for larger scale DM 

engagements, but could become an overhead in smaller ones. The assessment 

examples are provided in Sections 3.1.8.1, 3.2.9.1, and 3.3.8.1. 

Due to this reason, it is difficult to justify an objective fixed threshold for 

meeting CRISP-MED-DM requirements. In the most conservative approach, 

100 % of non-optional activities shall be performed. In a more flexible 

evaluation, the range could start from 60 % for small projects and up to 90 % for 

complex ones. 

The results of an actual DM project’s assessment using the proposed 

evaluation models provides a comparable total project score, or scored CRISP-

MED-DM phases, which can be visualized with a Radar plot as shown in Fig. 19. 
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Fig. 19. Example radar plot of DM project assessment 

2.4.6.3. List of tasks, activities and deliverables 

CRISP-DM defines a generic task as a task that holds across all possible data 

mining projects; a specialized task as a task with related activities that makes 

specific assumptions in a specific DM context; and a deliverable as a tangible 

result of performing a task. The introduced CRISP-MED-DM generic tasks and 

specialized tasks are marked with “*” and listed in Table 9. 
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Table 9. CRISP-MED-DM tasks, activities, deliverables and metrics 

Notation: R - Activity is required, R2 – Activity is required if applicable, O - Activity 

is optional, C - Activity is conditional. 

Generic 

tasks 

Specialized tasks and activities Deliverables 

P
a

rt
 o

f 

a
ss

es
sm

en
t 

P
o

in
ts

 

Phase 1: PROBLEM UNDERSTANDING (total 10 points) 

GT1. Deter-

mine overall 

objectives 

Define clinical objectives* 

Define healthcare management 

objectives* 

Overall objectives R 1.11 

Define success criteria Overall success criteria 

or vision statement 

R 1.11 

GT2. Assess 

situation 

 

Inventory of Resources Project resource list R 1.11 

Data availability and integrity 

evaluation* 

List of data sources 

Data access evaluation 

R 1.11 

Patient privacy and legal con-

straints* 

Evaluation of legal re-

quirements and limita-

tions in data usage 

R 1.11 

Requirements, assumptions and 

constraints 

DM project resources, 

costs, timelines assess-

ment 

R 1.11 

Terminology Glossary of multi-disci-

pline relevant clinical 

and DM terminology 

O  

Risks Risks & Contingencies 

matrix 

O  

Cost/benefit analysis CBA statement or CBA 

report 

O  

GT3. Deter-

mine DM 

goals 

Define approved approaches 

(golden standard)* 

DM goals R 1.11 

Define success criteria List or hierarchy of DM 

success criteria 

R 1.11 

GT4.Plan ac-

tivities 

Project plan 

Plan data collection* 

Overall plan 

Data collection plan 

R 1.11 
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Phase 2: DATA UNDERSTANDING  (total 10 points) 

GT5. Prepare 

for data col-

lection * 

Design required interfaces to the 

stand-alone systems* 

Design the interfaces of 

IS involved 

R2 1.11 

Evaluate semantic data interopera-

bility* 

Semantic interoperability 

analysis report 

R 1.11 

Define nomenclatures, classifiers 

and ontologies used* 

List of medical nomen-

clatures, classifiers and 

ontologies used 

R 1.11 

Define clinical data modeling 

standards and protocols used* 

Mapping of used clinical 

models, protocols  

R2 1.11 

Design non-standard data pre-pro-

cessing* 

Prepare strategy and de-

sign for handling multi-

relational, temporal, non-

structured data (media, 

text). 

R2 1.11 

GT5. Collect 

initial data 

Acquire data Initial data collection re-

port 

R 1.11 

GT6. De-

scribe data 

Describe available data sources, 

and raw datasets* 

Data model 

 

Clinical data meaning re-

port 

 

R 1.11 

GT7. Explore 

data 

Conduct statistical exploratory 

data analysis 

Exploratory analysis re-

port 

R 1.11 

GT8. Verify 

data quality 

Verify data quality of available 

raw datasets* 

Data quality report 

 

Medical expert data 

quality assessment 

R 1.11 

Phase 3: DATA PREPARATION  (total 10 points) 

GT9. Prepare 

data* 

Implement interfaces of stand-

alone systems * 

Stand alone IS are inter-

faced 

R2 0.67 

Prepare medical terminologies 

mapping* 

Medical terminologies 

mapped 

R2 0.67 

Analyze and preprocess data from 

different sources, based on the 

Clinical data models 

mapped 

R2 0.67 
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agreed clinical data models and 

protocols* 

GT10. Ex-

tract struc-

tural data* 

Text data processing* Preprocessed data, suita-

ble for the planned text 

mining 

C 0.67 

Media data processing and feature 

extraction*: 

 Image data processing 

 Video data processing 

 Audio data processing 

 Other signal data pro-

cessing 

Dataset ready for further 

pre-processing and mod-

elling 

R2 0.67 

GT11. Select 

Data 

Features selection using statistical 

and DM techniques* 

Selected features (attrib-

utes) for modelling 

O  

Data sampling Prepared data sample 

feasible for modelling 

O  

GT12. Clean 

data 

Handling missing data Data cleaning report 

 

Higher quality data set 

C 0.67 

Handling outliers* R2 0.67 

Handling semantic data errors* R2 0.67 

GT13. Con-

struct data 

Normalization Constructed data O  

Discretization  O  

Production of attribute derivatives  O  

Unifying medical terminologies in 

datasets * 

 R2 0.67 

Unifying units of measurement in 

datasets * 

 R2 0.67 

Unifying clinical data models and 

protocols in datasets * 

 R2 0.67 

GT14. Inte-

grate data 

Aggregate multi-table data to sin-

gle-table* 

Aggregated, merged data C 0.67 
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Aggregate data attributes  O  

Change data abstraction level*  

(diagnosis; anatomic parts of body, 

systems) 

 O  

GT15. For-

mat data 

Stratify, randomize datasets* Balanced datasets ready 

for selected modelling 

algorithms 

O  

Prepare datasets for model train-

ing, testing and validation 

Training, testing and val-

idation datasets ready 

C 0.67 

Convert datasets syntaxes to mod-

elling format 

Datasets ready for the se-

lected DM tools 

R 0.67 

Convert data to first-logic clauses 

format* 

Data in first-logic 

clauses format ready for 

ILP inference 

C 0.67 

Format background knowledge * Facts in first-logic 

clauses format ready for 

ILP inference 

C 0.67 

Phase 4: MODELLING  (total 10 points) 

GT16. Select 

Modelling 

Technique 

Select technique w.r.t.: 

 Techniques appropriate 

for problem 

 Understandability/inter-

pretation requirements 

 Constraints 

Modelling Technique 

 

Modelling Assumptions 

R 1.11 

GT17. Gener-

ate Test De-

sign 

Generate model design w.r.t. test-

ing and evaluation criteria 

 

Compare model design with DM 

goals 

Test design R 1.11 

GT18. Build 

Model 

Set algorithm parameters* Parameter settings R2 1.11 

Run the selected DM techniques Models 

 

R 1.11 

Post-process DM results Ready for evaluation 

DM model results, e.g. 

trees, rules  

 

Model Description 

R 1.11 



Application of Data Mining and Data Analysis Methods in Medicine 

 

77 

GT19. Assess 

Model 

Test and evaluate results w.r.t. 

evaluation criteria and test design 

Model assessment 

 

Revised Parameter set-

tings 

 

Assessment 

R 1.11 

Prepare for next modelling itera-

tion if needed* 

Revised parameter set-

ting 

 

Alternative modelling 

technique 

 

C 1.11 

Define the best performing model 

or model ensemble* 

Get comments on model by medi-

cal domain expert 

Best performing model 

 

Initial assessment of the 

model by domain expert 

R 1.11 

GT20. Pre-

pare model 

for interoper-

able use*  

Export model definition to PMML 

* 

Predictive model in 

PMML standard 

C 1.11 

Phase 5: EVALUATION  (total 10 points) 

G21. Evalu-

ate Results 

Understand and interpret the re-

sults 

Assessment w.r.t. Over-

all Success Criteria 

R 3.33 

Evaluate results novelty 

Compare results to alternative 

studies* 

 R 3.33 

G22. Review 

Process 

Review of DM process: 

Identify failures, misleading steps, 

possible alternative actions 

Review of Process O  

G23. Deter-

mine next 

steps 

Analyze the potential for deploy-

ment of each result 

List of possible actions 

and rationale for them 

R 3.33 

Estimate potential for improve-

ment of the current process 

 O  

Phase 6: DEPLOYMENT 

G24. Plan 

Deployment 

 Summarize deployable re-

sults 

 Develop alternative de-

ployment plans 

 Establish how the model 

will be deployed within 

Deployment plan C N/A 
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organization’s systems 

Identify possible problems 

G25. Plan 

Monitoring 

and Mainte-

nance 

 Decide how accuracy will 

be monitored 

 Determine usage limita-

tions and constraints of the 

result model 

 Develop monitoring and 

maintenance plan 

Maintenance plan C N/A 

G26. Produce 

Final Report 

Develop set of final documenta-

tion, including executive sum-

mary, presentation, detailed tech-

nical report.  

Final report & Presenta-

tion 

C N/A 

G27. Review 

Project 

Interview people involved in the 

project 

Summarize feedback 

Analyze the process retrospec-

tively 

Document the lessons learned 

Experience Documenta-

tion 

O N/A 

2.4.6.4. CRISP-MED-DM practical approbation 

The developed CRISP-MED-DM methodology were used and assessed in 

predictive DM research projects in the oncology and cardiology domains and 

descriptive DM for publications meta-analysis research. The case studies are 

presented in Chapter 3. The subject matter information and novel data analysis 

methods are described in the Sections 2.5–2.7. 

2.5. Breast Cancer Gene BRCA1 Prediction 

2.5.1. Background 

Breast cancer (BC) is the most common cancer in women worldwide. It is also 

the major cancer mortality reason among women. According to D. M. Parkin et 

al. (Parkin, et al., 2005), about 89 % of women diagnosed with BC are still alive 

five years after their diagnosis in Western countries, which is due to advances in 

detection and treatment. Survivability is a major concern and is highly related to 

early diagnosis and an optimal treatment plan.  
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The process of breast cancer treatment typically starts from the 

identification of malignant tumors. Hence, information about the tumor from 

examinations and laboratory and radiology diagnostic tests are gathered. The 

stage of a cancer is one of the most important factors to define an optimal 

treatment plan. In general, the staging defines the spread of the cancer and its 

metastasis in the body. For breast cancer the TNM staging system is typically 

used, where T – Tumor, N – Nodes and M –Metastasis. First, the patient’s T, N, 

and M category values are determined using gathered examinations and 

laboratory test data, then this information is combined to determine а disease 

stage ranging from stage I to stage IV. The stage called carcinoma in situ, is an 

initial cancer stage, indicating a high probability to develop an invasive form of 

cancer in a short period of time.  

Despite significant efforts, scientists still do not know the exact causes 

and triggering mechanisms of breast cancer; however, some of the risk factors 

are known, i.e. genetic risk factors, family history, aging, alcohol abuse, and 

obesity. Therefore the current state of oncology research is highly dependent on 

genetic, clinical and treatment data collection and its analysis. The growing 

amount of heterogeneous data being collected in clinical settings highlights the 

importance of proper DM techniques and application methodology.  

In our research, we deal with the issue of cancer suppression genes 

BRCA1 mutations. Patients with a pathological mutation of BRCA genes have a 

65 % lifelong breast cancer probability. We propose a new approach for the 

prediction of BRCA1 gene mutation carriers by methodically applying 

knowledge discovery steps and utilizing DM methods. A novel BRCA1 gene 

mutation risk assessment model has been created utilizing a decision tree 

classifier model. A systematic approach, following CRISP-MED-DM 

methodology, has been applied through the knowledge discovery process steps.  

2.5.1.1. BRCA genes 

The gene named BRCA stands for breast cancer susceptibility gene. BRCA are 

human genes that belong to a class of genes known as tumor suppressors.  
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In normal cells, BRCA genes help ensure the stability of the cell’s genetic 

material (DNA) and help prevent uncontrolled cell growth. Mutation of these 

genes has been linked to the development of hereditary breast and ovarian 

cancer. However not all mutations have a proven breast cancer prognostic effect. 

A woman's risk of developing (pathogenic) breast and/or ovarian cancer is 

greatly increased only if she inherits a deleterious (pathogenic) BRCA gene 

mutation. Men with these mutations also have an increased risk of a breast 

cancer. Both men and women who have harmful BRCA mutations may be at 

increased risk of other cancers.  

The identification of patients having a risk of BRCA mutations is of great 

importance. In general, individuals with at least a 5–10 % chance of having a 

mutation in either gene are considered good candidates for genetic testing. 

Identifying patients with a BRCA mutation allows for the application of risk-

reducing preventive medical interventions, which are proven to be life-saving 

(National Cancer Institute, 2013). 

2.5.2. Related Work 

BC diagnosis is a medical domain, which has a recognizable footprint in DM 

applications. A number of articles (Bellaachia & Guven, 2006; Choi, et al., 2009; 

Delen, et al., 2005) investigate the utilization of various DM methods: support 

vector machines, artificial neural networks, genetic algorithms, regression, etc. 

The most popular DM models in the BC domain are diagnostic models that aim 

to distinguish a benign from malignant tumor, or prognosis models, where 

patients’ survival period is predicted. However, less attention is paid to the more 

specific topics in the BC domain. 

Different risk models are currently used to calculate the likelihood of 

carrying a BRCA mutation. The BRCAPRO, Penn II, Myriad II, FHAT and 

BOADICEA models calculate risk on the basis of the inclusion of different 

cancer diagnoses within a family (Panchal, et al., 2008). All models incorporate 

a family history of breast and ovarian cancer as a main prediction factor. The 

Penn II model, provided by the Abramson Cancer Center of the University of 
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Pennsylvania, has the best Sensitivity (0.93) among all mentioned risk models 

(Panchal, et al., 2008). 

2.5.3. Application of DM Methods for BRCA1 Prediction  

Firstly, the statistical analysis methods, which are typically applied in medical 

research, have been applied. The correlation of gathered attributes in the dataset 

were tested using χ² criterion with α=0.95. The cancer reoccurrence survival 

analysis was performed with the Cox regression model and Kaplan–Meier. The 

statistical analysis revealed a few statistically significant attribute dependencies. 

BRCA1 mutation has statistically significant dependency on family history  

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.001), age (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.001), tumor grade degree  

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.004), progesterone receptors (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.03), and triple 

negative BC (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.001). 

Further analysis of the collected research data was performed applying a 

set of DM techniques. The details and results of experimental research are 

provided in Chapter 3, Section 3.1. 

2.6. Echocardiography Images Data Analysis 

2.6.1. Background 

Unstructured and image data are the most common clinical patient data 

accumulated electronically. As was shown in the introduced CRISP-MED-DM 

methodology, data pre-processing is a key phase in the whole DM process life 

cycle. In this section, we propose the techniques and methods for 

echocardiography images (echocardiograms) pre-processing and feature 

extraction.  

The aorta is the main artery that delivers blood from the heart to the rest 

of the body. The aortic valve serves as a gateway between the heart and the aorta.  

When the aortic valve orifice narrows due to calcification or other processes, the 

left ventricle has to work harder to create more pressure to pump blood out 

through the valve, and the blood supply might become insufficient. The 

described condition is called valvular aortic stenosis, or aortic stenosis (AS). 
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There are three main causes of AS: calcific aortic stenosis, rheumatic aortic 

stenosis, and congenital aortic stenosis. Calcific stenosis is the most common 

type.  

According to the latest data (Ren, et al., 2014), AS is related to aging and 

is present in 29 % of individuals older than 65 years and in 37 % of individuals 

older than 75 years.  

The transthoracic two-dimensional Doppler echocardiography permits 

doctors to diagnose and estimate the severity of aortic stenosis in the majority of 

cases. When the aortic valve orifice becomes narrower, a pressure gradient 

develops between the left ventricle and aorta, indicating the aortic stenosis. 

The methodology for stenosis severity evaluation was developed in the 

late 80s and has been in use since then (Hatle, et al., 1980; Skjaerpe, et al., 1985). 

To assess aortic stenosis severity, a cardiologist has to measure the peak 

transaortic jet velocity in the aortic valve (AV) and in the left ventricular outflow 

tract (LVOT), and LVOT diameter. Afterwards, by tracing AV and LVOT blood 

flow spectrograms, to calculate time velocity integrals, peak and mean gradients, 

aortic valve area (AVA), and velocity ratio, using a simplified Bernoulli equation 

and Gorlin’s formula (Otto, 2012).  

 According to the joint guidelines of the American College of Cardiology 

and American Heart Association, aortic stenosis severity shall be classified with 

the parameters AV peak jet velocity, AV mean gradient, AVA, and velocity ratio. 

Severe aortic stenosis is defined as clinical conditions when AVA < 1 cm2 and 

mean gradient > 40 mmHg or Jet velocity > 4 m/s. The full list of parameters 

and their values are presented in Table 10.  

Table 10. ACC/AHA guidelines to determine aortic stenosis severity 

  No stenosis Mild Moderate Severe 

Peak jet velocity (m/s) < 2.6 2.6 - 3 3 - 4 > 4 

Mean gradient (mmHg) - < 30  30 - 50 > 50 

AVA (cm2) - > 1.5 1 -1.5 < 1 

Indexed AVA 

(cm2/m2 BSA) 

- > 0.9 0.6 - 0.9 < 0.6 

Velocity ratio - > 0.5 0.25 - 0.50 < 0.25 
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2.6.2. Related Work 

Medical image analysis as a topic of its own has developed successfully in the 

last decades. There are a number of papers using signal processing techniques to 

structure and compare echocardiograms and electrocardiogram (ECG) signal 

images (Kurgan, et al., 2001; Sacha, et al., 2000; Shalbaf, et al., 2013; Sani, et 

al., 2014), where Fourier and wavelet transformation have been applied. 

The approach and implementation for the semi-automated categorization 

of medical images was proposed by T. M. Lehmann, M.O. Guld, et al. (Lehmann, 

et al., 2005). Instead of using commonly applied features describing color and 

shape, the authors proposed applying texture measure and resized 

representations of the images, like coarseness, contrast, directionality, and 

properties of edges within an image as global feature vectors.  

T. Tak et al. (Tak, et al., 1996) analyzed the intensity of the regurgitant 

signal obtained by continuous-wave Doppler to indicate the severity of aortic 

regurgitation. The methods applied by the authors included the calculation of 

mean pixel intensity and statistical analysis of the grouped image sets. 

To the best of our knowledge, there is limited research addressing 

processing and analysis of blood flow Doppler echocardiography images, 

aiming to extract features required for the diagnosis of cardiovascular diseases. 

2.6.3. Mathematical Modelling of Time-Related Blood Velocity 

Changes 

The time-dependent blood flow velocity measurements allow us to construct 

dynamic models of the processes (Noordergraaf, 2011). The ultrasound 

visualization of blood flow, whether color flow or spectral Doppler, is obtained 

by measuring the substance movements detected by a captured reflected 

ultrasonic beam. In a generic ultrasonic scanner, a series of pulses are transmitted 

to detect blood movement. Echoes from stationary tissue are the same from pulse 

to pulse. In contrast, echoes from moving particles exhibit a shift in time for the 

signal to be returned to the receiver. These differences are usually measured in 

terms of the phase shift from which the Doppler frequency is obtained.  
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In our experiments, blood flow velocity was measured using the Color 

Doppler and Pulse Way Doppler modes (PWDM). A noise filter with default cut-

off values was used. The size of the wave gate in the PW Doppler was chosen in 

relation to the diameter of the measured artery. The average ultrasonic velocity 

was 1540 cm/s. The measured blood flow had a real-time graphical visualization 

with a waveform echocardiogram (Fig. 20). 

 

Fig. 20. Echocardiogram visualizing blood Doppler measurements 

2.6.3.1. Measurement errors 

The measurement results depend on the features of the ultrasonic signal, the 

body reaction to the signal, the ultrasound system settings, the type of transducer 

used, and the skills of the operator. If measurement is performed correctly, 

according to the specification of ultrasound medical device, the measurement 

errors varies approximately within 2–5 %. 

2.6.3.2. Approximation 

As is shown in the echocardiogram (Fig. 20) and the graph (Fig. 21), in the 

course of one cycle the blood velocity is not a monotonous time function. The 

echocardiogram reflects the complicated blood compression and decompression 

activity: 

 during one heart period (marked by triangles), the blood in the 

artery is both influenced by the heart muscle and is flowing 

freely without the impact of an external moving force. Such a 
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complicated blood flow is reflected by numerous local 

minima(1–17) and maxima(1’–17’) in the blood velocity 

distribution (Fig. 20); 

 the maximum value of the measured blood velocity is 73.7 cm/s, 

which corresponds to the first maximum 1’, and the minimum 

value is 12.1 cm/s, which corresponds to the minimum value of 

15 in the blood flow Doppler echocardiogram (Fig. 20 and Fig. 

21). The mean blood velocity value equals to  

𝑣 = 28.8 ± 15.8 cm/s.  

 

Fig. 21. Blood flow velocity measurement results and approximation 

We see that the time interval between the 2’and 4’maxima is related with 

heart compression, whereas the intervals between the 15’ and 17’maxima reflect 

heart decompression. To pick out a free blood flow velocity interval independent 

of heart activity, we selected the time interval between 260 ms and 665 ms, i.e. 

between the 3’ maximum and the 15’ minimum. It comprises 134 values of 

velocities from 260 ms to 665 ms at the time of measurement. The distribution 

of these velocity values is not very regular. Its only regular feature is the general 

decrease of the 𝑉𝑛 values in the sequence of velocities. 

The maximum value of blood velocity in this interval is 34.4 cm/s, which 

corresponds to the initial value and the minimum value is 12.1 cm/s, which 

corresponds to the end of the interval in Fig. 20. The mean value of the blood 
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velocity equals to n = 19.9±4.9 cm/s. 

Let us take instead of sequence 𝑉(𝑛), the sequence 𝑉(𝑛)/𝑉(1) in which 

the initial value (𝑉(1) = 34.43 cm/s) and represent it in a double logarithmic 

scale (Fig. 22). 

 

Fig. 22. The distribution of the same velocities in a double logarithmic scale 

This dependence looks much more regular. Blood velocity logarithms are 

approximated by the exponential function 𝑉(𝑛) = 𝑎𝑒−𝛽𝑛 + 𝛾 in which the 

dimensionless coefficients are:  

𝑎 = 0.5289, 𝑏 = 0.04521, 𝛾 = 0.4408     (1) 

The dependence of velocity distribution should be approximated by the 

function 𝑉(𝑡) = 𝑎𝑒−𝑏𝑡 + 𝑐, where 

 𝑎 = 18.209 𝑐𝑚/𝑠, 𝑏 = 9.0426 · 10−3𝑠−1, 𝑐 = 15.177 𝑐𝑚/𝑠  (2) 

Indeed, the summation of dependence Vn and the approximating function 

𝑉(𝑡) gives a rather good correspondence (Fig. 20). Thus, the velocity 

distribution should be approximated by the ordinary differential equation:  

𝑉 = −𝑏𝑉 + 𝑑, 𝑉(0) = 𝑉0,        (3) 

where 𝑐 = 𝑑/𝑏. 

For a quantitative assessment of the obtained approximation, we shall 
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find the deviations of the obtained function from the real values of the velocities. 

The deviation interval – standard deviation 𝜎 =  5119 cm/s from the mean 

value < δV >= 1.051 · 10−3 cm/s. Most of the deviation values fit within the 

interval of two standard deviations. 

2.6.3.3. The Reynolds number of the blood flow 

Blood velocity measurements allow us to estimate the turbulence level of the 

blood flow. Let us consider the blood flow in the artery as a liquid flow in a pipe. 

In this case, the Reynolds number characterizes the different flow regimes, such 

as laminar or turbulent (Landau & Lifshitz, 1987):  

𝑅𝑒 =
𝑉𝐷𝐻

𝑣
 ,          (4) 

where V is the velocity of the liquid fluid in the pipe, DH is the hydraulic 

diameter of the pipe, and 𝑣 is the kinematic viscosity (Landau & Lifshitz, 1987). 

The laminar flow occurs at low Reynolds numbers (Re < 2300) when 

viscous forces in the liquid are dominant as compared to the inertial ones, and is 

characterized by a smooth, constant fluid motion. The turbulent flow occurs at 

high Reynolds numbers (Re > 4000) and is dominated by inertial forces, which 

tend to produce chaotic eddies, vertices and other flow instabilities.  

For a circular pipe, the hydraulic diameter 𝐷𝐻 is exactly equal to the 

internal pipe diameter 𝐷 that in our case is equal to the diameter of the measured 

artery. The diameter of the artery of our patient is estimated as 1.2 cm. 

Substituting the mean value of the blood velocity from measuring the interval 

�̅� = 19.9 cm/s and the kinematic velocity of the blood  v = (2.8 − 3.8) · 10−6 

cm2/s (according to (Lenz, et al., 2008)) into expression (4), we obtain the 

Reynolds number Re = 628–853. This value is much less than the bordering 

value 2300, meaning that in the measured artery a pure laminar blood flow is 

present.  

The possible correlation to the Non-Newtonian character of the blood 

flow was discussed in (Liu, et al., 2011). The expression of the Reynolds number 

(4) allows us to answer the following question: at which value of the velocity in 
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the artery we have a purely laminar flow. Substituting the same values of the 

kinematic viscosity of the blood, the diameter of the measured artery and the 

bordering value of the Reynolds number for the laminar flow (Re < 2300), we 

obtain the mean value of the blood velocity 𝑣𝑚𝑒𝑎𝑛 = 54 − 73 cm/s.  

On the other hand, the analysis of fluctuations with respect to the trend 

leads to a deviation from the Gaussian distribution. The insignificant influence 

of turbulent flows on the ultrasound measurements means a qualitatively 

different character of the blood flow at the micro level. 

The practical value of the proposed model (2) is its usage for the 

identification of turbulent flow in human body vessels. Although there are no 

examples of turbulent flow in our collected dataset of echocardiography images, 

the formula can be used on larger datasets for the feature extraction from 

echocardiography images to predict clinical conditions comprising turbulent 

flows. 

2.6.4. Echocardiogram Image Data Analysis Method 

In general, systolic peak extraction from the diagnostic image involves four steps 

as visualized in Fig. 23. 

 
Fig. 23. Semi-automatic aortic stenosis evaluation methodology 

The essential precondition was that images, containing valid AV and 

LVOT echocardiograms, had to be preselected by the cardiologist. Automatic 
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image type recognition was beyond the scope of our study. The image data pre-

processing methods were implemented in R (R Core Team, 2014). ImageJ 

(Abramoff, et al., 2004; Schneider, et al., 2012) library functions were used for 

the first step of the image pre-processing tasks. 

Step 1 - Image pre-processing 

First, echocardiography images were converted to black and white 

images, using a binary filter. The threshold level was determined using an 

Isodata algorithm (Ridler & Calvard, 1978), which resulted in brightness cut-off 

values between 90 and 255 (shown in Fig. 24b). G. Landin’s implementation 

(Landin, 2006) of flood filling algorithm (Soille, 2013) was used for the initial 

edges smoothing (shown in Fig. 24c). Then, Sobel’s edge detector (Ziou, et al., 

1998) was used to separate the echocardiogram curve from the rest (shown in 

Fig. 24d). Two 3 by 3 convolution kernels were used to generate vertical and 

horizontal derivatives, to produce the final image. An outline filter, which 

generates a one pixel wide outline of the objects in the image, was applied as an 

alternative solution. Our experiments showed that the outline filter gave more 

precise and consistent results on AV and LVOT echocardiography images. 

Furthermore, to improve image pre-processing results, outliers, noise, 

and artefacts such as holes had to be removed. The method based on a flood 

filling algorithm was used to fill the holes in the 1-bit images. To reduce noise 

artefacts, typical for echocardiographic images, we used a depeckling filter, 

which replaces a pixel by the median of the 3x3 surrounding pixels when it 

deviates by certain threshold. The results of the described pre-processing steps 

of binarization, holes filling, outlining and depeckling are presented in Fig. 24. 
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Fig. 24. Initial pre-processing steps of blood flow echocardiography images.  

AV flow images on the left. LVOT flow images on the right. Pre-processing steps in horizontal layers from top to 

bottom: a) – original image, b)- binarized image, c) images with filled holes, d) outlined after despeckling filter 

images. 

Step 2 - Approximation of the blood flow curve 

The resulting image from the image pre-processing step represents an 

outline of the systole, matching the one measured by ultrasound equipment. 

However, systoles have a full closed contour and in some cases of LVOT images 

an inside closed contour (e.g. the bottom-right image in Fig. 24). These excessive 

data were ignored by considering only the 10th decile of data.  

Another issue encountered were random notches, which were a result of 

the Doppler measurement signal noise, captured in the images. We addressed 

this issue, smoothing the curve with the help of local polynomial regression 

fitting (Cleveland & Loader, 1996). In this method, fitting is done locally by 

weighted least squares. Fitting values of a data point 𝑋 (representing a curve in 

our case) is made using neighboring points, weighted by their distance from 𝑋. 

The size of the neighborhood is set by parameter 𝜑. The degree of smoothing 

was tuned empirically and the best results were achieved, with 𝜑 ∈ [0.1;  0.2], 

and the 2nd degree of the polynomials. The illustration of the steps 
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is shown in Fig. 25.  

 

Fig. 25. Smoothing steps of AV blood flow curve.  

The top image – resulting image of the pre-processing step; the middle – 10th decile; 

the bottom – interpolated by local polynomial. 

The final result of this step is a clean, smooth blood flow velocity 

echocardiogram, which is usable for measurements and calculations. 

Step 3 - Identification and cropping of the valid systole peak cycles 

Since echocardiograms might contain a varying number of peak systolic 

cycles (in our study – from one to three), a method for identifying and cropping 

a complete systole cycle was created. Considering the range of possible peaks 

frequency, and possible minimum and maximum peak values, we have 

eliminated smaller peaks. The incomplete systoles have been rejected as well. 

Continuing the example of AV blood flow curve pre-processing (Fig. 25), the 

identified systole cycles are presented in Fig. 26.  
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Fig. 26. The identified full AV systoles.  

Two complete systoles in the blood flow curve are identified. The top image: the first 

complete systole cycle. The bottom image: the second complete systole cycle. 

The pseudo-code of the simplified systole identification algorithm is as 

follows: 

#Finding systole cycles 

Peaks = func_Find_all_peaks(image) 

For each Peaks[i] { 

 If (Peaks[i] > min_peak_const AND EXIST(Peaks[i-1] AND Peaks[i+1]) { 

  If (High_Peaks[i]  

   AND Peak[i-1] < min_systole_bottom_const 

   AND Peak[i+1] < min_systole_bottom_const 

  AND duration(Peak[i+1]- Peak[i-1]) BETWEEN min_duration_const 

AND max_duration_const) { 

     full_cycle = full_cycle + peak[i-1;i+1] 

  } 

  next 

 } 

} 

 

Function func_Find_all_peaks(image) { 

 For x=2:length(image) { 

  If ((image[x-1] < image[x] AND image[x+1] > image[x]) OR 

    (image[x-1] > image[x] AND image[x+1] < image[x])) AND 

    |image[x-1]-image[x]| > min_threshhold_const AND 

 

    |image[x+1]-image[x]| > min_threshhold_const AND) 

   Peaks = peaks + image[x]  

 } 

} 

# where min_peak_const, min_threshhold_const, 

min_systole_bottom_const, min_duration_const arbitrary parameters, 

defined by the clinical domain experts and applied to a certain image type. 
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By applying the algorithm described above, a set of AV and LVOT systole 

cycles have been captured for each patient. Between one and five systole cycles 

per patient have been captured by the algorithm for further processing. 

Step 4 - Calculation of the diagnostic parameters.  

Before performing calculations, images have been scaled to the 

predefined Doppler ultrasound images axis values. All diagnostic 

echocardiograms had a fixed duration of 2 seconds on abscissa, and variable 

velocity value on ordinate. The average systole cycle was derived by local 

polynomial regression fitting (Fig. 27). Finally, the parameters - duration and 

peak systolic velocity (𝑉𝑚𝑎𝑥) - were directly calculated, as the cropped 

parabola’s length on abscissa, and its height on ordinate, respectively. For 𝑉𝑇𝐼 

calculation, the curve was fitted with a 2nd degree polynomial and its definite 

integral was calculated. Our experiments showed that higher order polynomials 

tend to overfit and have scalability problems.  

Other required parameters were calculated using formulas provided in 

Table 21. 

 

Fig. 27. Resulting AV and LVOT systoles  



Application of Data Mining and Data Analysis Methods in Medicine 

 

94 

2.6.5. Predictive Data Mining for Grading Aortic Stenosis 

Current diagnostic practice requires a sheer amount of manual image processing. 

This is a labor-intensive process and is also prone to human-factor errors. 

Therefore, a semi-automatic image data analysis tool, which utilizes 

echocardiography images analysis described in Section 2.6.4, and DM 

classification methods, was created to help medical practitioners minimize time-

consuming image processing tasks and propose computer-aided diagnosis. 

According to the CRISP-MED-DM process model, after Phase 3 “Data 

preparation”, the modelling activities are to be started. The iterative process flow 

of optimum algorithm selection, described by Špečkauskienė et al. 

(Špečkauskienė & Lukoševičius, 2009) was used. The details and results of the 

predictive DM methods application are provided in Chapter 3, section 3.1. 

2.7. Multi-relational Clustering 

2.7.1. Background 

Clustering methods have been studied for decades in statistics in DM. Clustering 

can be defined as a DM task, where objects are being unsupervisedly subdivided 

into groups, in such a way, that objects of each group are more similar to each 

other than in comparison to the objects in other groups. Clustering algorithms 

represent one of the following clustering method groups: hierarchical methods, 

e.g. EM clustering (Dempster, et al., 1977), partitioning methods, e.g. K-means, 

Partitioning Around Medoids (Kaufman & Rousseeuw, 1987) , density-based 

methods, e.g. DBSCAN (Ester, et al., 1996), model-based methods (Fraley & 

Raftery, 2002), spatial clustering (Ng & Han, 2002), and fuzzy clustering 

(Bezdek, et al., 1984). However, the majority of these clustering methods have 

been created to process data in a “single table” format. Therefore, standard 

clustering algorithms underperform in high-dimensional and multi-relational 

data.  

For multi-relational clustering, Partitioning Around Medoids (PAM) as a 

base clustering algorithm was used. PAM was proposed by L. Kaufman and 
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P. J. Rousseeuw in 1987 (Kaufman & Rousseeuw, 1987), and is regarded as a 

follower of a k-means algorithm. The choice in favor of PAM has been made 

due to its high scalability, resistance to outliers, applicability in non-Euclidean 

space and its underlying feature, allowing us to use a distance matrix as input 

data. In the PAM algorithm, arbitrary data points as initial centers, called 

medoids are set. Then, the algorithm minimizes the sum of the dissimilarities 

between each object and its corresponding reference point and reassigns each 

object to the nearest medoid.  

A basic PAM algorithm flow is as follows: 

1. Randomly select 𝑘 of the 𝑛 data points as the medoids. 

2. Associate each data point to the closest medoid, using a preselected 

distance measure (similarity measure). 

3. For each medoid m: 

3.1. For each non-medoid data point 𝑜: 

3.1.1. Swap 𝑚 and 𝑜 and compute the total cost of the 

configuration. 

4. Select the configuration with the lowest cost. 

5. Repeat steps 2 to 4 until the solution is stable. 

The objects similarity measure is of key importance. In this section, a 

novel similarity measure suited for multi-relational data is proposed. It reflects 

the relational features of the input data, i.e. attributes in multiple entities, and 

one-to-many joins between them. Using the introduced compound similarity 

measure, based on Gower and Ochiai metrics, the distance matrix is calculated, 

and later used with partitioning clustering methods.  

Use-case application of the medical publications meta-analysis using the 

proposed multi-relational clustering technique is described in Section 3.3. It is 

worth noting that the algorithm can also be used for a wide range of multi-label 

classification tasks.  
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2.7.2. The Similarity Measure in Multi-Relational Settings 

Relationally connected data structures, having numeric and nominal values, are 

hardly represented in Euclidean space. In this case, the classical distance 

measures, being used in distance based clustering methods, like Manhattan, 

Minkowski or Euclidean distances, are not suitable. For mixed data types, 

Gower’s general coefficient of similarity (Gower, 1971) can be used as a base. 

Gower’s coefficient of similarity si is defined as follows: 

𝑠𝑖,𝑗 =
∑ 𝑤𝑘𝑠𝑖𝑗𝑘𝑘

∑ 𝑤𝑘𝑘
,                                                 (5) 

where:  𝑠𝑖𝑗𝑘 denotes the contribution provided by the 𝑘𝑡ℎ variable dependant on 

its data type, and 𝑤𝑘 is the assigned weight function. In other words, the 

similarity measure of the two objects i & j, is a sum of normalized weighted 

similarities of each object’s variable 𝑘 (attribute of the entity). 

The calculation of 𝑠𝑖𝑗𝑘 depends on the data type as described below. For 

nominal variables: 
 

𝑠𝑖𝑗𝑘 = 1, iff 𝑥𝑖𝑘  =  𝑥𝑗𝑘 , and 𝑠𝑖𝑗𝑘 = 0, when 𝑥𝑖𝑘  ≠  𝑥𝑗𝑘   (6) 

 

For numeric variables: 
 

𝑠𝑖𝑗𝑘 = 1 −
|𝑥𝑖𝑘−𝑥𝑗𝑘|

𝑟𝑘
,        (7)  

 

where: 𝑟𝑘 is a difference between max and min values of k’th variable. As in the 

case with nominal variables, 𝑠𝑖𝑗𝑘 equals to 1, when 𝑥𝑖𝑘  =  𝑥𝑗𝑘.  And 𝑠𝑖𝑗𝑘  equals 

to 0, when 𝑥𝑖𝑘  and 𝑥𝑗𝑘  represent maximum and minimum values of the variable. 

Binary data is treated as a nominal data type. In this case, 𝑠𝑖𝑗𝑘 = 1, iff the 

compared values are equal to 1. Additionally, it shall be stated, that for the cases 

where all variables are of a binary type, another similarity measure might be 

more preferable, like the Jaccard similarity coefficient (Jaccard, 1901). 

Furthermore, to compare two value lists in the case of comparing objects 

with one-to-many relations, we propose to use Ochiai (also called 

Ochiai-Barkman) coefficient, as proposed by A. Ochiai (Ochiai, 1957). Hence, 
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when comparing objects (entities), consisting of the nominal attributes, and 

having other one-to-many related entities, 𝑠𝑖𝑗𝑘 is defined as: 

 

𝑠𝑙1,𝑙2 =
𝑛(𝑙1∩𝑙2)

√𝑛(𝑙1)×𝑛(𝑙2)
,          (8) 

 

where 𝑙1, 𝑙2 – nominal value lists, 𝑛(𝑙) – the number of elements in 𝑙. 

In a relational data structure, the compared objects are represented by a 

number of relations and relational joins. For each attribute of a relation, denoted 

as a variable 𝑘, which is considered to be a part of the selected search space, 

atomic similarities  𝑠𝑖𝑗𝑘  have to be calculated using the Gower similarity for a 

specific data type, value lists using Ochiai coefficient extended by Gower 

similarities for numeric and binary data types. Finally, the overall similarity 

measure between two objects is calculated as a weighted sum of 𝑠𝑖𝑗𝑘 

according to (5).  

A relational data model always has to be treated with care, and certain 

pre-processing, de-normalization has to be applied. Considering the whole 

available relational data might be impractical. Hence, only valuable entities and 

attributes have to be selected. There are various recommendations on the 

relational feature selection, e.g. as described in works of R.T. Ng and J. Han (Ng 

& Han, 2002).  

The selected entities of the data model shall be analyzed for de-

normalization possibility, assuming their relational join type. Entities with one-

to-one type joins can typically be easily merged. For the entities connected with 

one-to-many joins, Ochiai with Gower coefficient for numeric, binary data types 

shall be used. Many-to-many related entities in many cases can be de-normalized 

to a one-to-many relationship. 

2.7.2.1. Edit distance for multi-relational data 

Another approach to measure distance between multi-relational objects is to 

represent relations and their joins as ordered labelled trees and apply a tree edit 

distance (TED) measure to calculate dissimilarity of the given trees. The tree 

edit distance problem is well studied and a number of algorithms have been 
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proposed (Tai, 1979; Demaine, et al., 2007; Pawlik & Augsten, 2011), with state-

of-the art algorithms running in O(n2m(1 + log
𝑚

𝑛
))  time and O(mn)  space 

(Demaine, et al., 2007). 

The tree edit distance between ordered labeled trees is defined as a 

minimum set of a tree node edit operations that transforms one tree into another. 

The following edit operations are performed: 

1. insert a node; 

2. delete a node; 

3. rename the label of a node. 

The cost of each edit operation can be weighted, thus allowing 

parameterization of the TED algorithm. 

The modern algorithms run in polynomial time, utilizing dynamic 

programming and robust algorithms, e.g. trees are recursively divided into sub-

trees, and then sub-solutions are cached and later reused for comparing 

compound trees.  

General tree edit distance algorithm 

Given: trees A and B. Task is to compute the distance between the trees. 

First, a path in one of the trees is chosen, and the distances between the relevant 

sub-trees of both sub-trees are computed. Those distances will be cached and 

later reused. Second, the distance between the trees is computed in a bottom-up 

manner computing the distances between the relevant sub-forests of A and all 

corresponding sub-forests of B, utilizing all cached distances. 

In general, TED algorithms use a left path, right path or heavy path 

strategy to compute the distance. To do so, the algorithm performs the following 

steps: 

1. For a given pair of trees A, B look up the path in the path strategy. 

2. If the path is in A do the following steps, otherwise reverse the trees 

(B, A) and continue from the step (1): 

a. Run the algorithm for every relevant sub-tree A′ in A, and the 

tree B. 
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b. Compute the single-path function for A, B trees according to the 

path's type (left, right, heavy path). 

The proposed algorithms (Tai, 1979; Demaine, et al., 2007) have unequal 

performance in balanced and imbalanced trees. However, a robust TED 

algorithm called RTED, proposed by Pawlik and Augsten (Pawlik & Augsten, 

2011) performs well with various tree shapes, and is currently one of the best 

performing algorithms.  

The utilization of RTED and the proposed multi-relational similarity 

measure implementation for clustering tasks is compared in Section 3.3. 

2.7.3. Applying Multi-relational Clustering for Exploratory 

analysis 

In multi-relational clustering, the distance between two objects is computed by 

not only relying on the attributes of the objects, but also including the objects 

related to them as well as considering the type of the relation, i.e. one-to-one, 

one-to-many, many-to-many, and the semantic strength of the relation. 

A few studies propose clustering methods for multiple relations (Kirsten, 

et al., 2001; Neville, et al., 2003; Yin, et al., 2005; Yin, et al., 2006). In principle, 

two generic approaches have been used: problem transformation (data reducing 

to propositional form), and algorithm modification to multi-relational form by 

updating the key notion. The second group of methods extends traditional DM 

algorithms or uses specific techniques, e.g. first-order logic and Inductive Logic 

Programming in order to handle multi-relational data. 

In this study, the feature selection task is omitted, relying on the existing 

knowledge of the domain experts. Hence, we undergo strong user guidance in 

feature selection and concentrate on the heuristics for similarity measure 

corresponding to the given relational data structure calculation. A method 

outlining how to apply semi-automated feature selection with multi-relation 

clustering, is described by X.Yin, J. Han, et. al (Yin, et al., 2005). 

As proposed by Van Laer et al. (Van Laer & De Raedt, 2001), we have 

upgraded the propositional algorithm to the first-order learners type, retaining 
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much of the original algorithm, and changing only the key notion, which in our 

case is the distance measure or its direct derivative - similarity measure. 

Following T. Horvath et al. (Horvath, et al., 2001) we store all available 

objects, comprising aggregated distance measures. Later, we compare each 

object with neighboring objects, using the PAM algorithm.  

2.8. Generalization and Conclusion 

In this chapter, we showed that the DM methodology CRISP-DM is limited in 

support of the issues and constraints specific to medical domain. The introduced 

methodology CRISP-MED-DM extends the CRISP-DM in the following 

phases: business understanding, data understanding, data preparation and 

modelling. The proposed additional tasks and activities reflect the uniqueness of 

medical DM, described in Chapter 1: heterogeneous data, semantic 

interoperability, missing values, patient data privacy and legal constraints. 

Moreover, three use-case studies and their supporting theories were described.  

First, the CRISP-MED-DM methodology was applied for BRCA1 gene 

mutation predictive modelling in the oncology domain. The iterative process of 

data pre-processing and the selection of a classification algorithm was used to 

improve modelling performance. Experimental results are described in 

Section 3.1. 

Second, the medical image data pre-processing technique for cardio 

echocardiography images data analysis was proposed. The methodology and 

image processing methods resulted in feature extraction of the blood flow 

echocardiogram for grading or diagnosing aortic stenosis. Experimental results 

are described in Section 3.2. 

Finally, a method for multi-relational clustering with a novel distance 

metric was introduced. The proposed compound similarity measure, based on 

Gower’s similarity coefficient and the Ochiai-Barkman coefficient, is suitable 

for applications with multi-relational data. The proposed clustering experimental 

approbation is described in Section 3.3. 
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CHAPTER 3  

 

Approbation of the CRISP-MED-DM 

and Data Analysis Methods 

3.1. Predictive Data Mining: BRCA1 gene mutation 

predictive model 

3.1.1. Introduction 

In this section, a new approach for the prediction of BRCA1 mutation carriers by 

methodically applying DM methods according to CRISP-MED-DM 

methodology is described. Background information on breast cancer, BRCA 

genes and the related work is provided in Section 2.5. 

The conducted research aimed to create a novel BRCA1 mutation risk 

assessment model, which meets the requirements for interpretability and 

external validation and has better accuracy than already existing risk assessment 

models (Panchal, et al., 2008). 

As defined in CRISP-MED-DM, the iterative approach of data pre-

processing, the selection of an optimal algorithm and its optimal 

parameterization has to be applied. We have applied an iterative procedure to 

stratify the initial dataset and transform it into the optimal dataset (ODS) for each 

classification task; afterwards we found the best performing classification 

algorithm; subsequently, its parameters were optimized, and finally, the results 

were validated with the participating oncologists.  
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3.1.2. Problem Understanding 

3.1.2.1. Overall objectives 

The overall goal formulated by the clinicians is to investigate a few questions of 

clinical interest that have not been answered by exploratory analysis by classical 

statistical methods: 

 Do patients with BRCA1 pathogenic mutation have any specific 

clinical, morphological manifestations? 

 What other patient features or feature groups can serve as pre-

dictors of pathogenic BRCA1 mutation? 

 Are there any predictive factors of breast cancer reoccurrence? 

 Is there an impact of BRCA1 mutation on the time of tumor re-

occurrence? 

3.1.3. Data Understanding 

The original medical research was carried out in the Oncology Institute of 

Lithuanian University of Health Sciences from 2010 till 2013. The study group 

consisted of 83 women, who were diagnosed with I–II stage breast cancer with 

the following tumor morphology: T1 N0, T2 N0, T3 N0, T1 N1, T2 N1. The list 

of observed clinical, morphological features (attributes), as well as interventions 

and therapies applied is provided in Table 11, together with attribute types and 

the number of distinct values of each nominal attribute. 

The research duration was determined by considering the number of 

patients and no less than a two year period of disease progress monitoring. As 

the cancer stage is a strong predictive factor, only the early (I–II stage) breast 

cancer were chosen in order to reduce the factors influencing the variation. 

After laboratory confirmation of pathologic BRCA mutation, all patients 

were divided into two groups: (1) carriers – patients with pathologic BRCA gene 

mutation, and (2) non-carriers – patients without BRCA mutation. 
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Table 11. The full list of attributes of initial dataset 

# Attribute Attribute 

type* 

 # Attribute Attribute 

type* 

1 Age Continuous 18 Triple neg. BC Nominal (2) 

2 Histology type Nominal (5) 19 Family history type Nominal (3) 

3 cT Nominal (5) 20 Prostate cancer fam. Hist. Nominal (2) 

3 pT Nominal (6) 21 Pancreatic cancer fam. hist. Nominal (2) 

4 Multifocality Nominal (2) 22 Colorectal cancer fam. Hist. Nominal (2) 

5 cN Nominal (3) 23 Surgery type Nominal (4) 

6 pN Nominal (2) 24 Chemotherapy type Nominal (3) 

7 G Nominal (3) 25 Herceptin Nominal (2) 

8 L Nominal (2) 26 Cht. complications Nominal (4) 

9 V Nominal (2) 27 Reoccurrence Nominal (2) 

10 ER Nominal (4) 28 Metastases Nominal (2) 

11 PR Nominal (4) 29 Time to diseased  Continuous 

12 HER2 Nominal (2) 30 Is Diseased Nominal (2) 

13 BRCA mutation Nominal (6) 31 Monitoring period Continuous 

14 Bilateral BC Nominal (2) 32 Time to reoccurrence Continuous 

15 Tumor size Continuous 33 Adjuv. ST Nominal (2) 

16 CHEK2 mutation Nominal (4) 34 Adjuv. HT Nominal (5) 

17 Affected l_m 

number 

Continuous    

* For nominal attributes, a number of distinct values is given in brackets 

3.1.3.1. Exploring data 

The collected research data, which formed the initial dataset, had a very 

imbalanced structure. As shown in Table 12, the carriers made up 14 %, and non-

carriers – 86 % of the whole patient group.  

Table 12. The distribution of prediction class attributes 

Attribute Positive attribute value Negative attribute 

value 

Number of 

patients 

Percentage 

of the whole 

group 

Number of 

patients 

Percentage 

of the whole 

group 

BRCA1 mutation 12 14 % 71 86 % 

BC reoccurrence 22 27 % 61 73 % 

Diseased patients 2 2 % 81 98 % 
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A set of 19 nominal attributes were used for the BRCA1 mutation 

classification task. The attributes values frequency tables are visualized by 

BRCA1 class colored histograms in Fig. 28. The black color marks items with 

no BRCA1 mutation, and the gray color – items with a BRCA1 mutation. The 

nominal attributes value distribution, as can be visually seen does not indicate a 

trivial single nominal attribute value dependency on dependent class variable. 

 

Fig. 28. Histograms of nominal attributes values for BRCA1 classification task 

3.1.3.2. Data quality verification 

The dataset was checked for outliers and missing values, using descriptive 

statistics and scatter plot visualization. Data were of high quality, with no 

outliers or missing data. 

3.1.4. Data Preparation 

Continuous attributes Age, Tumor size, and Time to reoccurrence were 

discretized to get results that are more meaningful for clinical interpretation.  

Feature selection algorithms Principal Component Analysis, Particle 

Swarm Optimization based attribute search, and Chi Squared attribute 

evaluation were used to reduce the dataset’s dimensionality.  
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The initial dataset consisting of 83 items was iteratively optimized to 

achieve a better performance of DM algorithms. An iterative Optimal Dataset 

(ODS) was formed by selecting modelling attributes, and stratifying the dataset 

in respect to the class attribute.  

3.1.5. Modelling 

According to CRISP-MED-DM methodology, the resulting datasets were 

iteratively used with a set of classification methods: classification trees, 

classification rules, multi-layer perceptron, logistic regression, Naïve Bayes 

classifier, Ada boost and Bagging classifiers. In addition, association rules were 

used to identify hidden dependencies between dependent and independent 

variables. Time series analysis was carried out to evaluate if BRCA1 mutation 

influences the time to reoccurrence or patient’s decease date. 

DM software packages WEKA (Hall et al. 2009), Orange (Curk et al. 

2005) and Tibco Spotfire Mining (Tibco Software Inc. 2010) were used. The 

following classification algorithms were compared: 

 Classification trees – J481, Random Forest, Random tree, tree en-

semble; 

 Classification rules – ZeroR2, OneR3, and FURIA4; 

 Artificial neural networks – Multi-layer Perceptron, SOM5; 

 Regression – logistic regression; 

 Bayes – Naïve Bayes; 

 Meta – Ada Boost6, Bagging. 

We performed two major iterations of predictive modelling, which are 

described below. 

 

The first modelling iteration 

In the first iteration, the classification algorithms were evaluated on the 

unbalanced dataset. In addition, the classification results were improved by 

                                              
1 J48 – WEKA implementation of C4.5 algorithm 
2 ZeroR – WEKA implementation of classification algorithm, using 0-R classifier 
3 OneR – WEKA implementation of classification algorithm, using 1-R classifier 
4 FURIA - fuzzy unordered rule induction classification algorithm 
5 SOM – self organizing map, a data visualization algorithm 
6 Ada Boost – boosting classification algorithm using Ada Boost M1 method 
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changing default algorithm parameters. The algorithms parameterization was 

performed as follows. The Fuzzy Unordered Rule Induction Algorithm (FURIA) 

showed overall performance improvement after changing the uncovered rules 

handling parameter to “vote for the most frequent class”. Main algorithm 

parameters have been set as follows: T-Norm equals to Product T-norm, error 

rate >
1

2
 as stopping criterion, two optimization runs, three folds for pruning, 

random seed equals to one, minimal weight of the instances in a rule equals to 

three. See the modelling results for the BRCA1 classification problem in 

Table 13. 

Table 13. FURIA algorithm optimization results 

Algorithm Accuracy Sensitivity Specificity ROC 

AUC 

Furia 

initial 

0.916 0.667 0.958 0.80 

Furia 

optimized 

0.940 0.667 0.986 0.81 

 

The adaptive boosting meta-algorithm AdaBoost is known for good 

results with weak classifiers and is more resistant to overfitting. AdaBoostM1 

WEKA implementation was used. We achieved sensitivity improvement from 

0.5 to 0.67 by using DecisionStump as a basis classifier and increasing the 

iteration number from 10 to 30. Main algorithm parameters have been set as 

follows: reweighting resampling was not used, weight threshold for weight 

pruning equals to 100, random seed equals to one. However, Specificity and 

ROC area under curve values have reduced. See the modelling results for the 

BRCA1 classification problem in Table 14. 

Table 14. AdaBoost algorithm optimization results 

Algorithm Accuracy Sensitivity Specificity ROC 

AUC 

AdaBoostM1 

initial 

0.891 0.5 0.958 0.802 

AdaBoostM1 

optimized 

0.892 0.667 0.930 0.790 
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The meta-algorithm bootstrap aggregating (bagging) results were 

improved by choosing J48(C4.5) as a base classification algorithm. The main 

algorithm parameters have been set as follows: one execution slot, ten iterations, 

random seed equals to one, out-of-bag error was not calculated, bag size 

percentage equals to 100 %. See the modelling results for the BRCA1 

classification problem in Table 15. 

Table 15. Bagging algorithm optimization results 

Algorithm Accuracy Sensitivity Specificity ROC 

AUC 

Bagging 

with 

RepTree 

0.855 0 1 0.705 

Bagging 

with J48 

0.880 0.417 0.958 0.853 

 

The overall result of the first iteration is shown in Table 16 and Table 17. 

Table 16. BRCA1 classifier models performance 

Algorithm Accuracy Sensitivity Specificity ROC 

AUC 

J48 (C4.5) 0.880 0.667 0.915 0.825 

Random 

Forest 

0.855 0.167 0.972 0.774 

Random tree 0.819 0.333 0.901 0.696 

ZeroR 0.854 0.000 1.000 0.428 

OneR 0.807 0.000 0.944 0.472 

Furia 0.940 0.667 0.986 0.81 

Multilayer 

perceptron 

0.819 0.667 0.845 0.805 

Multilayer 

perceptronCS 

0.916 0.667 0.958 0.865 

Logistic 

regression 

0.795 0.500 0.845 0.738 

AdaBoostM1 0.892 0.667 0.930 0.790 

Bagging with 

J48 

0.880 0.417 0.958 0.853 
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Table 17. Breast cancer reoccurrence classifier models performance 

Algorithm Accuracy Sensitivity Specificity ROC 

AUC 

J48 (C4.5) 0.734 0.000 1.000 0.457 

Random 

Forest 

0.71 0.091 0.934 0.516 

Random tree 0.639 0.227 0.787 0.484 

ZeroR 0.735 0.000 1.000 0.457 

OneR 0.675 0.000 0.918 0.459 

Furia 0.747 0.091 0.984 0.633 

Multilayer 

perceptron 

0.687 0.455 0.770 0.576 

Multilayer 

perceptronCS 

0.687 0.455 0.770 0.596 

NaïveBayes 0.639 0.136 0.820 0.508 

Logistic 

regression 

0.663 0.591 0.689 0.675 

AdaBoostM1 0.651 0.000 0.885 0.319 

Bagging with 

J48 

0.687 0.045 0.918 0.546 

 

Dimension reduction techniques including Principal Component 

Analysis, Particle Swarm Optimization based attribute search, Chi Squared 

attribute evaluation and Correlation Attribute evaluation were used. The 

methods resulted in different attribute sets. In our experiments, the Particle 

Swarm Optimization algorithm for the attribute search has shown the best 

results. However, most of them had significantly worse classification accuracy 

compared to the dataset with the full set of attributes. See Fig. 29 and Fig. 30 for 

different classifier models’ performance comparison. The only possible 

advantage of the dimension reduction is a shorter classification model building 

time, which was not applicable due to the small research dataset. 

 

The second modelling iteration 

In the second iteration, we have changed the dataset by incrementally 

equaling the proportion of dependent binary (class) attribute values until it 

reached 50 % to 50 % distribution. The balancing of the dataset influenced the 

performance of most of the classification algorithms. The classifiers derived 

from the balanced ODS showed 0.90 accuracy, 0.95 Sensitivity, 0.85 Specificity 
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and 0.96 ROC area value with meta algorithm Bagging, and 0.88 accuracy, 

0.93 Sensitivity, 0.83 Specificity and 0.85 ROC area value with J48 tree 

algorithm. 

 Further, the initial unbalanced dataset was used as a test dataset for the 

validation of the model. The comparison of the classifier models’ performances 

was done using ROC and Gain charts. The predictive models with the highest 

ROC values tested on the unbalanced dataset are presented in Table 18 and 

Table 19. 

Table 18. BRCA1 prediction classifier 

Algorithm Accuracy Sensitivity Specificity ROC 

AUC 

Bagging 0.867 0.833 0.873 0.81 

 

Table 19. Breast Cancer reoccurrence prediction classifier 

Algorithm Accuracy Sensitivity Specificity ROC 

AUC  

Bagging 0.711 0.955 0.623 0.65 

 

Compared to the first iteration results, higher Sensitivity was achieved, 

but in turn Specificity has decreased, resulting in lower ROC performance with 

value 0.81 for the BRCA1 classifier which is weaker compared to the 

performance of the first iteration classifier where ROC AUC was 0.85.  

Visual comparison of the best performing Bagging algorithm classifiers 

is provided in Fig. 29 for the BRCA1 class model and in Fig. 30 for the 

Reoccurrence class model. The best model for the data is the one with the highest 

curve above the straight diagonal line.  
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Fig. 29. BRCA mutation predictive models performance charts 

In the BRCA1 mutation classification ROC chart (Fig. 29), the best 

performance (blue line) is achieved by the “stratified data” classifier trained 

and tested solely on balanced dataset, then the performance gradually decreases 

as follows: ODS with all 29 attributes (green line), ODS after dimension 

reduction with 5 attributes (orange line), “stratified data” classifier tested on 

initial dataset (red line). The same color notation is used for the cumulative gain 

chart. The Gain ranking of the models is as follows: orange, green and red lines 

have similar Gain values, and then the blue line which represents the“stratified 

data” classifier trained and tested solely on the balanced dataset has a lower 

Gain value. 

 

Fig. 30. BC reoccurrence predictive models performance charts 

In the BC reoccurrence classification ROC chart (Fig. 30), the best 
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performance (red line) is achieved by ODS with all 34 attributes. The 

performance gradually decreases as follows: “stratified data” classifier trained 

and tested solely on the balanced dataset (blue line), and finally “stratified data” 

classifier tested on initial dataset (orange line). The same color notation is used 

for the cumulative gain chart (Fig. 30). The Gain ranking of the models is as 

follows: ODS with all 34 attributes (red line), “stratified data” classifier tested 

on initial dataset (orange line), and finally “stratified data” classifier trained and 

tested solely on the balanced dataset (blue line). 

3.1.5.1. Hidden patterns analysis 

Association rules discovery algorithms were applied to find non-trivial 

dependencies. Apriori, PredictiveApriori, and HotSpot algorithms. Generic and 

class specific rules with a minimum support in the range of [0.01; 0.2] with 

confidence greater than 0.75 were searched. 

Three sets of rules were discovered iteratively: class independent, class 

dependent with the BRCA mutation class attribute, and class dependent with 

Reoccurrence class attributes. The search space was incrementally increased: by 

decreasing the minimum support and confidence values, by increasing the 

maximum number of antecedents from two to five, and by increasing the 

associated attribute set from five (attributes found in the 1st iteration by 

dimension reduction techniques) to the full set of 35 attributes. In the largest 

search space within our experiments, association rules search has found from 46 

thousand to 78 thousand rules. Such an amount of rules is due to the selected 

lower support and confidence value. The generated rule items were filtered and 

then analyzed by the oncologists. More than a hundred association rules 

describing cancer metastases in lungs were discovered by the Apriori algorithm.  

However, all of them were rejected by the clinician expert as being trivial or 

being possibly resulted by algorithm over-fitting. 

3.1.5.2. Time-series analysis 

Survival and time-series analysis was performed to find any impact of BRCA1 

mutations to the time of BC reoccurrence or to the time of death. In the cases of 
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systematic reoccurring BC, we have researched possibilities to predict the 

localization of metastases. However, neither statistical linear regression or Cox 

regression, nor DM methods provided satisfactory results. The received results 

were statistically insignificant or without reasonable accuracy.  

3.1.6. Evaluation and Results 

The BRCA1 classifier model with the best ROC AUC value was created 

using Multilayer Perceptron algorithm modification (MultilayerPerceptronCS 

in WEKA) with overall accuracy 0.92, Sensitivity 0.67, Specificity 0.96 and 

ROC AUC 0.87. However higher classifier Sensitivity and explicit 

interpretability of a model was required by the clinicians. Therefore decision tree 

J48 and decision rules Furia classifiers were used for the interpretation by the 

domain experts. Accordingly, their performance is as follows: overall accuracy 

0.88 and 0.94, Sensitivity 0.67 in both cases, Specificity 0.92 and 0.99, and ROC 

AUC 0.83 and 0.87. 

To increase the Sensitivity value, the dataset was balanced and the best 

classifier results were achieved with the Bagging algorithm. Its performance on 

the test dataset (10-fold cross-validated initial dataset): overall accuracy 0.87, 

Sensitivity 0.83, Specificity 0.87 and ROC AUC 0.81.  

The optimal breast cancer reoccurrence classifier models were created in 

the second iteration, when the initial dataset was balanced, which significantly 

improved Sensitivity with remaining similar levels of Specificity and ROC 

AUC. The achieved performance of the Bagging algorithm classifier: overall 

accuracy 0.71, Sensitivity 0.96, Specificity 0.62 and ROC AUC 0.65. The 

highest Specificity was achieved applying the Furia decision rules algorithm: 

overall accuracy 0.75, Sensitivity 0.09, Specificity 0.98 and ROC AUC 0.63. 

The clinical interpretation of the resulting predictive models is presented in 

Section 3.1.8.2. 

3.1.7. Deployment 

According to CRISP-MED-DM, the resulting predictive models for BRCA1 

mutation and breast cancer reoccurrence prediction were exported to the PMML 
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format. PMML models can be used in clinical decisions support systems or 

generic scoring software in clinical settings.  

Following the recommendations of A. K. Waljee et al. (Waljee, 2013), the 

derived PMML models are provided for further validation of the predictive 

models with external datasets. 

3.1.8. Discussion and Compliance to CRISP-MED-DM 

Corresponding to the questions raised by oncologists, three DM problems were 

formulated and resolved using eleven DM algorithms in accordance with the 

CRISP-MD-DM process model. The research questions raised were formulated 

as classification problems. Classification models for the prediction of a BRCA1 

carrier with the dependent variable BRCA1 mutation, and for the prediction of 

BC reoccurrence with the dependent variable Reoccurrence were created. 

The biggest challenge was the very small size and imbalanced nature of 

the dataset provided by the participating clinicians. However, iterative 

optimization of the initial dataset, optimal algorithms selection and their 

parameterization has resulted in higher classifier model performance, with 

acceptable prediction accuracy for clinical usage.  

By analyzing breast cancer patient data, we have realized the importance 

of a systematic approach in the knowledge discovery process. The study has 

shown a high importance of forming an optimal dataset for classification 

accuracy. A dataset with balanced class attribute values was of key importance. 

Experimental results have not shown the positive impact of dimension reduction 

for the model accuracy.  

Artificial neural networks have shown the best performance for BRCA1 

gene mutation carrier prediction, but due to its lack of expressivity, decision tree 

and decision rules methods were preferred by the clinicians. 

3.1.8.1. Compliance to CRISP-MED-DM 

To evaluate compliance of the undertaken application of DM activities for 

BRCA1 predictive modelling, we applied the first evaluation strategy, proposed 

in subsection 2.4.6.2.  
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As it is shown in Fig. 31, the core phases Data understanding, Data 

Preparation, Modelling and Evaluation show good compliance. However, the 

Problem understanding phase scores only 5.6 out of a maximum 10 points. In 

the problem understanding phase, the activities related to formal project 

management, such as activities planning, risk planning, cost/benefit analysis 

were not performed, due to the exploratory nature of our research project. For 

the same reason, formal success criteria were not initially formulated by the main 

stakeholders. 

 

Fig. 31. CRIP-MED-DM compliance radar for BRCA1 prediction 

Furthermore, the resulting model is not currently deployed in the 

healthcare facility; therefore, the Deployment phase scored zero points. 

3.1.8.2. Clinical evaluation and conclusions 

Remarkably, currently used publicly available clinical BRCA risk evaluation 

models are based purely on the patient’s family history, whilst our classifier 

models provide similar and in some cases better accuracy by including clinical 

and morphological patient features. 

The created breast cancer reoccurrence models have not included BRCA 
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mutation as a possible predictor for a patient group with a recurrent tumor. This 

finding supports the research (Robson et al. 2004) implying the importance of a 

tumor’s clinical-morphological features and diminishing the impact of BRCA 

mutation to the breast cancer reoccurrence. Though, other research has reported 

on the lower survival rate for BRCA carriers (Brekelmans et al. 2009). Our 

predictive models have reconfirmed criteria that is already used in clinical 

practice. The family history attribute has high predictive value, especially when 

combined with clinical and morphological features such as bilateral BC, high 

grade tumor, medullary carcinoma, and triple negative BC. Interestingly, 

classification tree models highlighted negative expression of progesterone 

receptors as a possible BRCA1 mutation predictor, which is a significantly 

narrower discrimination condition compared to triple negative BC, which 

additionally includes estrogen R(-) and HER2(-) features. 

Another finding is higher BRCA1 mutation probability for patients with 

tumor size greater than 1 cm or when more than one axillary lymph node is 

affected. This can be explained by higher grade of BRCA1 associated tumors and 

higher proliferation. 

BC reoccurrence classifier reconfirmed the prognostic features approved 

in previous clinical researches: higher tumor grade, primary tumor size, negative 

progesterone receptors, young patient age, and type of chemotherapy used. 

After additional validation on a larger dataset, the created predictive 

models can be used as clinical decision support systems. 

3.2. Predictive Data Mining: aortic valve stenosis 

predictive model 

3.2.1. Introduction 

Since the seminal work of L. Hatle et al. in 1980 (Hatle, et al., 1980), the golden 

standard for AS diagnostic is to rely on echocardiography measured by Doppler 

ultrasound. However, a number of pitfalls the clinicians are struggling with exist 

- difficulty in getting good quality images, localizing the measuring area in 
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continuous-wave or pulse-wave Doppler modes, and time consuming manual 

tracing of the images, just to name a few. 

Nearly all ultrasound machines provide the required diagnostic 

parameters after manual tracing of the aortic systolic flow, which requires 

manual interaction and may lead to human error. According to the 

recommendations of professional cardiologists associations (Otto, 2012), a well-

defined set of parameters is used to differentiate aortic stenosis (AS) and its 

severity. Some of these can be measured invasively or non-invasively, and others 

are derived from the first ones using the defined formulas 

In our research, we addressed the outlined difficulties by employing 

image data analysis techniques described in Section 2.6. The successful 

automatic image processing and predictive modelling using DM methods would 

support clinicians in routine operations of systolic flow tracing, and furthermore, 

provide a third opinion in aortic stenosis severity grading.  

3.2.2. Problem Understanding 

3.2.2.1. Overall objectives 

The overall goal formulated by the clinicians is to create a computer aided 

decision support system, which will be able to accurately: 

1. Support the diagnosis of aortic valve stenosis. 

2. Grade the severity (Low, Mid, High) of aortic valve stenosis. 

 

To achieve this goal, the following objectives were formulated: 

1. To achieve overall accuracy and ROC AUC values more 

than 90 % 

2. The created method shall illuminate the manual systole tracing 

by the clinicians 

3. The resulting predictive model shall be easily understandable 

and interpretable by clinicians by providing explicit predicting 

models  

4. The resulting predictive model shall be easily integrated in a 
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Clinical Decision Support System, utilizing interoperable model 

description language PMML. 

3.2.2.2. Assess situation 

The following data source information systems have been identified: 

1. VUSK centralized PACS system. 

2. VUSK centralized HIS/EHR system. 

The following relevant data entities have been identified: 

1. Echocardiography images in DICOM format. 

2. Cardiologists’ measurements and evaluations. 

3. Patient’s demographics: age, gender. 

4. Patient’s encounter data: primary diagnosis, secondary 

diagnosis. 

3.2.3. Data Understanding 

The research data was acquired in Vilnius University Hospital Santariskiu 

Klinikos, by manually selecting consecutive patients with an equal distribution 

of AS severity. Studies of 18 patients with demographical, clinical and Doppler 

echocardiographic data were preselected by the participating cardiologist. In 

accordance to patient data privacy regulations, the research data were 

depersonalized and de-identified. 

The selection criterion for the second-use data was the severity of aortic 

stenosis. Of these patients, five – had no clinical signs of aortic stenosis, 

five – had mild AS, four – moderate AS, and four – manifested severe AS. 

Clinical data included age, gender, hypertension, cholesterol level, 

coronary heart disease, and additional risk factors, such as diabetes and history 

of smoking. Some data were incomplete, and could not be used in the full extent 

for statistical analysis. 

The list of observed clinical, demographic features (attributes) is 

provided in Table 20, together with attribute types and the number of distinct 

values of each nominal attribute. 
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Table 20. The list of initial dataset attributes 

# Attribute Attribute type* # Attribute Attribute type* 

1 Age (years) Continuous 9 VTI, cm Continuous 

2 Diagnosis (ICD-10) Nominal (13) 10 LVOT D, cm Continuous 

3 Gender Nominal (2) 11 AVA, cm2 Continuous 

4 Heart rate, BPM Continuous 12 LVOT Vmax, m/s Continuous 

5 AV Vmax, m/s Continuous 13 LVOT Vmean, m/s Continuous 

6 AV Vmean, m/s Continuous 14 LVOT PGmax, mmHg Continuous 

7 AV PGmax, mmHg Continuous 15 LVOT PGmean, mmHg Continuous 

8 AV PGmean, mmHg Continuous 16 AV Stenosis Nominal (4) 

 

The acquired image data included several diagnostic sessions for each 

patient, exported from ultrasound diagnostic equipment in DICOM format.  The 

data set consisted of 36 AV and 35 LVOT echocardiography images. 

3.2.3.1. Measuring Doppler Echocardiographic Data.  

In our experiments, blood flow velocity was measured with a 5-chamber view 

continuous-way Doppler for AV flow, and pulsed-way Doppler for LVOT flow. 

A noise filter with default cut-off values was used. The transducer’s alignment 

with the blood stream across the valve was checked with Color Doppler. The 

measured blood flow had a real time graphical visualization, with waveform 

echocardiogram (Fig. 32) which was stored in the hospital’s PACS system, and 

then exported in DICOM format.  

A normal aortic valve spectral Doppler trace has a single rounded systolic 

(S) wave below the baseline, as blood flow is away from the transducer. The 

S wave is enclosed within the AV opening (OC) and closing clicks (CC). 
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Fig. 32. The Doppler spectrum of AV systolic flow 

According to the guidelines of the European Association of 

Echocardiography, the American Society of Echocardiography and the European 

Society of Cardiology (Otto, 2012), the Doppler echocardiographic parameters, 

used to diagnose AS (Table 21), include: AV peak systolic velocity, mean 

pressure gradient, aortic valve area, and velocity index. Peak pressure gradients 

are derived from the simplified Bernoulli equation, which is based on the 

conservation of energy in a closed system (Otto, 2012). Aortic valve area value 

is derived using the standard continuity equation. The mean gradient is 

calculated by integrating the pressure gradient over the entire systole. 

Table 21. The list of measured and calculated echocardiographic parameters 

Parameter Type Units Formula 

𝑉𝑚𝑎𝑥 (peak systolic velocity) Velocity m/s - 

𝑇 (duration time) Time S - 

𝑉𝑚𝑒𝑎𝑛 (mean systolic velocity) Formula m/s 
𝑉𝑚𝑒𝑎𝑛 =

𝑉𝑇𝐼

𝑇
 

𝑃𝐺𝑚𝑒𝑎𝑛 (mean pressure gradient) Formula mmHg 
𝑃𝐺𝑚𝑒𝑎𝑛 =

∑ 4𝑣2

𝑁
 

𝑃𝐺𝑚𝑎𝑥 (peak pressure gradient) Formula mmHg 𝑃𝐺𝑚𝑎𝑥 = 4𝑉𝑚𝑎𝑥2 

𝐴𝑉𝐴 (aortic valve area) Formula cm2 𝜋 × 𝐿𝑉𝑂𝑇 𝐷2 × 𝐿𝑉𝑂𝑇 𝑉𝑇𝐼

4 × 𝐴𝑉 𝑉𝑇𝐼
 

𝑉𝑇𝐼 (Velocity time integral) Formula Cm 
∫ 𝑉𝑚𝑎𝑥 

𝑉𝐼 (Velocity index) Formula - 
𝑉𝐼 =

𝑉𝑇𝐼𝐿𝑉𝑂𝑇

𝑉𝑇𝐼𝐴𝑉
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3.2.3.2. Exploring data 

The nature of the original dataset was multi-relational, since the patient entity 

relates to multiple diagnosis, multiple AV and LVOT measurements. However, 

we assumed a simpler structure, where each patient has one determining 

measurement, and one main diagnosis. This was achieved using propositioning 

of the data (Kramer, et al., 2001). For that, an averaging of the measurement 

parameters was used.  

3.2.3.3. Data quality verification 

The provided dataset was manually checked by the participating cardiologist: 

there were no missing data or manual data entry errors.  

3.2.4. Data Preparation 

Echocardiography images pre-processing methods described in Section 2.6 were 

applied. The study drew on the second-use patient data, retrieved from the 

Santariskiu Klinikos hospital information system and picture archiving and 

communicating system. The clinical measurements, required for AS diagnosis, 

were provided by the participating cardiologist, and were used as the golden 

standard in the study.  The initial data set consisted of 18 patients with 71 

echocardiography images. By applying our method, the initial image set was 

transformed to the traced 71 AV and 68 LVOT blood flow velocity complete 

systole cycles.  

In order to evaluate the effectiveness of the proposed method, we 

compared the manual measurement performed by the cardiologist (M) with the 

automatic measurement results of the proposed method (A). The performance of 

the proposed method is reported with the Pearson correlation coefficient and 

Bland-Altman limits of agreement. Introduced by J. M. Bland and D. G. Altman 

(Martin Bland & Altman, 1986), the limits of agreement (LoA) are acceptable 

prediction limits for the difference between the measurements of the two 

methods on a randomly chosen item. The Bland Altman model is formulated as 

a two-way analysis of variance model. For the future measurement prediction, 

the Bland-Altman model stipulates the difference of the new values, obtained 
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with each of the two compared methods, is within the limits of agreement with 

95 % probability. In most cases, we observed a good agreement between the two 

methods. 

The values of parameters directly derived from the processed images 

relate to the compared manually obtained values as follows: 

1. Values of 𝐴𝑉 𝑉𝑚𝑎𝑥 and 𝐴𝑉 𝑉𝑇𝐼 measured by the two methods 

were strongly and significantly correlated. For 𝐴𝑉 𝑉𝑚𝑎𝑥:  

R2= 0.999, p-value < 0.0001; 𝐴𝑉 𝑉𝑇𝐼 R2 = 0.988, p-value < 0.0001. 

However, 𝐿𝑉𝑂𝑇 𝑉𝑇𝐼 measurement showed a lower degree of 

correlation: R2=0.68, p-value <0.0001. 

2. Bland-Altman plots for the parameters 𝐴𝑉 𝑉𝑚𝑎𝑥, 𝐴𝑉 𝑉𝑇𝐼, and 

𝐿𝑉𝑂𝑇 𝑉𝑇𝐼 (Fig. 33), outline Limits of Agreement, and the means of 

the differences A-M: 𝐴𝑉 𝑉𝑚𝑎𝑥 �̅� = 0.02 𝑚/𝑠,  

𝐴𝑉 𝑉𝑇𝐼 �̅� = 0.16 𝑐𝑚, 𝐿𝑉𝑂𝑇 𝑉𝑇𝐼 �̅� = 3.43 𝑐𝑚. 

 

Fig. 33. Bland-Altman plots for the parameters produced by manual (M) and automated 

(A) measurement methods.  

The left image - aortic valve velocity time integral (𝐴𝑉 𝑉𝑇𝐼); the right image - left ventricle output tract velocity 

time integral (𝐿𝑉𝑂𝑇 𝑉𝑇𝐼). 

Of the highest importance for aortic stenosis diagnosis, the remaining 

calculated parameters - mean pressure gradient (𝑃𝐺𝑚𝑒𝑎𝑛) and aortic valve area 

(AVA) - relate to the corresponding values of manual measurements as follows: 
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- 𝑃𝐺𝑚𝑒𝑎𝑛 R2 = 0.994, p-value < 0.0001, 

𝑑(𝑀 − 𝐴) ∈ [−13.37, 5.20], �̅� = 4.09 𝑚𝑚𝐻𝑔; 

- 𝐴𝑉𝐴 R2 = 0.894, p-value < 0.0001, 𝑑(𝑀 − 𝐴) ∈ [−0.33, 0.70], �̅� =

0.19 cm2. 

In addition, we compared manual measurements values with the values 

of averaged systole cycles, calculated in step 4 of the method (automated 

averages – AA). The Comparison generally showed lower values of the Pearson 

coefficient and wider Limits of Agreement: 

- 𝐴𝑉 𝑉𝑚𝑎𝑥 R2 = 0.999, p-value < 0.0001, 𝑑(𝑀 − 𝐴𝐴) ∈

[−0.29, 0.15],  �̅� = 0.07 𝑚/𝑠; 

- 𝐴𝑉 𝑉𝑇𝐼 R2 = 0.988, p-value < 0.0001, d(M − AA) ∈ [−32.40,

49.10], d̅ = 8.35 cm; 

- 𝐿𝑉𝑂𝑇 𝑉𝑇𝐼 R2 = 0.68, p-value < 0.0001, d(M − AA) ∈

[− 6.83, 23.24 ], d̅ = 8.20 cm; 

- 𝑃𝐺𝑚𝑒𝑎𝑛 R2 = 0.9868, p-value < 0.0001, d(M − AA) ∈ [−20.55,

6.64], d̅ = 6.96 mmHg; 

- 𝐴𝑉𝐴 R2 = 0.759, p-value < 0.0001, 𝑑(𝑀 − 𝐴𝐴) ∈ [−0.56, 1.03], �̅� =

0.24 𝑐𝑚2. 

The results of blood flow echocardiography images analysis are of 

reasonably high quality; therefore, they can be used for further DM predictive 

modelling activities, in accordance with CRISP-MED-DM Phase 4. 

3.2.5. Modelling 

According to CRISP-MED-DM methodology, the resulting datasets have been 

iteratively used with a set of DM methods and algorithms: 

 Classification trees – J48, tree ensemble. 

 Artificial neural networks – Multi-layer Perceptron. 

DM software packages R (R Core Team, 2014), and Tibco Spotfire 

Mining (Tibco, 2010) were used. 

Averaging of the systole parameters extracted from diagnostic images 

have shown considerably lower accuracy compared to the results obtained by 

the methods on the preselected images. 
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Accuracy decrease was proportional to the deviations of the patients’ 

image sets. However, the automation of systoles tracing during the pre-

processing step also meant reducing the pre-validation of the images by an 

experienced clinician. In the case of AS that could mean that non-optimal 

images, when the transducer was not finally aligned with the blood stream, were 

considered in the measurements. Straightforward averaging of the image 

features was suboptimal in some cases and wrong in others. Therefore, for the 

predictive models results evaluation, we used patient diagnostic images, 

preselected by the cardiologists.  

We have conducted comparative experiments comparing classification 

modelling on the parameters measured and validated by cardiologists, and the 

parameters extracted by applying the introduced echocardiography images 

analysis method. The resulting classification trees are shown accordingly in Fig. 

34 and Fig. 35. In both cases 100 % accuracy was achieved. The back 

propagation neural network had lower overall accuracy of 98.9 % for the dataset 

derived after feature extraction from the images. 

 

Fig. 34. Aortic stenosis grading decision tree based on cardiologist measurements 
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Fig. 35. Aortic stenosis grading decision tree based on feature extraction algorithm 

In addition, exploratory analysis was performed by employing 

association rules (Apriori algorithm) and clustering (k-means algorithm). 

However, there were no interesting rules identified by clinical experts. K-means 

clustering algorithm with three clusters grouped the data into groups with the 

distribution close to low-mid-high severity stenosis, with a 14 % error rate. 

3.2.6. Software Implementation 

To conduct the experimental trial of the described echocardiography images 

analysis and further application of predictive data mining methods, software was 

developed. Image processing routines and predictive modelling were 

implemented in the R environment, using ImageJ library for the standard image 

processing tasks. The component diagram of the developed software is shown 

in Fig. 36. 
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Fig. 36. Blood flow echocardiography images analysis and data mining component 

diagram 

Patient’s image processing for the following predictive modelling have 

the steps as follows: 

1. Export of echocardiography images from PACS server for offline 

processing in JPEG format. 

2. Importing of JPEG images into R environment. 

3. Application of the implemented echocardiography images 

processing methods to extract full systole cycles. 

4. Calculation of aortic valve stenosis diagnostic parameters. 

5. Application of DM classification methods to build the aortic valve 

stenosis grading predictive model. 

The described activities are shown in Use Case diagram in Fig. 37. 
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Fig. 37. Blood flow echocardiography images analysis and data mining use case 

diagram 

3.2.7. Evaluation and Results 

Echocardiography images analysis allowed for extracting high quality 

parameters, which were used for aortic stenosis grading. It is notable to mention, 

the calculated parameters of mean gradient and the aortic valve area provided by 

the ultrasound machine and our method are not directly comparable, as the 

diagnostic equipment vendors use proprietary calculation algorithms. For 

comparison purposes, we used formulas derived from simplified Bernoulli and 

continuity equations on the measurements provided by ultrasound machines (as 

outlined in Table 21). Our calculated 𝐴𝑉𝐴 values showed strong correlation with 

the proprietary ultrasound’s 𝐴𝑉𝐴 values, with R2 = 0.799, p-value < 0.0001 and 

a mean methods’ difference of 0.16 cm; the calculated 𝑃𝐺𝑚𝑒𝑎𝑛(𝑉𝑚𝑎𝑥) 

measurements compared to ultrasound’s 𝑃𝐺𝑚𝑒𝑎𝑛(𝑉𝑚𝑎𝑥)  showed R2 = 0.99 

and p-value < 0.0001 with a mean methods difference of 1.84 mmHg. 

The created AS stenosis severity predictive models with classification 
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algorithms of decision trees, random forests and neural networks had the best 

performance with up to 100 % overall accuracy. Then we compared the 

performance of the models with identical ones on the data acquired from the 

ultrasound modalities. The accuracy of both methods was more than 98 %, 

though the latest has demonstrated a highest accuracy of 100 % using various 

classification algorithms.  

3.2.8. Deployment 

According to CRISP-MED-DM, the resulting decision tree predictive model 

with 100 % overall accuracy was exported to the PMML format (Annex A), 

which can be used by clinical decision support systems and generic scoring 

software in clinical settings. 

Following the recommendations of A. K. Waljee et al. (Waljee, 2013), the 

derived PMML model are provided for further validation of the predictive 

models with external datasets. 

3.2.9. Discussion and Compliance to CRISP-MED-DM 

The implementation of semi-automated blood flow echocardiograms tracing was 

carried out.  The experimental results of the proposed method were compared to 

the measurements, acquired within the current clinical practice, relying on 

manual blood flow echocardiograms tracing in Doppler ultrasound modality 

user interface. Correlation coefficients for an aortic valve area of 0.77, and for 

aortic valve maximum jet of 0.99 were found. There was a good agreement 

between the two methods, resulting in means’ differences of 0.19 cm and 

0.02 m/s, respectively.  

Comparison of the time needed to perform measurements and 

calculations using method (M), and method (A) had the following results: with 

a flow of 20 patients per day, the total amount of measurements will count up to 

120 systole cycles, which sums up to 20 minutes of net measurement time and 

additional 20–30 % overhead for systole selection and manual comparing. 

Summarizing, the time spent for manual tracing and processing of the 

measurements is 24–28 minutes per cardiologist (20 patients per day). The 
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running time of the echocardiography image analysis method implementation 

on the consumer type personal computer was between 1–2 seconds per 

spectrogram image. Thus, the total projected timesaving per cardiologist is 

around 22–26 minutes. 

Predictive modelling for AS grading resulted in the predictive 

classification models with 100 % overall accuracy. 

The achieved results suggest that the proposed predictive model based on 

the proposed method for tracing the blood flow echocardiograms and calculation 

of hemodynamic parameters is reliable and can be used as a supplementary tool 

for AS severity grading.  

3.2.9.1. Compliance to CRISP-MED-DM 

To evaluate compliance of the undertaken application of DM activities for 

predicting and grading of Aortic Valve stenosis, we applied the first evaluation 

strategy, proposed in chapter 2.4.6.2.  

As shown in Fig. 38, the core phases Data understanding, Data 

Preparation, Modelling and Evaluation show good performance. However, the 

Problem understanding phase scores only 3.3 from a maximum 10 points.  

 

Fig. 38. CRIP-MED-DM compliance radar for AV stenosis prediction 

The activities related with formal project management, such as scheduling, risk 
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planning, and cost/benefit analysis have not been performed due to the 

exploratory nature of our research project. Furthermore, the resulting model is 

not currently deployed in the healthcare facility. Actual deployment in clinical 

settings will require the integration or adaptation of ultrasound modalities used 

for cardio-echography. 

3.2.9.2. Clinical evaluation and conclusions 

The selected patients had regular heart rate. However, the blood flow of 

each cycle may vary depending on the length of the diastole. In practice, the 

cardiac output depends on the duration of the cycle. The longer the diastole is, 

the heart is filled with a larger blood volume. When evaluating echocardiograms, 

the cardiologist may neglect smaller differences. Moreover, the parameters of 

each cycle might be different due to the technical measurement reasons, 

e.g. natural movements of a patient’s body. The described reasons illustrates the 

differences of echocardiography images analysis by method A with the blood 

flow curve averaging and cardiologists manual measurements. 

The high accuracy of the derived predictive models, based on the semi-

automated blood flow echocardiograms analysis, suggests its good applicability 

in clinical practice. The application of the described methods would help to save 

time and avoid possible errors. 

3.3. Descriptive Data Mining: PubMed publications 

meta-analysis 

3.3.1. Introduction 

As was described in Section 1.4.1, simplification of relational data structures 

may lead to information loss and consequently to poor knowledge discovery 

results. In this section, a multi-relation clustering approach, based on a concept 

of algorithm’s key-notion upgrade is addressed. A novel method for a distance 

matrix calculation in multi-relational settings was introduced in Section 2.7. The 

method has been tested by analyzing publications indexed in the PubMed 

database (National Center for Biotechnology Information, 2009).  
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Clustering based on partitioning around medoids was used for the 

identification of the most popular topics among the PubMed publications with 

the “data mining” keyword. The algorithm implements a greedy approach and is 

suitable for small data sets with a limited number of one-to-many relational 

joins. The distance matrix calculation algorithm was implemented in 

R language. 

3.3.2. Problem Understanding 

The overall research goal was formulated as follows: to investigate the most 

prevalent clinical topics, disease groups, and DM techniques applied and 

described in the PubMed research papers.  

3.3.3. Data Understanding 

In our experiment, the PubMed database was used, as the biggest medical 

database, having an explicit publications hierarchical semantic tagging system, 

called MeSH (National Center for Biotechnology Information, 2009). The 

Medical Subject Headings (MeSH) is a controlled vocabulary, which is used for 

indexing, cataloging, and searching for biomedical and health-related 

information and documents. 

A simplified hierarchical MeSH terminology structure is presented in Fig. 

39. The relational data representation includes one-to-many relational joins 

between the entities Keyword and MeSH Concept, Keyword and MeSH 

Descriptor, and between MeSH Semantic Type and MeSH Concept.  

 

Fig. 39. Simplified MeSH entities entity-relationship diagram 
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Mesh definitions of the entities are as follows. Descriptors, also known 

as Main Headings, are used to index citations in the PubMed database for the 

cataloging of publications. Most Descriptors indicate the subject of an indexed 

item, such as a journal article. MeSH Descriptors are organized in 16 categories, 

each of them is further divided into subcategories. Within each subcategory, 

Descriptors are arrayed hierarchically in twelve levels, from the most general to 

the most specific. 

A Descriptor is broader than a Concept and consists of a class of concepts. 

Concepts, in turn, correspond to a class of Terms, which are synonymous with 

each other. 

Thus, MeSH has a three-level entity structure: Descriptor → Concept → 

Term. Every Term is assigned to one or more Semantic Types, which gives a 

broader meaning to a Term. 

The described MeSH vocabulary structure allowed us to extract 

additional information for the keywords assigned to the articles. The 

Hierarchical structure of the Descriptors, represented in the MeSH tree, allows 

grouping by disease groups, anatomy concepts, chemical and drug groups, 

phenomena and processes group, and computer science categories. 

3.3.4. Data Preparation 

The complete search result dataset with available attributes has been exported 

from PubMed to XML format, and then transferred to a relational database. 

MeSH controlled vocabulary data are freely available and are provided by the 

National Library of Medicine. Finally, the imported XML data has been 

transformed to relational format, as shown in ERD diagram in Fig. 40. 

Having MeSH vocabulary and the exported publications dataset in one 

database schema, allowed us to leverage underlying semantic concept 

aggregation in MeSH and to group articles on a higher abstraction layer using 

the compound similarity measure introduced in Section 2.7.2. 
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3.3.5. Modelling 

3.3.5.1. Applying multi-relational clustering for publications meta-

analysis 

As seen in the Entity Relational Diagram (ERD) in Fig. 40, the relations 

Concept, Descriptor, and Semantic Type, which represent respective MeSH 

entities, are indirectly joined with the central entity Article. These relations were 

chosen based on their semantic value and relevance to our analysis. 

 

Fig. 40. Entity-relationship diagram of the relational dataset 

Let us consider the example of the two articles A and B, with two sets of 

keywords (MeSH Concepts as in Fig. 40) SA and SB. Suppose SA ∩ SB ∈ Ø, 

however there exists a keyword ‘Benpen’ ∈ SA, and ‘Benzylpenicillin’∈ SB. 

Relying on single-table paradigm a normalized distance between objects A and 

B should be: 𝐷𝐴,𝐵 = 1. But in a relational environment, we consider that 

both ’Benpen’ and ’Benzylpenicillin’ has a “belong to” join relationship with the 

higher semantic hierarchy category Descriptor ’Penicilin G’. This leads us to a 

justified conclusion, that a certain similarity between SA and SB exists and hence, 

the distance should be: 0 < 𝐷𝐴,𝐵 < 1. 

Following the first-order logics notation, instances of Articles are 
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represented by the predicate 𝐴, and the ground atoms 𝐶 for MeSH Concept, 𝐷 

for MeSH Descriptor, and 𝑆 for MeSH Semantic type. 

For example a dataset’s instance 𝐼1 and 𝐼2, representing articles with 

keywords ”Alkalescens-Dispar Group” and ”Diffusely Adherent Escherichia 

coli” accordingly, can be written: 

𝐼1 = 𝐴(𝑎𝑟𝑡1), 𝐼2 = 𝐴(𝑎𝑟𝑡2) 

where background knowledge is defined by: 

𝐶(𝑎𝑟𝑡1, 𝐴𝑙𝑘𝑎𝑙𝑒𝑠𝑐𝑒𝑛𝑠𝐷𝑖𝑠𝑝𝑎𝑟 𝐺𝑟𝑜𝑢𝑝), 

𝐷(𝑎𝑟𝑡1, 𝐸𝑠𝑐ℎ𝑒𝑟𝑖𝑐ℎ𝑖𝑎 𝑐𝑜𝑙𝑖), 

𝑆(𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚, 𝐸𝑠𝑐ℎ𝑒𝑟𝑖𝑐ℎ𝑖𝑎 𝑐𝑜𝑙𝑖) 

and 

𝐶(𝑎𝑟𝑡2, 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑙𝑦 𝐴𝑑ℎ𝑒𝑟𝑒𝑛𝑡 𝐸𝑠𝑐ℎ𝑒𝑟𝑖𝑐ℎ𝑖𝑎 𝑐𝑜𝑙𝑖), 

𝐷(𝑎𝑟𝑡2, 𝐸𝑠𝑐ℎ𝑒𝑟𝑖𝑐ℎ𝑖𝑎 𝑐𝑜𝑙𝑖), 

𝑆(𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑢𝑚, 𝐸𝑠𝑐ℎ𝑒𝑟𝑖𝑐ℎ𝑖𝑎 𝑐𝑜𝑙𝑖). 

 

The definition of predicate 𝐴 is extended by the background predicates: 

𝐶, 𝐷 and 𝑆, with the arguments: 𝐴(𝑎1: 𝑛𝑎𝑚𝑒), 𝐶(𝑎1: 𝑛𝑎𝑚𝑒, 𝑎2: 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒), 

𝐷(𝑎1: 𝑛𝑎𝑚𝑒, 𝑎2: 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒), 𝑆(𝑎1: 𝑛𝑎𝑚𝑒, 𝑎2: 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒). The structure of 

ground atoms repeats a subset of the relational data model (Fig. 40). The entities 

Keyword and Article could be joined due to their initial one-to-one relationship. 

In the example, the background knowledge derived from MeSH 

vocabulary suggests the similarity of the two articles 𝐼1 and 𝐼2 is greater than 

zero, since both articles address the bacteria, belonging to the same 

class ”Escherichia coli”. In order to define and calculate the similarity we used 

a similarity measure, introduced in Section 0. 

Applying formulas (5–8) to the predicates 𝐶, 𝐷 and 𝑆, the similarity 

measure for comparing two instances of article 𝐴, considering the defined 

background knowledge is derived: 

𝑠𝑖𝑚𝐴1,𝐴2 =
𝑤𝑐𝑠𝑖𝑚𝐶+𝑤𝑑𝑠𝑖𝑚𝐷+𝑤𝑠𝑠𝑖𝑚𝑆

wc+wd+ws
,      (9) 
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where  

𝑠𝑖𝑚𝐶 =
∑ ∑ 𝑠𝑖𝑗(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑖(𝐴1),𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑗(𝐴2)𝑚

𝑗=1
𝑛
𝑖=1 )

√𝑚×𝑛
 , 

𝑠𝑖𝑚𝐷 =
∑ ∑ 𝑠𝑖𝑗(𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑖(𝐴1),𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑗(𝐴2)𝑚

𝑗=1
𝑛
𝑖=1 )

√𝑚×𝑛
 , 

𝑠𝑖𝑚𝑆 =
∑ ∑ 𝑠𝑖𝑗(𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑡𝑦𝑝𝑒𝑖(𝐴1),𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑡𝑦𝑝𝑒𝑗(𝐴2)𝑚

𝑗=1
𝑛
𝑖=1 )

√𝑚×𝑛
 . 

In essence, simC, simD, and simS calculate the similarity of the value lists 

(accordingly Concepts, Descriptors, and Semantic Types) which are relationally 

joined to the central entity Article. Another known approach for this task is 

described by Horwath, Wrobel et al., where the authors proposed to calculate 

influence function, the cost of which equals the effort of the lists’ equalization. 

The implementation of this approach is described in Section 3.3.5.3. 

As seen in the (9) formula, the similarity value is sensible to the assigned 

weight values. Hence, a fine-tuning of weight parameters 𝑤𝑐, 𝑤𝑑, and 𝑤𝑠 has 

been performed. T. Horwath and S. Wrobel propose a simplified approach, by 

not using weights at all. This simplification in our case is unadjusted because of 

the uneven nature of the data. In our experiment, two approaches were used: the 

statistical one, where weights are proportional to the number of tuples of the 

relevant entities; and expert based, where weights have been experimentally 

adjusted and normalized by the expert.  

In the first case, weights have been calculated as follows: 
 

𝑤𝑐 =
𝑛𝑐

𝑛𝑐+𝑛𝑑+𝑛𝑠
, 𝑤𝑑 =

𝑛𝑑

𝑛𝑐+𝑛𝑑+𝑛𝑠
, 𝑤𝑠 =

𝑛𝑠

𝑛𝑐+𝑛𝑑+𝑛𝑠
     (10) 

 

The described weight distribution is reasonable in the cases where we 

want to level the importance of each list value variable according to the relative 

number of tuples in each entity.  

In other examples, having a more diverse set of variables, this statistical 

approach might be appended or changed by the domain expert’s knowledge and 

empirical experiments. If that is the case, for the calculation efficiency, it is 
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important to store all sijkvalues, for further experiments with different wk values. 

In the opposite case, if only the resulting 𝑠𝑖𝑗 are preserved, in order to change 

the weights, the whole distance matrix shall be recalculated from scratch. 

According to our experiment results, the described similarity measure 

derives stable values, meaning that small changes to a term do not cause big 

changes in distance values. The experiments with real data have shown that in 

some cases it is even too stable and lacks some responsiveness to the data 

changes. However, this is solvable by fine-tuning weight parameters 

𝑤𝑐, 𝑤𝑑, and 𝑤𝑠. 

Finally, the distance (dissimilarity) value was calculated as follows: 

distA1,A2 = 1 − simA1,A2       (11) 

The algorithm, calculating the full distance matrix for the set of articles, 

has been implemented in R. The output of the algorithm provides values of simC, 

simD, and simS for each pair of articles. The distances (dissimilarities) values 

have been derived by applying formulas (9) and (11) with the calculated weight 

values (10). Then alternatively, the weight values 𝑤𝑐 , 𝑤𝑑 , 𝑤𝑠 were manually 

assigned based on the intuitive semantic value of the MeSH Concept, Descriptor 

and Semantic type; giving the highest value to 𝑤𝑑, then lower value to 𝑤𝑐, and 

the lowest to 𝑤𝑠 . 

The calculated versions of distance matrixes were applied with PAM 

algorithm to group articles into clusters.  

R libraries “cluster” and “fpc” were used to try different implementations 

of PAM algorithm. Clustering algorithms have been iteratively applied and 

compared for the numbers of clusters from two to fifty with a step of five. The 

clustering results are described in  Section 3.3.7. 

3.3.5.2. Alternative approach – propositionalization of dataset 

According to the theory of multi-relational data mining (Dzeroski, 2010; 

Knobbe, et al., 2001; Kramer, et al., 2001), the propositionalization of data 

structure to a single-table format allows applying standard DM algorithms, 
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instead of upgrading to a multi-relational version. 

Data preparation 

The structure of a given data model (Fig. 40) consists of 1 one-to-one and 3 one-

to-many relationships. Therefore entities Article and Keyword can be joined 

without information loss. As for the entities Descriptor, Concept and Semantic 

type, a propositionalization approach shall be selected. 

All semantically valuable attributes of these entities are of nominal type, 

therefore mathematical aggregation functions cannot be used. Instead, top five 

Keywords and their first related Concepts were used. In addition, three most 

frequent Descriptors and two more frequent Semantic types been preserved in 

the entity Article. The resulting entity is shown in Fig. 41. 

 
Fig. 41. Propositionalized entity “Article” 

Modelling 

The same implementation of the PAM algorithm of R libraries “cluster” and 

“fpc” were used. The number of clusters was increased iteratively from two to 

fifty. After each iteration, the quality of clusters was evaluated with a silhouette 

value. There were no high-quality clusters identified. The clusters’ silhouette 

values varied between 0 and 0.16. 

Article

PK doi

 Title
 Year
 Journal
 Affiliation
 SemanticType1
 SemanticType2
 Descriptor1
 Descriptor2
 Descriptor3
 Concept1
 Concept2
 Concept3
 Concept4
 Concept5
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3.3.5.3. Alternative approach – clustering with Edit distance 

Another possibility to handle data in relational format is to represent it as a 

labelled tree. As proposed in Chapter 2.7.2.1, tree edit distance (TED) can be 

used as a distance measure to group the trees into clusters. 

TED algorithm implementation of M. Pawlik and N. Augsten (Pawlik & 

Augsten, 2011) was used to calculate the dissimilarities between each pair of 

articles. The CRIPM-MED-DM steps were completed as follows. 

Data preparation 

In order to process data with a TED algorithm, the data in the relational structure 

shall be converted to labelled trees. The conversion tool was implemented using 

a T-SQL procedure for MS SQL server. Following the example from 

Chapter 3.3.4, representations of art1 and art2 are shown in Fig. 42 and Table 22. 

 

 
Fig. 42. Trees of art1 and art2 MESH terms 

 

Table 22. Art1 and Art2 data representation for RDET algorithm 

Art1{Escherichia coli{AlkalescensDispar 

Group{Bacterium}{Escherichia coli}}} 

Art2 {Escherichia coli{Diffusely Adherent Escherichia 

coli{Bacterium}{Escherichia coli}}} 

 

An example of the tree representation of one the extracted article’s MESH 

concepts, descriptors and semantic types is shown below:  

 
Article23{{C15072{T028}}{C15313{T170}}{C18531{T032}}{C19072{T0
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86}}{C19525{T091}}{C3060{T066}}{C5581{T091}}{C5593{T032}}{C650

4{T016}{T098}}{C6748{T083}}{C6946{T058}{T078}}{C8126{T057}{T07

3}{T170}}} 

 

For computational efficiency, all literals are substituted with ID codes, 

which uniquely specify the concepts, descriptors and semantic types. 

Modelling 

The same implementation of the PAM algorithm of R libraries “cluster” and 

“fpc” were used. We iteratively were increasing the number of clusters from two 

to fifty. After each iteration, the quality of clusters was evaluated with a 

silhouette value. Summarizing the results of the iterations, as when applying the 

proposed multi-relational similarity measure, there were no high-quality clusters 

identified.  

3.3.6. Software Implementation 

To conduct the experimental trial of the described multi-relational clustering, a 

software module was developed. Initial pre-processing of publication metadata 

exported from PubMed was implemented in a MS SQL relational database 

management system. First, XML data was transferred to a relational format 

using the data transformation services of MS SQL. Afterwards, relational data 

was cleaned, aggregated and normalized to achieve the entity-relationship 

structure shown in Fig. 40. Structured data processing was developed in T-SQL. 

The derived structured multi-relational data was used to calculate distances 

matrixes. The proposed multi-relational similarity measure calculation was 

implemented as a set of functions in R language. Distance matrix calculation 

was run with a parallel package enabling multi-core support to run calculations 

in parallel. Then, an fpc package was used to apply PAM clustering algorithms. 

Finally, with a methComp package the silhouette values of the clusters were 

calculated to evaluate clustering results. The components of the developed 

software are shown in the component diagram (Fig. 43). 
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Fig. 43. PubMed publications multi-relational clustering component diagram 

In total, 2.284.453 similarity values were calculated with each of the 

methods. Due to the large search space of multi-relational data, the algorithms 

require vast computational power.   

In the case of the proposed multi-relational distance algorithm, multiple 

iterations of distances between each object and its selected related compound 

entities resulted in the algorithm complexity of 𝑂(𝑛2𝐿𝑐
2𝐿𝑑

2 𝐿𝑠
2), where Lc – the 

length of list of Concepts, Ld – the length of list of Descriptors, Ls – the length 

of list of Semantic types. After code optimization, the overall achieved 

performance of an average size dataset for 100 similarity values was in the range 

of 40-60 seconds on one core of Intel i7 CPU. The parallelization had a huge 

effect, since each similarity measure is independent and thus can be calculated 

in parallel. However, data exchange between nodes required by the 

parallelization had a negative impact and reduced the positive effect of the 

parallelization. 

Tree edit distance implementation RTED showed better performance. 

According to Pawlik, RTED runs in O(n3) time. In practical terms, the RTED 

algorithm performed ~10 times faster on the same hardware, and thus did not 

require parallelization.  
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3.3.7. Evaluation and Results 

For the evaluation of the overall clustering quality, a cluster’s silhouette value 

was used. The silhouette value depicts the quality of each object’s cluster. A 

cluster’s silhouette value is derived in the following way. Let 𝑎(𝑖) be the average 

distance between object 𝑖 and all other objects of the cluster 𝐴, to which it 

belongs. For another cluster 𝐶1, let 𝑑(𝑖, 𝐶1) equal to average distance of 𝑖 to all 

objects of cluster 𝐶1. Then, calculate 𝑑(𝑖, 𝐶) for all the remaining clusters 𝐶2..𝑛 

and assign the smallest of these 𝑑(𝑖, 𝐶) to 𝑑_𝑚𝑖𝑛(𝑖). The silhouette value of an 

object i is defined as follows: 
 

𝑠𝑖𝑙ℎ𝑖 =
𝑑_𝑚𝑖𝑛(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑑_min (𝑖)}
      (12) 

 

The cluster’s silhouette value is an average silhouette value of all its 

members. Values near 1 mean that the object i is assigned to a correct cluster. In 

contrast, values close to -1 mean that it is likely that an object is assigned to a 

wrong cluster. The silhouette value around 0 means that the object i can be 

equally assigned to the selected or the nearest cluster. 

In our case, trying a number of clusters from two to fifty, the maximum 

achieved silhouette values were in the range: 0.21–0.30 for the proposed multi-

relational similarity measure, 0–0.16 for propositional clustering, and 0.15–0.23 

for TED distance. Objectively, the achieved results indicate the overall clustering 

results are low, and shows that the found clusters poorly describe the data set as 

a whole. However, considering the non-trivial task of scientific publications’ 

semantic grouping, the whole exercise was not fruitless, and gave us some 

interesting insights. 

The application of clustering with the described similarity measure on 

relational data of PubMed and MeSH showed that the research topics are evenly 

distributed, and the research within the DM application in the area of healthcare 

is very diverse. However, the clustering outcomes have revealed a couple of 

clusters with a higher research interest. Among them: DM applications within 

protein structure analysis, specific patient profile search, text mining of medical 

text, public health legislation documents mining, commerce practices (fraud 
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detection), chronic disease diagnostics, survival prediction, information 

retrieval, and image data analysis. 

Our findings are comparable to the manual systematic literature analysis 

performed by N. Esfandiari et al. (Esfandiari, et al., 2014). Although the authors 

of the former limited the scope of their research to the publications related to 

knowledge extraction from structural medical data. According to Esfandiari, 

medical diagnosis is the prevalent medical DM task, then screening, prognosis, 

treatment, monitoring and management are equally distributed. 

3.3.8. Discussion and Compliance to CRISP-MED-DM 

A compound similarity measure calculation algorithm for multi-relational data 

has been created, implemented and tested with a real world data clustering task. 

The proposed similarity measure aggregates the Gower similarity coefficient and 

Ochiai-Barkman coefficient and is applicable for relational data models with 

nominal attributes and lists. 

The activities of the CRISP-MED-DM Modelling phase were applied with 

different clustering methods iteratively changing the number of targeted clusters. 

In addition, the calculation of the distance matrix, according to the proposed 

method, was updated adjusting weight values of the calculation parameters. The 

Modelling phase iterations resulted in higher cluster quality, which was 

increased from 0.16 silhouette value — the best result of propositional 

clustering — to 0.31 silhouette value — the best result of the proposed multi-

relational clustering approach. 

Though the greedy PAM algorithm used was suitable for our case study 

due to a relatively small dataset, in other cases large data clustering algorithms 

CLARA or CLARANS (Ng & Han, 2002) shall be used instead of PAM. 

Remarkably, multi-relational clustering with the proposed similarity 

measure is not specific for the medical domain and therefore can be applied in 

other domains with mixed data type datasets structured in a multi-relational 

format. 
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3.3.8.1. Compliance to CRISP-MED-DM 

To evaluate compliance of the undertaken application of DM activities for 

PubMed database publications meta-analysis, we applied the first evaluation 

strategy, proposed in Section 2.4.6.2.  

In contrast with predictive DM, descriptive DM has an exploratory nature 

and in many cases does not require the formulation of measurable success 

criteria or a deployment plan. The problem understanding phase scores only 3.3 

from a maximum 10 points. Due to the exploratory nature of the research, overall 

success criteria, vision statement and the activities related with formal project 

management have not been performed. As shown in Fig. 44, the core phases 

Data understanding, Data Preparation, Modelling and Evaluation show good 

performance. 

 

Fig. 44. CRIP-MED-DM compliance radar for BRCA1 prediction 

The deployment phase activities are not relevant for a descriptive DM 

project. 

3.4. Generalization and Conclusion 

In this chapter, we showed the experimental use of the methods described in 

Chapter 2 “Systematic application of data mining and data analysis methods in 

medical domain”. 
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Predictive DM case studies in the Oncology and Cardiology domain, 

presented in Section 3.1 and 3.2, followed CRISP-MED-DM methodology, 

which improved the performance of the predictive models.  

Experimental application of echocardiography image data analysis 

methods, showed high accuracy results, closely matching the manual 

measurements of professional cardiologists. 

A novel multi-relational clustering approach was tested for medical 

publications meta-analysis. In comparison to traditional clustering methods on a 

single-table dataset, multi-relational clustering resulted in more informative 

clusters, suggesting a better understanding of the most popular research topics. 
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Conclusions 

A constantly increasing amount of medical data is produced and captured 

electronically in everyday clinical practice. Automated knowledge discovery 

techniques, which employ data mining and machine learning techniques are 

capable of providing decision support for clinicians and discover new relevant 

patterns in silos of electronic patient data. However, the collected heterogeneous 

medical data lacks structural, functional and semantic interoperability. In 

addition, issues of patient data privacy and data ownership prevent effective 

usage of data mining methods.  

Thus, the specialized data mining methodology CRISP-MED-DM, which 

addresses these issues, was proposed and experimentally tested in the oncology, 

cardiology and healthcare management domains. 

The topics investigated and experimentally proved in the thesis allow us 

to conclude that: 

1. The created data mining application methodology CRISP-MED-DM 

extends the Cross Industry Standard Process for Data Mining 

(CRISP-DM) methodology with the following distinguished features: 

 The CRISP-MED-DM methodology, in comparison with other data 

mining applications methodologies, for the first time outlines the 

detailed process model specific to the issues and constraints of the 

medical domain. To achieve that, the initial CRISP-DM process 

model’s five phases were extended with thirty three activities, 

addressing the issues of medical data pre-processing, semantic 

interoperability, and patient data privacy protection. 

 The created compliance evaluation model allows for performing the 

formal assessment of the data mining application projects’ 

compliance to CRISP-MED-DM. The model provides metrics and 

evaluation formulas to assess the overall quality of application 

projects and allows for their comparison. 
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 The CRISP-MED-DM has been successfully tested in predictive 

modelling research projects in the oncology and cardiology domains. 

2. The accuracy of the created breast cancer susceptibility gene BRCA1 

mutation predictive model has been increased by applying the 

CRISP-MED-DM methodology:  

 The improvement of the BRCA1 gene mutation predictive model is 

as follows: overall accuracy from 0.88 to 0.94, sensitivity from 0.67 

to 0.83, specificity from 0.85 to 0.97, ROC AUC from 0.70 to 0.81. 

 The improvement of breast cancer reoccurrence predictive model is 

as follows: overall accuracy from 0.73 to 0.75, sensitivity from 0.59 

to 0.96, specificity has not changed, ROC AUC from 0.63 to 0.65. 

3. The developed blood flow echocardiography image analysis technique 

saves the cardiologist time spent for systolic cycle tracing by extracting a 

systole cycle curve from standard Doppler ultrasound images and 

extracting features for further application of predictive data mining 

methods: 

 The developed software implementation of the proposed 

echocardiography images analysis technique, compared to the 

manual measurement of the professional cardiologists resulted in 

high accuracy for the main aortic valve stenosis diagnostic 

parameters: maximum aortic valve systolic velocity 𝐴𝑉 𝑉𝑚𝑎𝑥 Pearson 

coefficient 𝑟(16) = 0.999 (p-value<0.0001); aortic valve time 

integral 𝐴𝑉 𝑉𝑇𝐼 –  𝑟(16) = 0.988 (p-value<0.0001); mean peak 

gradient ∆𝑃𝑚𝑎𝑥 – 𝑟(16) = 0.994 (p-value<0.0001); aortic valve area 

𝐴𝑉𝐴 – 𝑟(16) = 0.894 (p-value<0.0001). 

 Applying CRISP-MD-DM with the proposed echocardiography 

image pre-processing techniques showed that the resulting accuracy 

is sufficient for practical decision support usage for aortic stenosis 

grading and diagnosis. The resulting predictive model had 100 % 

sensitivity and specificity on the research dataset. 
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4. Partitioning the clustering method with the proposed novel similarity 

measure allows clustering multi-relational data without its de-

normalization and generalization to one-table format: 

 Application of the created similarity measure for PubMed database 

articles meta-analysis allowed for grouping multi-relational data into 

clusters with silhouette values 0.21–0.31, which showed better results 

in comparison with Tree Edit Distance measure results 0.15–0.23, 

and propositional approach results 0–0.16. 

 The calculation of the distance of each multi-relational object pair is 

independent and therefore can be successfully parallelized. The 

developed software implementation of multi-relational clustering 

supporting parallel calculation allows decreasing similarity measure 

calculation time in proportion to available processor nodes. 

 

  



Conclusions  

 

148 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank. 

 

 

 



 

149 

References 

Abramoff, M. D., Magalhaes, P. J. & Ram, S. J., 2004. Image processing with ImageJ. 

Biophotonics international, 11(7), pp. 36–43. 

Accenture, 2010. Overview of International EMR/EHR Markets, s.l.: s.n. 

Aggarwal, C. C., 2007. Data streams: models and algorithms. s.l.:Springer Science & 

Business Media. 

Altman, D. G., Vergouwe, Y. & Royston, P., 2009. Prognosis and prognostic research: 

valdiating a prognostic model. BMJ, 338(b605). 

Azevedo, A. & Lourenco, I. R., 2008. KDD, SEMMA and CRISP-DM: a parallel 

overview.  

Babbage, C., 1832. On the economy of machinery and manufactures. s.l.:s.n. 

Baylis, P., 1999. Better health care with data mining. SPSS White Paper, UK, pp. 1–8. 

Beale, T., Heard, S., Kalra, D. & Lloyd, D., 2006. OpenEHR architecture overview. 

The OpenEHR Foundation. 

Bellaachia, A. & Guven, E., 2006. Predicting breast cancer survivability using data 

mining techniques. Age, 58(13), pp. 10–110. 

Bellazzi, R. & Zupan, B., 2008. Predictive data mining in clinical medicine: current 

issues and guidelines. Int J Med Inform, Feb, 77(2), pp. 81–97. 

Bezdek, J. C., Ehrlich, R. & Full, W., 1984. FCM: The fuzzy c-means clustering 

algorithm. Computers \& Geosciences, 10(2), pp. 191–203. 

Bodenreider, O., 2008. Biomedical ontologies in action: role in knowledge 

management, data integration and decision support. Yearbook of medical informatics, p. 67. 

Bodenreider, O., 2012. Medical Ontology Research. [Online]. Available at: 

https://mor.nlm.nih.gov/pubs/pres/20120222-IBM_Watson.pdf. [Accessed 01 04 2015]. 

Cabena, P., Hadjinian, P., Stadler, R. & Verhees, J. &. Z. A., 1998. Discovering Data 

Mining: From Concept to Implementation. s.l.:Prentice-Hall, Inc.. 

Canlas Jr, R. D., 2009. Data Mining in Healthcare: Current Applications and Issues. 

[MS in Information Technology thesis]. 

Castro, D., 2009. Explaining international IT application leadership: Health IT. 

Available at SSRN 1477486. 

Catley, C., Smith, K., McGregor, C. & Tracy, M., 2009. Extending CRISP-DM to 

incorporate temporal data mining of multidimensional medical data streams: A neonatal 

intensive care unit case study. s.l., s.n., pp. 1–5. 

Centre for Health Promotion of University of Toronto, 1999. Conducting Survey 

Research, s.l.: s.n. 

Chapman, P. et al., 2000. CRISP-DM 1.0 Step-by-step data mining guide.  

Chen, H., Fuller, S. S., Friedman, C. & Hersh, W., 2006. Medical informatics: 

knowledge management and data mining in biomedicine. s.l.:Springer. 

Choi, J. P., Han, T. H. & Park, R. W., 2009. A hybrid Bayesian network model for 

predicting breast cancer prognosis. Journal of Korean Society of Medical Informatics, 15(1), 

pp. 49–57. 

Cios, K. J. & Moore, W. G., 2002. Uniqueness of medical data mining. Artificial 

intelligence in medicine, 26(1), pp. 1–24. 



References 

 

150 

Cleveland, W. S. & Loader, C., 1996. Smoothing by local regression: Principles and 

methods. In: Statistical theory and computational aspects of smoothing. s.l.:Springer, 

pp. 10–49. 

Clifton, C., 2010. Definition of Data Mining, s.l.: s.n. 

Corne, D., Dhaenens, C. & Jourdan, L., 2012. Synergies between operations research 

and data mining: The emerging use of multi-objective approaches. European Journal of 

Operational Research, 221(3), pp. 469–479. 

Curk, T. et al., 2005. Microarray data mining with visual programming. Bioinformatics, 

21(3), pp. 396–398. 

Dehaspe, L., Toivonen, H. & King, R. D., 1998. Finding Frequent Substructures in 

Chemical Compounds.. s.l., s.n., p. 1998. 

Delen, D., Walker, G. & Kadam, A., 2005. Predicting breast cancer survivability: a 

comparison of three data mining methods. Artif Intell Med, Jun, 34(2), pp. 113–127. 

Demaine, E., Mozes, S., Rossman, B. & Weimann, O., 2007. An optimal 

decomposition algorithm for tree edit distance.. Automata, languages and programming. 

Springer Berlin Heidelberg, pp. 146–157. 

Dempster, A. P., Laird, N. M. & Rubin, D. B., 1977. Maximum likelihood from 

incomplete data via the EM algorithm. Journal of the royal statistical society. Series B 

(methodological), pp. 1–38. 

DMG, 2014. PMML Standard v.4.2.1. [Online] Available at: 

http://www.dmg.org/pmml-v4-2-1.html. [Accessed 20 05 2015]. 

Dorre, J., Gerstl, P. & Seiffert, R., 1999. Text mining: finding nuggets in mountains of 

textual data. s.l., s.n., pp. 398–401. 

Dzeroski, S., 2010. Relational data mining. s.l.:Springer. 

eHealthServer.com, 2012. Survey on Application of Data Mining to Support Clinical 

Decisions. [Online] Available at: http://www.ehealthserver.com/research-and-

development/935-survey-on-application-of-data-mining-to-support-clinical-decisions. 

[Accessed 11 02 2014]. 

Esfandiari, N., Babavalian, M. R., Moghadam, A.-M. E. & Tabar, V. K., 2014. 

Knowledge discovery in medicine: Current issue and future trend. Expert Systems with 

Applications, 41(9), pp. 4434–4463. 

Ester, M., Kriegel, H.-P., Sander, J. & Xu, X., 1996. A density-based algorithm for 

discovering clusters in large spatial databases with noise.. s.l., s.n., pp. 226–231. 

Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P., 1996. From data mining to knowledge 

discovery in databases. AI magazine, 17(3), p. 37. 

Fraley, C. & Raftery, A. E., 2002. Model-based clustering, discriminant analysis, and 

density estimation. Journal of the American statistical Association, 97(458), pp. 611–631. 

Gaber, M. M., Zaslavsky, A. & Krishnaswamy, S., 2005. Mining data streams: a review. 

ACM Sigmod Record, 34(2), pp. 18–26. 

Google Inc., 2014. Google Scholar. [Online] Available at: http://scholar.google.com/. 

[Accessed 01 05 2015]. 

Gower, J. C., 1971. A general coefficient of similarity and some of its properties. 

Biometrics, pp. 857–871. 

Graunt, J., 1939. Natural and Political Observations made upon the Bills of Mortality 

(1662). London: The Johns Hopkins Pres. 

Hall, M. et al., 2009. The WEKA data mining software: an update. ACM SIGKDD 

explorations newsletter, 11(1), pp. 10–18. 



References 

 

151 

Hatle, L., Angelsen, B. & Tromsdal, A., 1980. Non-invasive assessment of aortic 

stenosis by Doppler ultrasound.. British heart journal, 43(3), pp. 284–292. 

Heard, S., 2008. OpenEHR archetypes and terminology. [Online] Available at: 

https://openehr.atlassian.net/wiki/display/healthmod/Archetypes+and+Terminology. 

[Accessed 04 06 2015]. 

Horvath, T., Wrobel, S. & Bohnebeck, U., 2001. Relational instance-based learning 

with lists and terms. Machine Learning, 43(1–2), pp. 53–80. 

Hotho, A., Nurnberger, A. & Paas, G., 2005. A Brief Survey of Text Mining.. s.l., s.n., 

pp. 19–62. 

Houston, A. L. et al., 1999. Medical data mining on the internet: Research on a cancer 

information system. Artificial Intelligence Review, 13(5–6), pp. 437–466. 

Jaccard, P., 1901. Etude comparative de la distribution florale dans une portion des 

Alpes et du Jura. s.l.:Impr. Corbaz. 

Kalra, D., Beale, T. & Heard, S., 2005. The openEHR foundation. Studies in health 

technology and informatics, Volume 115, pp. 153–173. 

Kaufman, L. & Rousseeuw, P., 1987. Clustering by means of medoids.  

Kirsten, M., Wrobel, S. & Horvath, T., 2001. Distance based approaches to relational 

learning and clustering. In: Relational data mining. s.l.:Springer, pp. 213–232. 

Knobbe, A. J., De Haas, M. & Siebes, A., 2001. Propositionalisation and aggregates. 

In: Principles of Data Mining and Knowledge Discovery. s.l.:Springer, pp. 277–288. 

Koh, H. & Tan, G., 2005. Data mining applications in healthcare. J Healthc Inf Manag, 

19(2), pp. 64–73. 

Kramer, S., Lavrac, N. & Flach, P., 2001. Propositionalization approaches to relational 

data mining. s.l.:Springer. 

Kurgan, L. A. et al., 2001. Knowledge discovery approach to automated cardiac 

SPECT diagnosis. Artificial intelligence in medicine, 23(2), pp. 149–169. 

Landau, L. & Lifshitz, E., 1987. Fluid mechanics. s.l.:Butterworth-Heinemann. 

Landin, G., 2006. BinaryFill library. s.l.:s.n. 

Lehmann, T. M. et al., 2005. Automatic categorization of medical images for content-

based retrieval and data mining. Computerized Medical Imaging and Graphics, 29(2), 

pp. 143–155. 

Lenz, C. et al., 2008. Blood viscosity modulates tissue perfusion: sometimes and 

somewhere. Transfus Altern Transfus Med, 4(9), p. 265–72. 

Liu, X., Fan, Y., Deng, X. & Zhan, F., 2011. Effect of non-Newtonian and pulsatile 

blood flow on mass transport in the human aorta.. Journal of Biomechanics, 6(44), 

p. 1123–1131. 

Martin Bland, J. & Altman, D., 1986. Statistical methods for assessing agreement 

between two methods of clinical measurement. The lancet, 327(8476), pp. 307–310. 

Matignon, R., 2007. Data Mining Using SAS Enterprise Miner: A Case Study 

Approach, s.l.: s.n. 

Meisel, S. & Mattfeld, D., 2010. Synergies of operations research and data mining. 

European Journal of Operational Research, 206(1), pp. 1–10. 

Microsoft, Hyperion, SAS, 2001. MSDN - XMLA. [Online]. Available at: 

https://msdn.microsoft.com/en-us/library/ms977626.aspx. [Accessed 21 05 2015]. 

Muggleton, S., 1991. Inductive logic programming. New generation computing, 8(4), 

pp. 295–318. 

National Cancer Institute, USA, 2009. BRCA1 and BRCA2: Cancer Risk and Genetic 



References 

 

152 

Testing. [Online]. Available at: http://www.cancer.gov/cancertopics/factsheet/Risk/BRCA. 

[Accessed 02 04 2015]. 

National Center for Biotechnology Information, 2009. PubMed - database of 

references and abstracts on life sciences and biomedical topics.. [Online]. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed. [Accessed 01 04 2015]. 

National Library of Medicine, MeSH, 2015. [Online]. Available at: 

http://www.nlm.nih.gov/mesh/meshhome.html. [Accessed 01 04 2015]. 

Neville, J., Adler, M. & Jensen, D., 2003. Clustering relational data using attribute 

and link information. s.l., s.n., pp. 9–15. 

Ng, R. T. & Han, J., 2002. CLARANS: A method for clustering objects for spatial data 

mining. Knowledge and Data Engineering, IEEE Transactions on, 14(5), pp. 1003–1016. 

Niakšu, O. & Kurasova, O., 2012. Data Mining Applications in Healthcare Theory vs 

Practice.. DB&IS Local Proceedings, pp. 58–70. 

Niakšu, O. & Žaptorius, J., 2014. Applying operational research and data mining to 

performance based medical personnel motivation system.. Stud Health Technol Inform, Volume 

198, pp. 63–70. 

Nightingale, F., 1863. Notes on hospitals. London: Longman, Green, Longman, 

Roberts, and Green. 

Nitzlnader, M. & Schreier, G., 2014. Patient Identity Management for Secondary Use 

of Biomedical Research Data in a Distributed Computing Environment. EHealth2014--Health 

Informatics Meets EHealth: Outcomes Research: The Benefit of Health-IT, Volume 198, p. 211. 

Noordergraaf, A., 2011. Blood in motion. New York,: Springer. 

Ochiai, A., 1957. Zoogeographic studies on the soleoid fishes found in Japan and its 

neighbouring regions. Bull. Jpn. Soc. Sci. Fish, 22(9), pp. 526–530. 

Office of Technology Assesment. Congress of the United States., 1977. Policy 

Implications of Medical Information. Washington: U.S. Government Printing Office. 

Olafsson, S., Li, X. & Wu, S., 2008. Operations research and data mining. European 

Journal of Operational Research, 187(3), pp. 1429–1448. 

Olson, D. L. & Delen, D., 2008. Advanced data mining techniques. s.l.:Springer 

Science & Business Media. 

Oracle, 2011. JSR 247: Data Mining 2.0. [Online]. Available at: 

https://www.jcp.org/en/jsr/detail?id=247. [Accessed 21 05 2015]. 

Otto, C. M., 2012. The practice of clinical echocardiography. s.l.:Elsevier Health 

Sciences. 

Panchal, S. M., Ennis, M., Canon, S. & Bordeleau, L. J., 2008. Selecting a BRCA risk 

assessment model for use in a familial cancer clinic. BMC medical genetics, 9(1), p. 116. 

Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P., 2005. Global cancer statistics, 2002. CA 

Cancer J Clin, Mar-Apr, 55(2), pp. 74–108. 

Paulus, R. A., Davis, K. & Steele, G. D., 2008. Continuous innovation in health care: 

implications of the Geisinger experience. Health Affairs, 27(5), pp. 1235–1245. 

Pawlik, M. & Augsten, N., 2011. RTED: a robust algorithm for the tree edit distance. 

Proceedings of the VLDB Endowment, Volume 5.4, pp. 334–345. 

Piatetsky-Shapiro, G., 2014. CRISP-DM, still the top methodology for analytics, data 

mining, or data science projects. [Online]. Available at: 

http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-

science-projects.html. [Accessed 01 04 2015]. 

Pragarauskaitė, J. et al., 2013. Frequent pattern analysis for decision making in big 



References 

 

153 

data, s.l.: s.n. 

R Core Team, 2014. R: A Language and Environment for Statistical. [Online]. 

Available at: http://www.R-project.org. [Accessed 01 04 2015]. 

Ramon, J. et al., 2007. Mining data from intensive care patients. Advanced Engineering 

Informatics, 21(3), pp. 243–256. 

Ren, X., Lange, R. & Balentine, J., 2014. Aortic Stenosis. s.l.:s.n. 

Ridler, T. & Calvard, S., 1978. Picture thresholding using an iterative selection method. 

IEEE transactions on Systems, Man and Cybernetics, 8(8), pp. 630–632. 

Robson, M. E. et al., 2004. A combined analysis of outcome following breast cancer: 

differences in survival based on BRCA1/BRCA2 mutation status and administration of 

adjuvant treatment. Breast Cancer Res, 6(1), pp. R8--R17. 

Rudnick, A., 2004. An introductory course in philosophy of medicine. Medical 

humanities, 30(1), pp. 54–56. 

Sacha, J. P., Cios, K. J. & Goodenday, L. S., 2000. Issues in automating cardiac SPECT 

diagnosis. Engineering in Medicine and Biology Magazine, IEEE, 19(4), pp. 78–88. 

Sani, Z. A., Shalbaf, A., Behnam, H. & Shalbaf, R., 2014. Automatic Computation of 

Left Ventricular Volume Changes Over a Cardiac Cycle from Echocardiography Images by 

Nonlinear Dimensionality Reduction. Journal of digital imaging, pp. 1–8. 

Schloeffel, P. et al., 2006. The relationship between CEN 13606, HL7, and openEHR. 

HIC 2006 and HINZ 2006: Proceedings, p. 24. 

Schneider, C. A. et al., 2012. 671 nih image to imageJ: 25 years of image analysis. 

Nature methods, 9(7). 

Shalbaf, A., Behnam, H., Alizade-Sani, Z. & Shojaifard, M., 2013. Automatic 

classification of left ventricular regional wall motion abnormalities in echocardiography 

images using nonrigid image registration. Journal of digital imaging, 26(5), pp. 909–919. 

Silver, M. et al., 2001. Case study: how to apply data mining techniques in a healthcare 

data warehouse. Journal of healthcare information management, 15(2), pp. 155–164. 

Skjaerpe, T., Hegrenaes, L. & Hatle, L., 1985. Noninvasive estimation of valve area in 

patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography.. 

Circulation, 72(4), pp. 810–818. 

Smith, K. A. & Gupta, J. N., 2000. Neural networks in business: techniques and 

applications for the operations researcher. Computers \& Operations Research, 27(11), 

pp. 1023–1044. 

Soille, P., 2013. Morphological image analysis: principles and applications. 

s.l.:Springer Science & Business Media. 

Spečkauskienė, V. & Lukoševičius, A., 2009. A data mining methodology with 

preprocessing steps. Information Technology and Control, 38(4), pp. 319–324. 

Špečkauskienė, V. & Lukoševičius, A., 2009. Methodology of adaptation of data 

mining methods for medical decision support: Case study. Electronics and Electrical 

Engineering, 2(90), pp. 25–28. 

Stacey, M. & McGregor, C., 2007. Temporal abstraction in intelligent clinical data 

analysis: A survey. Artificial intelligence in medicine, 39(1), pp. 1–24. 

Stroetmann, K. A., Artmann, J., Stroetmann, V. N. & Whitehouse, D., 2011. European 

countries on their journey towards national eHealth infrastructures. Final European progress 

report, pp. 1–47. 

Tai, K.C., 1979. The tree-to-tree correction problem.. Journal of the ACM (JACM), 

Volume 26.3, pp. 422–433. 



References 

 

154 

Tak, T., Mathews, S. & Chandraratna, P., 1996. Severity of aortic regurgitation assessed 

by digital image processing of Doppler spectral recordings. Echocardiography, 13(3), 

pp. 259–263. 

Tanwani, A. K., Afridi, J., Shafiq, M. Z. & Farooq, M., 2009. Guidelines to select 

machine learning scheme for classification of biomedical datasets. In: Evolutionary 

Computation, Machine Learning and Data Mining in Bioinformatics. s.l.:Springer, 

pp. 128–139. 

Thomson Reuters Web of Science, 2014. Thomson Reuters Web of Science. [Online]. 

Available at: http://thomsonreuters.com/thomson-reuters-web-of-science/. [Accessed 01 04 

2015]. 

Tibco, Inc., 2010. TIBCO Spotfire Miner™ 8.2 User’s Guide. [Accessed 01 04 2015] 

Van Laer, W. & De Raedt, L., 2001. How to upgrade propositional learners to first 

order logic: A case study. In: Machine Learning and Its Applications. s.l.:Springer, 

pp. 102–126. 

Waljee, A. K. H. P. D. &. S. A. G., 2013. A primer on predictive models. Clinical and 

translational gastroenterology, 5(1), p. e44. 

Wehlou, M., 2014. Rethinking the Electronic Healthcare Record. s.l.:MITM - Man In 

The Middle AB. 

Wilson, A., Thabane, L. & Holbrook, A., 2004. Application of data mining techniques 

in pharmacovigilance. British journal of clinical pharmacology, 57(2), pp. 127–134. 

Wu, X. et al., 2008. Top 10 algorithms in data mining. Knowledge and Information 

Systems, 14(1), pp. 1–37. 

Yang, Q. & Wu, X., 2006. 10 challenging problems in data mining research. 

International Journal of Information Technology & Decision Making, 5(04), pp. 597–604. 

Yeh, J.Y., Wu, T.-H. & Tsao, C.-W., 2011. Using data mining techniques to predict 

hospitalization of hemodialysis patients. Decision Support Systems, 50(2), pp. 439–448. 

Yin, X., Han, J. & Yu, P. S., 2005. Cross-relational clustering with user's guidance. 

s.l., s.n., pp. 344–353. 

Yin, X., Han, J. & Yu, P. S., 2006. LinkClus: efficient clustering via heterogeneous 

semantic links. s.l., s.n., pp. 427–438. 

Yoo, I. et al., 2012. Data mining in healthcare and biomedicine: a survey of the 

literature. Journal of medical systems, 36(4), pp. 2431–2448. 

Ziou, D., Tabbone, S. & others, 1998. Edge detection techniques-an overview. Pattern 

Recognition And Image Analysis C/C Of. Raspoznavaniye Obrazov I Analiz Izobrazhenii, 

Volume 8, pp. 537–559. 

 



 

155 

ANNEXES 

Annex A. Aortic Valve Stenosis Predictive Model in 

PMML Format 

<PMML version="2.0"> 

 <DataDictionary numberOfFields="9"> 

  <DataField name="class_id" optype="categorical"> 

   <Value value="0"/> 

   <Value value="1"/> 

   <Value value="2"/> 

   <Value value="3"/> 

  </DataField> 

  <DataField name="pt_sex" optype="categorical"> 

   <Value value="M"/> 

   <Value value="V"/> 

  </DataField> 

  <DataField name="pt_age" optype="continuous"/> 

  <DataField name="xAV_2" optype="continuous"/> 

  <DataField name="xAV" optype="continuous"/> 

  <DataField name="cAV" optype="continuous"/> 

  <DataField name="xLV_2" optype="continuous"/> 

  <DataField name="xLV" optype="continuous"/> 

  <DataField name="cLV" optype="continuous"/> 

 </DataDictionary> 

 <TreeModel modelName="class_id" functionName="classification" splitCharacteristic="binarySplit"> 

  <Extension extender="Insightful" name="X-IMML-XTProps"> 

   <X-IMML-XTProps> 

    <X-IMML-Property name="criterion" value="entropy"/> 

   </X-IMML-XTProps> 

  </Extension> 

  <MiningSchema> 

   <MiningField name="class_id" usageType="predicted"/> 

   <MiningField name="pt_sex"/> 

   <MiningField name="pt_age"/> 

   <MiningField name="xAV_2"/> 

   <MiningField name="xAV"/> 

   <MiningField name="cAV"/> 

   <MiningField name="xLV_2"/> 

   <MiningField name="xLV"/> 

   <MiningField name="cLV"/> 

  </MiningSchema> 

  <Node score="0" recordCount="270"> 

   <Extension extender="Insightful" name="X-IMML-XTProps"> 

    <X-IMML-XTProps> 

     <X-IMML-Property name="id" value="1"/> 

     <X-IMML-Property name="group" value="0"/> 

     <X-IMML-Property name="deviance" value="728.507509882887"/> 

     <X-IMML-Property name="entropy" value="728.507509882887"/> 

     <X-IMML-Property name="gini" value="0.730864197530864"/> 

     <X-IMML-Property name="risk" value="174"/> 

     <X-IMML-Property name="yprob" value="0.3556 0.2667 0.1778 0.2"/> 

     <X-IMML-Property name="improvement" value="179.00075"/> 

    </X-IMML-XTProps> 

   </Extension> 

   <SimplePredicate field="cAV" operator="lessThan" value="2.80272083859873"/> 

   <Node score="0" recordCount="168"> 

    <Extension extender="Insightful" name="X-IMML-XTProps"> 
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     <X-IMML-XTProps> 

      <X-IMML-Property name="id" value="2"/> 

      <X-IMML-Property name="group" value="1"/> 

      <X-IMML-Property name="deviance" value="229.457"/> 

      <X-IMML-Property name="entropy" value="229.457"/> 

      <X-IMML-Property name="gini" value="0.48979"/> 

      <X-IMML-Property name="risk" value="72"/> 

      <X-IMML-Property name="yprob" value="0.57 0.429 0 0"/> 

      <X-IMML-Property name="improvement" value="99.059"/> 

     </X-IMML-XTProps> 

    </Extension> 

    <SimplePredicate field="cAV" operator="lessThan" value="1.46935040364626"/> 

    <Node score="0" recordCount="92"> 

     <Extension extender="Insightful" name="X-IMML-XTProps"> 

      <X-IMML-XTProps> 

       <X-IMML-Property name="id" value="4"/> 

       <X-IMML-Property name="group" value="1"/> 

       <X-IMML-Property name="deviance" value="0"/> 

       <X-IMML-Property name="entropy" value="0"/> 

       <X-IMML-Property name="gini" value="0"/> 

       <X-IMML-Property name="risk" value="0"/> 

       <X-IMML-Property name="yprob" value="1 0 0 0"/> 

       <X-IMML-Property name="improvement" value=""/> 

      </X-IMML-XTProps> 

     </Extension> 

     <True/> 

    </Node> 

    <Node score="1" recordCount="76"> 

     <Extension extender="Insightful" name="X-IMML-XTProps"> 

      <X-IMML-XTProps> 

       <X-IMML-Property name="id" value="5"/> 

       <X-IMML-Property name="group" value="2"/> 

       <X-IMML-Property name="deviance" value="31.3411916962512"/> 

       <X-IMML-Property name="entropy" value="31.3411916962512"/> 

       <X-IMML-Property name="gini" value="0.0997229916897509"/> 

       <X-IMML-Property name="risk" value="4"/> 

       <X-IMML-Property name="yprob" value="0.05263 0.94736842 0 0"/> 

       <X-IMML-Property name="improvement" value=""/> 

      </X-IMML-XTProps> 

     </Extension> 

     <True/> 

    </Node> 

   </Node> 

   <Node score="3" recordCount="102"> 

    <Extension extender="Insightful" name="X-IMML-XTProps"> 

     <X-IMML-XTProps> 

      <X-IMML-Property name="id" value="3"/> 

      <X-IMML-Property name="group" value="2"/> 

      <X-IMML-Property name="deviance" value="141.048879833892"/> 

      <X-IMML-Property name="entropy" value="141.048879833892"/> 

      <X-IMML-Property name="gini" value="0.498269896193772"/> 

      <X-IMML-Property name="risk" value="48"/> 

      <X-IMML-Property name="yprob" value="0 0 0.47059 0.5294"/> 

      <X-IMML-Property name="improvement" value="51.6875067414223"/> 

     </X-IMML-XTProps> 

    </Extension> 

    <SimplePredicate field="cAV" operator="lessThan" value="4.14862756695093"/> 

    <Node score="2" recordCount="54"> 

     <Extension extender="Insightful" name="X-IMML-XTProps"> 

      <X-IMML-XTProps> 

       <X-IMML-Property name="id" value="6"/> 

       <X-IMML-Property name="group" value="1"/> 

       <X-IMML-Property name="deviance" value="37.6738663510475"/> 

       <X-IMML-Property name="entropy" value="37.6738663510475"/> 

       <X-IMML-Property name="gini" value="0.197530864197531"/> 
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       <X-IMML-Property name="risk" value="6"/> 

       <X-IMML-Property name="yprob" value="0 0 0.888888889 0.11111"/> 

       <X-IMML-Property name="improvement" value="18.8369331755237"/> 

      </X-IMML-XTProps> 

     </Extension> 

     <SimplePredicate field="cLV" operator="lessThan" value="1.24886031775343"/> 

     <Node score="2" recordCount="48"> 

      <Extension extender="Insightful" name="X-IMML-XTProps"> 

       <X-IMML-XTProps> 

        <X-IMML-Property name="id" value="12"/> 

        <X-IMML-Property name="group" value="1"/> 

        <X-IMML-Property name="deviance" value="0"/> 

        <X-IMML-Property name="entropy" value="0"/> 

        <X-IMML-Property name="gini" value="0"/> 

        <X-IMML-Property name="risk" value="0"/> 

        <X-IMML-Property name="yprob" value="0 0 1 0"/> 

        <X-IMML-Property name="improvement" value=""/> 

       </X-IMML-XTProps> 

      </Extension> 

      <True/> 

     </Node> 

     <Node score="3" recordCount="6"> 

      <Extension extender="Insightful" name="X-IMML-XTProps"> 

       <X-IMML-XTProps> 

        <X-IMML-Property name="id" value="13"/> 

        <X-IMML-Property name="group" value="2"/> 

        <X-IMML-Property name="deviance" value="0"/> 

        <X-IMML-Property name="entropy" value="0"/> 

        <X-IMML-Property name="gini" value="0"/> 

        <X-IMML-Property name="risk" value="0"/> 

        <X-IMML-Property name="yprob" value="0 0 0 1"/> 

        <X-IMML-Property name="improvement" value=""/> 

       </X-IMML-XTProps> 

      </Extension> 

      <True/> 

     </Node> 

    </Node> 

    <Node score="3" recordCount="48"> 

     <Extension extender="Insightful" name="X-IMML-XTProps"> 

      <X-IMML-XTProps> 

       <X-IMML-Property name="id" value="7"/> 

       <X-IMML-Property name="group" value="2"/> 

       <X-IMML-Property name="deviance" value="0"/> 

       <X-IMML-Property name="entropy" value="0"/> 

       <X-IMML-Property name="gini" value="0"/> 

       <X-IMML-Property name="risk" value="0"/> 

       <X-IMML-Property name="yprob" value="0 0 0 1"/> 

       <X-IMML-Property name="improvement" value=""/> 

      </X-IMML-XTProps> 

     </Extension> 

     <True/> 

    </Node> 

   </Node> 

  </Node> 

 </TreeModel> 

</PMML> 
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Supplementary Materials 

Supplementary Figures. CRISP-MED-DM Process Flow Diagrams 

 

 

Phase 1 – Problem Understanding 

 
 

 



Supplementary Materials 

 

159 

Phase 2 – Data Understanding 
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Phase 4 – Modelling 

 
 

Phase 5 – Evaluation 
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Phase 6 – Deployment 
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