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Daktaro disertacija
Fiziniai mokslai, informatika (09P)

Vilnius, 2014



Disertacija rengta 2009 - 2013 metais Vilniaus universiteto Matematikos ir
informatikos institute.

Mokslinis vadovas:
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Notation

LCK - logic of correlated knowledge.
HS-LCK - Hilbert style proof system for logic of correlated knowledge.
GS-LCK - Gentzen style sequent calculus for logic of correlated knowledge.
GS-LCK-PROC - proof search procedure in the sequent calculus GS-LCK.
C - set of complex numbers.
|ψ〉 - quantum bit.
H - Hilbert space.
cod - codification function.
msg - message assignment function.
chan - channel assignment function.
res - measurement assignment function.
ai - agent.
Oai - set of possible observations of agent ai.
I - group of agents.
o - joint observation.
OI - set of joint observations of group of agents I .
r - result of observation.
or - atomic formula of joint observation and result.
p - atomic proposition.
s

I∼ t - relational atom.
s : A - labelled formula.
S - sequent.
Γ,∆ - multisets of formulas in a sequent.
TableLK - table of the applications of the rules (KI ⇒) and (KN ⇒).
TableRK - table of the applications of the rule (⇒ KI).
n(KI) - number of the knowledge operators KI in the negative part of the
sequent.
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Chapter 1

Introduction

1.1 Research Area and Problems

In quantum mechanics we have quantums systems consisting of elementary
particles (e.g. electrons). Information about such systems can be handled, using
logical calculi. In 1936 von Neumann co-authored a paper with G. Birkhoff [8]
introducing the ideas of quantum logic. However some important impossibi-
lity results were obtained [2, 40]. D. Aerts, C. Randall and D. Foulis showed
that quantum logic rises problems when trying to describe compound systems
consisting of more than one elementary particle that can exhibit quantum entan-
glement. Also they showed that tensor products of quantum logic do not exist.

Several other approaches were obtained to reason about quantum systems.
One of the latest is logic of correlated knowledge introduced by Alexandru
Baltag and Sonja Smets in 2010 [5]. Logic of correlated knowledge abstracts
away from Hilbert spaces, which are used in quantum mechanics and quantum
logic, and suggests to accomodate correlation models to quantum systems and
quantum entanglement. However, we do not have yet automated proof sys-
tem for logic of correlated knowledge, which would allow us to reason about
quantum systems automatically, using computers.
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1.2. Actuality

1.2 Actuality

The states of quantum systems are determined by performing measurements on
particles. The informational processes of such measurements can be handled
using proof system. Also calculations of quantum computing are executed by
changing the states of the quantum register, which consists of quantum bits or
quantum particles, until the result of computing is obtained. The process of
the changes of the states can be analysed and managed using logical calculus.
Automated proof system for logic of correlated knowledge would allow to do
this in automated way, using computers.

1.3 Aim of the Research

The main aim of the research is to create proof system for logic of correlated
knowledge, satisfying the properties of soundness, completeness and termina-
tion.

1.4 Tasks of the Research

The tasks for reaching the main aim of the research are:

• Create sequent calculus GS-LCK for logic of correlated knowledge.

• Prove soundness of GS-LCK.

• Prove invertibility of rules.

• Prove admissibility of weakening.

• Prove admissibility of contraction.

• Prove admissibility of cut.

• Prove completeness of GS-LCK.

• Create proof search procedure for GS-LCK.

• Prove the termination of proof search procedure.

11



1. Introduction

1.5 Research Methodology

As a main method to create automated proof system, sequent calculus is used.
Gerhard Gentzen introduced sequent calculi in 1934 [15]. Sequent calculus
allows to perform automated proof search if cut rule is admissible. We are using
the ideas of semantic internalization, suggested by Sara Negri in [30], to get
admissibility of cut rule and other properties of the sequent calculus GS-LCK.
Also the Hilbert style proof system suggested by Alexandru Baltag and Sonja
Smets in [5] is used to prove the completeness of GS-LCK.

1.6 Scientific Novelty

The following new results have been obtained in the research:

• Sequent calculus GS-LCK for logic of correlated knowledge has been
created.

• Soundness, completeness and admissibility of weakening, contraction and
cut of GS-LCK have been proved.

• Terminating proof search procedure for GS-LCK has been created.

• Decidability of logic of correlated knowledge has been proved.

1.7 Defending Statements

• Sequent calculus GS-LCK for logic of correlated knowledge has been
created, which satisfy the properties:

– Soundness.

– Invertibility of rules.

– Admissibility of weakening, contraction and cut.

– Completeness.

• Procedure GS-LCK-PROC has been created, which performs terminating
proof search in sequent calculus GS-LCK.

• Logic of correlated knowledge is decidable.

12



Chapter 2

Quantum mechanics

Quantum mechanics is a branch of physics which deals with physical pheno-
mena at nanoscopic scales where the action is on the order of the Planck constant.
It provides a mathematical description of much of the dual particle-like and
wave-like behavior and interactions of energy and matter.

In 1900, Max Planck introduced quantum hypothesis, which was the birth of
quantum mechanics [29]. Planck made the assumption that energy was made of
individual units, or quanta. Albert Einstein theorized that not just the energy,
but the radiation itself was quantized in the same manner. In 1924, Louis de
Broglie proposed that there is no fundamental difference in the makeup and
behavior of energy and matter. On the atomic and subatomic level either may
behave as if made of either particles or waves. This theory became known
as the principle of wave-particle duality: elementary particles of both energy
and matter behave, depending on the conditions, like either particles or waves.
Werner Heisenberg proposed that precise, simultaneous measurement of two
complementary values - such as the position and momentum of a subatomic
particle - is impossible. Contrary to the principles of classical physics, their
simultaneous measurement is inescapably flawed: the more precisely one value
is measured, the more flawed will be the measurement of the other value. This
theory became known as the uncertainty principle, which prompted Albert
Einstein’s famous comment, "God does not play dice".

Early quantum theory was significantly formulated in the mid-1920s. Werner
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2. Quantum mechanics

Heisenberg, Max Born and Pascual Jordan introduced matrix mechanics. Er-
win Schrödinger formulated Schrödinger equation, which describes how the
quantum state of a physical system changes with time [50]. Wolfgang Pauli and
Satyendra Nath Bose proposed results in statistics of subatomic particles.

By 1930, quantum mechanics had been further unified and formalized by the
work of David Hilbert, Paul Dirac and John von Neumann [48] with a greater
emphasis placed on measurement in quantum mechanics, the statistical nature
of our knowledge of reality, and philosophical speculation about the role of the
observer.

The two major interpretations of quantum theory’s implications for the nature
of reality are the Copenhagen interpretation and the many-worlds theory. Niels
Bohr proposed the Copenhagen interpretation of quantum theory, which asserts
that a particle is whatever it is measured to be (for example, a wave or a particle),
but that it cannot be assumed to have specific properties, or even to exist, until
it is measured. In short, Bohr was saying that objective reality does not exist.
This translates to a principle called superposition that claims that while we
do not know what the state of any object is, it is actually in all possible states
simultaneously, as long as we don’t look to check.

To illustrate this theory, we can use the famous and somewhat cruel analogy of
Schrodinger’s Cat. First, we have a living cat and place it in a thick lead box. At
this stage, there is no question that the cat is alive.

14



2.1. Quantum states

We then throw in a vial of cyanide and seal the box. We do not know if the cat is
alive or if it has broken the cyanide capsule and died. Since we do not know,
the cat is both dead and alive, according to quantum law - in a superposition of
states. It is only when we break open the box and see what condition the cat is
that the superposition is lost, and the cat must be either alive or dead.

Broadly speaking, Quantum mechanics incorporates four classes of phenomena:

• Quantization of certain physical properties

• Wave-particle duality

• Principle of uncertainty

• Quantum entanglement

It covers fields like:

• Mathematical formulation of quantum mechanics

• Interpretations of quantum mechanics

• Quantum field theory

• Quantum states

• Quantum information

• Quantum computers

• Supersymmetry

• Quantum gravity

• String theory

Our work is mostly related to quantum states, especially to superposition and
quantum entanglement.

2.1 Quantum states

State of a physical system at a given time is basically all information that iden-
tifies the particular state the system is in. For quantum mechanical systems
the classical phase space is not suitable for describing any state of the system.
There is a more complicated mathematical structure for representing the states
of quantum mechanical systems. This has to be so, because new concepts not
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2. Quantum mechanics

met in classical systems, such as superposition, arise in quantum mechanics and
mathematical apparatus should be appropriate to handle these.

It appears that, any state of a quantum mechanical system can be mathematically
represented as a ray in a Hilbert space.

A Hilbert space is a vector space over the field of complex numbers C, with
vectors denoted by |ψ〉 (Dirac’s ket notation). A ket |ψ〉 is represented as a n× 1

matrix (or a n element vector), where n is the dimension of the Hilbert space,
and its corresponding bra 〈ψ| is the transpose conjugate of the ket. It has an
inner product 〈ψ|ϕ〉 (may be seen as matrix multiplication) that maps an ordered
pair of vectors to C, with the properties:

• Positivity: 〈ψ|ψ〉 > 0 for |ψ〉 6= 0

• Linearity: 〈ϕ|(a|ψ1〉+ b|ψ2〉) = a〈ϕ|ψ1〉+ b〈ϕ|ψ2〉
• Skew symmetry: 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗

A ray in a Hilbert space is an equivalent class of vectors that differ by multiplica-
tion by a nonzero complex scalar. That is, a ray is represented by a given vector
and all its (complex) multiples. Superposition and quantum entanglement will
be formalized in Hilbert spaces in the next sections.

2.1.1 Superposition

Quantum superposition is a fundamental principle of quantum mechanics that
holds that a physical system, such as an electron, exists partly in all its particular
theoretically possible states (or, configuration of its properties) simultaneously,
but when measured or observed, it gives a result corresponding to only one of
the possible configurations.

Mathematically, it refers to a property of solutions to the Schrödinger equation.
Since the Schrödinger equation is linear, any linear combination of solutions to
a particular equation will also be a solution of it.

An example of a directly observable effect of superposition is interference peaks
from an electron wave in a double-slit experiment.

16



2.1. Quantum states

In the double-slit experiment a beam of electrons one at a time is directed
through two narrow, closely spaced slits. Behind them there is a screen which
can detect where the electrons that made it through the slits end up.

1. Single objects (not electrons) are sent on two slits. Objects touch the screen
randomly.

17



2. Quantum mechanics

2. A wave is sent on two slits which make it interfere. This results in fringes
on the screen.

3. A quantum object - electron is sent on two slits. The wave suddenly
reduces into a particle when touching the screen, and more likely at the
positions where the wave was more intense. At the end, one observes
impacts as for particles, and interference fringes as for waves.

18



2.1. Quantum states

4. If an observer measures through which slit the wave goes, then the wave
reduces and goes only through one of the two slits now. No interference
can occur anymore, so no fringes appear on the screen. The observer has
modified the experiment.

Thus it has been demonstrated that all matter possesses both particle and wave
characteristics. Even if the source intensity is turned down so that only one
particle (electron) is passing through the apparatus at a time, the same interfe-
rence pattern develops over time. The quantum particle acts as a wave when
passing through the double slits, but as a particle when it is detected. This is a
typical feature of quantum complementarity: a quantum particle will act as a
wave when we do an experiment to measure its wave-like properties, and like a
particle when we do an experiment to measure its particle-like properties.

Directly observable effect of superposition is also a quantum logical qubit state.
A qubit can be interpreted as the spin state of an electron. Electron spin can be
viewed as a unit three-dimensional vector associated with the particle, represen-
ting an axis of rotation. Arrowhead is labeled as N (North) to highlight the fact
that spin can also be seen as a magnetic property.

19



2. Quantum mechanics

Figure 2.1: Spin of the electron

We fix an electron’s position in space. In order to prepare an electron in a
particular direction, the electron is surrounded in a powerful magnetic field.

Figure 2.2: Preparation of the electron in a particular direction

The magnetic field forces the electron’s spin to end up in the desired direction
after a certain amount of time. In fact the spin vector precesses around the
desired position, radiating energy and spiralling in. The stronger the field, the
quicker this all happens.

Suppose that an electron has been prepared in some unknown direction and
we want to be able to measure, or detect the electron’s spin. We could again
surround the electron with a known magnetic field.

20



2.1. Quantum states

Figure 2.3: Detection of the direction of the electron

What actually happens is that, whatever angle the electron is initially prepared
at, when we come to apply the magnetic field only one of two things happen:

• No photon is emitted by the electron.

• Exactly one photon is emitted.

If a photon is emitted, then its associated frequency corresponds to the amount
of energy that would be radiated if the electron had been prepared in the North
- down position.

Figure 2.4: Result of the detection of the electron’s direction

21



2. Quantum mechanics

Note that the actual result - that is, one photon emitted or no photon emitted -
doesn’t depend on either the prepared angle or the detection angle. In fact, the
outcomes of any experiment are probabilistic. This probability depends on the
angle. Qualitively, the smaller the angle (between prepared and detection states)
the less likely that a photon is emitted. So, information about the prepared angle
can be statistically recovered from repeated experiments, but to re-iterate, only
one of two outcomes can occur per detection.

The state of the electron can be represented as spin up | ↑〉 and spin down | ↓〉 or
equivalently |0〉 and |1〉 in Dirac’s ket notation.

|0〉 →

[
1

0

]

|1〉 →

[
0

1

]

This forms an orthonormal basis for 2-d Hilbert space {|0〉, |1〉}. Then the qubit
can be represented as a ray in this space. A qubit state is a linear superposition
of the basis states [6].

Definition 1 (Qubit). The qubit is a linear combination of basis states |0〉 and |1〉:

|ψ〉 = α|0〉+ β|1〉

where α and β are probability amplitudes and α, β ∈ C, C - set of complex numbers.

When we measure this qubit in the standard basis, the probability of outcome |0〉
is |α|2 and the probability of outcome |1〉 is |β|2. Because the absolute squares of
the amplitudes equate to probabilities, it follows that α and β must be constrai-
ned by the equation:

|α|2 + |β|2 = 1

Simply because this ensures you must measure either one state or the other, the
total probability of all possible outcomes must be 1.
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2.1. Quantum states

Example of a qubit:

|ψ〉 =
3

5
i|0〉+

4

5
|1〉

This qubit state encodes that the particle is in the state where it is an amount
3i/5 in up and an amount 4/5 in down. The probability for up is |3i/5|2 = 9/25,
the probability for down is |4/5|2 = 16/25. Total probability is 9/25 + 16/25 = 1.

2.1.2 Quantum entanglement

Quantum entanglement is a special connection between pairs or groups of quan-
tum systems, or any objects described by quantum mechanics. An entangled
system has a quantum state which cannot be factored out into the product of
states of its local constituents - individual particles. The system cannot be expres-
sed as a direct product of quantum states that make up the system. If entangled,
one constituent cannot be fully described without considering the other(s). Like
the quantum states of individual particles, the state of an entangled system is
expressible as a sum, or superposition, of basis states, which are eigenstates of
some observable(s).

Consider two noninteracting systems A and B, with respective Hilbert spaces
HA and HB. The Hilbert space of the composite system is the tensor product:

HA ⊗HB

If the first system is in state |ψ〉A and the second in state |ϕ〉B, then the state of
the composite system is:

|ψ〉A ⊗ |ϕ〉B

States of the composite system which can be represented in this form are called
separable states, or product states.

Not all states are separable states. Fix a basis {|i〉A} for HA and a basis {|j〉B}
for HB. The most general state in HA ⊗HB is of the form:

|ψ〉AB =
∑
i,j

cij|i〉A ⊗ |j〉B

23



2. Quantum mechanics

This state is separable if there exist cAi , cBj so that cij = cAi c
B
j , yielding |ψ〉A =∑

i c
A
i |i〉A and |ϕ〉B =

∑
j c

B
j |j〉B. It is inseparable if for all cAi , cBj we have cij 6=

cAi c
B
j . If a state is inseparable, it is called an entangled state.

For example, given two basis vectors {|0〉A, |1〉A} of HA and two basis vectors
{|0〉B, |1〉B} of HB, the following is an entangled state:

1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B)

If the composite system is in this state, it is impossible to attribute to either
system A or system B a definite pure state. The above example is one of four
Bell states, which are entangled pure states of the HA ⊗ HB space, but which
cannot be separated into pure states of each HA and HB.

Suppose Alice is an observer for system A, and Bob is an observer for system
B. If in the entangled state given above Alice makes a measurement in the
{|0〉, |1〉} eigenbasis of A, there are two possible outcomes, occurring with equal
probability [32]:

• Alice measures 0, and the state of the system collapses to |0〉A|1〉B. En-
tanglement is broken when the entangled particles decohere through
interaction with the environment, for example, when a measurement is
made [33].

Figure 2.5: Possible outcome (1) of the measurement
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2.1. Quantum states

Any subsequent measurement performed by Bob, in the same basis, will
always return 1.

• Alice measures 1, and the state of the system collapses to |1〉A|0〉B.

Figure 2.6: Possible outcome (2) of the measurement

If Alice measures 1, then Bob’s measurement will return 0 with certainty. Thus,
system B has been altered by Alice performing a local measurement on system
A. This remains true even if the systems A and B are spatially separated.

Quantum entanglement is one of the central principles of quantum mechanics.
It is used in the emerging technologies of quantum computing, communication,
quantum cryptography and quantum teleportation.
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Chapter 3

Logic and Quantum mechanics

J. von Neumann is known as the father of quantum logic. It is only a very short
paragraph in chapter 3 of his book Grundlagen der Quantenmechanik [49] that
forms the birth of quantum logic. In this passage, von Neumann introduced the
idea of a logical calculus of physical properties. He argued that it is the relation
between these properties on the one hand and the projection operators definable
on a Hilbert space on the other hand that should make it possible to obtain some
sort of logical calculus.

The developments of quantum logic went in two main directions [41]. The
first is the original quantum logic project. In 1936 von Neumann co-authored
a paper with G. Birkhoff [8]. Further developments were done by K. Husimi
[24] and other authors. However some important impossibility results were
obtained [2, 40]. D. Aerts, C. Randall and D. Foulis showed that orthomodular
lattice approach rises problems when trying to describe compound systems
consisting of subsystems that can exhibit quantum entanglement. Also they
showed that tensor products of quantum logic do not exist.

The second direction is the Mackey-Piron way. This way was originated by G.
Mackey in [26, 27]. G. Mackey searched for a list of transparant and physically
plausible axioms or assumptions from which the Hilbert space model could
ideally be deduced. The programme of Mackey was later further developed and
extended by C. Piron in his PhD thesis in 1964 [35] and subsequent work [36].
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3.1. Quantum logic

Rather than taking the Hilbert space model of quantum physics for granted,
Piron’s aim was to "justify the use of Hilbert space". And that is exactly what
Piron’s celebrated representation theorem gives: an axiomatic system that can be
represented as the logic of projection operators on a generalized Hilbert space.
Piron’s theorem was later improved by M. Solèr and R. Mayet [28, 42]. One
of the lines of research in this direction is the development of modal quantum
logics as quantum communication environments and logic of correlated know-
ledge, which we’ll discuss later.

More about approaches on logic and quantum mechanics you can find in
[1, 3, 7, 10, 13, 34, 38, 39, 43].

3.1 Quantum logic

Quantum logic can be formulated either as a modified version of propositional
logic or as a noncommutative and non-associative many-valued logic [12, 16, 17].

Syntax of quantum logic is exactly the same as classical logic, except there
is no implication operator defined.

Definition 2 (Syntax of quantum logic). The language of quantum logic has the
following syntax:

F := a | ¬F | F ∨ F | F ∧ F

where a is any atomic proposition.

The main difference between classical and quantum logic is the meaning. The
interpretation of an elementary formula a is given by a closed linear subspace
of Hilbert space H . Conjunction

[
a ∧ b

]
is defined as instersection between

subspaces
[
a
]
∩
[
b
]
, negation

[
¬a
]

as
[
a
]⊥ and disjunction

[
a ∨ b

]
as
[
a
]
⊕
[
b
]
.

Definition 3 (Semantics of quantum logic). Semantics of quantum logic:

•
[
a
]

= the subspace corresponding to proposion a.
Pa = the projector onto

[
a
]
.
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3. Logic and Quantum mechanics

•
[
¬a
]

=
[
a
]⊥

=
{
|ψ〉 ∈ H

∣∣ ∀ |ϕ〉 ∈ [a] 〈ϕ|ψ〉 = 0
}

P¬a = I − Pa

•
[
a ∧ b

]
=
[
a
]
∩
[
b
]

=
{
|ψ〉 ∈ H

∣∣ |ψ〉 ∈ [a], |ψ〉 ∈ [b]}
Pa∧b = limn→∞(PaPb)

n

•
[
a∨b

]
=
[
a
]
⊕
[
b
]

=
{
|ψ〉 ∈ H

∣∣∃|ϕ〉 ∈ [a], ∃|η〉 ∈ [b] s.t. |ψ〉 = α|ϕ〉+β|η〉
}

Pa∨b = I − limn→∞((I − Pa)(I − Pb))
n

Subspaces of Hilbert space form a lattice with partial order
[
a
]
≤
[
b
]

iff PaPb =

Pa. To define the lattice, let us first explain a poset. A partially ordered set (or
poset) is a set PropS with partial order relation ≤ satisfying ∀a, b, c ∈ PropS:

• a ≤ a.

• a ≤ b and b ≤ a iff a = b.

• if a ≤ b and b ≤ c then a ≤ c.

Two elements a, b ∈ PropS have a join or least upper bound if there is an element
a ∨ b satisfying:

• a ≤ a ∨ b and b ≤ a ∨ b.
• Any c satisfying a ≤ c and b ≤ c also satisfies a ∨ b ≤ c.

Two elements a, b ∈ PropS have a meet or greater lower bound if there is an
element a ∧ b satisfying:

• a ∧ b ≤ a and a ∧ b ≤ b .

• Any c satisfying c ≤ a and c ≤ b also satisfies c ≤ a ∧ b.

28



3.1. Quantum logic

Example 1. Example of posets:

Figure 3.1: Posets

Definition 4 (Lattice). A lattice is a poset where every pair of elements has a meet or
a join.

We will also require that there is a greatest element 1 and a least element 0.
Atoms of a lattice are those elements for which 0 is the only smaller element.

Example 2. Example of lattices:

Figure 3.2: Lattices
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3. Logic and Quantum mechanics

Example 3. Example of 2D Hilbert space:

Figure 3.3: 2D Hilbert space

a = "The particle has spin up in the z-direction."
b = "The particle has spin up in the x-direction."

Orthomodular lattice approach is successful in describing single quantum sys-
tems, but it faces problems when trying to describe compound systems consis-
ting of subsystems that can exhibit quantum entanglement. In quantum me-
chanics, such compound systems are represented via a tensor product of the
underlying Hilbert spaces for each subsystem. Hence it would have been na-
tural to find a general lattice-theoretic analogue of the tensor product as an
operation on lattices that satisfies a given set of natural conditions. However,
impossibility results in [2, 40] show that such an operation on orthomodular
lattices (or posets) cannot exist.

Also quantum logic has no implication operator and so deductive system. The
reason for it is the failure of the distributive law [8, 24]. Distributive law:

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

30



3.1. Quantum logic

To illustrate why the distributive law fails, consider a particle moving on a line
and let:

• a = "the particle has momentum in the interval [0, +1/6]"

• b = "the particle is in the interval [-1, 1]"

• c = "the particle is in the interval [1, 3]"

We might observe that:

• a ∧ (b ∨ c) = true

In other words, that the particle’s momentum is between 0 and +1/6, and its
position is between −1 and +3. On the other hand, the propositions a ∧ b and
a ∧ c are both false, since they assert tighter restrictions on simultaneous values
of position and momentum than is allowed by the uncertainty principle in
quantum mechanics. So:

• (a ∧ b) ∨ (a ∧ c) = false

Thus the distributive law fails. Also it can be shown by lattice.

Example 4. The failure of the distributive law:

Figure 3.4: Failure of the distributive law

a ∧ (b ∨ ¬b) = a ∧ 1 = a

(a ∧ b) ∨ (a ∧ ¬b) = 0 ∨ 0 = 0

Concluding the remarks on quantum logic, we may notice, that it is successful
in describing single quantum systems, but it faces problems when trying to
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3. Logic and Quantum mechanics

describe compound systems consisting of subsystems that can exhibit quan-
tum entanglement. Also it has no implication operator and deductive system,
because of the failure of the distributive law.

3.2 Quantum communication environments

Anderson de Araújo and Marcelo Finger defined quantum communication
environments in terms of the concepts of agents and informational states in [4].
The communication among agents is modeled, assuming that for each agent g
in a group G there is a codification cod of the propositions of g as sequences of
bits.

Definition 5 (Message). Let G = {g1, ..., gn} be a group of agents. The message
assignment is the function msg : {1, 2, ..., n} → codi, where codi : gi → {0, 1}m is a
function which associates a code of length m to each proposition of agent gi (this code is
a sequence of bits with length m). Each msg(i) will be called a message, and we will
write MG to denote the set of all messages of G.

Messages of agent has a corresponding Hilbert space, that represents messages
as physical entities [11, 32].

Definition 6 (Hilbert space of messages). LetG = {g1, ..., gn} be a group of agents.
The set of possible messages HG of G is the complex Hilbert space generated by MG, i.e.,
HG is a set of normalized vectors | 〉 : MG → C, equipped with the inner product, such
that Σm∈MG

||m〉|2 <∞.

In a quantum passing message system, each message is thought of as being in
the possession of some agent, but this agent may change from time to time, as
an agent can send some of its message to another. Following [46], a function is
defined to denote the location of each message.

Definition 7 (Location). Let HG be the Hilbert space of the group of agents G =

{g1, ..., gn}. The m-location assignment is the function loc : HG → {1, 2, ..., n} such
that loc(msg(i)) denotes that agent gi has the message msg(i) of HG.
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3.2. Quantum communication environments

Note that the letter m in the expression "m-location assignment" is to remember
that the codes are sequences of qubits with length m. These sequences of qubits
represent in quantum terms the previous codes of the messagens in MG. The
reliable synchronous communication of quantum messages among the agents
can be modeled as the transmission of quantum messages from one agent to
another agent in a group.

Definition 8 (Channel). Let HG be the Hilbert space of the group of agents G =

{g1, ..., gn}. The channel assignment is the function chan : {1, 2, ..., n}2 → HG such
that chan(i, j) = |msg〉 means that the quantum message |msg〉 has been transmitted
from agent gi to agent gj .

Suppose that loc−1(i) = {il, ..., ik} is the set of indices of the quantum messages
located at agent i. Then agent i is able to perform a general measurement
on these k messages. We represent a quantum operation on k messages by
a finite sequence of operators M = (M1, ...,Ml) with each Mj operating on
HG. Suppose the agents simultaneously perform the quantum measurements
(M1, ...,Ml) where each Mi is a measurement on the ki = |loc−1(i)| quantum
message located at agent i. Each operation Mi products some outcome mi,
the index of some linear transformation Mj operating on HG. A combined
outcome of these measurements is represented by a new function from agents
to outcomes.

Definition 9 (Measurement). Let HG be the set of possible messages of a group of
agents G = {g1, ..., gn} and M = (M1, ...,Ml) be a finite sequence of operators on
HG. The measurement assignment is the function res : G → M × R such that
res(i) = (Mi,mi) records the measurement performed and the outcome obtained by the
agent i.

Each measurement Mi is a self-adjoint linear operator and the outcome of a mea-
surement is a real number. So the measurement assignment res is well-defined.
Having functions msg, loc, chan, res, quantum communication environments
can be defined.
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3. Logic and Quantum mechanics

Definition 10 (Quantum communication environment). A quantum communica-
tion environment is a tuple E = (G,S), where G is a group of agents and S =

{s1, ..., sm} is the set of informational states for sj = (msg, loc, chan, res).

3.2.1 Quantum communication language

A quantum communication language is specified by defining its alphabet, terms
and formulas.

Definition 11 (Quantum communication language). Let E = (G,S) be a quan-
tum communication environment. The language of E is the multimodal first-order
language with equality L such that:

1. The alphabet of L has two sorts of variables, one sort for scalars and other for
vectors, as well as an infinite set of basis variables {~v, ~w, ...} to represent the basis
set considered for HG;

2. For each of these basis variables ~v, the alphabet of L also has a finite set of constant
vectors ~v0, ..., ~vm representing the vectors in the basis of HG;

3. The alphabet of L has the scalar constants 0 and 1 and the vector constants ~0 and
~1;

4. The alphabet of L has the functions symbols −,+ and × for the usual operations
on elements in a real-closed field, the function symbols ¬v,+v,×s and ×v for
the orthocomplement, matrix addition, multiplication by a scalar and matrix
multiplication on vector spaces;

5. The alphabet of L has a unary probability operator P and a binary basis transfor-
mation Mij ;

6. The alphabet of L has knowledge operators KI , one for each subgroup of agents
I ⊆ G;

7. Nothing more except the symbols specified above are in the alphabet of L.

The definitions of all syntactic notions are as in [9], including the terms and
formulas, except by the following differences.

Definition 12 (Set of terms). The set of terms of L is such that:

34



3.2. Quantum communication environments

1. The matrix terms of L are defined in the following way:
(a) The constant vectors and variables for constant vectors are matrix terms;

(b) If α and β are matrix terms and a is an scalar constant, then ¬vα, a ×s

α, α +v β and α×v β also are terms.

2. If α is a matrix term, then P (α) is a term of L. These terms are called probability
terms.

3. If ~v and ~w are basis variables, then Mij(~v, ~w) is a term of L. These terms are
called transformation terms.

4. The matrix, probability and transformation terms are just the terms of L defined
by the conditions (1), (2) and (3) above.

Moreover, the scalar terms are just the terms defined in L from 0 and 1 using
−,+ or × as well as any pseudo-term defined using these scalar constants and
funtions.

In quantum mechanics probability has a crucial role. Hence it is important
to designate some special formulas that express facts about probabilities in
quantum communication environments.

Definition 13 (Linear probability atom). In the set of formulas of L a linear proba-
bility atom is an expression of the form a1 × P 1(α1) + · · ·+ ak × P 1(αk) = a, where
each ai is a scalar term as well as a, and each αi is a matrix term.

As the language L has knowledge operators KI for subgroups of agents, it can
state facts about distributed knowledge in communication environments, such
as in [5]. In particular, the description of the knowledge of an individual agent
i is described by Ki. Besides, L has probability and transformation operators
similar to [47], and so it can also state properties about quantum distributed
knowledge. Concepts like entanglement of information, phase relations, uncer-
tainty relation, etc, also can be expressed in L. This shows that the language
L has enough expressiveness with respect to quantum communication envi-
ronments. For instance, the statement that agent i knows the message α with
probability 1√

2
can be expressed by the sentence KiP (α) = 1√

2
of the language L.
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3. Logic and Quantum mechanics

3.2.2 Quantum communication structures

Quantum communication environments are distributed systems, so the lan-
guage L needs such semantics that it permits to consider the transmission of
quantum messages among the agents. For such an aim, the notion of informa-
tional range is defined.

Definition 14 (Informational range). Let E = (G,S) be a communication environ-
ment. The informational range RG of the group G is a family of binary relations ≈I on
HG, one for each I ⊆ G:

RG = {≈I⊆ HG : I ⊆ G}.

Intuitively, an informational range shows how the information is available
among the subgroups of agents. From this concept, equivalence relations among
the information associated to the messages of agents can be defined.

Definition 15 (E-quantum communication frame). Let E = (G,S) be a commu-
nication environment and RG be the informational range of G. An E-quantum commu-
nication frame is a multi-modal frame (HG, RG) such that:

1. Equivalence: For each I ⊆ G,≈I is an equivalence relation;

2. Observability: For all s, r ∈ HG and I ⊆ G, if s = r then s ≈I r;

3. Monotonicity: For all I, J ⊆ G, if I ⊆ J then ≈J⊆≈I ;

4. Vacuousness: For all s, r ∈ HG, s ≈∅ r.

A quantum communication structure can be defined in such a way:

Definition 16 (Quantum communication structure). Let E = (G,S) be a com-
munication environment and (HG, RG) be an E-quantum communication frame. A
quantum communication structure A for the language L is the tuple A = (HG, RG, IG)

in which IG is an interpretation function from L to HG such that:

1. IG(0) is the number zero and IG(1) is the number one in the complex field C of
HG;

2. IG(~0) is the null matrix and IG(~1) is the identity matrix of HG;
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3.2. Quantum communication environments

3. For each state constant ~vi of L, IG(~vi) is the matrix |vi〉〈vi| where |vi〉 is the i-th
vector of the computational basis of HG;

4. IG(−), IG(+) and IG(×) are the functions inverse, plus and times, respectively,
on the complex field C of HG;

5. IG(¬b) is the projection operator ⊥ projecting onto the orthogonal complement
of the image of HG under the state considered, IG(+v) is the matrix addition
of HG, IG(×s) is matrix multiplication by a scalar and IG(×v) is the matrix
multiplication of HG;

6. IG(P ) is the unary operator onHG such that IG(P )(|vi〉) is the trace of the matrix
|vi〉〈vi||vi〉〈vi|, i.e., IA(P )(|vi〉) := Tr(|vi〉〈vi||vi〉〈vi|) :=

∑
j(|vi〉〈vi||vi〉〈vi|)jj =

|〈vi|vi〉|2;

7. IG(Mi,j) is the binary operator on HG such that IG(Mi,j)(|v〉, |w〉) is the element
vij such that M = (vij) is the m×m unitary complex matrix for which M |v〉 =

|w〉.

From the notion of quantum communication structure, satisfatibility relation |=s

is defined as in [9]. For modal formulas it is defined as:

A |=s KIϕ if, and only if, for all r ∈ HG such that r ≈I s, A |=r ϕ.

3.2.3 Quantum communication axiomatics

In this section a theory T for quantum communication environments will be
defined. It is presupposed that a derivability relation ` is defined according to
some classical calculus for first-order logic, for instance the one in [9], and only
additional axioms and rules of T will be specified.

The axiomatization of T consists of four parts, each dealing with one aspect of
communication systems. The first part of T has axioms to express that the set of
possible messages is an m-dimensional Hilbert space, where m is the maximum
length of the messages inMG, and that the Hilbert space is a orthocomplemented
lattice.

A1. (~v1 ∨ · · · ∨ ~vn) ∧ (¬i = j → ¬(~vi ∧ ~vj))
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3. Logic and Quantum mechanics

A2. (α×v ¬vα = ~0) ∧ (α +v ¬vα = ~1) ∧ (¬v¬vα = α)

A3. (α ≤ β → ¬vβ ≤ ¬vα) ∧ (α×v (¬vα +v (α×v β)) ≤ β)

The second part of T has axioms to state the properties of the quantum probabi-
lity operator for quantum communication environments.

A4. 0 ≤ P (α) ∧ P (α) ≤ 1

A5. P (α +v ¬vβ) = 1

A6. P (α×v β) + P (α×v ¬vβ) = P (α)

A7. α = (a1 ×s ~v1) +v · · · +v (an ×s ~vn) → (P (β) = |a1|2 + · · · + |am|2 ∧ β =

(
√
P (β))−1 × ((a1 ×s ~v1) +v · · · +v (am ×s ~vm))) if the measurement was

done on the vectors in {~vi}i≤n.

The axioms explicitly formalize the main property of measurements in quantum
mechanics. Besides, in this approach the distributivity of probability is the
sentence α = β → P (α) = P (β), which is an immediate theorem due to the
Leibniz’s law for equality.

The third part of T has axioms for basis transformation, which corresponds
to the identity matrix when the basis is not changed and consecutive basis
transformations correspond to matrix multiplication.

A8. Mij(~v, ~w) = M∗
ij(~w,~v)

A9. (i = j →Mij(~v,~v) = 1) ∧ (¬i = j →Mij(~v,~v) = 0)

A10. Mij(~v, ~x) = (Mi1(~v, ~w)×Mi1(~w, ~x)) + · · ·+ (Mim(~v, ~w)×Mim(~w, ~x))

The computational basis for the transformations have been fixed, which is in
accordance with the fact that quantum measurements in other basis can be
carried out by combining unitary transformation and measurements on the
computational basis [11]. In this way, the transition probability operator T
(a quantum analogue of conditional probabilities) can be defined stating that
T (~vi, ~wj) = |Mi,j(~v, ~w)|2. Moreover, from axioms A8 and A10, it is possible to de-
rive unitarity of the transformations ((Mi1(~v, ~w)×M∗

j1(~v, ~w))+ · · ·+(Mim(~v, ~w)×
M∗

jm(~v, ~w))) = 1.

The fourth, and last, part of T has axioms for knowledge operators. These
axioms are the usual axioms of the epistemic logic [5], but in the context of the
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3.3. Logic of distributed knowledge

general framework for distributed knowledge developed in quantum communi-
cation environments.

A11. If T ` ϕ then T ` KGϕ.

A12. If I ⊆ J then T ` KIϕ→ KJϕ.

A13. KG(ϕ→ ψ)→ (KGϕ→ KGψ)

A14. KGϕ→ KGKGϕ

A15. ¬KGϕ→ KG¬KGϕ

Definition 17 (Theory of quantum communication environment). LetE = (G,S)

be a quantum communication environment. The theory of E is the first-order theory
T with the axioms and rules A1-A15 defined above plus a complete axiomatization for
algebraically closed fields.

Quantum communication environments is sound and complete system, but the
language is very expressive and decidability has not been proved. Also it uses
Hilbert spaces, which may rise many problems as in Quantum logic.

3.3 Logic of distributed knowledge

Logic of distributed knowledge S5n(ED) is an epistemic logic, which allows to
reason about distributed systems. Distributed knowledge of A within a group of
agents G means that A follows from what the members of G individually know.
For instance, A is distributed knowledge in group G (denoted DGA ) consisting
of three agents of which the first one knows B, the second one knows B → C,
and the third one knows B ∧ C → A.

The language of S5n(ED) contains:

• Symbols of atomic propositions: p1, p2, p3, q1, q2, q3, ....;

• Symbols of formulas: A1, A2, A3, B1, B2, ....;

• Logical connectives: ∧,∨,¬,→;

• Set of agents N : a1, a2, a3, ..., an;

• Operators: E,D,K1, K2, ..., Kn;
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Formula KaA means “agent a knows A”, formula EA expresses “everybody
knows that A”.

Definition 18 (Syntax of logic of distributed knowledge). The language of logic
of distributed knowledge has the following syntax:

A := p | ¬A | A ∨ A | A ∧ A | A→ A | KaA | DGA | EA

where p is any atomic proposition, a ∈ N,G ⊆ N .

W. van der Hoek and J.J. -Ch. Meyer defined Hilbert style calculus for logic
S5n(ED) in [45]:

• Any axiomatization for propositional logic.

• Axioms for knowledge:

K1. (KaA ∧Ka(A→ B))→ KaB

K2. KaA→ A

K3. KaA→ KaKaA

K4. ¬KaA→ Ka¬KaA

• Axioms for knowledge of everybody:

E1. (K1A ∧ ... ∧KnA)→ EA

E2. EA→ (K1A ∧ ... ∧KnA)

• Axioms for distributed knowledge:

D1. KaA→ DA

D2. (DA ∧D(A→ B))→ DB

D3. DA→ A

D4. DA→ DDA

D5. ¬DA→ D¬DA

• Rules:

A,A→ B

B
(R1)

A

KaA
(R2)

A

DA
(R3)
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Gentzen style and Kanger style sequent calculi for logic S5n(ED) are defined in
[18]. Also you may find more about distributed knowledge in the works done
by R. Fagin, J.Y. Halpern, S. Negri, R. Pliuškevičius in [14, 22, 23, 37].

3.3.1 Distributed knowledge and quantum systems

Distributed knowledge is the information obtainable by pooling together and
closing under logical inference the "knowledge" of each of the "parts" (agents).
According to this view, the implicit knowledge of a group is the same as its
distributed knowledge. In other words, the information carried by a complex
system is nothing but the "sum" of the information carried by its parts.

While this standard answer is adequate for classical physics, it fails for quantum
systems. An entangled system carries more information than the sum of its
parts. For instance, in a Bell state |00〉 + |11〉 (entangled quantum state) when
the information stored in two subsystems is correlated according to the identity
rule, the agents associated to these subsystems will never recover fully the
information possessed by the global system if they cannot correlate the results
of their individual observations. In the Bell state the two subsystems 1 and 2 are
in the mixed state.

Moreover, there are also examples of social situations in which this standard
answer fails for real-life agents: whenever a group of agents can cooperate to
make joint observations, the implicit knowledge of the group will typically go
beyond distributed knowledge, which only takes into account the results of
separate, uncorrelated observations by each of the members of the group.
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Chapter 4

Logic of Correlated knowledge

Logic of correlated knowledge is an epistemic logic enriched by observational
capabilities of agents. Traditionally, agents can make a logical inference, positive
and negative introspection and their knowledge is truthful. Applications of the
epistemic logic cover fields such as distributed systems, merging of knowledge
bases, robotics or network security in computer science and artificial intelligence.
By adding observational capabilities to agents, logic of correlated knowledge
can be applied, in addition, to reason about multi-partite quantum systems and
quantum correlations.

Quantum entanglement posed a problem to the lattice-theoretical approach
of traditional Quantum Logic [2, 44]. Logic of correlated knowledge (LCK)
abstracts away from Hilbert spaces and suggests to accomodate correlation
models to quantum systems and quantum entanglement. Alexandru Baltag and
Sonja Smets introduced logic of correlated knowledge and Hilbert style proof
system in [5]. Our main focus is to present an automated proof search system for
logic of correlated knowledge and to prove decidability of LCK, in this chapter.
We are using the ideas of semantic internalization, suggested by Sara Negri in
[30], to get algorithmic properties for sequent calculus.

We start from defining syntax, semantics, and the Hilbert style proof system
for logic of correlated knowledge in Section 4.1. In Section 4.2, we present
Gentzen style sequent calculus for LCK and properties of the proof system.
Soundness and the properties of admissibility of weakening, contraction, cut,
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and invertibility of rules are proved in Sections 4.3 and 4.4. In Section 4.5 we
show completeness of the sequent calculus GS-LCK. And we finalize by proving
decidability of logic of correlated knowledge in Section 4.6.

4.1 Logic of correlated knowledge

4.1.1 Syntax

Consider a set N = {a1, a2, ..., an} of agents. Each agent can perform its local
observations. Given sets Oa1 , ..., Oan of possible observations for each agent,
a joint observation is a tuple of observations o = (oa)a∈N ∈ Oa1 × ... × Oan or
o = (oa)a∈I ∈ OI , where OI := ×a∈IOa and I ⊆ N . Joint observations together
with results r ∈ R make new atomic formulas or.

Each agent can know some information, and it is written as Ka1A or K{a1}A,
which means that the agent a1 knows A. A group of agents can also know some
information and it is written as K{a1,a2,a3}A or KIA, where I = {a1, a2, a3}. A
more detailed description about the knowledge operator K is given in [14, 45].

Syntax of logic of correlated knowledge is defined as follows:

Definition 19 (Syntax of logic of correlated knowledge). The language of logic of
correlated knowledge has the following syntax:

F := p | or | ¬F | F ∨ F | F ∧ F | F → F | KIF

where p is any atomic proposition, o = (oa)a∈I ∈ OI , r ∈ R, and I ⊆ N .

4.1.2 Semantics

Consider a system, composed of N components or locations. Agents can be
associated to locations, where they will perform observations. States (configura-
tions) of the system are functions s : Oa1 × ...×Oan → R or sI : OI → R, where
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I ⊆ N and a set of results R is in the structure (R,Σ) together with an abstract
operation Σ : P(R) → R of composing results. P(R) is a power set of R. For
every joint observation e ∈ OI , the local state sI is defined as:

sI((ea)a∈I) := Σ{s(o) : o ∈ Oa1 × ...×Oan such that oa = ea for all a ∈ I}

If s and t are two possible states of the system and a group of agents I can make
exactly the same observations in these two states, then these states are observa-
tionally equivalent to I , and it is written as s I∼ t. Observational equivalence is
defined as follows:

Definition 20 (Observational equivalence). Two states s and t are observationally
equivalent s I∼ t iff sI = tI .

A model of logic of correlated knowledge is a multi-modal Kripke model [25],
where the relations between states mean observational equivalence. It is defined
as:

Definition 21 (Model of logic of correlated knowledge). For a set of states S, a
family of binary relations { I∼}I⊆N ⊆ S × S and a function of interpretations V : S →
(P → {true, false}), where P is a set of atomic propositions, the model of logic of
correlated knowledge is a multi-modal Kripke model (S, { I∼}I⊆N , V ) that satisfies the
following conditions:

1. For each I ⊆ N , I∼ is labelled equivalence relation;

2. Information is monotonic: if I ⊆ J , then J∼⊆ I∼;

3. Observability principle: if s N∼ s′, then s = s′;

4. Vacuous information: s ∅∼ s′ for all s, s′ ∈ S.

The satisfaction relation |= for model M , state s and formulas or and KIA is
defined as follows:

• M, s |= KIA iff M, t |= A for all states t I∼ s.

• M, s |= or iff sI(o) = r.
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The formula KIA means that the group of agents I carries the information that
A is the case, and or means that r is the result of the joint observation o.

If formulaA is true in any state of any model, then it is named as a valid formula.

4.1.3 Hilbert style calculus HS-LCK

Alexandru Baltag and Sonja Smets defined the Hilbert style calculus for logic of
correlated knowledge in [5]. Fixing a finite set N = {a1, ..., an} of agents, a finite
result structure (R,Σ) and a tuple of finite sets ~O = (Oa1 , ..., Oan) of observations,
for every set I, J ⊆ N , every joint observation o ∈ OI , OI = ×a∈IOa, and
results r, p ∈ R, the Hilbert style calculus for logic of correlated knowledge over
(R,Σ, ~O) is as follows:

• Axioms:

H1. A→ (B → A)

H2. (A→ (B → C))→ ((A→ B)→ (A→ C))

H3. (¬A→ ¬B)→ (B → A)

H4. KI(A→ B)→ (KIA→ KIB) (Kripke’s axiom)

H5. KIA→ A (Truthfulness)

H6. KIA→ KIKIA (Positive introspection)

H7. ¬KIA→ KI¬KIA (Negative introspection)

H8. KIA→ KJA, where I ⊆ J (Monotonicity of group knowledge)

H9. A→ KNA (Observability)

H10. ∧
o∈OI

∨
r∈R

or (Observations always yield results)

H11. or → ¬op, where r 6= p (Observations have unique results)

H12. orI → KIo
r
I (Groups know the results of

their joint observations)
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H13. ( ∧
o∈OI

oro ∧KIA)→ K∅( ∧
o∈OI

oro → A)

(Group knowledge is correlated
knowledge (i.e. is based on joint
observations))

H14. ∧
o∈ē
oro → eΣ{ro:o∈ē}, where e ∈ OI , ē := {o = (oi)i∈N ∈ Oi1× ...×Oin :

oi = ei for all i ∈ I}. (Result composition axiom)

• Rules:

A,A→ B

B
(Modus ponens)

A

KIA
(KI − necessitation)

Sets I, J may be empty in axioms H4 - H8 and in rule (KI − necessitation).

The Hilbert style calculus HS-LCK for logic of correlated knowledge is sound
and complete with respect to correlation models over (R,Σ, ~O) [5].
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4.2 Gentzen style sequent calculus GS-LCK

Gerhard Gentzen introduced sequent calculus in 1934 [15]. Sequents in the
system GS-LCK are statements of the form Γ ⇒ ∆, where Γ and ∆ are finite,
possibly empty multisets of relational atoms s I∼ t and labelled formulas s : A,
where s, t ∈ S, I ⊆ N and A is any formula in the language of logic of correlated
knowledge. The formula s : A means s |= A, and s

I∼ t is an observational
equivalence or relation between the states in the model of logic of correlated
knowledge.

The sequent calculus consists of axioms and rules. Applying rules to the se-
quents, a proof-search tree for the root sequent is constructed. If axioms are in all
the leaves of the proof-search tree, then the root sequent is called as a provable
sequent and the conclusion ∆ follows from the premise Γ of the root sequent.

Fixing a finite set N = {a1, ..., an} of agents, a finite result structure (R,Σ) and
a tuple of finite sets ~O = (Oa1 , ..., Oan) of observations, for every set I, J ⊆ N ,
every joint observation o ∈ OI , OI = ×a∈IOa, and results r, p ∈ R, the Gentzen
style sequent calculus GS-LCK for logic of correlated knowledge over (R,Σ, ~O)

is as follows:

• Axioms:

� s : p,Γ⇒ ∆, s : p.

� s : or,Γ⇒ ∆, s : or.

� s : or1 , s : or2 ,Γ⇒ ∆, where r1 6= r2.

• Propositional rules:

Γ⇒ ∆, s : A

s : ¬A,Γ⇒ ∆
(¬ ⇒)

s : A,Γ⇒ ∆

Γ⇒ ∆, s : ¬A
(⇒ ¬)

s : A,Γ⇒ ∆ s : B,Γ⇒ ∆

s : A ∨B,Γ⇒ ∆
(∨ ⇒)

Γ⇒ ∆, s : A, s : B

Γ⇒ ∆, s : A ∨B
(⇒ ∨)

s : A, s : B,Γ⇒ ∆

s : A ∧B,Γ⇒ ∆
(∧ ⇒)

Γ⇒ ∆, s : A Γ⇒ ∆, s : B

Γ⇒ ∆, s : A ∧B
(⇒ ∧)

47



4. Logic of Correlated knowledge

Γ⇒ ∆, s : A s : B,Γ⇒ ∆

s : A→ B,Γ⇒ ∆
(→⇒)

s : A,Γ⇒ ∆, s : B

Γ⇒ ∆, s : A→ B
(⇒→)

• Knowledge rules:

t : A, s : KIA, s
I∼ t,Γ⇒ ∆

s : KIA, s
I∼ t,Γ⇒ ∆

(KI ⇒)
s

I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI)

The rule (KI ⇒) requires that I 6= N and t : A be not in Γ. The rule (⇒ KI)

requires that I 6= N and t be not in the conclusion. Set I maybe an empty
set in both rules.

s : A, s : KNA, s
N∼ s,Γ⇒ ∆

s : KNA, s
N∼ s,Γ⇒ ∆

(KN ⇒)
s

N∼ s,Γ⇒ ∆, s : A

Γ⇒ ∆, s : KNA
(⇒ KN)

The rule (KN ⇒) requires that s : A be not in Γ. The rule (⇒ KN) requires
that s : A be not in ∆.

• Observational rules:

s
I∼ t, {s : oro}o∈OI

, {t : oro}o∈OI
,Γ⇒ ∆

{s : oro}o∈OI
, {t : oro}o∈OI

,Γ⇒ ∆
(OE)

The rule (OE) requires that I 6= ∅ and formulas s I∼ t, s : oro and t : oro be
not in Γ, where o ∈ OI .

{s : orI ,Γ⇒ ∆}r∈R
Γ⇒ ∆

(OY R)

The rule (OY R) requires:

1. s : orI be not in Γ for all r ∈ R and s : or1I be in ∆ for some r1 ∈ R.

2. I 6= ∅.

s : e
Σ{roN :oN∈ē}
I , {s : o

roN
N }oN∈ē,Γ⇒ ∆

{s : o
roN
N }oN∈ē,Γ⇒ ∆

(CR)

The rule (CR) requires that s : e
Σ{roN :oN∈ē}
I be not in Γ.
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• Substitution rules:

s : p, t : p, s
N∼ t,Γ⇒ ∆

t : p, s
N∼ t,Γ⇒ ∆

(Sub(p)⇒)
s : or, t : or, s

I∼ t,Γ⇒ ∆

t : or, s
I∼ t,Γ⇒ ∆

(Sub(or)⇒)

The rules (Sub(p)⇒) and (Sub(or)⇒) require that s : p and s : or be not

in Γ, accordingly.

• Relational rules:

s
I∼ s,Γ⇒ ∆

Γ⇒ ∆
(Ref)

s
I∼ t, s

I∼ s′, s′
I∼ t,Γ⇒ ∆

s
I∼ s′, s′

I∼ t,Γ⇒ ∆
(Trans)

The rule (Ref) requires that s be in the conclusion and s
I∼ s be not in Γ.

The rule (Trans) requires that s I∼ t be not in Γ.

s′
I∼ t, s

I∼ s′, s
I∼ t,Γ⇒ ∆

s
I∼ s′, s

I∼ t,Γ⇒ ∆
(Eucl)

s
I∼ t, s

J∼ t,Γ⇒ ∆

s
J∼ t,Γ⇒ ∆

(Mon)

The rule (Mon) stands for monotonicity and requires that I ⊆ J . Sets I, J
may be empty. The rules (Eucl) and (Mon) require that s′ I∼ t and s I∼ t be
not in Γ, accordingly.

The sequent calculus GS-LCK is sound and complete with respect to correlation
models over (R,Σ, ~O) [19, 20]. If a sequent is provable in GS-LCK, then the
formula of a sequent is valid. Also, all valid formulas are provable in GS-LCK,
which expresses the completeness of the system.

Theorem 1 (Soundness and completeness of GS-LCK). The sequent calculus GS-
LCK is sound and complete with respect to correlation models over (R,Σ, ~O).

It also has beautiful properties of invertibility and admissibility. If the sequent of
the conclusion of the rule is provable, then sequents of the premises of the rule
are provable, too. This property is named as invertibility of the rule. The rule
can be applied inverted in the proof-search tree. The properties of weakening,
contraction, and cut are admissible in GS-LCK, which are crucial in making an
automated proof system.
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4. Logic of Correlated knowledge

Theorem 2 (Properties of GS-LCK). The sequent calculus GS-LCK has the following
properties:

• Invertibility of rules.

• Admissibility of weakening.

• Admissibility of contraction.

• Admissibility of cut.

• Termination.

Proofs of soundness, completeness, and the properties of GS-LCK are given in
the next sections.
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4.3 Proof of soundness of GS-LCK

Definition 22 (Extended syntax). Extended syntax of LCK is as follows:

A := s : A1 | s
I∼ t | s : A1 ∨ A | s : A1 ∧ A | s : A1 → A

A1 := p | or | ⊥ | > | ¬A1 | A1 ∨ A2 | A1 ∧ A2 | A1 → A2 | KIA1

where p is any atomic proposition, o ∈ OI , I ⊆ N, r ∈ R and s, t ∈ S.

Definition 23 (Extended semantics). If s, t, v ∈ S and M ∈ M, then the truthful-
ness of the formula in the state v of the model M is defined as follows:

• v |= s : A iff s |= A.

• v |= s
I∼ t iff s I∼ t ∈ R.

Commas "," in Γ of the sequent Γ⇒ ∆ mean conjunction "∧", commas "," in ∆ -
disjunction "∨". The arrow "⇒" stands for implication "→".

Definition 24 (Formula of the sequent). If Seq is a sequent Γ ⇒ ∆, then the for-
mula of the sequent F (Seq) is obtained by:

1) putting Γ and ∆ in parentheses;

2) replacing empty Γ by s : >;

3) replacing empty ∆ by s : ⊥;

4) replacing commas "," by conjunction "∧" in Γ;

5) replacing commas "," by disjunction "∨" in ∆;

6) replacing "⇒" by implication "→".

Example 5. F (Seq) := (t : A1 ∧ s : KIA1 ∧ s
I∼ t ∧ t : A2) → (s : B1 ∨ t : B2) is

the formula of the sequent Seq := t : A1, s : KIA1, s
I∼ t, t : A2 ⇒ s : B1, t : B2.

Definition 25 (Sequent without labels and relational atoms). If Seq is a sequent,
then a sequent without labels and relational atoms of Seq is obtained removing all labels
near formulas and all relational atoms from Seq.
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4. Logic of Correlated knowledge

Lemma 1 (Validity of the formula of the sequent). If the formula of the sequent
Seq is valid, then the formula of the sequent Seq without labels and relational atoms is
valid, as well.

Proof.
Suppose we have a set of states S of a model M . For each formula of the sequent
we have a tuple of its labels (s1, ..., sl) ∈ S × ... × S. If the formula with la-
bels (s1, ..., sl) is valid, then it is valid with substituted labels (s′, ..., s′), because
{(s′, ..., s′) : s′ ∈ S} ⊆ {(s1, ..., sl) : s1, ..., sl ∈ S}. Having s |= s′ : A, iff s′ |= A,
we can remove the label s′.
All relational atoms become s′ I∼ s′, I ⊆ N . They are valid because of reflexivity
in models. Applying the rules of GS-LCK they appear only in the first argu-
ment of implication of the formula of the sequent. We can remove relational
atoms, because having a valid formula (A1 ∧ ... ∧ Al) → (B1 ∨ ... ∨ Bk) and
removing valid formula Ai from the first argument of implication, the validity
is maintained. �

Theorem 3 (Soundness of GS-LCK). If sequent S is provable in GS-LCK, then the
formula of the sequent S without labels and relational atoms is valid with respect to
correlation models over (R,Σ, ~O).

Proof.
We prove the validity of all axioms and soundness of all the rules of GS-LCK:

• Axioms:

− Formula of the axiom s : p,Γ⇒ s : p,∆ is valid, because it is true in
any state of any model. The same is for the axiom s : or,Γ⇒ s : or,∆.

− Validity of the formula of the axiom s : or1 , s : or2 ,Γ ⇒ ∆, where
r1 6= r2, follows from the axiom "H11. or → ¬op, where r 6= p".

• Propositional rules as in [31].

• Knowledge rules:
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4.3. Proof of soundness of GS-LCK

− Rule (KI ⇒):

t : A, s : KIA, s
I∼ t,Γ⇒ ∆

s : KIA, s
I∼ t,Γ⇒ ∆

(KI ⇒), I 6= N.

We prove by contraposition that, if the formula of the premise (t :

A, s : KIA, s
I∼ t,Γ⇒ ∆) of the rule (KI ⇒) is valid, then the formula

of the conclusion (s : KIA, s
I∼ t,Γ⇒ ∆) is valid, too.

The formula of the conclusion (s : KIA, s
I∼ t,Γ⇒ ∆) is false, when

s : KIA, s I∼ t and all formulas in Γ are true, and all formulas in ∆ are
false. By semantic definition of the knowledge operator KI , formula
A is true in all the states accessible from the state s by relation I . States
t are accessible from the state s, because s I∼ t is true, therefore the
formula t : A is true. If t : A, s : KIA, s I∼ t and all formulas in Γ are
true and all formulas in ∆ are false, then the formula of the premise
(t : A, s : KIA, s

I∼ t,Γ⇒ ∆) is false.

− Rule (⇒ KI):

s
I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI), I 6= N and t is not in the conclusion.

The formula of conclusion (Γ⇒ ∆, s : KIA) is false, when all formu-
las in Γ are true and all formulas in ∆ and s : KIA are false. If the
formula s : KIA is false, then there exists a state t accessible from
state s by relation I , where A is false. If s I∼ t and all formulas in Γ

are true and all formulas in ∆ and t : A are false, then the formula of
the premise (s

I∼ t,Γ⇒ ∆, t : A) is false.

The label t cannot be in the conclusion, because we can get situations,
where the formula of the premise (s

I∼ t,Γ ⇒ ∆, t : A) is valid and
the formula of the conclusion (Γ⇒ ∆, s : KIA) is not. An example:

s
I∼ t, t : A⇒ t : A

t : A⇒ s : KIA
(⇒ KI)

− The validity of the rules (KN ⇒) and (⇒ KN) is proved in the same
way.
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4. Logic of Correlated knowledge

• Observational rules:

− Rule (OY R):

{s : or,Γ⇒ ∆}r∈R
Γ⇒ ∆

(OY R)

If R is a set of results, and o is a joint observation, then there exists
a result r ∈ R that or is true. If there exists r that or is true and
all formulas in Γ are true and all formulas in ∆ are false, then one
formula of premises ({s : or,Γ⇒ ∆}r∈R) is false.

− Rule (CR):

s : eΣ{ro:o∈ē}, {s : oro}o∈ē,Γ⇒ ∆

{s : oro}o∈ē,Γ⇒ ∆
(CR)

The contraposition is proved by the axiom "H14. ∧
o∈ē
oro → eΣ{ro:o∈ē}".

− The soundness of rules (OE), ( Sub(p)⇒) and ( Sub(or)⇒) is proved
in the same way.

• Relational rules:

− Rule (Mon):

s
I∼ t, s

J∼ t,Γ⇒ ∆

s
J∼ t,Γ⇒ ∆

(Mon)

The contraposition follows from condition to models of LCK: 2. If
I ⊆ J then J∼⊆ I∼.

− The validity of rules (Ref), (Trans) and (Eucl) is proved in the same
way.

We have proved the validity of all axioms and soundness of all the rules of
GS-LCK. The statement of the theorem follows from lemma 1. �
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4.4 Proof of the properties of GS-LCK

Lemma 2 (Admissibility of contraction with atomic formulas).
If a sequent (Πatomic,Πatomic,Γ⇒ ∆,Λatomic,Λatomic) is provable in GS-LCK, then the
sequent (Πatomic,Γ ⇒ ∆,Λatomic) is also provable with the same bound of the height
of the proof in GS-LCK. Γ,∆ are any multisets of formulas. Πatomic,Λatomic are any
multisets of atomic formulas s : p, s : or, s

I∼ t.

Proof.
Lemma 2 is proved by induction on the height < h > of the proof of the sequent
(Πatomic,Πatomic,Γ⇒ ∆,Λatomic,Λatomic).

< h = 1 >

If the sequent (Πatomic,Πatomic,Γ ⇒ ∆,Λatomic,Λatomic) is an axiom, then the
sequent (Πatomic,Γ⇒ ∆,Λatomic) is an axiom too.

< h > 1 >

• The rule (KI ⇒) was applied in the last step of the proof of the sequent.

− One or two formulas of the principal pair is in Πatomic.

t : A, s : KIA, s
I∼ t, s

I∼ t,Π′atomic,Π
′
atomic,Γ

′ ⇒ ∆,Λatomic,Λatomic

s : KIA, s
I∼ t, s

I∼ t,Π′atomic,Π
′
atomic,Γ

′ ⇒ ∆,Λatomic,Λatomic

(KI ⇒)

The height of the proof of the premise of application of the rule
(KI ⇒) reduced to < h − 1 >. By the induction hypothesis the
sequent (t : A, s : KIA, s

I∼ t,Π′atomic,Γ
′ ⇒ ∆,Λatomic) is provable

with the height h′, where h′ ≤ h − 1. The sequent of the lemma is
proved by applying the rule (KI ⇒):

t : A, s : KIA, s
I∼ t,Π′atomic,Γ

′ ⇒ ∆,Λatomic

s : KIA, s
I∼ t,Π′atomic,Γ

′ ⇒ ∆,Λatomic

(KI ⇒)

Other cases are prooved in a similar way.
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4. Logic of Correlated knowledge

− Any formula of the principal pair is not in Πatomic.

t : A, s : KIA, s
I∼ t,Πatomic,Πatomic,Γ

′ ⇒ ∆,Λatomic,Λatomic

s : KIA, s
I∼ t,Πatomic,Πatomic,Γ′ ⇒ ∆,Λatomic,Λatomic

(KI ⇒)

By the induction hypothesis the sequent (t : A, s : KIA, s
I∼ t,Πatomic,Γ

′ ⇒
∆,Λatomic) is provable with the height h′, where h′ ≤ h − 1. The
sequent of the lemma is proved by applying the rule (KI ⇒):

t : A, s : KIA, s
I∼ t,Πatomic,Γ

′ ⇒ ∆,Λatomic

s : KIA, s
I∼ t,Πatomic,Γ′ ⇒ ∆,Λatomic

(KI ⇒)

• The cases of the remaining rules are considered similarly.

�

Lemma 3 (Substitution). If a sequent (Γ⇒ ∆) is provable in GS-LCK, then sequent
(Γ(t/s) ⇒ ∆(t/s)) is also provable with the same bound of the height of the proof in
GS-LCK.

Proof.
Lemma 3 is proved by induction on the height < h > of the proof of the sequent
(Γ⇒ ∆).

< h = 1 >

If the sequent (Γ ⇒ ∆) is an axiom, then the sequent (Γ(t/s) ⇒ ∆(t/s)) is an
axiom as well.

< h > 1 >

• The rule (⇒ KI) was applied in the last step of the proof of the sequent.

s
I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI)

− Substitution (l/z).
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4.4. Proof of the properties of GS-LCK

By the induction hypothesis the sequent (s
I∼ t,Γ(l/z)⇒ ∆(l/z), t : A)

is provable with the height h′, where h′ ≤ h− 1. The sequent of the
lemma is proved by applying the rule (⇒ KI):

s
I∼ t,Γ(l/z)⇒ ∆(l/z), t : A

Γ(l/z)⇒ ∆(l/z), s : KIA
(⇒ KI)

− Substitution (l/t).

There is no label t in the sequent Γ ⇒ ∆, s : KIA because of the
requirement of the application of the rule (⇒ KI) that t is a new label.

− Substitution (l/s) and l 6= t.

By the induction hypothesis the sequent (l
I∼ t,Γ(l/s)⇒ ∆(l/s), t : A)

is provable with the height h′, where h′ ≤ h− 1. The sequent of the
lemma is proved by applying the rule (⇒ KI):

l
I∼ t,Γ(l/s)⇒ ∆(l/s), t : A

Γ(l/s)⇒ ∆(l/s), l : KIA
(⇒ KI)

− Substitution (l/s) and l = t.

By the induction hypothesis with substitution (w/t), the sequent (s
I∼

w,Γ⇒ ∆, w : A) is provable with the height h′, where h′ ≤ h− 1. The
label w is a new label absent in the sequent. By the inducion hypothe-
sis with substitution (l/s), the sequent (l

I∼ w,Γ(l/s)⇒ ∆(l/s), w : A)

is provable with the height h′′, where h′′ ≤ h− 1. The sequent of the
lemma is proved by applying the rule (⇒ KI):

l
I∼ w,Γ(l/s)⇒ ∆(l/s), w : A

Γ(l/s)⇒ ∆(l/s), l : KIA
(⇒ KI)

• The rule (Ref) was applied in the last step of the proof of the sequent.

s
I∼ s,Γ⇒ ∆

Γ⇒ ∆
(Ref)

− Substitution (s/t), and relational atom s
I∼ t is in Γ.
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4. Logic of Correlated knowledge

By the induction hypothesis, the sequent (s
I∼ s, s

I∼ s,Γ(s/t) ⇒
∆(s/t)) is provable with the height h′, where h′ ≤ h− 1. The sequent
of the lemma is proved by applying Lemma 2.

− Other substitutions are considered in a similar way.

• The cases of the remaining rules are considered similarly.

�

Theorem 4 (Admissibility of weakening). If a sequent (Γ⇒ ∆) is provable in GS-
LCK, then a sequent (Π,Γ⇒ ∆,Λ) is provable with the same bound of the height of the
proof in GS-LCK, too. Π,Γ,∆,Λ are any multisets of formulas.

Proof.
Theorem 4 is proved by induction on the height< h > of the proof of the sequent
(Γ⇒ ∆).

< h = 1 >

If the sequent (Γ⇒ ∆) is an axiom, then the sequent (Π,Γ⇒ ∆,Λ) is an axiom,
as well.

< h > 1 >

• The rule (⇒ KI) was applied in the last step of the proof of the sequent.

s
I∼ t,Γ⇒ ∆, t : A

Γ⇒ ∆, s : KIA
(⇒ KI)

− A new label t for the application of the rule (⇒ KI) is in Π or Λ.
By Lemma 3, the sequent (s

I∼ t,Γ⇒ ∆, t : A) with substitution (l/t)

is provable. By the induction hypothesis, the sequent (s
I∼ l,Π,Γ⇒

∆,Λ, l : A) is provable with the height h′, where h′ ≤ h− 1. Here l is
a new label, absent in Π,Γ,∆ and Λ. The sequent of the theorem is
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4.4. Proof of the properties of GS-LCK

proved by applying the rule (⇒ KI):

s
I∼ l,Π,Γ⇒ ∆,Λ, l : A

Π,Γ⇒ ∆,Λ, s : KIA
(⇒ KI)

− The new label t for application of the rule (⇒ KI) is absent in Π or Λ.
By the induction hypothesis, the sequent (s

I∼ t,Π,Γ ⇒ ∆,Λ, t : A)

is provable with the height h′, where h′ ≤ h− 1. The sequent of the
theorem is proved by applying the rule (⇒ KI):

s
I∼ t,Π,Γ⇒ ∆,Λ, t : A

Π,Γ⇒ ∆,Λ, s : KIA
(⇒ KI)

• The cases of the remaining rules are considered similarly.

�

Theorem 5 (Invertibility of rules). All the rules of GS-LCK are invertible with the
same bound of the height of the proof.

Proof.
Theorem 5 is proved for each rule separately.
The rule (KI ⇒)

t : A, s : KIA, s
I∼ t,Γ⇒ ∆

s : KIA, s
I∼ t,Γ⇒ ∆

(KI ⇒)

Invertibility is proved by induction on the height < h > of the proof of the
sequent of the conclusion of the rule (KI ⇒).

< h = 1 >

If the sequent (s : KIA, s
I∼ t,Γ ⇒ ∆) is an axiom, then the sequent (t : A, s :

KIA, s
I∼ t,Γ⇒ ∆) is an axiom, too.

< h > 1 >
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4. Logic of Correlated knowledge

• The formula s I∼ t is the principal formula.

− The rule ( Sub(or)⇒) was applied in the last step of the proof of the
sequent.

s : or, s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

(Sub(or)⇒)

By the induction hypothesis, the sequent (t : A, s : or, s : KIA, s
I∼

t, t : or,Γ′ ⇒ ∆) is provable with the height h′, where h′ ≤ h− 1. The
sequent of the premise of the rule (KI ⇒) is proved by applying the
rule ( Sub(or)⇒):

t : A, s : or, s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

t : A, s : KIA, s
I∼ t, t : or,Γ′ ⇒ ∆

(Sub(or)⇒)

− For rules (KI ⇒), (Trans), (Eucl), (Mon) in a similar way.

• The case where the formula s : KIA is the principal formula and the case
where formulas s I∼ t and s : KIA both are not principal formulas are
considered similarly.

Invertibility of the remaining rules is proved in a similar way.
�

Theorem 6 (Admissibility of contraction). If a sequent (Π,Π,Γ⇒ ∆,Λ,Λ) is pro-
vable in GS-LCK, then sequent (Π,Γ⇒ ∆,Λ) is provable with the same bound of the
height of the proof in GS-LCK, too. Π,Γ,∆,Λ are any multisets of formulas.

Proof.
Theorem 6 is proved by induction on the ordered tuple pair < c, h >, where c is
the sum of complexity of all the formulas in Π and Λ, and h is the height of the
proof of the sequent (Π,Π,Γ⇒ ∆,Λ,Λ).

< c ≥ 1, h = 1 >
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4.4. Proof of the properties of GS-LCK

If the sequent (Π,Π,Γ⇒ ∆,Λ,Λ) is an axiom, then the sequent (Π,Γ⇒ ∆,Λ) is
an axiom, too.

< c ≥ 1, h > 1 >

• The rule (¬ ⇒) was applied in the last step of the proof of the sequent.

− The principal formula is in Π.

s : ¬A,Π′,Π′,Γ⇒ ∆,Λ,Λ, s : A

s : ¬A, s : ¬A,Π′,Π′,Γ⇒ ∆,Λ,Λ
(¬ ⇒)

By invertibility of the rule (¬ ⇒), the sequent (Π′,Π′,Γ⇒ ∆,Λ,Λ, s :

A, s : A) is provable. The value of the ordered tuple pair has reduced
to < c − 1, h >. By the induction hypothesis, the sequent (Π′,Γ ⇒
∆,Λ, s : A) is provable with the height h′, where h′ ≤ h − 1. The
sequent of the theorem is proved by applying the rule (¬ ⇒):

Π′,Γ⇒ ∆,Λ, s : A

s : ¬A,Π′,Γ⇒ ∆,Λ
(¬ ⇒)

− The principal formula is absent in Π.

Π,Π,Γ⇒ ∆,Λ,Λ, s : A

s : ¬A,Π,Π,Γ⇒ ∆,Λ,Λ
(¬ ⇒)

By the induction hypothesis, the sequent (Π,Γ ⇒ ∆,Λ, s : A) is
provable with the height h′, where h′ ≤ h − 1. The sequent of the
theorem is proved by applying the rule (¬ ⇒):

Π,Γ⇒ ∆,Λ, s : A

s : ¬A,Π,Γ⇒ ∆,Λ
(¬ ⇒)

• The cases of the remaining rules are considered similarly.

�

Theorem 7 (Admissibility of cut). If sequents (Γ ⇒ ∆, F ) and (F,Π ⇒ Λ) are
provable in GS-LCK, then sequent (Π,Γ⇒ ∆,Λ) is provable in GS-LCK too. F is any
formula and Π,Γ,∆,Λ are any multisets of formulas.
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4. Logic of Correlated knowledge

Proof.
Theorem 7 is proved by induction on the ordered tuple pair < c, h >, where c
is the complexity of formula F , and h is the sum of heights of the proof of the
sequents (Γ⇒ ∆, F ) and (F,Π⇒ Λ).

< c ≥ 1, h = 2 >

The sequents (Γ ⇒ ∆, F ) and (F,Π ⇒ Λ) are the axioms. If formula F is not
principal in one at least of the sequents, then (Π,Γ ⇒ ∆,Λ) is an axiom. If
formula F is principal in both sequents, then F should be in Γ and ∆ or only
in Γ (the case where the axiom is of type s : or1 , s : or2 ,Γ ⇒ ∆). Therefore the
sequent (Π,Γ⇒ ∆,Λ) is also an axiom.

< c ≥ 1, h > 2 >

• Formula F is not principal in the sequent (Γ⇒ ∆, F ).

− The rule (Sub(or)⇒) was applied in the last step of the proof of the
sequent (Γ⇒ ∆, F ).

s : or, t : or, s
N∼ t,Γ⇒ ∆, F

t : or, s
N∼ t,Γ⇒ ∆, F

(Sub(or)⇒)

By the induction hypothesis, the sequent (s : or, t : or, s
N∼ t,Π,Γ ⇒

∆,Λ) is provable. The sequent of the theorem is proved by applying
the rule (Sub(or)⇒):

s : or, t : or, s
N∼ t,Π,Γ⇒ ∆,Λ

t : or, s
N∼ t,Π,Γ⇒ ∆,Λ

(Sub(or)⇒)

− For applications of other rules in a similar way.

• Formula F is not principal in the sequent (F,Π⇒ Λ).
The case is considered in a similar way.

• Formula F is principal in both sequents (Γ⇒ ∆, F ) and (F,Π⇒ Λ).
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4.4. Proof of the properties of GS-LCK

− The sequent (Γ⇒ ∆, F ) is an axiom and the rule (OE) was applied
in the last step of the proof of the sequent (F,Π⇒ Λ).

s : o
ro1
1 ,Γ⇒ ∆, s : o

ro1
1

s
I∼ t, s : o

ro1
1 , {s : oro}o∈{OI\o1}, {t : oro}o∈OI

,Π⇒ Λ

s : o
ro1
1 , {s : oro}o∈{OI\o1}, {t : oro}o∈OI

,Π⇒ Λ
(OE)

By the induction hypothesis, the sequent (s : o
ro1
1 , s

I∼ t, {s : oro}o∈{OI\o1}, {t :

oro}o∈OI
,Π,Γ⇒ ∆,Λ) is provable. The sequent of the theorem is pro-

ved by applying the rule (OE):

s : o
ro1
1 , s

I∼ t, {s : oro}o∈{OI\o1}, {t : oro}o∈OI
,Π,Γ⇒ ∆,Λ

s : o
ro1
1 , {s : oro}o∈{OI\o1}, {t : oro}o∈OI

,Π,Γ⇒ ∆,Λ
(OE)

− The cases of the remaining rules are considered similarly.

�
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4. Logic of Correlated knowledge

4.5 Proof of completeness of GS-LCK

Theorem 8 (Completeness of GS-LCK). If formula A is valid with respect to corre-
lation models over (R,Σ, ~O), then sequent (⇒ s : A) is provable in GS-LCK.

Proof.
The Hilbert style proof system HS-LCK for logic of correlated knowledge is
complete. Showing the provability of all valid formulas of HS-LCK in GS-LCK,
the completeness of GS-LCK is proved. Theorem 11 is proved by induction on
the number of steps < NSteps >, used to prove formula A in HS-LCK.

< NSteps = 1 >

Formula A is an axiom of calculus HS-LCK.

• The axiom "H4. KI(A→ B)→ (KIA→ KIB)", was used.

t : A, ...⇒ t : B, t : A t : B, t : A, ...⇒ t : B
(→⇒)

t : A→ B, t : A, s
I∼ t, s : KI(A→ B), s : KIA⇒ t : B

(KI ⇒)
t : A, s

I∼ t, s : KI(A→ B), s : KIA⇒ t : B
(KI ⇒)

s
I∼ t, s : KI(A→ B), s : KIA⇒ t : B

(⇒ KI)
s : KI(A→ B), s : KIA⇒ s : KIB

(⇒→)
s : KI(A→ B)⇒ s : KIA→ KIB

(⇒→)
⇒ s : KI(A→ B)→ (KIA→ KIB)

• The axiom "H8. KIA→ KJA, when I ⊆ J", was used.

t : A, s
I∼ t, s

J∼ t, s : KIA⇒ t : A
(KI ⇒)

s
I∼ t, s

J∼ t, s : KIA⇒ t : A
(Mon)

s
J∼ t, s : KIA⇒ t : A

(⇒ KJ)
s : KIA⇒ s : KJA (⇒→)⇒ s : KIA→ KJA

• The axiom "H12. orI → KIo
r
I", was used.

t : orI , s
I∼ t, s : orI ⇒ t : orI ( Sub(or)⇒)

s
I∼ t, s : orI ⇒ t : orI (⇒ KI)s : orI ⇒ s : KIo

r
I (⇒→)⇒ s : orI → KIo
r
I
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4.5. Proof of completeness of GS-LCK

• The axiom "H13. ( ∧
o∈OI

oro ∧KIA)→ K∅( ∧
o∈OI

oro → A), when I ⊂ N", was

used.

t : A, s
I∼ t, t : ∧

o∈OI

oro , s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : A

(KI ⇒)
s

I∼ t, t : ∧
o∈OI

oro , s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : A

(OE)
t : ∧

o∈OI

oro , s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : A

(⇒→)
s
∅∼ t, s : ∧

o∈OI

oro , s : KIA⇒ t : ∧
o∈OI

oro → A

(∧ ⇒)
s
∅∼ t, s : ∧

o∈OI

oro ∧KIA⇒ t : ∧
o∈OI

oro → A

(⇒ K∅)
s : ∧

o∈OI

oro ∧KIA⇒ s : K∅( ∧
o∈OI

oro → A)

(⇒→)
⇒ s : ( ∧

o∈OI

oro ∧KIA)→ K∅( ∧
o∈OI

oro → A)

• The remaining axioms are considered in a similar way.

< NSteps > 1 >

One of the rules (Modus ponens) or (KI − necessitation) of calculus HS-LCK
was applied in the last step of the proof of the formula.

• The rule (Modus ponens) was applied.

A,A→ B

B
(Modus ponens)

By the induction hypothesis, sequents (⇒ s : A) and (⇒ s : A → B)

are provable in GS-LCK. By invertibility of the rule (⇒→), the sequent
(s : A⇒ s : B) is provable. The sequent (⇒ s : B) of the theorem is proved
by applying Theorem 7 "Admissibility of cut".

• The rule (KI − necessitation) was applied.

A

KIA
(KI − necessitation)

By the induction hypothesis, the sequent (⇒ s : A) is provable in GS-LCK.
By Lemma 3 "Substition", the sequent (⇒ t : A) is provable. By Theorem 4
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4. Logic of Correlated knowledge

"Admissibility of weakening", the sequent (s
I∼ t⇒ t : A) is provable. The

sequent of the theorem is proved by applying the rule (⇒ KI):

s
I∼ t⇒ t : A

⇒ s : KIA
(⇒ KI)

�

66



4.6. Decidability of logic of correlated knowledge

4.6 Decidability of logic of correlated knowledge

Decidability of logic of correlated knowledge is showed by first defining the
terminating proof search procedure for LCK. Procedure uses tables TableLK
and TableRK to save principal formulas of the applications of the rules (KI ⇒
), (KN ⇒) and (⇒ KI). Also chains of new appeared relational atoms of
applications of the rule (⇒ KI) are saved in table TableRK.

Definition 26 (Table TableLK). Table TableLK of the principal pairs of the applica-
tions of the rules (KI ⇒) and (KN ⇒):

TableLK
Main formula Relational atom

Example 6. Example of TableLK:

TableLK
Main formula Relational atom

s : KIA s
I∼ t

l : KIB l
I∼ z

Definition 27 (Negative and positive parts of a sequent). Negative and positive
parts of a sequent Γ ⇒ ∆ are called negative and positive parts of the formula of the
sequent ∧Γ→ ∨∆, accordingly.

For any given sequent, n(KI) denotes the number of knowledge operators KI

in the negative part of the sequent. We use this notation in defining TableRK.

Definition 28 (Table TableRK). Table TableRK of the principal formulas and chains
of new appeared relational atoms of the applications of the rule (⇒ KI):
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4. Logic of Correlated knowledge

TableRK
Main formula Chain of the relational atoms Length of chain Max

where Max is the maximum length of the chain, defined by n(KI) + 1.

Example 7. Example of TableRK:

TableRK
Main formula Chain of the relational atoms Length of chain Max

s, s1, s2, w1 : KIA s
I∼ s1, s1

I∼ s2, s2
I∼ s3 3 5

s
I∼ t1 1 5

s
I∼ w1, w1

I∼ w2 2 5

z, z1 : KJB z
J∼ z1, z1

J∼ z2 2 7

Definition 29 (Procedure of the proof search). Procedure GS-LCK-PROC of the
proof search in the sequent calculus GS-LCK:

Initialisation:

• Define set N of agents, tuple of sets ~O = (Oa1 , ..., Oan) of possible observations
and result structure (R,Σ).

• Initialise the tables TableLK and TableRK by setting Max values to (n(KI)+1),
the length of the chain to 0 and the other cells leaving empty.

• Set Output = False.

PROCEDURE GS-LCK-PROC(Sequent, TableLK, TableRK, Output)

BEGIN
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4.6. Decidability of logic of correlated knowledge

1. Check if the sequent is the axiom. If the sequent is the axiom, set Output = True

and go to step Finish.

2. If possible, apply any of the rules (¬ ⇒), (⇒ ¬), (⇒ ∨), (∧ ⇒), (⇒→) and go
to step 1.

3. If possible, apply any of the rules (∨ ⇒), (⇒ ∧) or (→⇒) and call procedure
GS-LCK-PROC() for the premises of the application:

Output1 = False;
Output2 = False;

GS-LCK-PROC(Premise1, TableLK, TableRK, Output1);
GS-LCK-PROC(Premise2, TableLK, TableRK, Output2);

IF (Output1 == True) AND (Output2 == True)
THEN Set Output = True and go to Finish;
ELSE Set Output = False and go to Finish;

4. If possible to apply any of the rules (KI ⇒) or (KN ⇒), check if the principal
pair is absent in the table TableLK. If it is absent, apply rule (KI ⇒) or (KN ⇒),
add principal pair to TableLK and go to step 1.

5. If possible to apply rule (⇒ KI), check if the principal formula is absent in the
table TableRK and the length of the chain is lower than Max. If the principal
formula is absent and the length of the chain is lower than Max, apply rule
(⇒ KI), add principal formula and new relational atom to TableRK, increment
the length of the chain by 1, and go to step 1.

6. If possible, apply rule (OY R) and call procedure GS-LCK-PROC() for the pre-
mises of the application:

For each k set Output(k) = False and call GS-LCK-PROC(Premise(k), TableLK,
TableRK, Output(k)), where k is the index of the premise;

IF (for each k Output(k) == True)
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4. Logic of Correlated knowledge

THEN Set Output = True and go to Finish;
ELSE Set Output = False and go to Finish;

7. If possible, apply any of the rules (⇒ KN), (OE), (CR), (Sub(p)⇒), (Sub(or)⇒
), (Ref), (Trans), (Eucl) or (Mon) and go to step 1.

8. Finish.

END

Procedure GS-LCK-PROC gets the sequent, TableLK, TableRK, starting Output
and returns "True", if the sequent is provable. Otherwise - "False", if it is not
provable. Procedure is constructed in such a way, that it produces proofs, where
number of applications of the knowledge rules of sequent calculus GS-LCK is
finite. Also number of applications of other rules are bounded by requirements
to rules and finite initial sets of agents, observations and results, which allows
procedure to perform terminating proof search [21].

Lemma 4 (Permutation of the rule (KI ⇒)). Rule (KI ⇒) permutes down with
respect to all rules of GS-LCK, except rules (⇒ KI) and (OE). Rule (KI ⇒) permutes
down with rules (⇒ KI) and (OE) in case the principal atom of (KI ⇒) is not active
in it.

Proof.
The Lemma 4 is proved in the same way as the Lemma 6.3. in [30]. �

Lemma 5 (Number of applications of the rule (KI ⇒)). If a sequent S is provable
in GS-LCK, then there exists the proof of S such that rule (KI ⇒) is applied no more
than once on the same pair of principal formulas on any branch.

Proof.
The Lemma 5 is proved by induction on the number N of pairs of applications
of rule (KI ⇒) on the same branch with the same principal pair.

< N = 0 > The proof of the lemma is obtained.
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4.6. Decidability of logic of correlated knowledge

< N > 0 >

We diminish the inductive paramater in the same way as in the proof of Corollary
6.5. in [30], using Lemma 4. QED �

Lemma 6 (Number of applications of the rule (⇒ KI)). If a sequent S is provable
in GS-LCK, then there exists the proof of S such that for each formula s : KIA in its
positive part there are at most n(KI) applications of (⇒ KI) iterated on a chain of
accessible worlds s I∼ s1, s1

I∼ s2, ..., with principal formula si : KIA. The latter proof
is called regular.

Proof.
The Lemma 6 is proved by induction on the number N of series of applications
of rule (⇒ KI), which make the initial proof non-regular.

< N = 0 > The proof of the lemma is obtained.

< N > 0 >

We diminish the inductive paramater in the same way as in the proof of Propo-
sition 6.9. in [30]. QED �

Theorem 9 (Termination of GS-LCK-PROC). The procedure GS-LCK-PROC per-
forms terminating proof search for each formula over (R,Σ, ~O).

Proof.
From construction of the procedure GS-LCK-PROC follows that the number of
applications of the rules (KI ⇒) and (⇒ KI) is finite.

All the propositional rules reduce the complexity of the root sequent. Since
the sets N, (R,Σ), ~O and the number of applications of the rules (KI ⇒), (⇒ KI)

are finite, and the requirements are imposed on the rules, the number of applica-
tions of the rules (KN ⇒), (⇒ KN), (OE), (OY R), (CR), (Sub(p)⇒), (Sub(or)⇒
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4. Logic of Correlated knowledge

), (Ref), (Trans), (Eucl) and (Mon) is also finite.

According to finite number of applications of all rules, the procedure GS-LCK-
PROC performs the terminating proof search for any sequent. QED �

Theorem 10 (Soundness and completeness of GS-LCK-PROC). The procedure GS-
LCK-PROC is sound and complete over (R,Σ, ~O).

Proof.
From construction of the procedure GS-LCK-PROC follows that if procedure
returns "True" for a sequent S, then S is provable in GS-LCK. If procedure
returns "False", then sequent S is not provable in GS-LCK, according to Lemma
5 and Lemma 6. QED �

Theorem 11 (Decidibility of LCK). Logic LCK is decidable.

Proof.
From Theorem 10 and Theorem 9 follows that GS-LCK-PROC is a decision
procedure for logic LCK. QED �
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Chapter 5

Conclusions

Logical approaches deal with problems of expressiveness, quantum entangle-
ment, impossibility of implication operator and deductive system, undecidabi-
lity, failure of the distributive law, when try to handle knowledge about quantum
systems. One of the latest results in this field is logic of correlated knowledge.
LCK abstracts away from algebraic structure of quantum mechanics and acco-
modates correlation models to quantum systems. Alexandru Baltag and Sonja
Smets defined Hilbert style proof system for LCK in [5]. However, automated
proof system had not been proposed for logic of correlated knowledge, yet.

Automated proof system for LCK has been created in the dissertation research.
The system consists of the sequent calculus GS-LCK and the proof search pro-
cedure GS-LCK-PROC. Sequent calculus is sound, complete and satisfy the
properties of invertibility of rules, admissibility of weakening, contraction and
cut. The procedure GS-LCK-PROC is terminating and allows to check if the
sequent is provable. Also it has been proved, that logic of correlated knowledge
is decidable. Using the terminating procedure GS-LCK-PROC the validity of all
formulas of LCK can be checked.

Logic of correlated knowledge is applicable in analysing and handling know-
ledge about measurements performed on elementary particles of quantum
systems. Automated proof system for logic of correlated knowledge can be
applied to reason about quantum systems in automated way, using computers.
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