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Notations

a denotes a real vector (a1, . . . , an).

Rn denotes the set of real vectors a.

|a|2 denotes an Eucleadian norm of the vector a, i.e., |a|2 = (a2
1 +· · ·+a2

n)1/2.

|a|1 denotes an l1 norm of the vector a, i.e., |a|1 = |a1| + · · · + |an|.

(a, b) = a · b = a1b1 + · · · + anbn denotes a scalar product of vectors a and b.

N(0, 1) denotes a standard normal random variable.

P denotes the probability measure.

EX denotes an expectation of a random variable X.

Mk = X1 + · · · + Xk denotes the martingale sequence with bounded differ-

ences Xm = Mm − Mm−1.

M denotes the class of martingales with bounded differences.

SM denotes the class of super-martingales with bounded differences.

Wn = (M0, M1, . . . , Mn) denotes a random walk based on a martingale se-

quence Mk.

[x] denotes integer part of real number x.

{x} denotes a fractional part of a real number x.

⌈x⌉ denotes the smallest integer number not smaller than x.

⌊x⌋ denotes the largest integer number not larger than x.

{0, 1}n denotes an n-dimensional discrete cube.
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sgn(x) denotes a signum function which is equal to 1 for x ≥ 0 and −1

otherwise.

LTF denotes a linear threshold function.

Infi(f) denotes an influence of the i’th variable.

f̂(A) denotes a Fourier coefficient.

τx denotes a stopping time.

(V, d, µ) denotes a probability metric space.

Mf denotes a median of the function f .

Sn−1 denotes the Euclidean unit sphere.
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Chapter 1

Introduction

In our work we consider an isoperimetric problem

D(F , I, n) def= sup
Sn∈F

P{Sn ∈ I}, (1.0.1)

where F is a class of sums Sn = X1+· · ·+Xn of Bernoulli’s random variables,
either independent or having a martingale type dependence, a set I ⊂ R is
an interval, either bounded or unbounded. We find tight upper bounds for
D(F , I, n) and extend the results to Lipschitz functions. We say that an
upper bound is tight if we can construct a sequence of random variables,
for which the sup in (1.0.1) is achieved. We say that a random variable is
Bernoulli’s, if it takes at most two values and have a mean equal to 0.

In order to illustrate the problems, we first introduce a special case of the
problem considered in Chapter 2. Other problems are similar in formulation
and spirit.

Let F be a class of sums Sn = a1ε1 + · · · + anεn of symmetric weighted
independent Rademacher random variables εi, such that P{εi = ±1} = 1/2.
Rademacher’s random variable (r.v.) is a special case of Bernoulli’s random
variables. Let I = [x, ∞).

In a celebrated work Hoeffding 1963 showed that the following upper
bound for the tail probability holds

D(F , I, n) = sup
Sn∈F

P{Sn ≥ x} ≤ exp{−x2/2n}, x ∈ R. (1.0.2)

Let Wn = ε1 + · · · + εn. If we take Sn = Wn, then in view of the Central
Limit Theorem we can infer that the exponential function on the right-hand
side is the minimal one. Yet a certain factor of order x−1 is missing, since
Φ(x) ≈ (

√
2πx)−1 exp {−x2/2} for large x.

13



Furthermore, it is possible to show that the random variable Sn is sub-
gaussian in the sense that

D(F , I, n) ≤ cP
{√

nZ ≥ x
}

, x ∈ R,

where Z is the standard normal random variable and c is some explicit pos-
itive constant.

Although there are numerous improvements of the Hoeffding inequality,
to our knowledge there are no examples where tight bound for the tail prob-
ability is found. In our work we present a class of pairs (F , I) for which we
can give a tight bound for D(F , I, n).

1.1 Aims and problems
We give a short summary of the problems considered in our thesis.

In Chapter 2 we solve an isoperimetric problem (1.0.1), where F is a class
of sums Sn = X1 + · · · + Xn of independent symmetric random variables and
I ⊂ R is an interval (bounded or unbounded). Depending on I we consider
two cases of boundedness conditions |Xi| ≥ 1 and |Xi| ≤ 1 separately. If
I = [x − k, x + k) and the bound for (1.0.1) depends only on k and n, then
we assume that |Xi| ≥ 1. is a classical Littlewood-Offord type problem of
the 1940’s. We give a short and self-contained proof of this problem based on
an induction on dimension. If I = [x, ∞) or I = {x} then we consider a case
|Xi| ≤ 1. In this case we show that a probability (1.0.1) is maximized when
k = k(x) random variables Xi’s are Rademacher random variables taking
values ±1 with equal probabilities and others are equal to 0 with probability
1. We give an explicit description of k(x).

In Chapter 3 we consider a sum of weighted independent Rademacher
random variables Sn = a1ε1+· · ·+anεn. We assume that a variance of the sum
Sn is bounded by 1. Our first result of Chapter 3 is an optimal subgaussian
constant. The existence of such an absolute constant was first shown in 1994.
Our second result of Chapter 3 is an improvement of a Chebyshev inequality
P{Sn ≥ x} ≤ 1

2x2 for all x > 1. We present an application of the results
to the Student’s statistics and to self normalized sums. Unlike to previous
chapter, the supremum for the tail probability P{Sn ≥ x} is not maximized
when all non-zero coefficients are equal to each other as was shown by A. V.
Zhubr [96].

In Chapter 4 we present an application of the results from Chapter 3
to investigate single coordinate influence of Boolean valued half-space func-
tions on the Boolean cube, i.e., functions f : {−1, 1}n → {−1, 1} such that

14



f(x1, . . . , xn) = sgn(a1x1 + · · · + anxn). We reformulate the problem in prob-
abilistic terms and obtain conditional small ball type inequality for the sum
of weighted independent Rademacher random variables. As a consequence
we confirm a conjecture by Matulef, O’Donnell, Rubinfeld and Servedio [62]
that the threshold function associated to a linear function with some large
coefficient, if balanced, must have a large influence.

In Chapter 5 we assume that Bernoulli random variables Xi’s are only
bounded and have a martingale type dependence, i.e., Mk = X1 + · · · + Xk

is a martingale sequence. We find tight bounds for the probability that a
random walk based on a martingale sequence Mk visits an interval [x, ∞).
We also show that the maximizing random walk is an inhomogeneous Markov
chain. We present a full description of the maximizing random walk and give
explicit expression for the maximal probability. We extend the results to ran-
dom walks based on supermartingale sequences. Finally we show that maxi-
mal inequalities for martingales are equivalent to inequalities for tail proba-
bilities. As far as we know our result gives the first known tight bounds for
a Hoeffding type [47] inequalities for martingales with bounded differences.

In Chapter 6 we obtain an optimal deviation from the mean upper bound
D(x) def= supf∈F µ{f − E µf ≥ x}, for x ∈ R, where F is the complete class
of integrable, Lipschitz functions on probability metric (product) spaces. As
corollaries we obtain D(x) for Euclidean unit sphere Sn−1 with a geodesic
distance function and a normalized Haar measure, for Rn equipped with a
Gaussian measure and for the multidimensional cube, rectangle, torus or Dia-
mond graph equipped with uniform measure and Hamming distance function.
We also prove that in general probability metric spaces extremal Lipschitz
functions are from a family of negative distance functions.

1.2 Actuality and novelty
The thesis covers a major part of author’s research carried out during his
PhD studies. Chapters 2–6 contains some results appearing in the papers
written by the author of these thesis in collaboration with T. Juškevičius
and M. Šileikis [31] (Chapter 2), V. K. Bentkus [6] (a part of Chapter 3), F.
Götze (Chapter 4) [30] and by the author individually [29, 33, 32] (a part of
Chapter 3, Chapter 5, Chapter 6). Three papers are already published or
accepted for publication, three are submitted for publication.
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Chapter 2

Sums of symmetric random
variables

In this chapter we consider the problem

D(F , I, n) = sup
Sn∈F

P{Sn ∈ I}, (2.0.1)

where F is a class of sums Sn = X1 + · · · + Xn of independent symmetric
random variables and I ⊂ R is an interval (bounded or unbounded including
the special case when I is singleton). Depending on I we consider two cases of
boundedness conditions |Xi| ≥ 1 and |Xi| ≤ 1 separately. If I = [x−k, x+k)
and the bound for (2.0.1) depends only on x and n, then we assume that
|Xi| ≥ 1. This is a classical Littlewood-Offord type problem of the 1940’s. We
give a short and self-contained proof of this problem based on an induction
on dimension. If I = [x, ∞) or I = {x} then we consider a case |Xi| ≤ 1.
In this case we show that a probability (2.0.1) is maximized when k = k(x)
random variables Xi’s are Rademacher random variables and others are equal
to 0 with probability 1. We give an explicit description of k.

2.1 Introduction
Let Sn = X1 + · · · + Xn be a sum of independent random variables Xi such
that

|Xi| ≤ 1 and EXi = 0. (2.1.1)

Let Wn = ε1 + · · · + εn be the sum of independent Rademacher random
variables, i.e., such that P {εi = ±1} = 1/2. We will refer to Wn as a simple
random walk with n steps.
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By a classical result of Hoeffding [47] we have the estimate

P {Sn ≥ x} ≤ exp
{
−x2/2n

}
, x ∈ R. (2.1.2)

If we take Sn = Wn on the left-hand side of (2.1.2), then in view of the Central
Limit Theorem we can infer that the exponential function on the right-hand
side is the minimal one. Yet a certain factor of order x−1 is missing, since
Φ(x) ≈ (

√
2πx)−1 exp {−x2/2} for large x.

Furthermore, it is possible to show that the random variable Sn is sub-
gaussian in the sense that

P {Sn ≥ x} ≤ cP
{√

nZ ≥ x
}

, x ∈ R,

where Z is the standard normal random variable and c is some explicit pos-
itive constant (see, for instance, [12]).

Perhaps the best upper bound for P {Sn ≥ x} was given by Bentkus [10],
which for integer x is optimal for martingales with differences Xi satisfying
(2.1.1).

Although there are numerous improvements of the Hoeffding inequality,
to our knowledge there are no examples where the exact bound for the tail
probability is found. In this chapter we give an optimal bound for the tail
probability P {Sn ≥ x} under the additional assumption of symmetry.

We henceforth reserve the notation Sn and Wn for random walks with
symmetric steps satisfying (2.1.1) and a simple random walk with n steps
respectively.

Theorem 1 (Dzindzalieta, Juškevičius, Šileikis [31]). For x > 0 we have

P {Sn ≥ x} ≤
{
P {Wn ≥ x} if ⌈x⌉ + n ∈ 2Z,

P {Wn−1 ≥ x} if ⌈x⌉ + n ∈ 2Z + 1.
(2.1.3)

The latter inequality can be interpreted by saying that among bounded
random walks the simple random walk is the “most stochastic”.

Kwapień (see [88]) proved that for arbitrary independent symmetric ran-
dom variables Xi and real numbers ai with absolute value less than 1 we
have

P {a1X1 + . . . + anXn ≥ x} ≤ 2P {X1 + . . . + Xn ≥ x} , x > 0. (2.1.4)

In fact, Kwapień’s inequality holds for Xi’s in arbitrary Banach space. The
case n = 2 with Xi = εi shows that the constant 2 in (2.1.4) cannot be
improved.

18



Theorem 1 improves Kwapień’s inequality for Rademacher sequences. We
believe that the inequality (2.1.3) with some conditioning arguments leads
to better estimates for arbitrary symmetric random variables Xi under the
assumptions of Kwapień’s inequality, but we will not go into these details in
this work.

We also consider the problem of finding the quantity

sup
Sn

P {Sn = x} ,

which can be viewed as a non-uniform bound for the concentration of the
random walk Sn at a point x.

Theorem 2 (Dzindzalieta, Juškevičius, Šileikis [31]). For x > 0 and k = ⌈x⌉
we have

P {Sn = x} ≤ P {Wm = k} , (2.1.5)

where

m =


min

{
n, k2

}
, if n + k ∈ 2Z,

min
{
n − 1, k2

}
, if n + k ∈ 2Z + 1.

Equality in (2.1.5) is attained for Sn = x
k

Wm.

We give two different proofs for both inequalities. The first approach is based
on induction on the number of random variables (§2.2). To prove Theorem
2 we also need the solution of the Littlewood-Offord problem.

Theorem 3 (Erdös [35]). Let a1, . . . , an be real numbers such that |ai| ≥ 1.
We have

max
x∈R

P {Sn ∈ (x − k, x + k]} ≤ P {Wn ∈ (−k, k]} .

That is, the number of the choices of signs for which Sn lies in an interval of
length 2k does not exceed the sum of k largest binomial coefficients in n.

Theorem 3 was first proved by Erdős [35] using Sperner’s Theorem. We
give a very short solution which seems to be shorter than the original proof
by Erdős. We only use induction on n and do not use Sperner’s Theorem.

Surprisingly, Theorems 1 and 2 can also be proved by applying results
from extremal combinatorics (Chapter 2.3). Namely, we use the bounds for
the size of intersecting families of sets (hypergraphs) by Katona [51] and
Milner [66].

Using a strengthening of Katona’s result by Kleitman [53], we extend
Theorem 1 to odd 1-Lipschitz functions rather than just sums of the random
variables Xi (§2.4). It is important to note that the bound of Theorem
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1 cannot be true for all Lipschitz functions since the extremal case is not
provided by odd functions. We give the description of the extremal Lipschitz
functions defined on general probability metric spaces in Chapter 6.

2.2 Proofs by induction on dimension
We will first show that it is enough to prove Theorems 1 and 2 in the case
when Sn is a linear combination of independent Rademacher random vari-
ables εi with coefficients |ai| ≤ 1.

Lemma 4 (Dzindzalieta, Juškevičius, Šileikis [31]). Let g : Rn → R be a
bounded measurable function. Then we have

sup
X1,...,Xn

E g(X1, . . . , Xn) = sup
a1,...,an

E g(a1ε1, . . . anεn),

where the supremum on the left-hand side is taken over symmetric indepen-
dent random variables X1, . . . , Xn such that |Xi| ≤ 1 and the supremum on
the right-hand side is taken over numbers −1 ≤ a1, . . . , an ≤ 1.

Proof. Define S = supa1,...,an
E g(a1ε1, . . . anεn). Clearly

S ≤ sup
X1,...,Xn

E g(X1, . . . , Xn).

By symmetry of X1, . . . , Xn, we have

E g(X1, . . . , Xn) = E g(X1ε1, . . . , Xnεn).

Therefore

E g(X1, . . . , Xn) = E E [g(X1ε1, . . . , Xnεn) | X1, . . . , Xn] ≤ ES = S.

Thus, in view of Lemma 4 we will henceforth write Sn for a1ε1 + · · ·+anεn

instead of a sum of arbitrary symmetric random variables Xi.
Proof of Theorem 1. First note that the inequality is true for x ∈ (0, 1]

and all n. This is due to the fact that P {Sn ≥ x} ≤ 1/2 by symmetry of Sn

and for all n the right-hand side of the inequality is given by the tail of an
odd number of random signs, which is exactly 1/2. We can also assume that
the largest coefficient ai = 1 as otherwise if we scale the sum by ai then the
tail of the this new sum would be at least as large as the former. We will
thus assume, without loss of generality, that 0 ≤ a1 ≤ a2 ≤ . . . ≤ an = 1.
Define a function I(x, n) to be 1 if ⌈x⌉ + n is even, and zero otherwise. Then
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we can rewrite the right-hand side of (2.1.3) as

P {Wn−1 + εnI(x, n) ≥ x} ,

making an agreement ε0 ≡ 0.
For x > 1 we argue by induction on n. Case n = 0 is trivial. Observing

that I(x − 1, n) = I(x + 1, n) = I(x, n + 1) we have

P {Sn+1 ≥ x} = 1
2P {Sn ≥ x − 1} + 1

2P {Sn ≥ x + 1}
≤ 1

2P {Wn−1 + εnI(x − 1, n) ≥ x − 1}
+ 1

2P {Wn−1 + εnI(x + 1, n) ≥ x + 1}
= P {Wn + εn+1I(x, n + 1) ≥ x} .

Proof of Theorem 3. We can assume that a1 ≥ a2 ≥ . . . ≥ an ≥ 1.
Without loss of generality we can also take an = 1. This is because

P {Sn ∈ (x − k, x + k]} ≤ P {Sn/an ∈ (x − k, x + k]/an}
≤ max

x∈R
P {Sn/an ∈ (x − k, x + k]} .

The claim is trivial for n = 0. Let us assume that we have proved the
statement for 1, 2, ..., n − 1. Then

P {Sn ∈ (x − k, x + k]}
=1

2P {Sn−1 ∈ (x − k − 1, x + k − 1]} + 1
2P {Sn−1 ∈ (x − k + 1, x + k + 1]}

=1
2P {Sn−1 ∈ (x − k − 1, x + k + 1]} + 1

2P {Sn−1 ∈ (x − k + 1, x + k − 1]}
≤1

2P {Wn−1 ∈ (−k − 1, k + 1]} + 1
2P {Wn−1 ∈ (−k + 1, k − 1]}

=1
2P {Wn−1 ∈ (−k − 1, k − 1]} + 1

2P {Wn−1 ∈ (−k + 1, k + 1]}
=P {Wn ∈ (−k, k]} .

Note that we rearranged the intervals after the second equality so as to
have two intervals of different lengths and this makes the proof work.

Before proving Theorem 2, we will obtain an upper bound for P {Sn = x}
under an additional condition that all ai are nonzero.

Lemma 5 (Dzindzalieta, Juškevičius, Šileikis [31]). Let x > 0, k = ⌈x⌉.
Suppose that 0 < a1 ≤ · · · ≤ an ≤ 1. Then

P {Sn = x} ≤

P {Wn = k} , if n + k ∈ 2Z,

P {Wn−1 = k} , if n + k ∈ 2Z + 1.
(2.2.1)
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Proof. We first prove the lemma for x ∈ (0, 1] and any n. By Theorem 3
we have

P {Sn = x} ≤ 2−n

(
n

⌈n/2⌉

)
. (2.2.2)

On the other hand, if x ∈ (0, 1], then k = 1 and

2−n

(
n

⌈n/2⌉

)
=


2−n

(
n

(n + 1)/2

)
= P {Wn = 1} , if n + 1 ∈ 2Z,

2−n

(
n

n/2

)
= P {Wn−1 = 1} , if n + 1 ∈ 2Z + 1,

where the second equality follows by Pascal’s identity:

2−n

(
n

n/2

)
= 2−n

[(
n − 1
n/2

)
+
(

n − 1
n/2 − 1

)]
= 21−n

(
n − 1
n/2

)
= P {Wn−1 = 1} .

Let N = {1, 2, . . . } stand for the set of positive integers. Let us write Bn(x)
for the right-hand side of (2.2.1). Note that it has the following properties:

x 7→ Bn(x) is non-increasing; (2.2.3)
x 7→ Bn(x) is constant on each of the intervals (k − 1, k], k ∈ N; (2.2.4)
Bn(k) = 1

2Bn−1(k − 1) + 1
2Bn−1(k + 1), if k = 2, 3, . . . . (2.2.5)

We proceed by induction on n. The case n = 1 is trivial. To prove
the induction step for n ≥ 2, we consider two cases: (i) x = k ∈ N; (ii)
k − 1 < x < k ∈ N.

Case (i). For k = 1 the lemma has been proved, so we assume that k ≥ 2.
By the inductional hypothesis we have

P {Sn = k} = 1
2P {Sn−1 = k − an} + 1

2P {Sn−1 = k + an}
≤ 1

2Bn−1(k − an) + 1
2Bn−1(k + an). (2.2.6)

By (2.2.3) we have
Bn−1(k − an) ≤ Bn−1(k − 1), (2.2.7)

and by (2.2.4) we have

Bn−1(k + an) = Bn−1(k + 1). (2.2.8)

Combining (2.2.6), (2.2.7), (2.2.8), and (2.2.5), we obtain

P {Sn = k} ≤ Bn(k). (2.2.9)
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Case (ii). For x ∈ (0, 1] the lemma has been proved, so we assume k ≥ 2.
Consider two cases: (iii) x/an ≥ k; (iv) x/an < k.

Case (iii). Define S ′
n = a′

1ε1 + · · · + a′
nεn, where a′

i = kai/x, so that
S ′

n = k
x
Sn. Recall that an = maxi ai, by the hypothesis of the lemma. Then

a′
i ≤ kan/x and the assumption x/an ≥ k imply that 0 < a′

1, . . . , a′
n ≤ 1.

Therefore, by (2.2.9) and (2.2.4) we have

P {Sn = x} = P {S ′
n = k} ≤ Bn(k) = Bn(x).

Case (iv). Without loss of generality, we can assume that an = 1, since

P {Sn = x} = P
{

a1

an

ε1 + · · · + an

an

εn = x

an

}
and k − 1 < x/an < k, by the assumption of the present case. Sequentially
applying the induction hypothesis, (2.2.4), (2.2.5), and again (2.2.4), we get

P {Sn = x} = 1
2P {Sn−1 = x − 1} + 1

2P {Sn−1 = x + 1}
≤ 1

2Bn−1(x − 1) + 1
2Bn−1(x + 1)

= 1
2Bn−1(k − 1) + 1

2Bn−1(k + 1)
= Bn(k) = Bn(x).

Proof of Theorem 2. Writing Bn(k) for the right-hand side of (2.2.1), we
have, by Lemma 5, that

P {Sn = x} ≤ nmax
j=k

Bj(k).

If j + k ∈ 2Z, then Bj(k) = P {Wj = k} = Bj+1(k) and therefore

nmax
j=k

Bj(k) = max
k≤j≤n
k+j∈2Z

P {Wj = k} . (2.2.10)

To finish the proof, note that the sequence P {Wj = k} = 2−j
(

j
(k+j)/2

)
, j =

k, k + 2, k + 4, . . . is unimodal with a peak at j = k2, i.e.,

P {Wj−2 = k} ≤ P {Wj = k} , if j ≤ k2,

and
P {Wj−2 = k} > P {Wj = k} , if j > k2.
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Indeed, elementary calculations yield that the inequality

2−j+2
(

j − 2
(k + j)/2 − 1

)
≤ 2−j

(
j

(k + j)/2

)
, j ≥ k + 2,

is equivalent to the inequality j ≤ k2.

2.3 Proofs based on results in extremal com-
binatorics

Let [n] stand for the finite set {1, 2, . . . , n}. Consider a family F of subsets
of [n]. We denote by |F| the cardinality of F . The family F is called:

1. k-intersecting if for all A, B ∈ F we have |A ∩ B| ≥ k.

2. an antichain if for all A, B ∈ F we have A * B.

A well known result by Katona [51] (see also [23, p. 98, Theorem 4]) gives
the exact upper bound for a k-intersecting family.

Theorem 6 (Katona [51]). If k ≥ 1 and F is a k-intersecting family of
subsets of [n] then

|F| ≤



n∑
j=t

(
n

j

)
, if k + n = 2t,

n∑
j=t

(
n

j

)
+
(

n − 1
t − 1

)
, if k + n = 2t − 1.

(2.3.1)

Notice that if k + n = 2t, then
n∑

j=t

(
n

j

)
= 2nP {Wn ≥ k} . (2.3.2)

If k + n = 2t − 1, then using the Pascal’s identity
(

n
j

)
=
(

n−1
j

)
+
(

n−1
j−1

)
we get

n∑
j=t

(
n

j

)
+
(

n − 1
t − 1

)
= 2

n−1∑
j=t−1

(
n − 1

j

)
= 2nP {Wn−1 ≥ k} . (2.3.3)

The exact upper bound for the size of a k-intersecting antichain is given by
the following result of Milner [66].
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Theorem 7 (Milner [66]). If a family F of subsets of [n] is a k-intersecting
antichain, then

|F| ≤
(

n

t

)
, t =

⌈
n + k

2

⌉
. (2.3.4)

Note that we have(
n

t

)
= 2nP {Wn = k} , if n + k = 2t, (2.3.5)

and (
n

t

)
= 2nP {Wn = k + 1} , if n + k = 2t − 1. (2.3.6)

By Lemma 4 it is enough to prove Theorems 1 and 2 for the sums

Sn = a1ε1 + · · · + anεn,

where 0 ≤ a1, . . . , an ≤ 1. Denote as Ac the complement of the set A. For
each A ⊂ [n], write sA = ∑

i∈A ai −∑
i∈Ac ai. We define two families of sets:

F≥x = {A ⊂ [n] : sA ≥ x}, and Fx = {A ⊂ [n] : sA = x}.

Proof of Theorem 1. We have

P {Sn ≥ x} = 2−n|F≥x|.

Let k = ⌈x⌉. Since Wn takes only integer values, we have

P {Wn ≥ k} = P {Wn ≥ x} and P {Wn−1 ≥ k} = P {Wn−1 ≥ x} .

Therefore, in the view of (2.3.1), (2.3.2), and (2.3.3), it is enough to prove
that F≥x is k-intersecting. Suppose that there are A, B ∈ F≥x such that
|A ∩ B| ≤ k − 1. Writing σA = ∑

i∈A ai, we have

sA = σA − σAc = (σA∩B − σAc∩Bc) + (σA∩Bc − σAc∩B) (2.3.7)

and

sB = σB − σBc = (σA∩B − σAc∩Bc) − (σA∩Bc − σAc∩B). (2.3.8)

Since
σA∩B − σAc∩Bc ≤ σA∩B ≤ |A ∩ B| ≤ k − 1 < x,
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from (2.3.7) and (2.3.8) we get

min{sA, sB} < x,

which contradicts the fact sA, sB ≥ x.
The following lemma implies Theorem 2. It also gives the optimal bound

for P {Sn = x} and thus improves Lemma 5.

Lemma 8 (Dzindzalieta, Juškevičius, Šileikis [31]). Let 0 < a1, . . . , an ≤ 1
be strictly positive numbers, x > 0, k = ⌈x⌉. Then

P {Sn = x} ≤

P {Wn = k} , if n + k ∈ 2Z,

P {Wn = k + 1} , if n + k ∈ 2Z + 1.

Proof. We have
P {Sn = x} = 2−n|Fx|.

In the view of (2.3.4), (2.3.5), and (2.3.6), it is enough to prove that Fx is
a k-intersecting antichain. To see that Fx is k-intersecting it is enough to
note that Fx ⊂ F≥x. To show that Fx is an antichain is even easier. If
A, B ∈ Fx and A ( B, then sB − sA = 2∑i∈B\A ai > 0, which contradicts
the assumption that sB = sA = x.

Proof of Theorem 2. Lemma 8 gives

P {Sn = x} ≤ nmax
j=k

P {Wj = k + 1 − I(k, j)} ,

where again I(k, j) = I {k + j ∈ 2Z}. Note that if k + j ∈ 2Z we have

P {Wj = k} ≥ 1/2P {Wj = k} + 1/2P {Wj = k + 2}
= P {Wj+1 = k + 1} , k > 0.

Hence
nmax

j=k
P {Wj = k + 1 − I(k, j)} = max

k≤j≤n
k+j∈2Z

P {Wj = k} ,

the right-hand side being the same as the one of (2.2.10). Therefore, repeat-
ing the argument following (2.2.10) we are done.

2.4 Extension to Lipschitz functions
One can extend Theorem 1 to odd Lipschitz functions taken on n independent
random variables. Consider the cube Cn = [−1, 1]n with the ℓ1 metric d. We
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say that a function f : Cn → R is K-Lipschitz with K > 0 if

|f(x) − f(y)| ≤ Kd(x, y), x, y ∈ Cn. (2.4.1)

We say that a function f : Cn → R is odd if f(−x) = −f(x) for all x ∈ Cn.
An example of an odd 1-Lipschitz function is the function mapping a vector
to the sum of its coordinates:

f(x1, . . . , xn) = x1 + · · · + xn.

Note that the left-hand side of (2.1.3) can be written as P {f(X1, . . . , Xn) ≥ x}.
As in Theorems 1 and 2, the crux of the proof is dealing with two-valued

random variables. The optimal bound for a k-intersecting family is not suffi-
cient for this case, therefore we use the following generalization of Theorem
6 due to Kleitman [53] (see also [23, p. 102]) which we state slightly refor-
mulated for our convenience. Let us define the diameter of a set family F by
diam F = maxA,B∈F |A △ B|.

Theorem 9 (Kleitman [53]). If k ≥ 1 and F is a family of subsets of [n]
with diam F ≤ n − k, then

|F| ≤



n∑
j=t

(
n

j

)
, if k + n = 2t,

n∑
j=t

(
n

j

)
+
(

n − 1
t − 1

)
, if k + n = 2t − 1.

(2.4.2)

To see that Theorem 9 implies Theorem 6, observe that |A ∩ B| ≥ k
implies |A △ B| ≤ n − k.

Theorem 10 (Dzindzalieta, Juškevičius, Šileikis [31]). Suppose that a func-
tion f : Cn → R is 1-Lipschitz and odd. Let X1, . . . , Xn be symmetric in-
dependent random variables such that |Xi| ≤ 1. Then, for x > 0, we have
that

P {f(X1, . . . , Xn) ≥ x} ≤

P {Wn ≥ x} , if n + ⌈x⌉ ∈ 2Z,

P {Wn−1 ≥ x} , if n + ⌈x⌉ ∈ 2Z + 1.

(2.4.3)

Proof. Applying Lemma 4 with the function

g(y1, . . . , yn) = I{f(y1, . . . , yn) ≥ x},
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we can see that it is enough to prove (2.4.3) with

X1 = a1ε1, . . . , Xn = anεn

for any 1-Lipschitz odd function f . In fact, we can assume that a1 = · · · =
an = 1, since the function

(x1, . . . , xn) 7→ f(a1x1, . . . , anxn)

is clearly 1-Lipschitz and odd.
Given A ⊆ [n], write fA for f(2 IA(1) − 1, . . . , 2 IA(n) − 1), where IA is

the indicator function of the set A. Note that

|fA − fB| ≤ 2|A △ B| (2.4.4)

by the Lipschitz property. Consider the family of finite sets

F = {A ⊆ [n] : fA ≥ x},

so that
P {f(ε1, . . . , εn) ≥ x} = 2−n|F|.

Write k = ⌈x⌉. Note that Wn−1 and Wn take only integer values. Therefore
by (2.3.2) and (2.3.3) we see that the right-hand side of (2.4.2) is equal,
up to the power of two, to the right-hand side of (2.4.3). Consequently, if
diam F ≤ n − k, then Theorem 9 implies (2.4.3). Therefore, it remains to
check that for any A, B ∈ F we have |A △ B| ≤ n − k.

Suppose that for some A, B we have fA, fB ≥ x but |A △ B| ≥ n − k + 1.
Then

|A △ Bc| = |(A △ B)c| = n − |A △ B| ≤ k − 1,

and hence by (2.4.4) we have

|fA − fBc | ≤ 2k − 2. (2.4.5)

On the other hand we have that fBc ≤ −x, as f is odd. Therefore

fA − fBc ≥ 2x > 2k − 2,

which contradicts (2.4.5).
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Chapter 3

Weighted sum of Rademacher
random variables

In this chapter we consider a sum of weighted independent Rademacher ran-
dom variables Sn = a1ε1 + · · · + anεn. We assume that a variance of Sn is
bounded by 1. Our first result of this chapter is an optimal constant in the
inequality P{Sn ≥ x} ≤ cP{η ≥ x}, where η ∼ N(0, 1) is a standard normal
random variable. The existance of such an absolute constant was first shown
in 1994. Our second result of this chapter is an improvement of a Chebyshev
inequality P{Sn ≥ x} ≤ 1

2x2 for x ∈ (1,
√

2). We provide an application of
the results to the Student’s statistics and to self normalized sums. Unlike
to previous chapter, the supremum for the tail probability P{Sn ≥ x} is
not maximized when all non-zero coefficients are equal to each other as was
shown by A. V. Zhubr [96].

3.1 Introduction and results
Let ε, ε1, ε2, . . . be independent identically distributed Rademacher random
variables, so that P{ε = −1} = P{ε = 1} = 1/2. Let a = (a1, a2, . . .) be a
(weight) sequence of non-random real numbers. Write

S = a1ε1 + a2ε2 + . . . .

Henceforth we assume that a has the l2 norm |a|2 = (a2
1+a2

2+. . . )1/2 bounded
from above by 1, i.e., |a|2 ≤ 1. Furthermore, without loss of generality we
assume that a is a non-increasing sequence of non-negative numbers,

a1 ≥ a2 ≥ a2 ≥ · · · ≥ 0.
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It is well known that the random variable S is sub-gaussian, that is, there
exists an absolute positive constant c such that

P{S ≥ x} ≤ cP{η ≥ x} (3.1.1)

for all x ∈ R, where η is a standard normal random variable. The main result
of the chapter is the following theorem.

Theorem 11 (Bentkus, Dzindzalieta [6]). Let η ∼ N(0, 1) be a standard
normal random variable, then we have,

P{Sn ≥ x} ≤ cP{η ≥ x} for all x ∈ R (3.1.2)

with the constant c equal to

c∗ := (4P{η ≥
√

2})−1 ≈ 3.178.

The value c = c∗ is the best possible in the sense that (11) becomes
equality if n ≥ 2, Sn = (ε1 + ε2)/

√
2 and x =

√
2. Let Φ(x) = P{η ≤ x}

be the standard normal distribution function, and I(x) = 1 − Φ(x) be the
standard normal survival function. Using the definition of I(x), we can
reformulate our result as

P{S ≥ x} ≤ c∗I(x). (3.1.3)

Inequalities of type (3.1.1) and (3.1.3) are related to the geometry of
the Euclidean space Rn. Let Cn = [−1, 1]n be n-dimensional cube, and
a = (a1, . . . , an) ∈ Rn a unit vector, |a|2 = 1. Then the half-space

{z ∈ Rn : (z, a) ≥ x}

contains at most 2nc∗I(x) vertices of the cube Cn, and the bound 2nc∗I(x)
is the best possible among bounds expressed via Gaussian survival functions
(the scalar product (z, a) = z1a1 + · · · + znan).

The value c = c∗ is the best possible since (3.1.3) turns to an equality
if S = (ε1 + ε2)/

√
2 and x =

√
2. Indeed, in this special case

P{S ≥
√

2} = 1/4 ≡ c∗ I(
√

2).

For x <
√

2 inequality (3.1.3) is strict due to the following simple bounds
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P{S ≥ x} ≤ 1 for x ≤ 0, (3.1.4)
P{S ≥ x} ≤ 1/2 for 0 < x ≤ 1, (3.1.5)
P{S ≥ x} ≤ 1/(2x2) for x > 0. (3.1.6)

Inspecting our proofs it is clear that (3.1.3) is strict for x >
√

2 as well. Alto-
gether, (3.1.3) turns to equality if and only if x =

√
2 and S = (ε1 + ε2)/

√
2.

For x ≤ 1 inequalities (3.1.4) and (3.1.5) are optimal (recall that we
assume that |a|2 ≤ 1). Holzman and Kleitman [48] established a remarkable
inequality

P{S > 1} ≤ 1
4

+ 1
16

. (3.1.7)

Together with the rather rough Chebyshev type inequality (3.1.6), this is all
what is known for 1 < x ≤

√
2. We prove the following result

Theorem 12 (Dzindzalieta [29]).

P{S ≥ x} ≤ 1
4

+ 1
8

1 −
√

2 − 2
x2

 for x ∈ (1,
√

2). (3.1.8)

For 1 < x < x0 with x0 =
√

8/7 = 1.069 . . . the Holzman–Kleitman
bound (3.1.7) is better than (3.1.8). For x0 < x <

√
2 inequality (3.1.8) is

better than (3.1.7) and (3.1.6). Inequality (3.1.8) can be improved, however
an advantage of (3.1.8) is that it has a simple proof.

There is a number of open questions related to estimation of the function
P{S ≥ x}, e.g., see [41, 48, 3, 45] and references therein, an important
unsolved problems is to prove (or disprove) that

P{|S| ≤ 1} ≥ 1/2, (3.1.9)

and [25, 46, 72, 93]
P{|S| ≥ 1} ≥ 7

64
, (3.1.10)

An equivalent formulation of (3.1.9) is

P{S > 1} ≤ 1/4.

Assuming that a1 < 1, Holzman and Kleitman [48] proved P{|S| < 1} ≥ 3/8,
which is equivalent to P{S ≥ 1} ≤ 1/4 + 1/16. Using an alternative ap-
proach, Ben-Tal et al [3] established the bound P{|S| ≤ 1} ≥ 1/3, which
is equivalent to P{S > 1} ≤ 1/3. Applying Lyapunov type bounds for the
remainder term in the Central Limit Theorem with explicit absolute constant,
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say cL (we introduce this bound in the section of proofs), the stronger in-
equality P{S ≥ 1} ≤ 1/4 (hence, (3.1.9) as well) holds if |a|2 = 1 and a1 ≤ C
with

C
def= (1 − 4I(1)) /(4cL). (3.1.11)

Using the best known bound cL ≤ 0.56, we have C ≥ 0.1631 . . . . Further-
more, inequality P{S > 1} ≤ 1/4 holds if S = (ε1 + · · · + εn)/

√
n.

Using upper bounds for P{S ≥ x} one can estimate the concentration of S
around its mean. Namely, if P{S ≥ x} ≤ B(x) then P{|S| < x} ≥ 1−2B(x).
It follows that

P{|S| < x} ≥ 1
2

− 1
4

1 −
√

2 − 2
x2

 for 1 ≤ x ≤
√

2, (3.1.12)

and
P{|S| < x} ≥ 1 − 2c∗ I(x) for x ≥

√
2.

We show that the conjecture (3.1.9) is equivalent to the following powerful
concentration inequality

P{|S| ≤ δ} ≥ P {|S| ≥ 1/δ} for all 0 ≤ δ ≤ 1, (3.1.13)

and/or to

P{|S| < δ} ≥ P {|S| > 1/δ} for all 0 ≤ δ ≤ 1, (3.1.14)

where we define 1/0 = ∞ and P {|S| ≥ ∞} = 0. Note, that (3.1.13)–(3.1.14)
works well for all possible ai’s, that is, they cover both localized and delo-
calized cases. In some special cases it can be obtained using large deviation
inequalities, but in general it can not be achieved from large deviation in-
equalities. In contrary, we could apply (3.1.13)–(3.1.14) to get large deviation
results.

Proposition 13 (Dzindzalieta [29]). Conjectured bound (3.1.9) is equivalent
to (3.1.13) and/or to (3.1.14).

Proof. Indeed, if (3.1.9) holds, then it holds for S ′ = 2δ2

1+δ2 S + 1−δ2

1+δ2 ε′ with
any δ ∈ (0, 1] as well. Now integrating P{S ′ ≥ 1} with respect to ε′ we
get that P{S ≥ δ} + P {S ≥ 1/δ} ≤ 1/2. This is equivalent to P{|S| ≥
δ} + P {|S| ≥ 1/δ} ≤ 1 or P{|S| < δ} ≥ P {|S| ≥ 1/δ}. Since P{|S| < δ} ≤
P{|S| ≤ δ} and P{|S| ≥ 1/δ} ≥ P{|S| > 1/δ} we get inequalities (3.1.13)–
(3.1.14).

If (3.1.13) and/or (3.1.14) holds, we take δ = 1 to get the bound (3.1.9).
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Inequalities 3.1.13 and (3.1.14) relate the concentration around zero to
large deviations or the size of the support of S to concentration around zero.
For example, (3.1.13) implies that for any unit vector a = (a1, . . . , an) ∈ Rn,
such that |a|2 = 1, the strip

{z ∈ Rn : |(z, a)| ≤ λ}

contains at least one vertex of the cube [−1, 1]n, where

λ = 1
|a|1

, |a|1 = |a1| + · · · + |an|.

Another interpretation: among all 2n sums

±a1 ± · · · ± an

at least one lies in the interval [−λ, λ].
Write

Z0 = 0, Zk = ε1 + · · · + εk√
k

for k ≥ 1,

and define the functions

Mn(x) = max
0≤k≤n

P {Zk ≥ x} , M(x) = max
k≥0

P {Zk ≥ x} ≡ max
n≥1

Mn(x),
(3.1.15)

and

Bn(x) = sup
Sn

P {Sn ≥ x} , B(x) = sup
S

P {S ≥ x} , (3.1.16)

where supSn
is taken over all Sn = a1ε1 + · · · + εnan such that |a|2 ≤ 1,

respectively supS is taken over all S such that |a|2 ≤ 1.
In early 90’s Sergey Bobkov asked whether

Bn(x) = Mn(x), B(x) = M(x). (3.1.17)

It is clear that Bn(x) ≥ Mn(x) and B(x) ≥ M(x) ≥ I(x). Conjecture
(3.1.17) is much stronger than conjecture (3.1.9).

Conjecture (3.1.17) were disproved by Zhubr [96] using geometric inter-
pretation of the problem. A. V. Zhubr gave counterexamples showing that
the problem is much more complicated than expected. In [96] counterex-
amples shows directly that a weaker conjecture (3.1.9) is not true. Using
Berry-Esseen bound (see discussion above the (3.1.11)) and counterexamples
given by A. V. Zhubr [96] we see that the stronger version of the conjecture
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is false as well.
A standard application of inequalities of type (3.1.1) is to Student’s statis-

tic and to self-normalized sums. For example, if random variables X1, . . . , Xn

are independent, symmetric and not all identical zero, then the statistic

T = (X1 + · · · + Xn)/
√

X2
1 + · · · + X2

n

is sub-gaussian,
P{T ≥ x} ≤ c∗ P{η ≥ x}, (3.1.18)

and this inequality is optimal since (3.1.18) turns to an equality if n = 2 and
X1 = ε1, X2 = ε2.

Let us describe the scheme of the proof of (3.1.3). For x ≥
√

3 analysis
of P{S ≥ x} is based on rather simple applications of the inequality

I(A) + I(B) ≤ 2I(x), A = x − τ

ϑ
, B = x + τ

ϑ
, ϑ =

√
1 − τ 2, (3.1.19)

which holds in the region {0 ≤ τ ≤ 1, x ≥
√

3}. Inequality (3.1.19) is a
very special case of more general inequalities established in [12]. For x ≤

√
2,

inequalities (3.1.4)–(3.1.6) suffice to prove (3.1.3). The most difficult is the
case

√
2 < x ≤

√
3. Surprisingly, this seemingly simple problem requires an

indeed complicated proof.

Inequalities of type (3.1.1) are of considerable interest in probability, func-
tion theory and functional analysis, combinatorics, optimization, operations
research etc, see e.g. [4, 3, 27, 28, 45]

Using exponential functions as upper bounds for indicator functions (or
the so called Bernstein method), the inequality

P{S ≥ x} ≤ exp{−x2/2}, x ≥ 0, (3.1.20)

is contained in Hoeffding 1963 [47], among others. Using Theorem 11, one
can improve (3.1.20) to

P{S ≥ x} ≤ c2 exp{−x2/2}, c2 = 0.824 . . . , for x > 0.

One of the related inequalities to our results is Khinchin’s inequality.
For a review of this type of inequalities and for other developments, see e.g.
[54, 57, 73, 74, 94]. In the paper Latała [56] provided bounds on moments
and tails of Gaussian chaoses. For general chaoses Berry-Esseen type bounds
were obtained in [68].
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Eaton [34] conjectured that

P{S ≥ x} ≤ cep exp{−x2/2}/x, x ≥ 0, cep = 4.46 . . . .

Pinelis [77] improved the form of Eaton’s conjecture and established (3.1.1)
with c = cep. He developed the so called moment comparison method (see
[78, 76]). The method consists of proving the moment type inequalities
E (S − h)3

+ ≤ E (η − h)3
+ for h ∈ R, where x+ = max{0, x}, and showing

that these moment inequalities imply (3.1.1). It seems that the value c =
cep = 4.46 . . . is the best possible which can be obtained using this method.
In the context of probabilities of large deviations, Bentkus 1986–2007[9, 7,
10, 5, 11, 13, 12, 8] (henceforth B 1986–2007) developed induction based
methods. If it is possible to overcome related technical difficulties, these
methods lead to the most tight known upper bounds for the tail probabili-
ties. The paper [12] (without attempts to optimize the constants) contains
the bound c ≤ (6I(

√
3)−1 = 4.003 . . . , as well as the lower bound c ≥ c∗, and

a conjecture that the optimal constant is c∗. Bobkov et al [18] using induc-
tion proved that c ≤ 12.01. Pinelis [79] established the bound c ≤ c∗ + 0.04
(cf. the methods used in this chapter with those of B 2001–2007). Ques-
tions related to the conjecture (3.1.9) are considered in Derinkuyu and Pı-
nar [27, 28], Nemirovski [69], He and Luo and Nie and Zhang [44], Ben-Tal
and Nemirovski [4], So [86], among others. Summarizing, upper bounds for
P{S ≥ x} influence the quality of semi-definite programming algorithms, and
there is a demand for explicit (non-asymptotic!) and as precise as possible
such bounds.

3.2 Proofs
In this section we use the following notation

τ = a1, ϑ =
√

1 − τ 2, I(x) = P{η ≥ x}, φ(x) = −I ′(x), (3.2.1)

that is, I(x) is the tail probability for standard normal random variable
η and φ(x) is the standard normal density. Without loss of generality we
assume that a2

1 + · · · + a2
n = 1 and a1 ≥ · · · ≥ an ≥ 0. Using (3.2.1) we

have Sn = τε1 +ϑX with X = (a2ε2 + · · ·+anεn)/ϑ. The random variable X
is symmetric and independent of ε1. It is easy to check that EX2 = 1 and

P{Sn ≥ x} = 1
2
P{X ≥ A} + 1

2
P{X ≥ B}, (3.2.2)
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where A = x−τ
ϑ

and B = x+τ
ϑ

.
We start with a simple Chebyshev type inequality.

Lemma 14 (Bentkus, Dzindzalieta [6]). Let s > 0 and 0 ≤ a ≤ b, then for
any random variable Y we have

asP{|Y | ≥ a} + (bs − as)P{|Y | ≥ b} ≤ E |Y |s. (3.2.3)

If Y is symmetric, then

asP{Y ≥ a} + (bs − as)P{Y ≥ b} ≤ E |Y |s/2. (3.2.4)

Proof. It is clear that (3.2.3) implies (3.2.4). To prove (3.2.3) we use the
obvious inequality

asI{|Y | ≥ a} + (bs − as)I{|Y | ≥ b} ≤ |Y |s, (3.2.5)

where I{E} stands for the indicator function of the event E. Taking expec-
tation, we get (3.2.3). �

Similarly to (3.2.3), one can derive a number of inequalities stronger than
the standard Chebyshev inequality P{Sn ≥ x} ≤ 1/(2x2). For example,
instead of P{Sn ≥ 1} ≤ 1/2 we have the much stronger

P{Sn ≥ 1} + P{Sn ≥
√

2} + P{Sn ≥
√

3} + · · · ≤ 1/2.

We will make use of Lyapunov type bounds with explicit constants for
the remainder term in the Central Limit Theorem. Let X1, X2, . . . be inde-
pendent random variables such that EXj = 0 for all j. Denote βj = E |Xj|3.
Assume that the sum Z = X1 + X2 + . . . has unit variance. Then there exists
an absolute constant, say cL, such that

|P{Z ≥ x} − I(x)| ≤ cL(β1 + β2 + . . . ). (3.2.6)

It is known that cL ≤ 0.56 . . . [92, 84]. Note that we actually do not need the
best known bound for cL. Even cL = 0.958 suffices to prove Theorem 11.

Replacing Xj by ajεj and using βj ≤ τa2
j for all j, the inequality (3.2.6)

implies
|P{Sn ≥ x} − I(x)| ≤ cLτ. (3.2.7)

Proof of Theorem 11. For x ≤
√

2 Theorem 11 follows from the symmetry
of Sn and Chebyshev’s inequality (first it was implicitely shown in [12], later
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in [79]). In the case x ≥
√

2 we argue by induction on n. However, let us
first provide a proof of Theorem 11 in some special cases where induction
fails.

Using the bound (3.2.7), let us prove Theorem 11 under the assumption
that

τ ≤ τL
def= (c∗ − 1)I(

√
3)/cL and x ≤

√
3. (3.2.8)

Using cL = 0.56, the numerical value of τL is 0.16 . . .. In order to prove
Theorem 11 under the assumption (3.2.8), note that the inequality (3.2.7)
yields

P{Sn ≥ x} ≤ I(x) + τcL. (3.2.9)

If the inequality (3.2.8) holds, the right hand side of (3.2.9) is clearly bounded
from above by c∗ I(x) for x ≤

√
3.

For x and τ such that (3.2.8) does not hold we use induction on n. If
n = 1 then we have Sn = ε1 and Theorem 11 is equivalent to the trivial
inequality 1/2 ≤ c∗I(1).

Let us assume that Theorem 11 holds for n ≤ k−1 and prove it for n = k.

Firstly we consider the case x ≥
√

3. We replace Sn in (3.2.2) by Sk with
X = (a2ε2 + · · · + akεk)/ϑ. We can estimate the latter two probabilities

in (3.2.2) applying the induction hypothesis P{X ≥ y} ≤ c∗ I(y). We get

P{Sk ≥ x} ≤ c∗ I(A)/2 + c∗ I(B)/2. (3.2.10)

In order to conclude the proof, it suffices to show that the right hand side
of (3.2.10) is bounded from above by c∗ I(x), that is, that the inequality
I(A) + I(B) ≤ 2I(x) holds. As x ≥

√
3 it follows by the inequality (3.1.19).

In the remaining part of the proof we can assume that x ∈ (
√

2,
√

3) and
τ ≥ τL. In this case in order to prove Theorem 11 we have to improve the
arguments used to estimate the right hand side of (3.2.2). This is achieved
applying Chebyshev type inequalities of Lemma 14. By Lemma 14, for any
symmetric X such that EX2 = 1, and 0 ≤ A ≤ B, we have

A2P{X ≥ A} + (B2 − A2)P{X ≥ B} ≤ 1/2. (3.2.11)

By (3.2.1), we can rewrite (3.2.11) as

(x − τ)2P{X ≥ A} + 4xτP{X ≥ B} ≤ ϑ2/2. (3.2.12)
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For x ∈ (
√

2,
√

3) and τ ≥ τL we consider the cases

i) (x − τ)2 ≥ 4xτ and ii) (x − τ)2 ≤ 4xτ

separately. We denote the sets of points (x, τ) such that x ∈ (
√

2,
√

3), τ ≥ τL
and (i) or (ii) holds by E1 and E2, respectively.

i) Using (3.2.2), (3.2.12) and the induction hypothesis we get

P{Sk ≥ x} ≤ DP{X ≥ B} + ϑ2/2
2(x − τ)2 ≤ c∗ DI(B) + ϑ2/2

2(x − τ)2 , (3.2.13)

where X = (a2ε2 + · · · + akεk)/ϑ and D = (x − τ)2 − 4xτ .
In order to finish the proof of Theorem 11 (in this case) it suffices to show

that the right hand side of (3.2.13) is bounded above by c∗ I(x). In other
words, we have to check that the function

f(x, τ) ≡ f
def=

(
(x − τ)2 − 4xτ

)
c∗ I(B) − 2c∗ (x − τ)2I(x) + ϑ2/2,

(3.2.14)
is negative on E1, where B = (x + τ)/ϑ.

By Lemma 18 we have

f(x, τ) ≤ f(
√

3, τ) =: g(τ). (3.2.15)

Since τ ≤ (3 − 2
√

2)x the inequality f ≤ 0 on E1 follows from Lemma 15,
below.

ii) Using (3.2.2), (3.2.12) and induction hypothesis we get

P{Sk ≥ x} ≤ CP{X ≥ A} + ϑ2/2
8xτ

≤ C/(2A2) + ϑ2/2
8xτ

, (3.2.16)

where X = (a2ε2 + · · · + akεk)/ϑ and C = 4xτ − (x − τ)2.
In order to finish the proof (in this case) it suffices to show that the right

hand side of (3.2.16) is bounded from above by c∗ I(x). In other words, we
have to check that

C/(2A2) + ϑ2/2 ≤ 8xτc∗ I(x) on E2. (3.2.17)

Recalling that C = 4xτ − (x − τ)2, A = (x − τ)/ϑ, inequality (3.2.17) is
equivalent to

h(x, τ) = h
def= 1 − τ 2

(x − τ)2 − 4c∗ I(x) ≤ 0 on E2. (3.2.18)
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Inequality (3.2.18) follows from Lemma 19, below. The proof of Theorem 11
is complete. �

Lemma 15. The function g defined by (3.2.15) is negative for all τ ∈ [τL, (3−
2
√

2)
√

3].

Lemma 16. I ′(B) ≥ ϑI ′(x) on E1.

Lemma 17. I(B) ≥ I(x) + I ′(x)τ on E1.

Lemma 18. The partial derivative ∂xf of the function f defined by (3.2.14)
is positive on E1.

Lemma 19. The function h defined by (3.2.18) is negative on E2.

Proof of Lemma 15. Since g(τL) < 0 it is sufficient to show that g is a
decreasing function for τL ≤ τ ≤ (3 − 2

√
2)

√
3. Note that

g(τ) =
(
(
√

3 − τ)2 − 4
√

3τ
)

c∗ I(B) + (1 − τ 2)/2 − 2c∗ (
√

3 − τ)2I(
√

3),

We have

g′(τ) = (2τ − 6
√

3)c∗ I(B) −
(
(
√

3 − τ)2 − 4
√

3τ
)

c∗ φ(B)(1 + τ
√

3)ϑ−3

−τ + 4c∗ (
√

3 − τ)I(
√

3),

where φ is the standard normal distribution. Hence

g′(τ) ≤ w(τ) def= (2τ − 6
√

3)c∗ I(B) − τ + 4c∗ (
√

3 − τ)I(
√

3).

Note that the value of B in previous three displayed formulas should also be
computed with x =

√
3. Using Lemma 17 we get

g′(τ) ≤ −2c∗ (
√

3 + τ)I(
√

3) + 2c∗ τ(3
√

3 − τ)φ(
√

3) − τ
def= Q(τ)

with

Q(τ) = −ατ 2 + βτ − γ, α = 0.56 . . . , β = 1.67 . . . , γ = 0.45 . . . .

Clearly, Q is negative on the interval [τL, (3 − 2
√

2)
√

3]. It follows that g′

is negative, and g is decreasing on [τL, (3 − 2
√

2)
√

3].
Proof of Lemma 16. Since I ′ = −φ by (3.2.1), the inequality I ′(B) ≥

ϑI ′(x) is equivalent to

u(τ) def= (1 − τ 2) exp
{

(x + τ)2

1 − τ 2 − x2
}

≥ 1.
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Since u(0) = 0, it suffices to check that u′ ≥ 0. Elementary calculations show
that u′ ≥ 0 is equivalent to the trivial inequality x + τ 2x + τx2 + τ 3 ≥ 0. �

Proof of Lemma 17. Set now g(τ) = I(B). Then the inequality

I(B) ≥ I(x) + I ′(x)τ

turns into g(τ) ≥ g(0) + g′(0)τ . The latter inequality holds provided that
g′′(τ) ≥ 0. Next, it is easy to see that

g′(τ) = −φ(B)B′ and g′′(τ) = (BB′2 − B′′)φ(B).

Hence, to verify that g′′(τ) ≥ 0 we verify that BB′2 − B′′ ≥ 0. This last
inequality is equivalent to −2 + 2x2 + x3τ + x2τ 2 + xτ + 2xτ 3 + 3τ 2 ≥ 0,
which holds since x ≥ 1. The proof of Lemma 17 is complete. �

Proof of Lemma 18. We have

∂xf = 2 (x − 3τ) c∗ I(B) + Dc∗ I ′(B)/ϑ − 4c∗ (x − τ)I(x) − 2c∗ (x − τ)2I ′(x).

We have to show that ∂xf ≥ 0 on E1. Using Lemma 16, we can reduce this
to the inequality

2 (x − 3τ) I(B) − (x + τ)2I ′(x) − 4(x − τ)I(x) ≥ 0. (3.2.19)

On E1 we have that 0 ≤ τ ≤ (3 − 2
√

2)x, so x − 3τ ≥ x − 3(3 − 2
√

2)x =
(6

√
2 − 8)x > 0. By Lemma 17 we have that l.h.s. of (3.2.19) is bigger than

2(x − 3τ)(I(x) + I ′(x)τ) − (x + τ)I ′(x) − 4(x − τ)I(x) =
−2(x + τ)I(x) − (x2 + 7τ 2)I ′(x).

Inequality (3.2.19) follows by the inequality −(x2 + 7τ 2)I ′(x) ≥ αx(x +
τ)φ(x) > 2(x + τ)I(x) on E1 with α = 4

√
14 − 14, where the second in-

equality follows from the fact that φ(x)x/I(x) increases for x > 0 and is
larger than 2/α for x =

√
2. The proof of Lemma 18 is complete.�

Proof of Lemma 19. It is easy to see that the function h attains its
maximal value at τ = 1/x. Hence, it suffices to check (3.2.18) with τ = 1/x,
that is, that for

√
2 ≤ x ≤

√
3 the inequality g(x) def= 1−4c∗(x2−1)I(x) ≤ 0

holds. Using 4c∗ I(
√

2) = 1, we have g(
√

2) = 0 and g(
√

3) < 0. Next,
g′(x) = −8c∗xI(x) + 4c∗(x2 − 1)φ(x), so g′(

√
2) < 0 and g′(

√
3) > 0. We

have that g′′(x) = 4c∗ ((5 − x2)xφ(x) − 2I(x)). Since I(x) ≤ φ(x)/x we have
that g′′(x) ≥ 4c∗ ((5 − x2)xφ(x) − 2φ(x)/x) = 4c∗φ(x)/x((5 − x2)x2 − 2) ≥
8c∗φ(x)/x > 0 for x ∈ (

√
2,

√
3). The proof of Lemma 19 is complete.�
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Proof of Theorem 12. We denote

g(x) def= 3
8

− 1
8

√
2 − 2

x2 .

We consider the cases

i) 0 ≤ τ ≤ (3 − 2
√

2)
√

2 ≈ 0.243, ii) (3 − 2
√

2)
√

2 ≤ τ ≤ 1

separately.
(i) Applying the Lyapunov bound (3.2.7), it is sufficient to show that

I(x) + cLτ ≤ g(x).

In view of condition (i) this inequality is equivalent to

g(x) − I(x) ≥ 0.243cL ≈ 0.136 for x ∈ (1,
√

2).

Simple algebraic manipulations shows that g′′(x) has a sign of 3x2 − 2, so g
is convex on interval (1,

√
2). Thus

g(x) ≥ g(1.3) + g′(1.3)(x − 1.3) =: l1(x)

on interval (1,
√

2). The function I is also convex on (1,
√

2), so

I(x) ≥ I(1) − I(
√

2)
1 −

√
2

(x − 1) + I(1) =: l2(x).

Since l1(x) − l2(x) is increasing and l1(1) − l2(1) ≈ 0.141 > 0.136 we derive
a result. The proof in the case (i) is completed.

(ii) Elementary transformations show that in this case we have an in-
equality B2 ≥ 2A2. Applying (3.2.2), we have

P{S ≥ x} = 1
2
P{X ≥ A} + 1

2
P{X ≥ B} = Ew(X), (3.2.20)

where

X = (a2ε2 + a3ε3 + . . . )/ϑ, w(t) = 1
2
I{t ≥ A} + 1

2
I{t ≥ B}.
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In view of B2 ≥ 2A2, the quadratic function

p(t) = c0 + c2t
2, c0 = B2 − 2A2

2(B2 − A2)
, c2 = 1

2(B2 − A2)

is positive and satisfies p(t) ≥ w(|t|) for all t. Using EX2 = 1 and symmetry
of X, we have

Ew(X) = 1
2
Ew(|X|) ≤ 1

2
E p(|X|) = 1

2
E p(X) = c0 + c2

2

≡ 1
4

(
1 + 1 − A2

B2 − A2

)
(3.2.21)

Elementary transformations lead to

u(τ) def= 1 − A2

B2 − A2 ≡ 1 − 2τ 2 − x2 + 2τx

4τx
.

It is easy to check that u′(τ) has the sign of x2−2τ 2−1. Hence, the stationary
point of u is

τs =
√

x2 − 1
2

.

Since u is an increasing function of τ ∈ [0, τs], and u decreases for τ ∈ [τs, 1],
we derive

u(τ) ≤ u(τs) ≡ x −
√

2x2 − 2
2x

. (3.2.22)

Combining (3.2.20)–(3.2.22) we finish the proof of Theorem 12. �
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Chapter 4

Conditional tail probabilities

In this chapter we provide an application of the results from Chapter 3 for
investigation of single coordinate influence of Boolean valued half-space func-
tions of the form f(x) = sgn(a · x − θ) on the Boolean cube. We reformulate
the problem in probabilistic terms and obtain conditional small ball inequal-
ity for the sum of weighted independent Rademacher’s random variables. As
a consequence we confirm a conjecture by Matulef, O’Donnell, Rubinfeld and
Servedio [62] that the threshold function associated to a linear function with
some large coefficient, if balanced, must have a large influence.

4.1 Introduction
In this chapter we investigate the single coordinate influence of Boolean val-
ued half-space functions on the Boolean cube {−1, 1}n, i.e. functions of
the form f(x) = sgn(a · x − θ), with a = (a1, . . . , an) ∈ Rn, x ∈ {−1, 1}n,
a · x = a1x1 + · · · + anxn and θ ∈ R. Here sgn(x) is equal to 1 for x ≥ 0
and −1 otherwise. Without loss of generality, we assume everywhere that
a1 ≥ · · · ≥ an ≥ 0. Half-space functions are often called linear threshold
functions thus for brevity we will refer to them as LTFs.

Although LTFs are simple functions, they played an important role in
complexity theory, machine learning (e.g., computational learning theory)
and optimization (see [17, 26, 42, 62, 67, 70, 95]).

In computational learning theory an important goal is to construct a test
which, given access to an unknown function, say f , decides whether f belongs
to some class, say C, of functions or not. The class C is characterized by a
certain number of properties. The test will check whether f has (with a given
probability) these properties or f is “far” from the class C. Such property
testing procedures have been proposed in [39, 81] among others.
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Recently Matulef, O’Donnell, Rubinfeld and Servedio [62] created a test
which checks whether an unknown function belongs to the class of LTFs. In
order to describe the structural properties of this class they considered the
single coordinate influence of LTFs. The influence of a single variable is a
well studied quantity in computer sciences since the late 80’s [2, 49].

Since the quality of the test depends on non-asymptotic information on
the influence, we not only present bounds using generic absolute constants,
but give explicit values as well which are not far from the optimal ones.
Furthermore, we reformulate the problem in probabilistic terms showing that
it may be treated as a new class of conditional small ball inequalities for sums
of weighted independent Rademacher’s random variables.

In this chapter we shall need the notion of single variable influence only.
(For more general notions and properties of influence functions we refer to
e.g. [55, 71]). Let P denote the uniform probability measure on a discrete
cube {−1, 1}n, i.e., P{x} = 1/2n for all x ∈ {−1, 1}n. Given a Boolean-
valued function f : {−1, 1}n → {−1, 1} and i ∈ {1, . . . , n}, the influence of
the i’th variable is defined as

Infi(f) = P{f(xi+) ̸= f(xi−)},

where xi+ and xi− stands for the vector x with 1 and −1 in i’th coordi-
nate, respectively. Equivalently, Infi(f) = 2−n#{x : f(xi+) ̸= f(xi−)}. In
other words, Infi(f) denotes the probability that changing a sign of the i’th
coordinate of a randomly chosen x the function f changes it’s sign.

The set of functions f : {−1, 1}n → {−1, 1} is a 2n-dimensional space over
the reals with inner product given by (f, g) = E fg. The set of functions
{xA}A⊆[n] defined by {xA} = Πi∈A xi forms a complete orthonormal basis in
this space. Given a function f : {−1, 1}n → {−1, 1} we define it’s Fourier
coefficients by f̂(A) = E fxA. Thus we have f = ∑

A f̂(A)xA. A function
f is said to be unate if it is monotone increasing or monotone decreasing as
a function of the variable xi for each i. In particular, LTF’s are unate. It
is well known that if f is unate, then Infi(f) = |f̂(i)| (we write i instead of
{i}). We will say that f : {−1, 1}n → {−1, 1} is τ -regular if |f̂(i)| ≤ τ for
all i. For this and more information on LTFs we refer the reader to, e.g.,
[63, 71].

Our main result of this chapter is the following theorem which proves a
conjecture by Matulef, O’Donnell, Rubinfeld and Servedio [62].

Theorem 20 (Dzindzalieta, Götze [30]). Let f(x) = sgn(a ·x−θ) be a LTF.
Assume that ∥a∥2 = 1, a1 ≥ · · · ≥ an ≥ 0 and ∥a∥∞ ≥ δ for some 0 < δ < 1
and |E f | ≤ 1− ϵ for some 0 ≤ ϵ ≤ 1. Then there exists an absolute constant
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C > 0 such that
|f̂(1)| = Inf1(f) ≥ C δϵ. (4.1.1)

We prove that we can take C ≥ 3
√

2/64 ≈ 0.066. Furthermore, a simple
example shows that an optimal C is not larger than 3

√
2/8.

Note, that (4.1.1) do depend on θ. The dependence on θ is hidden in
the inequality |E f | ≤ 1 − ϵ. This can be clearly seen in the probabilistic
reformulation of the result stated below.

In [36] it was shown that if f is LTF and |ai| ≥ |aj| then Infi(f) ≥
Infj(f), meaning that the variable with a largest weight is the most influ-
ential. We will provide a short proof of this result in Section 4.3. Since
a1 ≥ · · · ≥ an ≥ 0, it follows that Inf1(f) ≥ Infi(f) for all i.

We need some additional definitions. Let φ denote the probability density
of a standard normal random variable, i.e., φ(t) = 1√

2π
exp{−t2/2} and in-

troduce µ(θ) = −1+2
∫∞

θ φ(t)dt as strictly decreasing map from R to (−1, 1)
as well as W (ν) = 2φ(µ−1(ν)).

Corollary 21. Let f denote τ -regular LTF for some sufficiently small τ
given by f(x) = sgn(a · x − θ). Then∣∣∣∣∣

n∑
i=1

f̂(i)2 − W (E f)
∣∣∣∣∣ ≤ τ 1/3.

Let fk, k = 1, 2, denote the τ -regular LTF’s as above with θ = θk and the
same a. Then ∣∣∣∣∣∣

(
n∑

i=1
f̂1(i)f̂2(i)

)2

− W (E f1)W (E f2)

∣∣∣∣∣∣ ≤ τ 1/3. (4.1.2)

To prove Corollary 21 it is enough to use the bound (4.1.1) in the proof
of [62, Theorem 48].

4.2 Probabilistic reformulation
In this section we will show that Theorem 20 is closely related to the results of
the Chapter 3 of these thesis for sums of weighted independent Rademacher’s
random variables taking two values ±1 with probabilities 1/2. Since {−1, 1}n

is equipped with a uniform measure, we consider the xi’s as independent
Rademacher’s random variables. Defining Sn = a1x1+· · ·+anxn, and S ′

n−1 =
Sn − a1x1, we have f = sgn(Sn − θ). Without loss of generality we assume
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that Sn does not take the value 0 and θ ≥ 0. Let us reformulate Theorem 20
using probabilistic terms. First of all, observe that

Inf1(f) = P
{∣∣∣S ′

n−1 − θ
∣∣∣ ≤ a1

}
. (4.2.1)

Furthermore, since Sn is a symmetric random variable and θ > 0, we have
by definition of sgn

E sgn(Sn − θ) = P{Sn ≥ θ} − P{Sn < θ} = −P{|Sn| < θ}.

Thus integrating w.r.t. x1 we get again by symmetry of S ′
n−1

|E sgn(Sn − θ)| = P{|S ′
n−1 − a1| < θ}. (4.2.2)

Normalizing S ′
n−1 in (4.2.1)–(4.2.2) by

√
1 − a2

1 and replacing n − 1 by n,
a1 by τ := a1/

√
1 − a2

1 and θ by θ/
√

1 − a2
1 we see that Theorem 20 follows

from the following theorem.

Theorem 22 (Dzindzalieta, Götze [30]). Let ∥a∥2 = 1, ∥a∥∞ ≤ τ for some
τ > 0 and

P{|Sn − τ | < θ} = 1 − ϵ (4.2.3)

for some 0 ≤ ϵ ≤ 1. There exists an absolute constant C > 0 such that

P{|Sn − θ| ≤ τ} ≥ Cϵτ√
1 + τ 2

. (4.2.4)

The constant C can be taken from Theorem 20 and thus the optimal constant
in (4.2.4) is larger than 3

√
2/64 ≈ 0.066.

We can interpret Theorem 22 as a conditional small ball inequality for
sums of weighted independent Rademacher’s random variables.

The main strategy in the proof of Theorem 22 is to use the following
lower bound for unconditional small ball probabilities of the sum of weighted
independent Rademacher’s random variables.

Lemma 23 (Dzindzalieta, Götze [30]). Let ∥a∥2 ≤ 1 and ∥a∥∞ ≤ τ , then
there exists an absolute constant c > 0 such that

P{|Sn| ≤ τ} ≥ cτ√
1 + τ 2

. (4.2.5)

Furthermore, the optimal constant in (4.2.5), say c∗, is larger than 3
√

2/16 ≈
0.26.
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As can be seen from the proof, the bounds for an optimal constant c∗
in Lemma 23 depend on bounds for P{Sn ≥ τ} for τ close to 1. Taking
τ = 1 − γ with sufficiently small γ > 0 and Sn = 1

2(x1 + x2 + x3 + x4) we get
that c∗ ≤ 3

√
2/8 ≈ 0.53. We believe that the optimal constant in (4.2.5) is

equal to 3
√

2/8. Inequality (4.2.5) has been proved in Khot et. al. [52] with
a constant c ≈ 8.6 · 10−40.

4.3 Proofs
In our proofs in this chapter we will use again Lyapunov type Berry-Esseen
bounds with explicit constants for the remainder term in the Central Limit
Theorem(see Chapter 3 for more details).

In this section w.l.o.g. we assume that ∥a∥2 = 1 and a1 ≥ · · · ≥ an ≥ 0.

Proof of Lemma 23. Before proving this lemma it is worth to note, that the
proof would be much easier, if one wanted to prove only the existence of
an absolute constant c. Our goal is to find the best possible bound for the
constant using our method, therefore the proof becomes a bit cumbersome.

For τ ∈ (1,
√

2] Lemma 23 follows by (3.1.7) and Theorem 12 from Chap-
ter 3. Note that Theorem 12 allows us to obtain a better bound for the
constant c in (4.2.5) for τ ∈ (

√
8/7,

√
2).

For τ ≥
√

2 Lemma 23 follows from Theorem 11 from Chapter 3.
For τ < 1 the proof is not so straightforward. In this case we consider two

cases where a is localized, i.e., all ai’s are “small” and where a is delocalized,
i.e., at least one ai is “large”. This method has been found very effective and
is used by many authors, e.g., [6, 29, 38, 61, 82]. We denote δ := a1. We
integrate Sn with respect to the first variable obtaining

P{|Sn| ≤ τ} = 1
2
P{|S ′

n−1 − δ| ≤ τ} + 1
2
P{|S ′

n−1 + δ| ≤ τ}.

Since {x ∈ R : |x| ≤ τ + δ} ⊂ {x ∈ R : |x − δ| ≤ τ} ∪ {x ∈ R : |x + δ| ≤ τ}
we have

P {|Sn| ≤ τ} ≥ 1
2
P
{
|S ′

n−1| ≤ τ + δ
}

.

Let S∗
n−1 = S ′

n−1/
√

1 − δ2. It is clear that S∗
n−1 = b2x2 + · · · + bnxn such

that δ/
√

1 − δ2 ≥ b2 ≥ · · · ≥ bn and b 2
2 + · · · + b2

n = 1. We have

P{|Sn| ≤ τ} ≥ 1
2
P
{

|S∗
n−1| ≤ τ + δ√

1 − δ2

}
= 1

2
− P

{
S∗

n−1 >
τ + δ√
1 − δ2

}
.
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If (τ + δ)/
√

1 − δ2 ≥ 1 then using (3.1.7) we have that

P{|Sn| ≤ τ} ≥ 1
2

− 5
16

= 3
16

≥ 3
√

2
16

τ√
1 + τ 2

.

Let (τ +δ)/
√

1 − δ2 < 1. Since δ > 0 we obtain that δ < (
√

2 − τ 2 −τ)/2.
Let A be a set of points (δ, τ) ∈ R2 such that 0 < δ ≤ min{τ, (

√
2 − τ 2−τ)/2}

and τ ∈ (0, 1). Using the Berry-Esseen bounds (3.2.7) we get that

P{|Sn| ≤ τ} ≥ 1 − 2I

(
τ + δ√
1 − δ2

)
− 2cLδ√

1 − δ2
. (4.3.1)

Thus in a view of (4.2.5) and (4.3.1) it is enough to prove that

g(δ, τ) = g
def=

(
1 − 2I

(
τ + δ√
1 − δ2

)
− 2cLδ√

1 − δ2

) √
1 + τ 2

τ
≥ 3

√
2

16
(4.3.2)

on A.
We consider the two cases τ > (

√
2 − τ 2 − τ)/2 and τ ≤ (

√
2 − τ 2 − τ)/2

separately.

Let τ < (
√

2 − τ 2 −τ)/2, i.e., τ < 1/
√

5, then by Sublemma 1 it is enough
to consider the case δ = τ . In this case

g =
(

1 − 2I

(
2τ√

1 − τ 2

)
− 2 cLτ√

1 − τ 2

) √
1 + τ 2

τ
.

It is easy to verify that I
(

2τ√
1−τ2

)
is convex, hence

I

(
2τ√

1 − τ 2

)
≤ 1 −

√
5(1 − 2I(1))τ,

and therefore

g(τ, τ) ≥
(√

5(1 − 2I(1)) − 2cL√
1 − τ 2

)√
1 + τ 2. (4.3.3)

Furthermore, since
√

1 − τ 2 ≥
√

1 − 1/5 = 2/
√

5 and
√

1 + τ 2 ≥ 1, we have

g(τ, τ) ≥
(√

5(1 − 2I(1)) −
√

5cL
)

>
3
√

2
16

.
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Let τ ≥ (
√

2 − τ 2 − τ)/2. By Sublemma 1 we can take δ = (
√

2 − τ 2 −
τ)/2.

In this case after simple algebraic manipulation we obtain

g ≡ g(δ, τ) =
(

1 − 2I(1) − 2cL

√
2 − τ 2 − τ√
2 − τ 2 + τ

) √
1 + τ 2

τ
.

Next since
√

2 − τ 2 + τ ≥ 4/
√

5,
√

2 − τ 2 − τ ≥
√

1 − τ 2 and
√

1 − t4 ≥ 1
we have

g ≥ (1 − 2I(1))
√

1 + τ 2

τ
−

√
5cL

2τ
=: h(τ).

It is easy to show that the derivative of h satisfies for all τ ≥ 0

h′(τ) = 1
τ 2

(
−1 − 2I(1)√

1 + τ 2
+

√
5cL

2

)

≥ 1
τ 2

(
−

√
5(1 − 2I(1))√

6
+

√
5cL

2

)
≈ 0.003

τ 2 .

Thus h′(τ) > 0 and g ≥ h
(
1/

√
5
)

≈ 0.27 > 3
√

2
16 .

Sublemma 1. The partial derivative ∂δg(δ, τ) of the function g defined by
(4.3.2) is negative on A.

Proof of Sublemma 1. It is easy to see that ∂δg(δ, τ) < 0 is equivalent to

φ

(
τ + δ√
1 − δ2

)
+ φ

(
τ + δ√
1 − δ2

)
δτ − cL < 0. (4.3.4)

It is clear that φ
(

τ+δ√
1−δ2

)
≤ φ(0) and τ+δ√

1−δ2 ≥ 2δ on A. Thus the left hand
side of (4.3.4) is not larger than

φ(0) + φ(2δ)δ − cL ≤ φ(0) + φ(1)/2 − cL < 0.

This ends the proof of Sublemma 1.

Proof of Theorem 22. We consider the two cases, θ ≤ τ and θ > τ ,
separately.

Case θ ≤ τ . Since

P{|Sn − θ| ≤ τ} ≥ P{0 ≤ Sn ≤ τ} ≥ 1
2
P{|Sn| ≤ τ}.

Theorem 22 follows by Lemma 23.
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Case θ > τ . By (4.2.3) we get that

P{Sn ≥ θ − τ} ≥ ϵ/2. (4.3.5)

Given a1, . . . , an we denote

Ak = {{−1, 1}n ∋ x : S0(x) < θ − τ, . . . , Sk−1(x) < θ − τ, Sk(x) ≥ θ − τ}.

Note that the sets A1, . . . , An are disjoint and {x : Sn ≥ θ − τ} ⊂ ∪n
i=1 Ai.

From (4.3.5) it follows that P{A1 ∪ · · · ∪ An} ≥ ϵ/2.
Due to symmetry of Sn − Sk = ak+1xk+1 + · · · + anxn we have

P{|Sn − θ| ≤ τ |Ak} ≥ 1
2
P{|Sn − Sk| ≤ τ}. (4.3.6)

By Lemma 23 and (4.3.5)–(4.3.6) we get that

P{|Sn − τ | ≤ θ} ≥ c

4
ϵτ√

1 + τ 2

with the same constant c as in Lemma 23, so C ≥ c/4 ≥ 0.066. This ends
the proof of the Theorem 22.

Lemma 24. Let f be a LTF and a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If i < j, then
Infi(f) ≥ Infj(f).

Proof. Let Si,j
n = Sn−aixi−ajxj, where Sn = a1x1+· · ·+anxn. By definition

we have

Infi(f) = P{Si,j
n + ajxj + θ ∈ [−ai, ai)}

= 1
2
P{Si,j

n + θ ∈ [−ai − aj, ai + aj)} + 1
2
P{Si,j

n + θ ∈ [aj − ai, ai − aj)}

≥ 1
2
P{Si,j

n + θ ∈ [−ai − aj, aj − ai) ∪ [ai − aj, ai + aj)} = Infj(f).
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Chapter 5

Maximal random walks based
on martingales

In this chapter we assume that Bernoulli random variables Xi’s are only
bounded and have a martingale type dependence, i.e., Mk = X1 + · · · + Xk

is a martingale sequence. We find tight upper bounds for the probability
that a random walk based on a martingale sequence Mk visits an interval
[x, ∞). As far as we know our result gives the first known tight bounds for a
Hoeffding type [47] inequalities for martingales with bounded differences. We
also show that the maximizing random walk is an inhomogeneous Markov
chain. We present a full description of the maximizing random walk and give
an explicit expression for the maximal probability. We extend the results to
random walks based on supermartingale sequences.

5.1 Introduction and results
We consider random walks, say Wn = (M0, M1, . . . , Mn) of length n starting
at 0 and based on a martingale sequence Mk = X1 + · · · + Xk (assume M0 =
0) with differences Xm = Mm − Mm−1. Let M be the class of martingales
with bounded differences such that |Xm| ≤ 1 and E (Xm|Fm−1) = 0 with
respect to some increasing sequence of σ-algebras ∅ ⊂ F0 ⊂ · · · ⊂ Fn. We
assume that a class M is such that maximal random walks belongs to this
class. If a random walk Wn is based on a martingale sequence of the class
M then we write symbolically Wn ∈ M. Extensions to super-martingales
are provided at the end of the Introduction.

In this chapter we provide a solution of the problem

Dn(x) def= sup
Wn∈M

P {Wn visits an interval [x, ∞)} , x ∈ R. (5.1.1)
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In particular, we describe random walks which maximize the probability
in (5.1.1) and give an explicit expression of the upper bound Dn(x). It
turns out that the random walk maximizing the probability in (5.1.1) is an
inhomogeneous Markov chain, i.e., given x and n, the distribution of kth step
depends only on Mk−1 and k. For an integer x ∈ Z, the maximizing random
walk is a simple symmetric random walk (that is, a symmetric random walk
with independent steps of length 1) stopped at x. For non-integer x, the
maximizing random walk makes some steps of smaller sizes. Smaller steps
are needed to make the remaining distance an integer number. When the
remaining distance becomes integer number the random walk continues as
a simple random walk. The average total number of the smaller steps is
bounded by 2. For martingales our result can be interpreted as a maximal
inequality

P
{

max
1≤k≤n

Mk ≥ x
}

≤ Dn(x).

The maximal inequality is optimal since the equality is achieved by mar-
tingales related to the maximizing random walks, that is,

sup
W1,...,Wn∈M

P
{

max
1≤k≤n

Mk ≥ x
}

= Dn(x), (5.1.2)

where we denote by Wk a random walk (M0, M1, . . . , Mk, Mk, . . . , Mk) ∈ M.
To prove the result we formulate a general principle of maximal inequal-

ities for (natural classes of) martingales which reads as

sup
W1,...,Wn∈M

P
{

max
1≤k≤n

Mk ≥ x
}

= sup
Mn∈M

P{Mn ≥ x} (5.1.3)

in our case. It means that for martingales, the solutions of problems of type
(5.1.1) are inhomogeneous Markov chains, i.e., the problem of type (5.1.1) can
always be reduced to finding a solution of (5.1.1) in a class of inhomogeneous
Markov chains.

Our methods are similar in spirit to a method used in [10], where prob-
lem (5.1.1) was solved for integer x. Namely, it was shown that if Rn =
ε1 + · · · + εn is a sum of independent Rademacher’s random variables such
that P{εi = −1} = P{εi = −1} = 1/2 and B(n, k) is a normalized sum of
n − k + 1 smallest binomial coefficients, i.e.,

B(n, k) = 2−n
n−k∑
i=0

(⌊
i
2

⌋
n

)
(5.1.4)
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where ⌊x⌋ denotes an integer part of x, then for all k ∈ Z

Dn(k) = B(n, k) =

2P{Rn ≥ k + 1} + P{Rn = k} if n + k ∈ 2Z,

2P{Rn ≥ k + 1} if n + k ∈ 2Z + 1.

In Chapter 2 we solved the problem (5.1.1) in the case of sums of bounded
independent symmetric random variables. We reformulate the result using
notation of this section and get that if Sn = X1 + · · · + Xn is a sum of
independent symmetric random variables such that |Xi| ≤ 1 then

P{Sn ≥ x} ≤

P{Rn ≥ x} if n + ⌈x⌉ ∈ 2Z,

P{Rn−1 ≥ x} if n + ⌈x⌉ ∈ 2Z + 1,

where ⌈x⌉ denotes the smallest integer number greater or equal to x. We
note that for integer x the random walk based on the sequence Rk stopped
at a level x is a solution of (5.1.1).

To best of our knowledge, the statement below is the first result where
problems for martingales of type (5.1.1) and (5.1.2) are solved for all x ∈ R.

Let us turn to more detailed formulations of our results. For a martingale
Mn ∈ M and x ∈ R, we introduce the stopping time

τx = min{k : Mk ≥ x}. (5.1.5)

The stopping time τx is a non-negative integer valued random variable pos-
sibly taking the value +∞ in cases where Mk < x for all k = 0, 1, . . . . For a
martingale Mn ∈ M, define its version stopped at level x as

Mn,x = Mτx∧n, a ∧ b = min{a, b}. (5.1.6)

Given a random walk Wn = {0, M1, . . . , Mn} its stopped version is denoted
as Wn,x = {0, M1,x, . . . , Mn,x}.

Fix n and x > 0. The maximizing random walk RWn = {0, Mx
1 , . . . , Mx

n}
is defined as follows. We start at 0. Suppose that after k steps the re-
maining distance to the target [x, ∞) is ρk. The distribution of the next
step is a Bernoulli random variable (which takes only two values), say X∗ =
X∗(k, ρk, n), such that

sup
X

EDn−k(ρk − X) = EDn−k(ρk − X∗) (5.1.7)

where sup is taken over all random variables X such that |X| ≤ 1 and
EX = 0.
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The distribution of the next step X∗ depends on four possible situations.

i) ρk is integer;
ii) n − k is odd and 0 < ρk < 1;
iii) the integer part of ρk + n − k is even;
iv) the integer part of ρk + n − k is odd and ρk > 1.

After k steps we make a step of length sl or sr to the left or right with
probabilities pi = sr

sr+sl
and qi = sl

sr+sl
respectively. Let {x} denote the

fractional part of a number x. Depending on (i)-(iv) we have.
i) sl = sr = 1 with equal probabilities p1 = q1 = 1

2 , i.e., we continue as a
simple random walk;

ii) sl = ρk and sr = 1 − ρk with p2 = 1 − {ρk} and q2 = {ρk}, i.e., we make
a step so that the remaining distance ρk+1 becomes equal either to 0 or 1;

(iii) sl = {ρk} and sr = 1 with p3 = 1
1+{ρk} and q3 = {ρk}

1+{ρk} , i.e., we make
a step to the left so that ρk+1 is of the same parity as n − k − 1 or to the
right side as far as possible ;

(iv) sl = 1 and sr = 1 − {ρk} with p4 = 1−{ρk}
2−{ρk} and q4 = 1

2−{ρk} , i.e., we
make a step to the left so that ρk+1 is of the same parity as n − k − 1 or to
the right side as far as possible.

In other words if ρk is non-integer then the maximizing random walk
jumps so that ρk+1 becomes of the same parity as the remaining number of
steps n − k − 1 or the step min{x, 1} to the other side. If the remaining
distance ρk is integer, then it continues as a simple random walk.

The main result of the chapter is the following theorem.

Theorem 25 (Dzindzalieta [33]). The random walk RWn stopped at x max-
imizes the probability to visit an interval [x, ∞) in first n steps, i.e., the
following equalities hold

Dn(x) = P{RWn,x visits an interval [x, ∞)} = P{Mx
n,x ≥ x}, (5.1.8)

for all x ∈ R and n = 0, 1, 2, . . ..

An explicit definition of Dn(x) depends on the parity of n. Namely, let
x = m + α with m ∈ Z and 0 ≤ α < 1.

If m + n is odd then

Dn(x) =
h∑

i=0
ai B(n − i − 1, m + i), ai = αi

(1 + α)i+1 , (5.1.9)
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where h = (n − m − 1)/2.
If m + n is even then

Dn(x) =
m+1∑
i=0

bi B(n − i − 1, m − i + 1), (5.1.10)

where bi = (1−α)i

(2−α)i+1 , for i < m, bm = α
(

1−α
2−α

)m
and bm+1 = (1 − α)

(
1−α
2−α

)m
.

It is easy to see from (5.1.9) and (5.1.10) that Dn is decreasing and
continuous for all x ∈ R except at x = n it has a jump. In particular we
have that Dn(x) = 1 for x ≤ 0 and Dn(x) = 0 for x > n. In Section 5.3 we
prove that the function Dn is piecewise convex and piecewise continuously
differentiable. We also give the recursive definition of the function Dn.

A great number of papers is devoted to construction of upper bounds for
tail probabilities of sums of random variables. The reader can find classical
results in books [75, 85]. One of the first and probably the most known non-
asymptotic bound for Dn(x) was given by Hoeffding in 1963 [47]. He proved
that for all x the function Dn(x) is bounded by exp{−x2/2n}. Hoeffding’s
inequalities remained unimproved until 1995 when Talagrand [90] inserted
certain missing factors. Bentkus 1986–2007 [7, 10, 11, 13] developed induc-
tion based methods. If it is possible to overcome related technical difficulties,
these methods lead to the best known upper bounds for the tail probabilities
(see [6, 31] for examples of tight bounds received using these methods). In
[10] first tight bound for Dn(x) for integer x was obtained. To overcome
technical difficulties for non-integer x in [10] the linear interpolation between
integer points was used, thus losing precision for non-integer x. Our method
is similar in spirit to [10].

5.1.1 An extension to super-martingales
Let SM be the class of super-martingales with bounded differences such that
|Xm| ≤ 1 and E (Xk|Fk−1) ≤ 0 with respect to some increasing sequence of
σ-algebras ∅ ⊂ F0 ⊂ · · · ⊂ Fn. We show that

Theorem 26 (Dzindzalieta [33]). For all x ∈ R we have

sup
SWn∈ SM

P {SWn visits an interval [x, ∞)} = Dn(x). (5.1.11)

For super-martingales Theorem 26 can also be interpreted as the maximal
inequality

P
{

max
1≤k≤n

Mk ≥ x
}

≤ Dn(x),
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where Mk ∈ SM, and furthermore, the sup over the class of super-martingales
is achieved on a martingale class.

Proof of Theorem 26. Suppose that sup in (5.1.11) is achieved with
some super-martingale SMn = X1 + · · · + Xn. Let Mn = Y1 + · · · + Yn be a
sum of random variables, such that

(Yk|Fk−1) = ((Xk|Fk−1) − 1) E (Xk|Fk−1)
1 − E (Xk|Fk−1)

.

It is easy to see that Yk ≥ 0, |Xk + Yk| ≤ 1 and E (Xk + Yk|Fk−1) = 0, so
SMn + Mn ∈ M. Since Yk ≥ 0 we have that Mn ≥ 0, so P {SMn + Mn ≥ x}
is greater or equal to P {SMn ≥ x}. This proves the theorem. �

5.2 Maximal inequalities for martingales
Let M be a class of martingales. Introduce the upper bounds for tail prob-
abilities and in the maximal inequalities as

Bn(x) def= sup
Mn∈M

P{Mn ≥ x}, B∗
n(x) def= sup

Mn∈M
P
{

max
0≤k≤n

Mk ≥ x
}

for x ∈ R (we define M0 = 0).
Let as before τx be a stopping time defined by

τx = min{k : Mk ≥ x}. (5.2.1)

Then we have the following result.

Theorem 27 (Dzindzalieta [33]). If a class M of martingales is closed under
stopping at level x, then

Bn(x) ≡ B∗
n(x).

We can interpret Theorem 27 by saying that inequalities for tail probabil-
ities for natural classes of martingales imply (seemingly stronger) maximal
inequalities. This means that maximizing martingales are inhomogeneous
Markov chains. Assume that for all Mn ∈ M we have

P{Mn ≥ x} ≤ gn(x)

with some function g which depends only on n and the class M. Then it
follows that

P
{

max
0≤k≤n

Mk ≥ x
}

≤ gn(x).
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In particular, equalities (5.1.1)–(5.1.3) are equivalent.
Proof of Theorem 27. It is clear that Bn ≤ B∗

n since Mn ≤ max
0≤k≤n

Mk.
Therefore it suffices to check the opposite inequality Bn ≥ B∗

n. Let Mn ∈ M.
Using the fact that Mτx∧n ∈ M, we have

P
{

max
0≤k≤n

Mk ≥ x
}

= P {Mτx∧n ≥ x} ≤ Bn(x). (5.2.2)

Taking in (5.2.2) sup over Mn ∈ M, we derive B∗
n ≥ Bn. �

In general conditions of Theorem 27 are fulfilled under usual moment
and range conditions. That is, conditions of type

E (|Xk|αk | Fk−1 ) ≤ gk, (Xk | Fk−1 ) ∈ Ik,

with some Fk−1-measurable αk ≥ 0, gk ≥ 0, and intervals Ik with Fk−1-
measurable endpoints. One can use as well assumptions like symmetry, uni-
modality, etc.

5.3 Proofs
In order to prove Theorem 25 we need some additional lemmas.

Lemma 28. Suppose f ∈ C1(0, 2) is a continuously differentiable, non-
increasing, convex function on (0, 2). Suppose that f is also two times dif-
ferentiable on intervals (0, 1) and (1, 2). The function F : (0, 2) → R defined
as

F (x) = 1
x + 1

f(0) + x

x + 1
f(x + 1) for x ∈ (0, 1];

F (x) = 2 − x

3 − x
f(x − 1) + 1

3 − x
f(2) for x ∈ (1, 2)

is convex on intervals (0, 1) and (1, 2).

Proof. Since the function f is decreasing and convex, we have that

f ′(x + 1) ≥ f(x + 1) − f(0)
x + 1

for x ∈ (0, 1); (5.3.1)

f ′(x − 1) ≤ f(2) − f(x − 1)
3 − x

for x ∈ (1, 2). (5.3.2)
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For x ∈ (0, 1) simple algebraic manipulations gives

F ′′(x) = x

x + 1
f ′′(x + 1) + 2

(x + 1)2

(
f ′(x + 1) − f(x + 1) − f(0)

x + 1

)
. (5.3.3)

By (5.3.1) the second term in right hand side of (5.3.3) is non-negative. Thus
F ′′(x) ≥ 0 for all x ∈ (0, 1).

For x ∈ (1, 2) similar algebraic manipulation gives

F ′′(x) = 2 − x

3 − x
f ′′(x−1)− 2

(3 − x)2

(
f ′(x − 1) − f(2) − f(x − 1)

3 − x

)
. (5.3.4)

By (5.3.2) the second term in right hand side of (5.3.4) is non-negative. Thus
F ′′(x) ≥ 0 for all x ∈ (1, 2).

We use Lemma 28 to prove that the function x → Dn(x) satisfies the
following analytic properties.

Lemma 29. The function Dn is convex and continuously differentiable on
intervals (n − 2, n), (n − 4, n − 2), . . . , (0, 2{n/2}).

Proof. In order to prove this lemma it is very convenient to use a recursive
definition of the function Dn(x) which easily follows from the the description
of the maximizing random walk RWn,x. We have D0(x) = I{x ≤ 0} and

Dn+1(x) =



1 if x ≤ 0,

p1Dn(x − 1) + q1Dn(x + 1) if x ∈ Z and x > 0,

p2Dn(0) + q2Dn(1) if n ∈ 2Z + 1 and x < 1,

p3Dn(⌊x⌋) + q3Dn(x + 1) if ⌊x⌋ + n ∈ 2Z and x > 0,

p4Dn(x − 1) + q4Dn(⌈x⌉) if ⌈x⌉ + n ∈ 2Z and x > 1,

0 if x > n.

(5.3.5)
where pi + q1 = 1 with p1 = 1/2, p2 = 1 − {x}, p3 = 1

1+{x} and p4 = 1−{x}
2−{x} .

To prove Lemma 28 we use induction on n. If n = 0 then the function
Dn(x) = I{x ≤ 0} clearly satisfies Lemma 29. Suppose that Lemma 28 holds
for n = k − 1 ≥ 0. Assume n = k.

First we prove that Dk is convex and continuously differentiable on in-
tervals (0, 1), (1, 2), . . . , (k − 1, k). Since Dk is rational by construction and
do not have discontinuities between integer points, it is clearly continuously
differentiable on intervals (0, 1), (1, 2), . . . , (k − 1, k). If x ∈ (k − 1, k] then
by (5.1.9) we have that Dk(x) = 2−k+1/(x − k + 1). Thus the function Dk
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is clearly convex on interval (k − 1, k). The convexity of Dk on intervals
(0, 1), (1, 2), . . . , (k − 2, k − 1) follows directly from Lemma 28 and recursive
definition (5.3.5). To prove that the function Dk is also continuously differ-
entiable on intervals (k − 2, k), (k − 4, k − 2), . . . , (0, 2{k/2}) it is enough to
show that D′

k(m − 0) = D′
k(m + 0) for all m ∈ N such that k + m ∈ 2Z + 1.

Here we write D′
k(m−0) to denote limx↑m D′

k(x), etc. We also write x = m−0
for x = m − ϵ for some vanishing ϵ > 0. The limit exists, since D′

n(x) is con-
tinuous between integer points. If x = m − 0 (we consider only the case
m > 0, since for m = 0 the function Dk(x) is linear), then by (5.3.5) we have

Dk(x) = p4Dk−1(x − 1) + q4Dk−1(m) (5.3.6)

and since Dk−1 is continuously differentiable at x − 1 we have

D′
k(x) = q2

4Dk−1(x − 1) + p4D
′
k−1(x − 1) − q2

4Dk−1(m).

Since x = m − 0 we get that D′
k(x) = Dk−1(x − 1) − Dk−1(m). Simi-

larly we have that if x = m + 0 then D′
k(x) = Dk−1(m) − Dk−1(x − 1).

Since Dk−1(m − 1) − Dk−1(m) = Dk−1(m) − Dk−1(m − 1) we get that
D′

k(m − 0) = D′
k(m + 0). Since Dk is continuously differentiable on inter-

vals (k − 2, k), (k − 4, k − 2), . . . , (0, 2{k/2}) and Dk is convex on intervals
(0, 1), (1, 2), . . . , (k − 1, k) we have that Dk(x) ≥ 0 is convex on x = m for all
m ∈ N such that k + m ∈ 2Z + 1. This ends the proof of Lemma 28.

We also need the following lemma, which is used to find the minimal
dominating linear function in the proof of Theorem 25.

Lemma 30. The function Dn satisfies the following inequalities.
a) If n ∈ 2Z + 1 and 0 < x < 1 then

p2Dn(0) + q2Dn(1) − p3Dn(0) − q3Dn(x + 1) ≥ 0. (5.3.7)

b) If ⌊n + x⌋ ∈ 2Z then

p3Dn(⌊x⌋) + q3Dn(x + 1) − p1Dn(x − 1) − q1Dn(x + 1) ≥ 0. (5.3.8)

c) If ⌊n + x⌋ ∈ 2Z + 1 and x > 1

p4Dn(x − 1) + q4Dn(⌊x⌋ + 1) − p1Dn(x − 1) − q1Dn(x + 1) ≥ 0. (5.3.9)

Here pi and qi are the same as in Lemma 28.

Proof. We prove this lemma by induction on n. If n = 0 then Lemma 30 is
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equivalent to the trivial inequality 1 − 1 ≥ 0. Suppose that the properties
(a)–(c) hold for n = k − 1 ≥ 0. Assume n = k.

Proof of (a). We use the following equalities which directly follow from
the definition of the function Dk. If k ∈ 2Z + 1 and x ∈ (0, 1) then

Dk(0) = Dk−1(0);
Dk(1) = p1Dk−1(0) + q1Dk−1(2);

Dk(x + 1) = p4Dk−1(2) + q4Dk−1(x);
Dk−1(x) = Dk−1(0) + x (Dk−1(1) − Dk−1(0)) ;

We insert all these equalities in (5.3.7) and get that the left hand side of
(5.3.7) is equal to

q2p3p4x (p1Dk−1(0) + q1Dk−1(2) − Dk−1(1)) .

Now, the inequality (5.3.7) follows from the inequality

Dk−1(1) ≤ Dk(1) = p1Dk−1(0) + q1Dk−1(2).

Proof of (b). We rewrite each term in the inequality (5.3.8) using the
definition of the function Dk to get

p1p3(Dk−1(⌊x⌋ − 1) + Dk−1(⌊x⌋ + 1))
+q3(p3Dk−1(⌊x⌋ + 1) + q3Dk−1(x + 2)) −
p1p3(Dk−1(⌊x⌋ − 1) + Dk−1(⌊x⌋ + 1)) −
p1q3(Dk−1(x) + Dk−1(x + 2)).

The inequality

p3Dk−1(⌊x⌋ + 1) + q3Dk−1(x + 2) ≥ p1Dk−1(x) + q1Dk−1(x + 2)

follows from the inductive assumption (5.3.8) for n = k − 1.
Proof of (c). In this case we have to consider two separate cases.
Case x > 2. We again rewrite each term in the inequality (5.3.9) using

the definition of the function Dk to get

p4(p4Dk−1(x − 2) + q4Dk−1(⌊x⌋)) + q4p1(Dk−1(⌊x⌋) + Dk−1(⌊x⌋ + 2)) −
q4p1(Dk−1(⌊x⌋) + Dk−1(⌊x⌋ + 2)) − p4p1(Dk−1(x − 2) + Dk−1(x)).
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The inequality

p4Dk−1(x − 2) + q4Dk−1(⌊x⌋) ≥ p1Dk−1(x − 2) + q1Dk−1(x)

follows from the inductive assumption (5.3.9) for n = k − 1.
Case 1 < x < 2. First let us again rewrite the inequality (5.3.9) using

the recursive definition of Dk. After combining the terms we get that (5.3.9)
is equivalent to

x Dk−1 (1) + (1 − x)Dk−1 (0) − Dk−1 (x) ≥ 0. (5.3.10)

Now we use the inequality

Dk−1(x) ≤ (2 − x)Dk−1(1) + (x − 1)Dk−1(2).

to get that

xDk−1(1) + (1 − x)Dk−1(0) − Dk−1(x) ≥
2(x − 1)Dk−1(1) + (1 − x)Dk−1(0) − (x − 1)Dk−1(2) =
(x − 1) (2Dk−1(1) − Dk−1(0) − Dk−1(2)) .

Equality (2Dk−1(1) − Dk−1(0) − Dk−1(2)) = 0 follows from inductive as-
sumption.

Now we are ready to prove Theorem 25.

Proof of Theorem 25. For x ≤ 0 to achieve sup in (5.1.8) take Mn ≡ 0. For
x > n the sup in (5.1.8) is equal to zero since Mn ≤ n for all n = 0, 1, . . ..
To prove Theorem 25 for x ∈ (0, n] we use induction on n.

For n = 0 the statement is obvious since P{M0 ≥ x} = I{x ≤ 0} = D0(x).
Suppose that Theorem 25 holds for n = k > 0. Assume n = k + 1. In order
to prove Theorem 25 it is enough to prove that Dk+1 satisfies the recursive
relations (5.3.5). We have

P{Mk+1 ≥ x} = P{X2 + · · · + Xk+1 ≥ x − X1}
= EP{X2 + · · · + Xk ≥ x − X1|X1}
≤ EDk(x − X1).

Now for every x we find a linear function t 7→ f(t) dominating the function
t 7→ Dk(x−t) on interval [−1, 1] and touching it at two points, say x1 and x2,
on the different sides of zero. After this we consider a random variable, say
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X ∈ {x1, x2} with mean zero. It is clear that EDk(x − X1) ≤ EDk(x − X).
We show that the numbers x1 and x2 are such that (5.3.5) holds.

Since Dk is piecewise convex between integer points, the points where
f(t) touches Dk(x − t) can be only the endpoints of interval [−1, 1] or the
points where Dk(x − t) is not convex.

For x > 0 we consider four separate cases.

i) x ∈ Z;
ii) x /∈ Z, k ∈ 2Z + 1 and x < 1;
iii) x /∈ Z, ⌊x⌋ + k ∈ 2Z;
iv) x /∈ Z, ⌊x⌋ + k ∈ 2Z and x > 1.

Note that all these four cases covers all the positive real numbers.
Case (i). Since x ∈ Z the dominating linear function touches Dk(x − t)

at integer points. So maximizing X1 ∈ {−1, 0, 1}.
If x+k ∈ 2Z+1 then the function Dk(x−t) is convex on (−1, 1) so maximizing
X takes values 1 or −1 with equal probabilities 1/2.
If x + k ∈ 2Z, then

Dk(x) = 1
2

(Dk−1(x − 1) + Dk−1 (x + 1)) = 1
2

(Dk(x − 1) + Dk(x + 1)),

so the dominating function touches Dk(x − t) at all three points −1, 0, 1.
Taking X ∈ {−1, 1} we end the proof of the case (i).

The case (i) was first considered in [10].
Case (ii). Since Dk is convex on intervals (0, 1) and (1, 3) the dominating

minimal function can touch Dk(x − t) only at x, x − 1, −1. But due to
an inequality (5.3.7) the linear function f(t) going through (x, Dk(0)) and
(x − 1, Dk(1)) is above the point (−1, Dk(x + 1)).

Case (iii). Since the function Dk is convex on intervals (⌊x⌋ − 1, ⌊x⌋)
and (⌊x⌋ , ⌊x⌋+2) the dominating minimal function can touch Dk(x− t) only
at −1, {x} , 1. But due to an inequality (5.3.8) the linear function f(t) going
through ({x} , Dk(⌊x⌋)) and (−1, Dk(x+1)) is above the point (1, Dk(x−1)).

Case (iv). Since the function Dk is convex on intervals (⌊x⌋ − 1, ⌊x⌋ + 1)
and (⌊x⌋ + 1, ⌊x⌋ + 3) the dominating minimal function can touch Dk(x + t)
only at −1, {x} − 1, 1. But due to an inequality (5.3.9) the linear function
f(t) going through (1, Dk(x − 1)) and ({x} − 1, Dk(⌊x⌋ + 1)) is above the
point (−1, Dk(x + 1)).
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Chapter 6

Extremal Lipschitz functions

In this chapter we obtain an optimal deviation from the mean upper bound

D(x) def= sup
f∈F

µ{f − E µf ≥ x}, for x ∈ R (6.0.1)

where F is the complete class of integrable, Lipschitz functions on probabil-
ity metric (product) spaces. As corollaries we get exact solutions of (6.0.1)
for Euclidean unit sphere Sn−1 with a geodesic distance function and a nor-
malized Haar measure, for Rn equipped with a Gaussian measure and for the
multidimensional cube, rectangle, torus or Diamond graph equipped with
uniform measure and Hamming distance function. We also prove that in
general probability metric spaces the sup in (6.0.1) is achieved on a family
of negative distance functions.

6.1 Introduction and results
Let us recall a well known result for Lipschitz functions on probability metric
spaces, (V, d, µ). Here a probability metric space means that a measure µ
is Borel and normalized, µ(V ) = 1. Given a measurable non-empty set
A ∈ V we denote a distance function by d(A, u) = min{d(u, v), v ∈ A}.
We denote by F = F(V ) the class of integrable, i.e., f ∈ L1(V, d, µ), 1-
Lipschitz functions, i.e., f : V → R such that |f(u) − f(v)| ≤ d(u, v) for all
u, v ∈ V . We will write in short {f ∈ A} instead of {u : f(u) ∈ A}, etc.
We will say that F(V, d, µ) is complete if it contains all 1-Lipschitz functions
f defined on (V, d, µ). Note that completeness in our sense just means that
the distance function d(x, x0) is µ-integrable (this property does not depend
on x0). Let Mf be a median of the function f , i.e., a number such that
µ{f(x) ≤ Mf} ≥ 1

2 and µ{x : f(x) ≥ Mf} ≥ 1
2 . Given probability metric
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space (V, d, µ), the sup in

sup
f∈F

µ{f − Mf ≥ x} for x ∈ R

is achieved on a family, say F∗, of distance functions f(u) = −d(A, u) with
a measurable set A ⊂ V (for a nice exposition of the results we refer reader
to [59, 65]). From this, it is easy to deduce that this problem is equivalent
to the following isoperimetric problem. Given t ≥ 0 and h ≥ 0,

minimize µ(Ah) over all A ⊂ V with µ(A) ≥ t, (6.1.1)

where Ah = {u ∈ V : d(u, A) ≤ h} is an h-enlargement of A.
Following [16] we say that a space (V, d, µ) is isoperimetric if for every

t ≥ 0 there exists a solution, say Aopt, of (6.1.1) which does not depend on
h.

However, as was pointed out by Talagrand [91] in practice it is easier to
deal with expectation E f rather than median Mf . In order to get results for
the mean instead of median two different techniques were usually used. One
way was to evaluate the distance between median and mean, another was to
use a martingale technique (see [12, 59, 64, 91] for more detailed exposition
of the results). Unfortunately, none of them could lead to tight bounds for
the mean.

In this chapter we find tight deviation from the mean bounds

D(x) def= sup
f∈F

µ{f − E µf ≥ x}, for x ∈ R (6.1.2)

for the complete class F = F(V, d, µ). If we change f to −f we get that

D(x) = sup
f∈F

µ{f − E µf ≤ −x} for x ∈ R.

Note that the function D(x) depends also on (V, d, µ).

We first state a general result for probability metric spaces.

Theorem 31 (Dzindzalieta [32]). If F(V, d, µ) is complete, then sup in
(6.1.2) is achieved on a family of negative distance functions, i.e.,

sup
f∈F

µ{f − E µf ≥ x} = sup
f∈F∗

µ{f − E µf ≥ x} x ∈ R.

Note that F∗ ⊂ F .
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Proof. Fix x ∈ R. Let f ∈ F and B = {f − E µf ≥ x}. If B = ∅, then
µ{f − E µf ≥ x} = 0 and thus µ{f − E µf ≥ x} ≤ µ{f ∗ − E µf ∗ ≥ x} for
any function f ∗ ∈ F∗. Let B ̸= ∅. Since E µf < ∞ and f is bounded from
below by E µf + x on B we have that −∞ < E µf + x ≤ infu∈B f(u) < ∞.
Thus without loss of generality we can assume that infu∈B f(u) = 0. Let g be
a function such that g(u) = 0 on B and g(u) = f(u) on Bc. It is clear that
g ∈ F and f ≥ g on V and thus E µf ≥ E µg. Next, x ≤ infu∈B f(u)−E µf =
g − E µf ≤ g − E µg on B, so B ⊂ {g − E µg ≥ x}. Let f ∗(u) = −d(B, u).
Since g is Lipschitz function, |g(u)| = |g(u) − g(v)| ≤ d(u, v) for all v ∈ B, so
|g(u)| ≤ d(u, B) and thus g(u) ≥ −d(u, B) = f ∗(u). Again, for all u ∈ B we
have x ≤ g(u)− E g = f ∗(u)− E g ≤ f ∗(u)− E f ∗, so B ⊂ {f ∗ − E µf ∗ ≥ x}.
Thus, µ{f − E µf ≥ x} ≤ µ{g − E µg ≥ x} ≤ µ{f ∗ − E µf ∗ ≥ x}. Since f
is arbitrary the statement of Theorem 31 follows.

In the special case when V = Rn and µ = γn is a standard Gaussian
measure, Theorem 31 was proved by Bobkov [20].

Our main result of this chapter is the following theorem.
Theorem 32 (Dzindzalieta [32]). If (V, d, µ) is isoperimetric and F is com-
plete, then

D(x) = µ{f ∗
opt − E µf ∗

opt ≥ x} for x ∈ R,

where f ∗
opt(u) = −d(Aopt, u) is a negative distance function from some ex-

tremal set Aopt. It turns out that µ(Aopt) = D(x).

Proof. For any measurable set A ⊂ V we have

E µd(A, ·) =
∫ ∞

0

(
1 − µ

{
Ah
})

dh (6.1.3)

≤
∫ ∞

0

(
1 − µ

{
Ah

opt

})
dh = E µd(Aopt, ·).

Let f ∗ ∈ F∗ and A = {f ∗ − E µf ∗ ≥ x}. From (6.1.3) we get that for all
u ∈ A

x ≤ f ∗(u) − E µf ∗ ≤ f ∗(u) − E µf ∗
opt,

where f ∗
opt(u) = −d(Aopt, u). Since f ∗

opt(u) = 0 for all u ∈ Aopt we have that
x ≤ −E µf ∗

opt = f ∗
opt(u) − E µf ∗

opt for all u ∈ Aopt as well. Since f ∗ (or the
set A) is arbitrary and µ{Aopt} ≥ µ{A}, by Theorem 31 we have

sup
f∈F

µ{f − E µf ≤ −x} = sup
f∈F∗

µ{f − E µf ≥ x} = µ{f ∗
opt − E µf ∗

opt},

which completes the proof of Theorem 32.
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6.2 Isoperimetric spaces and corollaries
In this section we present a short overview of the results on the isoperimetric
problem described by (6.1.1). We also state a number of corollaries implied
by Theorem 31 and Theorem 32.

A typical and basic example of isoperimetric spaces is the Euclidean unit
sphere Sn−1 = {x ∈ Rn : ∑n

i=1 |xi|2 = 1} with a geodesic distance function
ρ and a normalized Haar measure σn−1. P. Lévy [60] and E. Schmidt [83]
showed that if A is a Borel set in Sn−1 and H is a cap (ball for geodesic
distance function ρ) with the same Haar measure σn−1(H) = σn−1(A), then

σn−1(Ah) ≥ σn−1(Hh) for all h > 0. (6.2.1)

Thus Aopt for the space (Sn−1, ρ, σn−1) is a cap. We refer readers for a short
proof of (6.2.1) to [14, 37]. The extension to Riemannian manifolds with
strictly positive curvature can be found in [40]. Note that if H is a cap, then
Hh is also a cap, so we have an immediate corollary.
Corollary 33 (Dzindzalieta [32]). For a unit sphere Sn−1 equipped with nor-
malized Haar measure σn−1 and geodesic distance function we have

D(x) = σn−1{f ∗ − E µf ∗ ≥ x} for x ∈ R,

where f ∗(u) = −d(Aopt, u) and Aopt is a cap.
Probably the most simple non-trivial isoperimetric space is n-dimensional

discrete cube Cn = {0, 1}n equipped with uniform measure, say µ, and Ham-
ming distance function. Harper [43] proved that some number of the first
elements of Cn in the simplicial order is a solution of (6.1.1). Bollobas and
Leader [22] extended this result to multidimensional rectangle. Karachanjan
and Riordan [50, 80] solved the problem (6.1.1) for multidimensional torus.
Bezrukov considered powers of the Diamond graph [15] and powers of cross-
sections [16]. We state the results for discrete spaces as corollary.
Corollary 34 (Dzindzalieta [32]). For discrete multidimensional cube, rect-
angle, torus and Diamond graph equipped with uniform measure and Ham-
ming distance function we have

D(x) = µ{f ∗ − E µf ∗ ≥ x} for x ∈ R,

where f ∗(u) = −d(Aopt, u) and Aopt are the sets of some first elements in
corresponding orders. In particular, for n-dimensional discrete cube with
Hamming distance function, Aopt is a set of some first elements of Cn in
simplicial order.
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There is a vast of papers dedicated to bound D(x) for various discrete
spaces. We mention only [21, 58, 89] among others. In [15, 59] a nice overview
of isoperimetric spaces and bounds for D(x) is given.

Another important example of isoperimetric spaces comes from Gaussian
isoperimetric problem. Sudakov and Tsirel’son [87] and Borell [24] discovered
that if γn is a standard Gaussian measure on Rn with a usual Euclidean
distance function d, then (Rn, d, γn) is isoperimetric. In [87] and [24] it was
shown that among all subsets A of Rn with t ≥ γn(A), the minimal value of
γn(Ah) is attained for half-spaces of measure t. Thus we have the following
corollary of Theorem 31 and Theorem 32.

Corollary 35 (Dzindzalieta [32]). For a Gaussian space (Rn, d, γn) we have

D(x) = γn{f ∗ − E γnf ∗ ≥ x} for x ∈ R,

where f ∗(u) = −d(Aopt, u) is a negative distance function from a half-space
of space Rn.

The latter result was firstly proved by Bobkov [20]. We also refer for
further investigations of extremal sets on Rn for some classes of measures to
[1, 19] among others.
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Chapter 7

Conclusions

During the doctoral studies at Vilnius University, we have studied the tail
probabilities for sums of random variables possessing various boundedness,
dependence, moment restrictions. In this last Chapter, a brief summary of
these results is given.

• For the sum S = X1 + · · · + Xn of symmetric weighted independent
Bernoulli random variables, such that |Xi| ≤ 1 we solved two main
problems. First one is to find a tight upper bound for P{Sn ≥ x} and
the second one is to find a tight upper bound for P{Sn = x}. We de-
scribed the random variables which gives an optimal results. We also
gave a short proof of Littlewood-Offord problem 40’s using mathemat-
ical induction.

• For the sum of weighted independent Rademacher random variables
with unit variance we found an optimal subgaussian constant and im-
proved Chebyshev’s bound for all non-trivial arguments.

• We applied the results to Boolean valued linear threshold functions and
showed that confirmed a conjecture by Matulef, O’Donnell, Rubinfeld
and Servedio that the threshold function associated to a linear function
with some large coefficient, if balanced, must have a large influence.

• We considered a class of martingales Mk = X1 + · · ·+Xn with bounded
differences, |Xi| ≤ 1 and described random walks based on such mar-
tingales which maximizes the probability to visit an interval [x, ∞).
We showed that maximizing martingales are from the class of inhomo-
geneous Markov processes.

• We found extremal Lipschitz function which maximizes the probabil-
ity, that a Lipschitz function is larger than it’s average by some given
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number. We showed that maximizing Lipschitz functions are negative
distance functions from some sets which are solution of well known
isoperimetric problem.
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