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Introduction

Introduction

A biosensor is an analytical device that inverts a biochemical reaction process

into a measurable signal using transducer [1–3]. Biosensors can be used for

detecting various substances like pollutants, metabolites, microbial load, etc.

Usually a biosensor consists of two elements: a biological sensing element and a

transducer for detecting the analyte concentration.

The first biosensor was introduced in 1956 by Professor Leland C. Clark Jr. and

he is known as the founder of the biosensor concept. For the first time biosensors

became commercial in 1975. A glucose analyser based on the amperometric

detection of hydrogen peroxide, was launched. During the past 40 years, vari-

ous biosensors have been researched and developed involving a wide range

of applications, although the number of commercially available biosensors is

limited. Biosensor technology is developing, so we can expect that biosensors

will become more widely available commercially. The market size of biosensors

is growing: according to Global Biosensors Market in 2007 it was 10 billion US$

and by the year 2015 it is forecasted to reach 12 billion US$, mainly because

of the growing population and an increasing number of people affected with

various diseases [4].

These devices are wide used in industry for process monitoring and control,

particularly, food and drink, in the military cases for battlefield monitoring

of poison gases, nerve agents, and people [5–7]. It is common to use them

in medicine because they are highly sensitive, their biological recognition is

usually very selective, inexpensive, stable and reliable, providing an opportunity

to instantly identify relevant biocomponents, i.e. hormones, drugs, etc. [8, 9]

Commonly they are used in medicine to measure the sugar quantity in blood [10,

11], and to make a genetic analysis in hospitals [12].

Biosensors have a lot of advantages compared to usual biological methods of

9



Introduction

analysis - biosensors are small, simple to use, radioactivity proof, etc. These

characteristics make them attractive to use [13].

When solving a biosensor model, usually nonlinear diffusion equations are

used that are not analytically solved. Numerical methods are also used, usually

finite difference methods. To investigate biosensors, computer-aided models are

created [14].

Aim and object of the study

The aim of the research was to develop numerical models of layered ampero-

metric biosensors, develop software tool for computational modelling as well

as develop an algorithm for the quantitative analysis of biosensor responses

to mixtures of compounds. In solving the task, the following subtasks were

identified:

• Develop mathematical and numerical models of practical amperometric

biosensors with multiple diffusion layers.

• Create a computer tool for the developed numerical models.

• Investigate peculiarities of responses of modelled biosensors and to identify

conditions that improve the biosensor properties.

• Develop an algorithm for evaluating concentrations from the biosensor

responses to mixtures of compounds.

Methodology

The biosensing systems are modelled by non-stationary reaction-diffusion equa-

tions containing nonlinear terms related to the kinetics of enzymatic reac-
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tions [15, 16]. Different schemes of a biosensor were selected, with different

physical parameters. To achieve goals, a number of computer experiments were

carried out. Computer models were developed in the ANSI C language [17, 18].

Computations were performed using supercomputer.

Scientific novelty and results

• The existing mathematical model of an amperometric biosensor, acting

in the injection mode, has been generalized to take into consideration the

external mass transport by diffusion in a dialysis membrane as well as in

buffer solution.

• A computational model of an amperometric mediated biosensor based

on an enzyme layer and two supporting porous membranes, has been

developed and validated by experimental data.

• The half maximum effective concentration, signifying the efficiency of the

analysed biosensors, has been determined for different model parameters

of the analysed biosensors.

• The task to evaluate concentrations of compounds, using the biosensor

responses to mixtures of compounds, has been formulated and solved by

using optimization based processing of amperometric measurements.

Practical value

A number of mathematical and computer models have been developed that

provide an opportunity to study characteristics of amperometric biosensors

to define parameters of the selected biosensors, to optimize the structure of
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the biosensor without performing many expensive biochemical reactions in a

laboratory. The solutions were found considering dimensionless models, and

generalized results of the research are presented. The results, presented in this

thesis, were used to achieve the goals of the following projects:

• “Development of bioelectrocatalysis for synthesis and analysis (BIOSA)”,

funded by a grant (No. PBT-04/2010) from the Research Council of

Lithuania (2008-2010).

• ”Theoretical and engineering aspects of e-service technology development

and application in high-performance computing platforms” (No. VP1-3.1-

ŠMM-08-K-01-010) funded by the European Social Fund.

• ”Support for scientists and Researchers (Global Grant measure)” (No.

VP1-3.1-ŠMM-07-K) funded by the European Social Fund.

Statements to be defended

• The dimensionless mathematical modelling can be used as a framework

for numerical investigation of the impact of model parameters on the

biosensor action.

• The computational model of the amperometric mediated biosensor, based

on an enzyme layer and two supporting porous membranes, can be suc-

cessfully applied to investigate kinetic peculiarities of the biosensor.

• By increasing the thickness of the external diffusion layer or by decreasing

the substrate diffusivity in this layer, the calibration curve of the biosensor

can be prolonged by a few orders of magnitude.
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• The calibration curve of the biosensor, acting in the injection mode, can be

prolonged by a few orders of magnitude only by decreasing the injection

time.

• Optimisation based analysis can be applied to the quantitive analysis of

mixtures.

Publications of the Author

Periodicals

The results were published in periodic journals with a citation index of the Insti-

tute for Scientific Information. The contribution of the author is the development

of numerical models, software prepared for the modelling task, solving models,

getting and validating as well as analysis of the results, defining the results in

written form where a various scope of the text was prepared for publication by

the thesis author.

1. Baronas, Darius; Ivanauskas, Feliksas; Baronas, Romas. Mechanisms Con-

trolling the Sensitivity of Amperometric Biosensors in Flow Injection Ana-

lysis Systems, Journal of Mathematical Chemistry. Dordrecht : Springer

Netherlands. ISSN 0259-9791. 2011, vol. 49, no. 8, p. 1521-1534. [ISI]

2. Žilinskas, Antanas; Baronas, Darius. Optimization-Based Evaluation of

Concentrations in Modelling the Biosensor-Aided Measurement, Inform-

atica, Vilnius University Institute of Mathematics and Informatics. Vilnius.

ISSN 0868-4952. 2011, vol. 22, no. 4, p. 589-600. [ISI]

3. Baronas, Romas; Kulys, Juozas; Žilinskas, Antanas; Lancinskas, Algirdas;

Baronas, Darius. Optimization of The Multianalyte Determination With
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Biased Biosensor Response, Chemometrics and Intelligent Laboratory

Systems. Amsterdam : Elsevier BV. ISSN 0169-7439. 2013, vol. 126, p.

108-116. [ISI]

Peer reviewed conference publications

The presentations were presented at two international conferences:

1. Baronas, Darius; Žilinskas, Antanas; Ivanauskas, Feliksas. Computational

modelling and validation of a multilayer amperometric biosensor, XVIII

international master and phd student’s conference "Information Society

and University Studies" (IVUS 2013), April 25, 2013, Kaunas, Lithuania.

2. Baronas, Romas; Baronas, Darius. Modelling and simulation of ampero-

metric biosensors acting in the flow injection analysis. European Modelling

and Simulation Symposium, September 25-27, 2013, Athens, Greece

In addition, the results were published in the proceedings of the conferences:

1. Baronas, Darius; Žilinskas, Antanas; Ivanauskas, Feliksas. Computa-

tional modelling and validation of a multilayer amperometric biosensor.

Proceedings of the XVIII international master and phd students confer-

ence "Information Society and University Studies" (IVUS 2013): Kaunas,

Lithuania, 25 April 2013. Printed: 2013, p. 22-26. ISSN 2029-4824

2. Baronas, Romas; Baronas, Darius. Modelling and simulation of ampero-

metric biosensors acting in the flow injection analysis. Proceedings of the

European Modelling and Simulation Symposium, September 25-27, 2013,

Athens, Greece. Eds.: A.G. Bruzzone, E. Jimenez, F. Longo, Y. Merkuryev.

Printed: Render (CS), Italy, September 2013, p. 107-114. ISBN 978-88-97999-

16-4
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Thesis structure

The dissertation consists of the following parts: three chapters, conclusions, and

the list of references.

The first chapter is a short introduction of the amperometric biosensor. The

dimensions of the biosensor used in the dissertation are discussed.

In the second chapter, the results of the biosensor characteristics are discussed.

In this chapter, the selected biosensors are discussed and mathematical models

are introduced as well. In the first section, a model with a diffusion layer is

discussed. In the enzyme layer we consider the enzyme-catalyzed reaction.

In the second section, a further development of the model is introduced. In

the third section, a model of a multilayer biosensor is studied. In the enzyme

layer, we consider a two-stage enzyme-catalyzed reaction where the substrate

combines with an enzyme to form a product in the presence of a mediator. On

the electrode surface the mediator is electrochemically re-oxidised and electrons

are released creating the current as an output result.

The third chapter discusses a mixture of substrates (components), each perform-

ing a biochemical reaction where the mixture of substrates combines reversibly

with an enzyme to yield a product.
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Chapter 1

Theoretical base of a biosensor

1.1 Biosensors

The biosensor is a device which is capable to transform a biochemical reaction

result to analytically readable information. Analysis information depends on

the amount of product formed during the biochemical reaction. Usually it con-

sists of two components: a biochemical recognition system (bioreceptor) and

a physicochemical transducer. In biosensors the recognition system utilizes

a biochemical mechanism [19, 20]. The bioreceptor converts the biochemical

result, which is usually an analyte concentration, into a physical signal with

a defined sensitivity. The transducer is a part of the biosensor which converts

receptor output in to an electric signal. Biosensors are classified by a bioreceptor

and transducer. In a biosenor such as a bioreceptor, an enzyme, antibody, nucleic

acid, lectins, hormone, the cell structure or tissue can be used. Enzymes are

often used in developing biosensors. Dependent on a transducer, systems can be

grouped in to electrochemical, optical, piezoelectric, thermometric, ion-sensitive,

magnetic or acoustic ones [20, 21]. An electrochemical biosensor, when biochem-

ical reactions between an immobilized biomolecule and target analyte produce
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Theoretical base of a biosensor

or consume ions or electrons, which affects the measurable electric current [22].

Electrochemical biosensors are divided into amperometric and potentiometric

ones. Amperometric biosensors are most widely used, they are very sensitive

and more suitable for mass production than the potentiometric ones [23–27].

The amperometric biosensor is an electronic signal converter with biochemically

active substance usually enzyme. The operation of the amperometric biosenors

is based on calculating the Faraday current, which is calculated while the cur-

rent at the electrode is set constant. The current arises because of the oxidation

or reduction of the product [28–30]. Ganerally the process is modelled using

Michael-Menten kinetic equations.

1.2 Mathematical modelling of biosensors

The amperometric biosensor is considered as an electrode and a relatively thin

layer of an enzyme (enzyme membrane) applied to the electrode surface [31].

The biosensor model involves three regions: the enzyme layer (membrane),

where the enzymatic reaction as well as the mass transport by diffusion takes

place, a diffusion limiting region, where only the diffusion takes place, and

a convective region. In the enzyme layer we consider the enzyme-catalyzed

reaction

E+S
k1

GGGGGBFGGGGG

k−1

ES
k2

GGGAE+P, (1.1)

where k1, k−1, k2 are the speed constants of the reaction. The substrate (S)

combines reversibly with an enzyme (E) to form a complex (ES). The complex

then dissociates into the product (P) and the enzyme is regenerated [32, 33].

In view of the quasi steady-state approximation, the concentration of the inter-

mediate complex (ES) does not change and may be neglected when modelling
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Theoretical base of a biosensor

the biochemical behaviour of biosensors [19, 33, 34]. In the resulting scheme,

the substrate (S) is enzymatically converted to the product (P),

S E−→ P (1.2)

1.2.1 Governing equations

Due to the symmetrical geometry of the electrode and a homogeneous distribu-

tion of the immobilized enzyme in the enzyme layer of a uniform thickness, a

mathematical model of the biosensor action can be defined in a one-dimensional-

in-space domain [15, 16, 35]. Coupling the enzyme catalyzed reaction (1.2) in

the enzyme layer with the mass transport by diffusion, described by Fick’s law,

leads to the following system of equations:

∂S
∂ t

= DS
∂ 2S
∂x2 −

VmaxS
KM +S

, (1.3a)

∂P
∂ t

= DP
∂ 2P
∂x2 +

VmaxS
KM +S

, x ∈ (0,d), t > 0, (1.3b)

where x and t stand for a space and time, S(x, t) and P(x, t) are the concentrations

of the substrate (S) and the product (P) in the enzyme layer, DS, DP are the

diffusion coefficients, Vmax is the maximal enzymatic rate attainable with that

amount of the enzyme, when the enzyme is fully saturated with the substrate,

KM is the Michaelis constant, and d is the thickness of the enzyme layer [15, 36,

37]. The Michaelis constant KM is the concentration of the substrate at which the

reaction rate is half of its maximum value Vmax.
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1.2.2 Initial conditions

Initial conditions define the biosensor model conditions in the bulk solution

[38–40]. The site where x = 0 is considered as the surface of electrode and x = d is

the boundary of the biosensor model, where the analyzed solution and enzyme

membrane intercept. The activity is followed when the amount of the substrate

appears on the surface of the enzyme membrane. This state of the biosenor is

expressed by the initial condition parameters (t = 0):

S(x,0) = 0, P(x,0) = 0, x ∈ [0,d), (1.4a)

S(x,d) = S0, P(x,d) = P0, x ∈ [0,d), (1.4b)

where S0 and P0 are the substrate concentration in the bulk solution.

Due to the electrode polarization, the concentration of the product,as x = 0, is

being constantly reduced to zero,

P(0, t) = 0, t > 0, (1.5)

At the electrode surface the reaction is not observed. The boundary condition

for the substrate is defined as follows:

DS
∂S
∂x

∣∣∣∣
x=0

= 0, t > 0, (1.6)

Since the substrate diffusity DS is finite, the boundary condition 1.6 can be

transformed to the following form:

∂S
∂x

∣∣∣∣
x=0

= 0, t > 0, (1.7)
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Theoretical base of a biosensor

Therefore the concentration of the substrate and the product is set constant over

the biosensor reaction.

S(d, t) = S0, t > 0, P(d, t) = S0, t > 0, (1.8a)

1.2.3 Dimensionless model

To extract the main governing parameters of the biosensor model with a view

to reduce the number of parameters, a dimensionless model is usually created.

The parameters x, t of the mathematical model (1.3 - 1.8) and concentrations S

and P are replaced by dimensionless parameters:

X̂ = x/d, T̂ = tDS1/d2, (1.9a)

Ŝ = S/KM, P̂ = P/KM, (1.9b)

where X̂ is a dimensionless distance from the electrode, T̂ is a dimension-

less time, Ŝ is dimensionless substrate concentration, and P̂ is a dimensionless

product concentration. Due to dimensionless parameters, governing equation

1.3 is referred to as follows:

∂ Ŝ
∂ T̂

=
∂ 2Ŝ
∂ X̂2
−α

2 Ŝ
1+ Ŝ

, (1.10a)

∂ P̂
∂ T̂

=
DP

DS

∂ 2P̂
∂ X̂2

+α
2 Ŝ

1+ Ŝ
, X̂ ∈ (0,1), T̂ > 0, (1.10b)

where α2 is the diffusion module, also known as a Damköhler number [15],

α
2 =

d2Vmax

DSKM
. (1.11)
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The diffusion module α2 compares the rate of the enzyme reaction (Vmax/KM)

with the rate of the mass transport through the enzyme layer (DS1/d2). A initial

conditions for dimensionless model 1.4 are converted in to the following:

P̂(X̂ ,0) = 0, Ŝ(X̂ ,0) = 0, X̂ ∈ [0,1), (1.12a)

P̂(1,0) = P̂0, Ŝ(1,0) = Ŝ0. (1.12b)

where Ŝ0 and P̂0 are dimensionless concentrations of substrate and product,

respectively.

Dimensionless conditions (1.5 - 1.8) transform in to the following conditions

(T̂ > 0):

P̂(0, T̂ ) = 0,
∂ Ŝ
∂ X̂

∣∣∣∣
X̂=0

= 0, (1.13a)

P̂(1, T̂ ) = P̂0, Ŝ(1, T̂ ) = Ŝ0 (1.13b)

The diffusion module α2 is one of the main characteristics of the dimensionless

model, expressing internal processes of the biosensor model.

1.3 Numerical biosensor solution

An exact analytical solution is practically possible because of the nonlinearity

of the governing equations of the mathematical model 1.3-1.8 [15, 16]. Due to

that the initial boundary value problem was solved numerically, when solving

the problem, an implicit finite difference scheme was built on a uniform discrete

grid [15, 35, 41, 42].
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1.3.1 Biosensor current

The current is mainly the most important parameter, measured during or after

the reaction. It is a result of the biosensor reaction and is measured on the

surface of the electrode.

iA(t) = neFADP
∂P
∂x

∣∣∣∣
x=0

, (1.14)

where ne is the number of electrons involved in the charge transfer, A is the area

of the electrode, and F is the Faraday constant, F = 96.485C/mol.

The current is normalized with the area of the surface. The density i(t) of the

current at time t is:

i(A) =
iA
A

= neFDP
∂P
∂x

∣∣∣∣
x=0

. (1.15)

The system reaches its equilibrium as t→ ∞:

I = lim
t→∞

i(t). (1.16)

The dimensionless model, considering 1.9, dimensionless Î of the steady state

current is set as follows:

î(t̂) =
∂ P̂
∂ x̂

∣∣∣∣
x̂=0

=
i(t)d

neFDPKM
, Î = lim

t̂→∞

î(t̂). (1.17)

1.3.2 Reaction time of the model

The period from the beginning of the reaction until the time the model is stopped

being studied is called the model reaction time. Usually reaction is measured

until the current deflection is set smaller than the given value. In the biosensor
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model the current is measured till the response reaches the steady-state with an

accuracy of the rate ε :

T = min
i(t)>0

{
t :

t
i(t)
|di(t)

dt
< ε

}
. (1.18)

where T is the response time. The decay rate epsilon influences the reaction time

as T → ∞, ε → ∞

1.3.3 Flow injection analysis

The biosensors are combined with the flow injection analysis (FIA) for on-line

monitoring of raw materials, product quality and the manufacturing process [43–

45]. In the FIA, a biosensor contacts with the substrate for a short time (seconds

to tens of seconds), whereas in the batch analysis the biosensor remains im-

mersed in the substrate solution for a reaction-length time [46]. Biosensors in

the flow injection mode are modelled when a single contact with a substrate is

considered, and systems are also analyzed when the contact with a substrate is

executed with the defined frequency [47–49]. Comparing to the batch systems,

the FIA systems present the advantages in reduction of the analysis time allow-

ing a high sample throughput, and the possibility to work with small volumes

of the substrate [50–52]. The FIA arrangement also presents a wide response

range and a high sensitivity [53, 54] .

Actual biosensors, acting in the FIA mode have been already modelled usually at

internal diffusion limitations by ignoring the external diffusion [40, 55], although

the mechanisms controlling the sensitivity of amperometric biosensors acting

in FIA mode can be found, where they were numerically modelled taking into

consideration the external mass transport [56]. However, in practical biosensing

systems, the mass transport outside the enzyme region is of crucial importance,
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and it has to be taken into consideration when modelling the biosensor action [57–

59]. The theoretical investigation of the FIA biosensing systems presented a

higher quality of the concentration prediction than the corresponding batch

systems [40, 60].

With a view to improve the efficiency of the development of a novel biosensor

as well as to optimize its configuration, it is of crucial important to model the

biosensor action [15, 35, 37, 61, 62].

1.3.4 Biosensor sensitivity

The biosensor operation is analysed with a special emphasis on the conditions

under which the biosensor sensitivity can be increased and the calibration curve

can be prolonged by changing the injection duration, the permeability of the

external diffusion layer, the thickness of the enzyme layer, and the catalytic

activity of the enzyme. The half-maximal effective concentration constant and

the calibration curve of the biosensor were used as one of the main characteristics

of the sensitivity [32, 33, 59, 63, 64]. The numerical simulation was carried out

using the finite difference technique [35, 41].

1.3.4.1 Half-maximal effective concentration constant

In the Michaelis-Menten kinetic model [65], the Michaelis constant KM is an ap-

proximation of the enzyme affinity for the substrate, based on the rate constants

within the reactions (1.1), KM = (k−1 + k2)/k1, and it is numerically equivalent

to the substrate concentration at which half the maximum rate (C50) of the

enzyme-catalyzed reaction is achieved [32, 33].

In the case of biosensors, acting in batch mode and exhibiting the Michaelis-

Menten kinetics, the concentration C50 is usually called the half maximal ef-
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fective concentration constant [64]. Under certain conditions, especially under

diffusional limitations to the substrate, the half maximal effective concentration

constant C50 can differ from KM for the same catalytic process. The known

phenomenon has been subjected to the theoretical modelling, and it has been

shown that, under certain conditions, the half-maximal effective concentration

constant highly depends on the biosensor geometry [59]. Also, a substantial

increase of the Michaelis constant has been shown at restricted diffusion of the

substrate through an outer membrane covering an enzyme layer [64]. This result

appears to be of a high practical interest, since it enables us to expand the linear

dependence of biosensor response on the substrate concentration towards the

higher concentrations, under a deep diffusion mode of the biosensor operation,

whereas the response time increases not very drastically [64]. This property is

especially attractive for biosensors, acting in the FIA mode, because of relatively

short their response time [40, 52].

In this research, the half-maximal effective concentration constant C50 was accep-

ted as the main characteristic of the sensitivity and of the calibration curve of the

amperometric biosensors [32, 33, 64]. The greater value of C50 corresponds to a

wider range of the linear part of the calibration curve. In the case of the batch

analysis, C50 is usually defined with respect to the steady-state response. In the

FIA, since the biosensor current steadies at zero, the constant C50 is defined with

respect to the maximal current as the substrate concentration at a half-maximum

biosensor activity,

C50 =

{
S∗0 : Imax(S∗0) = 0.5 lim

S0→∞
Imax(S0)

}
, (1.19)

where Imax(S0) is the maximal density of the biosensor current calculated at the

substrate concentration S0.

A greater value of the half maximal effective concentration C50 corresponds to a

longer linear part of the calibration curve [66]. At the substrate concentration
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S0 corresponding to a linear part of the calibration curve (S0 <C50) the dimen-

sionless biosensor sensitivity BS(S0) is approximately equal to unity [35]. The

concentration C50 well characterizes the overall sensitivity of the biosensor.

1.3.4.2 Biot number

The Biot number Bi is another dimensionless parameter, widely used to indicate

the internal mass transfer resistance to the external one [35, 67, 68]:

Bi =
d/DS1

δ/DS2

=
DS2d
DS1δ

= D̂21
d
δ
. (1.20)

where DS1 and DS2 are diffusion coefficients, and d and δ are the thickness of the

enzymatic and diffusion layers, respectively.

1.4 Chapter summary

Various biosensors are often used for detecting different substances like pol-

lutants, microbial load, etc. Biosensors are classified by a bioreceptor and

transducer. In a biosensor such as a bioreceptor, an enzyme, antibody, nucleic

acid, lectins, hormone, the cell structure or tissue can be used. Enzymes are

often used in developing biosensors. Dependent on a transducer, systems can

be grouped in to electrochemical which are divided into amperometric and

potentiometric ones. In thesis amperometric biosensors are used, they are sens-

itive and reliable devices providing an opportunity instantly identify relevant

biocomponents. Mainly biosensors are used in medicine or food industry.

Mainly the biosensor model involves three regions: the enzyme layer (mem-

brane), where the enzymatic reaction as well as the mass transport by diffusion

takes place, a diffusion limiting region, where only the diffusion takes place,
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and a convective region. In the enzyme layer we consider the enzyme-catalyzed

reaction. The current is a result of the biosensor reaction and is measured on the

surface of the electrode, it is mainly the most important parameter, measured

during or after the reaction.

In thesis the sensitivity of the biosensor, including batch and flow injection mode,

is analysed. Three models of the biosensor were taken, each corresponding

different structure and characteristics to be studied.

27



Chapter 2

Biosensor modelling

2.1 Amperometric biosensors in flow injection ana-

lysis systems

This research investigates the sensitivity of an amperometric biosensor, acting

in the flow injection mode, when the biosensor contacts an analyte for a short

time. The analytical system is modelled by non-stationary reaction-diffusion

equations, containing a nonlinear term related to the Michaelis-Menten kinetics

of an enzymatic reaction [35, 41]. The mathematical model involves three

regions: the enzyme layer, where the enzymatic reaction as well as the mass

transport by diffusion takes place, a diffusion limiting region, where only the

diffusion takes place, and a convective region. The biosensor operation is

analysed with a special emphasis on the conditions under which the biosensor

sensitivity can be increased and the calibration curve can be prolonged by

changing the injection duration, the permeability of the external diffusion layer,

the thickness of the enzyme layer and the catalytic activity of the enzyme. The

half-maximal effective concentration constant is used as the main characteristic
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of the sensitivity and the calibration curve of the biosensor [32, 33, 59, 63, 64].

2.1.1 Mathematical model

The amperometric biosensor is considered as an electrode and a relatively thin

layer of an enzyme (enzyme membrane) applied onto the electrode surface. The

biosensor model involves three regions: the enzyme layer (membrane) where

the enzymatic reaction as well as the mass transport by diffusion takes place, a

diffusion limiting region, where only the diffusion takes place, and a convective

region (1.1) [32, 33]. Due to the quasi steady-state approximation substrate

combines with enzyme resulting the product and enzyme (1.2) [19, 33, 34].

2.1.2 Governing equations

Due to the symmetrical geometry of the electrode and a homogeneous distribu-

tion of the immobilized enzyme in the enzyme layer of a uniform thickness, the

mathematical model of the biosensor action can be defined in a one-dimensional-

in-space domain [15, 16, 35]. Coupling the enzyme catalyzed reaction (1.2) in

the enzyme layer with the mass transport by diffusion, described by Fick’s law,

leads to the following system of the reaction diffusion equations:

∂S1

∂ t
= DS1

∂ 2S1

∂x2 −
VmaxS1

KM +S1
, (2.1a)

∂P1

∂ t
= DP1

∂ 2P1

∂x2 +
VmaxS1

KM +S1
, x ∈ (0,d), t > 0, (2.1b)

where x and t denote a space and time, S1 and P1 are the concentrations of the

substrate (S) and product (P) in the enzyme layer, DS1 , DP1 are the diffusion

coefficients, Vmax is the maximal enzymatic rate attainable with that amount of

the enzyme, when the enzyme is fully saturated with the substrate, KM is the
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Michaelis constant, and d is the thickness of the enzyme layer [15, 36, 37]. The

Michaelis constant KM is the concentration of the substrate at which the reaction

rate is half its maximum value Vmax.

In the outer layer, only the mass transport by diffusion of both species takes

place. We assume that the outer mass transport obeys the finite diffusion regime,

∂S2

∂ t
= DS2

∂ 2S2

∂x2 , (2.2a)

∂P2

∂ t
= DP2

∂ 2P2

∂x2 , x ∈ (d,d +δ ), t > 0, (2.2b)

where S2 and P2 are the substrate and product concentrations in the outer layer,

DS2 and DP2 are the diffusion coefficients, and δ is the thickness of the diffusion

layer.

2.1.3 Initial and boundary conditions

Let x = 0 represent the surface of the electrode, while x = d + δ is a farther

boundary of the diffusion layer. The biosensor operation starts, when the

substrate appears in the bulk solution (t = 0),

P1(x,0) = 0, S1(x,0) = 0, x ∈ [0,d], (2.3a)

P2(x,0) = 0, x ∈ [d,d +δ ], (2.3b)

S2(x,0) =

 0, x ∈ [d,d +δ ),

S0, x = d +δ ,
(2.3c)

where S0 is the substrate concentration in the bulk solution.

During the biosensor operation, the substrate penetrates through the diffusion

layer and reaches the farthest boundary of the enzyme layer (x = d), where we
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define the matching conditions (t > 0):

DS1

∂S1

∂x

∣∣∣∣
x=d

= DS2

∂S2

∂x

∣∣∣∣
x=d

, S1(d, t) = S2(d, t), (2.4a)

DP1

∂P1

∂x

∣∣∣∣
x=d

= DP2

∂P2

∂x

∣∣∣∣
x=d

, P1(d, t) = P2(d, t). (2.4b)

It is shown by these conditions that the amount of the substrate, which has

penetrated through the diffusion layer, enters the enzyme membrane.

Due to the electrode polarization, the concentration of the reaction product at

the electrode surface is permanently reduced to zero [15, 35]. The substrate

concentration flux on the electrode surface equals zero because of the substrate

electro-inactivity,

P1(0, t) = 0,
∂S1

∂x

∣∣∣∣
x=0

= 0. (2.5)

The outer diffusion layer (d < x < d + δ ) is treated as the Nernst diffusion

layer [41]. According to the Nernst approach, the layer of the thickness δ

remains unchanged with time, and away from it the solution is uniform in the

concentration (t > 0). In the FIA mode of the biosensor operation, the substrate

appears in the bulk solution only for a short time period, called the injection

time. Later, the substrate disappears from the bulk solution,

P2(d +δ , t) = 0, S2(d +δ , t) =

 S0, t ≤ TF ,

0, t > TF ,
(2.6)

where TF is the injection time.

2.1.4 Biosensor response

The anodic or cathodic current is measured as a result of a physical experiment.

The current is proportional to the gradient of the reaction product concentration
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at the electrode surface, i.e. on the border x = 0. The density I(t) of the biosensor

current at time t can be obtained explicitly from Faraday’s and Fick’s laws [15],

I(t) = neFDP1

∂P1

∂x

∣∣∣∣
x=0

, (2.7)

where ne is the number of electrons involved in a charge transfer, and F is the

Faraday constant.

We assume that the system reaches the equilibrium as t→ ∞. The steady-state

current is the main characteristic in commercial amperometric biosensors acting

in the batch mode [19, 32, 33]. In FIA, due to the zero concentration of the

surrounding substrate at t > TF , the steady-state current falls to zero, I(t)→ 0,

as t → ∞. Because of this, the steady-state current is not practically useful in

the FIA systems. Since the current density I(t) of the biosensor acting in the

injection mode, is a non-monotonous function, the maximal current is one of

the mostly used characteristics for this kind of biosensors,

Imax = max
t>0
{I(t)} , (2.8)

where Imax is the maximal density of the biosensor current.

2.1.5 Dimensionless model

In order to define the main governing parameters of the mathematical model,

thus reducing the number of model parameters in general, a dimensionless

model is often derived [15, 61, 67]. For simplicity, we introduce the concentra-

tions S and P of the substrate and the product for the entire domain x ∈ [0,d+δ ]

(t ≥ 0),

S =

 S1, 0≤ x≤ d ,

S2, d < x≤ d +δ ,
(2.9a)
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P =

 P1, 0≤ x≤ d ,

P2, d < x≤ d +δ .
(2.9b)

Both concentration functions (S and P) are continuous in the entire domain

x∈ [0,d+δ ]. The replacement of the parameters is based on parameter mappings

defined in Table 2.1.

Table 2.1: Dimensional and dimensionless model parameters

Parameter Dimensional Dimensionless

Distance from the electrode x, cm X̂ = x/d
Time t, s T̂ = tDS1/d2

Injection time TF , s T̂F = TFDS1/d2

Enzyme layer thickness d, cm X̂ = d/d = 1
Diffusion layer thickness δ , cm ∆̂ = δ/d
Substrate concentration S, S0, M Ŝ = S/KM, Ŝ0 = S0/KM
Product concentration P, M P̂ = P/KM
Half maximal effective
concentration KM, C50, M K̂M = KM/KM = 1, Ĉ50 = C50/KM
Current density I, Imax, A cm−2 Î = Id/(neFDP1KM),

Îmax = Imaxd/(neFDP1KM)

For the enzyme layer, reaction-diffusion equations (2.1) can be rewritten as

follows:

∂ Ŝ
∂ T̂

=
∂ 2Ŝ
∂ X̂2
−α

2 Ŝ
1+ Ŝ

, (2.10a)

∂ P̂
∂ T̂

=
DP1

DS1

∂ 2P̂
∂ X̂2

+α
2 Ŝ

1+ Ŝ
, X̂ ∈ (0,1), T̂ > 0, (2.10b)

where α2 is the diffusion module, known as a Damköhler number [15],

α
2 =

d2Vmax

DS1KM
. (2.11)

The diffusion module α2 compares the rate of the enzyme reaction (Vmax/KM)

with the rate of the mass transport through the enzyme layer (DS/d2).
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Diffusion equations (2.2) are transformed as follows:

∂ Ŝ
∂ T̂

=
DS2

DS1

∂ 2Ŝ
∂ X̂2

, (2.12a)

∂ P̂
∂ T̂

=
DP2

DS1

∂ 2P̂
∂ X̂2

, X̂ ∈ (1,1+ ∆̂), T̂ > 0. (2.12b)

The initial conditions (2.3) take the following form:

P̂(X̂ ,0) = 0, Ŝ(X̂ ,0) = 0, X̂ ∈ [0,1+ ∆̂), (2.13a)

P̂(1+ ∆̂,0) = 0, Ŝ(1+ ∆̂,0) = Ŝ0. (2.13b)

The matching conditions (2.4) transform to the following conditions (T̂ > 0):

∂ Ŝ
∂ X̂

∣∣∣∣
X̂=1

=
DS2

DS1

∂ Ŝ
∂ X̂

∣∣∣∣
X̂=1

, (2.14a)

DP1

DS1

∂ P̂
∂ X̂

∣∣∣∣
X̂=1

=
DP2

DS1

∂ P̂
∂ X̂

∣∣∣∣
X̂=1

. (2.14b)

Boundary conditions (2.5) and (2.6) acquire the following form (T̂ > 0):

P̂(0, T̂ ) = 0,
∂ Ŝ
∂ X̂

∣∣∣∣
X̂=0

= 0, (2.15a)

P̂(1+ ∆̂, T̂ ) = 0, Ŝ(1+ ∆̂, T̂ ) =

 Ŝ0, T̂ ≤ T̂F ,

0, T̂ > T̂F .
(2.15b)

The dimensionless current (flux) Î is defined as follows:

Î(T̂ ) =
∂ P̂
∂ X̂

∣∣∣∣
X̂=0

=
I(t)d

neFDP1KM
. (2.16)
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Due to the same diffusion coefficients of both species considered, the substrate

and the product, the initial collection of model parameters reduces to a few

aggregate parameters: ∆̂ is the diffusion layer thickness, α2 is the diffusion

module, T̂F is the injection time, Ŝ0 is the substrate concentration in the bulk

during the injection, and D̂21 = DS2/DS1 = DP2/DP1 is the dimensionless ratio of

the diffusion coefficient in the diffusion layer to the corresponding diffusion

coefficient in the enzyme layer. The diffusion module α2 is one of the most

important parameters that essentially define internal characteristics of an am-

perometric biosensor [15, 35–37]. The biosensor response is known to be under

diffusion control as α2� 1. In the very opposite case, where α2� 1, the enzyme

kinetics predominates in the response.

2.1.6 Numerical simulation

No analytical solution is possible because of the nonlinearity of governing

equations of the mathematical model (2.1)-(2.7) [15, 16]. For this reason a

numerical solution was performed. When solving the biosensor model, an

implicit finite difference scheme has been formed on a uniform discrete grid [15,

35, 41, 42].

The mathematical model and the numerical solution were validated using the

known analytical solution [15]. Assuming TF→∞, the mathematical model (2.1)-

(2.7) approaches the two-compartment model of the amperometric biosensor,

acting in the batch mode [15]. In addition, assuming S0� KM, the nonlinear

reaction (Michaelis-Menten) function in (2.1) simplifies to a linear function

VmaxS1/KM. Based on these assumptions model (2.1)-(2.7) has been analytically

solved under the steady-state conditions [15].

A number of experiments were done, while the values of some parameters were
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kept constant [69],

DS1 = DP1 = 300 µm2/s, DS2 = 2DS1, DP2 = 2DP1,

KM = 100µM, ne = 1, d = 200 µm.
(2.17)

Fig. 2.1 shows the evolution of the density I(t) of the biosensor current. The

biosensor action was simulated at a moderate concentration S0 of the substrate

(S0 = KM) and different values of the other model parameters, the dimensionless

diffusion module α2 (1 and 2), the injection time TF (3 and 6 s) and the dimen-

sionless Biot number Bi (1 and 2). Assuming (2.17), these two values (1 and 2)

of α2 have been obtained with the following values of the maximal enzymatic

rate Vmax: 0.75 and 1.5 µM, respectively. Accordingly, Bi = 2 corresponds to the

thickness δ of the external diffusion layer equal to the thickness d of the enzyme

layer, while Bi = 1 as δ = D̂21d = 2d = 400 µm.
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Figure 2.1: The dynamics of the biosensor response at different values of the
diffusion module α2: 1 (5-8), 2 (1-4), the Biot number Bi: 1 (3, 4, 7, 8), 2 (1, 2, 5, 6)
and the injection time TF : 3 (2, 4, 6, 8), 6 s (1, 3, 5, 7)

One can see in Fig. 2.1 the non-monotonous behaviour of the biosensor current.

In all the cases the current increases during the injection period (t ≤ TF ). How-

ever, the current also increases some time after the substrate disappearance from

the bulk solution (t ≥ TF ). The time moment of the maximum current as well
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as the maximal current itself depend on all the three model parameters: α2, Bi,

and TF .

Fig. 2.1 shows that the density Imax of the maximal current increases almost

two times when the injection time TF doubles. However, the influence of the

doubling the time TF on the time of the maximal current is rather slight. When

comparing curves 1 (TF = 6 ) and 2 (TF = 3s), one can see that the time of the

maximal response increases from 13.9 only to 16 s, while Imax increases from 2.3

event to 4.4 nA/mm2 as α2 = 2, Bi = 2.

Fig. 2.1 also shows that the biosensor response significantly depends on the

Biot number Bi. A decrease in Bi noticeably prolongs the response. As one

can see in Fig. 2.1, the maximal current decreases when the thickness of the

external diffusion layer increases, i.e. Bi decreases. FIA biosensing systems

have been already investigated by using mathematical models at zero thickness

(Bi→ ∞) of the external diffusion layer [40, 60]. Fig. 2.1 visually substantiates

the importance of the external diffusion layer.

2.1.7 Results and discussion

Using the numerical simulation, the biosensor operation was analysed with a

special emphasis on the conditions under which the biosensor sensitivity can be

increased and the calibration curve can be prolonged by changing the injection

duration, the biosensor geometry, and the catalytic activity of the enzyme. In

order to investigate the influence of the model parameters on the half-maximal

effective concentration constant Ĉ50, the simulation was performed within a

wide range of the values of the diffusion module α2, the Biot number Bi and the

injection time TF . Since in the FIA, the injection usually continues for several

seconds (neither minutes, nor milliseconds), to render the injection time more

lucidly, we used the dimensional injection time TF instead of the dimensionless
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injection time T̂F .

The constant Ĉ50 expresses a relative prolongation (in times) of the calibration

curve in comparison with the theoretical Michaelis constant KM. For a bio-

sensor of concrete configuration, Ĉ50 can be rather easily calculated by multiple

simulation of the maximal response, changing the substrate concentration Ŝ0.

Fig. 2.2 shows the dependence of the half-maximal effective concentration con-

stant Ĉ50 on the Biot number Bi. The constant Ĉ50 was calculated with three

values of the diffusion module α2: 0.1 (curves 1 and 2), 1 (3, 4) and 10 (5, 6),

and two practically extreme values of the injection time TF : 1 (1, 3, 5) and 10 s

(2, 4, 6). At concrete values of α2 and TF , the calculations were performed by

changing the thickness δ of the diffusion layer from 40 µm (δ = 0.2d) to 4mm

(δ = 20d) and keeping constant the thickness d = 200 µm of the enzyme layer.
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Figure 2.2: The dependence of the half-maximal effective concentration constant
Ĉ50 on the Biot number Bi with different values of the diffusion module α2: 0.1
(1, 2), 1 (3, 4), 10 (5, 6) and the injection time TF : 1 (1, 3, 5), 10 s (2, 4, 6)

One can see in Fig. 2.2, that at relatively large values of the Biot number (Bi > 10)

the half-maximal effective concentration constant Ĉ50 (as well as dimensional

C50) is almost insensitive to changes in Bi. However, when Bi < 1, a decrease in

Bi affects a drastic increase of Ĉ50. By increasing the thickness δ of the external

diffusion layer as well as decreasing the diffusivity DS2 in this layer, i.e. by
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decreasing Bi, the calibration curve of the biosensor can be prolonged by a few

orders of magnitude. The diffusivity of species in the diffusion layer is usually

relative to the permeability of the diffusion layer. The Biot number Bi might be

also decreased by decreasing the permeability of the external diffusion layer.

In the case of the batch analysis, an advantageous effect of the external diffusivity

on the length of the calibration curve of amperometric biosensors is quite well

known [32, 33, 59, 64]. Fig. 2.2 shows that, due to FIA, the linear part of

the calibration curve becomes even longer. This figure also shows a weak

dependence of Ĉ50 on the diffusion module α2 as α2 ≤ 1.

To properly investigate the impact of the injection time TF on the length of the

linear part of the calibration curve, the half-maximal effective concentration

constant Ĉ50 was calculated by changing TF from 1 up to 10s. The values of Ĉ50

were calculated with three values of the diffusion module α2 (0.1, 1 and 10) and

three values of the Biot number Bi (0.1, 10 and 100). The calculation results are

depicted in Fig. 2.3.
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Figure 2.3: The half maximal effective concentration constant Ĉ50 vs. the injection
time TF , α2: 0.1 (1, 4, 7), 1 (2, 5, 8), 10 (3, 6, 9), Bi: 0.1 (1-3), 10 (4-6), 100 (7-9)

As one can see in Fig. 2.3, Ĉ50 exponentially increases with a decrease in the

injection time TF . The calibration curve of the biosensor can be prolonged by a
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few orders of magnitude only by decreasing the injection time TF . The impact

of TF is practically invariant for the Biot number Bi and the diffusion module

α2. The exponential increase is specifically characteristic at low values of TF

(TF < 3 s).

In Fig. 2.3 one can also see no noticeable difference between curves 4, 5, 7, and 8.

Two other curves, 6 and 9, only slightly differ from each other. So, at relatively

high values of the Biot number (Bi≥ 10), Ĉ50 is but slightly sensitive to changes

in Bi. This effect was even more easily shown in Fig. 2.2. Fig. 2.3 additionally

shows that the Ĉ50 more increases at greater values of the diffusion module α2

rather than at lower ones.

Finally, the impact of the diffusion module α2 on the half-maximal effective

concentration constant has been evaluated. The result is presented in Fig. 2.4.

The constant Ĉ50 was calculated for three values of the diffusion Biot number

Bi: 0.1 (curves 1 and 4), 10 (2, 5) and 100 (3, 6), and two values of the injection

time TF : 1 (1-3) and 10 s (4-6). At concrete values of Bi and TF , the calculations

were performed by changing the maximal enzymatic rate Vmax from 75nM/s

(α2 = 0.1) to 7.5 µM/s (α2 = 10) and keeping other parameters constant.
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Figure 2.4: The half maximal effective concentration constant Ĉ50 vs. the diffu-
sion module α2, Bi: 0.1 (1, 4), 10 (2, 5), 100 (3, 6), TF : 1 (1-3), 10 s (4-6)
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As one can see in Fig. 2.4, Ĉ50 is a monotonous increasing function of α2. When

the enzyme kinetics predominates in response (α2 < 1) of a FIA biosensing

system with a relatively large Biot number (Bi≥ 10), the Ĉ50 is approximately a

constant function (curves 2, 3, 5 and 6). When the biosensor response is under

diffusion control (α2 > 1), Ĉ50 exponentially increases with an increase in the

diffusion module α2. These features were particularly noticed in Fig. 2.2 and

Fig. 2.3.

In real applications of biosensors, the diffusion module α2 can be modified by

changing the enzyme activity (Vmax) as well as the thickness d of the enzyme

layer. The maximal enzymatic rate Vmax is actually a product of two parameters:

the catalytic constant k2 and the total concentration Et of the enzyme [32, 33].

It is usually impossible to modify the k2 part. The maximal rate Vmax might be

modified by changing the enzyme concentration Et in the enzyme layer. Vmax is

relative to the total enzyme used in a biosensor.

In the batch analysis (TF → ∞), where the enzyme kinetics distinctly predomin-

ates in the biosensor response (α2� 1 and Bi→ ∞), the half-maximal effective

concentration constant C50 approaches the theoretical Michaelis constant KM,

i.e. C50 ≈ KM, Ĉ50 ≈ 1 [32, 33, 59, 63, 64]. As one can see in Fig. 2.2, Fig. 2.3, and

Fig. 2.4, Ĉ50 is quite near to 1 also in the case of the FIA biosensing systems as

α2 < 1, TF = 10 and Bi = 100.

2.1.8 Section summary

The mathematical model (2.1)-(2.7) of the flow injection analysis system, based

on an amperometric biosensor, can be successfully used to investigate the kinetic

peculiarities of biosensor response. The respective dimensionless mathematical

model (2.10)-(2.35) can be used as a framework for numerical investigation of

the impact of model parameters on the biosensor action and to optimize the
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biosensor configuration.

By increasing the thickness δ of the external diffusion layer or by decreasing

the substrate diffusivity DS2 in this layer (by decreasing the Biot number Bi), the

calibration curve of the biosensor can be prolonged by a few orders of magnitude.

At relatively large values of the Biot number (Bi > 10) the half-maximal effective

concentration constant C50 is almost insensitive to changes in Bi Fig. 2.2.

The half-maximal effective concentration constant C50 exponentially increases

with a decrease in the injection time TF . The calibration curve of the biosensor

can be prolonged by a few orders of magnitude only by decreasing the injection

time TF . The impact of TF is practically invariant on the Biot number Bi and the

diffusion module α2. The exponential increase is specifically characteristic at

low values of TF (TF < 3 s) Fig. 2.3.

C50 is a monotonously increasing function of the diffusion module α2. When the

enzyme kinetics distinctly predominates in the response (α2 < 1 and Bi≥ 10),

C50 is approximately a constant function, while as α2 > 1 C50 exponentially

increases with an increase in α2 Fig. 2.4.

2.2 Modelling and simulation of amperometric bio-

sensors acting in the flow injection analysis

The goal of this investigation was to develop a computational model for an

effective simulation of the action of an amperometric biosensor that contains

dialysis membranes and utilizes FIA, as well as to investigate the influence of

the physical and kinetic parameters on the biosensor response. The biosensing

system was mathematically modelled by reaction-diffusion equations that in-

clude a nonlinear term related to the Michaelis-Menten kinetics of the enzymatic
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reaction [15, 37]. The system of equations was solved numerically by using

the finite difference technique [35, 41]. The biosensor operation was analyzed

especially emphasizing on the effect of the dialysis membrane on the biosensor

response. The biosensor sensitivity was investigated by altering the model para-

meters that influence the thickness of the dialysis membrane and the catalytic

activity of the enzyme. The half-maximal effective concentration of the analyte

was used as the base characteristic of sensitivity and the calibration curve of the

biosensor [66].

2.2.1 Biosensor structure

The biosensor to be modelled has a layered structure [70]. Fig. 2.5 shows a

principal structure of the biosensor. The biosensor is considered as an electrode

with a relatively thin layer of an enzyme (enzyme membrane) entrapped on the

surface of the electrode applying the dialysis membrane. The biosensor model

involves four regions: the enzyme layer where the enzyme reaction as well as

the mass transport by diffusion takes place, a dialysis membrane and a diffusion

limiting region where only the mass transport by diffusion take place, and a

convective region where the analyte concentration is maintained constant.

Figure 2.5: Structural Scheme of the Biosensor

In the enzyme layer, we consider the enzyme-catalyzed reaction, where the

product is created as a result (1.1). The complex then dissociates into the product

(P) and the enzyme is regenerated [32, 33].
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Due to the quasi steady-state approximation, the concentration of the intermedi-

ate complex (ES) does not change and may be neglected when modelling the

biochemical behaviour of biosensors [33, 34, 71]. In the resulting scheme (1.2),

the substrate (S) is enzymatically converted in to the product (P).

It was assumed that x = 0 represents the surface of the electrode, a1, a2, and

a3 denote the distances from the electrode surface, while d1, d2, and d3 are

thicknesses of the enzyme, the dialysis membrane, and the diffusion layers,

respectively, ai = ai−1 + di, i = 1,2,3, and a0 = 0. The outer diffusion layer (

a2 < x < a3) may be treated as the Nernst diffusion layer [41]. According to the

Nernst approach, the layer of thickness d3 = a3−a2 remains unchanged with

time. It was assumed that away from it the buffer solution is uniform in the

concentration.

2.2.2 Mathematical model

Due to a homogeneous distribution of the enzyme in the enzyme layer of the

uniform thickness and symmetrical geometry of the dialysis membrane leads to

a mathematical model of the biosensor action defined in a one-dimensional-in-

space domain [15, 35].

2.2.3 Governing equations

Coupling the enzyme-catalyzed reaction (1.2) in the enzyme layer with the mass

transport by diffusion, described by Fick’s law, leads to the following system of
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the reaction-diffusion equations (t > 0):

∂S1

∂ t
= DS1

∂ 2S1

∂x2 −
VmaxS1

KM +S1
, (2.18a)

∂P1

∂ t
= DP1

∂ 2P1

∂x2 +
VmaxS1

KM +S1
, x ∈ (0,a1), (2.18b)

where x and t stand for space and time, S1 and P1 are concentrations of the

substrate (S) and the product (P) in the enzyme layer, DS1 , DP1 are the constant

diffusion coefficients, Vmax is the maximal enzymatic rate attainable with that

amount of the enzyme, if the enzyme is fully saturated with the substrate, KM is

the Michaelis constant, and d1 = a1 is the thickness of the enzyme layer [15, 36,

37]. The Michaelis constant KM is the concentration of the substrate (S) at which

the reaction rate is half its maximum value Vmax. KM is an approximation of the

enzyme affinity to the substrate based on the rate constants within the reactions

(1.1), KM = (k−1 + k2)/k1.

Outside the enzyme layer, only the mass transport by diffusion of the substrate

as well as the product takes place (t > 0),

∂Si

∂ t
= DSi

∂ 2Si

∂x2 , (2.19a)

∂Pi

∂ t
= DPi

∂ 2Pi

∂x2 , x ∈ (ai−1,ai), i = 2,3, (2.19b)

where Si and Pi are the substrate and the product concentrations in the i-th layer,

DSi and DPi are the diffusion coefficients, and di = ai−ai−1 is the thickness of the

corresponding layer, i = 2,3.
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2.2.4 Initial conditions

The biosensor operation starts when a substrate appears in the bulk solution. It

leads to the following initial conditions (t = 0):

S1(x,0) = 0, P1(x,0) = 0, x ∈ [0,a1], (2.20a)

S2(x,0) = 0, P2(x,0) = 0, x ∈ [a1,a2], (2.20b)

S3(x,0) =

 0, x ∈ [a2,a3),

S0, x = a3,
(2.20c)

P3(x,0) = 0, x ∈ [a2,a3], (2.20d)

where S0 is the substrate concentration in the bulk solution.

2.2.5 Boundary conditions

During the biosensor operation, the substrate penetrates through the diffusion

layer as well as the dialysis membrane and reaches a farther boundary of the

enzyme layer (x = a1). On the boundary between two adjacent regions with

different diffusivities, the matching conditions have to be defined (t > 0, i = 1,2):

DSi

∂Si

∂x

∣∣∣∣
x=ai

= DSi+1

∂Si+1

∂x

∣∣∣∣
x=ai

, (2.21a)

Si(ai, t) = Si+1(ai, t), (2.21b)

DPi

∂Pi

∂x

∣∣∣∣
x=ai

= DPi+1

∂Pi+1

∂x

∣∣∣∣
x=ai

, (2.21c)

Pi(ai, t) = Pi+1(ai, t). (2.21d)

These conditions mean that fluxes of the substrate and the product through one

region are equal to the respective fluxes, entering the surface of the neighbouring
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region. Concentrations of the substrate and the product in one region versus the

neighbouring region are assumed to be equal.

Due to the electrode polarization, the concentration of the reaction product at

the electrode surface is permanently reduced to zero [15, 35],

P1(0, t) = 0, (2.22)

Due to the substrate electro-inactivity, the substrate concentration flux on the

electrode surface equals zero,

∂S1

∂x

∣∣∣∣
x=0

= 0. (2.23)

According to the Nernst approach, the layer of the thickness d3 of the outer

diffusion layer remains unchanged with time, and away from it the solution is

uniform in the concentration [41]. In the FIA mode of the biosensor operation,

the substrate appears in the bulk solution only for a short time period called the

injection time [72]. Later, the substrate disappears from the bulk solution,

P3(a3, t) = 0, t > 0, (2.24a)

S3(a3, t) =

 S0, 0 < t ≤ TF ,

0, t > TF ,
(2.24b)

where TF is the injection time.

2.2.6 Biosensor response

The anodic or cathodic current is measured as a result in a physical experiment.

The biosensor current is proportional to the gradient of the reaction product con-

centration at the electrode surface, i.e. on the boundary x = 0. When modelling
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the biosensor action, due to the direct proportionality of the current to the area

of the electrode surface, the current is often normalized with that area [15, 35].

The density I(t) of the biosensor current at time t can be obtained explicitly from

Faraday’s and Fick’s laws [15],

I(t) = neFDP1

∂P1

∂x

∣∣∣∣
x=0

, (2.25)

where ne is the number of electrons involved in charge transfer, and F is the

Faraday constant.

We assume that the system achieves an equilibrium as t → ∞. The steady-

state current is usually assumed to be the main characteristic of commercial

amperometric biosensors acting in the batch mode [32, 33, 71]. In FIA, due to

the zero concentration of the surrounding substrate at t > TF , the steady-state

current falls to zero, I(t)→ 0, as t → ∞. Because of this, the maximum peak

current is the most often used characteristic in FIA systems,

Imax = max
t>0
{I(t)} , (2.26)

where Imax is the maximal density of the biosensor current.

The corresponding time Tmax of the maximal current is used to characterize the

response time of the biosensor,

Tmax = {t : I(t) = Imax} . (2.27)

2.2.7 Characteristics of Biosensor Response

Sensitivity is one of the most important characteristics of the biosensor opera-

tion [32, 33, 71]. The sensitivity BS of the biosensor, acting in the FIA mode, is

defined as the gradient of the maximal current with respect to the concentration
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S0 of the substrate in the bulk [15, 35]. Since the biosensor current as well as

the substrate concentration vary even in orders of magnitude, a dimensionless

expression of sensitivity is preferable [35]. The dimensionless sensitivity BS(S0)

for the substrate concentration S0 is given by

BS(S0) =
dImax(S0)

dS0
× S0

Imax(S0)
, (2.28)

where Imax(S0) is the density of the maximal biosensor current, calculated at the

substrate concentration S0.

In the Michaelis-Menten kinetic model, the Michaelis constant KM as a charac-

teristic of the biosensor calibration curve is numerically equal to the substrate

concentration at which half the maximum rate of the enzyme-catalyzed reac-

tion is achieved [32, 33]. Under certain conditions, especially under diffusion

limitations for the substrate, the half-maximal effective concentration C50 of the

substrate to be determined is often used to characterize the biosensor calibration

curve [66]. In the case of FIA analysis, C50 is defined as the concentration of

the substrate at which the response of the biosensor achieves half the maximal

response (1.19).

2.2.8 Dimensionless Model

In order to extract the main governing parameters of the mathematical model,

thus reducing the number of model parameters in general, a dimensionless

model is often derived [15, 61]. The dimensionless model has been derived by

replacing the model parameters as defined in the following table:

For the enzyme layer, the reaction-diffusion equations (2.18) can be rewritten as
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Table 2.2: Dimensional and dimensionless model parameters (i = 1,2,3)

Dimensional Dimensionless

x, cm x̂ = x/d1
ai, cm âi = ai/d1
di, cm d̂i = di/d1
t, s t̂ = tDS1/d2

1
TF , s T̂F = TFDS1/d2

1
Si, M Ŝi = Si/KM
Pi, M P̂i = Pi/KM
C50, M Ĉ50 =C50/KM
DSi , cm2/s D̂Si = DSi / DS1

DPi , cm2/s D̂Pi = DPi / DS1

I, A/cm2 Î = Id1/(neFDP1KM)

follows (t̂ > 0):

∂ Ŝ1

∂ t̂
=

∂ 2Ŝ1

∂ x̂2 −α
2 Ŝ1

1+ Ŝ1
, (2.29a)

∂ P̂1

∂ t̂
= D̂P1

∂ 2P̂1

∂ x̂2 +α
2 Ŝ1

1+ Ŝ1
, x̂ ∈ (0,1), (2.29b)

where α2 is the diffusion module, also known as the Damköhler number [15],

α
2 =

d2
1Vmax

DS1KM
. (2.30)

The diffusion module α2 compares the rate of the enzyme reaction (Vmax/KM)

with the rate of the mass transport through the enzyme layer (DS1/d2
1).

The diffusion equations (2.19) are transformed as follows (t̂ > 0):

∂ Ŝi

∂ t̂
= D̂Si

∂ 2Ŝi

∂ x̂2 , (2.31a)

∂ P̂i

∂ t̂
= D̂Pi

∂ 2P̂i

∂ x̂2 , x̂ ∈ (âi−1, âi), i = 2,3, (2.31b)
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The initial conditions (2.20) take the following form (i = 1,2):

Ŝi(x̂,0) = 0, P̂i(x̂,0) = 0, x̂ ∈ [âi−1, âi], (2.32a)

Ŝ3(x̂,0) =

 0, x̂ ∈ [â2, â3),

Ŝ0, x̂ = â3,
(2.32b)

P̂3(x,0) = 0, x̂ ∈ [â2, â3], (2.32c)

The matching conditions (2.21) transform in to the following conditions (t̂ > 0,

i = 1,2):

D̂Si

∂ Ŝi

∂ x̂

∣∣∣∣
x̂=âi

= D̂Si+1

∂ Ŝi+1

∂ x̂

∣∣∣∣
x̂=âi

, (2.33a)

Ŝi(âi, t̂) = Ŝi+1(âi, t̂), (2.33b)

D̂Pi

∂ P̂i

∂ x̂

∣∣∣∣
x̂=âi

= D̂Pi+1

∂ P̂i+1

∂ x̂

∣∣∣∣
x̂=âi

, (2.33c)

P̂i(âi, t̂) = P̂i+1(âi, t̂). (2.33d)

The boundary conditions (2.22)-(2.24) take the following form (t̂ > 0):

P̂1(0, t̂) = 0,
∂ Ŝ1

∂ x̂

∣∣∣∣
x̂=0

= 0, (2.34a)

P̂3(â3, t̂) = 0, (2.34b)

Ŝ3(â3, t̂) =

 Ŝ0, t̂ ≤ T̂F ,

0, t̂ > T̂F .
(2.34c)
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The dimensionless current (flux) Î is defined as follows:

Î(t̂) =
∂ P̂1

∂ x̂

∣∣∣∣
x̂=0

=
I(t)d1

neFDP1KM
. (2.35)

Assuming the same diffusion coefficients of the substrate and the product, the

initial set of model parameters reduces to the following aggregate dimensionless

parameters: d̂2 the thickness of the dialysis membrane, d̂3 the diffusion layer

thickness, α2 the diffusion module, T̂F the injection time, Ŝ0 the substrate con-

centration in the bulk during the injection, and D̂Si = DSi/DS1 = DPi/DP1 = D̂Pi -

the ratio of the diffusion coefficient in the dialysis membrane (at i = 2) or in the

diffusion layer (at i = 3) to the respective diffusion coefficient in the enzyme

layer.

The diffusion module α2 is one of the most important parameters that essentially

define internal characteristics of layered amperometric biosensors [15, 35–37].

The biosensor response is known to be under diffusion control as α2� 1. In the

opposite case, where α2� 1, the enzyme kinetics predominates in the response.

2.2.9 Numerical simulation

The mathematical model and the numerical solution were validated using the

known analytical solution [15]. Assuming TF → ∞ and d2 → 0 or d3 → 0, the

mathematical model (2.18)-(2.25) approaches the two-compartment model of the

amperometric biosensor, acting in the batch mode [15]. The three compartment

model approaches the two compartment model also in the unrealistic case,

where the diffusion coefficients for the dialysis membrane are assumed to be the

same as for the diffusion layer, DS2 = DS3 and DP2 = DP3 . Additionally assuming

S0� KM, the nonlinear Michaelis-Menten reaction function in (2.18) simplifies

to a linear function VmaxS1/KM. Under these assumptions the model (2.18)-(2.25)
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has been solved analytically [15]. Under the steady-state conditions a relative

difference between the numerical and analytical solutions was smaller than 1%.

To investigate the effect of the dialysis membrane on the biosensor response, a

number of experiments were carried out, while the values of some parameters

were kept constant [69, 73],

KM = 100µM, DS1 = DP1 = 300 µm2/s,

DS2 = DP2 = 0.3DS1, DS3 = DP3 = 2DS1,

ne = 1, d1 = 200 µm, d3 = 20 µm.

(2.36)

To minimize the effect of the Nernst diffusion layer on the biosensor response,

the responses were simulated at a practically minimal thickness (d3 = 20 µm) of

the external diffusion layer assuming, well stirred buffer solution by a magnetic

stirrer [69].

Fig. 2.6 illustrates the evolution of the density I(t) of the biosensor current

simulated at a moderate concentration S0 of the substrate (S0 = KM) and different

values of the other model parameters: the maximal enzymatic rate Vmax (0.75

and 1.5 µM), the injection time TF (3 and 6 s) and the thickness d2 of the dialysis

membrane (10 and 20 µm). Assuming (2.36), these two values of the maximal

enzymatic rate Vmax correspond to the following two values of the dimensionless

diffusion module α2: 1 and 2. Accordingly, d2 = 10 µm corresponds to the

dimensionless relative thickness d̂2 of the dialysis membrane equal to 0.05, while

d2 = 20 µm leads to d̂2 = 0.1.

Fig. 2.6 illustrates a non-monotonous behaviour of the biosensor current. In all

the simulated cases, the current increases with the increasing time t up to the

injection time TF (t ≤ TF ). However, the current also increases some time after

the substrate disappears from the bulk solution (t ≥ TF ). The time moment Tmax

of the peak current and the peak current Imax depends on the model parameters:

Vmax, TF and d2. In all the simulated cases, the time moment of the peak current
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Figure 2.6: Dynamics of the Biosensor Response; Vmax: 0.75 (1-4), 1.5 µM (5-8),
TF : 3 (1, 2, 5, 6), 6 s (3, 4, 7, 8); d2: 10 (1, 3, 5, 7), 20 µm (2, 4, 6, 8)

was larger than TF (Tmax > TF ).

In Fig. 2.6 we see, that different values of the model parameters Vmax and d2,

the density Imax of the maximal current increases almost two times when the

injection time TF doubles. However, the influence of doubling the time TF on the

time of the maximal current is rather slight. When comparing curves 1 (TF = 3 )

and 3 (TF = 6s), one can see that the time Tmax of the maximal response increases

from 31 only to 33 s, while Imax increases from 19.7 up to 38 nA/cm2 as Vmax =

0.75 µM (α2 = 2) and d2 = 10 µm (d̂2 = 0.1).

Fig. 2.6 also shows that the biosensor response noticeably depends on the thick-

ness d2 of the dialysis membrane. An increase in d2 prolongs the time of the

maximal current. As one can see in Fig. 2.6 that the maximal current decreases

when the thickness d2 of the dialysis membrane increases. FIA biosensing sys-

tems have been already investigated by using mathematical models at zero

thickness of the dialysis membrane [40, 56]. Fig. 2.6 visually substantiates the

importance of the dialysis membrane.
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2.2.10 Results and discussion

Using the numerical simulation, the biosensor action was analysed with a

special emphasis on the conditions under which the biosensor sensitivity can be

increased and the calibration curve can be prolonged by changing the biosensor

geometry (especially the thickness of the dialysis membrane), the injection

duration, and the catalytic activity of the enzyme. In order to investigate the

influence of the model parameters on the half maximal effective concentration

C50 of the substrate, the simulation was performed in a wide range of values

of the thickness d2 of the dialysis membrane, the diffusion module α2, and the

injection time TF .

The dimensionless half-maximal effective concentration Ĉ50 expresses the rel-

ative prolongation (in times) of the calibration curve in comparison with the

theoretical Michaelis constant KM. For the biosensor of a concrete configura-

tion, the concentration C50 as well as the half-maximal effective concentration

constant can be quite easily calculated by a multiple simulation of the maximal

response changing the substrate concentration S0 [35, 56].

Fig. 2.7 shows the dependence of the dimensionless half-maximal effective con-

centration Ĉ50 on the thickness d2 of the dialysis membrane. The concentration

C50 was calculated and then normalized with respect to the Michaelis constant

KM at three values of the diffusion module α2: 0.1 (curves 1 and 2), 1 (3, 4) and 10

(5, 6), and two practically extreme values of the injection time TF : 1 (1, 3, 5) and

10 s (2, 4, 6). At all these values of α2 and TF , simulations have been performed

by changing the thickness d2 from 5 µm (d̂2 = 0.025) to 40 µm (d̂2 = 0.2).

One can see in Fig. 2.7, that the dimensionless half-maximal effective concen-

tration Ĉ50 (as well as the respective dimensional concentration C50) is a mono-

tonous by increasing function of the thickness d2 of the dialysis membrane.

An increase in the thickness d2 noticeably prologs a linear part of the calibra-
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Figure 2.7: Effective Concentration Ĉ50 vs. Thickness d2 of the Dialysis Mem-
brane; α2: 0.1 (1, 2), 1 (3, 4), 10 (5, 6), TF : 1 (1, 3, 5), 10 s (2, 4, 6)

tion curve of the biosensor. It can be explained by increasing an additional

external diffusion limitation, caused by increasing the thickness of the mem-

brane [32, 33, 59, 64]. This figure also illustrates a significant dependence of C50

on the diffusion module α2, as α2 ≤ 1.

To properly investigate the impact of the injection time TF on the length of the

linear part of the calibration curve, the dimensionless half-maximal effective

concentration Ĉ50 was also calculated by changing TF from 0.5 up to 10s. The

values of Ĉ50 were calculated by three values of the diffusion module α2 (0.1,

1, and 10) and two values of the thickness d2 (10 and 20 µm) of the dialysis

membrane. The calculation results are presented in Fig. 2.8.

Fig. 2.8 shows that Ĉ50 approximately exponentially a increases with a decrease

in the injection time TF . The calibration curve of the biosensor can be prolonged

by more than an order of magnitude only with a decrease in the injection time

TF . This impact of TF on the biosensor sensitivity only slightly depends the

thickness d2 of the dialysis membrane and the diffusion module α2. A similar

effect was also noticed when modelling a more simple biosensor containing no

dialysis membrane [56].

Fig. 2.8 also demonstrates that demonstrates the effective concentration Ĉ50 is
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Figure 2.8: Effective Concentration Ĉ50 vs. Injection Time TF ; α2: 0.1 (1, 2), 1 (3,
4), 10 (5, 6), d2: 10 (1, 3, 5), 20 µm(2,4,6)

noticeably higher at greater values of the diffusion module α2 than at lower

ones.

To investigate the impact of the diffusion module α2 on the effective concentra-

tion, biosensor responses were simulated in a wide range of values of α2. The

simulation results are presented in Fig. 2.9. The effective concentration Ĉ50 was

calculated at two values of the thickness d2 (10 and 20 µm) of the dialysis mem-

brane and two values of the injection time TF (1 and 10 s). At concrete values of

d2 and TF , the calculations were performed by changing the maximal enzymatic

rate Vmax from 75nM/s (α2 = 0.1) to 7.5 µM/s (α2 = 10) , while keeping all the

other parameters constant.

As one can see in Fig. 2.9, the effective concentration Ĉ50 is a monotonous

increasing function of α2. When the enzyme kinetics predominates in the

biosensor response (α2� 1) the concentration Ĉ50 almost constant function. In

the opposite case of the biosensor operation, if the biosensor response is under

diffusion control (α2� 1), the concentration Ĉ50 exponentially increases with an

increase in the diffusion module α2. A similar influence of the diffusion module

α2 on the linear part of the calibration curve was also noticed when modelling

the corresponding biosensor with no dialysis membrane [56].
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Figure 2.9: Effective Concentration Ĉ50 vs. Diffusion Module α2; d2: 10 (1, 3),
20 µm(2,4), TF : 1 (1, 2), 10 s (3, 4)

In real applications of biosensors, the diffusion module α2 can be controlled by

changing the maximal enzyme activity Vmax as well as the thickness d1 of the

enzyme layer. The maximal enzymatic rate Vmax is actually a product of two

parameters: the catalytic constant k2, introduced in (1.1), and the total concentra-

tion of the enzyme [32, 33]. Since, in actual applications it is usually impossible

to change a value of the constant k2, the maximal rate Vmax as well as the diffu-

sion module α2 might be changed by changing the enzyme concentration in the

enzyme layer.

2.2.11 Section summary

The mathematical model (2.18)-(2.25) of an amperometric biosensor, containing a

dialysis membrane and utilizing the flow injection analysis. can be successfully

used to investigate the kinetic peculiarities of the biosensor response. The

respective dimensionless mathematical model (2.29)-(2.35) can be applied in the

numerical investigation of the impact of model parameters on the biosensor

action and to optimize the biosensor configuration.

By increasing the thickness d2 of the dialysis membrane, the half-maximal

effective concentration Ĉ50 can be increased and the linear part of the biosensor
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calibration curve can be prolonged for several fold, see Fig. 2.7.

The half-maximal effective concentration Ĉ50 approximately exponentially in-

creases with a decrease in the injection time TF . The calibration curve of the

biosensor can be prolonged by a few orders of magnitude by decreasing the

injection time TF Fig. 2.8.

The half maximal effective concentration Ĉ50 is a monotonous increasing func-

tion of the diffusion module α2. When the enzyme kinetics distinctly predom-

inates in the response (α2� 1), Ĉ50 is approximately a constant function of α2,

while as α2� 1 the concentration Ĉ50 exponentially increases with an increase

in α2 Fig. 2.9.

2.3 Computational modelling and validation of a mul-

tilayer amperometric biosensor

Recently, an innovative approach in design of biosensors, based on carbon

nanotubes (CNT) layer deposited on the polycarbonate perforated membrane,

has been proposed [74] and computationally modelled [56]. Then, the approach

was expanded by replacing the CNT-based electrode with a simpler and cheaper

carbon paste electrode, combining with an additional lavsan membrane. The aim

of this work was to develop a mathematical model of an amperometric mediated

biosensor, based on an enzyme layer and two supporting porous membranes.

The proposed model is based on nonlinear non-stationary reaction-diffusion

equations. The model was described in a one-dimensional-in-space domain and

consists of four layers (compartments): a layer of enzyme solution entrapped

into electrode, a polyvinyl alcohol (PVA) membrane, a lavsan membrane and an

outer diffusion layer. The numerical simulation eas performed under transient

conditions, using the finite difference technique [15, 35, 41]. The mathematical
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model and the numerical solution were validated by experimental data. The

obtained agreement between the simulation results and the experimental data

was admissible at different concentrations of the substrate to be analyzed.

2.3.1 Mathematical model

Fig. 2.10 shows a schematic representation of a biosensor to be modelled. The

considered biosensor consists of several layers of different materials and sizes.

An electrode and a relatively thin layer of an enzyme (an enzyme membrane,

region L1), applied onto the electrode surface, are the basic parts of the biosensor.

The enzyme layer is covered by two permeable membranes: a polyvinyl alcohol

(PVA) membrane (region L2) and a lavsan membrane (L3). In the enzyme layer,

the enzymatic reaction as well as the mass transport by diffusion of the substrate,

mediator and reaction product take place. Due to the immobilization no mass

transport of the enzyme occurs. In two other membranes as well as in the

diffusion limiting region only the mass transport by diffusion takes place. The

model also involves a convective region (L4) where the concentrations of all the

species are maintained constant.

Figure 2.10: The principal structure of the modelled biosensor.
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In the enzyme layer we consider a two-stage enzyme-catalyzed reaction

Eox +S
k1

GGGGGGAEred +P, (2.37a)

Ered +Mox

k2
GGGGGGAEox +Mred, (2.37b)

where the substrate (S) combines with an enzyme (E) to form a product (P) in

the presence of the mediator (M) [56]. There Eox stands for the oxidised enzyme,

while Ered - for the reduced forms of the enzyme. Respectively, Mox and Mred

represent the oxidised and reduced forms of the mediator.

On the electrode surface the mediator is electrochemically re-oxidised and

electrons are released creating the current as an output result,

Mred− eGGGAMox. (2.38)

As it is common for the amperometric biosensors, the electrochemical reaction

(2.38) is assumed to be very fast [19, 33].

The substrate S to be analysed gets into the biosensor area from the buffer

solution through the porous lavsan and PVA membrane. The external diffusion

layer can be treated as the Nernst diffusion layer [41]. According to the Nernst

approach the layer of the thickness d4 remains unchanged with time. It is also

assumed that away from it the solution is a uniform in the concentration.

2.3.2 Governing equations

Due to the symmetrical geometry of the electrode and a homogeneous distribu-

tion of the immobilized enzyme in the enzyme layer of a uniform thickness, the
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mathematical model of the biosensor action can be defined in a one-dimensional-

in-space domain [15, 16, 35]. Coupling the enzyme catalyzed reaction (2.37) in

the enzyme layer with the mass transport by diffusion, described by Fick’s law,

leads to the following system of nonlinear reaction-diffusion equations:

∂Eox

∂ t
= k2Mox,1Ered− k1EoxS1, (2.39a)

∂Ered

∂ t
=−k2Mox,1Ered + k1EoxS1, (2.39b)

∂Mox,1

∂ t
= DMox,1∆Mox,1− k2Mox,1Ered,1, (2.39c)

∂Mred,1

∂ t
= DMred,1∆Mred,1 + k2Mox,1Ered,1, (2.39d)

∂S1

∂ t
= DS1∆S1− k1Eox,1S1, x ∈ (0,a1), t > 0, (2.39e)

where x and t denote for space and time, S1 is the concentration of the sub-

strate (S) in the enzyme layer, Eox, Ered , Mox,1 and Mred,1 stand for the molar

concentrations of the oxidised and reduced forms of the enzyme and mediator,

respectively, DS1 , DMox,1 , DMred,1 are the constant diffusion coefficients, and a1 = d1

is the thickness of the enzyme layer [15, 36, 37]. The coefficients k1 and k2 are

the rates of reactions (2.37a) and (2.37b), respectively. Since the product P has

no influence on the biosensor response, the dynamics of the concentration P is

not considered.

In the outer layer, only the mass transport by diffusion of both species takes

place (t > 0),

∂Mox,i

∂ t
= DMox,i∆Mox,i, (2.40a)

∂Mred,i

∂ t
= DMred,i∆Mred,i, (2.40b)

∂Si

∂ t
= DSi∆Si, x ∈ (ai−1,ai), i = 2,3,4, (2.40c)

where Si is the substrate concentration in the layer (ai−1,ai), Mox,i and Mred,i are
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the concentrations of the oxidised and reduced forms of the mediator, respect-

ively, DS1 , DMox,1 , DMred,1 are constant diffusion coefficients, i = 2,3,4.

2.3.3 Initial and boundary conditions

Let x = 0, x = a1, x = a2, x = a3, and x = a4, respectively, represent the following

boundaries: between the electrode and the enzyme layer, the enzyme layer and

the PVA membrane, the PVA membrane and the lavsan membrane, the lavsan

membrane and the external diffusion layer, the external diffusion layer and

the bulk solution. The biosensor operation starts when the substrate and the

mediator appear in the bulk solution (t = 0),

Mox,i(x,0) = 0, Mred,i(x,0) = 0,

Si(x,0) = 0, x ∈ [ai−1,ai], i = 2,3,
(2.41)

Mox,4(x,0) = 0, Mred,4(x,0) = 0,

S4(x,0) = 0, x ∈ [a3,a4),
(2.42)

Mox,4(a4,0) = M0, Mred,4(a4,0) = 0,

S4(a4,0) = S0,
(2.43)

Eox,0(x,0) = E0, Ered,0(x,0) = 0, x ∈ (0,a1), (2.44)

where S0 and M0 are concentrations of the substrate and the mediator in the

buffer solution, and E0 stands for the initial concentration of the enzyme.

Due to the electrode polarization, the concentration of the reduced mediator Mred
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on the electrode surface (x = 0) is permanently reduced to zero (t > 0) [15, 35],

Mred,1(0, t) = 0. (2.45)

The mediator re-oxidation reaction (2.38) is assumed to be so fast, that the whole

diffusive mediator Mred, touching the electrode surface (x = 0), is immediately

re-oxidised, i.e. Mred is converted to Mox (t > 0),

DMred,1

∂Mred,1

∂x

∣∣∣∣
x=0

=−DMox,1

∂Mox,1

∂x

∣∣∣∣
x=0

. (2.46)

The substrate concentration flux on the electrode surface equals zero because of

the substrate electro-inactivity (t > 0),

∂S1

∂x

∣∣∣∣
x=0

= 0. (2.47)

The outer diffusion layer (a3 < x < a4) is treated as the Nernst diffusion layer [41].

According to the Nernst approach, the layer of the thickness d4 = a4−a3 remains

unchanged with time, and away from it the solution is uniform in the concentra-

tion (t > 0),

Mox,4(a4, t) = M0, Mred,4(a4, t) = 0,

S4(a4, t) = S0.
(2.48)

The fluxes of the substrate and the mediator (in oxidised and reduced forms)

through the stagnant external layer are assumed to be equal to the corresponding

fluxes entering the surface of the enzyme membrane. Because of this, on the

boundary between adjacent regions with different diffusivities, we define the
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following matching conditions (t > 0, i = 1,2,3):

DSi

∂Si

∂x

∣∣∣∣
x=ai

= DSi+1

∂Si+1

∂x

∣∣∣∣
x=ai

,

Si(ai, t) = Si+1(ai, t),

(2.49)

DMox,i

∂Mox,i

∂x

∣∣∣∣
x=ai

= DMox,i+1

∂Mox,i+1

∂x

∣∣∣∣
x=ai

,

Mox,i(ai, t) = Mox,i+1(ai, t),

(2.50)

DMred,i

∂Mred,i

∂x

∣∣∣∣
x=ai

= DMred,i+1

∂Mred,i+1

∂x

∣∣∣∣
x=ai

,

Mred,i(ai, t) = Mred,i+1(ai, t).

(2.51)

2.3.4 Biosensor response

The anodic or cathodic current is measured as a result of a physical experiment.

The current is proportional to the gradient of the mediator concentration on the

electrode surface, i.e. on the border x = 0. The biosensor current I(t) at time t

can be obtained explicitly from Faraday’s and Fick’s laws [15],

I(t) = neFADMred,1

∂Mred,1

∂x

∣∣∣∣
x=0

(2.52)

= −neFADMox,1

∂Mox,1

∂x

∣∣∣∣
x=0

, (2.53)

where ne is the number of electrons involved in charge transfer, A is the area of

the electrode surface, and F is the Faraday constant.

We assume that system (2.39)–(2.51) achieves an equilibrium as t→ ∞,

I∞ = lim
t→∞

I(t). (2.54)
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where I∞ is the steady-state biosensor current. The steady-state current is the

main characteristic in commercial amperometric biosensors, acting in the batch

mode [19, 32, 33].

2.3.5 Dimensionless model

In order to extract the main governing parameters of the mathematical model,

thus reducing the number of model parameters in general, a dimensionless

model is often derived [15, 61, 67]. Replacement of the parameters is based on

parameter mappings eliminating model dimensional parameters. The following

table presents all the dimensionless parameters of the model:

Table 2.3: Model parameters

Dimensional Dimensionless

x, cm x̂ = x/d1
t, s t̂ = tDMox,1/d2

1
Eox, M Êox = Eox/E0
Ered , M Êred = Ered/E0
Si, M Ŝi = Si/S0
Mox,i, M M̂ox,i = Mox,i/M0
Mred,i, M M̂red,i = Mred,i/M0
DMox,i , cm2/s D̂Mox,i = DMox,i / DMox,1

DMred,i , cm2/s D̂Mred,i = DMred,i / DMox,1

DSi , cm2/s D̂Si = DSi / DMox,1

I, A Î = Id1/(neFADMred,1M0)

For the enzyme layer, reaction-diffusion equations (2.39) can be rewritten in the
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following dimensionless form (t̂ > 0, x̂ ∈ (0,1)):

∂ Êox

∂ t̂
= α2M̂ox,1Êred−α1ÊoxŜ1, (2.55a)

∂ Êred

∂ t̂
=−α2M̂ox,1Êred +α1ÊoxŜ1, (2.55b)

∂M̂ox,1

∂ t̂
= D̂Mox,1

∂ 2M̂ox,1

∂ x̂2 −α2M̂ox,1Êred,1, (2.55c)

∂M̂red,1

∂ t̂
= D̂Mred,1

∂ 2M̂red,1

∂ x̂2 +α2M̂ox,1Êred,1, (2.55d)

where all the unknown and model parameters are dimensionless. α1 and α2

are diffusion modules, also known as Damköhler numbers [15],

α1 =
k1E0d2

1
DMox,1

, (2.56a)

α2 =
k2E0d2

1
DMox,1

. (2.56b)

The diffusion module α j compares the rate of the enzyme reaction k jE0 with the

diffusion rate DMox,1/d2
1 , j = 1,2. It is rather well known that an ordinary enzyme

electrode acts under diffusion limitation when the diffusion modulus is much

higher than a unity [15, 36]. If the diffusion modulus is significantly smaller

than a unity then the enzyme kinetics predominates in the biosensor response.

Governing equations (2.40) are transformed into the following dimensionless

form (t̂ > 0, x̂ ∈ (ai−1/d1,ai/d1)):

∂M̂ox,i

∂ t̂
= D̂Mox,i

∂ 2M̂ox,i

∂ x̂2 , (2.57a)

∂M̂red,i

∂ t̂
= D̂Mred,i

∂ 2M̂red,i

∂ x̂2 , (2.57b)

∂ Ŝi

∂ t̂
= D̂Si

∂ 2Ŝi

∂ x̂2 , i = 2,3,4. (2.57c)
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The initial and boundary conditions can be transformed to a dimensionless form

easily.

2.3.6 Numerical simulation

Some practical experiments were done to produce biosensor data. Different

mediator values: M(1)
0 = 200 µM, M(2)

0 = 50 µM, M(3)
0 = 5 µM, the following para-

meters from physical experiments were given:

S(1)0 = 0.49mM, S(2)0 = 0.99mM, (2.58a)

S(3)0 = 1.99mM, S(4)0 = 4.98mM, (2.58b)

S(5)0 = 9.9mM, S(6)0 = 19.6mM (2.58c)

The initial boundary value problem (2.39)–(2.51) was solved numerically be-

cause of nonlinearity of governing equations (2.39) [15, 35, 41]. In solving the

biosensor model, an explicit finite difference scheme was developed applying

a uniform discrete grid. Due to the biosensor geometry and after carrying

out a number of experiments, some of the parameters were fixed and kept

constant [56, 74]:

DMox,1 = DMox,1 = DS1 = 3 µm2/s,

DMox,2 = DMox,2 = DS2 = 4.2 µm2/s,

DMox,3 = DMox,3 = DS3 = 3.75 µm2/s,

DMox,4 = DMox,4 = DS4 = 6 µm2/s,

k1 = 6.9×108s−1, k2 = 4×1010s−1,

d1 = d2 = 0.2mm, d3 = 1mm, d4 = 15mm,

ne = 2, A = 0.03cm2, E0 = 12 µM.

(2.59)
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The precise determination of values of some model parameters was impossible [74].

Due to that, the values of those parameters were determined by multiple simu-

lation of the biosensor response by fitting the simulation results to experimental

data.

2.3.7 Results and discussion

The physical experiments were carried out more than 100 seconds, while the

computer simulation was performed until a desired accuracy of the steadystate

current has been achieved, keeping the values of the model parameters, defined

in (2.59), taking different mediator and substrate values. Fig. 2.11 shows the

evolution of the biosensor current I, obtained experimentally (2, 4, 6, 8, 10 and

12) and numerically (1, 3, 5, 7, 9 and 11), the mediator concentration M0 =

200 µM,and and six concentrations of the substrate S0.
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Figure 2.11: The dynamics of the biosensor current I obtained experimentally (2,
4, 6, 8, 10 and 12) and numerically (1, 3, 5, 7, 9 and 11) at M(1)

0 = 200 µM and six
concentrations of the substrate S0: 0.49mM (5, 6), 0.99mM (7, 8), 1.99mM (1, 2),
4.98mM (9, 10), 9.9mM (11, 12), 19.6mM (3, 4)

.

As one can see the obtained agreement between the simulation results and the

experimental data is admissible at relatively low concentrations of the substrate,
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i.e. the computational model matches the physical experiments. The simulated

current tends to be stronger as compared to physical results when the concentra-

tion S0 is larger than 4.98mM. The same trend is seen in Fig. 2.12, where current

I obtained experimentally (curves 2, 4, 6, 7, 9 and 11) and numerically (curves 1,

3, 5, 8,10 and 12) at the value of the mediator concentration M0 = 50 µM.
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Figure 2.12: The dynamics of the biosensor current I obtained experimentally (2,
4, 6, 7, 9 and 11) and numerically (1, 3, 5, 8,10 and 12) at M(2)

0 = 50 µM and six
concentrations of the substrate S0: 0.49mM (11, 12), 0.99mM (9, 10), 1.99mM (7,
8), 4.98mM (5, 6), 9.9mM (3, 4), 19.6mM (1,2)

.
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Figure 2.13: The dynamics of the biosensor current I obtained experimentally (2,
4, 6, 8, 10 and 12) and numerically (1, 3, 5, 7, 9 and 11) at M(3)

0 = 5 µM and six
concentrations of the substrate S0: 0.49mM (5, 6), 0.99mM (7, 8), 1.99mM (1, 2),
4.98mM (9, 10), 9.9mM (11, 12), 19.6mM (3, 4)

.
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Fig. 2.13 illustrates further results taking even a lower concentration of the

mediator M(3)
0 = 5 µM and six concentrations of the substrate S0, including the

practical results (2, 4, 6, 8, 10 and 12) and the results that obtained by computer

model simulations (1, 3, 5, 7, 9 and 11).

As stated before, the results tend to differ more at greater concentrations of

substance. Here we can see that at a lower M(3)
0 value, the computer model yields

closer results to the experimental ones at both lower and higher concentrations

as compared to the values noticed in theprevious results, seen in Fig. 2.11

and Fig. 2.12. To get indication about the variability of the obtained results, a

relative error was calculated. In Fig. 2.14 and Fig. 2.15, the relative error of the

calculations at M(i)
0 , i = 1,2,3 is presented (note that fracture in Fig. 2.14b is due

to the absence of experimental data).

In Fig. 2.12 S0 = 1.99 mM (curves 7 and 8), the relative error in Fig. 2.14b decreases

from about 0.3 as t = 10 s to approximately 0 as t = 42 s, while with larger values

of t the error slightly increases. As S0 = 0.99 mM (Fig. 2.12 curves 9 and 10), the

relative error monotonously decreases from 1 at the initial stage of the biosensor

operation to 0.4, while as S0 = 0.49 mM (Fig. 2.12 curves 11 and 12), the relative

error slightly increases from 0.25 to 0.4 both match at the final one (t = 55 s).

In Fig. 2.15 we can see that as S0 = 1.99 mM, the relative error significantly

increases from 0 as t = 11 s to 0.7 at t = 20 s and monotonously decreases to

0.25 as t = 70 s. The curve of the relative error of other concentration curves

decreases as S0 = 9.9 mM, S0 = 4.98 mM, S0 = 0.99 mM, S0 = 0.49 mM (curves 2,

3, 5, 6, respectively), decreases to 0.2 - 0 and increase to 0.3 as t = 45 s. At the

higher concentration S0 = 19.6 mM, curve 1 monotonously decreases from t = 3 s

to t = 45 s

Rather large values of the relative error of the simulated responses indicate

that the physical experiments are really more complex than that defined by the
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(a) M(1)
0 = 200 µM
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Figure 2.14: The change of the relative error of computer modelling compared
to experimental data at specified M(i)

0 , i = 1,2 values and six concentrations of
the substrate S0: 0.49mM (6), 0.99mM (5), 1.99mM (4), 4.98mM (3), 9.9mM (2),
19.6mM (1)

mathematical model. Despite this inadequacy with the experiments, the model

seems to be suitable for investigating the kinetic peculiarities and optimizing

the configuration of the multilayer amperometric biosensor.

2.3.8 Section summary

Modelling of such a biosensor is complicated since we have to fit many para-

meters and to obtain an admissible agreement between the simulation results

and the experimental data. In this work, only six validation curves were used,
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Figure 2.15: The change of the relative error of computer modelling compared
to experimental data at M(3)

0 = 5 µM and six concentrations of the substrate S0:
0.49mM (6), 0.99mM (5), 1.99mM (4), 4.98mM (3), 9.9mM (2), 19.6mM (1)

.

but this number of physical experiments was enough to conclude that model

was not quite suitable for match experimental data in a wide range of substrate

concentrations. On the other hand, on the basis of the given relative error

analysis, the model was quite accurate at relatively low concentrations of the

substrate. It must be taken into consideration that experimental data can also be

inaccurate because of the external environment impact. The selected accuracy

of the steady-state current did not have a perceptible effect on the simulation

results.
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Chapter 3

Quantitative analysis of mixtures

3.1 Optimization-Based Evaluation of Concentrations

in modelling the Biosensor-Aided Measurement

We are interested in the establishment of the quantitative structure of a mixture,

using observations of its properties and the known properties of its compon-

ents. The problem is related to the measurement of concentrations of several

known substrates in a solution, and can also be formulated as a problem of the

evaluation of indirectly observable parameters; see e.g. [60, 75].

We assume that the structure of the function z(t,x) is known: z(t,x)=∑
k
j=1 y j(t,x j),

0 ≤ t ≤ tmax, x = (x1, . . . ,xk) ∈ X where functions y j(t,x j) are supposed to be

given. The parameter vector x should be evaluated using the observed values

wi = z(ti,x), 0≤ ti≤ tmax, i= 1, . . . ,n. A large variety of subproblems of the general

problem stated can be specified, and different methods can be appropriate for

the solution of concrete subproblems. We focus on the problem related to the

evaluation of concentrations of k substrates (components) in a mixture using a

recorded signal of the biosensor wi, i = 1, . . . ,n, and records of similar signals of
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the biosensor y j(t,x j) applied to the liquid that contains only a single known

substrate.

3.1.1 Mathematical model

The amperometric biosensor is an electrode with a relatively thin layer of

enzymes (multi-enzyme membrane) applied onto the electrode surface. The

enzyme-catalyzed reaction occurs in the enzyme layer of a biosensor. We con-

sider a mixture of substrates (components) participating in the biochemical

reaction network

Sj
Ej−→ Pj, j = 1, ...,k, (3.1)

where the substrate (Sj, combines with the enzyme (Ej) to issue the product

(Pj), j = 1,...,k), [32, 33]. The rate of growth of the amount of the product is

called the rate of reaction. No interaction between separate enzyme reactions is

considered.Reactions in the biosensor are described by Flick’s law which leads

to the following equations:

∂ s j

∂ t
= DSj

∂ 2s j

∂τ2 −
Vjs j

K j + s j
,

∂ p j

∂ t
= DPj

∂ 2 p j

∂τ2 +
Vjs j

K j + s j
,

0 < τ < d, 0 < t ≤ tmax, j = 1, ...,k, (3.2)

where s j(τ, t) and p j(τ, t) are the substrate and product concentrations in the

enzyme layer, DSj , DPj are substrate and product diffusion coefficients, respect-

ively, Vj is the maximal enzymatic rate attainable with that amount of enzyme,

completely saturated with the substrate Sj, j = 1, ...,k. K j(j =1, . . . , k) is the

Michaelis constant, t is time, tmax is the duration of the time interval in which

the biosensor is analyzed, d is the thickness of the enzyme layer. During the

substrates interaction with the biosensor the mass transport by diffusion takes
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place, and the biochemical reactions start when the substrates appear on the

enzyme layer because of the diffusion. Initial conditions (t=0) in the biosensor

model are defined as follows:

s j(τ,0) =

 0, 0≤ τ < d,

So · x j, τ = d,

p j(τ,0) = 0, 0≤ τ ≤ d, j = 1, ...,k, (3.3)

where So · x j is the concentration of substrate Sj, So = 10−8mol/cm3. During the

experiment the diffusion layer is constantly contiguous to the substrate solution;

this fact in the batch mode is expressed by the following boundary conditions

(0 < t ≤ tmax) :

∂ s j

∂τ

∣∣∣∣
τ=0

= 0, (3.4)

s j(d, t) = So · x j, t ≤ tmax, (3.5)

p j(0, t) = p j(d, t) = 0, j = 1, ...,k. (3.6)

In the injection mode the substrate appears in the bulk solutions only for short

period of time, known as injection time (TF ). Later the substrate concentration is

set to zero. Boundary conditions in the injection mode are defined as follows:

∂ s j

∂τ

∣∣∣∣
τ=0

= 0, (3.7)

s j(d, t) =

 So · x j, t ≤ TF

0, t > TF

, (3.8)

p j(0, t) = p j(d, t) = 0, j = 1, ...,k. (3.9)
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3.1.2 Biosensor response

The current, measured as a result of a physical experiment, is proportional to

the gradient of the reaction product concentration at the electrode surface, i.e.

on the border x = 0. The density y j(t,x j) of the biosensor current at time t can be

obtained explicitly by Faraday’s and Fick’s laws [15],

y j(t,x j) = neFDPj

∂ p j

∂τ

∣∣∣∣
τ=0

, j = 1, ...,k, (3.10)

where ne is the number of electrons involved in the charge transfer, and F is the

Faraday constant.

We assume that the system achieves the equilibrium as t→ ∞. The steady-state

current is the main characteristic in commercial amperometric biosensors, acting

in the batch mode [19, 32, 33]. The entire biosensor response z(t,x) is the sum of

individual biosensor currents y j(t,x j), j = 1, ...,k.

3.1.3 Generated data

The computer software was developed to generate the biosensor response

data in the batch and injection mode as well. In this work, the mathemat-

ical model, described above, was used to model real-world processes corres-

ponding to the following parameters: 10−10 mol/(cm3s)≤Vj ≤ 10−7 mol/(cm3s),

K j = 10−7 mol/cm3, 0≤ t ≤ 300 s, 0.01cm≤ d ≤ 0.03cm, and 0≤ So ·x j ≤ 64 ·10−8

mol/cm3, j = 1, . . . ,k, k = 4. The data for modelling are chosen the same as in

[60, 75] where further details can be found.

The mixture consists of different compounds, each of which is characterized by

its enzymatic rate Vj:
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Vj = 10−6−kmol/cm3s, j = 1, ...,k,k = 4 (3.11)

The composition of each analysed mixture consists of different compounds. A

variety of mixtures was obtained using the following values of S(k)0 :

0≤ So · x j ≤ 64 ·10−8mol/cm3, j = 1, . . . ,k,k = 4 (3.12)

S0 = 10−8mol/cm3, (3.13)

1≤ αm ≤ 64. (3.14)

Since as the amperometric biosensor simulations were carried out in two differ-

ent modes, we chose the time when substrate contacts biosensors as follows: in

the batch mode T = 300s and in the injection mode TF = 10s.

Using the parameters defined, in 3.12, simulations were performed only by

changing the values of parameters Vj, So ·x j and selecting the values of T and TF

according to the selected biosensor reaction mode.

I∗~m(t j) =
K

∑
k=1

I(k)mk(t j), ~m = (m1, ...,mK) mk = 1, ...,m, j = 1, ...,N (3.15)

(3.16)

It is supposed that a mixture contains up to 4 analytes, characterized by the

reaction rate Vj. The output of the biosensor (current ) y j is recorded at the

time moments t j = j, j = 1, . . . ,T . The output of the model also depends on
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the biosensor parameter d, which is measured in centimeters, and denotes the

thickness of the membrane.

3.1.4 Analysis of the available data

Biosensors are successfully applied to measure the concentration of a single

known substrate in the presented liquid. The signal of the biosensor is measured

in the steady state (i.e. for large enough t) for different specified concentrations,

and the signal values are calibrated in the units of concentration. A linear

dependency between the concentration and the value of the signal is desirable,

and for many important applications biosensors with linear characteristics are

available. When the presented liquid contains a mixture of substrates, the

concentration measurement problem is more complicated, since the linearity of

that characteristic for all the considered substrates in the range of concentrations

of interest is normally difficult (or even impossible) to achieve. The same value

of the signal in the steady state can be observed for different concentrations of

substrates. Therefore the measurement of the signal value at the steady state

only is not sufficient to establish concentrations for a mixture of components. We

intend here to extract the information on concentrations from the observations

over the transition process of a signal, i.e. during the time interval which starts

from the moment when the biosensor contacts with the liquid of interest, and

finishes at the steady state.

Let wi, i = 1, . . . ,n, be a sequence of recorded values of the biosensor signal at

discrete time moments; technically the electric current, defined by (3.10), is

recorded. Using the software implementation of the mathematical model of

reactions in the biosensor, the signal z(t,x) can be modelled in the form of a time

t ∈ T function, and of concentrations x = (x1, . . . ,xk), where T is the set of time

moments ti when the biosensor signal was recorded. If the measurements were
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precise, the model would be ideally adequate, and the substrate concentrations

in the model were the same as in the experiment, then wi and z(ti,x) would be

coincident. A natural idea is to evaluate unknown concentrations by fitting wi

with z(ti,x), ti ∈ T , i.e. to accept the minimizer in the following problem as an

estimate

x̃ = argmin
x∈X

f (W,Z(x)), (3.17)

where f (·) denotes a measure of difference between W = (w1, . . . ,wn) and Z(x) =

(z(t1,x), . . . ,z(tn,x)). The following expression could be considered, for example,

as a possible measure of difference

f2(W,Z(x)) =
n

∑
i=1

(wi− z(ti,x))2. (3.18)

The structure of minimization problem (3.17) corresponds to that of problems

of nonlinear regression [76]. However, the formulated minimization problem

is difficult to analyze, since the analytical properties of z(t,x) are not known;

moreover, computation of z(t,x) is time consuming. The most serious difficulty

here may be caused by the multimodality of the objective function. Another

potential challenge is non-differentiability of z(·,x). In the least favourable case,

where the functions z(t,x) can coalesce for some different x, any method (not only

optimization-based) for evaluating concentrations, using information on z(t,x),

would be challenged by the multiplicity of solutions. The problem should be

considered as ill-defined if, for considerably different x(1), x(2), (||x(1)−x(2)||> ∆),

z(·,x(1)) and z(·,x(2)) would either coincide or differ but insignificantly. Doe to

these properties, (3.17) is a difficult global optimization problem [77]. For the

general discussion on global optimization we refer to [78], and for the global

optimization methods in nonlinear regression we refer to [79–81].

To state the considered practical problem in the form of an optimization problem

that was numerically tractable, the establishment of favourable properties of the
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objective function is crucial. Because of difficulties in the application of analytical

methods to analyze the solutions of (3.2-3.10), in the present paper, the properties

of z(t,x) are investigated experimentally, using software implementation of the

mathematical model developed in [35]. The measurements of the biosensor

signal are replaced by those modelled. The errors of measurements are not taken

into account, and computations are assumed ideally precise. The investigation

of the influence of measurement errors and of the precision of computations

would follow, if the results, obtained in the idealized case, were promising.

By the replacement of experimental data by that generated according to the

mathematical model, we somewhat ignore the complexities of the original real-

world problem. But that seems inevitable, since such a replacement enables us

to generate large amounts of data with desirable characteristics which would be

impossible to collect experimentally because of the expensiveness and duration

of experiments.

3.2 Analysis of the properties of the mathematical

model

Let us start from a graphical illustration of signals of the biosensor modelled in

both measurement modes: batch and injection; we refer to [60, 75] for details.

The graphs of the biosensor signals in both modes are presented in Fig. 3.1 for

four substrates with the parameter Vj equal to 10−6− j, j = 1, . . . ,4, d = 0.02cm,

and of the maximum concentration (x j = 64) .

From the left graphs in Fig. 3.1 it is obvious that the evaluation of concentrations

in the batch mode is difficult (no matter which method would be used) because

of two reasons at least: the scale similarity between the signals (especially

corresponding to V1 = 10−7 and V2 = 10−8), and relatively small values of the
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Figure 3.1: Signals of the biosensor in the batch mode on the left, and in the
injection mode on the right. Each curve represents a measurement for a single
substrate with Vj = 10−6− j, and x j = 64, j = 1, . . . ,4.

biosensor signal corresponding to V4 = 10−10 (the ratio of the signal values

corresponding to V1 = 10−10 and V1 = 10−7 at t = 300 is equal to 8.8934 · 10−4).

The latter difficulty, caused by the potentially negligible influence of the fourth

substrate, can also challenge the evaluation of concentration in the injection

mode. However, the scale similarity in this case is not so evident.

The considered problem has been tackled in [60, 75] by approximating the

straightforward mapping

Φ : (w1, . . . ,wn)→ x. (3.19)

The approximation of Φ(·) was constructed as the inverse of the mapping x→

(w1, . . . ,wn). The latter was defined according to (3.2-3.10) for x ∈ C where C

was a four-dimensional cubic mesh based on the following set of values of the

components of x: C = {1,2,4,8,12,16,32,64}. The set of 4096 biosensor signals
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was considered, where the signals were modelled for the mixtures of four

substrates with the concentrations defined by x j ∈C. Let us analyze the batch

mode signals. If it were known a priori that x j ∈C, and were possible to measure

the values of the signal wi = z(ti,x) precisely, then x could be traced from the

observation of a single value w300. Such a conclusion is implied by the fact that

the difference between the values w300, corresponding to different x, is no less

than 2.1 ·10−13. However, to distinguish between these values, a super-precise

equipment is needed with the measurement error no larger than 6.8 ·10−6%. In

the case of measurement precision 0.1%, there are 374 indistinguishable pairs of

signals, i.e. there exist 374 pairs x(m) ∈C4, x(r) ∈C4 such that

max
i=1,...,300

|z(ti,x(m))− z(ti,x(r))|
min{z(t300,x(m)), z(t300,x(r))}

< 0.001. (3.20)

For example, two graphs of the signals, corresponding to the concentration vec-

tors x = (2,64,16,32) and x = (1,64,32,12), practically coalesce; see the left graph

of Fig. 3.2. However, if the signals are modelled for the same concentrations in

the injection mode, they are still distinguishable, as seen from the right graph of

Fig. 3.2.

The set of 4096 biosensor signals in [60, 75] was randomly bisected, and one part

was used to train an artificial neural network that was used as an approximant

of (3.19). The second part was used as an examination set. Several experiments

have been done with different model parameters, corresponding to the various

conditions of measurement, and some conclusions have been drawn about

the precision of evaluations of x for the data related to x ∈ C4. A qualitative

conclusion in [60, 75] can be briefly formulated as follows: concentrations can be

evaluated more precisely in the injection mode than in the batch mode, and the

precision increases with an increase d. The quantitative estimates obtained for

the data corresponding to C4, which is rather a rough discretization of X , are not
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Figure 3.2: Two signals, modelled in the batch mode, coalesce, but can be
vaguely distinguished if modelled in the injection mode.

necessarily applicable to the biosensor signals corresponding to arbitrary x ∈ X .

It would be of interest to see whether the evaluations in [60, 75] failed for the

data similar to that illustrated in Fig. 3.2 however the authors of these papers

have not commented the cases of failures. A disadvantage of the artificial neural

network-based method is in the implicit tackling of the difficulties mentioned

above, since the optimization algorithm is hidden in the training procedure.

The analysis of biosensor signals, corresponding to the rough discretization of X ,

indicates that the problem considered is likely to be ill-defined. Another serious

difficulty is caused by the time-consuming computations, needed to model a

biosensor signal.
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3.3 Statement of the relevant optimization problem

The minimization of f (W,Z(x)), where Z(x) were modelled at every call of the

subroutine of computation of an objective function value, would be very time-

consuming as indicated above. Therefore the computation of y(·) is replaced by

the computation of the interpolator ỹ(·), where the value ỹ j(ti,x j) is obtained by

interpolating of values y j(ti,k), k = 1,2, . . . ,64 using a cubic spline. The values

of ỹ(·) are computed by a subroutine which uses the coefficients of splines eval-

uated in advance. For the latter evaluation, a set of 264 biosensor signals was

modelled: y j(ti,k), j ∈ {1,2,3,4}, ti ∈ T, k = 1,2, . . . ,64. The approximation preci-

sion has been evaluated statistically: 1000 vectors x were generated randomly

with a uniform distribution over X and a relative error of approximating y(·)

by ỹ(·) was computed similarly as (3.20). The mean value of the relative error

(computed as by a formula similar to (3.20)) was equal to 6.1158 ·10−7, and its

standard deviation was equal to 5.3274 ·10−6.

The quadratic measure of difference (3.18) seems to be suited for application of

the gradient local descent methods. However, some experimentation has shown

that for such an objective function the well recognized local descent algorithm

from the MATLAB Optimization toolbox terminates not necessarily close to

the solution. Since in these experiments the first-order necessary optimality

conditions have been satisfied with a high precision, the objective function

should be recognized as multimodal. The results of some experiments with local

non-differentiable minimization algorithms for the objective function, defined

as the measure of difference corresponding to the Chebyshev norm, were also

not promising. Therefore, the global optimization method is needed for the

problem considered [82].

The minimization problem (3.17-3.18), where the summands of z(·,x) are approx-

imated by cubic polynomials, seems favorable to apply interval arithmetic-based
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global optimization methods. However, the solution time for this type of prob-

lems is exceedingly high as shown in [81].

In this research, we do have no intention to select the global optimization al-

gorithm most suitable for the minimization problem considered. Our goal is to

investigate the suitability of the optimization-based approach to evaluate the

concentrations of components of a mixture, and to establish the properties of

the optimization problem that could be important in a further real-world imple-

mentation in the form of an embedded system. The experimental investigation

of properties of the objective function has shown that its hypersurface can be

characterized as a deep valley with a flat bottom, where first-order optimality

conditions are fulfilled with rather a high precision. Therefore, a simple combin-

ation of the global random search with a local descent seems promising to find

a point at the bottom of the valley with the objective function value, close to the

global minimum.

A global search algorithm was developed taking into account the experimentally

established features of z(t,x). The first summand y1(t,κ) is linear with respect

to the concentration variable κ during the entire transition process; see the left

side of Fig. 3.3 where 64 graphs of y1(t,κ)/κ, κ = 1, . . . ,64 are presented which,

however, are all coincident. The fourth summand y4(t,κ) is highly nonlinear

with respect to κ , and the range of y4(t,κ) is a small fraction of the range of

y1(t,κ); see the right side of Fig. 3.3. The linearity of y1(t,κ) can be exploited to

simplify the minimization of (3.18):
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Figure 3.3: Graphs of normalized biosensor signals y j(t,κ)/κ ( j = 1 on the left
side, and j = 4 on the right side) drawn for κ = 1, . . . ,64, t = 0, . . . ,300. These
graphs show that y1(t,κ),, is linear with respect to the concentration κ during
the whole transition time interval, while the signal y4(t,κ) is nonlinear

argmin
x1

f2(W, Z̃(x)) =

argmin
x1

300

∑
i=1

(
wi− x1ỹ1(ti,1)−

4

∑
j=2

ỹ j(ti,x j)

)2

=

∑
300
i=1

(
wi−∑

4
j=2 ỹ j(ti,x j)

)
· ỹ1(ti,1)

∑
300
i=1 ỹ2

1(ti,1)
. (3.21)

Replacing x1 by its optimal value x1opt , we reduce the four-dimensional optim-

ization problem to a three-dimensional one. The global search was performed

by generating Ng random vectors (x2,x3,x4) with a uniform distribution over

the three-dimensional feasible region, and selecting g best points (x1opt ,x2,x3,x4).

The latter were used as the starting points for the local descent. As seen in

Fig. 3.3, the influence of y4(t,κ) on the objective function values can be relat-
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ively weak, therefore termination conditions of the local descent should be

set sufficient to guarantee the computation of the local minimizer with a high

accuracy.

3.4 Numerical experiments

To investigate the precision of evaluation of concentrations, the biosensor signals

were modelled under the conditions discussed above. The mixture contained

four substrates characterized by Vj = 10−6− j, j ∈ {1,2,3,4}. The concentration

of each substrate could vary in the interval 1≤ x j ≤ 64, and for each experiment

below 1000 random vectors x with a uniform distribution over that region were

generated to model the biosensor signals.

The first experiment was done to investigate the precision of the concentration

evaluation in the batch mode. The global search was performed with the follow-

ing parameters of the algorithm: Ng = 1000, g = 5. For the local minimization,

the MATLAB subroutine f mincon was used with a user supplied gradient. The

termination condition was defined by tolerances TolFun = 10−4 for the values of

objective function (3.18), multiplied by 107 (to accommodate the scale of the func-

tion values and the scale of the parameters of the algorithm), and by TolX = 0.005.

The results are presented in Table 3.1, where ∆x j denotes the difference between

the actual x j and its evaluated value, and fmin denotes a relative approximation

error computed as in (3.20). The precision of the concentration evaluation of

the first two substrates is quite good, while the evaluation of the accuracy of

the last two substrates is insufficient. The low accuracy, obtained for the latter

two substrates, can be explained by their insignificant input in to the biosensor

signal. For the discussion about the significance of inputs of the considered

substrates to the signal of a biosensor we refer to Section 3. This diversity in

precision is also well illustrated by the following example: a relative discrepancy
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Table 3.1: Precision of the evaluation of concentrations in the batch mode for the
biosensor with the layer d = 0.02cm wide

fmin ∆x1 ∆x2 ∆x3 ∆x4
mean 2.5520 ·10−4 0.6304 0.5139 9.3593 19.4844
std 4.0538 ·10−4 0.9354 0.6951 15.1093 15.3593

Table 3.2: Precision of the evaluation of concentrations in the injection mode for
the biosensor with the layer d = 0.02cm wide

fmin ∆x1 ∆x2 ∆x3 ∆x4
mean 2.8495 ·10−5 0.0041 0.0108 0.0408 0.0464
std 3.1573 ·10−4 0.0388 0.1663 0.8404 0.9755

between two signals, corresponding to x = (44.5764,62.3342,16.0006,38.7044)

and to x = 43.0724,63.1362,35.9738,15.8452), computed according to (3.20) is

negligible since it is equal to 3.7361 ·10−4.

The second experiment was performed withs the same conditions as above, but

in the injection measurement mode. The results, presented in Table 3.2 show

that the accuracy of this evaluation method is quite acceptable in practice. A

similar conclusion can be drawn from the results of the experiments, presented

in Table 3.3, where the constructive parameter of the biosensor d is varied around

the basic value.

The optimization-based evaluation of concentrations under general conditions of

Table 3.3: Precision of evaluation of concentrations in the injection mode for the
biosensors with the layer d = 0.01cm width and d = 0.03cm wide

d = 0.01
fmin ∆x1 ∆x2 ∆x3 ∆x4

mean 6.2751 ·10−5 0.0024 0.0553 0.4929 0.4498
std 2.2811 ·10−4 0.0123 0.2489 2.0472 1.8462

d = 0.03
fmin ∆x1 ∆x2 ∆x3 ∆x4

mean 1.8358 ·10−4 0.0945 0.1133 0.1106 0.3823
std 6.2409 ·10−4 0.3029 0.3506 0.3945 1.2043
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the modelled experiment yields the results of acceptable to the praxis precision.

Note that a very simple optimization algorithm has been used. The optimization

precision could be enhanced, but it does not seem reasonable because of an

inevitably restricted precision of the modelling algorithm. From the point of

view of real-world applications, a further investigation of the problem is urgent,

taking into account the interaction between separate enzyme reactions, and

measurement errors. Optimization in the presence of noise is considerably

more difficult than that without noise. On the other hand, in practical problems

optimization can possibly be facilitated by narrower intervals of the model

parameters (which define the measurement conditions) than that in the present

paper. Selection of the most suitable optimization algorithm is of especial

interest taking into account the requirements of the potential implementation in

an embedded measurement system.

3.5 Further development of the biosensor model

The discussed model, however is developed further since the interaction between

substances was not evaluated in the first research part. This section involves

evaluation of interaction between substrates. The model as well as software

tool were developed to support this model and output of the results for further

analysis.

3.5.1 Mathematical model

We consider a mono-enzyme multi-biosensor (many substrates) using the Michaelis-

Menten kinetics [33, 71, 83],

E+Si
k1i


k−1i

ESi
k2i−→ E+Pi, i = 1, . . . ,k, (3.22)

90



Quantitative analysis of mixtures

where E denotes the enzyme, Si is the substrate, ESi stands for the complex of

enzyme and substrate, Pi is the reaction product, kinetic constants k1i , k−1i and

k2i correspond to the respective reactions: the enzyme substrate interaction, the

reverse enzyme substrate decomposition and the product formation, and k is

the number of substrates to be analyzed.

When substrates S1, . . . , Sk (k > 1) react with a single enzyme E without forming

any multi-fold complex that contains two or more substrates, and the substrates

do not combine directly with each other, then in mixtures of S1, . . . , Sk each

substrate acts as a competitive inhibitor of the others [32, 84].

The biosensor to be modelled is intended to analyze a mixture of k substrates

(compounds). Practical mono-enzyme analytical systems are usually limited to

determining only a few (often to two) substrates [83].

The reactions in the network (1.1) are usually of different rates [32, 33]. A large

difference of timescales in the reactions creates difficulties for simulating the

temporal evolution of the network and for understanding the basic principles

of the biosensor operation. To sidestep these problems, the quasi–steady–state

approach (QSSA) is often applied [34, 85, 86]. According to QSSA, the concentra-

tion of the intermediate complex does not change on the time-scale of product

formation.

The amperometric biosensor is treated as an electrode and a relatively thin layer

of an enzyme (enzyme membrane) applied onto the probe surface. The biosensor

model involves two regions: the enzyme layer, where biochemical reactions (1.1)

as well as the mass transport by diffusion take place, and a convective region

where the concentrations of the substrates are maintained constant. Assuming a

symmetrical geometry of the electrode and a homogeneous distribution of the

immobilized enzyme in the enzyme layer of a uniform thickness, the mathemat-

ical model of the biosensor action can be defined in a one–dimensional–in–space
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domain [15, 35].

3.5.2 Governing equations

Application of QSSA and coupling the enzyme-catalyzed reactions (1.1) in the

enzyme layer with the one–dimensional–in–space diffusion, described by Fick’s

law, lead to the following system of equations of the reaction-diffusion type

(t > 0):

∂Si

∂ t
= DSi

∂ 2Si

∂x2 −
VmaxiSi

KMi

(
1+∑

k
j=1 S j/KM j

) ,
∂Pi

∂ t
= DPi

∂ 2Pi

∂x2 +
VmaxiSi

KMi

(
1+∑

k
j=1 S j/KM j

) , i = 1, . . . ,k, 0 < x < d,
(3.23)

where x and t stand for space and time, respectively, Si(x, t) and Pi(x, t) cor-

respond to the molar concentrations of the substrate Si and the product Pi,

respectively, Vmaxi is the maximal enzymatic rate attainable with that amount

of the enzyme when the enzyme is fully saturated with the substrate Si, KMi

is the Michaelis constant, d is the thickness of enzyme layer, DSi and DPi are

the diffusion coefficients, Vmaxi = k2iE0, KMi = (k−1i + k2i)/k1i , and E0 is the total

concentration of the enzyme, i = 1, . . . ,k.

3.5.3 Initial and boundary conditions

Let x = 0 represent an electrode surface, and x = d correspond to the boundary

between the enzyme layer and the bulk solution. The biosensor operation starts

when all the substrates (S1, . . . ,Sk) appear in the bulk solution (t = 0),

Si(x,0) = 0, Pi(x,0) = 0, 0≤ x < d ,

Si(d,0) = S0i, Pi(d,0) = 0 , i = 1, . . . ,k ,
(3.24)
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where S0i is the concentration of the substrate Si in the bulk solution, i = 1, . . . ,k.

Due to the electrode polarization the concentrations of the reaction products

(P1, . . . ,Pk) on the electrode surface (x = 0) are permanently reduced to zero

(t > 0) [15],

Pi(0, t) = 0 , i = 1, . . . ,k . (3.25)

Since the substrates are not ionized, fluxes of their concentrations on the elec-

trode surface were assumed to be zero (t > 0),

DSi

∂Si

∂x

∣∣∣∣
x=0

= 0 , i = 1, . . . ,k . (3.26)

The concentrations of the substrates and the products in the bulk solution remain

constant during the biosensor operation,

Si(d, t) = S0i , Pi(d, t) = 0 , i = 1, . . . ,k . (3.27)

3.5.4 Biosensor response

The biosensor current density I(t) at time t was expressed explicitly from the

Faraday and the Fick laws [32],

Ii(t) = niFDPi

∂Pi

∂x

∣∣∣∣
x=0

, i = 1, . . . ,k, (3.28a)

I(t) =
k

∑
i=1

Ii(t), (3.28b)

where Ii(t) is the density of the Faradaic current, generated by the electrochem-

ical reaction that involves oxidation or reduction of the product Pi, ni is the

number of electrons involved in a charge transfer at the electrode surface in the

corresponding reaction, F is the Faraday constant.
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We assume that the system approaches a steady–state as t→ ∞,

I∞ = lim
t→∞

I(t) , (3.29)

where I∞ is the density of the steady–state biosensor current.

3.6 Section summary

In the mathematical modelling setting the optimization-based approach is effi-

cient in evaluating concentrations of several substrates in a liquid, where the

available data are modelled as an amperometric signal of a biosensor. An urgent

problem of further research is extension of the obtained results to the case where

the interaction between separate enzyme reactions is taken into account as well

as complications caused by collecting data of real-world experiments.

The proposed optimization–based method of the quantitative analysis of bi-

osensor response is appropriate for the evaluation of the concentrations of

the substrates by single enzyme amperometric biosensors using the Michaelis-

Menten kinetics 1.1.

A computer simulation, based on the mathematical model (3.23)–(3.27), can be

used to generate pseudo–experimental biosensor responses to mixtures of sub-

strates. The generated data can be used to validate a method of the quantitative

analysis as well as to calibrate the analytical system.
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Different amperometric biosensors were modelled by non-stationary reaction-

diffusion equations, containing nonlinear terms, related to the kinetics of en-

zymatic reactions. Mathematical models were approximated by using finite

difference computational schemes. A number of computer experiments were

carried out, which leads us to the following conclusions:

• The dimensionless mathematical model, for selected biosensors, is appro-

priate to be used as a framework for numerical investigation of the impact

of model parameters on the biosensor action and to optimize the biosensor

configuration.

• The computational model of an amperometric mediated biosensor, based

on an enzyme layer and two supporting porous membranes, are appropri-

ate to investigate the kinetic peculiarities of the biosensor. The comparison

of experimental and simulated results have showed that the model most

accurately describes the biosensor operation at low concentrations of the

substrate.

• By increasing the thickness of the external diffusion layer or by decreasing

the substrate diffusivity in this layer (by decreasing the Biot number Bi),

the calibration curve of the biosensor can be prolonged by a few orders of

magnitude. At relatively large values of the Biot number, the half maximal

effective concentration C50 is almost insensitive to changes in Bi
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• The half-maximal effective concentration C50 exponentially increases with

a decrease in the injection time TF . The calibration curve of the biosensor,

acting in the injection mode, can be prolonged by a few orders of mag-

nitude only by decreasing the injection time TF .

• In the mathematical modelling setting, the optimization-based approach is

efficient to evaluate concentrations of several substrates in a liquid where

the available data is modelled as an amperometric signal of a biosensor.
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