
VILNIUS UNIVERSITY

Žilvinas Vaira

INVESTIGATION, IMPROVEMENT AND DEVELOPMENT OF ASPECT-

ORIENTED DESIGN PATTERNS

Doctoral dissertation

Technological sciences, informatics engineering (07 T)

Vilnius, 2012

Dissertation has been prepared during the period 2007 – 2011 at the

Vilnius University.

Scientific supervisor:

Prof Dr Albertas Čaplinskas (Vilnius University, Technological Sciences,

Informatics Engineering – 07 T).

VILNIAUS UNIVERSITETAS

Žilvinas Vaira

ASPEKTINIO PROJEKTAVIMO ŠABLONŲ TYRIMAS, TOBULINIMAS

IR KŪRIMAS

Daktaro disertacija

Technologijos mokslai, informatikos inžinerija (07 T)

Vilnius, 2012

Disertacija rengta 2007 – 2011 metais Vilniaus universitete.

Mokslinis vadovas:

prof. dr. Albertas Čaplinskas (Vilniaus universitetas, technologijos

mokslai, informatikos inžinerija – 07 T).

Acknowledgments
I would like to express my thanks to all the people who have been in one way

or another involved in the preparation of this thesis.

First of all, I would like to thank my scientific supervisor Prof Dr Albertas

Čaplinskas for support and guidance throughout the process of this dissertation

research. He managed to find the time and energy to read probably every draft

of this thesis and untangle “crosscutting concerns” of my scientific writing. I

am very grateful to him for pushing further my ideas and significantly

increasing the quality of my work. I am also grateful for the patience and

constructive feedback from other members of staff in the Software Engineering

Department of Institute of Mathematics and Informatics.

I also wish to thank Software Engineering Research Group headed by Prof

Jacques Pasquier for providing SimJ framework for experimental application.

Personal thanks to Prof Jacques Pasquier, Dr Patrik Fuhrer and Minh Tuan

Nguyen for inspiration and guidance of the initial research that finally evolved

into this dissertation.

I greatly appreciate the time and effort of committee members and especially

the reviewers Prof Dr Rimantas Butleris and Prof Dr Saulius Gudas who read

and commented on an initial version of this thesis.

I would also like to thank Prof Dr Vitalij Denisov for the support and

assistance, Dr Dalia Baziukė for setting an example I can follow and other

members of staff in the Department of Informatics in Klaipėda University.

Special thanks to Kristina Pociuvienė, who helped me with the proofread of

my papers and this thesis.

Finally, I wish to thank my parents for all of their support and tolerance during

this challenging period of my life. I also want to thank my brothers and all

friends for helping me to relax. I would like to particularly thank my girlfriend

Laura for her friendship and love during the writing of my thesis and especially

when I had little time for her.

 v

Abstract
Software systems are permanently changed in order to meet new requirements

and to adapt them to permanently changing technology. Design modularity

decouples design concerns that probably can be changed and in this way

facilitates further system changes. Unfortunately, some design concerns, called

crosscutting concerns, cannot be modularized using traditional modularization

methods and techniques. Modularization of crosscutting concerns is the

research subject of the new emerging software engineering paradigm, aspect-

oriented analysis and design. However, this paradigm is not mature enough yet.

In particular, it is still unknown which design patterns developed in the object-

oriented paradigm can be adapted for aspect-oriented paradigm and how to

transform them from one paradigm to another in a systematic way. Despite the

fact that some attempts have been made to solve this problem, the proposed

solutions just only eliminate crosscutting concerns in the investigated object-

oriented design patterns, but do not generate pure aspect-oriented patterns. In

addition, these solutions are ad hoc ones. No systematic procedure has been

proposed for this aim so far. One more problem is the application of pure

aspect-oriented patterns in the design of aspect-oriented domain frameworks.

Although such patterns allow to use abstract aspects in the design of hot spots

as well as to eliminate additional crosscutting concerns in the frameworks, the

properties of final result – complexity of program code, its performance, etc. –

have not been investigated properly yet. The thesis defines the class of object-

oriented design patterns which can be transformed into pure aspect-oriented

ones, proposes a systematic procedure for such transformation and investigates

properties of resulting patterns from the viewpoint of their applicability in the

design of aspect-oriented domain frameworks. This is the main contribution of

the research work. The case study methodology has been used for the

experimental research of the properties of aspect-oriented domain frameworks

designed or redesigned using the proposed approach. Two aspect-oriented

domain frameworks – simulation framework SimJ and web application

 vi

framework SimpleW – have been investigated. The first one has been

redesigned from object-oriented framework developed by Software

Engineering Group at Fribourg University and the second one has been

developed from the scratch. The experimental research has demonstrated that

the proposed approach can be successfully applied to real-word applications,

facilitates the design of aspect-oriented frameworks and improves their quality.

 vii

Contents
Introduction... 24

Research Context and Challenges... 24

Problem Statement .. 25

Motivation ... 26

Aims and Objectives of the Research ... 27

Research Questions and Hypotheses... 27

Research Design and Research Methods .. 28

Summary of Research Results .. 33

Contributions of the Dissertation .. 33

Approbation... 34

Outline of the Dissertation .. 35

Chapter 1 Preliminaries .. 37

1.1. Design Patterns .. 37

1.2. Aspect-Oriented Software Engineering Paradigm............................. 40

1.3. Frameworks.. 46

Chapter 2 State of the Art ... 50

2.1. Separation of concerns and AOP ... 50

2.2. Aspectization of Object-Oriented Design Patterns 52

2.3. Compositional Properties of Aspect-Oriented Design Patterns......... 56

2.3.1. Analysis of the related works ... 56

2.3.2. Experimental investigation of Separation of Concerns in the

Aspectized Design Pattern Application... 58

2.4. Paradigm-Specific Aspect-Oriented Design Patterns 60

2.5. Aspect-Oriented Framework Design ... 63

2.6. Summary .. 65

Chapter 3 Development of the methods and procedures for transformation of

GoF design patterns into pure AO design patterns... 68

3.1. Classification of Object-Oriented and Aspect-Oriented Design

Problem Solutions ... 68

 viii

3.2. Aspect-Oriented Solutions of Paradigm Independent Design

Problems.. 74

3.3. Investigation of the Applicability of GoF Patterns to Design the

Aspects .. 76

3.4. Summary .. 92

Chapter 4 Empirical Evaluation of Application of Transformed Design

Patterns.. 94

4.1. Evaluation of the Hypotheses Using Case Studies 94

4.2. A Case Study 1: Implementation of Pure Aspect-Oriented Factory

Method Design Pattern.. 98

4.2.1. Research Methodology... 98

4.2.2. Research settings .. 99

4.2.3. Observations and findings .. 100

4.3. A Case Study 2: Application of Pure Aspect-Oriented Design Patterns

in the Redesign of Aspect-Oriented Frameworks....................................... 105

4.3.1. Research Methodology... 105

4.3.2. Research Settings.. 106

4.3.3. Observations and Findings ... 107

4.3.4. Measurements and Data Analysis .. 110

4.4. Application of Pure Aspect-Oriented Design Patterns in the

Development of Aspect-Oriented Frameworks: A Case Study 3 112

4.4.1. Research Methodology... 112

4.4.2. Research Settings.. 113

4.4.3. Observations and Findings ... 114

4.4.4. Measurements and Data Analysis .. 124

4.5. Hypotheses evaluation ... 125

4.6. Summary .. 126

Chapter 5 Discussion of Issues and Limitations... 129

5.1. Open problems ... 130

Conclusions... 132

References... 134

 ix

List of Publications ... 145

APPENDICES .. 146

APPENDIX A AspectJ language preliminaries 146

APPENDIX B Remaining List of Transformed GoFAO Design Patterns 148

APPENDIX C Graphical diagram illustrating the classification presented

in Table 2 166

APPENDIX D SimpleW Logging concern after second development

iteration 167

APPENDIX E SimpleW Logging concern after third development

 iteration 168

 x

List of Figures
Fig. 1 Crosscutting concern .. 44

Fig. 2 Concern crosscutting handled by aspect .. 45

Fig. 3 A graphical diagram illustrating the classification presented in Table 2

(bigger diagram can be found in APPENDIX C) ... 71

Fig. 4 Redesign technique... 75

Fig. 5 Adapter design pattern (OO solution) .. 78

Fig. 6 Adapter design pattern (AO solution) .. 79

Fig. 7. The idea behind Aspect adapter .. 79

Fig. 8 Application of the AO design pattern Adapter....................................... 81

Fig. 9. Bridge design pattern (OO solution) ... 82

Fig. 10 Bridge Design pattern (AO solution) ... 83

Fig. 11 The idea behind Aspect Bridge .. 84

Fig. 12 Factory Method design pattern (OO solution) 85

Fig. 13 Factory Method design pattern (AO solution) 86

Fig. 14 The idea behind Aspect Factory Method ... 87

Fig. 15 Application of the AO Factory Method design pattern........................ 88

Fig. 16. Chain of Responsibility design pattern (OO solution) 89

Fig. 17 Chain of Responsibility design pattern (AO solution) 90

Fig. 18 The idea behind Aspect Chain of Responsibility 91

Fig. 19 Application of the AO Chain of Responsibility design pattern 91

Fig. 20 Factory Method design pattern (OO solution) 101

Fig. 21 Factory Method design pattern (AO solution) 102

Fig. 22 Application of the AO Factory Method design pattern...................... 104

Fig. 23 SimJ Logger concern after first development iteration...................... 108

Fig. 24 SimJ Logger concern after second development iteration 109

Fig. 25 static quantitative data of measurements (SimJ framework) 111

Fig. 26 testing data of measurements (SimJ framework) 111

Fig. 27 SimpleW Context Loader concern after first development iteration . 115

 xi

Fig. 28 SimpleW Context Loader concern after second development iteration

... 116

Fig. 29 SimpleW Context Loader concern after third development iteration 116

Fig. 30 SimpleW Breadcrumb Navigation concern after first development

iteration ... 117

Fig. 31 SimpleW Breadcrumb Navigation concern after second development

iteration ... 118

Fig. 32 SimpleW Breadcrumb Navigation concern after third development

iteration ... 119

Fig. 33 SimpleW Security Filtering concern after first development iteration

... 120

Fig. 34 SimpleW Security Filtering concern after second development iteration

... 120

Fig. 35 SimpleW Logging concern after first development iteration............. 121

Fig. 36 SimpleW Logging concern after second development iteration (full

version can be found in APPENDIX D)... 122

Fig. 37 SimpleW Logging concern after third development iteration (full

version can be found in APPENDIX E) ... 123

Fig. 38 static quantitative data of measurements (SimpleW framework) 124

Fig. 39 testing data of measurements (SimpleW framework) 125

Fig. 40 Abstract Factory design pattern (AO solution) 149

Fig. 41 Builder design pattern (AO solution) ... 150

Fig. 42 Command design pattern (AO solution) .. 151

Fig. 43 Decorator design pattern (AO solution) ... 152

Fig. 44 Façade design pattern (AO solution).. 153

Fig. 45 Flyweight design pattern (AO solution)... 154

Fig. 46 Interpreter design pattern (AO solution) .. 155

Fig. 47 Iterator design pattern (AO solution) ... 156

Fig. 48 Mediator design pattern (AO solution) .. 157

Fig. 49 Memento design pattern (AO solution).. 158

Fig. 50 Observer design pattern (AO solution) .. 159

 xii

Fig. 51 Proxy design pattern (AO solution).. 160

Fig. 52 State design pattern (AO solution) ... 161

Fig. 53 Strategy design pattern (AO solution).. 162

Fig. 54 Template Method design pattern (AO solution) 163

Fig. 55 Visitor design pattern (AO solution) .. 164

 xiii

List of Tables
Table 1 Results obtained using two different implementations 60

Table 2 The classification of OO and AO design problem solutions............... 70

Table 3 The research methodology of Case Study 1 .. 99

Table 4 The research methodology... 106

Table 5 The research methodology... 112

 xiv

List of Examples
Example 1 Java idiom for ending a program.. 39

Example 2 AspectJ code of the Adapter design pattern 80

Example 3 AspectJ code of the Bridge design pattern 84

Example 4 AspectJ code of the Factory method design pattern....................... 87

Example 5 General pointcut syntax.. 146

Example 6 General advice syntax... 147

Example 7 General aspect syntax ... 147

 xv

Glossary

Adaptive programming – adaptive programs likewise object-oriented
programs consist of a structural definition and behavioural definition
but are different in a way that class structures are described only
partially, giving a number of constraints that must be satisfied and that
behaviour is not implemented exhaustively (Lieberherr et al., 1994).

Advice – the construct that is responsible for taking actions in the places
defined as joint points.

Application framework – a framework covering a functionality that can be
applied to different domains. According to (Johnson, 1988), an
application framework is a reusable „semi-complete” application.

Architectural pattern – a high-level structure that contains a set of predefined
sub-systems defines the responsibilities of each sub-system and details
the relationships between sub-systems (Buschmann, 1996).

Aspect – represents crosscutting concern in the form of one or several aspects
of a concrete concern.

Aspect weaving – the process of aspect compilation, named due to similarity to
the real-life weaving process.

Aspectization – the redefinition of OO design patterns in terms of AO
paradigm.

Aspectized AO design pattern – implementation of the OO design pattern in
some OO language, for example in Java, is directly replaced by the
analogous code written in some AO language, for example, in AspectJ
(Hannemann, Kiczales 2002).

Base program – a program developed by the programming language of the
paradigm on top of which aspect-oriented paradigm is used and which
complements base program paradigm by providing new type of
modularity.

Black-box framework – in such frameworks composition is the predominant
technique used to design hot spots. A black-box framework does not
require a deep understanding of the framework’s implementation
because the behaviour is extended by composing objects together and
delegating behaviour between objects.

Case study – the case study is an empirical research method that aims at
investigating some phenomena in his context (Runeson, Höst, 2009).

 xvi

Class – in object-oriented programming is a construct that describes a type of
object.

Class library – set of predefined dynamically loadable classes used to develop
applications.

Code skeleton – describes the overall architecture of an application, that is, its
basic components and the relationships between them. Typically, the
skeleton is constructed from a collection of interfaces and abstract
classes, which together specify the structural and behavioural
relationships that the framework supports.

Composition (of objects) – defines a way of composing objects together, and
delegating behaviour between objects. Delegation is the idea that
instead of an object doing something itself, it gives another object the
task.

Composition (of patterns) – defines a way of composing design patterns
together. Compositions of patterns can by divided into 4 categories:
invocation-based composition, class-level interlacing when the
implementations of two patterns have one or more classes in common,
method-level interlacing when the implementations of two patterns have
one or more methods in common, overlapping when the
implementations of two patterns share one or more statements,
attributes, methods, and classes.

Composition filters – software development approach that similarly as AOP
aims to solve a number of obstacles not properly addressed by the
current object-oriented languages.

Conceptual analysis – the analysis of concepts, terms, variables, constructs,
definitions, assertions, hypotheses, and theories that involves examining
these for clarity and coherence, critically scrutinizing their logical
relations, and identifying assumptions and implications (Machado,
Silva, 2007).

Concern – some distinct part of a system, its cohesive functionality or
properties.

Constructive research – a research procedure for producing innovative
constructions, intended to solve the problems encountered in the real
world and to make some contribution to the theory of the discipline in
which it is applied (Lukka, 2003; Crnkovic, 2010).

Control flow – namely, a flow of control that refers to the execution order of
statements, instructions, or function calls in a program of an imperative
or a declarative programming language.

 xvii

Critical case – an extreme case that is suitable to test hypotheses in critical
situations.

Crosscutting concerns – in programming are considered as an unwanted result
of code tangling and scattering.

Design pattern – a way of reusing abstract knowledge about a design problem
and its solution. To be more exact, the design pattern in an abstract way
describes a set of solutions to a family of similar design problems
(MacDonald et al., 2002).

Domain framework – a framework capturing knowledge and expertise in a
particular problem domain. Frameworks are built for various purposes
and usually they are specific to one or several domains. Sometimes
domain frameworks are referred to as enterprise application
frameworks.

Dynamic crosscutting – crosscutting behaviour of a system defined directly by
pointcuts and advice.

Encapsulation – surrounding objects with a common interface in a way that
makes them interchangeable and hides their states from direct access.

Event-based system – “a system in which the integrated components
communicate by generating and receiving event notifications” (Fiege,
2002).

Framework – a software framework is a reusable „semi-complete” software
construction that can be finished, specialized and selectively changed by
users in order to develop applications, software products and solutions.

Frozen spot – the unchangeable parts of the skeleton or class libraries in
frameworks.

Functional programming – a software engineering paradigm that treats
programming as the evaluation of mathematical functions and which
data is immutable or treated as such.

Generative programming – defines approaches of automation of software
development (Czarnecki, 2000).

Granularity – measurement of how system is broken down into smaller parts,
smaller but greater number of entities means increase of granularity.

Hook – a mechanism allowing users to customize a framework by tapping into
and modifying its inner workings. Customization can be done by
composing and subclassing existing classes and/or by defining
implementations of abstract operations.

 xviii

Hot spot – a part of a framework where new application-oriented functionality
can be added or in some other way customized. Hot spots provide one
or several hooks (usually abstract operations) allowing to customize hot
spots.

Idiom – the lowest level patterns that are language specific reoccurring
solutions to common programming problems.

Inheritance – is a way to reuse code by sub typing from more abstract classes.

Instance – an exemplar of a concrete object.

Intentional programming – “an extendible programming environment under
development at Microsoft Research since early nineties … that supports
the development of domain-specific languages and generators of any
architecture … in a unique way” (Czarnecki, Eisenecker, 2000).

Inter-type declarations – declarations that are made by aspects for defining a
type: interface, class or aspect. It consists of member or method
introductions, type-hierarchy modifications and is used to implement so
called static crosscutting.

Interface – a set of predefined operations used to communicate for objects
with each other. Java programming language provides direct construct
for defining interfaces in other OOP languages it can be performed by
abstract classes.

Join point – is a one of many points in a system where concerns crosscut.

Native AO design pattern – a native AO solution that is introduced to the same
problems that are addressed by the OO design pattern (Hachani, Bardou,
2002; Hirschfeld et al., 2003).

Logic programming – software engineering paradigm that uses mathematical
logic for computer programming.

Meta-programming – can be described by a phrase “a program that
manipulates another program is clearly an instance of meta-
programming” (Czarnecki, Eisenecker, 2000).

Object – refers to a particular instance of a class.

Paradigm – “a philosophical and theoretical framework of a scientific school
or discipline within which theories, laws, and generalizations and the
experiments performed in support of them are formulated; broadly: a
philosophical or theoretical framework of any kind” (Merriam-Webster,
2011)

 xix

Paradigm-independent design problem – an abstract design problem that may
occur in several software engineering paradigms and solution of such a
problem defined for particular paradigm can always by described by the
constructs of that particular paradigm.

Paradigm-specific design problem – design problem that is based on specific
paradigm related design constraint and may occur in one particular
software engineering paradigm.

Pointcut – it is a part of aspect construct that represents affected join points. It
also can be described as some sort of a query for selecting required join
points.

Programming paradigm (software engineering paradigm) – that is related to
some “general rule for attacking similar problems”, has “their user
communities” and becomes “embodied in the programming languages”.
(Floyd, 1979)

Pure AO design pattern – a design pattern that solves paradigm-independent
design problem, which solution consists only of aspects.

Rule-based system – an approach used to design a system that stores and
manipulates the knowledge in order to interpret information in a useful
way.

Separation of concerns – the process of modularization of the crosscutting
behaviour of concerns.

Static crosscutting – corresponds to the crosscutting of the static structure of
the types that is implemented by inter-type declarations of aspects.
Static crosscutting is not directly affected by pointcuts and advices.

Subject-oriented programming – a software engineering paradigm in which
the behaviour and state of objects is considered as an extrinsic features
of objects, as some kind of subjective views.

Supporting framework – frameworks that address specific, computer-related
domains such as memory management or file systems. Support for these
kinds of domains is necessary to simplify program development.
Typically, such frameworks are used together with domain and/or
application frameworks and support some internal mechanisms of the
later.

Typical case – a representative case that is suitable to test hypotheses in
usually occurring situations.

White-box framework – a framework where inheritance is the predominant
technique used to design hot spots. The customization of a white-box

 xx

framework requires understanding the internals of the framework
because its behaviour is extended by creating subclasses, taking
advantage of inheritance. Wildcard – represents a characters that
substitutes for other characters in regular expressions and can be used
for the naming conventions to optimize pointcuts in AOP programs.

 xxi

 xxii

Abbreviations and Acronyms

AO aspect-oriented.

AOP aspect-oriented programming.

AspectJ first aspect-oriented programming language proposed by
(Kiczales et al., 2001).

C# C Sharp, object-oriented programming language proposed
by (Hejlsberg, 2003).

CERN European Organization for Nuclear Research.

CoR Chain of Responsibility design pattern.

Eclipse an open development platform comprised of extensible
frameworks, tools and runtimes for building, deploying and
managing software across the lifecycle
(http://www.eclipse.org).

GoF Gang of Four, four authors of the (Gamma, et al. 1994)
book.

GoF
design patterns

23 object-oriented design patterns of the Gang of Four
(Gamma, et al. 1994) book.

GoFAO

design patterns
object-oriented design patterns of the Gang of Four
(Gamma, et al. 1994) book that were transformed from to
design aspects.

GoF*AO
design patterns

GoFAO design patterns that solve object creation problems
(creational design patterns).

Java object-oriented programming language proposed by
(Gosling, 2005).

JBoss AOP Java aspect-oriented supporting framework (Fleury,
Reverbel, 2003).

JHotDraw Java GUI framework for technical and structured Graphics
(www.jhotdraw.org).

LISP is the one of the oldest high-level programming languages
specified in 1958, the name derives from the phrase “list
processing”.

NetBeans an open-source integrated development environment for

software development (www.netbeans.org).

OO object-oriented

OOP object-oriented programming.

Python general purpose programming language proposed by
(Rossum, 1993).

SimJ OO domain framework purported to design discrete events
based simulation applications.

SimpleW OO domain framework purported to simplify the design of
personal web portals.

SoC Separation of Concerns metric.

Spring AOP one of the key components of Spring framework enabling
technology to implement custom aspects (Laddad, 2010).

UML Unified Modelling Language (Fowler, 2003).

 xxiii

Introduction

Research Context and Challenges
Mainly, software systems are permanently changed in order to meet new

requirements and to adapt them to permanently changing technology. Design

modularity decouples design concerns that probably can be changed and in this

way facilitates further system changes (Bertrand Meyer, 1997). Object-oriented

(OO) software engineering paradigm proposes a number of powerful

modularization methods and techniques. Unfortunately, some design concerns,

called crosscutting concerns, cannot be modularized using these methods and

techniques. The solution of this problem has been proposed by the new

emerging software engineering paradigm, aspect-oriented (AO) paradigm

(Kiczales, et al., 1997). This paradigm proposes also the solutions of some

other software engineering problems that have poor or even no solution in the

OO paradigm. For example, one of such problems is the encapsulation of the

multiplicity of subjective views in objects. It is very troubling to model several

views by one object because different views require that, depending on the

view, different properties of the same object would be accessible (Harrison,

Ossher, 1993). AO paradigm proposes an elegant solution of this problem.

However, this paradigm is still not enough mature. In particular, it is still

unknown which design patterns developed in the object-oriented paradigm, for

example, design patterns investigated by Gamma et al. (Gamma et al., 1994),

can be adapted for aspect-oriented paradigm and how to transform them from

one paradigm to another in a systematical way. Gamma et al. are often referred

to as the Gang of Four, or GoF, and the patterns investigated by them as GoF

design patterns.

Object-oriented design patterns have been developed as a result of in-depth

analysis and generalization of best object-oriented design practices. The

concept of design pattern has been highly influential to the field of software

engineering, first of all, to object-oriented design theory and practice.

 24

However, 23 GoF and other OO design patterns have been investigated only in

the narrow context of OO paradigm and the extent of their applicability in

other paradigms is still an open research question. Although some researches

(Hannemann, Kiczales, 2002; Hachani, Bardou, 2002; Hirschfeld et al., 2003)

investigate how the 23 GoF design patterns can be rewritten in an AO manner,

no one investigated systematically the problem of transformation of OO design

patterns into analogous design patterns in other software engineering

paradigms. It means that it is still unknown which design patterns can be

applied to solve paradigm independent design problems and which are

paradigm-specific, therefore meaningless in other paradigms. In particular, it is

very important to answer this question at least for OO and AO paradigms. It is

important from both theoretical and practical points of view. OO design

patterns have been extracted analyzing a huge amount of successful designs.

Although there are ways proposed how to perform some automatic inference of

new design patterns (Tonella, Antoniol, 1999), their acceptance is still directly

related to successful application of common design ideas many times in many

projects. Such pattern gathering process is very slow and expensive. It would

not be reasonable to repeat this process for AO paradigm from scratch. It is

obvious that it is preferable to rely on the experience gained in other software

engineering paradigms, first of all, in OO paradigm and to adapt for AO

paradigm the design patterns developed and well-investigated there.

Problem Statement
The subject of the thesis research is pure AO design patterns and their

application in the design of AO frameworks. By pure AO design patterns the

patterns implemented using aspects only are considered. Mixed AO design

patterns, in contrast, are such patterns which are implemented using both,

aspects and objects. Usually in mixed design patterns aspects play supporting

role and mainly are used only to eliminate concern crosscutting in the pattern

implementation code.

 25

The research aims to identify these GoF design patterns that solve OO

paradigm independent design problems, to develop techniques for

transformation of such patterns to pure AO design patterns, and to investigate

the properties of AO domain frameworks developed using the resulted design

patterns.

Motivation
Aspect-oriented programming (AOP) emerged as a stand alone paradigm

already almost 15 years ago (Kiczales, et al., 1997). However, still very few

widely accepted and well documented pure AO design patterns have been

proposed. Up to time, even basic OO design patterns – 23 GoF patterns – have

not been transformed into pure AO form. Moreover, the question is still open

which GoF design patterns can be transformed into pure AO design patterns

and why. Although some researches (Bynens, Joosen, 2009; Hanenberg,

Schmidmeier, 2003; Laddad, 2003; Miles, 2004) proposed a number of

paradigm dependent AO design patterns and idioms, and others (Hannemann,

Kiczales, 2002; Hachani, Bardou, 2002; Hirschfeld et al., 2003) investigated

how some of GoF design patterns can be redesigned as mixed AO design

patterns, all these researches had a sporadic, ad hoc character and they still do

not answer the above presented question.

On the other hand, the design patterns play essential role in the development of

many applications, especially in the development of various frameworks.

There exists a large and well documented experience of application of GoF

design patterns in the design of OO frameworks (Adair, 1995; Appleton, 1997;

Fayad, Schmidt, 1997; Johnson 1997; Kaisler 2005). It is evident that these and

other design patterns facilitate and improve the design of frameworks, make

their design documentation more transparent. This is true for OO as well as for

AO frameworks. It means that there exist a strong need in pure AO analogues

of GoF design patterns and the investigation of the impact of application of

these patterns on the run-time properties of framework implementations.

 26

Aims and Objectives of the Research
The research aims to define the class of object-oriented design patterns which

can be transformed into pure aspect-oriented ones, proposes a systematic

procedure for such transformation and investigates properties of resulting

patterns from the viewpoint of their applicability in the design of aspect-

oriented domain frameworks. In order to achieve these aims, the following

research objectives have been stated:

 evaluate the state of affairs, compare existing approaches to the

development of AO design patterns, and highlight their advantages and

shortcomings;

 investigate which GoF design patterns solve such design problems that

arise in AO paradigm and how these patterns can be transformed into

pure AO design patterns;

 investigate applicability of such design patterns in the design of AO

domain frameworks and the impact of their application on the

complexity of the resulting code, its performance and other run-time

characteristics.

Research Questions and Hypotheses
Main questions that need to be answered in this research are:

 How mature is the AO software engineering paradigm currently?

 What techniques can be used to develop AO design patterns and what

advantages and shortcomings has each of these techniques got? Does

the aspect-oriented paradigm generate some new patterns that are

specific only to this paradigm?

 In which different ways design patterns can be implemented, when they

solve paradigm independent design problems and design problems that

are specific to object-oriented or aspect-oriented software engineering

paradigms?

 Is it possible to implement at least some of GoF design patterns using

aspect-oriented constructs only? Which and how, if it is possible? Is

 27

such implementation in some way better than the object-oriented one?

How to measure this?

 In which way are the aspects different as classes from the viewpoint of

design patterns and what is the impact of such differences on the

structure and other properties of pure AO design patterns?

 What are the advantages of application of pure AO design patterns in

real-life applications in general and, particularly, in AO domain

frameworks?

 What is the impact of application of pure AO design patterns in AO

domain frameworks on the crosscutting, complexity of code

implementation and framework run-time performance?

To answer these questions, the following hypotheses have been stated:

 there exist paradigm-independent design problems, at least in the

context of OO and AO software engineering paradigms;

 aspect-oriented constructs are sufficient to implement those GoF design

patterns that solve paradigm-independent design problems, despite the

fact that aspects cannot be directly instantiated;

 efficiency of designs is improved by the usage of pure AO design

patterns combined with GoF design patterns;

 the usage of pure AO design patterns allows designing of new kind of

hot spots in white-box AO domain frameworks (i.e. hot spots

represented by abstract aspects);

 the usage of pure AO designs patterns reduces crosscutting in AO

domain frameworks;

 the development of AO domain frameworks using pure AO design

patterns has no particular impact on the overall run-time performance of

the applications developed using such frameworks.

Research Design and Research Methods
The research design of present thesis is of an exploratory nature. Aspect-

oriented software engineering paradigm is relatively young and the research in

 28

this area is still in its infancy. It means that relatively large amount of library

research is required in order to define exact structure of a problem, to gain a

better understanding of the environment within which the problem arises.

The exploratory nature of the research and the engineering nature of the

research subject require that engineering methods would be used to solve the

problem under consideration. In this context, the best candidate is constructive

research.

Finally, according to (Cooper, Schindler, 1998), any exploratory research is

mainly qualitative in his nature. For this reason, it is impossible to validate all

obtained results quantitatively, by measurements, because qualitative factors

cannot be measured in principle. Additionally, any dissertation research is a

small-scale research from both financial and time points of view. It means that

in such research it is too expensive and practically impossible ensure high

statistical reliability and high level statistical significance of quantitative

measurements in cases, when such measurements can be done. Thus, despite

its possible biases, the case study methodology is the only practically

acceptable methodology to validate the research results.

Taking into account all the discussed above, the research design provides three

distinctive research phases, namely, conceptual analysis (Laurence, Margolis,

2003) of related work, constructive research that aims to develop the

transformation techniques to transform GoF design patterns into pure AO

design patterns, experimental investigation of the applicability of pure AO

design patterns in the development of AO domain frameworks.

Conceptual analysis is the analysis of concepts, terms, variables, constructs,

definitions, assertions, hypotheses, and theories. It involves examining these

for clarity and coherence, critically scrutinizing their logical relations, and

identifying assumptions and implications (Machado, Silva, 2007). The goal of

conceptual analysis is to increase the conceptual clarity of the research subject.

The primary utility of conceptual analysis is to determine the existing state of

the research field so that further work may be strategically and appropriately

planned (Penrod, Hupcey, 2004). The conceptual analysis of related works has

 29

been carried out to generate important theoretical constructs and to provide the

theoretical basis for further research as well as to prevent from performing a

research that has already been done by others (Hart, 1998). The main field on

which conceptual analysis has been performed encompasses both object-

oriented and aspect-oriented software design patterns. Generally, conceptual

analysis allows answering the questions how mature the AO software

engineering paradigm currently is, in which way the aspects are different as

classes from the viewpoint of design patterns and what is the impact of such

differences on the structure and other properties of pure AO design patterns.

An essential part of conceptual analysis is the categorization of concepts. The

categorization has been used as a base to define the class of object-oriented

design patterns which can be transformed into pure aspect-oriented ones.

The constructive research approach is a research procedure for producing

innovative constructions, intended to solve the problems encountered in the

real world and to make some contribution to the theory of the discipline in

which it is applied (Lukka, 2003; Crnkovic, 2010). The central notion of this

approach, the novel construction, is an abstract notion with a great variety of

potential realizations. Models, designs, methods, algorithms, and most other

artefacts are considered as constructions. It means that they are invented and

developed, not discovered. Mathematical algorithms and new mathematical

entities are examples of theoretical constructions. The constructive research

approach is based on the belief that by a profound analysis of what works (or

does not work) in practice one can make a significant contribution to theory. In

the present thesis this approach is used as a methodological basis to develop

the transformation rules transforming GoF design patterns to their pure AO

analogues, GoFAO design patterns. It is probable that not all of 23 GoF design

patterns have pure AO analogues and GoFAO include less than 23 patterns.

As a result of profound analysis of the problem, it has been discovered that

aspects are similar to singleton classes. This result suggests that classes in OO

design patterns can be replaced by aspects. The details of such transformation

should be investigated for each particular pattern and the findings should be

 30

generalized in order to develop the rules applicable to all GoF design patterns.

The similarities between classes and aspects suggest also that OO patterns,

which cannot be implemented, using singleton classes only, cannot be

transformed into GoFAO patterns and, consequently, solve OO-specific design

problems. Some design patterns out of 23 GoF patterns are dedicated to solve

object creation problems. At first glance, the usefulness of such patterns in AO

paradigm is highly questionable and should be investigated specifically, if even

they can be transformed into GoFAO patterns. Such class patterns are denoted

by GoF*AO.

The constructive research methodology is used also for testing of working

hypotheses that has been provisionally accepted in the present thesis. One of

the advantages of this methodology is that it allows not only to test and

investigate the properties of the innovative construction but also to study its

development process. On the other hand the constructive research, in parallel

with some other methodologies of experimental research, can be viewed as a

kind of case study methodology. However, according to the conventional view,

case studies should be used for falsification of the hypothesis only. Case study

itself cannot prove any hypothesis and should be linked to some hypothetico-

deductive model of explanation. However, the correspondence of the case

study to real-world situations and its multiple wealth of details state that this

view is only partly correct (Flyvbjerg, 2004). Taking into account this

argument and the fact that the dissertation research is a small-scale research

from both, financial and time points of view, the case study methodology has

been approved as the main hypothesis testing methodology. Mainly, the case

study is an empirical research method that aims at investigating some

phenomena in his context (Runeson, Höst, 2009). In present thesis the aim is to

investigate the impact of application of pure AO design patterns on the design

of AO domain (white-box) frameworks.

According to (Ragin, 1992) case studies can be enhanced by the strategic

selection of cases: critical or typical. A critical case can be thought as an

extreme case that is suitable to test hypotheses in critical situations. The case of

 31

such AO domain framework, which is designed using at least one GoF*AO

design pattern, has been chosen as a critical case. In addition, two typical cases

have been chosen: redesign of an existing OO domain framework into an AO

domain framework using GoFAO patterns and the design of a new AO domain

framework using GoFAO patterns.

The first typical case is constrained by the existing design of the OO

framework and allows investigating the consequences of the redesign when a

part of object-oriented framework design has been replaced by relevant pure

AO design patterns. Only the parts of the framework that have been affected by

some crosscutting of concerns have been reworked. The second typical case

has no preliminary design constrains and allows choosing any design that is

most suitable for designing aspects. As the result, three cases have been

studied.

Generally, quantitative and qualitative data collection methods can be used for

evaluation of the results of any case study. Quantitative data relies on numbers

that are analyzed using statistics. Qualitative data relies on the text, diagrams

and pictures that are analyzed using categorization and sorting. In case studies

qualitative data analysis is used more often. The usage of both, qualitative and

quantitative data, complimentary provides stronger evidence for the evaluation

of the hypotheses (Runeson, Höst, 2009). Thus, both approaches have been

used.

The main steps of applied case study methodology can be summarized shortly

as follows:

1. identify the aspects that should be designed;

2. decide what design patterns should be applied in order to design

identified aspects;

3. design and implement aspects, document observations and findings, and

collect other qualitative data;

4. perform measurements, test the code and collect quantitative data;

5. evaluate the structure of the code according to criteria;

6. analyze, generalize the collected data and evaluate hypothesis.

 32

Summary of Research Results
The results of the thesis research can be summarized as follows:

 The hypothesis has been proven that there exist paradigm-independent

design problems, at least in the context of OO and AO software

engineering paradigms.

 There has been identified the subset of 23 GoF object oriented design

patterns (20 GoF patterns) which solve paradigm-independent design

problems and can be transformed into pure AO design patterns (GoFAO

patterns).

 The hypothesis has been proven that aspect-oriented constructs are

sufficient to implement 20 of GoFAO design patterns, with regard that 5

of them are exposed to some reduced applicability.

 The rules have been proposed how to transform 20 GoF design patterns

into GoFAO design patterns.

 The hypothesis has been validated that the usage of GoFAO design

patterns (next to 23 GoF design patterns) improves the efficiency of

domain frameworks designs.

 The hypothesis has been proven that the usage of GoFAO design patterns

allows designing a new class of hot spots in white-box AO domain

frameworks, (namely, hot spots represented by abstract aspects).

 The hypothesis has been validated that the usage of GoFAO designs

patterns reduces crosscutting in AO domain frameworks.

 The hypothesis has been rejected that the development of AO domain

frameworks using GoFAO design patterns has no particular impact on the

overall run-time performance of the applications developed using such

frameworks.

Contributions of the Dissertation
The present thesis is one of the first researches that aims to investigate pure

AO design patterns and the application of such patterns in the design of AO

domain frameworks. Although several attempts (Arpaia, et al, 2008; Santos et

 33

al., 2007; Kulesza et al., 2006) to design customizable aspects in frameworks

have been made, none of them investigates the use of pure AO design patterns

to design aspects as hot spots and none of them examines the design of AO

frameworks in such detail. It is also the first work that states the question about

the existence of design problems which are common to all or, at least, to

several software engineering paradigms. Finally, the case study methodology

applied in present thesis supports the empirical research approach in which

constructive research and case study research methods can be used to validate

hypotheses in software engineering.

The practical significance of the thesis is as follows:

 20 pure aspect-oriented design patterns, that have been developed in the

thesis research, can be applied developing any aspect-oriented domain

frameworks as well as other aspect-oriented applications;

 the thesis demonstrates how abstract aspects should be designed so that

to be applicable as hot spots in aspect-oriented domain frameworks.

Approbation
The main results of the thesis were presented and approved at the following

conferences:

 3rd International Conference on Pervasive Patterns and Applications,

PATTERNS 2011, September 25-30, 2011 – Rome, Italy;

 15th Conference of Lithuanian Computer Society “Computer Days –

2011”, September 22–24, 2011, Klaipeda, Lithuania;

 50th Conference of Lithuanian Mathematicians Society, June 18–19,

2009, Vilnius, Lithuania.

 12th Student Scientific Society conference “Fundamental Research and

Innovation in Science Integration”. Klaipeda University Faculty of

Natural Science and Mathematics, 2009, Klaipeda, Lithuania.

 34

Outline of the Dissertation
The text of the thesis consists of introduction, 5 main chapters, conclusions, list

of references, list of publications and appendixes. Main chapters are provided

with summary and (except Chapter 1) with conclusions.

Introduction describes research context and challenges, presents the problem

statement, discusses motivation, aims and objectives of the research, states

research questions and hypotheses, describes research design and research

methods, research results, contributions of the thesis, and approbation of

obtained results.

Chapter 1 presents preliminaries on design patterns, aspect-oriented paradigm

and frameworks.

Chapter 2 describes the results of critical analysis of related works.

Chapter 3 develops and discusses main theoretical results of the research. It

proves the hypothesis that there exist, at least in the context of OO and AO

software engineering paradigms, paradigm-independent design problems,

identifies the subset of 23 GoF object oriented design patterns (20 GoF

patterns) which solve paradigm-independent design problems and can be

transformed into pure AO design patterns (GoFAO patterns), proves the

hypothesis that aspect-oriented constructs are sufficient to implement 20 of

GoF design patterns, with regard that 5 of them exposes some reduced

applicability, and presents the rules to transform 20 GoF design patterns into

GoFAO design patterns.

Chapter 4 describes in details case studies on application of the transformed

design patterns to design frameworks and validation of research hypothesis. It

validates the hypotheses that the usage of GoFAO design patterns (next to 23

GoF design patterns) improves the efficiency of domain frameworks designs,

that the usage of GoFAO design patterns allows designing a new class of hot

spots in white-box AO domain frameworks, namely, hot spots represented by

abstract aspects, that the usage of GoFAO designs patterns reduces crosscutting

in AO domain frameworks, and that the development of AO domain

frameworks using GoFAO design patterns has no particular impact on the

 35

 36

overall run-time performance of the applications developed using such

frameworks.

Chapter 5 discusses some open questions and limitations.

Conclusions present the main conclusions of the dissertation.

Appendixes presents preliminaries about AspectJ programming language, list

of remaining transformed GoF design pattern descriptions and extended

versions of several diagrams.

Chapter 1 – Preliminaries

Chapter 1

Preliminaries

The chapter defines details about the terminology and the concepts used in
the thesis. Section 1 provides a definition and the scope of the design
patterns used in this research. Section 2 discusses general concept of
programming paradigm, presents the main principles of aspect-oriented
programming and the syntax of AspectJ programming language. Section 3
analyzes the concept of the framework. It determines the kind of the
framework that is investigated further in present thesis and discuses in short
the approach proposed to design frameworks using hot spots and hooks.

1.1. Design Patterns
In software engineering, more exactly, in the object-oriented programming, the

concept of design pattern has been introduced by (Gamma, et al., 1994). The

term was borrowed from the architectural terminology where it was coined by

Alexander (Alexander, et al, 1977). Alexander explained the concept of design

patterns in the following way:

“Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way

twice.” (Alexander, et al, 1977)

Gamma et al. have accepted this understanding of design pattern and proposed

to define object-oriented design patterns using four essential elements: pattern

name, problem, solution and consequences. There are many different

approaches to reuse, including the code, design and concept reuse. The latest is

 37

Chapter 1 – Preliminaries

supported by design patterns (Gamma et al., 1994). According to Robert

Martin,

“At the highest level, there are the architecture patterns that define

the overall shape and structure of software applications. Down a

level is the architecture that is specifically related to the purpose of

the software application. Yet another level down resides the

architecture of the modules and their interconnections. This is the

domain of design patterns” (Martin, 2000)

A design pattern is a way of reusing abstract knowledge about a design

problem and its solution. To be more exact, the design pattern in an abstract

way describes a set of solutions to a family of similar design problems

(MacDonald et al., 2002). It describes the idea of a design decision in the form

that is sufficiently abstract to be reused in different settings. It can be said that

a design pattern is a guideline how to design some element of a system. Design

patterns do not influence the overall system architecture. They define the

architecture of lower level constituents of a system, namely, subsystems and

components. It should be noted that design patterns are not the lowest level

patterns. The lowest level patterns are called idioms. They are language

specific reoccurring solutions to common programming problems. According

to Ramnivas Laddad,

“The difference between design pattern and idioms involves the

scope at which they solve problems and their language specificity.

From the scope point of view, idioms are just smaller patterns.

From the language point of view, idioms apply to specific language

whereas the design patterns apply to multiple languages using the

same methodology.” (Laddad, 2003)

An example is the Java idiom for ending a program when the window is closed

(Example 1). Mainly, the patterns define relationships between the entities in

the implementation domain (Shalloway, Trott, 2001) or, in other words, some

parameterized collaborations. However, it is difficult to develop a single body

 38

Chapter 1 – Preliminaries

of code or even a framework that adequately solves each problem in the

family.

1 addWindowListener(
2 new WindowAdapter() {
3 public void windowClosing(WindowEvent e) {
4 System.exit(0);
5 }
6 }
7)

Example 1 Java idiom for ending a program

Most design patterns represent families of solutions the structures of which

cannot be adequately represented by a static framework (MacDonald et al.,

2002). According to Aleksandra Tešanović,

“…a pattern is not an implementation, although it may provide

hints about potential implementation issues. The pattern only

describes when, why, and how one could create an

implementation.” (Tešanović, 2004)

In other words, in any particular case the pattern should be adapted to the

particular context.

Gamma et al. described 23 object-oriented design patterns using their four

essential elements format (Gamma, et al., 1994). The structure of the design

pattern is a part of design pattern essential element – solution. In (Gamma, et

al., 1994) the structure of design pattern is represented using the early

graphical form of UML (Booch, et al., 2000; Fowler, 2003) as collaborations.

Namely this notation is used in the present thesis.

Since the authors of (Gamma, et al., 1994) are often referred to as the Gang of

Four (GoF), the abbreviation GoF is used also to refer to these patterns. By

analogy, the abbreviation GoFAO is used in the thesis to refer to pure aspect-

oriented design patterns that are analogous to GoF design patterns. (Gamma, et

al., 1994) have also proposed the following categorization of design patterns

by their design purpose: creational, structural, and behavioural.

The concept of design pattern has also been introduced in aspect-oriented

programming (Hanenberg, Costanza, 2002; Hanenberg, Schmidmeier, 2003;

Laddad, 2003; Schmidmeier, 2004; Miles, 2004; Griswold et al., 2006;

 39

Chapter 1 – Preliminaries

Lagaisse, Joosen, 2006; Bynens et al., 2007; Bynens, Joosen, 2009; Menkyna

et al., 2010). These works will be discussed in detail in Chapter 3.

In summary, in software engineering, a design pattern can be defined as a

general reusable solution to a commonly occurring problem within a given

context in software design. It is not a finished design that can be transformed

directly into code, but only a description or template for how to solve a

problem that can be used in many different situations. Object-oriented design

patterns typically are collaborations, they show relationships and interactions

between classes or objects, without specifying the final application classes or

objects that are involved. The application of design patterns is possible in

different software engineering paradigms, however, is very limited in

functional programming languages, in which data is immutable or treated as

such, because many of currently used patterns imply mutable state.

1.2. Aspect-Oriented Software Engineering Paradigm
AO paradigm is one of the several software engineering paradigms which

differ in the notion of algorithm and other details. Merriam-Webster dictionary

defines the term paradigm as

“a philosophical and theoretical framework of a scientific school or

discipline within which theories, laws, and generalizations and the

experiments performed in support of them are formulated; broadly:

a philosophical or theoretical framework of any kind” (Merriam-

Webster, 2011)

In the field of computer science the term has been introduced by Robert W.

Floyd in his 1978 Turing Award Lecture. According Robert W. Floyd the

paradigm of programming can be defined as correspondent to the following

statement:

Programming paradigm is related to some “general rule for

attacking similar problems”, has “their user communities” and

becomes “embodied in the programming languages” (Floyd, 1979)

 40

Chapter 1 – Preliminaries

The “rule for attacking similar problems” in this context can be understood as

some refined and abstract program design method that is directly or indirectly

supported by programming language. Programming paradigms differ in the

concepts and abstractions to represent the elements of program and the notion

of algorithm (steps that compose a computation). Most popular programming

paradigms are procedural programming, logic programming, functional

programming, object-oriented programming, and aspect-oriented programming

(Ambler,et al., 1992). Many current programming languages (Java, C#,

Python, Common LISP, etc.) are based on several programming paradigms,

sometimes even on so different paradigms as object-oriented and functional

programming. Such programming languages are called multi-paradigm

languages (Wampler, Clark, 2010).

The concept of paradigm can be extended to be applicable not only to

programming but also to analysis, design, testing and other activities related to

software development process. Such extended paradigms are called software

engineering paradigms. Sometimes a software engineering paradigm is

understood also as a software development strategy or a software lifecycle

model. However, in the present thesis the term “software engineering

paradigm” is used in the first sense. Thus it is always referred to object-

oriented, aspect-oriented and other extended programming paradigms.

A number of software engineering paradigms, methodologies and approaches

exist today. Although the object-oriented (OO) paradigm still remains one of

most popular, it is gradually replaced by the aspect-oriented (AO) one

(Kiczales et al, 1997; Lopes, 2005). Mainly, it is because of the concern

crosscutting problem. Object-oriented paradigm suffers from inability to

separate crosscutting concerns. OO system may have and often has such

properties that must be implemented by more than one functional component.

It means that the implementation of such a property crosscuts the static and

dynamic structure of the program. The AO paradigm solves this problem by

the separation of concerns. However, the separation of concerns itself is not

enough to develop a new mature software engineering paradigm. It is also

 41

Chapter 1 – Preliminaries

necessary to provide some solutions that allow coping with other important

software engineering issues, including software reuse.

Some software system design problems are paradigm-independent. For

example, the problem how to decouple the resource and its consumer does not

depend on any particular software engineering paradigm. The proposed

solution is the Façade pattern that suggests inserting of an abstract interface

between the consumer and the resource (Martin, 2000). This idea is very

abstract and also paradigm-independent. Originally, the Gang of Four (GoF)

defined the intent of the Façade pattern as more narrow, only for subsystems

but not for any resource:

"Provide a unified interface to a set of interfaces in a subsystem.

Façade defines a higher-level interface that makes the subsystem

easier to use." (Gamma et al., 1994)

This idea is still paradigm-independent. However, it should be implemented in

a paradigm-dependent way. It means that, first of all, it should be expressed in

terms of a particular paradigm and can be implemented only afterwards. In

other words, for each paradigm the patterns solving paradigm-independent

design problems should be expressed in terms of this paradigm and it should be

done in a compact way. For example, in OO paradigm the idea of the Façade

pattern can be described as follows: define a new class that hides the interfaces

of several other classes under the new unified interface. Since the description

of the idea of pattern should be as compact as possible, the question which

concepts should be used to describe this idea must be investigated for any

particular pattern. Though often the concepts describing a design pattern in one

paradigm (e.g. OO paradigm) can be expressed directly by concepts of some

other paradigm (e.g. AO paradigm), it is questionable whether such translation

is the best way to transform the design patterns from one paradigm to another.

Patterns that solve the paradigm-dependent design problems are not idioms.

They are language-independent and still very abstract. Such patterns describe a

set of solutions to a family of similar design problems and should be

effectively expressed in the vocabulary of any programming language that is

 42

Chapter 1 – Preliminaries

based on this paradigm. The OO patterns, AO patterns and patterns for other

paradigms eventually must be described in a paradigm-dependent way. It is

reasonable that, despite the fact that in software engineering the patterns are

often identified only with the object-oriented paradigm, some of them can be

considered at a more abstract paradigm-independent level and specialized for

any particular paradigm. Consequently, the patterns solving paradigm-

independent design problems can be defined for a new paradigm in two

different ways: by rewriting the patterns already defined for some paradigm

(e.g. OO paradigm) in terms of a new paradigm (e.g. AO paradigm) or by

generalizing the patterns already defined for some paradigm, defining them in

a paradigm-independent way and then specializing such paradigm-independent

definitions for new paradigms. It seems that the latter way is more promising.

However, currently it is still unknown even, which of the 23 GoF design

patterns solve paradigm-independent design problems and can be adapted to

other paradigms. The present thesis investigates this question in the context of

two paradigms, namely, OO and AO paradigms. Of course, the fact that some

OO design patterns can be adapted to solve aspect design problems does not

mean that they really solve paradigm-independent design problems. However

they can be considered as candidates to do this.

Let us discuss the most important concepts and terms of the AO paradigm. The

term concern in the context of AOP addresses any piece of interest or focus in

a program. Typically, concerns are synonymous with features or behaviours

(Laddad, 2010). Most of the concerns can be encapsulated using procedures,

classes and other abstractions of traditional programming languages. However,

some concerns are spread all over the system. Such concerns are called

crosscutting concerns. The simplest form of the crosscutting explanation is that

concerns are stated as crosscutting “if the methods related to those concerns

intersect” (Elrad, 2001). The crosscutting concerns are considered as a harmful

phenomena because of code tangling and scattering (Miller, 2001). A typical

example of crosscutting concern is logging that is usually spread across several

modules (Laddad, 2010) (Fig. 1). Other examples are failure handling,

 43

Chapter 1 – Preliminaries

coordination, synchronization, memory management, persistence, security,

caching, monitoring, etc.

Logging module

Data base moduleAccounting moduleUser interface module

Fig. 1 Crosscutting concern

Aspect-oriented (AO) paradigm has been developed with the aim to deal with

the problem of crosscutting concerns. This paradigm is built on top of the OO

paradigm and complements this paradigm by providing new type of modularity

that pulls together the widespread implementation of a crosscutting concern

into a single unit termed aspect. In this way AO paradigm solves the problem

of crosscutting concerns. Aspects of a system developed using AO paradigm

can be changed, inserted or removed at compile time, and even reused. In order

to affect regular class-based code referred to as base program, aspects must be

woven into the code they modify. It is done by the special meta-programming

utility regarded as aspect weaver. The weaver scatters aspect code across the

classes affected by this aspect and interweaves this code with the code of

corresponding classes. Fig. 2 illustrates the separation of concerns represented

in Fig. 1. In Fig. 1 the change of a logger concern requires the change of

method calls in other modules. In Fig. 2 other modules do not contain any calls

to the logger module.

 44

Chapter 1 – Preliminaries

Logging module

User interface
module

Accounting module Database module

Logging aspect

Aspect weaver

Fig. 2 Concern crosscutting handled by aspect

Aspects contain the information about the places where a necessary code

should be weaved into the classes. The places or in other words points where

the weaver should inject the code fragments are named join points. More

precisely, join points are the points in the system where concerns crosscut. The

information about the join points is held by a construct named pointcut.

Pointcut takes a part of aspect structure and identifies references to affected

join points. It is not necessary to write information about all join points

separately, this can be shortened by using the so called wildcards or some

logical similarities. The pointcut can be described as a query for selecting

required join points.

An advice is the construct that is responsible for taking actions in the places

defined as joint points. Advice contains the functionality that must be

performed at the particular set of join points. This functionality mainly consists

 45

Chapter 1 – Preliminaries

of some calls to methods of crosscutting concern that must be weaved into

other concerns.

Joint point, pointcut and advice are the basic concepts of AO paradigm. Their

implementations may vary in different AO languages. In present thesis AO

examples of implementation code are described using programming languages

AspectJ (Laddad, 2010) and Java (Arnold, 2005). The preliminaries about

AspectJ language are presented in APPENDIX A.

1.3. Frameworks
A software framework is a reusable „semi-complete” software construction

that can be finished, specialized and selectively changed by users in order to

develop applications, software products and solutions. Roughly, all software

frameworks can be divided into three categories (Adair, 1995; Kaisler, 2005):

 Application frameworks – covering a functionality that can be applied to

different domains. According to (Johnson, 1988), an application

framework is a reusable „semi-complete” application.

 Domain frameworks – capturing knowledge and expertise in a particular

problem domain. Frameworks are built for various purposes and usually

they are specific to one or several domains. Sometimes domain

frameworks are referred to as enterprise application frameworks.

 Supporting frameworks – frameworks that address specific, computer-

related domains such as memory management or file systems. Support

for these kinds of domains is necessary to simplify program

development. Typically, such frameworks are used together with

domain and/or application frameworks and support some internal

mechanisms of the later.

A domain framework, which produces applications that are built from a

collection of interacting objects, is referred to as an object-oriented domain

framework. There are several definitions of an object-oriented domain

framework. For example, Johnson and Foote define an object-oriented domain

framework in the following way:

 46

Chapter 1 – Preliminaries

“A framework is a set of classes that embodies an abstract design

for solutions to a family of related problems.” (Johnson, Foote,

1988).

Gamma et al. define it also in a similar way:

“A framework is a set of cooperating classes that make up a

reusable design for a specific class of software.” (Gamma, et al.,

1994)

In the present thesis the following definitions describing an object-oriented

framework from two different perspectives have been accepted:

“… a framework is a reusable design of all or part of a system that

is represented by a set of abstract classes and the way their

instances interact.” (Johnson, 1997)

“… a framework is the skeleton of an application that can be

customized by an application developer.” (Johnson, 1997)

The concept of an object-oriented framework is build around such fundamental

object-oriented programming (OOP) concepts as class abstractions and class

inheritance. According to (Froehlich et al, 1998), the general structure of an

OO domain framework consists of fixed and variable parts. The fixed part

includes class libraries and the code skeleton that defines the range of

applications that a framework can support (Kirk, 2005). It describes the overall

architecture of an application, that is, its basic components and the

relationships between them. Typically, the skeleton is constructed from a

collection of interfaces and abstract classes, which together specify the

structural and behavioural relationships that the framework supports. The

unchangeable parts of the skeleton or class libraries are called frozen spots

(Froehlich et al, 1998). The parts of a framework where new application-

oriented functionality can be added or customized in some other way are called

hot spots. Hot spots provide one or several hooks (usually abstract operations)

allowing to customize hot spots. A hook is a mechanism allowing users to

customize a framework by tapping into and modifying its inner workings.

Customization can be done by composing and subclassing existing classes

 47

Chapter 1 – Preliminaries

and/or by defining implementations of abstract operations. Object-oriented

frameworks can be classified into white-box frameworks and black-box

frameworks. The main difference between them depends on what techniques

are used to design hot spots: inheritance or composition. In white-box

frameworks, inheritance is the predominant technique used to implement the

hooks. In black-box frameworks, vice versa, the predominant technique is

composition. The customization of a white-box framework requires to

understand the internals of the framework because its behaviour is extended by

creating subclasses, taking advantage of inheritance. A black-box framework

does not require a deep understanding of the framework’s implementation

because the behaviour is extended by composing objects together, and

delegating behaviour between objects. Delegation is the idea that instead of an

object doing something itself, it gives another object the task. A white- box

framework can be converted into a black box framework by replacing over-

ridden methods by message sends to components (Johnson, Foote, 1988). A

framework can be both white-box and black-box at the same time.

Design patterns are often used to refine and optimize the frameworks (Fayad,

Schmidt, 1997). Patterns can help to design hot spots, as well as frozen spots or

other parts of the framework, where flexible and customizable solutions are

required. However patterns help to build parts of frameworks, but do not tell

how to build the whole framework, (Kaisler, 2005). In addition, a pattern gives

only the design idea and an exact solution still has to be implemented to fit the

context of the framework. On the other hand, frameworks do not embody

patterns, just solutions implicated by patterns. The refinement process of the

framework is necessary to apply a certain pattern correctly. It should also be

noted that new design patterns are often discovered namely by designing the

frameworks. In summary, there are two important distinctions between patterns

and frameworks. Firstly, frameworks are complete reusable implementations

whereas patterns are design abstractions. As for the second, patterns are

considerably smaller structures than frameworks (Johnson, 1997).

 48

Chapter 1 – Preliminaries

 49

The present thesis is dealing with the category of aspect-oriented domain

frameworks, namely, white-box frameworks. Aspect-oriented domain

framework is a framework that alongside with traditional object-oriented

mechanisms provides abstract aspects as hot spots. Such hot spots are inherited

by concrete aspects. The applications produced using aspect-oriented domain

frameworks consist of a collection of interacting objects, which are weaved

with aspects provided by the framework. Aspect-oriented domain frameworks

should not be confused with aspect-oriented supporting frameworks (e.g. JBoss

AOP (Fleury, Reverbel, 2003) or Spring AOP (Laddad, 2010)) which provide

the means to implement crosscutting concerns and/or programming constructs

used to specify the crosscutting behaviour of a program.

Chapter 2 – State of the Art

Chapter 2

State of the Art

The chapter presents the critical analysis of the related works on the
aspectization of OO design patterns, paradigm-specific AO design patterns,
compositional properties of design patterns, and the design of AO
frameworks. Section 1 analyzes separation of concerns in the context of
AOP, section 2 – proposed methods to transform OO design patterns into
AO design patterns, section 3 – methods to design the compositions of
patterns and compositional properties of patterns, section 4 – proposed
paradigm-specific AO design patterns, and, finally, section 5 analyzes the
current experiences in the design of AO frameworks.

2.1. Separation of concerns and AOP
Specifications, design and implementations of software systems in the OO

paradigm suffer from tangling and scattering of concerns. Deficiencies of OO

design patterns and their actual implementations have been observed in (Cacho

et al., 2005; Hannemann, Kiczales, 2002; Piveta, Zancanella, 2003) and others.

AOP that originates from the work (Kiczales et al., 1997) attempts to solve the

problem of tangling and scattering of concerns by concern separation. The first

programming language, which was labelled as the “aspect-oriented” one, was

AspectJ (Kiczales et al., 2001). The most important goal of aspect-oriented

programming languages is to localize crosscutting of concerns. However, as

suggested by Robert E. Filman and Daniel P. Friedman, AOP can be thought in

a more general sense:

“AOP can be understood as the desires to make quantified

statements about the behaviour of programs and to have these

quantifications hold over programs written by oblivious

programmers.” (Filman, Friedman, 2001)

 50

Chapter 2 – State of the Art

Many techniques for separating individual concerns were developed long

before the AspectJ (Lopes, 2005). Later, techniques not related to one

particular concern were suggested: composition filters (Aksit, 1992), meta-

level-programming (Kiczales et al., 1991), adaptive programming (Lieberherr

et al., 1994), subject-oriented programming (Harrison, Ossher, 1993), etc.

Although all these techniques have been proposed for separation of concerns,

they are different in their nature and, according to Meslati (Meslati, 2009), at

least the concepts of composition filters approach cannot be directly mapped to

concepts of AOP. Design patterns have also been introduced as a way to

achieve a better separation of concerns. AOP can be implemented in many

different (not necessarily object-oriented) ways, including rule-based systems,

event-based systems (Filman, Friedman, 2001), intentional programming,

meta-programming, generative programming (Czarnecki, Eisenecker, 2000)

and others. All these approaches provide some means to express and to

implement quantified statements. However, they are still different by the

implementation issues they address. For example, the rule-based systems allow

a direct implementation of quantified statements while meta-programming lets

programmer to manipulate the fragments of a program code in a base language

using meta-level language elements. Nevertheless, only the AO languages

introduce special concepts used to describe such quantifications. Already the

AspectJ has unified a wide spectrum of concern separation ideas using

relatively few and simple concepts as well as in a more attractive way than the

previous approaches (Lopes, 2005). The new constructs introduced by AO

languages (concerns, aspects of concerns, pointcuts and advices, intertype

declarations, etc.) allow a programmer to capture the tangled and scattered

concern parts and to keep them in separate localized aspects (Laddad, 2003;

Czarnecki, Eisenecker, 2000). They extend traditional software engineering

paradigms and allow implementing a new kind of architectural patterns. The

main idea is to specify, analyze and implement a software system as a

collection of separate concerns. To this end, many paradigm-independent as

well as paradigm-dependent design problems must be solved. Appropriate

 51

Chapter 2 – State of the Art

design patterns are required to solve these problems. Although aspects have

grown up from OOP, they are also used today together with other paradigms.

For example it is possible to speak about aspects in functional programming

languages (Dantas et al., 2008) or even in logic programming languages

(Filman, Friedman, 2001). It means that the AO paradigm is not an

independent one like the OO paradigm, but a paradigm that is built by

“aspectization” of some other paradigms that remains beyond it. However, in

present thesis only the case where the aspect-oriented paradigm is built over

the object-oriented paradigm is considered. In this case, the problem of

aspectization of OO design patterns arises. The term “aspectization” addresses

the redefinition of OO design patterns in terms of AO paradigm.

2.2. Aspectization of Object-Oriented Design Patterns
In the object-oriented programming, each design pattern defines a

parameterized collaboration of objects or, more exactly, a parameterized

“relationships between classes and objects with defined responsibilities that

act in concert to carry out the solution” (Maioriello, 2002). The OO design

patterns have already been used for some time and became even “part of the

cutting edge of object-oriented technology” (Shalloway, Trott, 2001). Many

such patterns, for example, the Visitor, Decorator, and Observer, are already

well researched and the techniques of their application are elaborated in detail.

AOP has grown out directly from OOP, but, together with objects, it provides a

new kind of entities, namely, aspects. Due to this fact, a number of new pattern

related research questions arise: Does an AO design pattern define a

parameterized collaboration of aspects and what means the term “collaboration

of aspects”? What techniques can be used to develop AO design patterns and

what advantages and shortcomings has each of these techniques got? Does the

aspect-oriented paradigm generate some new patterns that are specific only to

this paradigm? How mature is the AO software engineering paradigm

currently?

 52

Chapter 2 – State of the Art

The problem of the aspect-oriented implementation of OO design patterns is

one far from being simple. A detailed analysis should be made in order to

understand the implementation of which OO design patterns are affected by the

usage of aspects and how. Afterwards, each design pattern must be redefined

from the perspective of AO paradigm. The compositional properties of patterns

also should be investigated. When implementing several design patterns in a

system, they “crosscut each other in multiple heterogeneous ways so that their

separation and composition are far from being trivial” (Cacho et al., 2005).

The aspectization of OO design patterns have been investigated by (Hirschfeld

et al., 2003; Hachani, Bardou, 2002; Noda, Kishi, 2001; Nordberg, 2001;

Nordberg, 2001a; Arnout, Meyer, 2006; Bernardi, DiLucca, 2005; Piveta,

Zancanella, 2003;Cunha et al., 2006).

Generally, the aspectization of OO design patterns has been performed in two

different ways:

 Implementation of the OO design pattern in some OO language, for

example in Java, is directly replaced by the analogous code written in

some AO language, for example, in AspectJ (Hannemann, Kiczales

2002);

 A native AO solution is introduced to the same problems that are

addressed by the OO design pattern (Hachani, Bardou, 2002; Hirschfeld

et al., 2003).

The effectiveness of AOP usually is evaluated by comparing system

implementations as well as the process of their development with and without

AOP (Papapetrou, Papadopoulos, 2004). A number of metrics have been

proposed to measure the effectiveness of the implementation of OO design

patterns in AO languages. Hannemann and Kichales (Hannemann, Kiczales

2002) propose to use metrics suite <code locality, reusability, composability,

(un)plug ability> and demonstrate that applying this suite even for 17 out of 23

GoF patterns the implementation was improved by rewriting from Java to

AspectJ. The quantitative assessment of Java and AspectJ implementations for

the 23 GoF patterns has also been done in (Garcia et al., 2005) and (N. Cacho,

 53

Chapter 2 – State of the Art

et al., 2005). To this end, the authors use the metrics suite <separation of

concerns (SoC), coupling, cohesion, code size > defined in (Sant’Anna, et al.

2003; Garcia 2004). Garcia et al. demonstrate that aspect-oriented

implementations of most of the 23 GoF patterns improve these patterns

regarding the SoC. However, taking into account the whole suite of metrics,

the implementations of only 4 patterns exhibit significant improvements. Thus,

despite the fact that many patterns like Observer, Visitor, Adapter, Composite

and Decorator are confirmed to be better when implemented in AO languages,

there are patterns that have less improvements or can become even more

complicated.

A number of researchers (Lorenz, 1998; Noda, Kishi, 2001; Hachani, Bardou,

2002; Hachani, Bardou, 2003; Schmidmeier et al., 2003) investigated the

benefits of implementing GoF patterns in AspectJ by direct rewriting their

implementation from Java to AspectJ. The research in (Hachani, Bardou, 2002;

Hachani, Bardou, 2003) focuses on the confusion, indirection, encapsulation

breaching, and inheritance related problems raised by the use of OO design

patterns. These problems are mainly induced by code scattering and code

tangling. So, it is reasonable to expect that implementations in AO languages at

least partly will solve these problems. The research has demonstrated that, for

most of GoF patterns, such implementations indeed improve a separate reuse

of both the pattern and the main application code and solve the confusion,

indirection, and encapsulation breaching problems. Inheritance related

problems have also been solved for some patterns and lowered for others.

Similar results were also obtained in (Hirschfeld et al., 2003).

It is likely that the idea of direct rewriting from one language to another has

arisen because some researchers assumed that any design pattern in both

paradigms should be implemented in analogous ways. However, as stated in

(Vaira, Čaplinskas, 2009), the rewriting of particular cases from one

programming language to another can be considered only as samples, but not

as the general solution how the design patterns should be redefined for AOP. In

addition, the idea behind the pattern usually can be implemented in several

 54

Chapter 2 – State of the Art

different ways, and it is not so simple to say that the solution obtained by

rewriting is really the best one.

So, it seems that a better way to implement design patterns, which solve

paradigm-independent (to respect of OO and AO paradigms) design problems,

is not to emulate OO patterns but to express the idea behind the pattern directly

in AOP terms. Despite the fact that such a way is more difficult than the

replacing of OO implementations by the analogous code written in some AO

language, it allows us to implement the patterns in more effective way.

Particularly, (Noble et al., 2007) demonstrated that using the native approach a

number of design patterns (Spectator, Regulator, Patch, Extension,

Heterarchical design) can be implemented in the AOP in a simple and elegant

way. Although these patterns do not belong to the GoF patterns, they describe

a set of solutions to a family of similar design problems. In fact, most of them

should be considered as degenerate collaborations because they, like the

Singleton pattern, include only one role. Besides, it is questionable if the

Heterarchical design pattern is really a design pattern at all. It is rather an

architectural pattern. Nevertheless, the research carried out by Nobel et al.

demonstrates that the native approach is really promising.

The native approach for the implementation some of the GoF patterns

(Template method, Creational patterns, Factory method) has also been used in

(Hanenberg, Schmidmeier, 2003). Inter alia, (Hanenberg et al., 2003) has

demonstrated that Container Introduction pattern, which is difficult to

implement in OOP, can be elegantly implemented in the AOP.

Both aspectization approaches – code rewriting and native – consider AO

design patterns as patterns that describe the interactions among objects and

aspects. In other words, rewriting of patterns as well as the native approach

both aim to improve the implementation of mixed objects and aspects

collaborations. The question of how to apply the patterns to design the

collaborations of aspects still remains open. Open remain also following

questions: Is it possible to implement at least some of GoF design patterns

using aspect-oriented constructs only? Which and how, if it is possible? Is such

 55

Chapter 2 – State of the Art

implementation in some way better than the object-oriented one? How to

measure this? The current thesis attempts to answer these questions.

2.3. Compositional Properties of Aspect-Oriented Design
Patterns

2.3.1. Analysis of the related works
Both aspectization approaches that were analyzed in the previous section deal

only with single design patterns. They do not take into account how separation

of concerns in one pattern will affect compositions of several design patterns.

The compositional properties of aspect-oriented implementation of OO design

patterns obtained by direct rewriting of OO code in some AO language have

been investigated in (Cacho et al., 2005; Denier et al., 2005; Denier, Cointe,

2006).

In (Cacho, et al., 2005) the results of an empirical study that investigates

whether aspect-oriented implementations improves composability of design

patterns in the context of medium-size software systems are presented. Since in

such context the design patterns are composed many times and in different

manner crosscutting each other in multiple heterogeneous ways, it is natural to

expect that aspectization of patterns can significantly improve the

implementations of such compositions. However, the study has showed that the

results depend on the patterns involved, composition intricacies, and other

particular circumstances. In the research, 62 pair-wise compositions of OO

design patterns were investigated. Additionally some compositions involving

more than two patterns have also been investigated. All investigated

compositions have been divided into 4 categories:

 Invocation-based composition when the implementations of the two

composed patterns are disjoint and they have no class in common. The

roles of patterns are only connected through one or more method calls.

This is the simplest form of pattern composition.

 Class-level interlacing when the implementations of two patterns have

one or more classes in common. The roles of patterns are implemented

 56

Chapter 2 – State of the Art

by different sets of methods and attributes in these shared classes. It

means that the involved patterns have coinciding participant classes, but

there is no common method or attribute implementing roles of both

patterns. Consequently, the pattern implementations are interlaced (or

tangled) at the class level.

 Method-level interlacing when the implementations of two patterns

have one or more methods in common. Different pieces of code in these

methods are dedicated to implement roles of both patterns. It means that

the pattern implementations are interlaced at the method level.

 Overlapping when the implementations of two patterns share one or

more statements, attributes, methods, and classes. This combination

style is different from method-level interlacing because here the shared

elements are entirely part of roles in both patterns;

In call based compositions, the design patterns are related by some

dependencies between the classes of different design patterns. In class

overlapping compositions, design patterns overlap by using the same classes in

different roles. Method overlapping compositions are similar to the class

overlapping compositions. The only difference is that patterns overlap using

the same methods. In the completely overlapping compositions, either design

patterns overlap by using several common methods or several classes, or one

design pattern is part of the other. The compositions of OO design patterns

have been transformed into aspect-oriented ones using transformation proposed

by (Hannemann, Kiczales, 2002). The evaluation of AO compositions

implemented in AspectJ language has been performed using such metrics suite

<tangling, cohesion, size, SoC> (Sant’Anna, et al. 2003; Garcia 2004). Both

OO and AO compositions have been evaluated and the results were compared.

The research demonstrated that “the aspectization results depend on the

patterns involved, the composition intricacies, and the application

requirements. In some situations, the aspectization of the pattern composition

is not straightforward and several design options need to be considered.

Sometimes, it requires a global reasoning in order to understand that impact of

 57

Chapter 2 – State of the Art

each design option in the context of the whole system implementation” (Cacho,

et al., 2005). The aspectization of some specific compositions with strong

coupling between the patterns can bring modularity problems. In some cases,

the aspectization of a given design pattern in complex compositions can be not

a good design option taking into account the application requirements because

it reduces the performance of the whole application program. In summary, this

research investigates relatively huge number of pattern compositions and

different composition categories but does not cover all the composition

possibilities. For example, it does not investigate method overlapping.

Denier et al (Denier et al., 2005; Denier, Cointe, 2006) investigated some cases

of composition in the context of JHotDraw framework. This research shows

that there is a need for configuration of composition, which involves aspect

ordering as well as pointcut transformation. For example, the presence of

Composite or Decorator patterns in the base program can have an impact on

the Observer pattern pointcuts. The research investigated various types of

compositions, from aspectized compositions to compositions of aspects,

however the results of the research are insufficient to discover general

tendencies.

Thus, (Cacho et al., 2005; Denier et al., 2005; Denier, Cointe, 2006) analyzed a

number of compositional properties of aspectized by rewriting GoF patterns

including concern separation degree in particular design patterns as well as in

their compositions. However, no one investigated the question, whether it is

possible to separate all concerns in the whole system. No one investigate also

how compositions of design patterns changes involved patterns. However,

these properties are also very important compositional properties, especially, in

the context of AO frameworks. For this reason, an experimental research

described in next subsection has been performed.

2.3.2. Experimental investigation of Separation of Concerns in
the Aspectized Design Pattern Application
The object-oriented framework SimJ has been used as a test-bed to investigate

separation of concerns in the compositions of aspectized by rewriting GoF

 58

Chapter 2 – State of the Art

design patterns described in (Hannemann, Kiczales, 2002). SimJ framework is

intended to be used to build applications for simulations in different

application domains. The supermarket simulator application implementation

has been used in this research. The SimJ framework has been chosen because

its design is strongly based on design patterns. It is also important that design

patterns form compositions in this framework. The following GoF design

patterns have been used in the framework: Singleton, Adapter, Façade, Factory

Method, Flyweight, Iterator, State and Template (Gamma et al., 1994). Since

design patterns tend to overlap and sometimes it is even hard to identify the

particular design pattern correctly, not all design patterns that have been used

in the framework were analyzed.

Only the separation of logging concern has been investigated in the research.

The framework has been aspectized in two different ways – by replacing OO

design patterns with rewritten design patterns in AspectJ and by

reprogramming corresponding SimJ modules in AspectJ without application of

any design patterns – which results have been compared afterwards. Not all

design patterns was rewritten from Java to AspectJ directly. Some

implementations were modified in order to adapt them to the compositions. In

one case the aspectization of Singleton design pattern failed because, in this

case, the singleton was parameterised, whereas the implementation of the

Singleton proposed by (Hannemann, Kiczales, 2002) does not allow using

parameters in the constructor.

The results of the experiment are summarized in the Table 1. Full separation of

the logging concern succeeded only by rewriting the modules Table 1.

However, such aspectization affects all application programs developed using

this framework. This means that although rewriting of design patterns should

be performed in the frameworks in order to avoid changes in application

programs, the aspectization of design patterns by rewriting may not be

sufficient for full separation of concerns. It also follows that the design pattern

aspectization approach proposed by (Hannemann, Kiczales, 2002) in some

cases may reduce the universality of GoF design patterns. The proposed

 59

Chapter 2 – State of the Art

approach is local and does not take into account the interaction of the patterns

in the whole system.

Table 1 Results obtained using two different implementations

 Method

Results

Rewriting design

patterns
Rewriting modules

Separation of
logging concern

Partially separated Fully separated

Units required to
implement logging

concern

1 aspect 2 aspects, 2 classes

Patterns used to
implement the

concern

4 Adapter, 1 Singleton

Affected patterns 4 Adapter, 4 Singleton, 1 Flyweight

Impact on the
application
programs

Absent

All application

programs must be

changed

2.4. Paradigm-Specific Aspect-Oriented Design Patterns
Apart from the design patterns for the design of objects and classes, in the AO

paradigm are also required pure AO design patterns, that is, design patterns for

the design of aspects themselves. The problem of the development of such

patterns is even more complicated than the problem of aspect-oriented

implementation of OO patterns. This problem has been investigated by

(Lorenz, 1998; Noble, 2007; Bynens, Joosen, 2009; Hanenberg, Costanza,

2002; Hanenberg, Schmidmeier, 2003; Laddad, 2003; Schmidmeier, 2004;

Miles, 2004; Griswold et al., 2006; Lagaisse, Joosen, 2006; Bynens et al.,

2007; Menkyna et al., 2010). However the research is still at its early phase,

mostly, based on the occasional experience gained from developing of the

industrial software systems and did not answer a number of important

 60

Chapter 2 – State of the Art

questions: In which different ways can design patterns be used to solve OO and

AO design problems? In which way are the aspects different as classes from

the viewpoint of design patterns and what is the impact of such differences on

the structure and other properties of pure AO design patterns?

The work (Hanenberg, Costanza, 2002) was one of the first on AO-specific

design patterns. In this paper, a number of so called AO strategies have been

proposed. However, the authors had different opinions on how these strategies

should be treated. According to Hanenberg,

“… these strategies are no patterns. The main purpose of

identifying these strategies was to find out what language features

of AspectJ are usually used in what situations. …The strategies have

directly arisen from the usage of AspectJ, so they are the result of

observing AspectJ code.” (Hanenberg, Costanza, 2002)

Hanenberg suggested that at the time it was impossible to develop some AOP –

specific patterns because the aspect-oriented community has still not developed

any common understanding of aspect-oriented programming or had any

commonly accepted design notation. According to Costanza, the proposed

strategies are the first steps towards AO-specific design patterns and even

should be regarded only as some proto-patterns but not the patterns themselves.

Hanenberg and Schmidmeier (Hanenberg, Schmidmeier, 2003) were going one

step ahead. They investigated not only the implementations of some GoF

patterns using the native approach, but proposed also the so-called Pointcut

Method pattern, which “is used, whenever a certain advice is needed whose

execution depends on runtime specific elements” (Hanenberg, Costanza, 2002).

The authors themselves considered Pointcut Method as an AspectJ idiom, but

not as a design pattern, and did not present it in the pattern format. They wrote:

“…we still neglect to put the idioms in such a format because of two

reasons. First, we feel that it is still more important to discuss

typical design decisions in aspect-oriented languages than to claim

that a number of good patterns are found. And second, it is still not

yet clearly determined what language features an aspect-oriented

 61

Chapter 2 – State of the Art

language will provide in the future: the provided language features

still evolve from version to version. Hence, a collection of good

design decisions might be no longer valid in the future because of

language changes in AspectJ.” (Hanenberg, Schmidmeier, 2003)

Nevertheless, the Pointcut Method is expressed in a language independent

AOP vocabulary and should be considered rather as AO-specific design pattern

than as an idiom of AspectJ. According to the classification proposed by

(Menkyna et al., 2010), it belongs to the advice category. (Menkyna et al.,

2010) suggested that the prevailing part of AO-specific design patterns can be

divided into: pointcut patterns, advice patterns, and intertype declaration

patterns.

Up to date, a number of AO-specific design patterns have been proposed also

by other authors. Some of them are:

 Wormhole: “transport context information throughout a method call

chain without the need for parameters” (Laddad, 2003; Bynens, Joosen,

2009; belongs to the category of the pointcut patterns);

 Participant: “connect an abstract pointcut for each subsystem

separately and within that subsystem” (Laddad, 2003; Bynens, Joosen,

2009; belongs to the category of the pointcut patterns);

 Director (Default Interface Implementation): “abstract aspect with

multiple roles as nested interfaces” (Miles, 2004; Bynens, Joosen, 2009;

Menkyna et al., 2010; belongs to the category of the inter-type

declaration patterns);

 Border Control: “set of pointcuts that delimit certain regions in the

base application” (Miles, 2004; Bynens, Joosen, 2009; belongs to the

category of the pointcut patterns);

 Cuckoo’s Egg: “put another object instead of the one that the creator

expected to receive” (Miles, 2004; Menkyna et al., 2010; belongs to the

category of the advice patterns);

 62

Chapter 2 – State of the Art

 Worker Object Creation: “captures the original method execution into

a runnable object” (Laddad, 2003; Schmidmeier, 2004; Menkyna et al.,

2010; belongs to the category of the advice patterns);

 Exception introduction: “solves the problem of the exception handling

in the advice, by catching a checked exception and wrapping it into a

new concern-specific runtime exceptions” (Laddad, 2003; Menkyna et

al., 2010; belongs to the category of the advice patterns); and

 Policy: “defines some policy or rules within the application. A breaking

of such a rule or policy involves issuing a compiler warning or error”

(Miles, 2004; Menkyna et al., 2010; belongs to the category of the inter-

type declaration patterns).

In summary, any of the above presented patterns are elaborated in detail.

Mostly they define individual roles but not collaborations and, consequently,

still should be regarded as fragments of patterns rather than real design

patterns. Nevertheless they should be considered as a valuable contribution to

the field because they are significant milestones towards the AO design pattern

development and probably will stimulate the development of more complex

aspect-oriented design structures. However, there is “still a lot of work”

(Bynens, Joosen, 2009) to be done.

2.5. Aspect-Oriented Framework Design
The application of aspects in the design of various kinds of frameworks has

been investigated by several authors (Rausch et al., 2003; Arpaia, et al, 2008;

Santos et al., 2007; Kulesza et al., 2006). However, in most cases aspects have

been used to design only frozen spots (i.e. unchangeable parts of framework)

or, in the best-case, as supporting means to design OO hot spots but not as an

implementation mechanism of AO hot spots. For example, Rausch et al.

(Rausch et al., 2003) used aspects as a glue code for gluing framework core

and the produced applications. They performed the case study, in which a

small application and a persistence framework were glued by the special

program in AspectJ. They proposed also how to model aspect-oriented gluing

 63

Chapter 2 – State of the Art

in UML. Authors stated that they have modelled framework’s hot spots as

aspects, but indeed they used aspects to glue object-oriented hot spots with an

AO application program. In order to develop an application using such

framework, one still need to develop classes with the intention that they will

implement operations of some abstract framework classes designed as

inheritance-based hot spots and other classes that will be calling operations of

framework interface as composition-based hot spots. Only the necessary

inheritance declarations would be implemented in aspects using intertype

declarations and compositions of classes would be defined by aspects using

pointcuts and advice.

A more exhaustive and a more related to the research issues of present thesis

are the works (Arpaia, et al, 2008; Santos et al., 2007). They investigated the

design of AO frameworks that implement hot spots using customizable

aspects. (Arpaia, et al, 2008) have developed AO framework for applications

required to control the measurement station that tests superconducting magnets

at the European Organization for Nuclear Research (CERN). They have

designed an abstract synchronization aspect that provides reusable code and

behaviour required to design necessary synchronization logic and policies.

Concrete aspects are used for customizing synchronization behaviour and are

particularly responsible for intercepting “components and services interactions

that need to be synchronized and enforce the right synchronization policy in

the right context” (Arpaia, et al, 2008). In (Santos et al., 2007) abstract aspects

are used in a framework to encapsulate into single module hot spots supporting

some framework feature. Authors refer to abstract aspects as specialization

aspects. They propose to express hot spots by specialization aspects and to

implement the applications by extending specialization aspects with concrete

aspects. However, they do not discuss how the AO design patterns can be

applied for this aim.

More complex design structures that involve some idioms of AspectJ were

suggested in (Kulesza et al., 2006). Authors propose how to use extension join

 64

Chapter 2 – State of the Art

points to design hot spots. However, they do also not discuss the application of

AO design patterns.

As discussed above, a number of AO design patterns have been proposed by

(Hanenberg et al., 2003; Laddad, 2003; Miles, 2004; Bynens, Joosen, 2009).

Some of these patterns have been successfully applied in the case studies

described in Chapter 5. It is likely that other patterns can also be successfully

applied to design AO frameworks. However, no report has been published up

to date about the application these patterns in the framework design.

2.6. Summary
In this chapter the approaches used to develop the aspect-oriented design

patterns has been analyzed. The proposed design pattern transformation

techniques were discussed and compositional properties of AO design patterns

have been examined. The known AO-specific design patterns have been

discussed. Some initial attempts to design AO framework have been

considered and it was shown how abstract aspects and idioms of AspectJ have

been used to implement the hot spots. The main conclusions of the chapter are

as follows:

1. There are many techniques that deal with crosscutting of concerns,

though only AOP provides specific programming constructs to deal

with it.

2. The novelty of AO programming constructs and its dependence on the

base software engineering paradigm requires new kind of architectural

and design patterns.

3. Despite the fact that many aspectized design patterns are confirmed to

be better when implemented in AO languages, there are patterns that

have fewer improvements or can become even more complicated.

4. Rewriting of particular cases from one programming language to

another can be considered only as samples, but not as the general

solution how the design patterns should be redefined for AO paradigm.

 65

Chapter 2 – State of the Art

5. Current design pattern aspectization approaches aim to improve the

implementations of mixed objects and aspects collaborations, not to

design the collaborations of aspects.

6. Current aspectized design patterns are not sufficient for complete

separation of concerns. The implementations of these design patterns

are not enough universal and can be applied to a very specific

application context. It is necessary to analyze more general

implementations of design patterns and possible application contexts of

such design patterns.

7. The aspectization of design patterns by rewriting proposed by

(Hannemann, Kiczales, 2002) may not be sufficient for full separation

of concerns when rewriting compositions of patterns and in some cases

it may reduce the universality of GoF design patterns. The proposed

approach is local and does not take into account the interaction of the

patterns in the whole system.

8. AO-specific design patterns still should be regarded as fragments of

patterns rather than real design patterns. Nevertheless they provide a

valuable contribution to the field because they are significant milestones

towards the AO design pattern development and probably will stimulate

the development of more complex aspect-oriented design structures.

9. Nobody has considered the relation between the transformation of

design patterns from one paradigm to another and the character –

paradigm-independent or paradigm-specific – of the problems which

intent to solve these patterns.

10. It is still unknown how to transform OO design patterns into pure AO

design patterns.

11. Although aspects have been used as an instrument to design

unchangeable parts of the frameworks, as supporting means to design

OO hot spots in the frameworks and in several cases even as a

customizable aspects that implement hot spots in the frameworks,

 66

Chapter 2 – State of the Art

 67

nobody analyzes how the AO design patterns can be applied for this

aim.

12. It is still unknown how to use pure AO design patterns to design hot

spots for AO frameworks and, consequently, current AO frameworks

still do not use the aspect-oriented paradigm in its full extent.

The results of this chapter have been published in (Vaira, Čaplinskas, 2011;

Vaira, Čaplinskas, 2011a; Vaira, Čaplinskas, 2009; Vaira, 2009).

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Chapter 3

Development of the methods and
procedures for transformation of GoF
design patterns into pure AO design
patterns

This chapter presents main theoretical results of the doctoral research.
Section 1 proposes the classification of object-oriented and aspect-oriented
design problem solutions. Section 3 describes technique developed for
rewriting paradigm-independent GoF design patterns in terms of aspects.
Section 4 demonstrates detailed analysis of applicability of the technique to
four representative design patterns. Section 5 provides short descriptions of
the remaining sixteen transformed design patterns.

3.1. Classification of Object-Oriented and Aspect-
Oriented Design Problem Solutions
The initial number of GoF design patterns has already required some

categorization in order to organize them properly. The most widely known

two-dimensional pattern categorization is provided in design patterns catalogue

(Gamma, et al., 1994), where they are classified by the purpose and scope of

the particular pattern. Further, the increase of design patterns in numbers and

the necessity to analyze pattern collections from different perspectives

stimulated the appearance of other design pattern classifications, such as

Zimmer (Zimmer 1995) and Buschmann (Buschmann, et al., 1996)

classifications. In order to simplify the understanding of the overall structure of

the Gamma pattern catalogue and to ease the classification of other design

patterns Zimmer proposes the classification of relationships between the pairs

 68

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

of design patterns (Zimmer 1995). According to Zimmer, using this

classification design patterns can be arranged into 3 different layers: basic

design patterns and techniques, design patterns for typical software problems

and design patterns specific to an application domain. Buschmann classifies

design patterns by their granularity and purpose (i.e. two-dimensional

classification). Although the purpose criterion remains the same as in Gamma

catalogue, Buschmann provides wider range of design pattern purposes.

Granularity allows classifying patterns by the level of abstraction of a

particular design pattern. It brings additional architectural and coding patterns

next to design patters. Design patterns are classified into 3 different groups by

granularity: architectural patterns, design patterns and idioms.

All these classifications are well suited to classify design patterns of OO

software design. However, in the present thesis AO paradigm design patterns

are analyzed as well. There exist design patterns also in other paradigms, such

as functional paradigm (Lämmel, Visser, 2002). Design patterns can be easily

categorized by the particular paradigm which they belong to. AO design

patterns according to (Menkyna et al., 2010) can be categorized by taking into

account different AO design mechanisms to which design patterns are focused:

pointcut patterns, advice patterns, and intertype declaration patterns.

Nevertheless, there is no categorization or classification which allows

classifying cross-paradigm design patterns, such as aspectized design patterns

proposed by (Hannemann, Kiczales, 2002). It is also necessary to distinguish

paradigm independency and paradigm specificity of the design problems being

solved by the patterns. It must be considered that AO programs are built over

the OO base program and may result in a variety of mixed design structures.

In order to satisfy the above named requirements necessary to arrange design

patterns of both OO and AO paradigms the following classification of the ways

of solving OO and AO design problems using design patterns has been

considered (Table 2)1.

1 Such problems that are solved by the composition of several patterns are not considered.

 69

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Table 2 The classification of OO and AO design problem solutions

Solutions

Problems

OO solution AO solution
Mixed AO and

OO solution

Paradigm
independent problems
(e.g. communication
of the entities with
different interfaces;
solved by the Adapter
pattern)

Use a pattern
composed of
pattern-
oriented
objects only
(Gamma et al.,
1994)

Use a pattern
composed of
pattern-oriented
aspects only

Use a pattern
composed of
pattern-oriented
aspects and
objects
(Hannemann,
Kiczales, 2002)

OO specific problems
(e.g. making clones of
an existing object;
solved by the
Prototype pattern)

Use a pattern
composed of
pattern-
oriented
objects only
(Gamma et al.,
1994)

Use a pattern
composed of
pattern-oriented
aspects that are
bonded with
base OO
program
(Laddad, 2003,
Miles, 2004)

Use a pattern
composed of
pattern-oriented
aspects that are
bonded with the
base OO
program, and
pattern-oriented
objects
(Hannemann,
Kiczales, 2002,
Laddad, 2003,
Miles, 2004;
Hanenberg,
Unland, 2003)

AO specific problems
(e.g. invoking a chain
of advices when a
pointcut matches;
solved by the Chained
Advice pattern)

Use a pattern
that is
implemented
by an aspect-
aware base OO
program
(Griswold, et
al., 2006;
Bynens,
Joosen, 2009)

Use a pattern
composed of
pattern-oriented
aspects only
(Miles, 2004,
Hanenberg;
Unland, 2003;
Bynens et al.,
2007)

Use a pattern
composed of
pattern-oriented
aspects and an
aspect-aware base
OO program
(Laddad, 2003;
Hanenberg,
Unland, 2003)

This classification can be illustrated by a graphical diagram. Fig. 3 shows two

crosscutting concerns. The boundaries of concerns are represented by a straight

line2. Applications of patterns in the program are represented by large ovals,

aspects – by small stroked ovals. Dashed ovals represent the application of

2 In the models of real-world programs, usually, it is impossible to separate concerns by the straight
line.

 70

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

patterns that solve the problems using mixed solutions. Rectangular shapes

represent classes. Solid lines between classes and aspects represent

associations (including inheritances), dashed lines connect join points in the

classes and pointcuts in the aspects, respectively. The connected classes and

aspects are filled with upward diagonal patterns. Design patterns that solve OO

or AO paradigm-specific problems and are implemented using the constructs

of an appropriate paradigm only are placed at the top of the diagram. Design

patterns that solve the AO problem and are implemented using OO constructs

or, vice versa, design patterns that solve the OO problem and are implemented

using AO constructs are placed in the middle of the diagram. Design patterns

solving paradigm-independent design problems are placed at the bottom of the

diagram.

OO specific
problem solved
by OO solution

OO specific
problem solved
by AO solution

Paradigm independent
problem solved by OO

solution

AO specific
problem solved by

AO solution

Concern 2

Concern 1
Aspects

AO specific
problem solved by

OO solution

Paradigm independent
problem solved by AO

solution

OO or AO problem
Solved by mixed

solution

OO base program

Class

Aspect

Entities

Connections

Paradigm independent
problem solved by mixed

solution

Any type of
association or
inheritance

Pointcut
relation to its
join points

Class
containing
join point

Aspect
containing
pointcut

Fig. 3 A graphical diagram illustrating the classification presented in Table 2 (bigger
diagram can be found in APPENDIX C)

 71

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

The structure of the solution used by such patterns is the same in both AO and

OO paradigms, but the elements that constitute the patterns are different. Fig. 3

demonstrates all ways that can be used to solve design problems using different

implementations of design patterns. Similarly as in (Bynens, Joosen, 2009),

this classification is based on the nature of problems that patterns intend to

solve. The following problems are considered: problems that can be formulated

in a paradigm-independent way, problems that can be formulated only in terms

of the OO paradigm, and problems that can be formulated only in terms of the

AO paradigm. It is supposed that a problem of belonging to any of these

groups can be solved in three different ways: using only OO mechanisms,

using only AO mechanisms, and using both OO and AO mechanisms.

Although from the first view it may look a little confusing that specific OO

design problems can be solved using pure AO patterns or vice versa, it will be

demonstrated later that it is not only possible, but, in some cases, even

reasonable.

In the proposed classification, OO specific patterns (e.g. Prototype, Singleton,

and Composite) belong to the OO solution column, while AO specific patterns

(e.g. Border Control, Abstract Pointcut, Pointcut Method, Template Advice,

Chained Advice, Elementary pointcuts, Pointcut Method) – to the AO solution

column. Using the AO solution to solve OO specific problems, the pattern is

composed of aspects only, but these aspects are bonded with the base OO

program. Examples of such patterns are the Wormhole, Worker Object

Creation, Cuckoo’s Egg and Policy patterns. For example, the Wormhole

pattern solves a problem how to pass context information from a caller object

to some object deep in the call graph. The traditional OO solution is to add a

context parameter to all the intermediate methods that is not needed, but only

passed along the object that calls it. The Wormhole pattern proposes a more

economic of solution. It provides a pattern-oriented aspect that uses a pointcut

to capture the information when it is available, and advice to re-introduce it

when it is needed (Laddad, 2003).

 72

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Mixed solutions depend on the kind of problem to be solved. For example, all

aspectizations of paradigm-independent GoF patterns belong to this class. Such

aspectizations are composed of pattern-oriented aspects and objects

(Hannemann, Kiczales, 2002,). A mixed solution of OO specific GoF patterns

(Prototype, Singleton, and Composite) together with pattern-oriented objects

uses pattern-oriented aspects that are bonded with the base OO program

(Hannemann, Kiczales, 2002,). The Director (Miles, 2004), Container

introduction (Hanenberg, Unland, 2003) and Participant (Laddad, 2003)

patterns are implemented in such a way. Finally, the mixed solution of AO

specific problems is implemented by a pattern that is composed of pattern-

oriented aspects and by an aspect-aware base OO program. The Exception

introduction (Laddad, 2003) and Marker interface (Hanenberg, Unland, 2003)

patterns belong to this class.

An interesting class is the class of OO solutions that solves specific AO design

problems. In this case, any solution is related to naming and annotation

conventions in the base program (Griswold, et al., 2006). For example, having

aspects with complex and hard to understand pointcut definitions, it is

necessary to modify the base program in order to make it more pointcut

friendly. To solve that, it is necessary to design appropriate naming and

annotation conventions for the base program.

Paradigm-independent design patterns can be used to solve problems that

reoccur in the systems implemented using different paradigms. In present

thesis, only two paradigms are investigated: AO paradigm and OO paradigm.

In addition, it is supposed that aspects are built over the OO base program. In

this context, aspects and classes differ in two main points. The first one is the

ability of classes to be instantiated, whereas aspects are singletons by their

nature. The second point is that an aspect is a collection of pointcuts and

advice, whereas a class does not provide such kinds of constructions at all.

Thus, most of the researchers sought to combine both paradigms and proposed

various mixed AO and OO solutions to solve paradigm-independent design

problems. As far as it is known, there are no publications that aim to

 73

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

investigate the class of pure AO solutions solving such problems. However,

(Hanenberg, Unland, 2003) use de facto pure AO implementation of the

Template Method pattern in the Template Advice pattern, although they do not

state this fact explicitly.

Since the class of pure AO patterns that solve paradigm independent design

problems was not investigated at all to date, the remaining part of this chapter

is devoted namely to this question. The 23 GoF design patterns are

investigated, the fact that only 20 out of this class of patterns solve paradigm-

independent design problems is demonstrated and a way how these patterns

can be implemented using AOP constructs only is proposed.

3.2. Aspect-Oriented Solutions of Paradigm Independent
Design Problems
If some of GoF patterns can be implemented in AspectJ by using AO

constructs only, it can be considered as a pattern that, at least to respect of OO

and AO paradigms, solves a paradigm-independent design problem. Despite

the fact that, in such a case, both OO and AO patterns solve the same design

problem, their applicability differs. The OO pattern solves this problem for

objects, whereas the AO pattern solves it for aspects. The proposed

methodology, to rewrite paradigm-independent 23 GoF design patterns for

aspects is briefly considered.

Despite the fact that aspects and classes are different concepts, they have some

similarities. AO paradigm language implementations, such as AspectJ, inherit

elements of a larger scale base paradigm, on which it is built up. Resulted

AspectJ language implementation still includes other small scale paradigm

elements that are introduced by AOP (Vranić, 2001). This results in complex

structures that can be problematic to be developed. Since crosscutting concerns

can have and maintain states, the aspects, similarly as classes, can define data

members and behaviours for crosscutting concerns (Laddad, 2003), be abstract,

and implement interfaces. It is also possible to built inheritance hierarchies for

abstract aspects. However, other than classes, aspects cannot be directly

 74

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

instantiated. Although it is possible to have several instances of aspects in

entire program, only one instance of the aspect can be created for any

particular object or control flow in a program related to predefined pointcut.

Thus, in the context of the present thesis, they are treated as singletons.

Consequently, similar and/or slightly changed structure of OO GoF design

patterns can be used to build the AO ones. The only necessary task is to replace

OO language constructs by the appropriate AO language – AspectJ in this

research – constructs.

Fig. 4 Redesign technique

It can be done in 3 steps (Fig. 4):

 If a GoF pattern, possibly, with a reduced applicability, can be

implemented using only singletons, this pattern is regarded as a

candidate to be a paradigm independent pattern for rewriting in AspectJ.

 All the classes in the candidate pattern should be replaced with aspects

and all object constructors should be replaced by the AspectJ static

method aspectOf, which allows accessing the instance of the aspect. A

constructor with arguments can be modelled by an appropriate aspect

method or often even replaced simply by the assignment of appropriate

default values to the data members in the aspect. Data members,

behaviours, and inheritance relations in aspects mainly imitate that of

the classes. The pointcuts and advices that trigger aspects should be

modelled depending on the OO base program. For this reason, in each

pattern at least one class as a placeholder for a join point that initiates

the pattern is necessary.

 The candidate pattern should be analyzed in order to discover and

remove irrelevant data members and methods. Some data members and

methods can become irrelevant because the aspects which replaced the

classes are singletons and because of transformation of some pattern

Analyze Perform
design pattern

redesign of
design pattern

Evaluate
resulted
design pattern

 75

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

members to fit the pointcut model in the pattern. It may happen, that

afterwards some design patterns (e.g. Singleton) “disappear”, because

they become so simple that cannot be regarded further as proper design

patterns.

The next section provides some essential examples of the application of this

approach, remaining descriptions of transformed design patterns are presented

in APPENDIX B.

3.3. Investigation of the Applicability of GoF Patterns to
Design the Aspects
If even at first glance, it might appear that pure AO design patterns can be

defined by analogy to the OO design patterns, it is not true. However, some

OO patterns become trivial for aspects because they are directly supported by

AOP. For example, nobody needs the Singleton pattern for aspects because the

aspects itself may be used as singletons. Some other patterns are not affected in

any way by change of objects to aspects. For example, the Façade pattern is

implemented in an analogous way for both, objects and aspects. It also seems

that some OO patterns, for example, the Prototype, solve paradigm-dependent

design problems and are senseless for aspects.

It is obvious that the GoF patterns – Singleton, Prototype, and Composite – are

senseless in the aspect-oriented paradigm. The Singleton pattern becomes

trivial after rewriting it in AspectJ and “disappears”. The essence of Prototype

pattern is the ability of objects to clone its instances (i.e. create several

instances of the same class based on already existing instance). However, in

AOP no one needs to clone the aspects. Even if it is possible to use several

instances of aspects per object or per control flow, it is not possible to control

instantiation in the way to support cloning. Thus, Singleton and Prototype

design patterns are senseless in AO paradigm. Senseless is also the Composite

pattern because, in the case of OO paradigm, its implementation requires to

hold the references from one to another instance of Composite object. In the

case of AO paradigm, the solution results in an eternal loop when only one

 76

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

container aspect is defined and this aspect is referenced in a tree at least two

times. Despite the fact that, theoretically, it is possible to create the AO

implementation, in which the container aspect refers to only one instance of

leaf aspect or in which all container instances are defined in a tree as separate

aspects, such implementation is purposeless because the context to which it

could be applied remains unclear and it is questionable whether this context

still corresponds to the Composite design pattern.

The remaining 20 out of 23 GoF patterns can be adapted to solve the aspect

design problems. They have been rewritten in AspectJ using only pure AO

constructs. However, the AO implementation of 5 design patterns – Chain of

Responsibility, Proxy, Interpreter, Memento, and Flyweight – in some way is

more constrained than OO implementation because it is impossible to work

with several instances of an aspect at the same time. For example, it is

impossible to have several instantiation of the same Proxy aspect

simultaneously.

Using the above described approach, examples of the AOP implementation of

those out of GoF design patterns, which can be adapted to solve the aspect

design problems, are considered. Although the implementation of all such

patterns has been investigated in details, the 4 representative examples are

described (other 16 design patterns are presented in shortened form of

description in APPENDIX B): the simple Adapter design pattern, more

complex Bridge design pattern, Factory Method design pattern and Chain of

Responsibility design pattern. The Factory Method pattern is chosen as an

example of creational design pattern. The Chain of Responsibility pattern is

chosen as a most representative example for the above mentioned group of the

design patterns (Proxy, Interpreter, Memento, Flyweight, and Chain of

Responsibility). This pattern includes constraints on references as well as

constraints on instantiation of aspects, which manifest itself also in other

patterns of this group.

UML class diagrams are used to model both OO and AO patterns. To represent

aspects in UML models following stereotypes are used: Aspect, Advice,

 77

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Pointcut, and Join point. The latter one represents the relation between the

pointcut, described in the aspect, and its actual join points in classes. While

modelling the AO patterns by UML, the traditional UML relations such as

inheritance, association, and dependency are used. For a better understanding

of the diagrams the AspectJ representations of AO design patterns are

described.

+clientVoid()

-target : Target

Client
-target

1
+request()

Target

void clientVoid(){
 target.request();
}

+request()

-adaptee : Adaptee

Adapter
-adaptee

1
+specificRequest()

Adaptee

void request(){
 adaptee.specificRequest();
}

Fig. 5 Adapter design pattern (OO solution)

GoF Adapter design pattern is considered in (Fig. 5). The essential elements of

this pattern are:

 Client, the class containing clientVoid method,

 Target, the abstract class containing an abstract request operation,

 Adapter, a subclass of the Target class that overwrites the request

operation with the request method, and

 Adaptee, the class containing the specificRequest method that is adapted

by the request method in the Adapter class.

 78

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

«Joinpoint»

+clientVoid() : void

Client
-adaptee

1

+request() : void
«Pointcut» +applyAdapter()

-adaptee : Adaptee

«Aspect»Adapter

+request() : void
«Advice» +after(): applyAdapter()

«Aspect»Target

+specificRequest() : void

«Aspect»Adaptee

void request(){
 adaptee.specificRequest();
}

Fig. 6 Adapter design pattern (AO solution)

In order to rewrite the Adapter design pattern for aspects, the proposed

transformation technique is applied. In the AO solution (Fig. 6) the classes

Target, Adapter and Adaptee are replaced with the aspects Target, Adapter and

Adaptee. The class Client remains. However, it is not considered as a part of

resulted design pattern and serves rather as a placeholder for a join point that

triggers the Adapter aspect. In other words, the Client class is a technical class

that should not be regarded as a first order citizen. Therefore, a solution that

consists only of aspects is received (Fig. 7).

AspectPointcut

In
te

rf
ac

e
B

In
te

rf
ac

e
A

Adapter aspect

Fig. 7. The idea behind Aspect adapter

Example 2 presents the AspectJ code for this solution. Abstract aspect Target

contains an abstract operation request and an advice body for pointcut

ApplyAdapter. The aspect Adaptee contains the specificRequest method that

must be adapted by the Adapter aspect. The Adapter aspect contains the

concrete request method body and the concrete applyAdapter pointcut. The

 79

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Adapter aspect uses the specificRequest method defined in the Adaptee aspect

inside the request method.
1 public abstract aspect Target {
2 void request() ;
3 after(): applyAdapter () {
4 request();
5 }
6 }
7
8 public aspect Adaptee {
9 public void specificRequest() {
10 System.out.printLn(“Executing specific request..”)
11 }
12 }
13
14 public aspect Adapter extends Target {
15 Adaptee adaptee = Adaptee.aspectof();
16 void request(){
17 System.out.println(“Executing inherited request..”);
18 adaptee.specificRequest();
19 }
20
21 pointcut applyAdapter()
22 :execution(public static void main())&&target(ClientClass);
23 }

Example 2 AspectJ code of the Adapter design pattern

This example demonstrates how to rewrite the Adapter and other simple

object-oriented 23 GoF patterns in terms of the AO paradigm or, in other

words, it demonstrates that it is possible to apply these patterns to solve aspect

design problems. However the question arises as to how useful and for which

purposes pure AO patterns are. In order to answer this question, some practical

usage of the Adapter AO design pattern is demonstrated below.

The main intent of Adapter is to convert the programming interface of one

entity into that of another (Fig. 7). In our case, entities are aspects. The

complex Logger concern consisting of several aspects is considered (Fig. 8).

 80

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

+displayLogInfo() : void
«Pointcut» +concreteResource()
«Pointcut» +logStart()
«Pointcut» +logWait()
«Pointcut» +logEnd()
«Advice» +after(): logStart()
«Advice» +after(): logWait()
«Advice» +after(): logEnd()

«Aspect»ResourceLogger

+displayLogInfo() : void
«Pointcut» +concreteResource()

-eventLogger : EventLogger

«Aspect»Resource2Logger

+print() : void
+getTime() : int
«Pointcut» +logEvents()
«Advice» +after(): logEvents()

«Aspect»EventLogger

+displayLogInfo() : void
«Pointcut» +conreteResource()

«Aspect»Resource1Logger

-eventLogger

1

void displayLogInfo(){
 eventLogger.print(resourceName);
 eventLogger.print(" at time ");
 eventLogger.print(eventLogger.getTime());
}

pointcut logStart()
: execution(* *.start*(*)) && concreteResource();

Fig. 8 Application of the AO design pattern Adapter

There are different kinds of things – events and resources – that must be logged

by a Logger. Logging of these different kinds of things requires different

behaviour. So, it is not reasonable to implement such a Logger as one aspect,

because this aspect will have many unrelated pointcuts and a repeating code.

To avoid that, different aspects to log each kind of things can be used. Thus,

two aspects responsible for logging events and resources have been created

(Fig. 8). However, the resources also may be different. For this reason the

ResourceLogger aspect must be an abstract aspect that could be inherited by

concrete resource loggers: Resource1Logger and Resource2Logger. In

ResourceLogger there is an abstract operation displayLogInfo and an abstract

pointcut concreteResource that is overridden in concrete resource loggers. The

pointcut concreteResource is part of all the other pointcuts and helps to

specialize them without rewriting each pointcut. In the Resource2Logger

operations defined in the EventLogger, namely, print and getTime, should be

used. In order to adapt these operations to Resource2Logger, the Adapter

design pattern presented in Fig. 6 has been applied. In a similar way this

problem may be also solved using the Template Method design pattern. In this

 81

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

case, an abstract aspect should be created and the needed methods could be

inherited by all the other aspects. However, it is not always desirable for all

aspects to inherit these methods (e.g. some of particular loggers do not need to

adapt them at all). Thus such a solution is applicable only in some cases.

+operation() : void

-implementor : Implementor

Abstraction

+implement() : void

Implementor

+refinedOperation() : void

RefinedAbstraction

+implement() : void

Implementor1

+implement() : void

Implementor2

+clientVoid() : void

Client

void operation(){
 implementor.implement();
}

-implementor

clientVoid(){
 refinedAbstraction.refinedOperation();
 refinedAbstraction.operation(implementor1);
 refinedAbstraction.operation(Implementor2);
}

Fig. 9. Bridge design pattern (OO solution)

In order to demonstrate a more complex situation, the GoF Bridge pattern is

considered (Fig. 9). The main intent of Bridge is to separate the abstract

elements of a class from the implementation details. The essential elements of

this pattern are:

 Abstraction defines the interface that the client uses for interaction with

this abstraction. It is the only an interface that is known to the client and

he makes requests directly to the Abstraction object. This object

maintains a reference to an Implementor object. Through this reference

the client’s requests are forwarded by the Abstraction to the

Implementor.

 Implementor defines the interface for any and all the implementations of

the Abstraction. The Abstraction interface and the Implementor

interface can differ and this is an additional source of flexibility

provided by this pattern. According to Gamma, "Typically the

Implementor interface provides only primitive operations, and

 82

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Abstraction defines higher-level operations based on these primitives."

(Gamma et al., 1994)

 RefinedAbstraction is any and all the extensions to the Abstraction

class, and

 Any ConcreteImplementor implements the interface defined by the

Implementor class or, in other words, defines a concrete implementation

of the Abstraction.

+operation() : void

«Aspect»Abstraction

+refinedOperation()
«Pointcut» +applyBridge()
«Advice» +after(): applyBridge()

«Aspect»RefinedAbstraction

+implement(in x : string) : void

«Aspect»Implementor
-implementor

2

+implement(in x : string) : void

«Aspect»Implementor1

+implement(in x : string) : void

«Aspect»Implementor2

+clientVoid(in x : string) : void

-x : string

Client«Joinpoint»

void operation(Implementor implementor) {
 implementor.implement(x);
 }

after(){
 refinedOperation(“--”);
 operation(Implementor1.aspectof());
 operation(Implementor2.aspectof());
}

Fig. 10 Bridge Design pattern (AO solution)

Similarly as in the Adapter pattern, in the Bridge pattern (Fig. 10) classes are

also replaced by aspects. However, some other changes have been made, too. It

is because the situation, when the Client class sends request to the Abstraction

class and asks to execute the abstract operation operation, cannot be modelled

directly in the AO pattern. In our solution, the abstract operation operation of

the aspect Abstraction is triggered by the pointcut applyBridge and the aspect

Abstraction forwards to the aspect Implementor the reference to the required

implementor as a parameter of the AspectOf method. As a result the solution

that consists only of aspects is received (Fig. 11).

 83

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Concrete
Implementor

aspect 2

Concrete
Implementor

aspect 1

Pointcut

Im
pl

em
en

to
r

bridge

A
bs

tr
ac

tio
n

Refined
Abstraction

aspect

Fig. 11 The idea behind Aspect Bridge

Example 3 presents the AspectJ code for this solution. It is possible to see in

this program (lines 12, 13) that the required implementor is invoked in a

similar way as in the OO solution.
1 public abstract aspect Abstraction {
2 String x;
3
4 public void operation(Implementor implementor) {
5 implementor.implement(x);
6 }
7
8 after(String x): applyBridge(x) {
9
10 this.x = x;
11 operation(Implementor1.aspectof());
12 operation(Implementor2.aspectof());
13 }
14 }
15
16 public aspect RefinedAbstraction extends Abstraction {
17
18 public void operation(Implementor implementor) {
19
20 //refinement
21 x = “--”+x+“--”;
22
23 implementor.implement(x);
24 }
25
26 pointcut a String x) : pplyBridge(
27 call(public void clientVoid(String))&&args(x);
28
29 }

Example 3 AspectJ code of the Bridge design pattern

 84

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

As far as the AO paradigm deals with the singletons only, it may seem that AO

solutions for the creational design patterns have no sense. Nevertheless, the

fact that aspects cannot be created or, be more precise, can only be created as

one instance at a time, does not mean that AO analogues of Abstract Factory

or Factory Method are senseless. Although in the AO world there are no

factories, it is still necessary to obtain references to aspects for many times and

the creational patterns are still very useful for this purpose. It will be

demonstrated bellow what the AO solutions of creational patterns look like and

such patterns can be applied.

+clientVoid() : void

Client

+factoryMethod(in type : string) : Product
+print(in product : Product) : void

Factory

+getName() : string

Product

+getName() : string

ConcreteProduct1

+getName() : string

ConcreteProduct2

Product factoryMethod(String type){
 if(type == "product1"){
 return new ConcreteProduct1();
 }else if(type == "product2"){
 return new ConcreteProduct2();
 }else{
 return null;
 }
}

clienVoid(){
 factory.print(factoryMethod("product1"));
 factory.print(factoryMethod("product2"));
}

Fig. 12 Factory Method design pattern (OO solution)

The main purpose of the Factory Method design pattern is to define the

interface for creating objects that belong to different classes. Usually the

pattern defines an abstract method for creating the objects, which can then be

overridden in subclasses with a view to specify the derived type of object that

should be created. However, another variation of the pattern is used – the

parameterized factory method (Fig. 12), in which the parameter that defines the

 85

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

type of object is passed to the factory method (Gamma et al., 1994). The

essential elements of the Factory Method pattern are:

 Factory, a class that contains the operation factoryMethod which

returns the object of type Product depending on the requested

parameter type,

 Product, an abstract class that contains the abstract operation getName

and defines the interface of Product type objects,

 ConcreteProduct1 and ConcreteProduct2, concrete Product classes that

implement the getName operation using some concrete method, and

 Client, the class that invokes the factoryMethod of the Factory object.

+factoryMethod(in type : string)
+print(in product : Product) : void
«Pointcut» +applyFactory()
«Advice» +after(): applyFactory()

«Aspect»Factory

+clientVoid(in x : string) : void

-x : string

Client

«Joinpoint»

-product

1
+getName() : string

«Aspect»Product

+getName() : string

«Aspect»
ConcreteProduct1

+getName() : string

«Aspect»
ConcreteProduct2

Product factoryMethod(String type){
 if(type == "product1"){
 return ConcreteProduct1.aspectOf();
 }else if(type == "product2"){
 return ConcreteProduct2.aspectOf();
 }else{
 return null;
 }
}

Fig. 13 Factory Method design pattern (AO solution)

In the AO solution (Fig. 13) the pattern helps to get a reference to the needed

aspect that is defined by the given parameter. An analogous result as in the OO

version of this design pattern is received. The difference is that instances of the

classes are created each time the main factory method is executed, while in the

AO pattern, the instance of an aspect is created only once. In Fig. 10, this

method is named factoryMethod and is responsible for handling different

references to aspects. The product aspects are defined as ConcreteProduct1

 86

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

and ConcreteProduct2 that extend the abstract aspect Product and a solution

that consists only of aspects is received (Fig. 14).

Concrete Product
aspect 2

Concrete Product
aspect 1

Pointcut

P
ro

d
uc

t

Create referenceFactory aspect

Fig. 14 The idea behind Aspect Factory Method

AspectJ code for this solution is presented in Example 4. The cardinality of

Product association in Fig. 13 is set to one, because only one aspect at a

moment could be used by Factory as defined in the code of the Factory aspect

(Example 4).
1 public aspect Factory {
2
3 static public Product factoryMethod(String type){
4 if(type == "product1"){
5 return ConcreteProduct1.aspectOf();
6 }else if(type == "product2"){
7 return ConcreteProduct2.aspectOf();
8 }else{
9 return null;
10 }
11 }
12
13 private void print(Product product){
14 System.out.printf(product.getName()+"\n");
15 }
16
17 pointcut applyRequest(String x) :
18 call(public void clientVoid(String))&&args(x);
19
20
21 after(String x): applyRequest(x) {
22 print(factoryMethod(x));
23 }
24 }
25

Example 4 AspectJ code of the Factory method design pattern

 87

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

This code demonstrates that despite the fact that aspects are singletons. The

AO pattern preserves all essential elements of the OO pattern. An example of

the application of the AO Factory Method pattern is given in Fig. 15. In this

example the complex Logger concern consisting of several aspects is used

again (Fig. 8).

+createLogger(in type : string)
+print(in loger : Logger) : void
«Pointcut» +logEvent()
«Pointcut» +logResource()
«Advice» +after(): logEvent()
«Advice» +after(): logResource()

«Aspect»LoggerFactory

+clientVoid(in x : string) : void

-x : string

Client

«Joinpoint»

#println() : void
#getTime() : int
+displayInfo() : void

«Aspect»
Logger

+displayInfo() : void

«Aspect»
EventLogger

+displayInfo() : void
«Pointcut» +setAction()
«Advice» +before(): setAction()

-action : string

«Aspect»
ResourceLogger

Logger createLogger(String type){
 if(type == "event"){
 return EventLogger.aspectOf();
 }else if(type == "resource"){
 return ResourceLogger.aspectOf();
 }else{
 return null;
 }
}

print(Logger logger){
 logger.displayInfo();
}

«Joinpoint»

after(): logEvent() {
 print(create("event");
}
after() : logResource(){
 print(create("resource"));
}

Fig. 15 Application of the AO Factory Method design pattern

In this case, the abstract aspect Logger represents product interface, the aspects

ResourceLogger and EventLogger represent concrete products, and the aspect

LoggerFactory represents a factory. The Factory operation createLogger

represents a parameterized factory method and is responsible for referencing

calls for the needed aspect. The pointcuts and advices in the factory

LoggerFactory decide which logger should be handled by the print method.

The pointcuts and advices are now separated from their behaviours that are

defined in concrete logger methods named displayInfo. Such a structure of

aspects is reasonable in the cases when concrete loggers need to have pointcuts

and advices responsible for handling behaviours uncommon to other concrete

loggers and defined directly in the concrete logger aspects as it is in the

ResourceLogger aspect.

 88

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Finally, the Chain of Responsibility (CoR) design pattern as the most

representative example of the AO design patterns with the reduced

applicability is considered.

+handleRequest() : void
+setNext(in handler : Handler) : void

-successor : Handler

Handler

+handleRequest() : void

ConcreteHandler1

+handleRequest() : void

ConcreteHandler2

-successor

+clientVoid() : void

-handler : ConcreteHandler1
-tmp : ConcreteHandler2

Client

clientVoid(){
 tmp.setNext(new ConcreteHandler1());
 handler.setNext(tmp);

 handler.handleRequest();
}

-handler

1..*

Fig. 16. Chain of Responsibility design pattern (OO solution)

The intent of the CoR design pattern is to “chain the receiving objects and pass

the request along the chain until an object handles it” (Gamma et al., 1994).

The essential elements of this pattern are (Fig. 16):

 Handler, an abstract class that contains the handleRequest operation and

defines an interface of Handler type objects;

 ConcreteHandler1 and ConcreteHandler2, concrete Handler classes

that overwrite the handleRequest operation with a concrete method, that

handles an appropriate request and forwards other requests to its

successor in the chain; and

 Client, the class that invokes the handleRequest.

 89

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

+handleRequest() : void
+setNext(in handler : Handler) : void

-successor : Handler

«Aspect»Handler

+handleRequest() : void

«Aspect»
ConcreteHandler1

+handleRequest() : void

«Aspect»
ConcreteHandler2

-successor

«Pointcut» +applyRequest() : void
«Advice» +after(): ApplyRequest()

«Aspect»Application

after(){
 Handler handler1 = ConcreteHandler1.aspectOf();
 Handler handler2 = ConcreteHandler2.aspectOf();
 handler1.setNext(hadler2);

 handler1.handleRequest();
}

-handler

0..*

+clientVoid()

Class1

«Joinpoint»

Fig. 17 Chain of Responsibility design pattern (AO solution)

In the AO solution (Fig. 17) of the CoR design pattern all classes are replaced

by aspects as it is required by the proposed methodology. In this solution,

differently than in the OO solution, it is impossible to use several instances of

the same, concrete handlers (Fig. 17), because each concrete handler has one

and only one instance. In the general case, the number of the concrete handlers

is not limited. However, for the reasons of simplicity, Fig. 17 shows two

concrete handlers only. One more restriction caused by the fact that aspects

behave like singletons is impossibility to include the same aspect into the chain

for several times, because in such a case the recursion created by the cyclic

nature of the successor association (Fig. 17) falls into an eternal loop. Fig. 18

presents the problem solved by the CoR pattern consisting only of aspects.

 90

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

Concrete Handler
aspect 2

Concrete Handler
aspect 1

Pointcut

H
an

dl
er

Create Chain of
Handlers

Next Handler

Fig. 18 The idea behind Aspect Chain of Responsibility

The example bellow (Fig. 19) demonstrates the applicability of the AO Chain

of Responsibility pattern. In this example the same complex Logger concern

consisting of several aspects is used (Fig. 8). The problem is changed slightly

to be suitable to apply to the CoR design pattern.

«Pointcut» +applyRequest()
«Advice» +after(): applyRequest()

«Aspect»Application

+clientvoid() : void

Client

«Joinpoint»

+setNext(in logger : Logger) : void
+displayLogInfo(in msg : string, in isOn : bool) : void
#doDisplayLogInfo(in msg : string) : void

-next : Logger

«Aspect»Logger

+displayLogInfo(in msg : string, in isOn : bool) : void
#doDisplayLogInfo(in msg : string) : void

«Aspect»ResourceLogger

+doDisplayLogInfo(in msg : string) : void

«Aspect»EventLogger

-next1

-mainLogger, secondLogger

2

after(): applyRequest(){
 Logger mainLogger = EventLogger.aspectOf();
 Logger secondLogger = ResourceLogger.aspectOf();

 mainLogger.setNext(secondLogger);
 mainLogger.displayInfo("Message to be loged", x);
}

Fig. 19 Application of the AO Chain of Responsibility design pattern

Thus, there still are two different loggers – ResourceLogger and EventLogger,

but there is a need to perform logging at some of join points using both of

them, and using only one of them at some other join points. The rule when and

how it should be done is defined by overwriting displayLogInfo in concrete

 91

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

loggers. Concrete loggers can also have other defined pointcuts and advices

that are specific only to concrete loggers ResourceLogger or EventLogger.

3.4. Summary
The chapter investigates the nature of software design patterns and

demonstrates that some software design problems do not depend on a

particular software engineering paradigm that is applied. However, it

investigates in detail two paradigms only: aspect-oriented paradigm and object-

oriented paradigm. The chapter proposes a classification of the ways of solving

design problems using OO and AO design patterns. The proposed

classification contributes to the better understanding of relations among the

design problems and the design patterns. The subset of 23 GoF object oriented

design patterns (20 GoF patterns) which solve paradigm-independent design

problems and can be transformed into pure AO design patterns (GoFAO

patterns) has been identified. It has been proven that aspect-oriented constructs

are sufficient to implement 20 of GoF design patterns, with regard that 5 of

them are exposed to some reduced applicability. The rules how to transform 20

GoF design patterns into GoFAO design patterns have been proposed and

application of the transformation rules for the 23 GoF design patterns has been

demonstrated. To our knowledge, the issues of the development of pure AO

design patterns on the basis of the 23 GoF design patterns up to time were not

investigated. In the aspect-oriented programming languages such design

patterns can be implemented using only aspect-oriented constructs. The main

conclusions of the chapter are as follows:

1. Although there are design patterns that provide mixed AO and OO

solutions to solve paradigm-independent design problems, no

publications that aim to investigate the class of pure AO design patterns

that provide AO solutions solving paradigm-independent design

problems have been presented.

2. Some software system design problems can be stated as independent

from the particular software engineering paradigm that is applied.

 92

Chapter 3 – Development of the methods and procedures for transformation of GoF design
patterns into pure AO design patterns

 93

However, this is confirmed for two paradigms only: aspect-oriented

paradigm and object-oriented paradigm.

3. Taking into account that aspects and classes are similar constructs and

that the main constraint for reusing OO structures to design aspects is

that aspects are treated as singletons, it follows that similar and/or

slightly changed structure of OO GoF design patterns can be used to

build the pure AO design patterns. The only necessary task is to replace

OO language constructs by the appropriate AO language constructs.

4. Although originally the 23 GoF design patterns have been proposed in

the context of object-oriented systems, only two of these patterns –

Prototype and Composite – solve specific object-oriented design

problems. Design problems solved by 20 of 23 GoF patterns arise also

in other paradigms including the aspect-oriented one.

The results of this chapter have been published in (Vaira, Čaplinskas, 2011b;

Vaira, Čaplinskas, 2009).

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

Chapter 4

Empirical Evaluation of Application
of Transformed Design Patterns

This chapter presents empirical evaluation results. Three case studies were
performed for this aim. Section 1 provides first case study which has been
performed to evaluate design pattern transformation technique using one
design pattern only, namely Factory Method design pattern. It is stated as
the critical research case. Section 2 provides second case study which has
been performed to evaluate transformed GoFAO design pattern applicability
to redesign OO SimJ framework. The case corresponds to the
demonstrative one. Section 3 provides third case study which has been
performed to evaluate transformed GoFAO design pattern applicability to
develop AO SimpleW framework from scratch. The case also corresponds
to the demonstrative one.

4.1. Evaluation of the Hypotheses Using Case Studies
The main aim of this chapter is to present exemplary case studies showing how

object-oriented design patterns can be redesigned into pure aspect-oriented

design patterns and applied to design AO domain frameworks. Three case

studies have been used for experimental evaluation of the proposed redesign

technique. The case studies are performed to provide detailed analysis of

redesign technique application to a real life system design. The above

presented research consists mainly of theoretical reasoning and models of the

redesigned patterns. However, it does not give any insights about practical

application of the transformation technique except some hypothetical

application context. The results of this research provide strong evidence in the

form of implementation diagrams and detailed descriptions that such design

 94

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

patterns are applicable in the design of real life systems. It can be stated as a

qualitative experimental evaluation of the previous theoretical research.

A case study is an empirical research method that aims at the investigation of

some phenomena in their context (Runeson, Höst, 2009). The thesis

investigates the application impact of GoFAO design patterns on the design of

domain AO white-box frameworks. It is a positivist case study (Benbasat et al.,

1987) because it measures variables, tests hypotheses and draws inferences

from our samples to a whole population of AO domain white-box frameworks.

An explanation of a given phenomena is desired but not in the form of a causal

relationship. Both, the design results as well as the design process itself, are

investigated. Different research methodologies can be applied for this aim. In

the present thesis the constructive research methodology has been selected.

According to Kari Lukka (Lukka, 2003), the constructive research is an

experimental research procedure that can be used to test hypothesis by the

development of an innovative construction, which implements the assumptions

of these hypothesis. Generally, the novel construction should be an abstract

notion with great, in fact infinite, number of potential realizations. In our case

it is an AO domain framework. The innovative construction and its

development process are considered as test instruments to validate, refine or

even to develop entirely new hypothesis that is done by a profound analysis of

what works (or does not work) in practice. Thus, the constructive research, in

parallel with some other methodologies of experimental research, can be

viewed as a kind of case research methodology. This methodology is “an

alternative which applies a strong, problem-solving type of intervention and an

intensive attempt to draw theoretical conclusions based on the empirical work”

(Lukka, 2003). One of the advantages of the constructive research

methodology is that it allows not only to test and investigate the properties of

the innovative construction but also to study its development process.

According to the conventional view, case studies should be used for

falsification of the hypothesis only. Case study itself cannot prove any

hypothesis and should be linked to some hypothetico-deductive model of

 95

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

explanation. However, the closeness of the case study to real-world situations

and its multiple wealth of details argue that this view is only partially correct.

In some cases the results of case study can be successfully generalized

(Flyvbjerg, 2004). It depends upon the case one is speaking of, and how it is

chosen. The generalization ability of case studies can be increased by the

strategic selection of cases (Ragin, 1992). The selected case should be either a

critical or a typical case. A critical case is an atypical or extreme case that is

used, in parallel with typical or representative cases, to test hypothesis in

critical situations. From the point of view of our research, a representative

example is the framework that is designed using at least one design pattern of

each kind – creational, structural, behavioural – of AO GoF 20 patterns and a

critical case is one that requires application of all AO GoF 20 patterns. For this

experimental research one critical case and two representative cases have been

selected.

Although this research similarly to any other case study cannot provide

conclusions of statistical significance, different kinds of evidence, figures and

statements are linked together to support strong and relevant conclusions.

Some quantitative data are also used: such as code line number, number of data

members, number of involved abstract and specialized entities, number of hook

methods, number of defined abstract and specialized operations, number of

invocations of these operations, etc. Mainly, the Guidelines for Conducting and

Reporting Case Study Research in Software Engineering prepared by Per

Runeson and Martin Höst (Runeson, Höst, 2009) are followed. Quantitative

data has been collected by measurements, qualitative – by monitoring,

analyzing, comprehending and generalizing the framework development

process.

A case study approach has been used to test the stated hypothesis and the

constructive research methodology (Crnkovic, 2010) was applied for

experimental research on the application of aspect design patterns in the

development of aspect-oriented application frameworks. In order to develop an

aspect-oriented domain framework, one must design abstract aspects

 96

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

representing hot spots. It is not an easy task to achieve. A number of object-

oriented design patterns, first of all 23 GoF design patterns, have been

proposed to ease the design of object-oriented frameworks (Gamma et al.,

1994). A number of propositions (Hannemann, Kiczales, 2002; Noda, Kishi,

2001; Hachani, Bardou, 2003) have been proposed how to transform 23 GoF

patterns in the aspect-oriented ones, however, with the purpose to develop

more effective patterns for objects design. Of course, such patterns are not

appropriate for aspects design. Present thesis demonstrates how 20 of GoF

patterns can be transformed into pure aspect-oriented patterns (20 GoFAO

patterns) that are purported for aspects design. The experimental research has

been designed with the aim to validate the following hypotheses:

 efficiency of designs is improved by the usage of pure AO design

patterns combined with GoF design patterns;

 the usage of pure AO design patterns allows the designing of new kind

of hot spots in white-box AO domain frameworks (i.e. hot spots

represented by abstract aspects);

 the usage of pure AO designs patterns reduces crosscutting in AO

domain frameworks;

 the development of AO domain frameworks using GoFAO design

patterns has no particular impact on the overall run-time performance of

the applications developed using such frameworks.

In addition, this research investigates also the development of AO domain

white-box frameworks considering that they are implemented in AspectJ and

Java languages using 20 GoFAO patterns. There exist two basic ways how an

AO domain framework can be developed: 1) to develop the framework from

scratch; 2) to transform some existing OO domain framework into aspect-

oriented one.

 97

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

4.2. A Case Study 1: Implementation of Pure Aspect-
Oriented Factory Method Design Pattern

4.2.1. Research Methodology
The Factory Method design pattern has been chosen for this research to

perform evaluation of the proposed design pattern transformation technique.

The case of Factory Method design pattern can be treated as a critical case

(Ragin, 1992) because it corresponds to the creational design patterns, which

are less to be likely acceptable for redesigning them into aspects, because they

are highly related to creation of objects. The creation of aspects is far different

from the creation of objects, because aspects are singletons by their nature and

its creation in most AO language implementations is handled by aspect weaver

automatically. Hence, this case study presents strong evidence that even

creational OO design patterns can be adapted to design AO design patterns.

The main questions to be answered are if such AO design patterns are

applicable in real life applications and if AO representation of Factory Method

design pattern changes its purpose anyhow?

This research is based on qualitative data only. It is also slightly different from

the remaining case studies. This case study analyzes only one design pattern

and describes in details its transformation process. The resulted design of AO

Factory Method design pattern is also applied in the second case study. The

steps of this particular case study are highly related to the proposed

transformation technique (Table 3).

 98

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

Table 3 The research methodology of Case Study 1

Case study process
steps

Transformation of OO design pattern

1. Analyze design
pattern. Document
observations and
findings.

Analyze if OO design pattern can be implemented using
singletons only. Decide whether it can be regarded as a
candidate design pattern for rewriting it to AspectJ.
Document the design using UML diagrams.

2. Perform redesign
of design pattern.
Design and
implement aspects.

Replace all classes in the candidate pattern by aspects.
Develop the necessary AspectJ code of aspects.

3. Evaluate resulted
design pattern.
Document
observations and
findings, and collect
other qualitative data

Analyze the candidate pattern in order to discover and
remove irrelevant data members and methods.
Document the design using UML diagrams, describe
observations and findings.

5. Apply resulted
design pattern in the
context of OO
framework.

Rework the parts of the OO framework affected by some
crosscutting of concerns. Develop the AspectJ code of
aspects. Document the design using UML diagrams,
describe observations and findings.

6. Analyze and
generalize the
collected data,
evaluate hypothesis

Analyze collected data, comparing OO design, AO design
and framework design of the analyzed design pattern.

4.2.2. Research settings
Factory Method GoF design pattern has been chosen for transformation into

GoFAO design pattern. According to (Gamma et al., 1994) Factory Method

design pattern can have several variations of the final design structure. The one

that has been described in the theoretical part of the present thesis relies on

parameterized factory method, in which parameters are used to identify what

type of product must be created. The design presented in this particular case

study is based on inheritance mechanism, when objects are created by

extending abstract factory class and defining a number of concrete

implementations of factory method for creating each product.

 99

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

OO simulation framework SimJ has been used as an experimental system in

order to evaluate the application of the transformed Factory Method design

pattern. SimJ framework contains only one crosscutting concern, namely,

logging. SimJ is purported to design discrete events based simulation

applications and can be regarded as a typical representative of simulation

frameworks. All examples are presented using (Unified Modelling Language)

UML class diagrams and stereotyped class diagrams for aspects. The resulted

applications are implemented using Java and AspectJ (Kiczales et al., 2001)

programming languages.

4.2.3. Observations and findings
In the case, when the Factory Method design pattern is used, it may seem that

the AO solution has no sense, because Factory Method belongs to the

creational pattern category and is highly related to creation of objects. In the

AO paradigm in most cases one is dealing with the singletons only and in fact

the creation of aspects cannot be managed directly by other aspects. However,

it does not mean that the redesign technique can not be performed on Factory

Method design pattern. The creation of aspects can be replaced by passing a

reference to already created aspect. In order to do this AspectOf method instead

of constructor method can be used. AspectOf corresponds to an analogue

InstanceOf that is used for referencing singletons. It will be demonstrated that

AO solution of Factory Method can be redesigned using proposed technique.

 100

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

+clientVoid() : void

Client

+factoryMethod() : Product
+print(in product : Product) : void

Factory

+getName() : string

Product

+getName() : string

ConcreteProduct1

+getName() : string

ConcreteProduct2

clientVoid(){
 f1 = new ConcreteFactory1();
 f2 = new ConcreteFactory2();
 f1.print(f1.factoryMethod());
 f2.print(f2.factoryMethod());
}

+factoryMethod() : Product

ConcreteFactory1

+factoryMethod() : Product

ConcreteFactory2

Product factoryMethod(){
 return new ConcreteProduct1();
}

Fig. 20 Factory Method design pattern (OO solution)

The first step is to perform analysis of the pattern to inspect if it can be

regarded as a candidate for rewriting. The Factory Method design pattern

defines an abstract method that can be overridden by subclasses for creating

objects that belong to different classes (Gamma et al., 1994). There are several

other variations of the pattern (e.g. the parameterized factory method), but in

this particular case the general one is used. The main elements of the general

case of Factory Method (see Fig. 20) design pattern are:

 Factory, an abstract class that contains abstract operation

factoryMethod, which is overridden by its subclasses,

 ConcreteFactory1 and ConcreteFactory2, concrete Factory classes

overriding factoryMethod, which creates and returns the object of

ConcreteProduct1 or ConcreteProduct2 respectively.

 Product, an abstract class that contains the abstract operation getName

and defines the interface of Product type objects,

 ConcreteProduct1 and ConcreteProduct2, concrete Product classes that

implement the getName operation using some concrete method, and

 101

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

 Client, the class that invokes the factoryMethod of the Factory object.

There is no critical reason indicating that Factory Method design pattern can

not be implemented using singletons only. Abstract classes can be replaced by

abstract aspects, subclasses by specializing aspects. The constructors of

ConcreteProduct1 and ConcreteProduct2 can be replaced by AspectOf. All

other operations remain the same as in classes.

When it is decided that the Factory Method is a candidate for redesigning, the

second step can be performed in Fig. 21. The resulted AO Factory Method

solution helps to get a reference to the necessary aspect defined by specialized

Factory aspect. This is an analogous solution to that of OO Factory Method

design pattern. The main difference is that instances of aspects are created only

once and each time factoryMethod is executed particular Product instance is

passed as an argument.

+factoryMethod() : Product
+print(in product : Product) : void

«Aspect»Factory

+clientVoid(in x : string) : void

-x : string

Client

«Joinpoint»

+getName() : string

«Aspect»Product

+getName() : string

«Aspect»
ConcreteProduct1

+getName() : string

«Aspect»
ConcreteProduct2

+factoryMethod() : Product
«Pointcut» +applyFactory()
«Advice» +after(): applyFactory()

«Aspect»ConcreteFactory1

+factoryMethod() : Product
«Pointcut» +applyFactory()
«Advice» +after(): applyFactory()

«Aspect»ConcreteFactory2

Product factoryMethod(){
 return ConcreteProduct1.aspectOf();
}

after() : applyFactory(){
 print(factoryMethod());
}

Fig. 21 Factory Method design pattern (AO solution)

The last step of evaluation of resulted pattern involves possible refactorings to

enhance the resulted design and to test its applicability. The main variation of

the pattern can be performed by changing or adding pointcuts and advice. The

 102

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

current model includes pointcuts and advice in subaspects of Factory aspect

and in this way it is defined when factoryMethod operation is invoked. Another

place for defining pointcuts and advice could be subaspects of Product aspect.

More comprehensive designs of pattern behaviour could be achieved by

predefining some pointcuts or advice in abstract aspects. The important

difference between AO design pattern and its OO analogue is that the

developer is limited by the number of predefined subaspects that can be used at

the same time (except the above mentioned cases of per object or per control

flow aspects). However, it does not change the principal behaviour of this

design pattern and demonstrates that AO design pattern preserves all essential

elements of the OO pattern.

An example of the application of the AO Factory Method pattern is analyzed in

the following part of the section. In this example, the complex logging concern

in a simulation domain framework is analyzed.

SimJ simulation framework is used as an experimental system providing

necessary context for implementing AO Factory Method design pattern. The

main research interest is concentrated on logging concern, which has a

crosscutting issues that need to be eliminated and the feature of logging that

needs to be made customizable. SimJ is a simulation framework used for

developing simulation applications based on discrete events.

The logging concern in a framework suffers from crosscutting. Pieces of the

code belonging to it are scattered and tangled through the remaining part of a

framework. The complexity of a logging functionality of this framework

makes it a sufficient candidate to apply the AO Factory Method design pattern

presented in Fig. 21. The framework has several different kinds of things to be

logged and must remain customizable in a concrete specialization of a

framework. The current version of the framework allows customizing logging.

However, it is handled beyond the bounds of logging concern individually by

every entity that needs to be logged. The main purpose of application of AOP

is to exclude all pieces of code related to logging concern and combine them in

 103

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

aspects. Although the design of these aspects is not an ordinary task to

complete, design pattern could be applied to handle it.

+getTime() : double
+print() : void
«Hook» +dispayInfo() : void
«Pointcut» +enableFeatures()
«Advice» +after(): enableFeatures()

-isOn : bool

«Aspect»
Logger

+displayInfo() : void

«Aspect»EventLogger

+displayInfo() : void

FinalLogger

«Hook» +create()
«Pointcut» +logEvent()
«Pointcut» +logObject()

«Aspect»
LoggerFactory

+create() : Logger
«Pointcut» +logScanResourcesEvent()
«Advice» +after(): logScanResourcesEvent()

«Aspect»EventLoggerFactory

+create() : Logger
«Pointcut» +logFinalEvent()
«Advice» +after(): LogFinalEvent()

«Aspect»FinalLoggerFactory

+displayInfo()
«Hook» +doDisplayInfo()
«Pointcut» +logObject()
«Advice» +before(): logObject()

ResourceLogger

+create() : Logger
«Pointcut» +logCashDesk()
«Advice» +after(): logCashDesk()

«Aspect»
CashDeskLoggerFactory

+create() : Logger
«Pointcut» +logShoppingArea()
«Advice» +after(): logShoppingArea()

«Aspect»
ShoppingAreaLoggerFactory

+doDisplayInfo()

«Aspect»
CashDeskLogger

+doDisplayInfo()

«Aspect»ShoppingAreaLogger

-logger

-eLogger

-fLogger

-saLogger

-cdLogger

Fig. 22 Application of the AO Factory Method design pattern

The AO Factory Method design pattern was introduced in order to deal with

the following issues: different logging behaviour for resources and several

kinds of events were necessary as well as the triggering complexity of this

behaviour required its separation. Different behaviour of logging was modelled

using product hierarchy in Factory Method pattern. The triggering structure of

logging behaviour was designed using hierarchy of factories Fig. 21. The

resulted implementation of logging concern is presented in Fig. 22. The UML

diagram contains complete design that includes two additional instances of

Template Method (design pattern is usually used in composition with

factories). The stereotype “Hook” is used to denote customizable framework

methods in aspects.

Consequently, the following advantages can be noticed:

 all the logging functionality and related code is localized in one place,

 104

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

 the customization of logging concern can be carried out separately from

the remaining hot spots.

This also means that maintenance and unplug ability features of the logging

were increased. This implementation allows flexible customization so that

logging of events and resources can be done separately and the join points

triggering logging behaviours can be customized independently. A high

number of aspects can be considered as a shortcoming. This is probably related

to the complexity of the logging concern behaviour. However, more often a

higher number of smaller entities is considered as an advantage rather than a

shortcoming.

4.3. A Case Study 2: Application of Pure Aspect-
Oriented Design Patterns in the Redesign of Aspect-
Oriented Frameworks

4.3.1. Research Methodology
For this particular case study the case that is constrained by the existing design

of the OO framework is used. In such case some OO part of the framework

design should be replaced by the relevant AO design. It is obvious that only

those parts of a framework that are affected by some crosscutting of concerns

should be reworked. If the tangled and scattered code over the whole

framework is present or some Singletons are implemented, it is advisable to

consider the reasonability of the implementation of hot spots in the form of

aspects (Monteiro, 2006). The main steps of the research methodology are

summarized in Table 4. It provides some cycle that is finished. The resulted

data is compared at several iterations in order to reject or promote the

hypothesis raised. The qualitative data produced by this research includes a

brief description of the research steps performed, UML diagrams of the

resulted design patterns and the summarization of the results confirming

hypothesis. The quantitative data correspond to the data of the measurements

carried out for each iteration of the cycle.

 105

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

Table 4 The research methodology

Case study process
steps

Reworking of OO framework

1. Identify what
aspects should be
designed.

Identify crosscutting, which should be implemented as
aspects in the OO framework. Identify what parts of the
framework are affected by crosscutting and should be
reworked. Decide what new hot spots are to be added to the
framework and which of aspects should be used to
implement these hot spots.

2. Decide what design
patterns should be
applied to design
identified aspects

Decide what aspect should be designed in order to
implement new hot spots, examine what design problems
should be solved designing these aspects, and determine
which of the AO GoF 20 design patterns can be applied for
this aim.

3. Design and
implement aspects,
document
observations and
findings, and collect
other qualitative data.

Design required aspects: apply required AO GoF 20 patterns,
document the design using UML diagrams. Observe and
describe in details the whole design process. Rework the
parts of the OO framework affected by some crosscutting of
concerns, develop the AspectJ code of aspects.

4. Perform
measurements, test
code and collect
quantitative data.

Use build-in tools of development platform (Eclipse,
NetBeans) to collect static quantitative data. Prepare required
test cases, perform measurements and collect quantitative
dynamic data.

5. Evaluate the
structure of the code
according to the
criteria.

Check whether the AspectJ code is already acceptable.
Improve the design of code and go back to step 3 if the
refactoring of code is still required.

6. Analyze and
generalize the
collected data,
evaluate hypotheses

Analyze the collected data for each design pattern separately
comparing both OO and AO framework designs.

4.3.2. Research Settings
OO simulation framework SimJ has been chosen for transformation into AO

domain framework. SimJ is relatively small academic framework containing

only one crosscutting concern, namely, logging. It is purported to design

simulation applications based on discrete events and can be regarded as a

typical representative of simulation frameworks. SimJ provides 5 hot spots

 106

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

(simulation, events, resources, entities, entity factory). SimJ is relatively

mature framework which has already been improved many times.

All required code for the framework has been written in Java and AspectJ

programming languages. Eclipse SDK 3.6 and NetBeans IDE 6.9.1

development platforms have been used for developing and testing the

framework. Eclipse SDK 3.6 has been used as run time environment for the

SimJ. All measurements have been done on computer with AMD Athlon dual

core 2.61 GHz processor, 2 GB of RAM, and Microsoft Windows XP SP3

operating system, using built-in tools of Eclipse SDK 3.6 and NetBeans IDE

6.9.1.

The design results are documented using UML-like notation. The stereotype

<<hook>> is used to note the hooks. The hot spots are commented by

appropriate notes.

4.3.3. Observations and Findings
The OO framework SimJ provides 5 hot spots and contains only one

crosscutting concern, namely, logging. The framework is designed in such a

way, that logging is split in 3 specialized parts (a part for each hot spot) that,

using appropriate hooks, can be adapted independently for a particular

application. Thus, the logging affects 3 of 5 hot spots. The code, related to

logging, is scattered over in 7 classes. It has been decided to remove this code

and to use it to develop abstract aspects that would implement new hot spot

named Logger. It was necessary to remove this code in such a way that the

remaining code is still correct. The amount of efforts required for reworking

will not be discussed, because it is out of scope of this research. However, in

our case it was not a big problem. The AO Template Method design pattern

was applied to combine the removed code into aspects. This is the way in

which 3 aspects that implement default behaviour to all resource logging have

been designed. Such a solution allows customizing in the applications some

part of this behaviour because, in our case, the AO Template Method pattern

allows to provide an abstract method implementing a hook. Since the default

 107

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

behaviour of the original OO framework provides only one kind of events,

exactly one additional aspect to implement the default behaviour for event

logging has been designed. It has no abstract methods and, consequently, does

not provide any hooks. For the reasons of efficiency, it has also been decided

to use this aspect to implement the subsidiary logging related functionality

(printing messages, getting time values). However, this functionality should be

shared with the resource logging as well. It has been decided to apply the AO

Adapter design pattern as the most reasonable design decision to solve this

problem. The resulting design is presented in Fig. 23. It provides one

additional hot spot (Logger) that can be customized in the applications by

overriding the provided hook method.

+displayInfo() : void
«Hook» +doDisplayInfo()
«Pointcut» +concreteResource()
«Pointcut» +logStart()
«Pointcut» +logWait()
«Pointcut» +logEnd()
«Advice» +after(): logStart()
«Advice» +after(): logWait()
«Advice» +after(): logEnd()

«Aspect»ResourceLogger

+doDisplayInfo() : void
«Pointcut» +concreteResource()

-eventLogger : EventLogger

«Aspect»ShoppigLogger

+getTime() : double
+print() : void
«Pointcut» +logEvents()
«Advice» +after(): logEvents()
«Pointcut» +enableFeatures()
«Advice» +after(): enableFeatures()

-isOn : bool

«Aspect»EventLogger

+doDisplayInfo() : void
«Pointcut» +conreteResource()

«Aspect»CashDeskLogger

-eventLogger

1

void doDisplayInfo(){
 eventLogger.print(resourceName);
 eventLogger.print(" at time ");
 eventLogger.print(eventLogger.getTime());
}

Logger hot spot
(Template Method and Adapter patterns)

framework

application

Fig. 23 SimJ Logger concern after first development iteration

This design improves maintainability and unplug ability of the logging

comparing to the original OO framework because all the logging functionality

and the related code is collected together and the resource logging can be

customized using the additional hot spot. The quantitative data related to this

design iteration will be presented and analyzed in the next section.

It is obvious, that the design can be further improved, because it does not allow

to customize the event logging. For this reason the second design iteration has

been performed. Since it is reasonable to model logging behaviour of

 108

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

resources and events by the behaviour of a hierarchy of more specific loggers

(Fig. 24), the AO Factory Method design pattern has been applied to build this

hierarchy. This design pattern separates also the logging behaviour from the

entities that trigger this behaviour, because it splits the hierarchy into the

factories and product hierarchies. In the product hierarchy, all required

operations can be lifted to the top, to the abstract aspect Logger, therefore the

AO Adapter design pattern is no longer necessary (Fig. 24). On the other hand,

the AO Template Method design pattern was applied to design hooks for Final

Logger and Event logger. So, in the final design 3 additional hook methods

were designed for the logging hotspot (Fig. 24).

Logger hot spot
(Factory Method and 2 Template Methods)

+getTime() : double
+print() : void
«Hook» +dispayInfo() : void
«Pointcut» +enableFeatures()
«Advice» +after(): enableFeatures()

-isOn : bool

«Aspect»
Logger

+displayInfo() : void

«Aspect»EventLogger

+displayInfo() : void

FinalLogger

«Hook» +create()
«Pointcut» +logEvent()
«Pointcut» +logObject()

«Aspect»
LoggerFactory

+create() : Logger
«Pointcut» +logScanResourcesEvent()
«Advice» +after(): logScanResourcesEvent()

«Aspect»EventLoggerFactory

+create() : Logger
«Pointcut» +logFinalEvent()
«Advice» +after(): LogFinalEvent()

«Aspect»FinalLoggerFactory

+displayInfo()
«Hook» +doDisplayInfo()
«Pointcut» +logObject()
«Advice» +before(): logObject()

ResourceLogger

+create() : Logger
«Pointcut» +logCashDesk()
«Advice» +after(): logCashDesk()

«Aspect»
CashDeskLoggerFactory

+create() : Logger
«Pointcut» +logShoppingArea()
«Advice» +after(): logShoppingArea()

«Aspect»
ShoppingAreaLoggerFactory

+doDisplayInfo()

«Aspect»
CashDeskLogger

+doDisplayInfo()

«Aspect»ShoppingAreaLogger

-logger

-eLogger

-fLogger

-saLogger

-cdLogger

Framework

Application

Fig. 24 SimJ Logger concern after second development iteration

Thus the final design is an evidence that AO GoF 20 design patterns allows to

design abstract aspects that facilitates the extension of OO framework with the

 109

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

new hot spots and that application of these patterns reduces crosscutting in the

framework.

4.3.4. Measurements and Data Analysis
During both SimJ framework development iterations some quantitative data

about the structure of code and about performance of applications produced

using AO SimJ framework have been collected. They are presented bellow

(Fig. 25, Fig. 26) by corresponding bar graphs. Every graph contains three

bars: “O” bar corresponds to OO implementation, “A1” bar to AO

implementation after first development iteration, “A2” bar to AO

implementation after second development iteration. The measurements in Fig.

25 are presented as quantities and in Fig. 26a - 26b as milliseconds. Data about

the structure of code (Fig. 25) demonstrate that the complexity of code

generally decreases. Numbers of code lines and data members remain almost

the same. The first AO development iteration produced less code than the OO

analogue. However, the second design iteration increases the number of code

lines and it becomes greater than in the OO analogue, but the change is

insignificant and can be considered as acceptable. Besides, the increase of lines

is caused by the extended capabilities of logging customization, but not as a

cause of the application of AO design patterns. The greater number of entities

(i.e. classes and aspects) is caused by finer granularity of the implementation

code. It is useful because entities are becoming smaller and less complex.

During both development iterations customization was extended by providing

one additional AO hot spot. However, the number of hook methods has been

decreased comparing to OO implementation. This is caused by reduced

crosscutting of logging concern. The two additional hook methods have been

provided by extended customization during second development iteration A2

than during A1. The number of methods, advice, calls, and pointcuts decreases

also in both, A1 and A2 cases. The first development iteration produced fewer

methods and less advice than the second, while the second iteration – fewer

external calls and pointcuts than the first one.

 110

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

11471100 1167

O A1 A2

70 70 71

O A1 A2

12

7
9

O A1 A2

102
85 96

O A1 A2

126

68
47

O A1 A2

Code Lines Data Members
and References

Hook
Methods

Methods
and Advice

External Calls
and Pointcuts

20 23
30

O A1 A2

Classes and
Aspects

Fig. 25 static quantitative data of measurements (SimJ framework)

The tests of applications produced by the AO SimJ framework revealed some

interesting data. An application has been produced after every design iteration

and for each application two tests were performed. In the first test, the

application was executed using the logging that aggregates the registered data

(Fig. 26a), in the second test a usual logging functionality has been used (Fig.

26b). Each test has been executed 50 times in two different modes: 50 separate

executions of the application (execution time) and 50 application executions in

a continuous cycle (continuous execution time). All executions were performed

using the same configuration of the application. Every test was performed for

1000000 simulation time units, which are equal to approximately 44000 cycles

of simulation processing and 25 test executions per testing case. The results are

presented as average values of all 50 executions.

263.68 286.04

203.8

O A1 A2

Continuous
execution time (ms)

321.2
378.8

287.5

O A1 A2

Execution time (ms)

(a)

4275.6

6151.9
4965.4

O A1 A2

Continuous
execution time (ms)

4048.8

5993.2
4867.5

O A1 A2

Execution time (ms)

(b)

Fig. 26 testing data of measurements (SimJ framework)

After the first design iteration the performance of the application, especially in

the second mode of execution, decreased a little, but it increased again after the

second design iteration. This was an unexpected result that cannot be

completely explained on the basis of our observations and requires further

investigation. However, the most reasonable explanation suggests that the

initial loss of performance in the second iteration and its restoration in the third

 111

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

iteration is directly related to the particular design patterns that have been

applied.

4.4. Application of Pure Aspect-Oriented Design
Patterns in the Development of Aspect-Oriented
Frameworks: A Case Study 3

4.4.1. Research Methodology
This case study is contrary to the second case study presented above. It is

performed by developing the AO framework from scratch (Table 5).

Table 5 The research methodology

Case study process
steps

Developing AO framework

1. Identify what
aspects should be
designed.

Identify modules that should be designed in a crosscutting
manner and should be implemented as aspects. Decide which
hot spots should be designed in using AOP and which OOP
in the framework.

2. Decide what design
patterns should be
applied to design
identified aspects

Decide what aspect should be designed in order to
implement AO hot spots, examine what design problems
should be solved designing these aspects, and determine
which of the AO GoF 20 design patterns can be applied for
this aim.

3. Design and
implement aspects,
document
observations and
findings, and collect
other qualitative data.

Design required aspects: apply required AO GoF 20 patterns;
document the design using UML diagrams. Observe and
describe in details the whole design process. Rework the
parts of the OO framework affected by some crosscutting of
concerns. Develop the AspectJ code of aspects.

4. Perform
measurements, test
code, and collect
quantitative data.

Use build-in tools of development platform (Eclipse,
NetBeans) to collect static quantitative data. Prepare required
test cases, perform measurements, and collect quantitative
dynamic data.

5. Evaluate the
structure of the code
according to criteria.

Check whether the AspectJ code is already acceptable.
Improve the design of code and go back to the step 3 if the
refactoring of code still is required.

6. Analyze and
generalize the
collected data,
evaluate hypothesis

Analyze the collected data for each design pattern separately,
comparing both OO and AO framework designs.

 112

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

In such case the crosscutting behaviours should be identified at the early

development phases. The main steps of our research methodology are

summarized in Table 5. It provides some cycle that is finished. The resulted data

is compared at several iterations in order to reject or promote the hypothesis

raised. The qualitative data produced by this research includes: brief

description of the research steps performed, UML diagrams of the resulted

design patterns, and the summarization of the results confirming hypothesis.

The quantitative data correspond to the data of the measurements carried out

for each iteration of the cycle

4.4.2. Research Settings
SimpleW AO framework has been developed aiming to implement simple

personal web portals from scratch. The framework has four crosscutting

concerns (logging and error detection, synchronization of content navigation

processes, synchronization of content configuration processes, data security

and validation) and provides three hot spots (Logger, Navigation,

Configuration) implemented as aspects. It also provides some non aspect-

oriented hot spots to specialize various types of interactive resources (menus,

links, and contents) as well as features such as content presentation language,

user management mechanisms, etc. It was designed for the research purposes.

All required code for the framework has been written in Java and AspectJ

programming languages. Eclipse SDK 3.6 and NetBeans IDE 6.9.1

development platforms have been used for developing and testing the

framework. Apache Tomcat 6.0 and MySQL 5.1 were used as run time

environment for the SimpleW framework. All measurements have been done

on computer with AMD Athlon dual core 2.61 GHz processor, 2 GB of RAM,

and Microsoft Windows XP SP3 operating system, using built-in tools of

Eclipse SDK 3.6 and NetBeans IDE 6.9.1.

The design results are documented using UML-like notation. The stereotype

<<hook>> is used to note the hooks. The hot spots are commented by

appropriate notes.

 113

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

4.4.3. Observations and Findings
During the initial analysis of the requirements for the second framework it has

been decided that 13 modules have to be designed: configuration, database,

file, language, logging, resource, menu, breadcrumb navigation, security,

session, system menu, user and web tier. Four modules were identified as the

crosscutting concerns of the framework: configuration, security, breadcrumb

navigation and logging. Every non-crosscutting module can be added by using

OO module factory hotspot and every module that is related to content

demonstration can be added by using resource OO factory method. Several

core modules also contain OO hotspots: data module, menu and web tier. Data

module hot spot allows the development of additional database handlers. Menu

hot spot allows the development of any number of required menus with

contents. Web tier contains several OO hot spots allowing the development of

various web interface components. AO hot spots have been designed for the

following crosscutting modules: configuration module, breadcrumb navigation

module and logging module. Configuration module allows additional context

loading features to be implemented using context loading hot spot.

Breadcrumb navigation module provides navigation hot spots that can be used

for adding new types of navigations and defining additional behaviours to the

existing ones. Logging module also has several hot spots for developing

different logging performers and logging behaviours in a module. Security

module, at the moment, does not require any hot spot to be designed. The

details of OO hot spots and modules, except some quantitative data, are not

discussed in this research. The main focus of this case study is on the

crosscutting modules. All four crosscutting modules are explained using UML

diagrams and implementation code examples.

Configuration module is responsible for defining and loading framework

configuration parameters. Some general framework parameters can be defined

and loaded using configuration module. However, there are many parameters

related to other modules: language module, data module and session module.

Parameter defining can be implemented separately by using OO design.

 114

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

However, the loading of the necessary parameters every time the web site is

accessed or the parameters are changed requires to design a configuration

module in a crosscutting manner. This is the main reason that context loader

hot spot has been designed. The design of configuration module has been

carried out using 3 design iterations.

During the first design iteration four different aspects have been designed:

ConfigurationContextLoader, DataContextLoader, LanguageContextLoader

and SessionContextLoader (Fig. 27).

«Pointcut» +systemStart()
«Advice» +before():systemStart()

-cm : ConfigurationManager

«Aspect»
ConfigurationContextLoader

«Pointcut» +systemStart()
«Advice» +before():systemStart()
«Pointcut» +systemEnd()
+after():systemEnd()

-db : DataManager

«Aspect»DataContextLoader

«Pointcut» +systemStart()
«Advice» +after():systemStart()

-lm : LanguageManager
-cm : ConfigurationManager

«Aspect»
LanguageContextLoader

«Pointcut» +systemStart()
+updateSession() : void
«Advice» +after():systemStart()()

-ssm
-cm : SessionManager

«Aspect»
SessionContextLoader

Fig. 27 SimpleW Context Loader concern after first development iteration

Although the pointcuts in the aspects are represented by the same name the

actual contents of a pointcuts is slightly different. The difference is caused

mainly by the necessity of maintaining a particular ordering of context loading.

Such design could be optimized by choosing common pointcut for all aspects

and defining the context loading order in advice. That’s what exactly has been

done in the second design iteration of context loader module (Fig. 28).

 115

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

«Pointcut» +systemStart()
«Advice» +after():systemStart()

-cm : ConfigurationManager

«Aspect»
ConfigurationContextLoader

«Advice» +before():ConfigurationContextLoader.systemStart()
«Pointcut» +systemEnd()
+after():systemEnd()

-db : DataManager

«Aspect»DataContextLoader

«Advice» +after():ConfigurationContextLoader.systemStart()

-lm : LanguageManager
-cm : ConfigurationManager

«Aspect»
LanguageContextLoader

+updateSession() : void
«Advice» +after():ConfigurationContextLoader.systemStart()()

-ssm
-cm : SessionManager

«Aspect»
SessionContextLoader

Fig. 28 SimpleW Context Loader concern after second development iteration

Such context loader design can easily be supplemented by a necessary

behaviour just developing another context loader. However, one of the main

goals of this research is to provide white-box framework hot spots. The hot

spots of such type are designed by introducing abstract aspects and inheritance

mechanisms. All in (Fig. 28) defined aspects seem to follow very similar

algorithm which behaviour only partially changes in the particular aspect. The

AO template method design pattern can be used to solve the situated design

problem (Fig. 29).

«Pointcut» +systemStart()
«Advice» +after():systemStart()
«Pointcut» +systemEnd()
«Advice» +before():systemEnd()
+initiate()
+destroy()

-cm : ConfigurationManager

«Aspect»
ContextLoader

+initiate()
+destroy()

-db : DataManager

«Aspect»
DataContextLoader

+initiate()

-lm : LanguageManager

«Aspect»
LanguageContextLoader

+initiate()

-ssm

«Aspect»
SessionContextLoader

Fig. 29 SimpleW Context Loader concern after third development iteration

 116

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

The resulted context loader design contains abstract ContextLoader with

predefined context loading behaviour and two template hook methods. The

context loading ordering problem has been solved by using precedence

declarations in concrete context loader aspects. The precedence of one aspect

over another can be declared in any of the concrete aspects if it is necessary.

The loading of general parameters of the framework has been assigned to the

ConfigurationManager class and is considered as a placeholder for defining

the start and end system join points, so it is no more necessary to deal with it

in aspects.

Breadcrumb navigation module resulted as several independent aspects and a

part of system menu class after its first development iteration (Fig. 30).

«Pointcut» +systemBreadcrumbs()
«Advice» +before():systemBreadcrumbs()
«Advice» +around():systemBreadcrumbs() : string

-lm : LanguageManager
-sm : SystemMenu

«Aspect»BreadcrumbNavigation

«Pointcut» +moduleBreadcrumb()
«Advice» +before():moduleBreadcrumb()

-lm : LanguageManager
-sm : SystemMenu

«Aspect»
ModuleBreadcrumb

«Pointcut» +menuBreadcrumb()
«Advice» +after():menuBreadcrumb()

-lm : LanguageManager
-sm : SystemMenu

«Aspect»
MenuBreadcrumb

«Pointcut» +userBreadcrumb()
«Advice» +before():userBreadcrumb()

-lm : LanguageManager
-sm : SystemMenu

«Aspect»
UserBreadcrumb

+addNavigationLink(in title : string, in link : string) : void
+getNavigation() : string
+addMenus(in title : string, in list) : void
+getTreeMenu() : string
+getFrontMenu() : string

-x : int
-tree
-front
-navigation : string
-navigationTitle : string
-navigationLink : string
-separator : string

SystemMenu

«Joinpoint»

Fig. 30 SimpleW Breadcrumb Navigation concern after first development iteration

The main operations of breadcrumb navigation are still hardwired in a system

menu class which is responsible for creating and representing system

administration menus. Default behaviour of the breadcrumb navigation is

managed by BreadcrumbNavigation aspect and breadcrumb behaviour of other

modules in corresponding aspects. Any additional behaviour could be added as

 117

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

a separate aspect using system menu as a placeholder for join points and its

operations for altering breadcrumb navigation behaviour. However, system

menu class is not proper for holding operations of a breadcrumb module. It is

also forced to be a Singleton class to fit the needs of breadcrumb module.

After the second development iteration all the necessary operations and

attributes have been relocated into BreadcrumbAspect and the system menu

class has been transformed into a traditional class which can have as many

instances as necessary (Fig. 31).

+addNavigationLink(in title : string, in link : string) : void
+getNavigation() : string
«Pointcut» +initiate()
«Advice» +before():initiate()
«Pointcut» +systemBreadcrumbs()
«Advice» +before():systemBreadcrumbs()
«Advice» +around():systemBreadcrumbs() : string

-navigation : string
-navigationTitle : string
-navigationLink : string
-separator : string

«Aspect»BreadcrumbNavigation

«Pointcut» +moduleBreadcrumb()
«Advice» +before():moduleBreadcrumb()

-lm : LanguageManager
-bc : BreadcrumbNavigation

«Aspect»
ModuleBreadcrumb

«Pointcut» +menuBreadcrumb()
«Advice» +after():menuBreadcrumb()

-lm : LanguageManager
-bc : BreadcrumbNavigation

«Aspect»
MenuBreadcrumb

«Pointcut» +userBreadcrumb()
«Advice» +before():userBreadcrumb()

-lm : LanguageManager
-bc : BreadcrumbNavigation

«Aspect»
UserBreadcrumb

-bc

-bc

-bc

Fig. 31 SimpleW Breadcrumb Navigation concern after second development iteration

Such design is more modular, therefore it is not related to system menus

anymore. Thus, direct accessing of BreadcrumbNavigation aspect instance

introduces some coupling. White-box type of hot spots requires inheritance

mechanisms to be provided. It would also be desirable that several types of

breadcrumb navigations could be defined in the framework.

On the other hand, it is necessary to preserve the BreadcrumbNavigation

aspect ability to attach additional functionality dynamically. Such design

problem formulation suggests that Decorator GoFAO design pattern should be

applied. The resulted design completely satisfies all the required needs (Fig.

32).

 118

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

+addNavigationLink(in title : string, in link : string) : void

«Aspect»Navigation

+addNavigationLink(in title : string, in link : string) : void
+getNavigation() : string
«Pointcut» +initiate()
«Advice» +before():initiate()
«Pointcut» +systemBreadcrumbs()
«Advice» +before():systemBreadcrumbs()
«Advice» +around():systemBreadcrumbs() : string

-navigation : string
-navigationTitle : string
-navigationLink : string
-separator : string

«Aspect»Breadcrumb

+AddNavigationLink(in title : string, in link : string) : void

-bc : Navigation

«Aspect»
BreadcrumbDecorator

-bc

«Pointcut» +moduleBreadcrumb()
«Advice» +before():moduleBreadcrumb()

«Aspect»
ModuleBreadcrumbDecorator

«Pointcut» +menuBreadcrumb()
«Advice» +after():menuBreadcrumb()

«Aspect»MenuBreadcrumbDecorator

«Pointcut» +userBreadcrumb()
«Advice» +before():userBreadcrumb()

«Aspect»UserBreadcrumbDecorator

Fig. 32 SimpleW Breadcrumb Navigation concern after third development iteration

There are two hot spots developed in the breadcrumb navigation module.

Navigation aspect defines interface of breadcrumb navigation, so any number

of breadcrumb navigations can be developed in addition. Breadcrumb

decorator defines default behaviour describing how the additional functionality

of breadcrumb navigation should be added. Although the behaviour is

predefined, the customizable part of this hot spot still remains. The aspects

inheriting abstract BreadcrumbDecorator define pointcuts and advice,

specifying exact join point where such behaviour should be applied.

Both concerns described above undergo some changes during all the

development iterations. However, some relatively small and not complex

concerns may not require so many iterations to be performed. Security concern

is one of the smaller concerns in SimpleW framework. It has taken only two

iterations for the final design to be developed. The first security concern design

has resulted as stand alone SecurityFiltering aspect (Fig. 33).

 119

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

«Pointcut» +titlePrint()
«Advice» +around():titlePrint() : string
«Pointcut» +classVar()
«Advice» +around():classVar() : string
«Pointcut» +passwordInput()
«Advice» +after():paswordInput()
«Pointcut» +requestBuilding()
«Advice» +around():requestBuilding()

-security : Security
-passwords

«Aspect»
SecurityFiltering

Fig. 33 SimpleW Security Filtering concern after first development iteration

The requirements for the framework security are already fully covered by such

design and no security hot spots are necessary. All the required behaviour of

the security filtering is defined in several pointcuts and advice of the same

aspect. However, some part of the two pairs of pointcut and advice do not only

perform filtering of the necessary data, but also trace password inputs. It is

desirable to transfer unrelated functionality to a new aspect in order to get a

more comprehensive representation (Fig. 34).

«Pointcut» +titlePrint()
«Advice» +around():titlePrint() : string
«Pointcut» +classVar()
«Advice» +around():classVar() : string

-security : Security

«Aspect»
SecurityFiltering

«Pointcut» +passwordInput()
«Advice» +after():passwordInput()
«Pointcut» +requestBuilding()
«Advice» +around():requestBuilding()

-passwords

«Aspect»PasswordTracing

Fig. 34 SimpleW Security Filtering concern after second development iteration

The PasswordTracking aspect is actually designed using Wormhole design

pattern (Laddad, 2003). This pattern is one of the AO paradigm specific design

patterns that solves object design problem. It allows capturing some data

members of one object and transferring them to other objects that may even not

know about the existence of the data owner object. In the PasswordTracing

aspect Wormhole pattern is applied to trace all possible password inputs and

transfer the collected data to security object. It must be noticed that the

application of this design pattern has been performed indirectly and as such

patterns are out of scope of this particular investigation the overall impact of

application of such patterns has not been analyzed in details. On the other

hand, it confirms the idea that paradigm-independent design patterns should be

 120

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

used together with paradigm-dependent design patterns in order to achieve

optimal design results.

The last crosscutting concern, namely Logging concern, corresponds to the

most complex crosscutting concern of this framework. In contrast to the

Security concern, which has been developed without any hot spots and any

GoFAO design patterns, Logging concern has been designed with three hot

spots and three design patterns. The overall design process covers 3 iterations.

The first development iteration design has been developed using three different

aspects: ErrorHandler, MessageHandler, ExceptionHandler (Fig. 35).

+setState() : void
+add(in error : string, in initiator : string) : void
+clear() : void
+getList() : string
+printHtml() : void
+printSystem() : void
«Advice» +before():systemStart()
«Advice» +after():systemEnd()
«Pointcut» +emptyRequest()
«Advice» +around():emptyRequest() : string
«Advice» +loadConfiguration()
«Advice» +after():loadConfiguration()
«Pointcut» +connectDB()
«Advice» +after():connectDB()
«Pointcut» +closeDB()
«Advice» +after():closeDB()
«Pointcut» +setLanguage()
«Advice» +after():setLanguage()
«Pointcut» +getMenuData()
«Advice» +before():getMenuData()
«Advice» +around():getMenuData() : string
«Pointcut» +getMenuRootData()
«Advice» +before():getMenuRootData()
«Pointcut» +getMenuLeafData()
«Advice» +before():getMenuLeafData()
«Advice» +around():getMenuLeafData()
«Pointcut» +moduleCreation()
«Advice» +after():moduleCreation()
«Advice» +around():moduleCreation()
«Pointcut» +getContent()
«Advice» +before():getContent()
«Pointcut» +emptyType()
«Advice» +around():emptyType() : string
«Pointcut» +classVariable()
«Advice» +before():classVariable()
«Advice» +around():classVariable() : string

-state : bool
-errorList : string
-classPath : string

«Aspect»
ErrorHandler

+setState() : void
+add(in error : string, in initiator : string) : void
+clear() : void
+getList() : string
+printHtml() : void
+printSystem() : void
«Advice» +before():systemStart()
«Advice» +after():systemEnd()
«Advice» +after():systemEnd()
«Pointcut» +setters()
«Advice» +after():setters()
«Pointcut» +getters()
«Advice» +after():getters()
«Pointcut» +resultQuery()
«Advice» +before():resultQuery()

-state : bool
-errorList : string
-classPath : string

«Aspect»
MessageHandler

+setState() : void
+add(in error : string, in initiator : string) : void
+clear() : void
+getList() : string
+printHtml() : void
+printSystem() : void
«Advice» +before():systemStart()
«Advice» +after():systemEnd()
«Advice» +before():handler()

-state : bool
-errorList : string
-classPath : string

«Aspect»
ExceptionHandling

Fig. 35 SimpleW Logging concern after first development iteration

Although all the required functionality is covered by this particular design, the

design itself contains some negative issues: it is hard to maintain, it contains

repeating functionality and it provides no hot spots. The repeating code should

be combined into one abstract aspect. Pointcuts and advice should be handled

by several different aspects for better maintenance. At least three different hot

spots are required – logging should be able to provide ways for customizing:

logging (loggers), logging behaviour (handlers) and logging writing (writers).

 121

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

After performing a set of optimizations and introducing a Template method

design pattern the following Logger design has been elaborated (Fig. 36).

+setState() : void
+add(in error : string, in initiator : string) : void
+printHtml() : void
+printSystem() : void
«Advice» +before():systemEnd()

«Aspect»
ErrorHandler

+setState() : void
+add(in error : string, in initiator : string) : void
+printHtml() : void
+printSystem() : void
«Advice» +after():systemEnd()

«Aspect»
MessageHandler

+clear() : void
+getList() : string
«Hook» +setState() : void
«Hook» +add(in error : string, in initiator : string) : void
«Hook» +printHtml() : void
«Hook» +printSystem() : void
«Advice» +before():systemStart()

-state : bool
-errorList : string

«Aspect»
Logger

«Advice» +after():systemEnd()
«Pointcut» +setters()
«Advice» +after():setters()
«Pointcut» +getters()
«Advice» +after():getters()

-mh : MessageHandler

«Aspect»
MessageLogger

«Pointcut» +connectDB()
«Advice» +after():connectDB()
«Pointcut» +closeDB()
«Advice» +after():closeDB()
«Pointcut» +resultQuery()
«Advice» +before():resultQuery()

-eh : ErrorHandler
-mh : MessageHandler

«Aspect»
DataLogger

«Pointcut» +emptyType()
«Advice» +around():emptyType() : string

-eh : ErrorHandler

«Aspect»
ResourceLogger

-mh

Fig. 36 SimpleW Logging concern after second development iteration (full version can be
found in APPENDIX D)

Such design provides customization of handlers and loggers. However, there is

only one hot spot designed for this aim. It consists of four hook methods and

allows customization of handlers. Loggers are introduced without using

inheritance based hot spots. Another problem, not solved by this particular

design, is customization of logging writers. Writers are hardwired inside hook

methods printHtml and printSystem. The only way to introduce additional

writer behaviour is to provide a new method. Thus, it is not acceptable.

 122

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

In order to solve logger customization problem (situation is similar to the one

with breadcrumbs navigation) GoFAO Decorator design pattern has been

applied. The writer customization requires reconfiguration of the writing

behaviour so that it could be performed by classes instead of methods. To solve

this design problem GoFAO Command design pattern has been applied. The

resulted design completely satisfies all the requirements (Fig. 37).

+setState()
+add(in error : string, in initiator : string)
+print()
«Advice» +before():systemEnd()

«Aspect»
ErrorHandler

+setState()
+add(in error : string, in initiator : string)
+print()
«Advice» +after():systemEnd()

«Aspect»
MessageHandler

«Hook» +add(in error : string, in initiator : string)

«Aspect»
Logger

«Pointcut» +connectDB()
«Advice» +after():connectDB()
«Pointcut» +closeDB()
«Advice» +after():closeDB()
«Pointcut» +resultQuery()
«Advice» +before():resultQuery()

«Aspect»
DataLogger

«Pointcut» +emptyType()
«Advice» +around():emptyType() : string

«Aspect»
ResourceLogger

+clear()
+getList() : string
«Hook» +setState()
«Hook» +print()
«Advice» +before():systemStart()

-state : bool
-errorList : string

«Aspect»
Handler

«Hook» +setHandler(in h : Handler)
«Hook» +add(in error : string, in initiator : string)

-h : Handler

«Aspect»
Decorator

1

-h

«Hook» +setHandler()
«Hook» +execute()

-h : Handler

«Aspect»
Writer

+setHandler()
+setStyle()
+execute()

«Aspect»
HtmlWriter

+setWriter()
+execute()

«Aspect»
SystemWriter

-h

Fig. 37 SimpleW Logging concern after third development iteration (full version can be
found in APPENDIX E)

Eventually, logging concern can be customized by three hot spots: Decorator,

Handler and Writer aspects. Decorator aspect contains two hook methods and

can be customized by introducing additional loggers. Handler aspect has three

hook methods (including the inherited add method) and can be customized by

introducing additional handlers. Writer aspect behaviour is no longer

 123

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

hardwired inside the Handler aspect and can be customized by introducing

new writers using two hook methods.

4.4.4. Measurements and Data Analysis
SimpleW framework has been developed by performing three development

iterations. During all of them quantitative data on the structure of code and on

performance of applications produced (using AO SimpleW framework) have

been collected. All the data is presented bellow (Fig. 38, Fig. 39) by the

corresponding bar graphs. Every graph contains three bars: “A1” bar

corresponds to the implementation after the first development iteration, “A2”

bar – to AO implementation after the second development iteration, “A2” bar –

to AO implementation after the third development iteration. The measurements

in Fig. 38 are presented as quantities and in Fig. 39a, Fig. 39b and Fig. 39c as

milliseconds. Data about the structure of code (Fig. 38) demonstrate that

parameters have been influenced by minor changes, except two of them.

Numbers of code lines, data members and references, methods and advice,

external calls and pointcuts remain almost the same. The second development

iteration produced a slightly greater amount of data members and external

calls. On the other hand, the same development iteration produced some fewer

amount of methods and advice. However, the second and third development

iteration increases the number of Aspects and Classes, as well as Hook

methods. The greater number of entities (i.e. classes and aspects) is caused by

finer granularity of the implementation code. It is useful because entities are

becoming smaller and less complex. The increase of Hook methods indicates

that customization was extended by providing additional AO hot spots.

3069 3067 3082

A1 A2 A3

119 125 115

A1 A2 A3
0

4

10

A1 A2 A3

341 333 345

A1 A2 A3

771 832 754

A1 A2 A3

Code Lines Data Members
and References

Hook
Methods

Methods
and Advice

External Calls
and Pointcuts

46
57 64

A1 A2 A3

Classes and
Aspects

Fig. 38 static quantitative data of measurements (SimpleW framework)

 124

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

An application has been produced after every design iteration and three tests

have been performed for each application. All three tests have been performed

by executing different parts of the application. In the first test (Fig. 39a), the

representative part of the web application, in the second (Fig. 39b) – user

registration part of the web application and in the third (Fig. 39c) –

administration part of the web application have been executed. Each test has

been executed 50 times. All executions have been performed using the same

configuration and data representation of the application.

387 416 391

A1 A2 A3

Execution time (ms)

119 121 114

A1 A2 A3

Execution time (ms)

945 943 947

A1 A2 A3

Execution time (ms)

(a) (b) (c)
Fig. 39 testing data of measurements (SimpleW framework)

After the second development iteration in some parts (a and b) of the web

application a tiny decrease of the performance can be observed. However, in

contrary to the first two parts, administration part (c) test demonstrates a tiny

increase of the performance. The differences of data measurements are

insignificant and do not follow any pattern. Consequently, tiny differences of

data can be stated as a result of possible biases.

4.5. Hypotheses evaluation
The hypothesis that AO GoF 20 design patterns decrease the complexity of the

code has been confirmed by both, design iterations of case study 2 and by all

design iterations of case study 3. The hypothesis has been fully confirmed by

all three case studies that the AO GoF 20 design patterns allow to design

abstract aspects which facilitate the extension of framework with new hot

spots. The hypothesis that AO GoF20 design patterns reduce crosscutting in

the framework has been confirmed by case study 1 and case study 2 because all

logging implementation code has been successfully collected in logging

aspects. The hypothesis that GoFAO design patterns have no particular impact

 125

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

on the overall run-time performance of the applications has been rejected in the

case study 2 and partially confirmed in case study 3. After the first design

iteration of case study 2 the average of 31 % loss of the performance in both

execution modes has been observed. However, the average of performance loss

in the second iteration of case study 2 in both execution modes is

approximately 0.8 %.

4.6. Summary
The critical case research has demonstrated that design patterns solving similar

design problems in both, AO and OO paradigms, could be used to deal with

crosscutting and to design customizable aspects in frameworks. It has been

validated that the usage of GoFAO design patterns reduces crosscutting in AO

domain frameworks. The investigated case of Factory Method design pattern

shows that even creational design patterns can be applied for this purpose. It

promotes the elimination of crosscutting behaviour and localization of

scattered implementations. Moreover, this crosscutting behaviour can be

designed as a reusable hot spot in a framework and customized in a framework

application. The purpose of Factory Method design pattern in AOP is slightly

changed comparing to OOP. Instead of creating factories it only passes

reference to the necessary aspect.

The remaining of the case studies has demonstrated that other AO GoF 20

design patterns can be used to design AO frameworks. During the second case

study research two AO versions of OO SimJ framework have been designed

and detailed evaluation of applied design patterns have been presented. The

case study has confirmed the hypothesis that the usage of GoFAO design

patterns (next to 23 GoF design patterns) improves the efficiency of domain

frameworks designs. It decreases code complexity, eliminates crosscutting and

allows designing additional AO hot spots in the framework. Performance tests

have revealed that GoFAO design patterns in some cases may reduce the overall

run-time performance of the applications. Besides, it depends on the

optimization of design and the more design refinement steps are performed the

 126

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

better performance can be achieved. It also depends on the particular design

patterns that are applied and on the skills of designers – that is, on how proper

design patterns he/she is able to choose. Of course, it is a kind of art.

During the third case study research three AO versions of OO SimpleW

framework have been developed from scratch and detailed evaluation of

applied design patterns has been presented. It has been proven that the usage of

GoFAO design patterns allows designing a new class of hot spots in white-box

AO domain frameworks (namely, hot spots represented by abstract aspects).

The case studies have also revealed that in some cases the possible loss of

performance of applications designed using GoFAO design patterns can be

expected.

In general, the AO GoF 20 design patterns are insufficient to optimize the

design and additional AO design patterns are still necessary, particularly,

pointcut and advice related design patterns are required. Patterns proposed in

(Hanenberg et al., 2003; Laddad, 2003; Miles, 2004; Bynens, Joosen, 2009)

should be used in compositions with AO GoF 20 design patterns. The main

conclusions of the chapter are as follows:

1. In the aspect-oriented programming languages design patterns solving

paradigm-independent design problems can be implemented using only

AOP constructs. It follows that aspects can be used as collaborative

entities, which means that it is possible to establish dependencies and

associations among aspects and to create their hierarchies. However, in

some cases, it can result in the crosscutting among aspects. It can be

expected that the crosscutting can be eliminated by using higher level

aspects or that it is possible to avoid such crosscutting by using some

anti-patterns.

2. The execution of one critical and two demonstrative case studies has

demonstrated that 20 GoFAO design patterns can be used to design

aspect-oriented frameworks.

3. The case studies have confirmed that 20 GoFAO design patterns decrease

code complexity, eliminate crosscutting, and allow designing additional

 127

Chapter 4 – Empirical Evaluation of Application of Transformed Design Patterns

 128

AO hot spots in frameworks. Performance tests have revealed that in

some cases the loss of performance can be expected. However, it

depends on the particular design pattern that is applied and on the skills

of designers – that is, on how proper design patterns he/she is able to

chose. Besides, it depends on the optimization of design and the more

design refinement steps are performed, the better performance can be

achieved.

4. In general, the 20 GoFAO design patterns and patterns proposed in

(Hanenberg et al., 2003; Laddad, 2003; Miles, 2004; Bynens, Joosen,

2009) are insufficient to optimize the design and additional AO design

patterns are still necessary, particularly, pointcut and advice related

design patterns are required.

5. Aspect-oriented framework design from scratch case study provides

constructive research steps that have been proven to be used as a basic

development steps to develop aspect-oriented frameworks.

The results of this chapter have been published in (Vaira, Čaplinskas, 2011;

Vaira, Čaplinskas, 2011a).

Chapter 5 – Discussion of Issues and Limitations

Chapter 5

Discussion of Issues and Limitations

There are several debatable issues that must be discussed. The first one is the

use of aspects as collaborative entities. The designs that include abstract aspect

hierarchies, hold references and invoke calls to other aspects, help to create

reusable and flexible implementation structures. These are the main features

used to create collaborations of classes in OOP. However, such structures also

increase the tangling of the implementation code which is an issue that AOP

has to deal with. It is not always clear what the constraints of collaborations in

aspects are and when a threat of creating too complex designs of aspects

appears. Collaborations mean the capability to organize aspects into

hierarchical structures and to model dependencies and associations among

them. It is assumed that collaborations of aspects are beneficial unless the

collaborations of aspects overstep the boundaries of related concern (i.e.

introduces crosscutting between aspects). Such assumption is confirmed by the

results of the performed case studies. There is no evidence that collaborations

of aspects, if designed carefully, can in some way reduce the overall efficiency

of the applications. The expected increase of efficiency is observed by

analyzing the measured data.

The Singleton nature of aspects is the second issue. Although aspects in

AspectJ are by default singletons, in special cases aspects can be also

instantiated per object or per control flow. From this perspective it is still

questionable whether aspects should be treated as singletons or not. For

example, in AspectJ language direct instantiations of aspects are forbidden.

Aspects can be globally referenced only using static method aspectOf. Such

 129

Chapter 5 – Discussion of Issues and Limitations

referencing of aspects is different from referencing of objects. Objects require

instantiation in order to be referenced. Another problem is that if it were

allowed to create several instances of the same aspect at a time, the behaviour

advised by aspects might repeat several times or act in other unexpected ways.

As a result, there may be difficulties related to aspect instantiation control. This

is the main reason why the Singleton nature of aspects is suggested to be

followed and to be treated per object and per control flow aspects as special

cases of singletons.

Although the results of the thesis are comprehensive and applicable to real

world software design, some limitations can be observed:

 The case studies have been performed to design white-box domain

application frameworks only. No black-box frameworks have been

investigated.

 All implementations of aspect-oriented designs have been performed

using AspectJ programming language. Despite the fact that AspectJ is

first and the most popular AOP language, implementations in other

languages are required.

 The use of GoF design patterns can also be considered as a limitation.

The main reason why these patterns have been chosen is that they are

widely-used and have been well investigated by other researchers.

Therefore, the results of such research can be easily compared with the

results of other researches. However, the redesign of other design

patterns to pure aspect-oriented patterns must be performed and their

applicability to design aspect-oriented applications should be

investigated.

 There are a number of other existing metrics that have not been used in

the present thesis.

5.1. Open problems
Not all of the 20 GoFAO design patterns have been investigated by applying

them to concrete context. Five GoFAO design patterns have been stated as

 130

Chapter 5 – Discussion of Issues and Limitations

 131

exposing some limited applicability. It means that they are in some way more

constrained than OO implementation because it is impossible to work with

several instances of an aspect at the same time. Such design patterns have to be

investigated in more details. The intent of such design patterns should be

revised and some other changes in the pattern structure may be required. Only

then it may serve as an acceptable solution to the aspect-oriented design.

Otherwise they have to be removed from the initial list of the successfully

transformed aspect-oriented design patterns if there is no verification of their

applicability.

Another open problem is how this technique could be applied to other software

engineering paradigms and this requires an additional set of researches to be

executed.

The following open problems have to be investigated as well:

 which other OO design patterns beside the surveyed 23 GoF design

patterns solve paradigm-independent design problems at least in respect

of OO and AO paradigms;

 which design patterns can be developed and used to solve AOP-specific

problems;

 in which way could pure AO design patterns be incorporated into the

aspect-oriented design methodology.

Conclusions

1. Aspect-oriented design patterns, developed using direct code rewriting

techniques and represented using constructs, provided by both, aspect-

oriented and object-oriented paradigms, are not sufficient for complete

separation of concerns, do not allow to implement hot spots of aspect-

oriented domain frameworks as abstract aspects and are not universal

enough, therefore can be applied only to a specific application context.

2. The 20 out of 23 object-oriented design patterns (GoF patterns)

proposed by Gamma et al. (Gamma et al., 1994) solve the design

problems that are also relevant in the context of aspect-oriented

software engineering paradigm. Constructs provided by aspect-oriented

paradigm are sufficient to implement these design patterns – that is, to

implement them as pure aspect-oriented design patterns without using

any specific object-oriented constructs such as classes and objects. It

means that aspects can be used as collaborative entities, making it

possible and reasonable to create hierarchies of aspects and establish

dependencies and associations among aspects.

3. The usage of pure aspect-oriented designs patterns reduces crosscutting

in aspect-oriented domain frameworks and allows the designing of a

new kind of hot spots, namely, the hot spots represented by abstract

aspects in white-box AO domain frameworks.

4. The case studies have confirmed that 20 pure aspect-oriented design

patterns decreases code complexity, eliminates crosscutting and allows

designing additional AO hot spots in frameworks. Performance tests

have revealed that in some cases the loss of performance is expected.

However, it depends on the particular design pattern that is applied and

 132

on designer skills – that is, how he/she is able to choose proper design

patterns.

5. The case studies and the analysis of aspect-oriented domain framework

construction process demonstrate that the following construction steps

are necessary in order to achieve successful design results:

a. identify aspects representing modules that have to be designed in

a crosscutting manner by analyzing requirement specification;

b. decide which hot spots have to be designed using objects and

which – using aspects; examine what design problems have to be

solved and determine the design patterns that can be applied for

this purpose;

c. design and implement the required aspects and objects;

d. prepare necessary test cases; check whether the resulted design is

already acceptable; improve the design and go back to step c if

the refactoring of code is still required.

 133

References

Adair, D. (1995). Building Object-Oriented Frameworks. AIXpert. Feb. 1995

Aksit, M.; Bergmans, L. and Vural, S. (1992). An Object-Oriented Language-

Database Integration Model: The Composition-Filters Approach. In

Proceedings of O. Lehrman Madsen, editor, European Conference on

Object-Oriented Programming (ECOOP), Utrecht, The Netherlands,

June/July, 1992. Springer Verlag Lecture Notes in Computer Science

Vol. 615, 72-396.

Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.

and Angel, S. (1977). A Pattern Language. Oxford University Press,

New York.

Ambler, A. L.; Burnett, M. M. and Zimmerman, B. A. (1992). Operational

Versus Definitional: A Perspective on Programming Paradigms.

Computer, September 1992, 28-43. Accessible at

ftp://ftp.engr.orst.edu/pub/burnett/Computer-paradigms-1992.pdf

Appleton, B. (1997). Patterns and software: Essential concepts and

terminology. [Accessed 2011-09-15] Available at

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.pdf

Arnold, K.; Gosling, J. and Holmes, D. (2005). Java™ Programming

Language, 4th Edition. Prentice Hall, August 27, 2005.

Arnout, K. and Meyer, B. (2006). Pattern componentization: the factory

example. Innovations in Systems and Software Engineering, 6 May

2006, 2:65–79.

Arpaia, P.; Bernardi, M.L.; Lucca, G. Di; Inglese, V. and Spiezia, G. (2008).

Aspect Oriented-based Software Synchronization in Automatic

Measurement Systems. In Proceedings of Instrumentation and

 134

ftp://ftp.engr.orst.edu/pub/burnett/Computer-paradigms-1992.pdf
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.pdf

Measurement Technology Conference, IMTC 2008, IEEE, 1718 – 1721,

12-15 May 2008.

Benbasat, I.; Goldstein, D. K. and Mead, M. (1987). The Case Research

Strategy in Studies of Information Systems. MIS Quarterly, Vol. 11,

No. 3 (Sep., 1987), pp. 369-386.

Bernardi, M.L. and Lucca, G.A. Di (2005). Improving Design Pattern Quality

Using Aspect Orientation. In Proceedings of the 13th IEEE

International Workshop on Software Technology and Engineering

Practice (STEP’05), 24-25 Sept. 2005, IEEE Computer Society, 206 –

218.

Booch, G.; Jacobson, I. and Rumbaugh J. (2000). OMG Unified Modeling

Language Specification 1.3. [Accessed 2011-09-20] Available at

http://www.omg.org/spec/UML/

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerland P. and Stal M. (1996).

Pattern-Oriented Software Architecture: A System of Patterns. Wiley,

1996.

M. Bynens, B. Lagaisse, W. Joosen, and E. Truyen (2007). The elementary

pointcut pattern. In Proceedings of the 2nd workshop on Best practices

in applying aspect-oriented software development, New York, NY, USA,

2007. ACM, Article No 2.

Bynens, M. and Joosen W. (2009).Towards a Pattern Language for Aspect-

Based Design. In Proceedings of the 1st workshop on Linking aspect

technology and evolution (PLATE '09), Charlottesville, Virginia, USA,

March 2 - 6, 2009. ACM, 13-15.

Cacho, N.; Figueiredo, E.; Sant´Anna, C.; Garcia, A.; Batista, T. and Lucena,

C. (2005). Aspect-oriented Composition of Design Patterns: a

Quantitative Assessment. Monografias em Ciência da Computação - No.

34/05. Pontifícia Universidade Católica do Rio de Janeiro, Brasil.

 135

http://www.omg.org/spec/UML/

Crnkovic G. D. (2010). Constructive Research and Info-Computational

Knowledge Generation. Model-based reasoning in science and

technology, Studies in Computational Intelligence, 2010, Volume

314/2010, 359-380.

Cunha, C.A.; Sobral, J.L. and Monteiro, M.P. (2006). Reusable Aspect-

Oriented Implementations of Concurrency Patterns and Mechanisms. In

R.E. Filman (ed.). Proceedings of the 5th International Conference on

Aspect-Oriented Software Development, AOSD 2006, Bonn, Germany,

March 20-24, 2006. ACM, 134-145.

Czarnecki, K. and Eisenecker, U.W. (2000). Generative Programming:

Methods, Tools, and Applications. Addison Wesley.

Dantas, D. S.; Walker, D.; Washburn, G. and Weirich, S. (2008). AspectML: A

Polymorphic Aspect-oriented Functional Programming Language.

ACM Transactions on Programming Languages and Systems, 30(3),

(May 2008), 71-130.

Denier, S.; Albin-Amiot, H. and Cointe, P. (2005). Expression and

Composition of Design Patterns with Aspects. In Proceedings of the

2nd French Workshop on AspectOriented Software Development

JFDLPA 2005. Hermès, 19-34

Denier, S.; Albin-Amiot, H. and Cointe, P. (2006). Expression and

Composition of Design Patterns with AspectJ. L'Objet, 12, 2-3, 41-61.

Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K. and Ossher, H. (2001).

Discussing aspects of AOP. Communications of the ACM, 44(10):33-

38, October 2001.

Fayad, M. E. and Schmidt, D. C. (1997). Object-Oriented Application

Frameworks. Communications of the ACM, Vol. 40, No. 10, pp. 32-38.

Fiege, L. ; Mühl, G. and Gärtner, F. C. (2002). Modular event-based systems.

The Knowledge Engineering Review, Vol. 17:4, pp. 359–388. 2002,

Cambridge University Press.

 136

Filman, R.E. and Friedman, D.P. (2001). Aspect-Oriented Programming is

Quantification and Obliviousness. Research Institute for Advanced

Computer Science, RIACS Technical Report 01.12.

Fleury, M. and Reverbel, F. (2003). The JBoss extensible server. In

Proceedings of the 4th ACM/IFIP/USENIX International Conference on

Distributed Systems Platforms and Open Distributed Processing

(Middleware’03). Volume 2672 of Lecture Notes in Computer Science.,

Springer-Verlag (2003) 344–373.

Floyd, R. W. (1979). The Paradigms of Programming. Comm. ACM, Vol. 22,

No. 8, Aug. 1979, pp. 455-460.

Flyvbjerg, B. (2004). Five misunderstandings about case-study research. In C.

Seale, G. Gobo, D. Silverman (eds.). Qualitative Research Practices.

London and Thousand Oaks, CA: Sage, 420-434.

Fowler, M. (2003). UML distilled: Brief Guide to the Standard Object

Modeling Language (3rd Edition). Addison-Wesley Professional,

September 25, 2003.

Froehlich, G.; Hoover, J.; Liu, L. and Sorenson, P. (1998). Designing object-

oriented frameworks. CRC Handbook of Object Technology, CRC

Press, pp. (25)1-21, 1998.

Gamma, E.; Helm, R.; Johnson, R. and Vlissides, J. (1994). Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley

Professional;

Garcia, A. (2004). From Objects to Agents: An Aspect-Oriented Approach.

Doctoral Thesis, Rio de Janeiro, Brazil, PUC-Rio, 2004.

Garcia, A.; Sant'Anna, C.; Figueiredo, E. and Kulesza, U. (2005).

Modularizing Design Patterns with Aspects: A Quantitative Study. In

Proceedings of the International Conference on Aspect-Oriented

Software Development (AOSD'05), Chicago, USA, 14-18 March 2005.

ACM Press, 3-14.

 137

Griswold, W. G.; Sullivan, K.; Song, Y. and Shonle, M. (2006). N. Tewari, Y.

Cai, and H. Rajan. Modular software design with crosscutting

interfaces. IEEE Software, 23(1), 51–60.

Gosling, J.; Joy, B.; Steele, G. and Bracha, G. (2005). Java™ Language

Specification, The (3rd Edition). Addison Wesley, 2005.

Hachani, O. and Bardou, D. (2002). Using Aspect-Oriented Programming for

Design Patterns Implementation. In Proceedings of 8th International

Conference on OOIS 2002, Position paper at the Workshop on Reuse in

Object-Oriented Information Systems Design. Montpellier, France -

Sept. 2-5 2002.

Hachani, O. and Bardou, D. (2003). On Aspect-Oriented Technology and

Object-Oriented Design Patterns. In Proceedings of European

Conference on Object Oriented Programming ECOOP 2003, Position

paper at the workshop on Analysis of Aspect-Oriended Software.

Darmstadt, Germany, 2003.

Hanenberg, S. and Costanza, P. (2002).Connecting Aspects in AspectJ:

Strategies vs. Patterns. In Y. Coady (ed.). First Workshop on Aspects,

Components, and Patterns for Infrastructure Software, AOSD,

Enschede, The Netherlands, April 22-26, 2002. TR-2002-12. The

Department of Computer Science, University of British Columbia,

Vancouver, B.C., 40-45.

Hanenberg, S. and Schmidmeier, A. (2003). Idioms for building software

frameworks in AspectJ. In Y. Coady, E. Eide, D. H. Lorenz (Eds.)

Proceedings of the 2nd AOSD Workshop on Aspects, Components, and

Patterns for Infrastructure Software (ACP4IS), Boston, Massachusetts,

2003. NU-CCIS-03-03. College of Computer and Information Science,

Northeastern University, Boston, Massachusetts, pp. 55-60.

Hanenberg, S.; Unland, R. and Schmidmeier, A. (2003). AspectJ Idioms for

Aspect-Oriented Software Construction. In the Proceedings of 8th

 138

European Conference on Pattern Languages of Programs (EuroPLoP),

Irsee, Germany, 25th–29th June, 2003. pp. 617–644.

Hannemann, J. and Kiczales, G. (2002). Design pattern implementation in Java

and AspectJ. In Proceedings of the 17th Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA ’02),

ACM Press, 161-173.

Harrison, W. and Ossher, H. (1993). Subject-oriented programming (a critique

of pure objects). In Proceedings of Object-Oriented Programming

Systems Languages and Applications (OOPSLA), 411- 428, 1993.

Hart, C. (1998). Doing a literature review: Releasing the social science

research imagination. London, SAGE Publications.

Hejlsberg, A.; Wiltamuth, S.; Golde, P. (2003). C# Language Specification.

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,

2003.

Hirschfeld, R.; Lämmel, R. and Wagner, M. (2003). Design Patterns and

Aspects – Modular Designs with Seamless Run-Time Integration. In

Proceedings of the 3rd German Workshop on Aspect-Oriented Software

Development (AOSD-GI 2003), p. 25-32.

Johnson, R. E. and Foote, B. (1988). Designing Reusable Classes. Journal of

Object-Oriented Programming, June/July 1988, 1(2): 22-35. [Accessed

2011-04-20] Available at http://www.laputan.org/drc/drc.html

Johnson, R. E. (1997). Frameworks = (components + patterns).

Communications of the ACM, October 1997, 40(10): 39-42.

Kaisler, S. H. (2005). Software paradigms. John Wiley & Sons, Inc.

Kiczales, G.; Rivieres, J. Des and Bobrow, D.G. (1991). The Art of the

Metaobject Protocol. The MIT Press, Cambridge, Massachusetts.

Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C. V.; Loingtier,

J. M. and Irwin, J. (1997). Aspect oriented programming. In

 139

http://www.laputan.org/drc/drc.html

Proceedings of European Conference on Object Oriented Programming,

ECOOP, 1997, vol. 1241, pp. 220–242.

Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J. and Griswold, W.

G. (2001). Getting started with AspectJ. Communication of the ACM,

October 2001, 44(10): 59-65.

Kulesza, U.; Alves, V.; Garcia, A.; Lucena, C. J. P. de and Borba, P. (2006).

Improving Extensibility of Object-Oriented Frameworks with Aspect-

Oriented Programming. In Proceedings of Intl Conference on Software

Reuse (ICSR), Torino, Italy, pp. 231-245, 2006.

Laddad, R. (2003). AspectJ in Action: practical aspect-oriented programming.

Manning Publications Co.

Laddad, R. (2010). AspectJ in Action, Second Edition: enterprise AOP with

spring applications. Manning Publications Co.

Lagaisse, B. and Joosen, W. (2006). Decomposition into elementary pointcuts:

A design principle for improved aspect reusability. In the Proceedings

of the Workshop on Software Engineering Properties of Languages and

Aspect Technologies (SPLAT) affiliated with AOSD 2006, March 21,

2006. Bonn, Germany, 64 - 69.

Lämmel, R. and Visser J. (2002). Design patterns for functional strategic

programming. In Proceedings of the 2002 ACM SIGPLAN workshop on

Rule-based programming, Pittsburgh, Pennsylvania, USA, 2002, ACM

2002, pp. 1-14.

Laurence, S. and Margolis, E. (2003). Concepts and conceptual analysis.

Philosophy and Phenomenological Research, 67: 253-282.

Lieberherr, K.J.; Silva-Lepe, I. and Xiao, C. (1994). Adaptive object-oriented

programming using graph-based customization. Communications of the

ACM, 37(5):94:101, May 1994.

 140

Lopes, C.V. (2005). Aspect-Oriented Programming: A Historical Perspective

(What’s in a Name?). In Aspect-Oriented Software Development,

Addison-Wesley, 97–122.

Lorenz, D.H. (1998). Visitor Beans: An Aspect-Oriented Pattern. In

Proceedings of the ECOOP’98 Workshop on Aspect-Oriented

Programming, pp. 431-432.

Lukka, K. (2003). The constructive research approach. In: L. Ojala, O-P.

Hilmola (eds.) Case study research in logistics. Publications of the

Turku School of Economics and Business Administration, Series B 1:

2003, p. 83-101.

MacDonald, S.; Szafron, D.; Schaeffer, J.; Anvik, J.; Bromling, S. and Tan, K.

(2002). Generative design patterns. In Proceedings of the 17th IEEE

International Conference on Automated Software Engineering (ASE

2002), 23-27 September 2002, Edinburgh, Scotland, UK. IEEE

Computer Society, 23-34.

Maioriello, J. (2002). What Are Design Patterns and Do I Need Them? Online

publication, developer.com, October 2002, QuinStreet Inc.

[Accessed 2011-09-20] Available at

http://www.developer.com/design/article.php/1474561/What-Are-

Design-Patterns-and-Do-I-Need-Them.htm

Martin, R. (2000). Design Principles and Design Patterns. [Accessed 2011-10-

15] Available at

http://www.objectmentor.com/resources/articles/Principles-and-Patterns

Menkyna, R.; Vranić, V. and Polášek, I. (2010). Composition and

Categorization of Aspect-Oriented Design Patterns. In Proceedings of

8th International Symposium on Applied Machine Intelligence and

Informatics, SAMI 2010, January 2010, Herľany, Slovakia, IEEE, 129-

134.

 141

http://www.developer.com/design/article.php/1474561/What-Are-Design-Patterns-and-Do-I-Need-Them.htm
http://www.developer.com/design/article.php/1474561/What-Are-Design-Patterns-and-Do-I-Need-Them.htm
http://www.objectmentor.com/resources/articles/Principles-and-Patterns

Merriam-Webster Online Dictionary (2011). Definition of a concept –

paradigm. [Accessed 2011-11-24] Available at http://www.merriam-

webster.com/dictionary/paradigm

Meslati, D. (2009). On ASPECTJ and Composition Filters: A Mapping of

Concepts. Informatica, 2009, Vol. 20, No. 4, 555–578, 2009 Institute of

Mathematics and Informatics, Vilnius.

Miles, R. (2004). AspectJ Cookbook. O'Reilly Media.

Monteiro, M. P. (2006). Using Design Patterns as Indicators of Refactoring

Opportunities (to Aspects). In Proceedings of AOSD 2006 workshop on

Linking Aspect Technology and Evolution (LATEr), Bonn, Germany, 20

March 2006.

Miller, S. K. (2001). Aspect-Oriented Programming Takes Aim at Software

Complexity. IEEE Computer, vol. 34, no. 4, pp. 18-21 2001.

Noble, J.; Schmidmeier, A.; Pearce, D.J. and Black, A.P. (2007). Patterns of

Aspect-Oriented Design. In Proceedings of the European Conference

on Pattern Languages of Programs (EuroPLOP), July 2007, Bavaria.

Hillside Publishers, 769-796.

Noda, N. and Kishi, T. (2001). Implementing Design Patterns Using Advanced

Separation of Concerns. In Proceedings of OOPSLA 2001 Workshop on

Advanced Separation of Concerns in Object-Oriented Systems, Tampa

Bay, FL, USA, 2001.

Nordberg, M.E. (2001). Aspect-Oriented Dependency Inversion. In

Proceedings of OOPSLA 2001 Workshop on Advanced Separation of

Concerns in Object-Oriented Systems, Tampa Bay, FL, USA, 2001.

Nordberg, M.E. (2001a). Aspect-Oriented Indirection – Beyond Object-

Oriented Design Patterns. In Proceedings of OOPSLA 2001, Position

paper at workshop “Beyond Design: Patterns (mis)used”, 2001.

 142

http://www.merriam-webster.com/dictionary/paradigm
http://www.merriam-webster.com/dictionary/paradigm

Papapetrou, O. and Papadopoulos, G. A. (2004). Aspect Oriented

Programming for a component based real life application: A case study.

In Proc. ACM Symposium on Applied Computing, Nicosia, Cyprus,

pages 1554 – 1558, 2004.

Piveta, E. K. and Zancanella, L. C. (2003). Observer Pattern using Aspect-

Oriented Programming. In Proceedings of the 3rd Latin American

Conference on Pattern Languages of Programming, Porto de Galinhas,

PE, Brazil, August 2003.

Ragin, C. C. (1992) ‘“Casing” and the process of social inquiry’, In Charles C.

Ragin and Howard S. Becker (eds), What is a Case? Exploring the

Foundations of Social Inquiry. Cambridge: Cambridge University Press,

pp. 217–26. . Cambridge: Cambridge University Press, pp. 217–26.

Rausch, A.; Rumpe, B. and Hoogendoorn, L. (2003). Aspect-Oriented

Framework Modeling. In Proceedings of the 4th AOSD Modeling with

UML Workshop, UML Conference 2003, October 2003.

Rossum, G. van (1993). An Introduction to Python for UNIX/C Programmers.

In Proceedings of the NLUUG najaarsconferentie (1993). Dutch Unix

user group.

Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting

case study research in software engineering .Empirical Software

Engineering, Volume 14 Issue 2, April 2009, 14:131–164.

Sant’Anna, C.; Garcia, A.; Chavez, C.; Lucena, C. and Staa, A. (2003). On the

Reuse and Maintenance of Aspect-Oriented Software: An Assessment

Framework. In Proceedings of Brazilian Symposium on Software

Engineering SBES’03), Manaus, Brazil, 19-34, 2003.

Santos, A. L.; Lopes, A. and Koskimies, K. (2007). Framework specialization

aspects. In Proceedings of AOSD '07 the 6th international conference

on Aspect-oriented software development, ACM New York, NY, USA

2007, 14 - 24.

 143

Shalloway, A. and Trott, J.R. (2001). Design Patterns Explained: A New

Perspective on Object-Oriented Design. Software Patterns Series.

Addison-Wesley Professional.

Schmidmeier, A.; Hanenberg, S. and Unland, R. (2003). Implementing Known

Concepts in AspectJ. In B. Bachmendo, S. Hanenberg, S. Herrmann, G.

Kniesel (eds.). Proceedings of the third German Workshop on Aspect-

Oriented Software Development. University of Duisburg-Essen Institute

for Computer Science and Business Information Systems (ICB), 65-70.

Schmidmeier, A. (2004). Patterns and an antiidiom for aspect oriented

programming. In Proceedings of 9th European Conference on Pattern

Languages of Programs (EuroPLoP 2004), Irsee, Germany, July 2004.

Tešanović, A. (2004). What is a pattern? Course note, at Linköping University,

Sweden. [Accessed 2011-10-10] Available at

http://www.idi.ntnu.no/emner/dt8100/papers2005/P-a10-

tesanovic04.pdf

Tonella, P. and Antoniol, G. (1999). Object Oriented Design Pattern Inference.

In Proceedings of the IEEE International Conference on Software

Maintenance, ICSM '99, Oxford, UK, IEEE Computer Society, 230 –

238.

Vranić, V. (2001). AspectJ Paradigm Model: A Basis for Multi-Paradigm

Design for AspectJ, In Jan Bosch, editor, Proc. of the Third

International Conference on Generative and Component-Based

Software Engineering (GCSE 2001), LNCS 2186, Erfurt, Germany,

September 2001, pp. 48-57, Springer.

Wampler, D. and Clark, T. (2010). Guest Editors’ Introduction: Multiparadigm

Programming. Software, IEEE, 27(5), 20 – 24, Sept.-Oct. 2010.

Zimmer, W. (1995). Relationships Between Design Patterns. In J. O. Coplien

and D. C. Schmidt (eds.) Pattern Languages of Program Design.

Addison-Wesley, 1995, pp. 345- 364

 144

http://www.idi.ntnu.no/emner/dt8100/papers2005/P-a10-tesanovic04.pdf
http://www.idi.ntnu.no/emner/dt8100/papers2005/P-a10-tesanovic04.pdf

List of Publications

Vaira, Ž. and Čaplinskas, A. (2011). Case Study Towards Implementation of

Pure Aspect-oriented Factory Method Design Pattern. In Proceedings of

3rd International Conference on Pervasive Patterns and Applications,

PATTERNS 2011, September 25-30, 2011 - Rome, Italy

Vaira, Ž. and Čaplinskas, A. (2011a). Application of pure aspect-oriented

design patterns in the development of AO frameworks: A case study.

Information sciences, 2011-56, pp. 146–155.

Vaira, Ž. and Čaplinskas, A. (2011b). Paradigm-independent design problems,

GoF 23 design patterns and aspect design. Informatica, 22(2), pp. 289–

317.

Vaira, Ž. and Čaplinskas, A. (2009). Compositional aspect-oriented design

pattern properties. In Proceedings of 50th conference of Lithuanian

union of mathematicians, 123-453, 2009.

Vaira, Ž. (2009). Aspect-oriented software design method. In Proceedings of

12th Student Scientific Society conference “Fundamental Research and

Innovation in Science Integration”. Klaipeda University Faculty of

Natural Science and Mathematics, 2009, Klaipeda, Lithuania.

 145

APPENDICES

APPENDIX A AspectJ language preliminaries
The join points in the base object-oriented program could be defined using one

of the following items: method execution or call, constructor execution or call,

field access, exception processing, class initialization, object initialization and

advice execution. After successful identification of the necessary join points

one can start defining aspects. Aspect structure can be divided in to 3 different

parts: inter-type declarations, pointcut and advice. Inter-type declarations are

made by aspects for the definition of interface, class, or aspect types. They

consist of a member or method introductions, type-hierarchy modifications,

and are used to implement the so called static crosscutting. Static crosscutting

is not directly affected by pointcuts and advice. Pointcuts and advice define

dynamic crosscutting of the system. Join points are defined by using pointcut.

The functionality that should be performed at the join point is defined by using

advice.

Join point in the system is understood as a concrete place in a running system.

The pointcut itself defines a set of several concrete join points in this system.

Aspect can include one or several pointcuts. Pointcuts are defined using the

syntax that can be demonstrated by an example (Example 5).
1 protected pointcut pointcutName(Context c):
2 call(public TypeName ClassName.operation())&&this(c);

Example 5 General pointcut syntax

Pointcut structure mainly consists of: pointcut name (pointcutName), context

data (Context c), pointcut type (call), and expression of the join point

(ClassName.operation). The current example (Example 1) defines join points in

the system where a defined operation is called. A star (*) could be placed

instead of pointcut context and pointcut expression in order to make the

pointcut more abstract.

 146

The behaviour that must be injected at the join points is defined by the pointcut

described in advice. In a simple form it is a concrete code that must be

performed at the join point. The advice can be performed in exact places

corresponding to a particular join point: before, around (instead) and after the

join point. The advice inner content is very similar to the content of the

method. In Example 6 a general example of advice is presented.
1 after(Context c) :pointcutName(c){
2 someObject.doSomethingWith(c);
3 }

Example 6 General advice syntax

The general syntax of advice includes: name of an advising pointcut

(pointcutName), context of the pointcut (Context c) and the word denoting

exact execution place (after). The code inside advice will be executed after

every join point has been matched to the defined pattern of the pointcut.

Full aspect representation will be received by combining pointcut, advice and

inter-type declarations. Aspect in its own way is the main entity of an aspect-

oriented programming as in a similar way classes and objects are the main

entities of an object-oriented programming. Aspects may contain data members

and methods as classes do. Aspects can be also defined as abstract aspects

which must be inherited by other aspects (differently from classes, concrete

aspects can not be inherited). All the syntax for defining abstract aspects, data

members, methods and accessibility is the same as the one used in Java

language. Example 7 demonstrates the syntax of an aspect construct.
1 public aspect AspectName {
2
3 private TypeName className.type;
4
1 protected pointcut pointcutName(…): execute(…) && target(…);
2
3 after(…): pointcutName(…) {
4
5 …
6 }
7 }

Example 7 General aspect syntax

Although aspects are defined in a similar way as classes, aspects cannot be

instantiated as objects. Instead, aspects can be referenced by using aspectOf

 147

method. It is done in a very similar way as it is in a Singleton design pattern for

objects.

Thus, it must be mentioned that aspects can be defined not only as singletons.

By associating an aspect with some entity in a base program, that is, defining

per object or per control flow aspect, one can have several instances of the

same aspect at the same time.

APPENDIX B Remaining List of Transformed GoFAO
Design Patterns

To complete the list of successfully transformed GoFAO design patterns the

remaining of the design pattern structure diagrams and short descriptions are

presented. The 4 GoFAO – Adapter, Bridge, Factory Method and Chain of

Responsibility – design patterns already have been explained in details.

Abstract Factory

The intent of the aspect-oriented Abstract Factory is to provide an interface for

referencing several related or dependent aspects without specifying the name

of concrete aspects (Fig. 40).

 148

+createProduct1()
+createProduct2()

«Aspect»
ConcreteFactory1

+createProduct1()
+createProduct2()

«Aspect»
Factory

+doSomething()

«Aspect»Product

+doSomething()

«Aspect»
ConcreteProduct1

+doSomething()

«Aspect»
ConcreteProduct2

public Product createProduct1() {
 return ConcreteProduct1.aspectOf();
}

«Pointcut» +applyFactory()
«Advice» +after(): applyFactory()
+createSpecificFactory() : Factory
+runFactory() : void

«Aspect»Application

+clientVoid() : void

ClientClass
after(): applyFactory() {
 runFactory(createSpecificFactory());
}

«Joinpoint»

Fig. 40 Abstract Factory design pattern (AO solution)

The essential elements of this pattern are:

 Factory aspect, declares an interface for operations used to reference

Product aspects,

 ConcreteFactory1 aspect implements the operations for referencing

Product aspects,

 Product aspect declares an interface for a concrete Product aspects,

 ConcreteProduct1 and ConcreteProduct2 aspects define a Product

aspect for a corresponding ConcreteFactory1 or ConcreteFactory2 and

implement the Product aspect interface.

 Application aspect provides operations for referencing specific factories

and holds pointcut and advice for an invocation of a pattern,

 Client, the class that invokes the applyFactory pointcut.

 149

Builder

The intent of the aspect-oriented Builder design pattern is to separate the

construction of a complex aspect from its representation in a way that

alteration of the same construction can still provide different representations

(Fig. 41).

+buildX()
+buildY()

«Aspect»
ConcreteBuilder2

+buildX()
+buildY()

«Aspect»
ConcreteBuilder1

+getProduct() : Product
+createProduct()
+buildX()
+buildY()

-product : Product

«Aspect»
Builder

+setX() : void
+setY() : void
+use()

-x
-y

«Aspect»
Product

+clientVoid() : void

ClientClass
«Joinpoint»

+setBuilder(in builder : Builder)
+getProduct() : Product
+constructProduct()
«Pointcut» +applyBuilder()
«Advice» +after():applyBuilder()

-builder : Builder

«Aspect»Director

public void constructProduct() {
 builder.createProduct();
 builder.buildX();
 builder.buildY();
}

after(): applyRequest(x) {
 Product p = Product.aspectOf();

 setBuilder(ConcreteBuilder1.aspectOf());
 constructProduct();
 p.use();
}

Fig. 41 Builder design pattern (AO solution)

 Builder aspect specifies an abstract interface for altering parts of a

Product aspect,

 ConcreteBuilder1 and ConcreteBuilder2 aspects alter a parts of the

Product aspect by implementing the Builder aspect interface, keep the

reference to the altered Product aspect, and provide an interface for

retrieving the Product aspect,

 Product aspect represents the complex Aspect which construction can

be altered by a Builder,

 Director aspect alters complex Product structure using the Builder

aspect interface and provides pointcut and the advice used for an

invocation of a pattern,

 Client is the class that invokes the applyBuilder pointcut.

 150

Command

The intent of the aspect-oriented Command design pattern is to encapsulate

request as a reference to an aspect, thereby allowing to parameterize the

invocations with different requests, queue or log requests, and support

undoable operations (Fig. 42).

+execute()

-receiver : Receiver

«Aspect»
ConcreteCommand

+setReceiver(in r : Receiver)
+execute()

«Aspect»
Command

+action()

«Aspect»
Receiver

+clientVoid() : void

ClientClass
«Joinpoint»

+setCommand(in command : Command)
+invoke()
«Pointcut» +applyCommand()
«Advice» +after():applyCommand()

-c : Command

«Aspect»Invoker

after(): applyCommand() {
 Receiver r = Receiver.aspectOf();
 Command cc = ConcreteCommand.aspectOf();
 cc.setReceiver(r);

 setCommand(cc);
 invoke();
}

Fig. 42 Command design pattern (AO solution)

 Command aspect declares an interface for executing an operation,

 ConcreteCommand aspect defines a binding between a Receiver aspect

and an action, implements Execute operation by invoking the operations

on Receiver aspect,

 Invoker aspect asks the Command aspect to carry out the request,

 Receiver aspect performs the operations associated with carrying out a

request and provides pointcut and the advice for an invocation of a

pattern,

 Client, the class that invokes the applyCommand pointcut.

 151

Decorator

The intent of the aspect-oriented Decorator design pattern is to attach

additional functionality to an aspect without extending it (Fig. 43).

+operation()

«Aspect»
ConcreteComponent

+operation()

«Aspect»
Component

+setComponent(in dc : Component)

-dc : Component

«Aspect»
Decorator

«Pointcut» +applyDecorator()
«Advice» +after():applyDecorator()

«Aspect»Application

+clientVoid() : void

Client

«Joinpoint»

+operation()
+addedBehavior()

«Aspect»
ConcreteDecorator1

public void draw() {
 addedBehavior();
 dc.operation();
}

+operation()
+addedBehavior()

«Aspect»
ConcreteDecorator2

-dc

after():applyDecorator(){
 cd1 = ConcreteDecorator1.aspectOf();
 cd2 = ConcreteDecorator2.aspectOf();
 cc = ConcreteComponent.aspectOf();
 cd1.setComponent(cc);
 cd2.setComponent(cd1);
}

Fig. 43 Decorator design pattern (AO solution)

 Component aspect defines the interface for aspects that can have the

dynamically added responsibilities.

 ConcreteComponent aspect defines an aspect to which the additional

responsibilities can be attached.

 Decorator maintains a reference to a Component aspect and defines an

interface that conforms to Components interface.

 ConcreteDecorator1 and ConcreteDecorator2 provide additional

responsibilities to the Component aspect.

 Application aspect provides pointcut and the advice for an invocation of

a pattern,

 Client is the class that invokes the applyDecorator pointcut.

Façade

The intent of the aspect-oriented Façade design pattern is to “provide a unified

interface to a set of interfaces in a subsystem. Facade defines a higher-level

 152

interface that makes the subsystem easier to use” (Gamma et al., 1994) (Fig.

44).

+compile()

-ss1
-ss2
-ss3

«Aspect»
Facade

+perform()

«Aspect»
SubSystem3

«Pointcut» +applyFacade()
«Advice» +after():applyFacade()

«Aspect»Application

+clientVoid() : void

Client

«Joinpoint»
+operate()

«Aspect»
SubSystem1

public void draw() {
 ss1.operate();
 ss2.doSomething1();
 ss2.doSomething1();
 ss3.perform();
}

+doSomething1()
+doSomething2()

«Aspect»
SubSystem2

after():applyFacade(){
 Facade f = Facade.aspectOf();
 facade.compile();
}

Fig. 44 Façade design pattern (AO solution)

 Façade aspect knows which subsystem aspects are responsible for a

request, delegates pointcut invocation requests to appropriate subsystem

aspects,

 SubSystem1, SubSystem2, and SubSystem3 aspects implement

subsystem functionality and handle work assigned by the Facade aspect,

have no knowledge about the Façade aspect.

 Application aspect provides pointcut and the advice for an invocation of

a pattern,

 Client is the class that invokes the applyCommand pointcut.

Flyweight

The intent of the aspect-oriented Flyweight design pattern is to use sharing to

support the use of references to aspects efficiently (Fig. 45).

 153

+useFlyweight(in name : string, in number : int)
«Pointcut» +applyFlyweight()
«Advice» +after():applyFlyweight()

-ff : FlyweightFactory
-fs[] : Flyweight
-flyweightsMade : int

«Aspect»Application

+clientVoid() : void

Client«Joinpoint»

+setState(in iState : string)
+getState() : string
+operation(in n : string, in eState : int)

-intrinsicState : string

«Aspect»
ConcreteFlyweight1

public Flyweight getConcreteFlyweight(String name) {
 Flyweight f = fs.get(name);
 if (f == null) {
 if(){ f = ConcreteFlyweight1.aspectOf();
 }else{ f = ConcreteFlyweight2.aspectOf(); }
 fs.put(name, f);
 }
 return f;
}

after():applyFlyweight(){
 ff = FlyweightFactory.aspectOf();
 useFlyweight("F1", 12);
 useFlyweight("F2", 23);
 useFlyweight("F1", 6);
 ...
 for (int i=0;i<flyweightsMade;i++){
 fs[i].operation();
 }
}

+operation(in n : string, in eState : int)
+setState(in iState : string)

Flyweight

+setState(in iState : string)
+getState() : string
+operation(in n : string, in eState : int)

-intrinsicState : string

«Aspect»ConcreteFlyweight2

+setState()
+operation()

UnsharedFlyweight

+getConcreteFlyweight(in name : string) : Flyweight

-flyweitghts[] : Flyweight

FlyweightFactory -fliweights

Fig. 45 Flyweight design pattern (AO solution)

 Flyweight aspect declares an interface through which Flyweight aspects

can receive and act on extrinsic state,

 ConcreteFlyweight1 and ConcreteFlyweight2 aspects implement the

Flyweight aspect interface and add storage for intrinsic state, if any. A

ConcreteFlyweight1 and ConcreteFlyweight2 aspects must be sharable.

If only one Flyweight aspect for storing several different internal states

is required the storing must be implemented elsewhere,

 UnsharedFlyweight not all Flyweight aspects need to be shared,

 FlyweightFactory aspect assigns and manages references to Flyweight

aspects, ensures that Flyweight aspects are shared properly. When a

Flyweight is requested, the FlyweightFactory aspect supplies an existing

reference or assigns one, if none exists.

 Application aspect provides operation for assigning extrinsic data to

Flyweights and pointcut and the advice used for an invocation of a

pattern,

 Client is the class that invokes the applyFlyweight pointcut.

 154

Interpreter

The intent of the aspect-oriented Interpreter design pattern is to “define a

representation of the grammar of a language and an interpreter that uses the

representation to interpret a sentence of a defined language” (Gamma et al.,

1994) (Fig. 46).

+clientVoid() : void

ClientClass

«Joinpoint»

+interpret(in context)
+setExpression(in e : Expression)

-e : Expression

«Aspect»
NonterminalExpression

after():applyInterpreter(){
 context.put("x", 10);
 setExpression("x+5");
 result = evaluate(context);
}

+interpret(in context) : int

Expression

+interpret(in context)

TerminalExpression

+analyzeExpression(in expression : string)
+evaluate(in context)
«Pointcut» +applyInterpreter()
«Advice» +after():applyInterpreter()

-e : Expression

«Aspect»Client

-e

-e

Fig. 46 Interpreter design pattern (AO solution)

 Expression aspect declares an abstract interpret operation,

 TerminalExpression implements an interpret operation associated with

terminal symbol in the sentence. It is a limitation of this pattern, because

only one terminal symbol could be associated with one concrete

TerminalExpression,

 NonterminalExpression one such aspect is required for every rule in the

grammar, implements an interpret operation for nonterminal symbols in

the grammar. The aspect-oriented construction of such design pattern

could be performed only with simple expressions with exactly one

variable and terminal expression. To avoid this terminal and variable

expressions should by handled elsewhere.

 155

 Client aspect builds a sentence using defined expressions and invokes

the interpret operation and provides pointcut and the advice for an

invocation of a pattern.

 ClientClass is the class that invokes the applyInterpreter pointcut.

Iterator

The intent of aspect-oriented Iterator design pattern is to provide a way to

access the elements of an aggregate aspect sequentially without exposing its

underlying representation (Fig. 47).

«Pointcut» +applyIterator()
«Advice» +after():applyIterator()

«Aspect»Application

+clientVoid() : void

Client «Joinpoint»

after():applyIterator(){
 ConcreteAggregate ag = ConcreteAggregate.aspectOf();
 ConcreteIterator ci = ag.createIterator();
 while (!ci.isDone()) {
 System.out.print(ci.currentItem());
 ci.next();
 }
}

+first(in ag) : string
+next() : string
+isDone() : bool
+currentItem() : string

«Aspect»Iterator

+setAggregate(in ag : ConcreteAggregate)
+first() : string
+next() : string
+isDone() : bool
+currentItem() : string

-ag : ConcreteAggregate
-index : int

«Aspect»
ConcreteIterator

+createIterator() : Iterator

«Aspect»
Aggregate

+createIterator() : ConcreteIterator
+get(in i : int) : string
+set(in s : string)
+length() : int

-mas[] : string
-size : int

ConcreteAggregate

-ag

-ag

-ci

Fig. 47 Iterator design pattern (AO solution)

 Iterator aspect defines an interface for accessing and traversing

elements.

 ConcreteIterator aspect implements the Iterator aspect interface and

keeps track of the current position in the traversal of the aggregate.

 Aggregate aspect defines an interface for referencing an Iterator aspect.

 ConcreteAggregate aspect implements the Iterator aspect referencing

interface to return a reference of the proper ConcreteIterator aspect.

 Application aspect provides pointcut and advice for an invocation of a

pattern,

 Client is the class that invokes the applyIterator pointcut.

 156

Mediator

The intent of the aspect-oriented Mediator design pattern is to define an aspect

that encapsulates how a set of aspects interact (Fig. 48).

«Pointcut» +applyMediator()
«Advice» +after():applyMediator()

«Aspect»Application

+clientVoid() : void

Client «Joinpoint»

public void send(String message, Colleague o){
 for(Colleague c: colleagues){
 if(c != o) c.receive(message);
 }
}

+setMediator(in m : Mediator)
+send(in message : string)
+receive(in message : string)

-m : Mediator

«Aspect»
Colleague

+receive(in message : string)

«Aspect»
ConcreteColeague1

+send(in message : string, in c : Colleague)

«Aspect»Mediator

+receive(in message : string)

«Aspect»
ConcreteColleague2+addColleague()

+send(in message : string, in c : Colleague)

-colleagues[] : Colleague

«Aspect»ConcreteMediator

-m

after():applyMediator(){
 cc1.setMediator(cm);
 cc2.setMediator(cm);
 cm.addColleague(cc1);
 cm.addColleague(cc2);
 cc1.send("Message1");
 cc2.send("Message2");
}

Fig. 48 Mediator design pattern (AO solution)

 Mediator aspect defines an interface for communicating with Colleague

aspects,

 ConcreteMediator aspect implements behaviour of Mediator, knows

and maintains its Colleague aspects,

 Colleague aspect knows its Mediator aspect and communicates with its

mediator,

 ConcreteColleague1 and ConcreteColleague2 aspects implement

Colleague aspect,

 Application aspect provides pointcut and advice for an invocation of a

pattern,

 Client is the class that invokes the applyMediator pointcut.

 157

Memento

The intent of the aspect-oriented Memento design pattern is to capture and

externalize aspects internal state so that the aspect can be restored to this state

later (Fig. 49).

«Pointcut» +applyMemento()
«Advice» +after():applyMemento()

«Aspect»Application

+clientVoid() : void

Client«Joinpoint»

+saveToMemento() : int
+restoreFromMemento(in i : int)
+set(in state : string)
+print()

-state : string
-m : Memento

«Aspect»
Originator

+setState(in state : string) : int
+getState(in i : int) : string

-states[] : string

«Aspect»
Memento

after():applyMemento(){
 Originator o = Originator.aspectOf();
 o.setState("old state");
 int old = editor.saveToMemento();
 o.setState("new state");
 int new = editor.saveToMemento();

 o.restoreToState(old);
 o.restoreToState(new);
}

-m

Fig. 49 Memento design pattern (AO solution)

 Memento aspect stores internal state of the Originator aspect. The

memento may store as much as the internal states are necessary,

 Originator aspect uses a Memento aspect to save its current internal

state and to restore its any previous state.

 Application aspect provides pointcut and advice for an invocation of a

pattern,

 Client is the class that invokes the applyMemento pointcut.

Observer

The intent of the aspect-oriented Observer design pattern is to define a one-to-

many dependency between aspects so that when one aspect changes state, all

its dependents are notified and updated automatically (Fig. 50).

 158

«Pointcut» +applyObserver()
«Advice» +after():applyObserver()

«Aspect»Application

+clientVoid() : void

Client

«Joinpoint»

+attach(in o : Observer)
+detach(in o : Observer)
+notifyObservers(in message : string)
+getState() : string
+setState(in state : string)

-observers[] : Observer

«Aspect»
Subject

+getState() : string
+setState(in state : string)

-state : string

«Aspect»
ConcreteSubject

+update(in s : Subject)

«Aspect»Observer

+update(in s : Subject)

-state : string

«Aspect»
ConcreteObserver1

-observers

after():applyObserver(){
 s.attach(o1);
 s.attach(o2);
 s.setState("Both observers state");
 s.detach(o1);
 s.setState("Only one observer state");
}

+update(in s : Subject)

-state

«Aspect»
ConcreteObserver2

public void notifyObservers(){
 for(int i=0; i<observers.size(); i++){
 observers.get(i).update(this);
 }
}

Fig. 50 Observer design pattern (AO solution)

 Subject aspect knows its observers, can be observed by any number of

Observer aspects, and provides an interface for attaching and detaching

Observer aspects,

 Observer aspect defines an updating interface for aspects that should be

notified of changes in a Subject aspect,

 ConcreteSubject aspect stores state of interest to ConcreteObserver1 or

CocreteObserver2 aspects and sends a notification to

ConcreteObserver1 or CocreteObserver2 when its state changes,

 ConcreteObserver1 and ConcreteObserver2 aspects maintain a

reference to a ConcreteSubject aspect, store state that should remain the

same as the Subject aspect state and implement the Observer aspect

updating interface,

 Application aspect provides pointcut and advice for an invocation of a

pattern,

 Client is the class that invokes the applyObserver pointcut.

 159

Proxy

The intent of the aspect-oriented Proxy design pattern is to provide a surrogate

or a placeholder aspect for another aspect to control access to it (Fig. 51).

«Pointcut» +applyProxy()
«Advice» +after():applyProxy()

«Aspect»Application

+clientVoid() : void

Client

«Joinpoint»

+request(in s : Subject)

«Aspect»Subject

+request()

«Aspect»
RealSubject

after():applyProxy(){
 Subject subject = ProxySubject.aspectOf();
 subject.request();
 subject.request();
}

+request()

-subject : Subject

«Aspect»
ProxySubject

public void request(){
 if (subject == null){
 subject = RealSubject.aspectOf();
 }
 image.request();
}

Fig. 51 Proxy design pattern (AO solution)

 ProxySubject aspect maintains a reference that lets the proxy access the

RealSubject aspect. The interfaces of a RealSubject and ProxySubject

aspects are the same,

 Subject aspect defines the common interface for RealSubject and

ProxySubject aspects,

 RealSubject defines the real aspect that the ProxySubject represents,

 Application aspect provides pointcut and advice for an invocation of a

pattern,

 Client is the class that invokes the applyProxy pointcut.

State

The intent of the aspect-oriented State design pattern is to allow an aspect to

alter behaviour when the internal state changes (Fig. 52).

 160

+clientVoid() : void

Client

«Joinpoint»

+handle(in s : string)

«Aspect»State

+handle(in s : string)

«Aspect»
ConcreteState1

public void handle(String s){
 state.handle(s);
}

after():applyState(){
 state = ConcreteState1.aspectOf();
 handle("string1");
 handle("string2");
 handle("string3");
}

+handle(in s : string)

-count : int

«Aspect»
ConcreteState2

public void writeName(String s){
 System.out.println(s.toUpperCase());
 if(++count>1) {
 cs1 = ConcreteState1.aspectOf();
 Context.aspectOf().setState(cs1);
 }
}

+setState(in state : State)
+handle(in s : string)
«Pointcut» +applyState()
«Advice» +after():applyState()

-state : State

«Aspect»Context

-state

Fig. 52 State design pattern (AO solution)

 Context aspect defines the operations for operating State aspects,

maintains an instance of a ConcreteState1 aspect that defines the current

state, and provides pointcut and advice for an invocation of a pattern,

 State aspect defines an interface for encapsulating the behaviour

associated with a particular state of the Context aspect,

 ConcreteState1 and ConcreteState2 aspects implements a behaviour

associated with a state of the Context aspect,

 Client is the class that invokes the applyState pointcut.

Strategy

The intent of the aspect-oriented Strategy design pattern is to “define a family

of algorithms that can vary independently from its usage” (Gamma et al.,

1994) (Fig. 53).

 161

+clientVoid() : void

Client

«Joinpoint»

+execute(in a : int, in b : int) : int

«Aspect»Strategy

+execute(in a : int, in b : int) : int

«Aspect»
ConcreteStrategy1

after():applyState(){
 setStrategy(ConcreteStrategy1.aspectOf());
 int result = executeStrategy(a,b);

 setStrategy(ConcreteStrategy2.aspectOf());
 int result = executeStrategy(a,b);
}

+execute(in a : int, in b : int) : int

«Aspect»
ConcreteStrategy2

+setStrategy(in strategy : Strategy)
+executeStrategy(in a : int, in b : int)
«Pointcut» +applyStrategy()
«Advice» +after():applyStrategy()

-strategy : Strategy

«Aspect»Context

-state

Fig. 53 Strategy design pattern (AO solution)

 Strategy aspect declares an interface common to all supported

algorithms,

 ConcreteStrategy1 and ConcreteStrategy2 aspects implement the

algorithm using the Strategy aspect interface,

 Context aspect uses the interface of Strategy aspect to call the algorithm

defined by a ConcreteStrategy, maintains a reference to a Strategy

aspect, may define an interface that lets Strategy aspect access its data

and provides pointcut and advice used for an invocation of a pattern,

 Client is the class that invokes the applyStrategy pointcut.

Template Method

The intent of the aspect-oriented Template Method design pattern is to define

the skeleton of an algorithm in an operation, leaving some steps to complete

for subaspects. Template Method allows subaspects redefine certain steps of an

algorithm without changing the algorithm's structure (Fig. 54).

 162

+clientVoid() : void

Client
«Joinpoint»

+templateMethod(in a : int, in b : int)
+primitiveMethod1()
+primitiveMethod2()

«Aspect»AbstractAspect

after():applyTemplate(){
 System.out.println("Executing in predefined order...");
 templateMethod();
}

+primitiveMethod1(in a : int, in b : int)
+primitiveMethod2()
«Pointcut» +applyTemplate()
«Advice» +after():applyTemplate()

«Aspect»
ConcreteAspect

public void templateMethod(){
 primitiveOperation1();
 primitiveOperation2();
 primitiveOperation1();
}

Fig. 54 Template Method design pattern (AO solution)

 AbstractAspect aspect defines abstract primitive operations that concrete

aspects define to implement steps of an algorithm and implements a

template method defining the skeleton of an algorithm,

 ConcreteAspect aspect implements the primitive operations completing

the steps of an algorithm and provides pointcut and advice for an

invocation of a pattern,

 Client, the class that invokes the applyTemplate pointcut.

Visitor

The intent of the aspect-oriented Visitor design pattern is to represent an

operation to be performed on the aspect in elements structure. It lets you define

a new operation without changing the aspects of the elements on which it

operates (Fig. 55).

 163

+clientVoid() : void

Client

«Joinpoint»

+visitConcreteElement1(in ce1 : Element)
+visitConcreteElement2(in ce2 : Element)

«Aspect»Visitor

+visitConcreteElement1(in ce1 : Element)
+visitConcreteElement2(in ce2 : Element)

«Aspect»
ConcreteVisitor1

+visitConcreteElement1(in ce1 : Element)
+visitConcreteElement2(in ce2 : Element)

«Aspect»ConcreteVisitor2

+accept(in visitor : Visitor)

«Aspect»Element

+accept(in visitor : Visitor)
+operation1()

«Aspect»
ConcreteElement1

+accept(in visitor : Visitor)
+operation2()

«Aspect»
ConcreteElement2

«Pointcut» +applyVisitor()
«Advice» +after():applyVisitor()

Application

after():applyVisitor(
 ConcreteElement1 ce1 = ConcreteElement1.aspectOf();
 ce1.accept(CocreteVisitor1.aspectOf());

 ConcreteElement2 ce2 = ConcreteElement2.aspectOf();
 ce2.accept(CocreteVisitor2.aspectOf());
}

public void accept(ConcreteVisitor1 visitor) {
 visitor.visitConcreteElement1(this);
}

public void accept(ConcreteVisitor2 visitor) {
 visitor.visitConcreteElement2(this);
}

Fig. 55 Visitor design pattern (AO solution)

 Visitor aspect declares a visit operation for each ConcreteElement1 and

ConcreteElement2 aspects in the Element aspect structure. The

operation's name and signature identifies the aspect that sends the visit

request to the Visitor aspect. That lets the Visitor aspect determine the

concrete aspect of the element aspect being visited. Then the Visitor

aspect can access the Element aspect directly through its particular

interface,

 ConcreteVisitor1 and ConcreteVisitor2 aspect implement each

operation declared by Visitor aspect. Each operation implements a

fragment of the algorithm defined for the corresponding aspect in the

structure of Element aspect. They provide the context for the algorithm

and stores its local state,

 Element aspect defines an accept operation that takes a Visitor aspect as

an argument.

 164

 ConcreteElement1 and ConcreteElement2 implements an accept

operation that takes a Visitor aspect as an argument,

 Application aspect provides pointcut and advice for an invocation of a

pattern,

 Client is the class that invokes the applyVisitor pointcut.

 165

 166

APPENDIX C Graphical diagram illustrating the
classification presented in Table 2

OO specific
problem solved
by OO solution

OO specific
problem solved
by AO solution

Paradigm independent
problem solved by OO

solution

AO specific
problem solved by

AO solution

Concern 2

Concern 1
Aspects

AO specific
problem solved by

OO solution

Paradigm independent
problem solved by AO

solution

OO or AO problem
Solved by mixed

solution

OO base program

Paradigm independent
problem solved by mixed

solution

Entities Connections

Any type of
association or
inheritance

Class

Aspect

Pointcut
relation to its
join points

Class
containing
join point

Aspect
containing
pointcut

APPENDIX D SimpleW Logging concern after second development iteration

+setState() : void
+add(in error : string, in initiator : string) : void
+printHtml() : void
+printSystem() : void
«Advice» +before():systemEnd()

«Aspect»
ErrorHandler

+setState() : void
+add(in error : string, in initiator : string) : void
+printHtml() : void
+printSystem() : void
«Advice» +after():systemEnd()

«Aspect»
MessageHandler

+setState() : void
+add(in error : string, in initiator : string) : void
+printHtml() : void
+printSystem() : void
«Advice» +after():systemEnd()

«Aspect»
ExceptionHandling

+clear() : void
+getList() : string
«Hook» +setState() : void
«Hook» +add(in error : string, in initiator : string) : void
«Hook» +printHtml() : void
«Hook» +printSystem() : void
«Advice» +before():systemStart()

-state : bool
-errorList : string

«Aspect»
Logger

«Pointcut» +emptyRequest()
«Advice» +around():emptyRequest() : string
«Advice» +loadConfiguration()
«Advice» +after():loadConfiguration()

-eh : ErrorHandler

«Aspect»
ConfigurationLogger

«Advice» +after():systemEnd()
«Pointcut» +setters()
«Advice» +after():setters()
«Pointcut» +getters()
«Advice» +after():getters()

-mh : MessageHandler

«Aspect»
MessageLogger

«Advice» +before():handler()

-eh : ExceptionHandling

«Aspect»
ExceptionLogger

-eh

«Pointcut» +classVariable()
«Advice» +before():classVariable()
«Advice» +around():classVariable() : string

-eh : ErrorHandler

«Aspect»
SecurityLogger

«Pointcut» +connectDB()
«Advice» +after():connectDB()
«Pointcut» +closeDB()
«Advice» +after():closeDB()
«Pointcut» +resultQuery()
«Advice» +before():resultQuery()

-eh : ErrorHandler
-mh : MessageHandler

«Aspect»
DataLogger

«Pointcut» +setLanguage()
«Advice» +after():setLanguage()

-eh : ErrorHandler

«Aspect»
LanguageLogger

«Pointcut» +getMenuData()
«Advice» +before():getMenuData()
«Advice» +around():getMenuData() : string
«Pointcut» +getMenuRootData()
«Advice» +before():getMenuRootData()
«Pointcut» +getMenuLeafData()
«Advice» +before():getMenuLeafData()
«Advice» +around():getMenuLeafData()

-eh : ErrorHandler

«Aspect»
MenuLogger

«Pointcut» +moduleCreation()
«Advice» +after():moduleCreation()
«Advice» +around():moduleCreation()
«Pointcut» +getContent()
«Advice» +before():getContent()

-eh : ErrorHandler

«Aspect»
ModuleLogger

«Pointcut» +emptyType()
«Advice» +around():emptyType() : string

-eh : ErrorHandler

«Aspect»
ResourceLogger

-eh -mh

 167

 168

+setState() : void
+add(in error : string, in initiator : string) : void
+print() : void
«Advice» +before():systemEnd()

«Aspect»
ErrorHandler

+setState() : void
+add(in error : string, in initiator : string) : void
+print() : void
«Advice» +after():systemEnd()

«Aspect»
MessageHandler

+setState() : void
+add(in error : string, in initiator : string) : void
+print() : void
«Advice» +after():systemEnd()

«Aspect»
ExceptionHandling

«Hook» +add(in error : string, in initiator : string) : void

«Aspect»
Logger

«Pointcut» +emptyRequest()
«Advice» +around():emptyRequest() : string
«Advice» +loadConfiguration()
«Advice» +after():loadConfiguration()

«Aspect»
ConfigurationLogger

«Advice» +after():systemEnd()
«Pointcut» +setters()
«Advice» +after():setters()
«Pointcut» +getters()
«Advice» +after():getters()

«Aspect»
MessageLogger

«Advice» +before():handler()

«Aspect»
ExceptionLogger

«Pointcut» +classVariable()
«Advice» +before():classVariable()
«Advice» +around():classVariable() : string

«Aspect»
SecurityLogger

«Pointcut» +connectDB()
«Advice» +after():connectDB()
«Pointcut» +closeDB()
«Advice» +after():closeDB()
«Pointcut» +resultQuery()
«Advice» +before():resultQuery()

«Aspect»
DataLogger

«Pointcut» +setLanguage()
«Advice» +after():setLanguage()

«Aspect»
LanguageLogger

«Pointcut» +getMenuData()
«Advice» +before():getMenuData()
«Advice» +around():getMenuData() : string
«Pointcut» +getMenuRootData()
«Advice» +before():getMenuRootData()
«Pointcut» +getMenuLeafData()
«Advice» +before():getMenuLeafData()
«Advice» +around():getMenuLeafData()

«Aspect»
MenuLogger

«Pointcut» +moduleCreation()
«Advice» +after():moduleCreation()
«Advice» +around():moduleCreation()
«Pointcut» +getContent()
«Advice» +before():getContent()

«Aspect»
ModuleLogger

«Pointcut» +emptyType()
«Advice» +around():emptyType() : string

«Aspect»
ResourceLogger

+clear() : void
+getList() : string
«Hook» +setState() : void
«Hook» +print() : void
«Advice» +before():systemStart()

-state : bool
-errorList : string

«Aspect»
Handler

+setHandler(in h : Handler)
+add(in error : string, in initiator : string) : void

-h : Handler

«Aspect»
Decorator

1

-h

+setHandler()

-h : Handler

«Aspect»
Writer

+setHandler()
+setStyle()
+execute()

«Aspect»
HtmlWriter

+setWriter()
+execute()

«Aspect»
SystemWriter

APPENDIX E SimpleW Logging concern after third development iteration

	Introduction
	Research Context and Challenges
	Problem Statement
	Motivation
	Aims and Objectives of the Research
	Research Questions and Hypotheses
	Research Design and Research Methods
	Summary of Research Results
	Contributions of the Dissertation
	Approbation
	Outline of the Dissertation

	Chapter 1 Preliminaries
	1.1. Design Patterns
	1.2. Aspect-Oriented Software Engineering Paradigm
	1.3. Frameworks

	Chapter 2 State of the Art
	2.1. Separation of concerns and AOP
	2.2. Aspectization of Object-Oriented Design Patterns
	2.3. Compositional Properties of Aspect-Oriented Design Patterns
	2.3.1. Analysis of the related works
	2.3.2. Experimental investigation of Separation of Concerns in the Aspectized Design Pattern Application

	2.4. Paradigm-Specific Aspect-Oriented Design Patterns
	2.5. Aspect-Oriented Framework Design
	2.6. Summary

	Chapter 3 Development of the methods and procedures for transformation of GoF design patterns into pure AO design patterns
	3.1. Classification of Object-Oriented and Aspect-Oriented Design Problem Solutions
	3.2. Aspect-Oriented Solutions of Paradigm Independent Design Problems
	3.3. Investigation of the Applicability of GoF Patterns to Design the Aspects
	3.4. Summary

	Chapter 4 Empirical Evaluation of Application of Transformed Design Patterns
	4.1. Evaluation of the Hypotheses Using Case Studies
	4.2. A Case Study 1: Implementation of Pure Aspect-Oriented Factory Method Design Pattern
	4.2.1. Research Methodology
	4.2.2. Research settings
	4.2.3. Observations and findings

	4.3. A Case Study 2: Application of Pure Aspect-Oriented Design Patterns in the Redesign of Aspect-Oriented Frameworks
	4.3.1. Research Methodology
	4.3.2. Research Settings
	4.3.3. Observations and Findings
	4.3.4. Measurements and Data Analysis

	4.4. Application of Pure Aspect-Oriented Design Patterns in the Development of Aspect-Oriented Frameworks: A Case Study 3
	4.4.1. Research Methodology
	4.4.2. Research Settings
	4.4.3. Observations and Findings
	4.4.4. Measurements and Data Analysis

	4.5. Hypotheses evaluation
	4.6. Summary

	Chapter 5 Discussion of Issues and Limitations
	5.1. Open problems

	Conclusions
	References
	List of Publications
	APPENDICES
	APPENDIX A AspectJ language preliminaries
	APPENDIX B Remaining List of Transformed GoFAO Design Patterns
	APPENDIX C Graphical diagram illustrating the classification presented in Table 2
	APPENDIX D SimpleW Logging concern after second development iteration
	APPENDIX E SimpleW Logging concern after third development iteration

