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Abstract

The knowledge of agents is usually modelled using logic S5. However in
some cases it is preferable to use other modal logics, for example S4 or even
its multimodal variant S4n. It also can be noted, that S5 can be trivially
embedded into S4 ([14]) and the satisfiability problem for S4n is PSPACE-
complete ([35]). Although multimodal epistemic logics are capable of mod-
elling knowledge of many different agents, they do not include interaction
between them. In this dissertation one particular form of interaction is
chosen: one of the agents is called the central agent, because it knows ev-
erything that is known to other agents. This interaction is essentially the
same as distributed knowledge.

The main aim of this thesis is to present a sequent calculus for multi-
modal logic S4n with central agent axiom in which every derivation search
terminates. To achieve this task, basic sequent calculus is derived from the
respective Hilbert-type calculus and the cut-elimination theorem is proved.
Next the obtained calculus is modified to ensure the termination of deriva-
tion search. This is done using different kind of labels: positive and negative
indexes of the modality, stars of the negatively indexed modality, marks of
the positively indexed modality and formula numbers. These labels are
used to restrict the applications of the rules, which causes loops in deriva-
tion search trees.

Moreover, the research allowed to extend the results to other logics, there-
fore terminating calculi for multimodal epistemic logics Kn, Tn and K4n
with central agent axiom are also presented. Although termination of proof
search in the sequent calculi for Kn and Tn with central agent axiom is ob-
tained with only little or no effort, the transitivity axiom �lF ⊃ �l�lF of
logics K4n and S4n with central agent axiom causes much more difficulties.
To solve these problems, the new terminating calculi for monomodal logics
K4 and S4 are derived and also presented in this thesis.

Needless to say, that this thesis also proves the soundness and complete-
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ness of every newly introduced calculus. It also shows, that every derivation
search in each of the terminating calculi is finite.
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Introduction

Research Area and Problem relevance

Different modal logics are widely applied in computer science and artificial
intelligence. One such field of application is epistemology - a science about
knowledge and belief. Although the most popular epistemic logic for knowl-
edge modelling is S5 ([41, 54]), in some cases other logics are chosen instead,
for example S4 ([7, 8, 43]). Multimodal S4n is also chosen in favour of S5n

in some other applications, e.g. in [9]. There are many cut-free systems for
S5 (they are summarized in [50]), but all of them introduce changes into the
original Gentzen-type calculus. For example, some of them enrich formulas
with indices (see [42]), some of them use different expressions instead of
sequents (see [31, 47]). This is not the problem for logic S4. Finally, modal
logic S5 can be trivially embedded into S4 ([14]) and the satisfiability prob-
lem for S4n is PSPACE-complete ([35])1. In this thesis logic S4 is analysed
and the results are extended to other epistemic logics K, K4 and T.

However monomodal logic S4 is not enough to reason about the knowl-
edge of many agents, therefore multimodal logic must be used, but it can
be only a base for discussion about multi-agent systems, because it does
not include interactions between the knowledge of different agents. To deal
with this peculiarity, S4n can be enriched by various interaction axioms.
For example in [39], possible relations between agents in two agent systems
are analysed. In [38], one particular class of interpreted systems is analysed
and an interaction axiom is proposed for this system. Several interaction ax-
ioms are presented in [21]. Moreover, two possible scenarios for multi-agent
systems are displayed in [38, 39, 40]:

1. A system with a central processing unit. There is one agent (called the
central agent and denoted c), that knows everything what is known to

1The complexity for other monomodal as well as multimodal logics are summarised in [26].
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other agents. To model this scenario, the axiom �aF ⊃ �cF 2 is added
to modal logic. In this dissertation it is called the central agent axiom.

2. A system with agents of different capabilities. The agents are ordered
according to the computational power and any agent with more com-
putational power knows everything what is known to the agents with
less computational power. Similar axiom �iF ⊃ �jF 3, where i is
agent with less computational power than j, can be added to model
this situation.

In this thesis the first case is analysed, because of two reasons. First of all,
the results presented in this dissertation can be extended to cover the second
case of interaction. And secondly, as it is shown later in the thesis, the
central agent modality models the behaviour of distributed logic operator.
Distributed knowledge was introduced in [24] where it was called “implicit
knowledge”. The name “distributed knowledge” was first used in [25] and
the concept is widely analysed (e.g., [11, 12, 23, 26, 41]).

Research Objectives

A variety of methods to derive theorems in different modal logics exist and
to ease the derivation search computer programs are developed. However
in order for a method to be suitable for automation, it must be algorithmic.
That is, it must have two basic properties. Firstly, in every step a method
must provide a single action and secondly, a method must stop in both
situations: if the sequent is derivable and if it is not. The main objective
of this research is to develop such method for considered multimodal logic
S4n with central agent axiom.

Aim of the Work and Work Tasks

Hilbert-type calculus is a usual way to define a deduction system for modal
logic. In such system the needed properties of the logic are formulated
as axioms and several derivation rules. Although such definition is very
convenient for semantic discussion, however the derivation search process
using this technique causes a lot of problems. Therefore, in this thesis
Gentzen-type calculus (also known as sequent calculus) is used and the first

2If agent a knows F , then the central agent also knows F .
3If agent i knows F , then agent j also knows F .
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task is to develop sound and complete sequent calculi for considered logics.
The other step is to alter the Gentzen-type calculi to make it algorithmic. To
complete this task, not algorithmic rules (namely, cut) must be removed and
termination of derivation search in the calculus must be ensured. Although
the dissertation is mainly aimed at multimodal logic S4n with central agent
axiom, during the research similar results for other epistemic logics such as
Kn, Tn and K4n with central agent axiom were obtained and they are also
presented here.

More precisely the following tasks have been completed:

1. Basic sound and complete sequent calculi for multimodal logics Kn, Tn,
K4n and S4n with central agent axiom have been developed.

2. Cut-elimination theorem for the developed calculi has been proved.

3. Finiteness of the derivation search in the developed calculi for multi-
modal logics Kn and Tn with central agent axiom has been demon-
strated with little or no changes to the calculi.

4. New method to obtain termination in derivation search for transitive
monomodal logics K4 and S4 have been developed. New terminating
Gentzen-type calculi for these logics have been created.

5. The developed monomodal calculi have been adapted to transitive mul-
timodal logics K4n and S4n with central agent axiom and new termi-
nating Gentzen-type calculi for these logics have been obtained.

Methods

The basic Gentzen-type calculi for logics Kn, Tn, K4n and S4n with central
agent axiom are developed from respective sound and complete Hilbert-type
calculi. The soundness and completeness of such calculi is proved by show-
ing the equivalence between Gentzen-type and Hilbert-type calculi. The
invertibility of most of the rules of the calculi and admissibility of weaken-
ing and contraction structural rules are used to prove the cut-elimination
theorem. The finiteness of the derivation search in the developed calculus
for logic Kn with central agent axiom is proved by showing that the length
of sequent decreases while going up the derivation search tree.

In order to obtain the finiteness of the derivation search in the calculi for
other considered logics, new methods, which use labels, have been created.
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The idea to use labels dates back to [32]. In this dissertation to restrict
applications of reflexivity rule, ∗ is used (similarly to [45]). This is enough
for logic Tn with central agent axiom. However, transitivity axiom �lF ⊃
�l�lF causes a lot of problems in detecting the termination of derivation
search in sequent calculi for logics K4n and S4n with central agent axiom.
Therefore, in addition to the stars, indexes (once again, similar to the ones
in [45]) are used to keep track of every occurrence of modality that could
lead to a loop. Moreover, marks of indexed occurrences of modality show
when transitivity rule was applied to the same formula. Finally formula
numbers are used to indicate when the formula appeared in the derivation
search tree for the first time. Indexes, marks and formula numbers are used
to restrict applications of transitivity rule.

To show the soundness and completeness of the developed terminating
calculi, the equivalence between the cut-free and the terminating calculi is
proved. The finiteness of the derivation search in the calculi is proved by
demonstrating that the value of the ordered multiple decreases while going
up the derivation search tree.

Scientific Novelty

In this dissertation new sequent calculi are presented. The mentioned cal-
culi cover multimodal logics Kn, Tn, K4n and S4n with central agent axiom
and monomodal logics K4 and S4. There are many terminating calculi for
S4 (e.g. [22, 29, 37], [45] with corrections in [46]). In [27] a new method of
histories is presented, which is widely used in various epistemic logics. How-
ever, as mentioned in the article, it is not clear how to extend this method
to multimodal logics. What is more, the author is not aware of terminating
calculi for multimodal logic S4n with central agent axiom. Although multi-
modal calculi with interaction axioms are analysed, they do not cover the
mentioned logic. For example, in [21] multimodal logic KD45n with various
interaction axioms is analysed and the terminating calculi are presented. In
[23] multimodal logics Kn, Tn and S4n with distributed knowledge, which
is analogous to central agent knowledge as mentioned above, are analysed
and cut-free sequent calculi are presented. What is more, it is possible
to conclude from the article the cut-free calculus for K4n with distributed
knowledge. However, the mentioned calculi for K4n and S4n are not termi-
nating.
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The most important result of the dissertation is a new marks and indexes
method for transitive monomodal and multimodal logics, in which four kind
of labels are used: (1) indexes of the occurrences of modality, (2) marks of
indexed modalities, (3) marks ∗ and (4) formula numbers. Although
the usage of labels is not a new thing ([32, 45]), in this thesis they are
applied in a new and original way. This new method is employed to ensure
the termination of every derivation search in sequent calculi for transitive
monomodal logics K4 and S4 as well as for transitive multimodal logics K4n
and S4n with central agent axiom.

Finally, the results presented in this dissertation can be easily extended
to other multimodal logics. First of all by eliminating the central agent, the
terminating calculi for multimodal logics Kn, Tn, K4n and S4n are obtained.
Moreover, with some effort these calculi can be adapted to the mentioned
logics with different interaction axioms. E.g., the system with agents of
different capabilities, described in the start of this chapter.

Defending Statements

These statements are presented for defence:

1. New constructed Gentzen-type calculi for multimodal logics Kn, Tn,
K4n and S4n with central agent axiom demonstrate how central agent
axiom can be modelled in sequent calculi without causing problems in
cut-elimination.

2. New method of obtaining finite derivation search is developed. This
method is applied to obtain new terminating Gentzen-type calculi for
transitive monomodal logics K4 and S4.

3. This new method is extended to obtain new terminating Gentzen-type
calculi for transitive multimodal logics K4n and S4n with central agent
axiom. Some ideas of this method are used to construct such calculus
for logic Tn with central agent axiom.

Approval of Research Results

The author’s research is documented in 6 articles. 2 articles are in the
periodical journals, included in Scientific Master Journal List (ISI). Other
articles are in the international refereed journals.
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The results are also presented in 4 conferences and in the seminars of
Mathematical Logic Sector at Software Engineering Department of Vilnius
University Institute of Mathematics and Informatics.

Publications of the Author

The publications of the author related to this dissertation are:

1. Scientific articles in the periodical journals, included in Scientific Mas-
ter Journal List (ISI):

(a) J. Andrikonis. Cut elimination for S4n and K4n with the cen-
tral agent axiom. Lithuanian Mathematical Journal, 49(2), pp.
123–139, 2009.

(b) J. Andrikonis. Loop-free calculus for modal logic S4. Lithuanian
Mathematical Journal, July 2011. Accepted for publication.

2. Scientific articles in other international refereed journals:

(a) J. Andrikonis and R. Pliuškevičius. Cut elimination for knowledge
logic with interaction. Lithuanian Mathematical Journal, 47(spec.
issue), pp. 346–350, 2007.

(b) J. Andrikonis. Cut-elimination for knowledge logics with interac-
tion. Lithuanian Mathematical Journal, 48/49(spec. issue), pp.
263–268, 2008.

(c) J. Andrikonis. Loop-free sequent calculus for modal logic K4.
Lithuanian Mathematical Journal, 50(spec. issue), pp. 241–246,
2009.

(d) J. Andrikonis and R. Pliuškevičius. Contraction-free calculi for
modal logics S5 and KD45. Lithuanian Mathematical Journal,
51(spec. issue), August 2011. Accepted for publication.

Outline of the Dissertation

In Chapter 1 initial Hilbert-type and Gentzen-type calculi for classical,
monomodal and multimodal logics are defined, some important measures are
introduced as well as some properties of the mentioned calculi are proved.
Among the most important properties are invertibility of most of the rules
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and admissibility of weakening and contraction in the presented sequent
calculi.

In Chapter 2 central agent axiom is presented and the relation between
central agent knowledge and distributed knowledge is described. Next
Hilbert-type calculi for multimodal logics Kn, Tn, K4n and S4n with central
agent axiom are presented. From them Gentzen-type calculi are derived
and their equivalence is proved. In the final section of the chapter the
cut-elimination theorem for all the considered calculi is proved.

Chapter 3 presents terminating sequent calculi for all the considered log-
ics and proves that every derivation search in the presented calculi is finite.
In fact, the cut-free calculus for Kn with central agent axiom is already
terminating and the one for Tn with central agent axiom requires only mi-
nor changes. To make the dissertation clearer, the terminating calculi for
monomodal logics K4 and S4 are presented before discussing the cases of
multimodal logics K4n and S4n with central agent axiom. The soundness
and completeness of all the newly introduced calculi are also proved in the
chapter.

Annex A presents the detailed proof of Lemma 2.3.6.
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Chapter 1

Initial Calculi

This chapter presents definitions, terms and theorems that are used in the
whole dissertation. The results presented in this chapter are not the work
of the author and the references are given, where applicable. In other situa-
tions, the information presented here is considered to be a common knowl-
edge1.

1.1 Classical Propositional Calculi

Classical propositional logic is denoted PC. To construct the formulas of
PC, standard logical connectives are used: unary operator ¬ (negation)
and binary operators ∧ (conjunction), ∨ (disjunction) and ⊃ (implication).

Definition 1.1.1. Classical formula is defined recursively as follows:

• Propositional variable is a classical formula.

• If F is a classical formula, then (¬F ) is a classical formula too.

• If F and G are classical formulas, then (F ∧G), (F ∨G), (F ⊃ G) are
classical formulas too.

Formulas are denoted by capital Latin letters (F,G,H, F1, . . . ), propo-
sitional variables are denoted by small Latin letters (p, q, r, p1, . . . ). Out-
ermost brackets of formulas in this thesis are always omitted, as well as
some inner brackets if the order of application of logical operators is clear.
The priorities of logical operators are ¬, ∧, ∨, ⊃, where ¬ has the highest
priority and ⊃ — the lowest.

1As a matter of fact the concept of common knowledge is also analysed in the context of multimodal logic
e.g. in [11, 24, 25].
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Definition 1.1.2. An interpretation of classical formula F is function
ν : P → {>,⊥}, where P is a set of all the propositional variables of
F , > stands for “true” and ⊥ stands for “false”.

Now a truth relation � between interpretation and formula is defined.

Definition 1.1.3. Let’s say that ν is an interpretation of classical formula
F , then:

• if F is a propositional variable, then ν �F iff ν(F ) = >.

• if F ≡ ¬G, then ν �F iff ν 2G.

• if F ≡ G ∧H, then ν �F iff ν �G and ν �H.

• if F ≡ G ∨H, then ν 2F iff ν 2G and ν 2H.

• if F ≡ G ⊃ H, then ν 2F iff ν �G and ν 2H.

If ν � F , then it is said that formula F is true with interpretation ν. If
F is true with every possible interpretation of F , then it is said that F is
valid and denoted � F . Sometimes it is important to clarify the logic, for
which the formula is valid (or true with interpretation ν). This is presented
as index of truth relation: �PC F (or ν �PC F respectively).

To test for formula validity several methods are used. Here only Hilbert-
type and Gentzen-type calculi are analysed.

In this dissertation Hilbert-type calculus defined in [33] is used. For an
alternative definition the reader could refer to [30].

Definition 1.1.4. Hilbert-type calculus for classical propositional logic (de-
noted HPC) consists of axioms:

1.1. F ⊃ (G ⊃ F );

1.2.
(
F ⊃ (G ⊃ H)

)
⊃
(
(F ⊃ G) ⊃ (F ⊃ H)

)
;

2.1. (F ∧G) ⊃ F ;

2.2. (F ∧G) ⊃ G;

2.3. (F ⊃ G) ⊃
(

(F ⊃ H) ⊃
(
F ⊃ (G ∧H)

))
;

3.1. F ⊃ (F ∨G);

3.2. G ⊃ (F ∨G);

3.3. (F ⊃ H) ⊃
(

(G ⊃ H) ⊃
(
(F ∨G) ⊃ H

))
;
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4.1. (F ⊃ G) ⊃ (¬G ⊃ ¬F );

4.2. F ⊃ ¬¬F ;

4.3. ¬¬F ⊃ F ;

and Modus Ponens (MP) rule:

F F ⊃ G
G

Here F , G and H stand for any classical formula.

This type of calculus was formulated for the first time in [28], therefore
such calculi are called Hilbert-type.

In order to check if some formula is valid, a derivation is constructed. A
derivation of formula F in Hilbert-type calculus is a sequence of formulas
F1, . . . , Fn, where Fn ≡ F and for every i ∈ [1, n], Fi is either an axiom,
or obtained by applying the rules of the calculus to formulas from the set
{Fj : j < i}. Thus the derivation search starts with axioms and from them
new formulas are constructed by applying the rules. The process terminates
successfully if formula F is finally obtained.

In this dissertation Hilbert-type derivations are presented as lists together
with information on how the formula was obtained. For this purpose an
expression of the type {G1/F1, . . . ,Gn/Fn}, called the substitution, is used.
This means that in the discussed formula all the occurrences of subformula
Fi is replaced by Gi, ∀i ∈ [1, n].

Definition 1.1.5. It is said that formula F is derivable in some Hilbert-
type calculus C (denoted `C F ), if a derivation of F in C exists. Otherwise
it is said that F is not derivable in C (0CF ).

One of the core properties of the calculus are soundness and completeness.
It is said that Hilbert-type calculus C for logic L is sound if for any formula
F , if `C F then �L F . It is said that Hilbert-type calculus C for logic L is
complete if for any formula F , if �LF , then `CF . Only sound and complete
calculi can be used to check both validity and invalidity of any formula.

The soundness and completeness of HPC is shown in [33].
Now an example of derivation in HPC is presented.
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Example 1.1.6. A derivation of p ⊃ p in HPC is as follows:
1.
(
p ⊃

(
(p ⊃ p) ⊃ p

))
⊃
((
p ⊃ (p ⊃ p)

)
⊃ (p ⊃ p)

)
Axiom 1.2, {p/F , p⊃p/G, p/H}.

2. p ⊃
(
(p ⊃ p) ⊃ p

)
Axiom 1.1, {p/F , p⊃p/G}.

3.
(
p ⊃ (p ⊃ p)

)
⊃ (p ⊃ p) MP rule from 2 and 1.

4. p ⊃ (p ⊃ p) Axiom 1.1, {p/F , p/G}.
5. p ⊃ p MP rule from 4 and 3.

Although Hilbert-type calculi are used in discussing semantics of the
logic, however proof search in such calculi is not an easy task. It is hard to
describe an algorithm of choosing the axioms, as can be seen in Example
1.1.6. There are several techniques suggested to tackle this problem, one
of witch was first introduced in [18], and therefore is called Gentzen-type
calculus. This technique is analysed in the dissertation.

Definition 1.1.7. A sequent is an expression of the form Γ → ∆, where
Γ and ∆ are multisets of formulas and can possibly be empty. Γ is called
antecedent and ∆ is called succedent. The order of the elements of the
multisets is not important.

In this dissertation sequents are denoted by letter S with or without
indices and capital Greek letters (Γ, ∆, Σ, Γ1) denote multisets of formulas,
which can be empty, if not mentioned otherwise. Sequents, which consist
of classical formulas only, are called classical sequents.

Because of the use of sequents, Gentzen-type calculi are often referred to
as the sequent calculi.

Definition 1.1.8. Let’s say that S is a sequent, then corresponding formula
of S (denoted Cor(S)) is defined as follows:

• if S = F1, . . . , Fn → G1, . . . , Gm, where n,m > 1, then Cor(S) = (F1∧
. . . ∧ Fn) ⊃ (G1 ∨ . . . ∨Gm).

• if S = → G1, . . . , Gm, where m > 1, then Cor(S) = G1 ∨ . . . ∨Gm.

• if S = F1, . . . , Fn → , where n > 1, then Cor(S) = ¬(F1 ∧ . . . ∧ Fn).

• if S = → , then Cor(S) = p ∧ ¬p for some propositional variable p.

It is clear that if S is a classical sequent, then Cor(S) is a classical formula.
This definition is similar to that given in [49].

Now it is possible to define the semantic meaning of sequent.

Definition 1.1.9. Let’s say that S is a classical sequent and ν is an inter-
pretation of classical formula Cor(S), then S is true with interpretation ν
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(denoted ν � S) iff ν �Cor(S). If �Cor(S), then it is said that S is valid
and denoted �S.

In this dissertation the sequent calculus provided in [32] is used. This
calculus has some very good properties, which will be discussed later. It is
also used by other authors, i.e. [13, 20].

Definition 1.1.10. Gentzen-type calculus for classical propositional logic
(GPC) consists of an axiom Γ, F → F,∆ and the logical rules:

Negation:

Γ → ∆, F
(¬ →)

¬F,Γ → ∆
F,Γ → ∆

(→ ¬)Γ → ∆,¬F

Conjunction:

F,G,Γ → ∆
(∧ →)

F ∧G,Γ → ∆
Γ → ∆, F Γ → ∆, G

(→ ∧)Γ → ∆, F ∧G

Disjunction:

F,Γ → ∆ G,Γ → ∆
(∨ →)

F ∨G,Γ → ∆
Γ → ∆, F,G

(→ ∨)Γ → ∆, F ∨G

Implication:

Γ → ∆, F G,Γ → ∆
(⊃→)

F ⊃ G,Γ → ∆
F,Γ → ∆, G

(→⊃)Γ → ∆, F ⊃ G

The sequent(s) above the horizontal line of the rule is (are) called the
premise(s). The sequent bellow the line is called the conclusion.

Once again, to check the validity of some sequent, derivation is con-
structed. Now a derivation search tree of the sequent S in Gentzen-type
calculus is a tree of sequents, which has S at the bottom as a root and each
node is either a leaf, or a conclusion of an application of some rule of the
calculus in which case all the premises of the application are child nodes of
that node. S is called the initial sequent. To denote some derivation search
tree, letter D with or without indices is used.

A branch of derivation search tree D is a subtree of D in which each node
except the last one has exactly one child, the last node has no children and
which is not a subtree of any other branch of D (similar definition can be
found in [52]). The branch can be infinite. In that case there is no last node
and each node has exactly one child. It can be noticed that every sequent of
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the derivation search tree belongs to at least one branch. If every branch of
a derivation search tree D is finite, then D is finite, otherwise it is infinite.
A part of a branch between sequents S1 and S2 is called a path from S1 to
S2.

If all the branches of a derivation search tree D of S end with axiom, it
is said that D is a derivation tree (or simply a derivation) of S. If there
exists a derivation tree of S in Gentzen-type calculus C, it is said that S is
derivable in C (denoted `C S) and otherwise it is said that S is not derivable
(denoted 0C S). Formula F is derivable in sequent calculus C (denoted `CF )
iff `C → F .

Similarly to the Hilbert-type calculus, if the derivation tree of sequent S
in sequent calculus is present, the reasoning about the validity of S is obvi-
ous. It starts from the axiom(s) and is continued through the applications
of the rules. Due to the form of the rules, if all the premises of some appli-
cation are valid, the conclusion of the application is valid too. However, the
process of derivation search starts with sequent S. If S is not an axiom and
it is suitable as a conclusion of some rule, then the premise(s) of the rule
are inspected and the process of finding the appropriate rule is repeated to
them. Thus in this dissertation it is said that the rule of sequent calculus is
applied to the conclusion and the premise(s) are obtained. The application
of some rule is called an inference.

It is obvious, that usually several rules can be applied to the same se-
quent. To separate them, main formula of the inference is defined. The
main formula of inferences

Γ → ∆, F
(¬ →)

¬F,Γ → ∆
F,Γ → ∆

(→ ¬)Γ → ∆,¬F

is ¬F . F is called a side formula. The main formula of inferences

F,G,Γ → ∆
(∧ →)

F ∧G,Γ → ∆
Γ → ∆, F Γ → ∆, G

(→ ∧)Γ → ∆, F ∧G

is F ∧G. F and G are side formulas. The main formula of inferences

F,Γ → ∆ G,Γ → ∆
(∨ →)

F ∨G,Γ → ∆
Γ → ∆, F,G

(→ ∨)Γ → ∆, F ∨G
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is F ∨G. F and G are side formulas. The main formula of inferences

Γ → ∆, F G,Γ → ∆
(⊃→)

F ⊃ G,Γ → ∆
F,Γ → ∆, G

(→⊃)Γ → ∆, F ⊃ G

is F ⊃ G. F and G are side formulas. The main formula of axiom
Γ, F → F,∆ is formula F .

It is said that sequent calculus C for logic L is sound if for any sequent S,
if `C S then �LS. It is said that sequent calculus C for logic L is complete
if for any sequent S, if �L S, then `C S. In [32] it is proved that GPC is
sound and complete.

Now an example of derivation in GPC is given.

Example 1.1.11. A derivation in GPC of the formula used in Example
1.1.6 is obvious, so a derivation tree of Axiom 2.3 of HPC is provided in-
stead.

F, F ⊃ G → G ∧H, F

F, H → G ∧H, F

F, H, G → G F, H, G → H (∧ →)
F, H, G → G ∧H (⊃→)

F, H, F ⊃ G → G ∧H (⊃→)
F, F ⊃ H, F ⊃ G → G ∧H (→⊃)

F ⊃ H, F ⊃ G → F ⊃ (G ∧H)
(→⊃)

F ⊃ G → (F ⊃ H) ⊃
(

F ⊃ (G ∧H)
)

(→⊃)
→ (F ⊃ G) ⊃

(
(F ⊃ H) ⊃

(
F ⊃ (G ∧H)

))

1.2 Modal Calculi

In order to use logic to reason about modalities such as knowledge, be-
lief, obligation two modal logical operators are introduced: � (necessity)
and ♦ (possibility). However in this dissertation only necessity modality is
analysed, because possibility can be replaced by � modality with equiva-
lence ♦F ≡ ¬�¬F as explained latter. In epistemic logic modality � is
interpreted as knowledge operator.

Definition 1.2.1. Modal formula is defined in following recursive way:

• Propositional variable is a modal formula.

• If F is a modal formula, then (¬F ) and (�F ) are modal formulas too.

• If F and G are modal formulas, then (F ∧ G), (F ∨ G), (F ⊃ G) are
modal formulas too.

The operator � together with ¬ has the highest priority in determining
the order of application of logical operators in formula. A sequent that
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contains only modal formulas, is called modal sequent. Modal formulas,
modal sequents and multisets, that contain modal formulas, are denoted in
the same way as the classical ones.

To define, which formula is true in modal logic, Kripke structure (intro-
duced in [34]) is used.

Definition 1.2.2. A Kripke structure for modal formula F is a triple
〈W ,R,Φ〉, where

1. W is a set of worlds,

2. R is a binary relation between the elements of W,

3. Φ :W×P → {>,⊥} is interpretation function, where P is a set of all
the propositional variables of F .

A pair 〈W ,R〉 of Kripke structure S = 〈W ,R,Φ〉 is called a frame.
Kripke structure contains the set of worlds and depending on the inter-

pretation function a propositional variable can get different value in different
world. Therefore, modal formula can be true in one world of the structure
and false in another one. An expression S, w � F denotes that formula F
is true in world w of Kripke structure S.

Now the truth relation is defined as follows.

Definition 1.2.3. Let’s say that S = 〈W ,R,Φ〉 is a Kripke structure for
modal formula F and w ∈ W is some world, then:

• if F is a propositional variable, then S, w �F iff Φ(w,F ) = >.

• if F ≡ ¬G, then S, w �F iff S, w 2G.

• if F ≡ G ∧H, then S, w �F iff S, w �G and S, w �H.

• if F ≡ G ∨H, then S, w 2F iff S, w 2G and S, w 2H.

• if F ≡ G ⊃ H, then S, w 2F iff S, w �G and S, w 2H.

• if F ≡ �G, then S, w �F iff ∀w1, wRw1 : S, w1 �G.2

If formula F is true in every world of Kripke structure S, then it is said,
that formula F is valid in S and denoted S �F .

The weakest modal logic is K, which adds only one axiom to HPC. How-
ever, usually some additional properties of � must be defined and therefore,

2Posibility modality is defined in a following way: if F ≡ ♦G, then S, w �F iff ∃w1, wRw1 : S, w1 �G. It is
clear, that S, w �♦G iff S, w �¬�¬G and therefore all the occurrences of ♦ can be replaced by ¬�¬.
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the calculus is extended with additional axioms. The notation L1 = L+(A)
is used to define that modal operator � in logic L1 posses the same proper-
ties as the one in logic L and a property defined by axiom (A). Analogously,
if C is a Hilbert-type calculus, then the notation C1 = C + (A) means that
Hilbert-type calculus C1 is obtained from calculus C by adding axiom (A).

The following formulation of calculus is traditional (see [15, 49]):

Definition 1.2.4. Hilbert-type calculus for modal logic K (HK) consists of
the same axioms as HPC, axiom (K):

�(F ⊃ G) ⊃ (�F ⊃ �G)

MP rule and Necessity Generalization rule (NG):

F
�F

Other axioms for modal logics are:

(T): �F ⊃ F

(4): �F ⊃ ��F

Other modal logics are defined as follows: T = K + (T), K4 = K + (4),
S4 = T + (4) = K4 + (T).

Hilbert type calculi for respective modal logics are defined analogously:
HT = HK + (T), HK4 = HK + (4), HS4 = HT + (4) = HK4 + (T).

In all the defined modal calculi F , G and H stand for any modal formula.
This applies to the newly introduced axioms and rules as well as to the ones,
which are inherited from HPC.

Axiom (T) is usually called the knowledge axiom or the truth axiom
([11]). It states, that everything, that is known, is true and in general is
used to distinguish knowledge from belief. Axiom (4) is called the positive
introspection and according to it the agent knows, what it knows. Logic S5
adds another axiom to the ones of S4: ¬�F ⊃ �¬�F . This axiom is called
the negative introspection (or (5)) and it says that agent knows, what it
doesn’t know. If the knowledge of humans is discussed, it is very likely that
this axiom doesn’t hold ([41]).

Now let’s analyse an example of Kripke structure and how it is decided
if the formula is true.
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Example 1.2.5. Let’s say that S = 〈W ,R,Φ〉 is a Kripke structure for
formula F = �p ⊃ p, where W = {w1, w2}, R = {(w1, w2)}, Φ(p, w1) = ⊥
and Φ(p, w2) = >. It is possible to demonstrate the structure graphically:

-r r
w1 w2

p = ⊥ p = >

Now let’s check, if S, w1 � F . According to the definition S, w1 � �p,
because S, w2 � p and w2 is the only world such that w1Rw2. However
S, w1 2 p. Therefore S, w1 2�p ⊃ p.

This example demonstrates, that it is possible to construct a Kripke
structure, in which axiom (T) is not valid. Indeed, for this axiom to be
valid in each world of Kripke structure S = 〈W ,R,Φ〉, the frame 〈W ,R〉
of S must be reflexive: ∀w ∈ W : wRw. Similarly, axiom (4) requires
the frame to be transitive (∀w1, w2, w3 ∈ W : if w1Rw2 and w2Rw3, then
w1Rw3). Therefore, the validity of formula in modal logic is defined taking
into account the requirements of the axioms, that are part of the logic:

• �KF iff for any Kripke structure S it is true that S �F .

• �TF iff for any Kripke structure S with reflexive frame S �F .

• �K4F iff for any Kripke structure S with transitive frame S �F .

• �S4F iff for any Kripke structure S with reflexive and transitive frame
S �F .

Because of that, (T) is called reflexivity axiom and (4) — transitivity
axiom.

For some modal sequent S, Kripke structure S = 〈W ,R,Φ〉 for modal
formula Cor(S) and world w ∈ W it is said that (1) S, w � S iff S, w �
Cor(S), (2) S �S iff S �Cor(S) and (3) �LS, iff �LCor(S) for some logic
L.

It is known that calculi HK, HT, HK4 and HS4 are sound and complete.
The definition of sequent calculi, used here, are based on the ones pro-

vided in [36, 48] (for K), [16, 48] (for K4) and [44] (for T and S4). Alternative
formulations can be found in [19, 53].
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Definition 1.2.6. Gentzen-type calculus for modal logics consists of an ax-
iom Γ, F → F,∆, the logical rules of GPC and modal rules, which depend
on logic:

Calculus GK for modal logic K:

Γ2 → F
(→ �)Γ1,�Γ2 → ∆,�F

Calculus GK4 for modal logic K4:

Γ2,�Γ2 → F
(→ �)Γ1,�Γ2 → ∆,�F

Calculus GT for modal logic T:

F,�F,Γ → ∆
(�→)

�F,Γ → ∆
Γ2 → F

(→ �)Γ1,�Γ2 → ∆,�F

Calculus GS4 for modal logic S4:

F,�F,Γ → ∆
(�→)

�F,Γ → ∆
�Γ2 → F

(→ �)Γ1,�Γ2 → ∆,�F

In all the new rules �F is main formula and F is side formula. The rule
(�→) is called reflexivity ([45]), because it corresponds to reflexivity axiom
of Hilbert-type calculus for T and S4 as can be seen in proof of Lemma
2.3.11. The rule (→ �) of GK4 and GS4 is called transitivity, because it
corresponds to transitivity axiom of HK4 and HS4 as can be seen in proofs
of Lemmas 2.3.10 and 2.3.12.

Calculi GK, GK4, GT and GS4 are sound and complete.

1.3 Multimodal Calculi

To reason about knowledge of many agents, multimodal logic is used. In
such case knowledge of agent l is denoted as �l. Agents are usually num-
bered with natural numbers starting from 1, however special agents may
get a different name. A set of agents may be finite as well as infinite.

Definition 1.3.1. Multimodal formula is defined in following recursive way:

• Propositional variable is a multimodal formula.

• If F is a multimodal formula, then (¬F ) and (�lF ), where l is a name
of agent, are multimodal formulas too.
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• If F and G are multimodal formulas, then (F ∧G), (F ∨G), (F ⊃ G)
are multimodal formulas too.

The operator �l together with ¬ has the highest priority in determining
the order of application of logical operators in formula. A sequent that
contains only multimodal formulas, is called multimodal sequent. Multi-
modal formulas, sequents and multisets, that contain multimodal formulas,
are denoted in the same way as the classical and modal ones.

To define the validity of multimodal formulas, Kripke structure must also
be changed.

Definition 1.3.2. A Kripke structure for multimodal formula F is a mul-
tiple 〈W ,Rl1, . . . ,Rln,Φ〉, where

1. W is a set of worlds,

2. For each different agent lj in formula F , Rlj is a binary relation between
the elements of W,

3. Φ :W×P → {>,⊥} is interpretation function, where P is a set of all
the propositional variables of F .

Multiple 〈W ,Rl1, . . . ,Rln〉 of Kripke structure S = 〈W ,Rl1, . . . ,Rln,Φ〉
is called a frame. It is said that frame 〈W ,Rl1, . . . ,Rln〉 is reflexive (tran-
sitive) if every relation Rlj , j ∈ [1, n] is reflexive (respectively transitive).

The truth relation for multimodal formulas is defined as follows.

Definition 1.3.3. Let’s say that S = 〈W ,Rl1, . . . ,Rln,Φ〉 is a Kripke struc-
ture for formula F and w ∈ W is some world, then:

• if F is a propositional variable, F ≡ ¬G, F ≡ G ∧H, F ≡ G ∨H or
F ≡ G ⊃ H, then S, w �F is defined in the same way as in Definition
1.2.3.

• if F ≡ �ljG, j ∈ [1, n], then S, w �F iff ∀w1, wRljw1 : S, w1 �G.

Once again if multimodal formula F is true in every world of Kripke
structure S, then it is said, that F is valid in S and denoted S � F . The
definition of validity of multimodal formula also takes into account the re-
quirements of the axioms:

• �KnF iff for any Kripke structure S it is true that S �F .

• �TnF iff for any Kripke structure S with reflexive frame S �F .
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• �K4nF iff for any Kripke structure S with transitive frame S �F .

• �S4nF iff for any Kripke structure S with reflexive and transitive frame
S �F .

Once again, for some multimodal sequent S, some Kripke structure S =
〈W ,Rl1, . . . ,Rln,Φ〉 for multimodal formula Cor(S) and world w ∈ W it
is said that (1) S, w � S iff S, w � Cor(S), (2) S � S iff S � Cor(S) and
(3) �LS, iff �LCor(S) for some logic L.

Hilbert-type calculi for multimodal logics are defined in the similar way.

Definition 1.3.4. Hilbert-type calculus for multimodal logic Kn (HKn) con-
sists of the same axioms as HPC, axiom (Kl):

�l(F ⊃ G) ⊃ (�lF ⊃ �lG)

MP rule and Necessity Generalization rule (NGl):

F
�lF

Other axioms for multimodal logics are:

(Tl): �lF ⊃ F

(4l): �lF ⊃ �l�lF

Other multimodal logics are defined as follows: Tn = Kn + (Tl), K4n =
Kn + (4l), S4n = Tn + (4l) = K4n + (Tl).

Hilbert type calculi for respective multimodal logics are defined analo-
gously: HTn = HKn + (Tl), HK4n = HKn + (4l), HS4n = HTn + (4l) =
HK4 + (Tl).

Once again in all the defined multimodal calculi F , G and H stand for
any multimodal formula.

Similarly to the monomodal variant, (Tl) is called reflexivity axiom and
(4l) — transitivity axiom. If however agent l must be mentioned, then they
are called respectively l-reflexivity and l-transitivity axioms.

It is known that calculi HKn, HTn, HK4n and HS4n are sound and com-
plete.

The definition of sequent calculi for multimodal logics are also similar.
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Definition 1.3.5. Gentzen-type calculus for multimodal logics consists of
an axiom Γ, F → F,∆, the logical rules of GPC and modal rules, which
depend on logic:

Calculus GKn for modal logic Kn:

Γ2 → F
(→ �l)Γ1,�lΓ2 → ∆,�lF

Calculus GK4n for modal logic K4n:

Γ2,�lΓ2 → F
(→ �l)Γ1,�lΓ2 → ∆,�lF

Calculus GTn for modal logic Tn:

F,�lF,Γ → ∆
(�l →)

�lF,Γ → ∆
Γ2 → F

(→ �l)Γ1,�lΓ2 → ∆,�lF

Calculus GS4n for modal logic S4n:

F,�lF,Γ → ∆
(�l →)

�lF,Γ → ∆
�lΓ2 → F

(→ �l)Γ1,�lΓ2 → ∆,�lF

In all the new rules �lF is main formula and F is side formula. Once
again the rule (�l →) is called reflexivity and the rule (→ �l) of GK4n and
GS4n is called transitivity. Similarly, if it is important to mention specific
agent l, then they are called respectively l-reflexivity and l-transitivity rules.

Calculi GKn, GK4n, GTn and GS4n are sound and complete.

1.4 Some Properties of the Calculi

First, let’s define the height of the derivation. It is the core property and
is often used in proofs. The height of the derivation D is denoted h(D),
however the definition depends on the type of the calculus.

Definition 1.4.1. A height of a derivation F1, . . . , Fn in Hilbert-type cal-
culus is:

• 1, if Fn is an axiom;

• h + 1, if Fn is obtained from Fi, i ∈ [1, n) by applying a rule of the
calculus and h = h(F1, . . . , Fi);

• max(h1, h2)+1, if Fn is obtained from Fi and Fj, i, j ∈ [1, n) by applying
a rule of the calculus, h1 = h(F1, . . . , Fi) and h2 = h(F1, . . . , Fj).
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Definition 1.4.2. A height of a finite derivation search tree D in sequent
calculus is:

• 1, if D consists of single sequent only;

• h+ 1, if the last application of the rule in D is

S1
S

and the height of derivation search tree of S1 is h;

• max(h1, h2) + 1, if the last application of the rule in D is

S1 S2
S

the height of derivation search tree of S1 is h1 and the height of deriva-
tion search tree of S2 is h2.

Another important measure is the length of the formula.

Definition 1.4.3. The length of formula F (denoted l(F )) is:

• 0, if F is a propositional variable.

• l + 1, if F is of the form ¬G, �G or �lG and l = l(G).

• l1 + l2 + 1, if F is of the form G ∧H, G ∨H or G ⊃ H, l1 = l(G) and
l2 = l(H).

The length of multiset of formulas Γ = F1, . . . , Fn (denoted l(Γ)) is equal
to ∑n

i=1 l(Fi). The length of sequent S = Γ → ∆ (denoted l(S)) is equal to
l(Γ) + l(∆).

Definition 1.4.4. In sequent F1, . . . , Fn → G1, . . . , Gm formulas Fi, i ∈
[1, n] occur negatively and formulas Gj, j ∈ [1,m] occur positively. If for-
mula or subformula F in the sequent occurs positively (negatively) and

• F = �G or F = �lG, then G occurs in the sequent positively (respec-
tively negatively).

• F = ¬G, then G occurs in the sequent negatively (respectively posi-
tively).

• F = G∧H or F = G∨H, then G and H occur in the sequent positively
(respectively negatively).
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• F = G ⊃ H, then G occurs in the sequent negatively (respectively posi-
tively) and H occurs in the sequent positively (respectively negatively).

If formula or subformula �lF (or �F ) occurs in the sequent positively (neg-
atively), then it is said that this occurrence of �l (respectively �) is positive
(respectively negative).

It should be noted, that usually in derivation search trees of sequent
calculi the occurrences of formula do not change their positiveness. This
is true for all the Gentzen-type calculi analysed in this thesis. Thus for
example in GS4n positive occurrence of �lF can only be the main formula
of l-transitivity rule and negative occurrence of �lF can only be the main
formula of l-reflexivity rule.

Sometimes to ease the proofs of the theorems some additional rules are
incorporated in the calculus. If the inclusion of the rule does not alter the
set of formulas that are derivable in the calculus, then the rule is called
admissible in the calculus. More formally:

Definition 1.4.5. Let C be some calculus and (R) some rule. The rule (R)
is admissible in calculus C if for every formula F it is true that `C F iff
`C+(R)F .

It is usually obvious, that if some formula is derivable in calculus C, then
it is derivable in C + (R). Therefore only the fact, that all the applications
of the rule (R) can be eliminated from the derivations in C + (R) must
be proved. Admissible rules are convenient, because they can be used in
the derivation search without breaking soundness and completeness of the
calculus.

Now admissibility of some rules is proved, because these rules are used
later.

Lemma 1.4.6. The rules of negation (R¬), disjunction (R∨), conjunction
(R∧), implication (R⊃), transitivity (Tr) and substitution in disjunction
(SD):

F ⊃ G R¬¬G ⊃ ¬F
F ⊃ H G ⊃ H R∨(F ∨G) ⊃ H

F ⊃ G F ⊃ H R∧
F ⊃ (G ∧H)

F ⊃ (G ⊃ H) F ⊃ G
R⊃

F ⊃ H
F ⊃ G G ⊃ H Tr

F ⊃ H
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F ∨G F ⊃ H SD
H ∨G

are admissible in all the defined Hilbert-type calculi3.

Proof. To prove the admissibility, let’s change every application of the con-
sidered rule by the following fragments.

In the case of negation rule:

1. F ⊃ G An assumption of the rule.
2. (F ⊃ G) ⊃ (¬G ⊃ ¬F ) Axiom 4.1.
3. ¬G ⊃ ¬F MP rule from 1 and 2.

In the case of disjunction rule:

1. F ⊃ H An assumption of the rule.
2. G ⊃ H An assumption of the rule.
3. (F ⊃ H) ⊃

(
(G ⊃ H) ⊃

(
(F ∨G) ⊃ H

))
Axiom 3.3.

4. (G ⊃ H) ⊃
(
(F ∨G) ⊃ H

)
MP rule from 1 and 3.

5. (F ∨G) ⊃ H MP rule from 2 and 4.

In the case of conjunction rule:

1. F ⊃ G An assumption of the rule.
2. F ⊃ H An assumption of the rule.
3. (F ⊃ G) ⊃

(
(F ⊃ H) ⊃

(
F ⊃ (G∧H)

))
Axiom 2.3.

4. (F ⊃ H) ⊃
(
F ⊃ (G ∧H)

)
MP rule from 1 and 3.

5. F ⊃ (G ∧H) MP rule from 2 and 4.

In the case of implication rule:

1. F ⊃ (G ⊃ H) An assumption of the rule.
2. F ⊃ G An assumption of the rule.
3.
(
F ⊃ (G ⊃ H)

)
⊃
(
(F ⊃ G) ⊃ (F ⊃ H)

)
Axiom 1.2.

4. (F ⊃ G) ⊃ (F ⊃ H) MP rule from 1 and 3.
5. F ⊃ H MP rule from 2 and 4.

In the case of transitivity rule:

1. F ⊃ G An assumption of the rule.
2. G ⊃ H An assumption of the rule.
3. (G ⊃ H) ⊃

(
F ⊃ (G ⊃ H)

)
Axiom 1.1, {G⊃H/F , F/G}.

4. F ⊃ (G ⊃ H) MP rule from 2 and 3.
5. F ⊃ H R⊃ rule from 4 and 1.

3Namely, HPC, HK, HK4, HT, HS4, HKn, HK4n, HTn and HS4n.
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In the case of substitution in disjunction rule:
1. F ∨G An assumption of the rule.
2. F ⊃ H An assumption of the rule.
3. H ⊃ (H ∨G) Axiom 3.1, {H/F ,G/G}.
4. F ⊃ (H ∨G) Tr rule from 2 and 3.
5. G ⊃ (H ∨G) Axiom 3.2, {H/F ,G/G}.
6. (F∨G) ⊃ (H∨G) R∨ rule from 4 and 5.
7. H ∨G MP rule from 1 and 6.

Lemma 1.4.7. The Kl rule: �l(F ⊃ G)
�lF ⊃ �lG

is admissible in all the defined
multimodal Hilbert-type calculi.

Proof. Once again, all the applications of this rule can be replaced by fol-
lowing fragment:
1. �l(F ⊃ G) An assumption of the rule.
2. �l(F ⊃ G) ⊃ (�lF ⊃ �lG) Axiom (Kl).
3. �lF ⊃ �lG MP rule from 1 and 2.

It should be noticed, that the proof of Lemma 1.4.6 uses only HPC axioms
and rules and the proof of Lemma 1.4.7 additionally uses axiom (Kl). Of
course, this statement can be formulated in more specific way, however this
is enough to ensure, that the considered rules are admissible in any Hilbert-
type calculus, that contains axioms and rules of HPC and axiom (Kl).

Lemma 1.4.8. The structural rules of weakening:

Γ → ∆ (w →)
F,Γ → ∆

Γ → ∆ (→ w)Γ → ∆, F

are admissible in all the defined Gentzen-type calculi4. The main formula
of these rules is F .

Proof. Once again it is enough to show, that it is possible to eliminate the
weakening structural rules from the derivation trees, however this time the
proof depends on the calculus. Let’s analyse only the rule (w →) and only
the case of GKn. Other cases are analogous.

To prove the lemma it is enough to analyse only the derivation trees,
which have only one application of the rule (w →), which is the bottom-most
inference in the derivation tree. It is enough to show that such application

4Namely, GPC, GK, GK4, GT, GS4, GKn, GK4n, GTn and GS4n.
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can be eliminated. After that the discussion can be extended to every
derivation tree by induction on the number of applications of (w →) rule.

Let D be such derivation of sequent S = F,Γ → ∆ and S1 = Γ → ∆ be
the presumption of the bottom-most application of (w →). The proof is by
induction on h(D). If h(D) = 2, then D is of the form:

S1 = G,Γ1 → ∆1, G (w →)
S = F,G,Γ1 → ∆1, G

It is obvious, that in this case S is axiom of the calculus and the application
of (w →) is not needed.

Let’s say that the application of (w →) can be eliminated from the deriva-
tion tree, if the height of it is less than h. Let h(D) = h and let’s check
what rule is applied to S1 in D. All the cases of logical rules are similar.
Let’s analyse only (¬ →). In that case D is of the form:

D2
S2 = Γ1 → ∆, G

(¬ →)
S1 = ¬G,Γ1 → ∆

(w →)
S = F,¬G,Γ1 → ∆

Now let’s analyse this derivation:

D2
S2 = Γ1 → ∆, G

(w →)
S3 = F,Γ1 → ∆, G

The height of such derivation is less than h, therefore according to the
induction hypothesis (w →) can be eliminated from the derivation to get the
derivation D3. Finally the derivation of S without the application of (w →)

is:

D3
S3 = F,Γ1 → ∆, G

(¬ →)
S = F,¬G,Γ1 → ∆

If the rule (→ �l) is applied to S1 in D, then if F is of the form �lH, then
this case is dealt with in the same way as the case of the logical rules. If F
is not of the form �lH, then D is of the form:

D2
S2 = Γ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆1,�lG (w →)

S = F,Γ1,�lΓ2 → ∆1,�lG
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In this case the application of (w →) rule can be eliminated even easier by
constructing the following derivation of S:

D2
S2 = Γ2 → G

(→ �l)
S = F,Γ1,�lΓ2 → ∆1,�lG

This completes the proof of admissibility of the rule (w →).

As described earlier, the derivation search in Gentzen-type calculi starts
with the sequent, derivability of which is to be checked, and rules are back-
ward applied until axiom(s) or sequent(s) such that no rules are backward
applicable to them are obtained. The process could be described in a more
formal way:

Definition 1.4.9. A derivation search in sequent calculi consists of the
following steps:

1. Let initial sequent be the root of the derivation search tree.

2. Let’s take some leaf of the derivation search tree, which has not been
analysed yet. Let’s denote it S.

3. If S is an axiom and all the leafs have already been analysed, then the
derivation search is completed. If all of the leafs are axioms, then S is
derivable, otherwise it is not derivable.

4. If S is an axiom and there is at least one leaf, which is not yet analysed,
then go to 2.

5. If S is not an axiom and at least one rule can be applied to it, then let’s
apply it. If there is more than one possibility, then let’s choose one of
them. After the application let all the premises be the child nodes of S.
Go to 2.

6. If S is not an axiom and no rule can be applied to it, then let’s analyse
the branch of S. Let’s go back the branch and let’s find the first sequent
such that several rules can be applied to it and at least one such appli-
cation has not already been analysed. If such sequent exists, then let’s
denote it S ′. Let’s delete the tree above S ′. Let’s choose any application
which has not been analysed and let the premises of such application be
the new child nodes of S ′. After that go to 2.
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7. If S is not an axiom, no rule can be applied to it and the sequent
described in Step 6 does not exist in the branch of S, then the derivation
search is completed and S is not derivable.

The part of the process described in Step 6 is called backtracking and is
needed because as defined earlier sequent is derivable if at least one deriva-
tion search tree is a derivation tree. Now let’s introduce one property of the
rule.

Definition 1.4.10. A rule of sequent calculus is invertible, iff from the fact
that the conclusion of the rule is derivable, follows that all the premises of
the rule are derivable.

Invertibility is a very important property for backtracking. If in Step 5
there is a choice between several applications of invertible rules, then after
applying one of them, there is no need to backtrack and check the other
ones.

Lemma 1.4.11. Logical rules are invertible in all the defined Gentzen-type
calculi.

Proof. Let’s analyse only rule (¬ →) and only calculus GKn. Other cases are
analogous.

Let’s say that sequent S = ¬F,Γ → ∆ is derivable in GKn and the
derivation tree of S is D. It must be shown that sequent S1 = Γ → ∆, F is
derivable in GKn too. The proof is by induction on h(D).

If h(D) = 1, then S is an axiom. If ¬F is not the main formula of S, then
S is of the form ¬F,G,Γ1 → ∆1, G and S1 is of the form G,Γ1 → ∆1, G, F .
It is obvious that S1 is axiom of GKn. Otherwise, if ¬F is the main for-
mula of S, then S is of the form ¬F,Γ → ∆1,¬F and S1 is of the form
Γ → ∆1,¬F, F . Then the derivation tree of S1 is obviously:

F,Γ → ∆1, F (→ ¬)Γ → ∆1,¬F, F

Suppose that lemma is valid, when h(D) < h. Let h(D) = h. Let’s
analyse all the possible bottom-most inferences of D. If the main formula
of the bottom-most inference is ¬F and the rule (¬ →) is applied, then the
derivation tree of S1 is the same as D without the last inference.

34



Otherwise, if (¬ →) is applied, then D is:

D1
¬F,Γ1 → ∆, G

(¬ →)
S = ¬F,¬G,Γ1 → ∆

h(D1) < h(D), therefore by induction hypothesis `GKn S
′

1, where S ′

1 =
Γ1 → ∆, G, F . Let the derivation tree of S ′

1 be D2. Then the derivation
tree of S1 is:

D2

S
′

1 = Γ1 → ∆, G, F
(¬ →)

S1 = ¬G,Γ1 → ∆, F

Other cases of logical rules are completely analogous.
If (→ �l) is applied, then D is:

D1
Γ2 → G

(→ �l)
S = ¬F,Γ1,�lΓ2 → ∆1,�lG

In this case the derivation tree of S1 is:

D1
Γ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆1,�lG,F

Lemma 1.4.12. Rule (�→) is invertible in reflexive modal calculi GT and
GS4. Rule (�l →) is invertible in reflexive multimodal calculi GTn and GS4n.

Proof. This lemma is direct corollary of Lemma 1.4.8. Let’s analyse only
rule (�l →). The case of (�→) is completely analogous.

If sequent �lF,Γ → ∆ is derivable and the derivation tree is D, then the
derivation tree of sequent F,�lF,Γ → ∆ is:

D
�lF,Γ → ∆

(w →)
F,�lF,Γ → ∆

Now admissibility of two other rules can be proved.
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Lemma 1.4.13. The structural rules of contraction:

F, F,Γ → ∆
(c→)

F,Γ → ∆
Γ → ∆, F, F

(→ c)Γ → ∆, F

are admissible in all the defined Gentzen-type calculi. The main formula of
these rules is F .

The notation of weakening and contraction structural rules as (w →), (→ w),
(c→) and (→ c) is due to [51].

Proof. Once again let’s analyse only calculus GKn. The cases of other calculi
are completely analogous. However, this time both rules must be analysed
together. It is enough to show, that it is possible to eliminate the applica-
tions of contraction structural rules from the derivation trees.

Similar to the proof of Lemma 1.4.8, let’s analyse only the derivation
trees, which have only one application of the contraction structural rule,
which is the bottom-most inference in the derivation tree. Afterwards the
reasoning can be extended to every derivation tree by induction on the
number of applications of contraction structural rules.

Let D be such derivation, sequent S be the conclusion of bottom-most
inference, S1 be the presumption and F be the main formula. The proof is
by double induction on ordered pair 〈l(F ), h(D)〉.

The induction base. If h(D) = 2, then S1 is an axiom. If rule (c→) is
applied and F is the main formula of the axiom, then S1 is of the form
F, F,Γ → ∆, F and S is of the form F,Γ → ∆, F . It is obvious, that S is
an axiom of GKn and the application of (c→) is not needed. If rule (c→) is
applied and F is not the main formula of the axiom, then S1 is of the form
F, F,G,Γ → ∆, G, sequent S is of the form F,G,Γ → ∆, G and once again
it is obvious, that S is an axiom of GKn. The induction base of rule (→ c) is
analogous.

The induction step. Let h(D) > 2. First of all, let the bottom-most
inference in D be an application of (c→) rule. Now let’s check what rule is
applied to S1. All the cases of logical rules are similar, so let’s analyse only
(¬ →). If F is the main formula of such application, then D is:

D2
S2 = ¬G,Γ → ∆, G

(¬ →)
S1 = ¬G,¬G,Γ → ∆

(c→)
S = ¬G,Γ → ∆
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Rule (¬ →) is invertible and `GKn S2, therefore sequent S3 = Γ → ∆, G,G
is also derivable. Let the derivation tree of S3 be D3. Now, let’s check the
following derivation:

D3
S3 = Γ → ∆, G,G

(→ c)
S4 = Γ → ∆, G

According to induction hypothesis, because l(G) < l(F ), the application
of the contraction structural rule can be eliminated from this derivation to
get derivation D′

3. Now a derivation tree of S without contraction is:

D′

3
S4 = Γ → ∆, G

(¬ →)
S = ¬G,Γ → ∆

If F is not the main formula of (¬ →), then D is of the form:

D2
S2 = F, F,Γ → ∆, G

(¬ →)
S1 = F, F,¬G,Γ → ∆

(c→)
S = F,¬G,Γ → ∆

Now let’s analyse this derivation:

D2
S2 = F, F,Γ → ∆, G

(c→)
S3 = F,Γ → ∆, G

The height of such derivation is less than the height of D and the main
formula of contraction is the same, therefore according to the induction
hypothesis (c→) can be eliminated from the derivation to get the derivation
D′

2. Finally the derivation tree of S without contraction is:

D′

2
S3 = F,Γ → ∆, G

(¬ →)
S = F,¬G,Γ → ∆

If the rule (→ �l) is applied to S1 in D, then if F is of the form �lH, then
this case is dealt with in the same way as the case of the logical rules. If F
is not of the form �lH, then D is of the form:

D2
S2 = Γ2 → G

(→ �l)
S1 = F, F,Γ1,�lΓ2 → ∆,�lG (c→)

S = F,Γ1,�lΓ2 → ∆,�lG
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In this case the application of (c→) rule can be eliminated even easier by
constructing the following derivation tree of S:

D2
S2 = Γ2 → G

(→ �l)
S = F,Γ1,�lΓ2 → ∆,�lG

Now let the bottom-most inference in D be an application of (→ c) rule.
Once again, let’s check what rule is applied to S1. All the cases of logical
rules are analogous to the (c→) part of the proof. Thus let rule (→ �l) be
applied to S1. If F is the main formula of application of (→ �l), then D is
of the form:

D2
S2 = Γ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG,�lG (→ c)
S = Γ1,�lΓ2 → ∆,�lG

To eliminate the application of (→ c) rule, let’s construct the derivation:

D2
S2 = Γ2 → G

(→ �l)
S = Γ1,�lΓ2 → ∆,�lG

If F is not the main formula of application of (→ �l), then D is of the
form:

D2
S2 = Γ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG,F, F (→ c)
S = Γ1,�lΓ2 → ∆,�lG,F

Similarly, to eliminate the application of (→ c) rule, let’s construct the
derivation:

D2
S2 = Γ2 → G

(→ �l)
S = Γ1,�lΓ2 → ∆,�lG,F

This completes the proof of admissibility of contraction structural rules.

As it is proved in Lemma 1.4.11 all the rules of GPC are invertible.
Therefore, no backtracking is needed in that calculus at all. However all
of the modal and multimodal sequent calculi have at least one rule, which
is not invertible. In all the modal calculi this rule is (→ �) and in all the
multimodal calculi it is (→ �l).

38



But there is a more important problem in modal and multimodal sequent
calculi than backtracking. In some cases the derivation search does not
terminate and may form infinite derivation search trees. The calculi, where
this is not possible are called terminating (this term is used in e.g. [10]).
More formally:

Definition 1.4.14. A Gentzen-type calculus is terminating if every sequent
has finite number of derivation search trees and it is not possible to construct
an infinite derivation search tree of any sequent.

It is said that derivation search tree is complete, if any branch ends with
an axiom or a sequent, for which no rule of the calculus could be applied.
It is not hard to see that every derivation tree is complete.

A terminating calculus provides an easy way to say if the sequent is
derivable, or not. The procedure is simply to check all the possible complete
derivation search trees of the sequent. If one of them is a derivation tree,
then it is derivable, otherwise it is not derivable. Such check can be done
in the same way as described in Definition 1.4.9, however in the case of
terminating calculus the process is guaranteed to terminate.

It is easy to show (for example, using technique provided in Theorem
3.1.3), that calculi GPC, GK and GKn are terminating. The finite derivation
search in calculi GT and GTn can be achieved by minor modification of the
calculus (see calculus G∗Tc

n defined in Definition 3.2.1 and Theorem 3.2.12).
However to obtain terminating sequent calculi for transitive logics such as
GK4, GS4, GK4n and GS4n more elaborate methods are needed.
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Chapter 2

Basic Calculi for Multimodal
Logics with Interaction

Interaction between agents is modelled in different ways. In this chapter the
system with central processing unit, described in [38], is analysed. Speaking
in terms of multimodal logic, one of the agents is called the central agent
and it knows everything that is known to other agents. Additionally, only
the systems, consisting of three or more agents (one central agent and at
least two other agents) are analysed, because otherwise the situation can
be modelled by monomodal logic.

2.1 Central Agent Axiom

In this dissertation central agent is denoted by letter c. Other agents are
numbered as usual. Letter a is used to denote any agent, except the central
one and letter l to mean any agent.

Definition 2.1.1. The central agent axiom is:

(C). �aF ⊃ �cF ;

Of course, the central agent axiom has also some restrictions to the Kripke
structure.

Lemma 2.1.2. The central agent axiom is valid in every Kripke structure
with frame 〈W ,Rc,R1, . . . ,Rn〉 iff Rc ⊆

⋂
a∈[1,n]Ra.

Proof. Let’s say that the central agent axiom is valid in every Kripke struc-
ture with frame 〈W ,Rc,R1, . . . ,Rn〉, but Rc 6⊆

⋂
a∈[1,n]Ra. Therefore there

are two worlds w1, w2 ∈ W such that (w1, w2) ∈ Rc, but (w1, w2) /∈ Ra′
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for some a′ ∈ [1, n]. Now lets define interpretation Φ in such way that for
some propositional variable p Φ(w2, p) = ⊥ and Φ(w, p) = > for each w ∈
W , w 6= w2. Let’s inspect Kripke structure (S) = 〈W ,Rc,R1, . . . ,Rn,Φ〉.
Because Φ(w2, p) = ⊥ and (w1, w2) ∈ Rc, it is obvious that S, w1 2 �cp.
However, (w1, w2) /∈ Ra′ and p is true in every world, except w2, therefore
S, w1 ��a′p. Thus S, w1 2�a′p ⊃ �cp and this contradicts the presump-
tion that the central agent axiom is valid in every Kripke structure with
frame 〈W ,Rc,R1, . . . ,Rn〉.

Now, let’s say that S = 〈W ,Rc,R1, . . . ,Rn,Φ〉 is a Kripke structure
and Rc ⊆

⋂
a∈[1,n]Ra. Suppose, that for some world w ∈ W and some

agent a′ ∈ [1, n] it is true that S, w � �a′F . According to the Definition
1.3.3, S, w1 � F for each w1 such that (w,w1) ∈ Ra′ . Now according to
presumption for every (w,w2) ∈ Rc it is true that (w,w2) ∈ ⋂

a∈[1,n]Ra

and therefore (w,w2) ∈ Ra′ . Therefore, S, w2 � F for each w2 such that
(w,w2) ∈ Rc. Hence according to the Definition 1.3.3 S, w � �cF and
S, w � �a′F ⊃ �cF . Contrary, if S, w 2 �a′F , then it is also true that
S, w ��a′F ⊃ �cF . Therefore, �a′F ⊃ �cF is true in every world of S for
any agent a′.

However it is possible to formulate even stricter requirement for this
axiom, but before that let’s prove another lemma.

Lemma 2.1.3. Some formula is valid in every Kripke structure with frame
〈W ,Rc,R1, . . . ,Rn〉 such that Rc ⊆

⋂
a∈[1,n]Ra iff it is valid in every Kripke

structure with frame
〈
W ′

,R′

c,R
′

1, . . . ,R
′

n

〉
such that R′

c ≡
⋂
a∈[1,n]R

′

a.

Proof. The idea of this proof is sketched in [11] and is presented in full in
[12].

If some formula is valid in every Kripke structure with requirement Rc ⊆⋂
a∈[1,n]Ra, then obviously it is valid in every Kripke structure with stricter

requirement R′

c ≡
⋂
a∈[1,n]R

′

a.
To prove the opposite, let’s say that formula F is valid in every Kripke

structure with frame 〈W◦,R◦c ,R◦1, . . . ,R◦n〉 such thatR◦c ≡
⋂
a∈[1,n]R◦a, how-

ever there is a Kripke structure S = 〈W ,Rc,R1, . . . ,Rn,Φ〉 such that
Rc ⊂

⋂
a∈[1,n]Ra and S 2F .

Now, let’s form another Kripke structure. Let W ′

1 = W and W ′

k+1 be
a set of states ww1,w2,l for each w1 ∈ W , each w2 ∈ W

′

k and each agent
l ∈ {c} ∪ [1, n]. Let W ′ = ⋃

iW
′

i. Let’s define function f : W ′ → W as
follows: f(w) = w, if w ∈ W ′

1 and f(ww1,w2,l) = w1, if ww1,w2,l ∈ W
′

j, j > 2.
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Next, let R′′

l = {(w1, ww,w1,l) : (f(w1), f(ww,w1,l)) ∈ Rl} for each agent
l ∈ {c} ∪ [1, n]. Let R′

a = R′′

a ∪ R
′′

c for each a ∈ [1, n] and R′

c = R′′

c . Let’s
notice, that this definition ensures that R′

c ≡
⋂
a∈[1,n]R

′

a.
Finally, let Φ′(w, p) = Φ(f(w), p) for each w ∈ W ′ and each propositional

variable p of F .
Now let’s analyse structure S ′ =

〈
W ′

,R′

c,R
′

1, . . . ,R
′

n,Φ
′〉. The aim is to

show, that S ′ 2F . However it can be proved that for every world w ∈ W ′

it is true that S ′
, w �G iff S, f(w) �G. The proof is by induction on the

form of G. If G is a propositional variable, then this is obvious, because of
the way Φ′ is defined.

If G is of the form G1 ∧ G2, then by induction hypothesis S ′
, w �G1 iff

S, f(w) � G1 and S ′
, w � G2 iff S, f(w) � G2. Therefore, if S, f(w) � G,

then both S, f(w) � G1 and S, f(w) � G2 and therefore S ′
, w � G1 and

S ′
, w � G2. From this follows that S ′

, w � G. Otherwise, if S, f(w) 2 G,
then S, f(w) 2G1 or S, f(w) 2G2 and therefore S ′

, w 2G1 or S ′
, w 2G2.

From this follows that S ′
, w 2 G. The cases, when G is of the form ¬G1,

G1 ∨G2 and G1 ⊃ G2 are analogous.
If G is of the form �a′G1, a

′ ∈ [1, n], then by induction hypothesis for
each w1 ∈ W

′ it is true that S ′
, w1 �G1 iff S, f(w1) �G1. Now if S, f(w) �

G, then for each (f(w), w2) ∈ Ra′ it is true that S, w2 � G1. By the
construction of R′

a′ , if (w,w1) ∈ R′

a′ , then (f(w), f(w1)) is either part of
Ra′ or Rc. Now because of the presumption made in the beginning of
the proof, Rc ⊂

⋂
a∈[1,n]Ra and therefore definitely (f(w), f(w1)) ∈ Ra′ .

From this it follows that S ′
, w1 �G1 for every (w,w1) ∈ R′

a′ and therefore
S ′
, w �G.
Otherwise, if S, f(w) 2G, then there is a world w2 such that (f(w), w2) ∈

Ra′ , but S, w2 2 G1. Due to the way R′

a′ is constructed and because
f(ww2,w,a

′ ) = w2, it is true that (w,ww2,w,a
′ ) ∈ R′

a′ . According to the
induction hypothesis, S ′

, ww2,w,a
′ 2G1 and therefore S ′

, w 2G.
The case, where G is of the form �cG1 is analogous to the previous one.
The direct consequence of this proof and the assumption that S 2 F is

that S ′ 2 F . However, recall that R′

c ≡
⋂
a∈[1,n]R

′

a and therefore this is a
contradiction of the assumption that F is valid in every Kripke structure
with such frame.

The property R′

c ≡
⋂
a∈[1,n]R

′

a is called the central agent property. Note
that the proof of Lemma 2.1.2 does not take into account any additional
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requirements that are added together with axioms (Tl), (4l). Moreover,
it is not hard to modify the proof of Lemma 2.1.3 to deal with reflexive,
transitive, reflexive and transitive logics. Therefore, central agent property
is independent of these requirements.

2.2 Hilbert-type Calculi

Definition 2.2.1. Hilbert-type calculi for multimodal logics Kn, Tn, K4n
and S4n with central agent axiom (respectively Kc

n, Tc
n, K4c

n and S4c
n) are

defined respectively: HKc
n = HKn +(C), HTc

n = HTn +(C), HK4c
n = HK4n +

(C) and HS4c
n = HS4n + (C).

As mentioned above, the central agent axiom incorporates one more re-
striction in to the definition of validity of the formula: central agent prop-
erty. Therefore:

• �Kc
n F iff for any Kripke structure S with frame that satisfies central

agent property S �F .

• �Tc
n F iff for any Kripke structure S with reflexive frame that satisfies

central agent property S �F .

• �K4c
n
F iff for any Kripke structure S with transitive frame that satisfies

central agent property S �F .

• �S4c
n
F iff for any Kripke structure S with reflexive and transitive frame

that satisfies central agent property S �F .

To show the soundness and completeness of the defined calculi, the con-
cept of distributed knowledge is used as it is defined in [12]. Firstly, the
distributed knowledge operator D is incorporated in the language in a sim-
ilar way as knowledge operator �l in Definition 1.3.1. Here formula DF

means that all the agents have distributed knowledge of F . Now for Kripke
structure S = 〈W ,R1, . . . ,Rn,Φ〉 and world w ∈ W the truth of formula
DF is defined as follows: S, w �DF iff S, w1 � F for all w1 ∈ W such that
(w,w1) ∈ ⋂a∈[1,n]Ra.

To enrich the Hilbert type calculus with the operator of distributed
knowledge one axiom is used: �aF ⊃ DF . What is more, if there is only
one agent (n = 1), then axiom DF ⊃ �1F is also included. Finally, the
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distributed knowledge operator must satisfy the axiom (Kl) and other ax-
ioms, that are part of the logic1. Now it is not hard to see that central agent
knowledge operator �c satisfy all the conditions set out for distributed logic
operator, if there are more than one agent except the central one.

However in [12] only modal logic S5n is analysed. Wider selection of
knowledges is discussed in [11], but there the definition of distributed knowl-
edge is a little bit different. In [11] distributed knowledge of some subset
of agents is also analysed. Nevertheless, it is not hard to argue that both
definitions are equivalent as far as distributed knowledge of all the agents
is concerned.

What is more, the proofs of soundness and completeness of Hilbert-type
calculi for different multimodal logics enriched with distributed knowledge
operator are provided in [11, 12]. From this and from the discussion above
it can be concluded that:

Corollary 2.2.2. Calculi HKc
n, HK4c

n, HTc
n and HS4c

n are sound and com-
plete.

2.3 Gentzen-type Calculi with Cut

Definition 2.3.1. Gentzen-type calculi with cut for multimodal logics with
central agent axiom Kc

n, K4c
n, Tc

n and S4c
n (respectively, GKc

ncut, GK4c
ncut,

GTc
ncut and GS4c

ncut) are obtained from respective multimodal Gentzen-type
calculi GKn, GK4n, GTn and GS4n by adding the cut rule:

Γ → ∆, F F,Π → Λ
(cut F )Γ,Π → ∆,Λ

and modal rule for central agent operator �c, which depends on the calculus.

In the case of GKc
ncut and GTc

ncut:

Γ2 → F
(→ �c)Γ1,�∗Γ2 → ∆,�cF

In the case of GK4c
ncut:

Γ2,�∗Γ → F
(→ �c)Γ1,�∗Γ2 → ∆,�cF

1For example distributed knowledge operator in logic S4n additionally satisfy axioms (Tl) and (4l). Therefore,
D(F ⊃ G) ⊃ (DF ⊃ DG), DF ⊃ F and DF ⊃ DDF are axioms of the calculus.
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In the case of GS4n:

�∗Γ2 → F
(→ �c)Γ1,�∗Γ2 → ∆,�cF

Here �∗Γ2 = �l1F1, . . . ,�lkFk, where k > 0 and lj is any agent for every
j ∈ [1, k].

In the (cut F ) rule F is called the cut formula. In the (→ �c) rules, �cF is
main formula and F is side formula.

In a similar way as in Lemma 1.4.8 it is possible to prove the following.

Lemma 2.3.2. The structural rules of weakening are admissible in GKc
ncut,

GK4c
ncut, GTc

ncut and GS4c
ncut.

It is easy to prove that all the rules except (cut F ), (→ �l) and (→ �c) are
invertible in GKc

ncut, GK4c
ncut, GTc

ncut and GS4c
ncut. The following lemma

formally proves only the invertibility of (→⊃) and the proof for other rules
is analogous.

Lemma 2.3.3. The rule (→⊃) is invertible in GKc
ncut, GK4c

ncut, GTc
ncut

and GS4c
ncut. That is, `C Γ → ∆, F ⊃ G, iff `C F,Γ → ∆, G, where C ∈

{GKc
ncut,GK4c

ncut,GTc
ncut,GS4c

ncut}.

Proof. All the mentioned calculi are very similar, therefore, let’s analyse all
of them together in one proof. For clarity, the parts of the proof, where the
difference between them matters, are mentioned separately.

If `C F,Γ → ∆, G and the derivation tree of this sequent is D, then the
derivation tree of `C Γ → ∆, F ⊃ G is:

D
F,Γ → ∆, G

(→⊃)Γ → ∆, F ⊃ G

To prove the other part, let’s apply induction on the height of the deriva-
tion tree D of S = Γ → ∆, F ⊃ G.

If h(D) = 1, then S is an axiom. If F ⊃ G is not the main for-
mula of the axiom, then S is of the form H,Γ1 → ∆1, H, F ⊃ G, and it
is obvious that S1 = F,Γ → ∆, G is also an axiom, because it is equal
to F,H,Γ1 → ∆1, H,G. If F ⊃ G is the main formula of the axiom,
then S is of the form F ⊃ G,Γ1 → ∆, F ⊃ G and S1 is of the form
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F, F ⊃ G,Γ1 → ∆, G. However, this sequent is also derivable and the
derivation tree is:

F,Γ1 → ∆, G, F F,G,Γ1 → ∆, G
(⊃→)

F, F ⊃ G,Γ1 → ∆, G
Now let’s say that the lemma holds if the height of the derivation tree

is less than h. Let h(D) = h. Let’s show, that S1 = F,Γ → ∆, G is also
derivable. In order to do that it is enough to go through all the possible
bottom-most inferences of D.

If the bottom-most inference of D is an application of (→⊃) and F ⊃ G

is the main formula, then the premise of such application is sequent S1 and
therefore it is derivable. Otherwise, formula F ⊃ G is not the main formula
and there are three cases. Firstly, if the bottom-most application is of some
logical rule or rule (�l →), then the formula F ⊃ G is part of the succedent
of the premise of such application. As an example let’s take the rule (¬ →).
Thus D is of the form:

D2
S2 = Γ1 → ∆, F ⊃ G,H

(¬ →)
S = ¬H,Γ1 → ∆, F ⊃ G

Because h(D2) < h according to the induction hypothesis, sequent S3 =
F,Γ → ∆, G,H is also derivable. Let D3 denote the derivation tree of S3.
Now the derivation tree of S1 is:

D3
S3 = F,Γ1 → ∆, G,H

(¬ →)
S1 = ¬H,F,Γ1 → ∆, G

Otherwise, if the bottom-most inference is application of the rule (→ �l)

or (→ �c), then F ⊃ G is definitely not part of the premise. Let’s analyse
only the (→ �l) of GKc

ncut case because the other cases are analogous. In
that case, D is of the form:

D2
S2 = Γ2 → H

(→ �l)
S = Γ1,�lΓ2 → ∆1,�lH,F ⊃ G

Now, if F is not of the form �lF1, then the derivation tree of S1 is:

D2
S2 = Γ2 → H

(→ �l)
S1 = F,Γ1,�lΓ2 → ∆1,�lH,G
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Otherwise, because of the admissibility of (w →), the derivation tree of S1

is:

D2
S2 = Γ2 → H

(w →)
S3 = F1,Γ2 → H

(→ �l)
S1 = F,Γ1,�lΓ2 → ∆1,�lH,G

Finally, if the bottom-most inference is application of the rule (cut H),
then either D is of the form:

D2
S2 = Γ1 → ∆1, H

D3
S3 = H,Π → Λ, F ⊃ G

(cut H)
S = Γ1,Π → ∆1,Λ, F ⊃ G

or F ⊃ G is part of S2, but not of S3. Let’s analyse only the displayed
case, because the other one is completely analogous. In this case, because
h(D3) < h according to the induction hypothesis, S4 = H,F,Π → Λ, G is
also derivable. Let D4 denote the derivation tree of S4. Now the derivation
tree of S1 is:

D2
S2 = Γ1 → ∆1, H

D4
S4 = H,F,Π → Λ, G

(cut H)
S1 = F,Γ1,Π → ∆1,Λ, G

Now the soundness and completeness of the sequent calculi can be proved.
But instead of semantic discussion, this time the soundness and complete-
ness of the respective Hilbert-type calculi is used. So the equivalence be-
tween the Hilbert-type and Gentzen-type calculi is shown. Let’s start by
proving the completeness.

Lemma 2.3.4. If some formula is derivable in HKc
n (HK4c

n, HTc
n, HS4c

n),
then it is derivable in GKc

ncut (respectively GK4c
ncut, GTc

ncut or GS4c
ncut).

Proof. Once again, let’s analyse only HKc
n case. The other ones can be

proven analogously.
Let formula Fn be derivable in HKc

n and let D = {F1, . . . , Fn} be the
derivation of Fn. The proof, that `GKc

ncut Fn is by induction on the height
of D.

The induction base. If h(D) = 1, then Fn is an axiom of HKc
n. This

derivation is replaced by derivation of → Fn in GKc
ncut. It is easy to

show that all the axioms of HKc
n are derivable in GKc

ncut. Only one case
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(the central agent axiom) is demonstrated. Another case can be found in
Example 1.1.11.

F → F (→ �c)
�aF → �cF (→⊃)→ �aF ⊃ �cF

All the axioms of all the considered Hilbert-type calculi are derivable in
respective Gentzen-type calculi.

The induction step. If all the derivations in HKc
n with the height less

than h can be replaced by the derivation trees in GKc
ncut, then suppose

that h(D) = h and let’s analyse the last application of the rule in D. In
fact, there are only two cases:

1. The modus ponens rule. In this case Fn is obtained from Fi and Fj =
Fi ⊃ Fn, where i, j < n. Let Di = {F1, . . . , Fi} and Dj = {F1, . . . , Fj}.
By the definition, h(Di) < h and h(Dj) < h, so according to the
induction hypothesis, Di and Dj can be transformed to the derivation
trees of → Fi and → Fi ⊃ Fn in GKc

ncut. Assume that after this
transformation, the derivation trees D′

i and D′

j are obtained. According
to Lemma 2.3.3, if `GKc

ncut → Fi ⊃ Fn, then also `GKc
ncut Fi → Fn, so

let D′′

j be the derivation tree of the latter. Now the derivation tree of
Fn in GKc

ncut is as follows:

D′

i

→ Fi

D′′

j

Fi → Fn (cut Fi)→ Fn

2. The rule of necessity. Then Fn = �lFi is obtained from Fi, where
i < n. Let Di = {F1, . . . , Fi}. Since h(Di) < k, according to the
induction hypothesis it can be replaced by derivation tree D′

i of → Fi
in GKc

ncut and the whole derivation can be replaced by:

D′

i

→ Fi (→ �l)→ �lFi

The direct corollary of this lemma is the completeness of the sequent
calculi.

Theorem 2.3.5. Calculi GKc
ncut, GK4c

ncut, GTc
ncut and GS4c

ncut are com-
plete.
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Proof. Let S be some sequent. If �L S, then �L Cor(S). Thus by Lemma
2.3.4 and completeness of Hilbert-type calculi it is true that `C → Cor(S).
Now, it is possible to apply the rules (∧ →), (→ ∨), (→⊃) and (→ ¬) to sequent
→ Cor(S) to get sequent S. Because the mentioned rules are invertible, it
is true that `C S. Here L = Kc

n (K4c
n, Tc

n, S4c
n) and C = GKc

ncut (respectively
GK4c

ncut, GTc
ncut or GS4c

ncut).

To show the soundness once again Hilbert-type calculi are used. However
to shorten the proof, the derivability of some formulas are shown beforehand.

Lemma 2.3.6. The formulas are divided according to the set of calculi, that
can derive them.

1. The following formulas are derivable in HKc
n, HK4c

n, HTc
n and HS4c

n:

(a) (F ∨G) ⊃ (G ∨ F ).
(b) (F ⊃ G) ⊃ (¬F ∨G).
(c) (F ∨G) ⊃ (¬F ⊃ G).
(d) (¬F ∧ ¬G) ⊃ ¬(F ∨G).
(e) ¬(F ∧G) ⊃ (¬F ∨ ¬G).
(f) (�lF1 ∧ . . . ∧�lFn) ⊃ �l(F1 ∧ . . . ∧ Fn), where n > 1.
(g) (�l1F1 ∧ . . . ∧�lnFn) ⊃ (�cF1 ∧ . . . ∧�cFn), where n > 1.

2. The following formula is derivable in HK4c
n and HS4c

n:

(a) (�l1F1 ∧ . . . ∧�lnFn) ⊃ (�l1�l1F1 ∧ . . . ∧�ln�lnFn), where n > 1.

The complete proofs of derivability of those formulas are lengthy and
therefore provided in the Appendix A.

Lemma 2.3.7. The rules of commutativity of disjunction (CD), implica-
tion removal ( IR) and implication introduction ( II) are admissible in HKc

n,
HK4c

n, HTc
n and HS4c

n:

F ∨G CD
G ∨ F

F ⊃ G IR¬F ∨G
F ∨G II¬F ⊃ G

Proof. The proof is easy and follows immediately from respective derivable
formulas of Lemma 2.3.6 and MP rule. Only CD rule is shown, because the
other ones are completely analogous.
1. F ∨G An assumption of the rule.
2. (F∨G) ⊃ (G∨F ) Lemma 2.3.6, 1a.
3. G ∨ F MP rule from 1 and 2.
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Lemma 2.3.8. The rules of expansion by conjunction (E∧1 and E∧2) and
expansion by disjunction (E∨1 and E∨2) are admissible in HKc

n, HK4c
n,

HTc
n and HS4c

n:

F ⊃ G E∧1(H ∧ F ) ⊃ (H ∧G)
F ⊃ G E∧2(F ∧H) ⊃ (G ∧H)

F ⊃ G E∨1(H ∨ F ) ⊃ (H ∨G)
F ⊃ G E∨2(F ∨H) ⊃ (G ∨H)

Proof. Once again, only the proof of E∧1 is shown. The proofs of admissi-
bility of other rules are completely analogous:
1. F ⊃ G An assumption of the rule.
2. (H ∧ F ) ⊃ H Axiom 2.1, {H/F , F/G}.
3. (H ∧ F ) ⊃ F Axiom 2.2, {H/F , F/G}.
4. (H ∧ F ) ⊃ G Tr rule from 3 and 1.
5. (H ∧ F ) ⊃ (H ∧G) R∧ rule from 2 and 4.

Finally, the soundness of the defined sequent calculi with cut can be
shown. Once again, in order to prove that, the soundness of respective
Hilbert-type calculi is used.

Theorem 2.3.9. Calculus GKc
ncut is sound. That is, if some sequent S is

derivable in GKc
ncut, then formula Cor(S) is derivable in HKc

n.

Proof. Let D be the derivation tree of some sequent S in GKc
ncut. Now let’s

show how to construct the derivation of Cor(S) in HKc
n. Induction on the

height of D is used.
The induction base. If h(D) = 1, then S is an axiom Γ, F → F,∆. If

Γ = G1, . . . , Gn, ∆ = H1, . . . , Hm and n,m > 1, then Cor(S) = (G ∧ F ) ⊃
(F ∧H), where G = G1 ∧ . . .∧Gn and H = H1 ∨ . . .∨Hm. The derivation
of this formula in HKc

n is as follows:
1. (G ∧ F ) ⊃ F Axiom 2.2, {G/F , F/G}.
2. F ⊃ (F ∨H) Axiom 3.1, {F/F ,H/G}.
3. (G∧F ) ⊃ (F∨H) Tr rule from 1 and 2.

If Γ = ∅ or ∆ = ∅, then Cor(S) is already axiom of HKc
n (3.1 and 2.2

respectively). If Γ = ∆ = ∅, then Cor(S) = F ⊃ F and this formula is
derivable in HKc

n as shown in Example 1.1.6.
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The induction step. Let’s assume that it is possible to construct the
derivation of Cor(S ′) in HKc

n, if the height of the derivation tree of S ′ in
GKc

ncut is lower than k. Suppose h(D) = k. Let’s check the bottom-most
inference in D.

If rule (¬ →) is applied, then D looks like this:

D′

S1 = Γ → ∆, F
(¬ →)

S = ¬F,Γ → ∆
According to induction hypothesis, `HKc

n Cor(S1), because h(D′) < k.
If Γ = G1, . . . , Gn, ∆ = H1, . . . , Hm and n,m > 1, then Cor(S1) = G ⊃
(H ∨ F ) and Cor(S) = (¬F ∧ G) ⊃ H, where G = G1 ∧ . . . ∧ Gn and
H = H1 ∨ . . . ∨Hm. The derivation of Cor(S) in HKc

n is as follows:
1. G ⊃ (H ∨ F ) Induction hypothesis.
2. ¬G ∨H ∨ F IR rule from 1.
3. F ∨ ¬G ∨H CD rule from 2.
4. ¬(F ∨ ¬G) ⊃ H II rule from 3.
5. (¬F∧¬¬G) ⊃ ¬(F∨¬G) Lemma 2.3.6, 1d, {F/F , ¬G/G}.
6. (¬F ∧ ¬¬G) ⊃ H Tr rule from 5 and 4.
7. G ⊃ ¬¬G Axiom 4.2, {G/F}.
8. (¬F ∧G) ⊃ (¬F ∧ ¬¬G) E∧1 rule from 7.
9. (¬F ∧G) ⊃ H Tr rule from 8 and 6.

If Γ = ∅ and ∆ 6= ∅, then this derivation can be modified to prove that
if H ∨ F is derivable, then ¬F ⊃ H is derivable too.

If ∆ = ∅ and Γ 6= ∅, then Cor(S1) = G ⊃ F , Cor(S) = ¬(¬F ∧G) and
the derivation of Cor(S) is as follows:
1. G ⊃ F Induction hypothesis.
2. ¬G ∨ F IR rule from 1.
3. F ∨ ¬G CD rule from 2.
4. (¬F∧¬¬G) ⊃ ¬(F∨¬G) Lemma 2.3.6, 1d, {F/F , ¬G/G}.
5. G ⊃ ¬¬G Axiom 4.2, {G/F}.
6. (¬F ∧G) ⊃ (¬F ∧ ¬¬G) E∧1 rule from 5.
7. (¬F ∧G) ⊃ ¬(F ∨ ¬G) Tr rule from 6 and 4.
8. ¬¬(F∨¬G) ⊃ ¬(¬F∧G) R¬ rule from 7.
9. (F ∨ ¬G) ⊃ ¬¬(F ∨ ¬G) Axiom 4.2, {F∨¬G/F}.

10. (F ∨ ¬G) ⊃ ¬(¬F ∧G) Tr rule from 9 and 8.
11. ¬(¬F ∧G) MP rule from 3 and 10.

If Γ = ∆ = ∅, then Cor(S1) = F , Cor(S) = ¬¬F and the derivation of
Cor(S) is obvious:
1. F Induction hypothesis.
2. F ⊃ ¬¬F Axiom 4.2.
3. ¬¬F MP rule from 1 and 2.
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If rule (∧ →) is applied, then D looks like this:

D′

S1 = F1, F2,Γ → ∆
(∧ →)

S = F1 ∧ F2,Γ → ∆

In this case there is nothing to prove, because in all the cases Cor(S1) =
Cor(S). Indeed, if Γ 6= ∅ and ∆ 6= ∅, then Cor(S1) = Cor(S) = (F1 ∧ F2 ∧
G) ⊃ H, if Γ = ∅ and ∆ 6= ∅, then Cor(S1) = Cor(S) = (F1 ∧ F2) ⊃ H,
if ∆ = ∅ and Γ 6= ∅, then Cor(S1) = Cor(S) = ¬(F1 ∧ F2 ∧ G) and if
Γ = ∆ = ∅, then Cor(S1) = Cor(S) = ¬(F1 ∧ F2). Once again, here
Γ = G1, . . . , Gn, ∆ = H1, . . . , Hm, if n > 1, then G = G1 ∧ . . . ∧ Gn and if
m > 1, then H = H1 ∨ . . . ∨Hm.

If rule (→ ∧) is applied, then D looks like this:

D′

S1 = Γ → ∆, F1

D′′

S2 = Γ → ∆, F2 (¬ →)
S = Γ → ∆, F1 ∧ F2

According to induction hypothesis, `HKc
n Cor(S1), because h(D′) < k and

`HKc
n Cor(S2), because h(D′′) < k. If Γ = G1, . . . , Gn, ∆ = H1, . . . , Hm

and n,m > 1, then Cor(S1) = G ⊃ (H ∨ F1), Cor(S2) = G ⊃ (H ∨ F2)
and Cor(S) = G ⊃

(
H ∨ (F1 ∧ F2)

)
, where G = G1 ∧ . . . ∧ Gn and H =

H1 ∨ . . . ∨Hm. The derivation of Cor(S) in HKc
n is as follows:

1. G ⊃ (H ∨ F1) Induction hypothesis.
2. (H ∨ F1) ⊃ (¬H ⊃ F1) Lemma 2.3.6, 1c, {H/F , F1/G}.
3. G ⊃ (¬H ⊃ F1) Tr rule from 1 and 2.
4. G ⊃ (H ∨ F2) Induction hypothesis.
5. (H ∨ F2) ⊃ (¬H ⊃ F2) Lemma 2.3.6, 1c, {H/F , F2/G}.
6. G ⊃ (¬H ⊃ F2) Tr rule from 4 and 5.
7. (¬H ⊃ F1) ⊃

(
(¬H ⊃ F2) ⊃

(
¬H ⊃ (F1 ∧ F2)

))
Axiom 2.3, {¬H/F , F1/G, F2/H}.

8. G ⊃
(

(¬H ⊃ F2) ⊃
(
¬H ⊃ (F1 ∧ F2)

))
Tr rule from 3 and 7.

9. G ⊃
(
¬H ⊃ (F1 ∧ F2)

)
R⊃ rule from 8 and 6.

10.
(
¬H ⊃ (F1 ∧ F2)

)
⊃
(
¬¬H ∨ (F1 ∧ F2)

)
Lemma 2.3.6, 1b, {¬H/F , F1∧F2/G}.

11. G ⊃
(
¬¬H ∨ (F1 ∧ F2)

)
Tr rule from 9 and 10.

12. ¬¬H ⊃ H Axiom 4.3, {H/F}.
13.

(
¬¬H ∨ (F1 ∧ F2)

)
⊃
(
H ∨ (F1 ∧ F2)

)
E∨2 rule from 12.

14. G ⊃
(
H ∨ (F1 ∧ F2)

)
Tr rule from 11 and 13.

If Γ = ∅ and ∆ 6= ∅, then this derivation can be modified to prove that
if H ∨ F1 and H ∨ F2 are derivable, then H ∨ (F1 ∧ F2) is derivable too.
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If ∆ = ∅ and Γ 6= ∅, then Cor(S1) = G ⊃ F1, Cor(S2) = G ⊃ F2,
Cor(S) = G ⊃ (F1 ∧ F2) and the derivation of Cor(S) is as follows:
1. G ⊃ F1 Induction hypothesis.
2. G ⊃ F2 Induction hypothesis.
3. G ⊃ (F1 ∧ F2) R∧ rule from 1 and 2.

If Γ = ∆ = ∅, then Cor(S1) = F1, Cor(S2) = F2, Cor(S) = F1 ∧ F2 and
the derivation of Cor(S) is as follows:
1. F1 Induction hypothesis.
2. F2 Induction hypothesis.
3. F1 ⊃ F1 As in Example 1.1.6.
4. F2 ⊃ (F1 ⊃ F2) Axiom 1.1, {F2/F , F1/G}.
5. F1 ⊃ F2 MP rule from 2 and 4.
6. F1 ⊃ (F1 ∧ F2) R∧ rule from 3 and 5.
7. F1 ∧ F2 MP rule from 1 and 6.

The cases of other logical rules — (→ ¬), (∨ →), (→ ∨), (⊃→), (→⊃) — are
completely analogous to these three cases analysed here.

If rule (cut F ) is applied, then D looks like this:

D′

S1 = Γ → ∆, F
D′′

S2 = F,Π → Λ
(cut F )

S = Γ,Π → ∆,Λ

According to induction hypothesis, `HKc
n Cor(S1), because h(D′) < k and

`HKc
n Cor(S2), because h(D′′) < k. Now if Γ = G1,1, . . . , G1,n1, where n1 > 1,

Π = G2,1, . . . , G2,n2, where n2 > 1, ∆ = H1,1, . . . , H1,m1, where m1 > 1, and
Λ = H2,1, . . . , H2,m2, where m2 > 1, then Cor(S1) = G1 ⊃ (H1 ∨ F ),
Cor(S2) = (F ∧ G2) ⊃ H2 and Cor(S) = (G1 ∧ G2) ⊃ (H1 ∨ H2), where
G1 = G1,1 ∧ . . .∧G1,n1, G2 = G2,1 ∧ . . .∧G2,n2, H1 = H1,1 ∨ . . .∨H1,m1 and
H2 = H2,1 ∨ . . . ∨H2,m2. The derivation of Cor(S) in HKc

n is as follows:
1. G1 ⊃ (H1 ∨ F ) Induction hypothesis.
2. ¬G1 ∨H1 ∨ F IR rule from 1.
3. ¬(¬G1 ∨H1) ⊃ F II rule from 2.
4. (F ∧G2) ⊃ H2 Induction hypothesis.
5. ¬(F ∧G2) ∨H2 IR rule from 4.
6. ¬(F ∧G2) ⊃ (¬F ∨ ¬G2) Lemma 2.3.6, 1e, {F/F ,G2/G}.
7. ¬F ∨ ¬G2 ∨H2 SD rule from 5 and 6.
8. ¬¬F ⊃ (¬G2 ∨H2) II rule from 7.
9. F ⊃ ¬¬F Axiom 4.2.

10. F ⊃ (¬G2 ∨H2) Tr rule from 9 and 8.
11. ¬(¬G1 ∨H1) ⊃ (¬G2 ∨H2) Tr rule from 3 and 10.
12. ¬¬(¬G1 ∨H1) ∨ ¬G2 ∨H2 IR rule from 11.
13. ¬¬(¬G1 ∨H1) ⊃ (¬G1 ∨H1) Axiom 4.3, {¬G1∨H1/F}.
14. ¬G1 ∨H1 ∨ ¬G2 ∨H2 SD rule from 12 and 13.
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15. (H1 ∨ ¬G2) ⊃ (¬G2 ∨H1) Lemma 2.3.6, 1a, {H1/F , ¬G2/G}.
16. (¬G1∨H1∨¬G2) ⊃ (¬G1∨¬G2∨H1) E∨1 rule from 15.
17. ¬G1 ∨ ¬G2 ∨H1 ∨H2 SD rule from 14 and 16.
18. ¬(¬G1 ∨ ¬G2) ⊃ (H1 ∨H2) II rule from 17.
19. (¬¬G1 ∧ ¬¬G2) ⊃ ¬(¬G1 ∨ ¬G2) Lemma 2.3.6, 1d, {¬G1/F , ¬G2/G}.
20. (¬¬G1 ∧ ¬¬G2) ⊃ (H1 ∨H2) Transitivity rule from 19 and 18.
21. G1 ⊃ ¬¬G1 Axiom 4.2, {G1/F}.
22. (G1 ∧ ¬¬G2) ⊃ (¬¬G1 ∧ ¬¬G2) E∧2 rule from 21.
23. (G1 ∧ ¬¬G2) ⊃ (H1 ∨H2) Tr rule from 22 and 20.
24. G2 ⊃ ¬¬G2 Axiom 4.2, {G2/F}.
25. (G1 ∧G2) ⊃ (G1 ∧ ¬¬G2) E∧1 rule from 24.
26. (G1 ∧G2) ⊃ (H1 ∨H2) Tr rule from 25 and 23.

To completely show that an application of (cut F ) rule can be replaced by
derivation in HKc

n, all the possible combinations of Γ, ∆, Π and Λ being
empty or not must be analysed. There are 16 cases in total. One of them,
when all the sets are not empty, is presented above. Let’s analyse two more
cases

When Γ 6= ∅, ∆ 6= ∅, but Π = Λ = ∅, then Cor(S1) = G1 ⊃ (H1 ∨ F ),
Cor(S2) = ¬F and Cor(S) = G1 ⊃ H1. The derivation of Cor(S) in HKc

n is
as follows:
1. G1 ⊃ (H1 ∨ F ) Induction hypothesis.
2. ¬G1 ∨H1 ∨ F IR rule from 1.
3. ¬(¬G1 ∨H1) ⊃ F II rule from 2.
4. ¬F ⊃ ¬¬(¬G1 ∨H1) R¬ rule from 3.
5. ¬¬(¬G1 ∨H1) ⊃ (¬G1 ∨H1) Axiom 4.3, {¬G1∨H1/F}.
6. ¬F ⊃ (¬G1 ∨H1) Tr rule from 4 and 5.
7. ¬F Induction hypothesis.
8. ¬G1 ∨H1 MP rule from 7 and 6.
9. ¬¬G1 ⊃ H1 II rule from 8.

10. G1 ⊃ ¬¬G1 Axiom 4.2, {G1/F}.
11. G1 ⊃ H1 Tr rule from 10 and 9.

The next case is when Γ = ∆ = Π = Λ = ∅. In this case, Cor(S1) = F ,
Cor(S2) = ¬F and Cor(S) = p∧¬p for some propositional variable p. The
derivation of Cor(S) in HKc

n is as follows:
1. F Induction hypothesis.
2. ¬F Induction hypothesis.
3.
(
¬(p ∧ ¬p) ⊃ F

)
⊃
(
¬F ⊃ ¬¬(p ∧ ¬p)

)
Axiom 4.1, {¬(p∧¬p)/F , F/G}.

4. F ⊃
(
¬(p ∧ ¬p) ⊃ F

)
Axiom 1.1, {F/F , ¬(p∧¬p)/G}.

5. F ⊃
(
¬F ⊃ ¬¬(p ∧ ¬p)

)
Tr rule from 4 and 3.

6. ¬F ⊃ ¬¬(p ∧ ¬p) MP rule from 1 and 5.
7. ¬¬(p ∧ ¬p) ⊃ (p ∧ ¬p) Axiom 4.3, {p∧¬p/F}.
8. ¬F ⊃ (p ∧ ¬p) Tr rule from 6 and 7.
9. p ∧ ¬p MP rule from 2 and 8.
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This case actually proves one well known rule of logic: if for some for-
mula F both F and ¬F are derivable in some system, then any formula is
derivable in that system. In fact p ∧ ¬p is not valid in any considered logic
and therefore, not derivable in any considered calculus. According to this
reasoning, empty sequent → is not derivable in GKc

ncut.
All the other cases are similar to the ones, that are already presented.
If rule (→ �c) is applied, then D looks like this:

D′

S1 = Γ2 → F
(→ �c)

S = Γ1,�∗Γ2 → ∆,�cF
According to induction hypothesis, `HKc

n Cor(S1), because h(D′) < k.
Now if Γ1 = H1,1, . . . , H1,m1, where m1 > 1, Γ2 = G1, . . . , Gn, where n > 1
and ∆ = H2,1, . . . , H2,m2, where m2 > 1, then Cor(S1) = (G1∧. . .∧Gn) ⊃ F

and Cor(S) = (H1 ∧ �l1G1 ∧ . . . ∧ �lnGn) ⊃ (H2 ∨ �cF ), where H1 =
H1,1 ∧ . . .∧H1,m1 and H2 = H2,1 ∨ . . .∨H2,m2. The derivation of Cor(S) in
HKc

n is as follows:
1. (G1 ∧ . . . ∧Gn) ⊃ F Induction hypothesis.
2. �c

(
(G1 ∧ . . . ∧Gn) ⊃ F

)
NGc rule from 1.

3. �c(G1 ∧ . . . ∧Gn) ⊃ �cF K c rule from 2.
4. (�cG1 ∧ . . . ∧�cGn) ⊃ �c(G1 ∧ . . . ∧Gn) Lemma 2.3.6, 1f.
5. (�cG1 ∧ . . . ∧�cGn) ⊃ �cF Tr rule from 4 and 3.
6. (�l1G1 ∧ . . . ∧�lnGn) ⊃ (�cG1 ∧ . . . ∧�cGn) Lemma 2.3.6, 1g.
7. (�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF Tr rule from 6 and 5.
8. (H1∧�l1G1∧. . .∧�lnGn) ⊃ (�l1G1∧. . .∧�lnGn) Axiom 2.2, {H1/F ,�l1G1∧...∧�lnGn/G}.
9. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF Tr rule from 8 and 7.

10. �cF ⊃ (H2 ∨�cF ) Axiom 3.2, {H2/F ,�cF/G}.
11. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ (H2 ∨�cF ) Tr rule from 9 and 10.

This derivation can be easily altered to deal with cases, where Γ1, ∆ or
both of them are empty. For example, if Γ1 and ∆ are empty, then the
derivation is the same, but terminates in step 7.

If Γ2 is empty (but neither Γ1 nor ∆ is), then Cor(S1) = F and Cor(S) =
H1 ⊃ (H2 ∨�cF ). The derivation of Cor(S) in HKc

n is as follows:
1. F Induction hypothesis.
2. �cF NGc rule from 1.
3. �cF ⊃ (H1 ⊃ �cF ) Axiom 1.1, {�cF/F ,H1/G}.
4. H1 ⊃ �cF MP rule from 2 and 3.
5. �cF ⊃ (H2 ∨�cF ) Axiom 3.2, {H2/F ,�cF/G}.
6. H1 ⊃ (H2 ∨�cF ) Tr rule from 4 and 5.

This derivation can also be easily modified to deal with cases, where Γ1

or ∆ is empty.
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The application of (→ �l) is changed to Hilbert-type derivation in a similar
way as the application of rule (→ �c). This completes the proof that if
some sequent S is derivable in GKc

ncut, then formula Cor(S) is derivable in
HKc

n.

Theorem 2.3.10. Calculus GK4c
ncut is sound. That is, if some sequent S

is derivable in GK4c
ncut, then formula Cor(S) is derivable in HK4c

n.

Proof. Let D be the derivation tree of some sequent S in GK4c
ncut. Now

let’s show how to construct the derivation of Cor(S) in HK4c
n. Once again

induction on the height of D is used.
In fact the proof is very similar to the proof of Lemma 2.3.9. The only

difference is how the cases of application of rules (→ �l) and (→ �c) are dealt
with.

If rule (→ �c) is applied, then D looks like this:

D′

S1 = Γ2,�∗Γ2 → F
(→ �c)

S = Γ1,�∗Γ2 → ∆,�cF

According to induction hypothesis, `HKc
n Cor(S1), because h(D′) < k.

Now if Γ1 = H1,1, . . . , H1,m1, where m1 > 1, Γ2 = G1, . . . , Gn, where n > 1
and ∆ = H2,1, . . . , H2,m2, where m2 > 1, then Cor(S1) = (G1 ∧ . . . ∧ Gn ∧
�l1G1 ∧ . . . ∧ �lnGn) ⊃ F and Cor(S) = (H1 ∧ �l1G1 ∧ . . . ∧ �lnGn) ⊃
(H2 ∨ �cF ), where H1 = H1,1 ∧ . . . ∧ H1,m1 and H2 = H2,1 ∨ . . . ∨ H2,m2.
The derivation of Cor(S) in HKc

n is as follows:
1. (G1 ∧ . . . ∧Gn ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ F Induction hypothesis.
2. �c

(
(G1 ∧ . . . ∧Gn ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ F

)
NGc rule from 1.

3. �c(G1 ∧ . . . ∧Gn ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF K c rule from 2.
4. (�cG1 ∧ . . . ∧�cGn ∧�c�l1G1 ∧ . . . ∧�c�lnGn) ⊃

�c(G1 ∧ . . . ∧Gn ∧�l1G1 ∧ . . . ∧�lnGn)
Lemma 2.3.6, 1f.

5. (�cG1∧. . .∧�cGn∧�c�l1G1∧. . .∧�c�lnGn) ⊃ �cF Tr rule from 4 and 3.
6. (�l1G1 ∧ . . . ∧�lnGn) ⊃ (�cG1 ∧ . . . ∧�cGn) Lemma 2.3.6, 1g.
7. (�l1G1∧ . . .∧�lnGn) ⊃ (�l1�l1G1∧ . . .∧�ln�lnGn) Lemma 2.3.6, 2a.
8. (�l1�l1G1 ∧ . . . ∧�ln�lnGn) ⊃

(�c�l1G1 ∧ . . . ∧�c�lnGn)
Lemma 2.3.6, 1g.

9. (�l1G1 ∧ . . .∧�lnGn) ⊃ (�c�l1G1 ∧ . . .∧�c�lnGn) Tr rule from 7 and 8.
10. (�l1G1 ∧ . . . ∧�lnGn) ⊃

(�cG1 ∧ . . .∧�cGn ∧�c�l1G1 ∧ . . .∧�c�lnGn)
R∧ rule from 6 and 9.

11. (�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF Tr rule from 10 and 5.
12. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ (�l1G1 ∧ . . . ∧�lnGn) Axiom 2.2, {H1/F ,�l1G1∧...∧�lnGn/G}.
13. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF Tr rule from 12 and 11.
14. �cF ⊃ (H2 ∨�cF ) Axiom 3.2, {H2/F ,�cF/G}.
15. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ (H2 ∨�cF ) Tr rule from 13 and 14.
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This derivation can be easily altered to deal with cases, where Γ1, ∆ or
both of them are empty.

If Γ2 is empty, then Cor(S1) = F and this case is proved in the same way
as analogous case of the proof of Lemma 2.3.9.

The application of (→ �l) is changed to Hilbert-type derivation in a similar
way as the application of rule (→ �c).

Theorem 2.3.11. Calculus GTc
ncut is sound. That is, if some sequent S

is derivable in GTc
ncut, then formula Cor(S) is derivable in HTc

n.

Proof. All the rules and axioms of calculus GTc
ncut are the same as the ones

of calculus GKc
ncut, except that calculus GTc

ncut has rule (�l →), which is
not part of calculus GKc

ncut. Therefore, the proof of this lemma is the same
as the proof of Lemma 2.3.9, except that the case of the rule (�l →) must be
analysed additionally.

If rule (�l →) is applied, then D looks like this:

D′

S1 = F,�lF,Γ → ∆
(�l →)

S = �lF,Γ → ∆

According to induction hypothesis, `HKc
n Cor(S1), because h(D′) < k. If

Γ = G1, . . . , Gn, ∆ = H1, . . . , Hm and n,m > 1, then Cor(S1) = (F ∧�lF ∧
G) ⊃ H and Cor(S) = (�lF ∧ G) ⊃ H, where G = G1 ∧ . . . ∧ Gn and
H = H1 ∨ . . . ∨Hm. The derivation of Cor(S) in HKc

n is as follows:
1. (F ∧�lF ∧G) ⊃ H Induction hypothesis.
2. �lF ⊃ F Axiom (Tl).
3. �lF ⊃ �lF As in Example 1.1.6.
4. �lF ⊃ (F ∧�lF ) R∧ rule from 2 and 3.
5. (�lF ∧G) ⊃ (F ∧�lF ∧G) E∧2 rule from 4.
6. (�lF ∧G) ⊃ H Tr rule from 5 and 1.

This derivation can be easily altered to deal with case, where Γ = ∅ and
∆ 6= ∅.

If Γ 6= ∅, but ∆ = ∅, then Cor(S1) = ¬(F ∧ �lF ∧ G), Cor(S) =
¬(�lF ∧G) and the derivation of Cor(S) is as follows:
1. ¬(F ∧�lF ∧G) Induction hypothesis.
2. (�lF ∧G) ⊃ (F ∧�lF ∧G) As in the previous derivation from 2 to 5.
3. ¬(F ∧�lF ∧G) ⊃ ¬(�lF ∧G) R¬ rule from 3.
4. ¬(�lF ∧G) MP rule from 1 and 3.

This derivation can also be modified to deal with case, where Γ = ∆ =
∅.
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Theorem 2.3.12. Calculus GS4c
ncut is sound. That is, if some sequent S

is derivable in GS4c
ncut, then formula Cor(S) is derivable in HS4c

n.

Proof. Calculus GS4c
ncut is the same as calculus GTc

ncut, except that rules
(→ �l) and (→ �c) are different. Therefore, the proof of this lemma is the
same as the proof of Lemma 2.3.11, except the cases of the mentioned rules,
that are provided further.

If rule (→ �c) is applied, then D looks like this:

D′

S1 = �∗Γ2 → F
(→ �c)

S = Γ1,�∗Γ2 → ∆,�cF

According to induction hypothesis, `HKc
n Cor(S1), because h(D′) < k.

Now if Γ1 = H1,1, . . . , H1,m1, where m1 > 1, Γ2 = G1, . . . , Gn, where n > 1
and ∆ = H2,1, . . . , H2,m2, where m2 > 1, then Cor(S1) = (�l1G1 ∧ . . . ∧
�lnGn) ⊃ F and Cor(S) = (H1∧�l1G1∧ . . .∧�lnGn) ⊃ (H2∨�cF ), where
H1 = H1,1 ∧ . . . ∧ H1,m1 and H2 = H2,1 ∨ . . . ∨ H2,m2. The derivation of
Cor(S) in HKc

n is as follows:
1. (�l1G1 ∧ . . . ∧�lnGn) ⊃ F Induction hypothesis.
2. �c

(
�l1G1 ∧ . . . ∧�lnGn) ⊃ F

)
NGc rule from 1.

3. �c(�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF K c rule from 2.
4. (�c�l1G1∧. . .∧�c�lnGn) ⊃ �c(�l1G1∧. . .∧�lnGn) Lemma 2.3.6, 1f.
5. (�c�l1G1 ∧ . . . ∧�c�lnGn) ⊃ �cF Tr rule from 4 and 3.
6. (�l1G1∧ . . .∧�lnGn) ⊃ (�l1�l1G1∧ . . .∧�ln�lnGn) Lemma 2.3.6, 2a.
7. (�l1�l1G1 ∧ . . . ∧�ln�lnGn) ⊃

(�c�l1G1 ∧ . . . ∧�c�lnGn)
Lemma 2.3.6, 1g.

8. (�l1G1 ∧ . . .∧�lnGn) ⊃ (�c�l1G1 ∧ . . .∧�c�lnGn) Tr rule from 6 and 7.
9. (�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF Tr rule from 8 and 5.

10. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ (�l1G1 ∧ . . . ∧�lnGn) Axiom 2.2, {H1/F ,�l1G1∧...∧�lnGn/G}.
11. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ �cF Tr rule from 10 and 9.
12. �cF ⊃ (H2 ∨�cF ) Axiom 3.2, {H2/F ,�cF/G}.
13. (H1 ∧�l1G1 ∧ . . . ∧�lnGn) ⊃ (H2 ∨�cF ) Tr rule from 11 and 12.

This derivation can be easily altered to deal with cases, where Γ1, ∆ or
both of them are empty.

If Γ2 is empty, then Cor(S1) = F and this case is proved in the same way
as analogous case of the proof of Lemma 2.3.9.

The application of (→ �l) is changed to Hilbert-type derivation in a similar
way as the application of rule (→ �c).
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2.4 Gentzen-type Calculi without Cut

The previous section shows, that calculi GKc
ncut, GK4c

ncut, GTc
ncut and

GS4c
ncut are sound and complete, however they are not terminating. One

of the reasons is that it is not possible to go through all the possible rule
applications of any sequent. The main problem lies in the rule (cut F ). It
is not possible to examine all the possible cut formulas. In some cases this
problem is solved by restricting the set of possible cut formulas. However,
for the discussed calculi, the cut rule can be eliminated completely. This
makes sequent calculus for Kc

n terminating and takes other sequent calculi
one step closer to the finite derivation search.

Definition 2.4.1. Gentzen-type calculi without cut for multimodal logics
with central agent axiom Kc

n, K4c
n, Tc

n and S4c
n (respectively, GKc

n, GK4c
n,

GTc
n and GS4c

n) are obtained from respective Gentzen-type calculi with cut
GKc

ncut, GK4c
ncut, GTc

ncut and GS4c
ncut by removing the cut rule.

In this dissertation cut-elimination is proved using invertibility of log-
ical and reflexivity rules and admissibility of weakening and contraction.
Alternative method can be found in [2, 51].

Let’s start with the admissibility of weakening.

Lemma 2.4.2. The structural rules of weakening are admissible in sequent
calculi GKc

n, GK4c
n, GTc

n and GS4c
n.

Proof. Analogously to the proof of Lemma 1.4.8.

Next, the invertibility of logical rules and rule (�l →).

Lemma 2.4.3. Logical rules are invertible in calculi GKc
n, GK4c

n, GTc
n and

GS4c
n.

Proof. Analogously to the proof of Lemma 1.4.11 or 2.3.3 using Lemma
2.4.2.

Lemma 2.4.4. Rule (�l →) is invertible in reflexive multimodal calculi GK4c
n

and GS4c
n.

Proof. Direct corollary of Lemma 2.4.2, analogously to the proof of Lemma
1.4.12.

Finally the admissibility of contraction structural rules.
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Lemma 2.4.5. The structural rules of contraction are admissible in calculi
GKc

n, GK4c
n, GTc

n and GS4c
n.

Proof. Analogously to the proof of Lemma 1.4.13 using Lemmas 2.4.2, 2.4.3
and 2.4.4.

In the derivation search trees one or more applications of weakening or
contraction structural rules are denoted by double line.

Now, cut elimination can be proved.

Theorem 2.4.6 (Cut elimination for Kc
n). Sequent is derivable in GKc

ncut
iff it is derivable in GKc

n.

Proof. If sequent is derivable in GKc
n, then obviously it is derivable in

GKc
ncut.

To prove the other side let’s analyse only those derivation trees in GKc
ncut,

that have only one application of (cut F ) and it is the bottom-most inference.
If the application of cut rule can be eliminated from such derivation trees,
then inductively it can be eliminated from any derivation tree in GKc

ncut to
obtain the derivation tree in GKc

n.
Let’s say D is a derivation tree in GKc

ncut and the bottom-most inference
is application of rule (cut F ). Let it be the only application of the cut rule.
Then the derivation tree is of the form:

D1
S1 = Γ → ∆, F

D2
S2 = F,Π → Λ

(cut F )
S = Γ,Π → ∆,Λ

It should be noticed, that D1 and D2 do not contain any applications of
the cut rule and therefore, they already are derivation trees in GKc

n. Let’s
show that this application of (cut F ) can be eliminated. The proof is by
double induction on the ordered pair 〈l(F ), h〉, where h = h(D1) + h(D2)
and is called the cut height. Both D1 and D2 contains at least one sequent,
therefore the smallest value of the cut height is 2.

1. If l(F ) = 0 and h = 2, then both S1 and S2 are axioms. If F is the
main formula of both S1 and S2, then S1 is of the form F,Γ1 → ∆, F
and S2 is of the form F,Π → Λ1, F . In this case S is of the form
F,Γ1,Π → ∆,Λ1, F and clearly an axiom of GKc

n. Therefore the appli-
cation of (cut F ) is not needed.
If F is not the main formula of sequent S1, then S1 is of the form
G,Γ1 → ∆1, G, F and S is of the form G,Γ1Π → ∆1, G,Λ. Once again
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it is clear that S is an axiom and the application of (cut F ) can be
eliminated. The case when F is not the main formula of S2 is completely
analogous.

2. If l(F ) = 0 and h(D1) > 1, then all the possible bottom-most inferences
of D1 must be analysed. It is clear that the main formula of such
inference is definitely not F .

(a) In the case of (¬ →) rule the derivation tree D is:

D′

1
Γ1 → ∆, G, F

(¬ →)
S1 = ¬G,Γ1 → ∆, F

D2
S2 = F,Π → Λ

(cut F )
S = ¬G,Γ1,Π → ∆,Λ

Now let’s analyse the following derivation

D′

1
Γ1 → ∆, G, F

D2
S2 = F,Π → Λ

(cut F )Γ1,Π → ∆, G,Λ
The cut height of this proof is smaller than h and the cut formula
is the same, therefore according to induction hypothesis, the appli-
cation of (cut F ) can be eliminated from it to obtain the derivation
tree D′. Now the derivation tree of S without cut is:

D′

Γ1,Π → ∆, G,Λ
(¬ →)

¬G,Γ1,Π → ∆,Λ
The cases of other logical rules are analogous.

(b) In the case of (→ �l) rule derivation tree D is:

D′

1
Γ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆1,�lG,F

D2
S2 = F,Π → Λ

(cut F )
S = Γ1,�lΓ2,Π → ∆1,�lG,Λ

Now the application of the cut rule can be eliminated by changing
D to:

D′

1
Γ2 → G

(→ �l)Γ1,�lΓ2 → ∆1,�lG

S = Γ1,�lΓ2,Π → ∆1,�lG,Λ
The case of rule (→ �c) is analogous.
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3. If l(F ) = 0 and h(D2) > 1, then all the possible bottom-most inferences
of D2 must be analysed. Once again it is clear that the main formula
of such inference is definitely not F . The cases of all the logical rules
are analogous to case 2a. In the case of (→ �l) rule derivation tree D is:

D1
S1 = Γ → ∆, F

D′

2
Π2 → G

(→ �l)
S2 = F,Π1,�lΠ2 → Λ1,�lG (cut F )

S = Γ,Π1,�lΠ2 → ∆,Λ1,�lG

Now the application of the cut rule can be eliminated by changing D
to:

D′

2
Π2 → G

(→ �l)Π1,�lΠ2 → Λ1,�lG

S = Γ,Π1,�lΠ2 → ∆,Λ1,�lG

The case of rule (→ �c) is analogous.

4. If l(F ) > 0 and h = 2, then this case is analogous to case 1.

5. If l(F ) > 0 and h(D1) > 1, then all the possible bottom-most inferences
of D1 must be analysed. If F is not the main formula of such inference,
then this case is analogous to case 2. Therefore, let F be the main
formula of the last inference.

(a) Let the last inference be application of rule (→ ¬). Then D is:

D′

1
G,Γ → ∆

(→ ¬)
S1 = Γ → ∆,¬G

D2
S2 = ¬G,Π → Λ

(cut ¬G)
S = Γ,Π → ∆,Λ

Now because the rule (→ ¬) is invertible in GKc
n and `GKc

n S2, sequent
S

′

2 = Π → Λ, G is derivable in GKc
n too. Let the derivation tree of

S
′

2 be D′

2. Now let’s inspect the following derivation:

D′

2

S
′

2 = Π → Λ, G
D′

1
G,Γ → ∆

(cut G)
S = Γ,Π → ∆,Λ

Because l(G) < l(F ), according to induction hypothesis the appli-
cation of the cut rule can be removed from this derivation to get
the derivation tree of S in GKc

n.
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(b) Let the last inference be application of rule (→ ∧). Then D is:

D′

1
Γ → ∆, G

D′′

1
Γ → ∆, H

(→ ∧)Γ → ∆, G ∧H
D2

S2 = G ∧H,Π → Λ
(cut G ∧H)

S = Γ,Π → ∆,Λ
Now because the rule (→ ∧) is invertible in GKc

n and `GKc
n S2, sequent

S
′

2 = G,H,Π → Λ is derivable in GKc
n too. Let the derivation tree

of S ′

2 be D′

2. Now let’s inspect the following derivation:

D′

1
Γ → ∆, G

D′

2

S
′

2 = G,H,Π → Λ
(cut G)

H,Γ,Π → ∆,Λ
Because l(G) < l(F ), according to induction hypothesis the appli-
cation of the cut rule can be removed from this derivation to get
the derivation tree D′′

2 in GKc
n. Now consider this derivation:

D′′

1
Γ → ∆, H

D′′

2
H,Γ,Π → ∆,Λ

(cut H)Γ,Γ,Π → ∆,∆,Λ
Once again, l(H) < l(F ), therefore according to induction hypo-
thesis the application of the cut rule can be eliminated to get the
derivation tree D3. Now the derivation tree of S is as follows:

D3
Γ,Γ,Π → ∆,∆,Λ

Γ,Π → ∆,Λ
The cases, when the last inference is application of rules (∨ →) or
(⊃→) are analogous to case 5a.

(c) Let the last inference be application of rule (→ �l). In this case all
the possible variants of D2 must be considered.
i. If h(D2) = 1, then S2 is an axiom. If F is not the main formula

of axiom, then S2 is of the form F,G,Π1 → Λ1, G and S is of
the form Γ, G,Π1 → ∆Λ1, G. It is clear that S is an axiom of
GKc

n. If F is the main formula of axiom S2, then D is:
D
′
1

Γ2 → G (→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D2

S2 = �lG,Π → Λ1,�lG (cut �lG)
S = Γ1,�lΓ2,Π → ∆,Λ1,�lG
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Now the application of the cut rule can be eliminated by chang-
ing D to:

D′

1
Γ2 → G

(→ �l)Γ1,�lΓ2 → ∆,�lG
S = Γ1,�lΓ2,Π → ∆,Λ1,�lG

ii. If h(D2) > 1 and the last inference in D2 is application of logical
rule or rule (→ �l1 ), where l1 6= l, then the cut rule is eliminated
from D analogously to case 3.

iii. If h(D2) > 1 and the last inference in D2 is application of rule
(→ �l), then D is:

D
′
1

Γ2 → G (→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D
′
2

G,Π2 → H
(→ �l)

S2 = �lG,Π1,�lΠ2 → Λ1,�lH (cut �lG)
S = Γ1,�lΓ2,Π1,�lΠ2 → ∆,Λ1,�lH

Now consider the following derivation:

D′

1
Γ2 → G

D′

2
G,Π2 → H

(cut G)Γ2,Π2 → H

According to induction hypothesis, because l(G) < l(F ) it is
possible to eliminate cut from this derivation to get the deriva-
tion tree D3. Then the derivation tree of S without cut is:

D3
Γ2,Π2 → H

(→ �l)
S = Γ1,�lΓ2,Π1,�lΠ2 → ∆,Λ1,�lH

iv. If h(D2) > 1 and the last inference in D2 is application of rule
(→ �c), then D is:

D
′
1

Γ2 → G (→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D
′
2

G,Π2 → H
(→ �c)

S2 = �lG,Π1,�∗Π2 → Λ1,�cH (cut �lG)
S = Γ1,�lΓ2,Π1,�∗Π2 → ∆,Λ1,�cH

Now consider the following derivation:

D′

1
Γ2 → G

D′

2
G,Π2 → H

(cut G)Γ2,Π2 → H
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According to induction hypothesis, because l(G) < l(F ) it is
possible to eliminate cut from this derivation to get the deriva-
tion tree D3. Then the derivation tree of S without cut is:

D3
Γ2,Π2 → H

(→ �c)
S = Γ1,�lΓ2,Π1,�∗Π2 → ∆,Λ1,�cH

(d) Let the last inference be application of rule (→ �c). Once again all
the possible variants of D2 must be considered.
i. If h(D2) = 1, then this case is analogous to case 5(c)i.
ii. If h(D2) > 1 and the last inference in D2 is application of logical

rule or rule (→ �a), where a 6= c, then this case is analogous to
case 5(c)ii.

iii. If h(D2) > 1 and the last inference in D2 is application of rule
(→ �c), then D is:

D
′
1

Γ2 → G (→ �c)
S1 = Γ1,�∗Γ2 → ∆,�cG

D
′
2

G,Π2 → H
(→ �c)

S2 = �cG,Π1,�cΠ2 → Λ1,�cH (cut �cG)
S = Γ1,�∗Γ2,Π1,�cΠ2 → ∆,Λ1,�cH

Now consider the following derivation:
D′

1
Γ2 → G

D′

2
G,Π2 → H

(cut G)Γ2,Π2 → H

According to induction hypothesis, because l(G) < l(F ) it is
possible to eliminate cut from this derivation to get the deriva-
tion tree D3. Then the derivation tree of S without cut is:

D3
Γ2,Π2 → H

(→ �c)
S = Γ1,�∗Γ2,Π1,�cΠ2 → ∆,Λ1,�cH

iv. If h(D2) > 1 and the last inference in D2 is application of rule
(→ �c), then this case is analogous to case 5(c)iv.

6. If l(F ) > 0 and h(D2) > 1, then all the possible bottom-most inferences
of D2 must be analysed.

(a) If the last inference is application of logical rule and F is the main
formula, then this case is analogous to case 5a or 5b.

(b) If (1) the last inference is application of logical rule and F is not
the main formula, (2) the last inference is application of rule (→ �l)

and F is not of the form �lG or (3) the last inference is application
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of rule (→ �c) and F is not of the form �lG, where l is any agent,
then this case is analogous to case 3.

(c) Let the last inference be application of rule (→ �l) and F be of the
form �lG. In this case all the possible variants of D1 must be
considered.
i. If h(D1) = 1, then this case is analogous to case 5(c)i.
ii. If h(D1) > 1 and the last inference in D1 is application of logical

rule, rule (→ �l1 ) (l1 = l or l1 6= l) or rule (→ �c) and F is not the
main formula of the application, then the cut rule is eliminated
from D analogously to case 2.

iii. If h(D1) > 1, the last inference in D1 is application of rule (→ �l)

and the main formula of the application is F , then this case is
already covered in case 5(c)iii.

iv. If h(D1) > 1, the last inference in D1 is application of rule (→ �c),
l = c and the main formula of the application is F , then this
case is already covered in case 5(d)iii.

(d) Let the last inference be application of rule (→ �c). Once again all
the possible variants of D1 must be considered. However all the
cases are either already covered in the proof or proved analogously
to the ones already presented.

Theorem 2.4.7 (Cut elimination for K4c
n). Sequent is derivable in GK4c

ncut
iff it is derivable in GK4c

n.

Proof. The proof is analogous to the proof of Theorem 2.4.7. Once again,
the aim of the prove is to show that the application of the cut rule can be
eliminated from any derivation tree, that contains only one application of
the cut rule and it is the last inference in the derivation tree. Let D be such
derivation tree in GK4c

ncut:

D1
S1 = Γ → ∆, F

D2
S2 = F,Π → Λ

(cut F )
S = Γ,Π → ∆,Λ

For the proof double induction on the ordered pair 〈l(F ), h〉, where h =
h(D1)+h(D2) is used. The only difference between GKc

n and GK4c
n is modal

rules (→ �l) and (→ �c), therefore only the cases, that involve those rules are
discussed.
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Case 2b, where l(F ) = 0, h(D1) > 1 and rule (→ �l) is applied to S1.
Derivation tree D is of the form:

D′

1
Γ2,�lΓ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆1,�lG,F

D2
S2 = F,Π → Λ

(cut F )
S = Γ1,�lΓ2,Π → ∆1,�lG,Λ

Now the application of the cut rule can be eliminated by changing D to:

D′

1
Γ2,�lΓ2 → G

(→ �l)Γ1,�lΓ2 → ∆1,�lG

S = Γ1,�lΓ2,Π → ∆1,�lG,Λ
The case of rule (→ �c) is analogous.
Case 3, where l(F ) = 0, h(D2) > 1. Only the part, when rule (→ �l) or

(→ �c) is applied to S2 is different. However the changes are obvious and
similar to the previous case.

Cases 5(c)iii and 6(c)iii, where l(F ) = 0, h(D1) > 1, h(D2) > 1, rule
(→ �l) is applied to S1 and F is the main formula of the application and
(→ �l) is applied to S2. Then D looks like:

D′

1
Γ2,�lΓ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D2
G,�lG,Π2,�lΠ2 → H

(→ �l)
S2 = �lG,Π1,�lΠ2 → Λ1,�lH (cut �lG)

S = Γ1,�lΓ2,Π1,�lΠ2 → ∆,Λ1,�lH

Now consider the following derivation:

D′

1
Γ2,�lΓ2 → G

(→ �l)
S1 = �lΓ2 → �lG

D′

2
G,�lG,Π2,�lΠ2 → H

(cut �lG)
�lΓ2, G,Π2,�lΠ2 → H

Now the cut height of this derivation is smaller than the cut height of D
and the cut formula is the same, therefore according to induction hypothesis
cut rule can be eliminated from this derivation to get derivation tree D′′

2
without cut. Next let’s analyse this derivation:

D′

1
Γ2,�lΓ2 → G

D′

2
�lΓ2, G,Π2,�lΠ2 → H

(cut G)Γ2,�lΓ2,�lΓ2Π2,�lΠ2 → H
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According to induction hypothesis, because l(G) < l(F ) it is possible to
eliminate cut from this derivation to get the derivation tree D3. Then the
derivation tree of S without cut is:

D3
Γ2,�lΓ2,�lΓ2Π2,�lΠ2 → H

Γ2,�lΓ2,Π2,�lΠ2 → H
(→ �l)

S = Γ1,�lΓ2,Π1,�lΠ2 → ∆,Λ1,�lH

Cases 5(c)iv, 5(d)iii and 5(d)iv are changed in the same way as the pre-
vious one and they already cover case 6(c)iv and part of case 6d that needs
alteration.

Theorem 2.4.8 (Cut elimination for Tc
n). Sequent is derivable in GTc

ncut
iff it is derivable in GTc

n.

Proof. The proof is analogous to the proof of Theorem 2.4.6. Once again, the
same notation and the same double induction is used. The only difference
between GKc

n and GTc
n is that the latter contains modal rule (�l →), which

is not part of the former. Therefore only the new cases, that involve this
rule, are discussed.

1. In case 2, where l(F ) = 0 and h(D1) > 1, one more variant must be
analysed, in which rule (�l →) is applied to S1, however this case is
analogous to case 2a of the proof of Lemma 2.4.6.

2. In case 3, where l(F ) = 0 and h(D2) > 1, one more variant must be
analysed, in which rule (�l →) is applied to S2, however this case is also
analogous to case 2a of the proof of Lemma 2.4.6.

3. In case 5c, where l(F ) > 0, h(D1) > 1 and rule (→ �l) is applied to S1,
two more variants must be analysed. First of all, if rule (�l1 →) (where
l1 = l or l1 6= l) is applied to S2 and F is not the main formula of the
application, then this case is analogous to the case 5(c)ii of the proof
of Lemma 2.4.6.
If however F is the main formula of the inference, then D is:

D′

1
Γ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D′

2
G,�lG,Π → Λ

(�l →)
S2 = �lG,Π → Λ

(cut �lG)
S = Γ1,�lΓ2,Π → ∆,Λ

68



Now consider the following derivation:

D′

1
Γ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D′

2
G,�lG,Π → Λ

(cut �lG)Γ1,�lΓ2, G,Π → ∆,Λ

The cut height of this derivation is smaller than that of D and the cut
formula is the same, therefore it is possible to remove this cut to get
the derivation tree D′′

2. Now let’s analyse the following derivation:

D′

1
Γ2 → G

D′′

2
Γ1,�lΓ2, G,Π → ∆,Λ

(cut G)Γ1,Γ2,�lΓ2,Π → ∆,Λ

According to induction hypothesis, because l(G) < l(F ) it is possible to
eliminate cut from this derivation to get the derivation tree D3. Then
the derivation tree of S without cut is:

D3
Γ1,Γ2,�lΓ2,Π → ∆,Λ

(�l →),…,(�l →)
S = Γ1,�lΓ2,Π → ∆,Λ

4. In case 5d, where l(F ) > 0, h(D1) > 1 and rule (→ �c) is applied to
S1, two more variants must be analysed. The alteration is completely
analogous to the previous case.

5. In case 6, where l(F ) > 0 and h(D2) > 1, one more variant must be
added, in which rule (�l →) is applied to S2. If F is not the main formula
of the application, then this case is analogous to case 3 of the proof of
Lemma 2.4.6.
However if F is the main formula of the application, then all the possible
cases of derivation tree D1 must be checked.

(a) If h(D1) = 1, then S1 is an axiom. If F is not the main formula of
the axiom, then S1 is of the form G,Γ1 → ∆1, G, F and S is of the
form G,Γ1,Π → ∆1, G,Λ. It is clear that S is an axiom of GTc

n. If
F is the main formula of axiom S1, then D is:

D1
S1 = �lG,Γ1 → ∆,�lG

D′

2
G,�lG,Π → Λ

(�l →)
S2 = �lG,Π → Λ

(cut �lG)
S = �lG,Γ1,Π → ∆,Λ

69



Now the application of the cut rule can be eliminated by changing
D to:

D′

2
G,�lG,Π → Λ

(�l →)
S2 = �lG,Π → Λ

S = �lG,Γ1,Π → ∆,Λ

(b) If h(D1) > 1 and the last inference in D1 is application of logical
rule, rule (�l1 →) (where l1 = l or l1 6= l), rule (→ �l2 ) (where l2 = l

or l2 6= l) or rule (→ �c) and F is not the main formula of the
application, then the cut rule is eliminated from D analogously to
case 2 of the proof of Lemma 2.4.6.

(c) If h(D1) > 1, the last inference in D1 is application of rule (→ �l)

and F is the main formula of the application, then this situation is
already covered in case 3 of this proof.

(d) If h(D1) > 1, the last inference in D1 is application of rule (→ �c)

and F is the main formula of the application, then this situation is
also covered in case 4 of this proof.

6. In cases 6c and 6d, where l(F ) > 0, h(D2) > 1, and respectively rule
(→ �l) or (→ �c) is applied to S2, one more variant must be analysed, in
which rule (�l →) is applied to S1. However these cases are analogous
to case 2a of the proof of Lemma 2.4.6.

Theorem 2.4.9 (Cut elimination for S4c
n). Sequent is derivable in GS4c

ncut
iff it is derivable in GS4c

n.

Proof. This proof is also analogous to the proof of Theorem 2.4.6. However
GS4c

n is closer to GTc
n than to GKc

n. Calculus GS4c
n includes rule (�l →),

which is also part of GTc
n, but not of GKc

n. Nevertheless, rules (→ �l) and
(→ �c) are different in GS4c

n, than in both calculi GKc
n and GTc

n. Therefore
alterations made in the proof of Lemma 2.4.8 (referred to as proof for Tc

n)
must also be part of this proof. However, due to different (→ �l) and (→ �c)

rules, new changes must be incorporated both in the proof for Tc
n and in

the proof of Lemma 2.4.6 (referred to as proof for Kc
n).
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In case 2b of the proof for Kc
n, where l(F ) = 0, h(D1) > 1 and rule (→ �l)

is applied to S1, derivation tree D looks like:

D′

1
�lΓ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆1,�lG,F

D2
S2 = F,Π → Λ

(cut F )
S = Γ1,�lΓ2,Π → ∆1,�lG,Λ

Now the application of the cut rule can be eliminated by changing D to:

D′

1
�lΓ2 → G

(→ �l)Γ1,�lΓ2 → ∆1,�lG

S = Γ1,�lΓ2,Π → ∆1,�lG,Λ
The case of rule (→ �c) is analogous.
In case 3 of the proof for Kc

n, where l(F ) = 0 and h(D2) > 1, only the
part, when rule (→ �l) or (→ �c) is applied to S2 is different. However the
changes are obvious and similar to the previous case of this proof.

In case 5c of the proof for Kc
n and case 3 of the proof for Tc

n, where
l(F ) = 0, h(D2) > 1, rule (→ �l) is applied to S1 and F is the main formula
of the application, all the possible variants of D2 must be altered.

1. If h(D2) = 1, then the change is obvious.

2. If h(D2) > 1 and the last inference in D2 is application of logical rule,
rule (→ �l1 ), where l1 6= l, or rule (�l2 →) (where l2 = l or l2 6= l) and F is
not the main formula of the application, then the cut rule is eliminated
from D analogously to case 3 of the proof for Kc

n.

3. If h(D2) > 1 and the last inference in D2 is application of rule (→ �l),
then D is:

D
′
1

�lΓ2 → G (→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D
′
2

�lG,�lΠ2 → H
(→ �l)

S2 = �lG,Π1,�lΠ2 → Λ1,�lH (cut �lG)
S = Γ1,�lΓ2,Π1,�lΠ2 → ∆,Λ1,�lH

Now consider the following derivation:

D′

1
�lΓ2 → G

(→ �l)
S1 = �lΓ2 → �lG

D′

2
�lG,�lΠ2 → H

(cut �lG)
�lΓ2,�lΠ2 → H
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The cut height of this derivation is smaller that that of derivation tree
D and the cut formula is the same, therefore according to induction
hypothesis, it is possible to eliminate cut from this derivation to get
the derivation tree D3. Then the derivation tree of S without cut is:

D3
�lΓ2,�lΠ2 → H

(→ �l)
�lΓ2,�lΠ2 → �lH

S = Γ1,�lΓ2,Π1,�lΠ2 → ∆,Λ1,�lH

4. If h(D2) > 1 and the last inference in D2 is application of rule (→ �c),
then the change is analogous to the previous case of this proof.

5. If h(D2) > 1, the last inference in D2 is application of rule (�l →) and
F is the main formula of the application, then D is:

D′

1
�lΓ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D′

2
G,�lG,Π → Λ

(�l →)
S2 = �lG,Π → Λ

(cut �lG)
S = Γ1,�lΓ2,Π → ∆,Λ

Now consider the following derivation:

D′

1
�lΓ2 → G

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lG

D′

2
G,�lG,Π → Λ

(cut �lG)Γ1,�lΓ2, G,Π → ∆,Λ

The cut height of this derivation is smaller than that of D and the cut
formula is the same, therefore it is possible to remove this cut to get
the derivation tree D′′

2. Now let’s analyse the following derivation tree:

D′

1
�lΓ2 → G

D′′

2
Γ1,�lΓ2, G,Π → ∆,Λ

(cut G)Γ1,�lΓ2,�lΓ2,Π → ∆,Λ

According to induction hypothesis, because l(G) < l(F ) it is possible to
eliminate cut from this derivation to get the derivation tree D3. Then
the derivation tree of S without cut is:

D3
Γ1,�lΓ2,�lΓ2,Π → ∆,Λ
S = Γ1,�lΓ2,Π → ∆,Λ
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In case 5d of the proof for Kc
n and case 4 of the proof for Tc

n, where
l(F ) = 0, h(D2) > 1, rule (→ �c) is applied to S1 and F is the main formula
of the application, the changes are analogous to the previous case of this
proof.

The other cases, that must be altered, are either already covered in this
proof, or are changed in a similar way, as the ones presented here. Once
again, the proof for Kc

n and the proof for Tc
n lists those cases in more detail,

therefore there is no need to repeat them again.

The proofs of cut elimination theorems demonstrate that calculi GKc
n,

GK4c
n, GTc

n and GS4c
n are complete. The soundness of the calculi is obvious,

because if some sequent is derivable in a calculus without cut, then it is
derivable with the same derivation in respective calculus with cut. There is
no necessity to use the cut rule in the derivation search.
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Chapter 3

Terminating Calculi for
Multimodal Logics with
Interaction

In order to automate derivation search in Gentzen-type calculi, two con-
ditions must be met. First of all, it must be clear, what to do in every
step. A process of bottom-up derivation search, detailed in Definition 1.4.9,
answers this question quite well. Nevertheless, one more condition must be
satisfied: in every rule it must be obvious how to obtain the premise from
the conclusion. The rule, which has this property, is said to be analytical.
For example in the cut rule it is not clear how to choose a cut formula.
There is an infinite set of possible cut formulas to try, therefore the cut rule
is not analytical and the calculi containing it are not analytical. That is
why it was so important to remove the cut in Section 2.4. It is not hard to
see that calculi GKc

n, GK4c
n, GTc

n and GS4c
n are analytical.

Another property of the calculus, which is important for the automation,
is finite derivation search. Indeed every computer program must terminate
and provide an answer if the sequent is derivable, or not. However, among
the mentioned analytical calculi only GKc

n is terminating (as will be proved
later). The aim of this chapter is to derive terminating calculi for logics in
question.

3.1 Logic Kc
n

As mentioned earlier, GKc
n is terminating. This section is dedicated to

proving that.
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Lemma 3.1.1. If S1 and S2 are part of derivation search tree in calculus
GKc

n and for some inference S1 is a conclusion and S2 is some premise,
then l(S2) < l(S1).

Proof. If the inference is application of some logical rule, then S2 consists
of the same formulas as S1, except that the main formula is part of S1 only,
and the side formula(s) is (are) part of S2 only. Let the main formula be
F1. If there is one side formula F2, then l(F1) = l(F2) + 1. If there are
two side formulas F ′

2 and F ′′

2 , then l(F1) = l(F ′

2) + l(F ′′

2 ) + 1. In both cases
l(S2) < l(S1).

Let the inference be application of (→ �l) rule:
S2 = Γ2 → F

(→ �l)
S1 = Γ1,�lΓ2 → ∆,�lF

Now once again l(�lF ) = l(F )+1. Moreover, l(Γ2) 6 l(�lΓ2) (the situation,
when the two lengths are equal, occur if Γ2 = ∅). Finally, Γ1 and ∆ are
not even part of S2. From this it follows that l(S2) < l(S1). The case of
rule (→ �c) is analogous.

Lemma 3.1.2. For any sequent S if l(S) = 0, then no rule of calculus GKc
n

can be applied to S.

Proof. It is obvious, that every main formula of every rule in GKc
n must

have at least one logical operator. Therefore length of S must be at least 1
and therefore no rule can be applied, if l(S) = 0.

Theorem 3.1.3. Calculus GKc
n is terminating.

Proof. Lemmas 3.1.1 and 3.1.2 show that any derivation search tree in GKc
n

terminates. So it is not possible to construct an infinite derivation search
tree. Because of that and because to any sequent only finite number of rules
can be applied the number of different derivation search trees of one sequent
is also finite. So according to Definition 1.4.14 it must be concluded that
GKc

n is terminating.

3.2 Logic Tc
n

Calculus GTc
n is not terminating. Derivation search trees in it may contain

loops. It is said, that sequent S2 subsumes S1 (denoted S2 < S1), if S2 can
be obtained from S1 by backward-applying the contraction structural rules.
A loop is a path of some derivation search tree D from S1 to S2, where S2 is
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higher in D and S2 < S1. That is S1 and S2 consist of the same formulas.
However it can not always be said that such sequents are equal, because
the antecedent and succedent are multisets and the number of the same
formula in S2 can be larger than in S1. If a derivation search tree contains
one loop, then it is possible to construct another one and that means that
it is possible to get an infinite derivation search tree. Moreover, loops can
be part of derivation trees too.

The main cause of loops in Tc
n is rule (�l →). It is not hard to see, that

to form an infinite derivation search tree it is possible to apply this rule to
the same formula again and again:

· · · (�l →)
F, F,�lF,Γ → ∆

(�l →)
F,�lF,Γ → ∆

(�l →)
�lF,Γ → ∆

However it is not hard to limit such applications by simply labelling the
formula, which was the main formula of application of reflexivity rule. As
offered in [45] for logic S4, let’s just mark the outermost �l operator of such
formula by star: �∗l . Therefore, the reflexivity rule must be changed. What
is more, the definition of (→ �l) and (→ �c) rules must be altered to deal with
stars in sequents.

Definition 3.2.1. Terminating Gentzen-type calculus for multimodal logic
Tc

n (G∗Tc
n) contains the same axiom and rules as calculus GTc

n, except rules
(�l →), (→ �l) and (→ �c) are changed to:

F,�∗lF,Γ → ∆
(�l →)∗

�lF,Γ → ∆

Γ2,Γ3 → F
(→ �l)∗Γ1,�lΓ2,�∗lΓ3 → ∆,�lF

Γ2,Γ3 → F
(→ �c)∗Γ1,�∗Γ2,�∗∗Γ3 → ∆,�cF

Theorem 3.2.2. Calculus G∗Tc
n is sound.

Proof. If sequent S is derivable in G∗Tc
n, then by removing all the stars

and by changing all the applications of (�l →)∗, (→ �l)∗ and (→ �c)∗ rules to
applications of (�l →), (→ �l) and (→ �c) rules respectively it is possible to
obtain derivation tree in GTc

n. From the soundness of GTc
n it follows that

G∗Tc
n is also sound.

To prove the completeness let’s define one intermediate calculus.
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Definition 3.2.3. Let G1Tc
n be calculus obtained from G∗Tc

n by adding the
following rule:

F,�∗lF,Γ → ∆
(�∗l →)

�∗lF,Γ → ∆

Lemma 3.2.4. If sequent is derivable in GTc
n, then it is derivable in G1Tc

n
1.

Proof. Let D be a derivation tree of some sequent in GTc
n. Let’s change

all the applications of (→ �l) and (→ �c) to applications of (→ �l)∗ and (→ �c)∗

respectively. Now by changing all the applications of (�l →) to (�l →)∗ or
(�∗l →) a derivation tree in G1Tc

n is obtained. The choice of the rule com-
pletely depends on the form of the main formula: if the outermost modality
is already stared or not.

Now to prove that it is possible to transform the derivation tree in the
intermediate calculus to derivation tree in the terminating calculus, the
admissibility of contraction structural rules must be shown.

Lemma 3.2.5. The structural rules of contraction are admissible in G1Tc
n.

Proof. Proof is analogous to the proof of Lemma 1.4.13.

Lemma 3.2.6. If sequent S is derivable in G1Tc
n and there are no stars in

S, then S is derivable in G∗Tc
n.

Proof. Let D be a derivation tree of sequent S in G1Tc
n. A proof is by

induction on the number of applications of (�∗l →) rule in D. If there are no
such applications, then D is already a proof in G∗Tc

n. Otherwise, let’s take
the top-most application of the rule. Let S1 be a conclusion and S2 be a
premise of this inference. The main formula of the inference is of the form
�∗lF and there are no stars in the initial sequent S, therefore below S1 there
must be an application of (�l →)∗ with the main formula �lF . Then D is of
the form:

D1
S2 = F,�∗lF,Γ → ∆

(�∗l →)
S1 = �∗lF,Γ → ∆

· · ·
S

′

2 = F,�∗lF,Γ
′ → ∆′

(�l →)∗

S
′

1 = �lF,Γ
′ → ∆′

D2
1This lemma proves only that G1Tc

n is complete. Soundness of this calculus can be proved too, however it is
not needed for the completeness proof of the loop-free calculus G∗Tc

n.
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Moreover, it is possible to find such application of (�l →)∗ to �lF , that
there would be no applications of (→ �l)∗ or (→ �c)∗ rule between S1 and
S

′

2, because any application of those rules removes the outermost stared
modality from the antecedent of the sequent. Let D3 be a path of the
derivation from S1 to S ′

2. Due to admissibility of contraction, it is possible
to apply the rule to S ′

2 with the main formula F . Let S ′

3 be a premise of
such application. Now by applying all the rules of D3 to S

′

3 in the same
order sequent S2 is obtained and derivation tree D can be replaced by:

D1
S2 = F,�∗lF,Γ → ∆

· · ·
S

′

3 = F, F,�∗lF,Γ
′ → ∆′

(c→)
S

′

2 = F,�∗lF,Γ
′ → ∆′

(�l →)∗

S
′

1 = �lF,Γ
′ → ∆′

D2

This derivation certainly has one application of (�∗l →) rule less than
derivation tree D. Therefore inductively applying this change it is possible
to eliminate all the applications of this rule.

From this the completeness of G∗Tc
n follows immediately:

Theorem 3.2.7. Calculus G∗Tc
n is complete. That is, if some sequent is

derivable in GTc
n, then it is derivable in G∗Tc

n.

Proof. A direct corollary of Lemmas 3.2.4 and 3.2.6.

To show that G∗Tc
n is terminating, two more measures are needed. First

of all, let’s define the one which limits the application of reflexivity rule.

Definition 3.2.8. Let S be some sequent of some derivation search tree
in G∗Tc

n. The negative occurrence of �l, that is in the scope of negative
occurrence of �∗

l′
, where l′ = l or l′ 6= l, is called hidden. Otherwise, it is

called open. The open modality of sequent S (denoted om(S)) is the number
of open occurrences of �l.

To define the other measure, indexation of modalities is used. The in-
dexes are part of the terminating calculi for logics K4c

n and S4c
n, which are

presented later (see Definitions 3.5.6 and 3.4.5), however they are not in-
cluded in G∗Tc

n. This time indexes are only needed to prove the finiteness
of derivation search in the calculus and they are used in a similar way as
later in the proof of Lemma 3.4.12.
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Definition 3.2.9. Let D be a derivation tree of sequent S in G∗Tc
n. Let’s

index all the occurrences of �l of S (for every agent l) with different natural
numbers. In order to spread the indexation through the derivation tree D,
let’s go through all the inferences from bottom to top and let’s index all
the modalities in all the formulas of every premise of each inference in the
same way as the modalities of the respective formulas are indexed in the
conclusion. If the occurrence of �l in formula �lF is indexed by i, then it
is said that formula �lF is indexed by i.

For some sequent S1 of D let �−l (S1) be the set of all the differently
indexed formulas or subformulas �lF or �∗lF , that occur in S1 negatively.
Let �+

l (S1) be the set of all the differently indexed formulas or subformulas
�lF , that occur in S1 positively. Let �−(S1) = ∪l�−l (S1) and �+(S1) =
∪l�+

l (S1). A Tc
n-power set of the sequent S1 (denoted TPow(S1)) is the

set, consisting of all the possible sets of the form {F} ∪ Γ, where either
(1) F ∈ �+

a (S1) and Γ ⊆ �−a (S1) for some a 6= c, or (2) F ∈ �+
c (S1) and

Γ ⊆ �−(S1).
Tc

n-power of the sequent S1 (denoted tp(S1)) is the number of elements
in TPow(S1).

Notice, that because of the rules of calculus G∗Tc
n, the occurrences of

formula do not change their positiveness (negativeness).

Lemma 3.2.10. If S1 and S2 are part of derivation search tree in calculus
GTc

n and for some inference S1 is a conclusion and S2 is some premise,
then:

1. if the inference is an application of some logical rule then l(S2) < l(S1),
om(S2) 6 om(S1) and tp(S2) 6 tp(S1),

2. if the inference is an application of rule (�l →)∗, then om(S2) < om(S1)
and tp(S2) 6 tp(S1),

3. if the inference is an application of rule (→ �l)∗ or (→ �c)∗, then tp(S2) <
tp(S1).

Proof. In the case of logical rules the proof that l(S2) < l(S1) is the same
as the proof of Lemma 3.1.1. Now, it must be noticed that there is no
such rule of calculus G∗Tc

n that creates new or differently indexed formulas
in the premise compared to the conclusion. Therefore, �+

l (S2) ⊆ �+
l (S1)

and �+
l (S2) ⊆ �+

l (S1) for every l. From this tp(S2) 6 tp(S1) follows
immediately. Finally, all the open occurrences of modality in S1 are either
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completely removed from S2 or are also open in S2. The same can be said
about the hidden occurrences of modality. Thus om(S2) 6 om(S1).

In the case of (�l →)∗ rule, the only difference between S1 and S2 is that
S1 contains the main formula �lF and S2 has formulas F and �∗lF instead.
All the open occurrences of modality in �lF are part of formula F in S2,
except the outermost occurrence �l. Moreover, all the open occurrences of
modality in �lF are hidden in �∗lF of S2, except the outermost occurrence,
which is starred instead. From this it can be concluded, that om(S2) <
om(S1). The proof that tp(S2) 6 tp(S1) is analogous to the case of logical
rules.

In the case of rule (→ �l)∗ or (→ �c)∗, it is also easy to see that �+
l (S2) ⊆

�+
l (S1) and �+

l (S2) ⊆ �+
l (S1) for every l. Moreover, if the main formula

of the application �lF is not part of S2, then the set {�lF} is part of
TPow(S1), but {�lF} /∈ TPow(S2) and tp(S2) < tp(S1). Otherwise, if �lF
is part of S2 and l 6= c, then it must also be a subformula of some formula
G

′ = �lG
′′ in an antecedent of S1. In the case of l = c, the antecedent of S1

must contain formula G′ = �l′G
′′. In any case let G bet the longest such

formula in the antecedent of S1. The set {�lF,G} is part of TPow(S1),
however it is not part of TPow(S2), because formula G is definitely not part
of S2. Thus, once again, tp(S2) < tp(S1).

Lemma 3.2.11. In any derivation search tree of G∗Tc
n if for some sequent

S:

1. l(S) = 0, then it is not possible to apply any logical rule to S.

2. om(S) = 0, then it is not possible to apply rule (�l →)∗ to S.

3. tp(S) = 0, then it is not possible to apply rule (→ �l)∗ or (→ �c)∗ to S.

Proof. The proof of the first part is analogous to the proof of Lemma 3.1.2.
If om(S) = 0, then there are no open modalities in sequent S. Therefore,

there is no formula of the form �lF in the antecedent of S and the rule
(�l →)∗ cannot be applied to S.

Finally, if tp(S) = 0, then �+(S) = ∅ and therefore, the succedent of
S does not contain formula of the form �lF . Consequently, neither rule
(→ �l)∗ nor rule (→ �c)∗ can be applied to S.

Once again, direct corollary of Lemmas 3.2.10 and 3.2.11 is that G∗Tc
n is

terminating.
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Theorem 3.2.12. Calculus G∗Tc
n is terminating.

Proof. The reasoning is the same as in the proof of Theorem 3.1.3.

3.3 Logic S4

A loop problem in calculus GS4 is analysed in detail in [4]. In that article, a
solution — terminating calculus for S4 — is presented. In this dissertation
this calculus is presented only to make the references to it more clear.

In the calculus different labels are used to obtain derivation search ter-
mination. First of all, after application of reflexivity rule the outermost
modality is starred in the same way, as in the case of calculus G∗Tc

n. In ad-
dition, to avoid excess applications of the reflexivity rule, not only the main
formula of the application is starred, but also any occurrence of the main
formula as subformula of other formulas of the sequent. For this purpose
all the negative occurrences of � are indexed.

In order to note at what place in the derivation search tree the formula
was introduced to the sequent, formula numeration is used. The formula
is put in square brackets and its number is written as an index in the top
right, for example, [�p ∧ q]1. In fact only formulas, that were introduced
after some application of transitivity rule, are important, so new number is
introduced only after the application of transitivity rule.

Positive occurrences of � are indexed too, because all the possible main
formulas of transitivity rule must be identified in order to check if the rule
was applied to them earlier. However as offered in [45] the indexation is lim-
ited to positive occurrences of � that are in the scope of negative occurrence
of �, because otherwise the main formula of application of transitivity rule
can not reappear in the sequent. Integer starting from 1 is used for indexes
of both (positive and negative) occurrences of �. Indexes are written in the
top right corner of the modality symbol but to avoid confusion the negative
indexes are preceded with �, for example �1,��1.

Finally to note if the transitivity rule was applied to the formula earlier
and at what place in the derivation search tree it was done for the last
time, marks are used. They are written in brackets just after the index, for
example �5(3). If no mark is used brackets are omitted too. Only positive
occurrences of � can be marked and there is no need to mark not indexed
occurrences of �.
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Definition 3.3.1. A sequent is called labelled2 for S4, if every positive
occurrence of � that is in the scope of negative occurrence of � is indexed
with integer, every negative occurrence of � is either indexed with indexes
of the form �i or starred and all the formulas are numbered. Multiset of
formulas Γ is labelled for S4, if Γ → or → Γ is a labelled for S4 sequent.
Formula F is labelled for S4, if {F} is labelled for S4 multiset.

labelled expressions are denoted in the same way as non-labelled ones:
letter S is used for sequents, capital Latin letters are used for formulas and
capital Greek letters for multisets of formulas. It is usually clear from the
context if the notation means labelled or non-labelled expression.

Some initial labels need to be given to the initial sequent.

Definition 3.3.2. Labelling for S4 of sequent S is denoted LabS4(S) and
labelled for S4 sequent LabS4(S) is obtained from S by (1) indexing all the
positive occurrences of � that are in the scope of negative occurrence of �
with different natural numbers, (2) indexing all the negative occurrences of
� with different indexes of the form �i and (3) attaching number 1 to every
formula. No marks are needed in LabS4(S).

A sequent calculus that employs labelling, is called labelled sequent calcu-
lus. It differs from the regular one in two aspects. Firstly, all the derivation
search trees in labelled sequent calculus consist of labelled sequents only.
Secondly, if S is the initial sequent of the derivation search tree in labelled
sequent calculus, then it must be obtained from some regular sequent by
labelling.

To compare two formulas without taking into account their labels one
more definition is used.

Definition 3.3.3. A projection of labelled formula F (denoted Proj(F )) is
obtained by removing all the indexes, marks, numbers and stars from the
formula F .

Now the definition of a loop-free sequent calculus for S4 can be provided.

2In [4] the term “indexed sequent” (“indexation”, “indexed calculus”) is used. However, in the review of the
article, term “label” was offered for all the stars, positive and negative indexes, marks and formula numbers.
Although this term was not included in the article, it is used here. It is better to say “labelled sequent”
(“labelling”, “labelled calculus”), because such sequent contains indexes as well as formula numbers and possibly
stars and marks.
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Definition 3.3.4. The labelled sequent calculus without loops for logic S4
(G∗S4) consists of axiom Γ, [F1]n → [F2]n,∆, where Proj(F1) = Proj(F2)
and rules:

Negation:

Γ → ∆, [F ]n
(¬ →)

[¬F ]n,Γ → ∆
[F ]n,Γ → ∆

(→ ¬)
Γ → ∆, [¬F ]n

Conjunction:

[F ]n, [G]n,Γ → ∆
(∧ →)

[F ∧G]n,Γ → ∆
Γ → ∆, [F ]n Γ → ∆, [G]n

(→ ∧)
Γ → ∆, [F ∧G]n

Disjunction:

[F ]n,Γ → ∆ [G]n,Γ → ∆
(∨ →)

[F ∨G]n,Γ → ∆
Γ → ∆, [F ]n, [G]n

(→ ∨)
Γ → ∆, [F ∨G]n

Implication:

Γ → ∆, [F ]n [G]n,Γ → ∆
(⊃→)

[F ⊃ G]n,Γ → ∆
[F ]n,Γ → ∆, [G]n

(→⊃)
Γ → ∆, [F ⊃ G]n

Reflexivity:

[F ]n, [�∗F ]n,Γ�i∗ → ∆�i∗
(��i →)

[��iF ]n,Γ → ∆

where Γ�i∗ (∆�i∗) is obtained from Γ (respectively ∆) by replacing all
the occurrences of ��i with �∗.
Transitivity:

[Γi←n]n,�∗Γi←n → [F ]n
(→ �i)

�∗Γ,Σ1 → Σ2,�∆, [�i(m)F ]n−1

where Σ1 and Σ2 are empty or consist of propositional variables only,
i is some index or nothing (denoted i = ∅), (m) is some mark or
nothing (denoted (m) = ∅). If Γ = [G1]n1, . . . , [Gk]nk then [Γ]n =
[G1]n, . . . , [Gk]n. If i = ∅, then Γi←n = Γ, and if i 6= ∅, then Γi←n is
obtained from Γ by replacing all the occurrences of �i(m) with �i(n).
What is more, transitivity rule can only be applied if either (m) = ∅ or
�∗Γ contains at least one formula of the form [�∗H]l where m < l 6

n− 1.
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Simplification:

[�∗F ]n1,Γ → ∆
(�n1,n2 →)

[�∗F ]n1, [�∗F ]n2,Γ → ∆
where n1 < n2.
If possible, simplification rule must be applied first.

The soundness, completeness of G∗S4 and the fact that the calculus is
terminating are proved in [4]. Moreover in the article the development of
the calculus from the one provided in [37] is described.

3.4 Logic S4c
n

The source of loops in calculi GS4n and GS4c
n is essentially the same as in

GS4, therefore similar techniques to the ones used to develop calculus G∗S4
can be applied. However, only logic S4c

n is analysed, because such is the aim
of this dissertation. This section is divided into several parts. In Subsection
3.4.1 the Gentzen-type calculus for S4c

n is presented. In Subsection 3.4.2
finiteness of derivation search in the calculus is proved and in Subsection
3.4.3 soundness and completeness is demonstrated.

3.4.1 The Calculus

In calculus GS4c
n there are two similar rules: (→ �l) (transitivity rule) and

(→ �c) (central agent rule). They both cause similar problems with cycles,
therefore to get the terminating calculus, they both are altered in similar
way. Thus to make the discussion clearer and shorter, both rules are called
succedental.

In spite of all the similarities, calculus GS4c
n differs from GS4 in one

minor although important aspect. In the derivation search trees of the
monomodal calculus formulas, that start with modality, cannot disappear
from the antecedent of the sequent. That is if such formula is part of the
antecedent of the conclusion of some inference, then it is definitely part of
the antecedent of every premise of the inference. This is not the case in the
multimodal calculus, because the application of rule (→ �l) wipes out from
the antecedent all the formulas that start with modality �l′ , where l′ 6= l.

Nevertheless the same labels as in G∗S4 are used and their meaning is very
similar, however usage usually differs in some aspects. First of all, some-
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times in GS4c
n it is necessary to apply reflexivity rule to the same formula

more than once. The situation is explained in the following example.

Example 3.4.1. Consider the derivation tree of �1�2p → �1p in GS4c
n:

S6 = p,�2p,�1�2p → p
(�2 →)

S5 = �2p,�1�2p → p
(�1 →)

S4 = �1�2p → p
(→ �1)

S3 = p,�2p,�1�2p → �1p (�2 →)
S2 = �2p,�1�2p → �1p (�1 →)

S1 = �1�2p → �1p

The derivation is meant to be as similar to derivations of calculus G∗S4
as possible, therefore transitivity rule is applied only when the application of
reflexivity rule produces a loop. In the derivation rules (�1 →) and (�2 →) are
applied twice to the same formula, however the second application of rule
(�1 →) can be avoided by replacing the application of (→ �1) rule to G∗S4-style
transitivity rule. On the other hand, even after the change (�2 →) rule must
be applied for the second time, because after the application of transitivity
rule, formula �2p disappears from the antecedent of the sequent.

To deal with this situation, after application of reflexivity rule, to formula
��il F all the occurrences of negative index �i are starred, however contrary
to the G∗S4 case the index itself is not removed. To shorten the notation
starred negative indexes are denoted by changing the symbol � to the star:
�∗il F . However these stars are needed only until some inference removes
the formula �∗il F from the antecedent. Therefore, after application of l′-
transitivity rule, all the stared negative modalities of all the agents, other
than l′, are changed back to regular negative modalities.

Next, the usage of marks must also be altered. The logic behind the
marks in G∗S4 is based on the fact, that formulas that start with modality,
cannot disappear from the antecedent of the sequent. In fact, this is true
only to formulas of the form �lF , when l-transitivity rule is applied, and
to all the formulas that start with modality, when central agent rule is
applied. Therefore, marks for modality �l are meaningful, only as long as
no other transitivity rule, except (→ �l) is applied. Thus, after application
of l-transitivity rule, the marks of modalities of any agent except l should
be removed. However central agent rule should leave them as they are.

Now the positive indexes of the modalities must be revised. All the for-
mulas, that can be the main formulas of the application of succedental rule
more than once, must have their outermost modality indexed. Moreover,
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the proof that G∗S4 is terminating in [4] uses the fact, that non-indexed
modality disappears from the derivation search tree after application of
succedental rule to it. Although this is not necessary, it eases the proof
that G∗S4c

n is terminating too. Having this in mind, it is defined, which
modalities should be indexed.

Definition 3.4.2. Let S be some sequent and �lF a subformula of some
formula of S. If �lF occurs in S positively, then occurrence of �l is called
indexable, if:

• l 6= c and �l is in the scope of negative occurrence of �l,

• l = c and �l is in the scope of negative occurrence of �l′ for some l′.

This definition takes into account the properties discussed earlier. How-
ever, by dropping the unnecessary requirements, the stricter definition of
indexable occurrence of �l may be developed.

Now the definition of indexable occurrence of �l is used to define labelled
sequent and labelling for S4c

n.

Definition 3.4.3. A sequent is called labelled for S4c
n, if every indexable

occurrence of �l1 is indexed with integer, every negative occurrence of �l2
is either indexed with indexes of the form �i or ∗i and all the formulas are
numbered. Multiset of formulas Γ is labelled for S4c

n, if Γ → or → Γ is
a labelled for S4c

n sequent. Formula F is labelled for S4c
n, if {F} is labelled

for S4c
n multiset.

Definition 3.4.4. Labelling for S4c
n of sequent S is denoted Lab(S) and

labelled for S4c
n sequent Lab(S) is obtained from S by (1) indexing all the

indexable occurrences of �l1 with different natural numbers, (2) indexing all
the negative occurrences of �l2 with different indexes of the form �i and
(3) attaching number 1 to every formula. No marks are needed in Lab(S).

Once again it must be noted that derivation search trees in labelled calculi
consists of labelled sequents and their initial sequent is obtained by labelling
the regular sequent.

Finally, having two succedental rules (compared to only transitivity rule
in G∗S4) causes one more problem. Positive occurrences of formulas �cF
can be main formulas of application of both succedental rules. In this
case it would be important to also note which rule (if any) was applied to
this formula earlier. However, this situation is avoided by restricting the
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application of transitivity rule: the rule (→ �c) cannot be applied (only rule
(→ �a), where a 6= c). It is not hard to see, that this restriction does not have
any effect on soundness and completeness. However now it is obvious that
if some rule was applied to the positive occurrence of �lF , then if l = c, it
was central agent rule, and otherwise it was transitivity rule.

Now the definition of a loop-free sequent calculus for S4c
n can be provided.

Definition 3.4.5. The labelled sequent calculus without loops for logic S4c
n

(G∗S4c
n) consists of axiom Γ, [F1]n → [F2]n,∆, where Proj(F1) = Proj(F2),

the same logical rules as in G∗S4 and rules:

Reflexivity:

[F ]n, [�∗il F ]n,Γ�i∗ → ∆�i∗
(��il →)

[��il F ]n,Γ → ∆

where Γ�i∗ (∆�i∗) is obtained from Γ (respectively ∆) by replacing all
the occurrences of ��il with �∗il .
Transitivity:

{
[Γi←n1 ]n,�∗aΓi←n1 → [F ]n

}6=a:6∗,6()

(→ �ia)
�∗aΓ1,�∗6=aΓ2,Σ1 → Σ2,�∗∆, [�i(m)

a F ]n−1

where Σ1 and Σ2 are empty or consist of propositional variables only,
a 6= c, i is some index or nothing (denoted i = ∅), (m) is some mark
or nothing (denoted (m) = ∅). If Γ1 = [G1]n1, . . . , [Gk]nk then [Γ1]n =
[G1]n, . . . , [Gk]n. If i = ∅, then Γi←n1 = Γ1, and if i 6= ∅, then Γi←n1 is
obtained from Γ1 by replacing all the occurrences of �i(m)

l with �i(n)
l . In

addition, �∗aΓ2 consists of formulas of the form �∗ja G, �∗6=aΓ2 consists
of formulas of the form �∗jl G, where l 6= a and sequent {S}6=a:6∗,6() is
obtained from S by replacing all the occurrences of �∗jl to ��jl and
�j(m

′
)

l to �jl for every l 6= a, every j and every m′.
What is more, transitivity rule can only be applied if either (m) = ∅
or �∗aΓ1 contains at least one formula of the form [�∗ja H]n1 where m <

n1 6 n − 1. Formula of the form [�∗ja H]n1 is called necessity formula
with number n1.
Central agent:

[Γi←n]n,�∗∗Γi←n → [F ]n
(→ �c,i)

�∗∗Γ,Σ1 → Σ2,�∗∆, [�i(m)
c F ]n−1

87



where Σ1 and Σ2 are empty or consist of propositional variables only,
i is some index or i = ∅, (m) is some mark or (m) = ∅.
Once again, central agent rule can only be applied if either (m) = ∅
or �∗∗Γ contains at least one formula of the form [�∗jl H]n1 for some l,
where m < n1 6 n− 1.
Simplification:

[�∗il F ]n1,Γ → ∆
(�n1,n2

l →)
[�∗il F ]n1, [�∗il F ]n2,Γ → ∆

where n1 < n2.
If possible, simplification rule must be applied first.

First let’s show that indexable modality has the desired properties.

Lemma 3.4.6. Let D be a derivation search tree in G∗S4c
n. Let S1 be a

conclusion of application of succedental rule to formula �lF in D. More-
over, let S2 be a premise of the inference. (1) If this occurrence of �l is not
indexable in S1, then S2 does not contain formula, which is a superformula
of �lF . (2) Let B be a branch, which contains S1 and S2. If there is an-
other application of succedental rule to �lF1, where Proj(F1) = Proj(F ), in
B above S2, then this occurrence of �l is indexable in S1.

Proof. Let’s leave labels out, because they are not important for this proof.
Let l 6= c and Proj(S1) = �lΓ1,� 6=lΓ2,Σ1 → Σ2,�∗∆,�lF . In this case
Proj(S2) = Γ1,�lΓ1 → F . Let G be a superformula of �lF in S2. Now
either G = �lG

′ and it is part of antecedent of S1, or �lG is part of
antecedent of S1. In both ways �lF is in the scope of negative occurrence
of �l in S1 and therefore this occurrence of �l is indexable. This is a
contradiction, therefore there are no superformulas of �lF in S2. The case
of l = c is analogous.

To prove the second part, the first part can be used. If this occurrence
of �l is not indexable, then there are no superformula of �lF in S2 and
therefore there are no superformula of �lF in B above S2 (once again,
labels are ignored here). Thus it is impossible to apply succedental rule to
�lF1, where Proj(F1) = Proj(F ), above S2. Once again a contradiction is
obtained and it must be concluded that �l is indexable.

Next some properties of G∗S4c
n must be demonstrated.
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Lemma 3.4.7. For every labelled sequent S of any derivation search tree
in G∗S4c

n the following are correct:

1. In application of any rule except simplification to the sequent S the
number of the main formula of the application is always the largest
among the numbers of S.

2. In application of simplification rule to the sequent S the number of one
main formula (the one which is omitted in the premise) is largest among
the numbers of S.

3. The application of succedental rule in S introduces a number that is
larger than any number in S.

4. If n is the largest number of S, then all the formulas are numbered n,
except the ones of the form �∗il F , that can be numbered lower.

Proof. All of this follows from noticing that (1) all the formulas start with
number 1 (2) only succedental rules can introduce new number (3) after
application of these rules only formulas of the form�∗il F keep their numbers,
all the other formulas get the new one and (4) no rule except simplification
can be applied to the formula of the form �∗il F . By induction it can be
shown that the new number is always the largest number in the premise.

Now several examples are presented.

Example 3.4.8. First of all, let’s show, that sequent �1�2p → �1p is
derivable in G∗S4c

n. The labelling results in [��1
1 �

�2
2 p]1 → [�1p]1:

S5 = [p]2, [�∗22 p]2, [�∗11 �
∗2
2 p]1 → [p]2

(��2
2 →)

S4 = [��2
2 p]2, [�∗11 �

�2
2 p]1 → [p]2

(→ �1)
S3 = [p]1, [�∗22 p]1, [�∗11 �

∗2
2 p]1 → [�1p]1

(��2
2 →)

S2 = [��2
2 p]1, [�∗11 �

�2
2 p]1 → [�1p]1

(��1
1 →)

S1 = [��1
1 �

�2
2 p]1 → [�1p]1

Example 3.4.9. This example demonstrates, that calculus G∗S4c
n allows ap-

plication of succedental rule to the same formula more than once, if needed.
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The original sequent is �1¬�c(p ∨ �1¬�2p) → and labelling results in
[��1

1 ¬�1
c(p ∨�2

1¬��2
2 p)]1 → . The derivation is:

S6 = [p]4, [�∗22 p]3, [�∗11 ¬�
1(4)
c (p ∨�2(3)

1 ¬�∗22 p)]1 → [p]4, [�2(3)
1 ¬�∗22 p]4, [�1(4)

c (p ∨�2(3)
1 ¬�∗22 p)]4

(→ �c,1)
S5 = [p]3, [�∗22 p]3, [�∗11 ¬�

1
c(p ∨�2(3)

1 ¬�∗22 p)]1 → [�1
c(p ∨�2(3)

1 ¬�∗22 p)]3
(��2

2 →)
S4 = [��2

2 p]3, [�∗11 ¬�
1
c(p ∨�2(3)

1 ¬��2
2 p)]1 → [�1

c(p ∨�2(3)
1 ¬��2

2 p)]3
(→ �2

1)
S3 = [�∗11 ¬�

1(2)
c (p ∨�2

1¬�
�2
2 p)]1 → [p]2, [�2

1¬�
�2
2 p)]2, [�1(2)

c (p ∨�2
1¬�

�2
2 p)]2

(→ �c,1)
S2 = [�∗11 ¬�

1
c(p ∨�2

1¬�
�2
2 p)]1 → [�1

c(p ∨�2
1¬�

�2
2 p)]1

(��1
1 →),(¬ →)

S1 = [��1
1 ¬�

1
c(p ∨�2

1¬�
�2
2 p)]1 →

To shorten the derivation some applications of logical rules are left out.
It can be noticed that central agent rule can be applied to the sequent S2,

because the occurrence of �1
c is not marked. However the same rule with

the same main formula can not be applied to S3, because �1
c is now marked

and there is no such number that can satisfy the condition 2 < n 6 2. So
another main formula must be chosen, and the only alternative is the one
with unmarked occurrence of �2

1. What is more, the rule (→ �c,1) can be
applied for the second time to the sequent S5. This is because once again �1

c

is not marked. It is clear that S6 is an axiom and thus this is a derivation
tree of sequent S1.

3.4.2 Finiteness of Derivation Search in the Calculus

First of all let’s show that every derivation search tree in calculus G∗S4c
n is

finite. Several measures are used, and the first one is the length of the se-
quent. It obviously decreases, when logical or simplification rule is applied.

Next the starless modality3 of labelled sequent S is defined to be the
number of different not starred negative indexes in the sequent and denoted
sm(S). If derivation provided in Example 3.4.9 is considered, then sm(S1) =
2, sm(S2) = sm(S3) = sm(S4) = 1, sm(S5) = sm(S6) = 0. The starless
modality decreases, when reflexivity rule is applied to the sequent.

Finally the power of a sequent is adapted to the multimodal logic and
another measure is defined.

Definition 3.4.10. For some labelled sequent S the set of all formulas and
subformulas of the form ��il F or �∗il F without their number that are part
of S is denoted �−l (S). The set of all formulas and subformulas of the form
�lF , �ilF or �i(m)

l F without their number that are part of S is denoted
3In [4] the term “negative modality” was used. However in the multimodal case another measure is needed,

for which this term suits better. Therefore, this measure is renamed.
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�+
l (S). �−(S) = ∪l�−l (S) and �+(S) = ∪l�+

l (S). The negative modality
of sequent S (denoted nm(S)) is the number of elements in �−(S).

The set Pref(l, n, S) consists of all the formulas F , such that F = ��il G
or F = �∗il G and [F ]k, k 6 n occurs as the formula of the antecedent of S.4

Pref(n, S) = ∪l Pref(l, n, S).
A power set of labelled sequent S (denoted Pow(S)) is a set, consisting of

all the possible sets of the form {F}∪Γ that meet the following requirements:

1. F ∈ �+
a (S) for some a (a 6= c),

2. Γ ⊆ �−a (S),

3. One of the following holds:

(a) The outmost occurrence of �a in F is not marked in S.

(b) The outmost occurrence of �a in F is marked with m in S and
Γ * Pref(a,m, S).

A central power set of labelled sequent S (denoted CPow(S)) is a set,
consisting of all the possible sets of the form {F}∪Γ that meet the following
requirements:

1. F ∈ �+
c (S),

2. Γ ⊆ �−(S),

3. One of the following holds:

(a) The outmost occurrence of �c in F is not marked in S.

(b) The outmost occurrence of �c in F is marked with m in S and
Γ * Pref(m,S).

Power of the sequent S (denoted p(S)) is the number of elements in
Pow(S). Central power of the sequent S (denoted c(S)) is the number of
elements in CPow(S).elements in CPow(S).

Example 3.4.11. If sequent S3 from Example 3.4.9 is considered, then:

• �+(S3) = {�1(2)
c (p∨�2

1¬��2
2 p),�2

1¬��2
2 p}, let’s denote the formulas of

the set as F1 and F2 respectively. Then �+
c (S3) = {F1} and �+

1 (S3) =
{F2}.

4The notation Pref(l, n, S) is due to [37]. In that article P(n) is used for logic K4 and by adapting it to this
article P(l, n, S) could be defined in the same way, except that condition k 6 n have to be changed to k < n.
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• �−(S3) = {�∗11 ¬�1(2)
c (p∨�2

1¬��2
2 p),��2

2 p} and obviously nm(S3) = 2.
Let’s denote the formulas of the set as G1 and G2 respectively. Then
�−1 (S3) = {G1} and �−2 (S3) = {G2}.

• Pref(2, S3) = {�∗11 ¬�1(2)
c (p ∨�2

1¬��2
2 p)} = {G1}.

• CPow(S3) =
{
{F1, G2}, {F1, G1, G2}

}
, so c(S3) = 2.

• Pow(S3) =
{
{F2}, {F2, G1}

}
, so p(S3) = 2.

The central power of the sequent does not increase after application of
logical, simplification or reflexivity rules, but it decreases after application of
central agent rule. Similarly, the power and negative modality of the sequent
does not increase after application of logical, simplification, reflexivity or
central agent rules, but at least on of them decreases after application of
transitivity rule. This is shown in a proof of the following lemma.

Lemma 3.4.12. If S1 and S2 are part of derivation search tree in G∗S4c
n

and for some inference S1 is a conclusion and S2 is a premise then:

1. If the inference is application of some logical or simplification rule,
then l(S2) < l(S1), sm(S2) 6 sm(S1), c(S2) 6 c(S1), p(S2) 6 p(S1)
and nm(S2) 6 nm(S1).

2. If the inference is application of reflexivity rule, then sm(S2) < sm(S1),
c(S2) 6 c(S1), p(S2) 6 p(S1) and nm(S2) 6 nm(S1).

3. If the inference is application of central agent rule, then c(S2) < c(S1),
p(S2) 6 p(S1) and nm(S2) 6 nm(S1).

4. If the inference is application of transitivity rule, then either p(S2) <
p(S1) and nm(S2) 6 nm(S1) or nm(S2) < nm(S1).

Proof. The four parts are proved separately.

1. From the form of logical rules it can be seen that after the application
the main formula loses at least one logical operator so the length of
the main formula decreases. Moreover, the other formulas remain un-
changed so the length of the premise must be smaller than the length
of the conclusion.
In the case of simplification rule it is enough to spot that the premise
has one formula less than the conclusion and that the formula, that
is omitted in the premise, has at least one logical operator — �∗l . So
obviously in both cases l(S2) < l(S1).
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Next, it is obvious that in the entire derivation search tree new negative
index is not produced. What is more, starless modality of the sequent
can get smaller after application of some logical rule, because the main
formula of the application can split into two premises and some negative
indexes could appear only in one of the premises5. Finally, in the
application of logical or simplification rule stared negative indexes do
not lose their stars. So it must be concluded that sm(S2) 6 sm(S1).

Finally, it is easy to see that �−(S2) ⊆ �−(S1) (therefore, nm(S2) 6
nm(S1)), �+(S2) ⊆ �+(S1) and also for any l: �−l (S2) ⊆ �−l (S1)
and �+

l (S2) ⊆ �+
l (S1). What is more, formula numbering remains

unchanged and no formulas of the form ��il F or �∗lF can disappear
from the antecedent after application of logical rule, but the new ones
can be formed6. Thus Pref(m,S2) ⊇ Pref(m,S1) for any m and also
Pref(l,m, S2) ⊇ Pref(l,m, S1) for any m and l. In the case of appli-
cation of simplification rule, it is easy to see that two main formu-
las differ only in numbering and the one with the smaller number is
part of the premise too, so in that case Pref(m,S2) = Pref(m,S1) and
Pref(l,m, S2) = Pref(l,m, S1).

Now if some ∆ = {F} ∪ ∆1 ∈ Pow(S2), then from the fact that F ∈
�+
a (S2) follows that F ∈ �+

a (S1) and from ∆1 ⊆ �−a (S2) follows that
∆1 ⊆ �−a (S1). What is more, if the outmost occurrence of �a in F is
not marked in S2 then it is not marked in S1 too and ∆ ∈ Pow(S1).
Contrary, if the outmost occurrence of �l in F is marked with m1 in
S2, then it is marked with m1 in S1 also and if ∆1 * Pref(a,m1, S2),
then ∆1 * Pref(a,m1, S1). So in this case, ∆ ∈ Pow(S1) too. From this
it can be concluded that Pow(S2) ⊆ Pow(S1) and thus p(S2) 6 p(S1).

The reasoning for c(S2) 6 c(S1) is analogous.

2. In this case it is enough to notice that if the rule (��il →) is applied then
the index �i is starred everywhere in the premise. Because new index
can not be formed in derivation search tree and stars of other starred
indexes are not removed, it must be concluded that sm(S2) = sm(S1)−1
and thus sm(S2) < sm(S1).

The proof of c(S2) 6 c(S1), p(S2) 6 p(S1) and nm(S2) 6 nm(S1) is
analogous to the previous case.

5For example, the starless modality decreases after application of (→ ∧) to → (¬��1
2 p) ∧ (¬��2

1 q).
6For example, as a result of applying (∧ →) to p ∧��1

c q → .
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3. Let’s say that the rule (→ �c,i) is applied and in the premise all the
occurrences of �ic are marked with m. It is not necessarily true that
�−(S2) ⊆ �−(S1), but it is possible to claim that for any formula G ∈
�−(S2) there is formula F ∈ �−(S1) such that G = F i←m. In this proof
the fact is denoted as �−(S2) v �−(S1) and from this immediately
follows that nm(S2) 6 nm(S1).

Similarly it is possible to say that �+
c (S2) v �+

c (S1).

Now let’s say that some set of formulas ∆ = {F i←m} ∪ ∆i←m
1 ∈

CPow(S2). From the fact that F i←m ∈ �+
c (S2) follows that F ∈ �+

c (S1)
and from the fact that ∆i←m

1 ⊆ �−(S2) follows that ∆1 ⊆ �−(S1). Fi-
nally if the outmost occurrence of �c in F i←m is not marked, then the
outmost occurrence of �c in F is also not marked and thus {F}∪∆1 ∈
CPow(S1). In the other case if the outmost occurrence of �c in F i←m

is marked by m2, then either the outmost occurrence of �c in F is
not marked and consequently {F}∪∆1 ∈ CPow(S1) or it is marked by
m1 6 m2. Now, all the formulas of the type �∗lG from the conclusion of
the application of central agent rule are preserved with the same num-
bers in the premise except the mark of modality �ic is changed. Thus
it can be said that Pref(m2, S2) w Pref(m2, S1). What is more, from the
fact that m1 6 m2 and from the definition of Pref(m,S) follows that
Pref(m2, S1) ⊇ Pref(m1, S1). Therefore, because ∆i←m

1 * Pref(m2, S2) it
can be said that ∆1 * Pref(m2, S1) and consequently ∆1 * Pref(m1, S1).
Once again it must be concluded that {F} ∪∆1 ∈ CPow(S1).

Here it is shown that c(S2) 6 c(S1). To remove the “or equal” part,
set Γ must be found, that is part of CPow(S1), but Γi←m is not part of
CPow(S2). Let’s say that the central agent rule is applied to the formula
�i(m1)
c F . If (m1) = ∅, then according to the definition, the set {�icF} ∈

CPow(S1). If �i(m)
c F is not part of �+

c (S2), then {�lF} /∈ CPow(S2).
Otherwise, the set {�i(m)

c F} /∈ Pow(S2), because ∅ ⊆ Pref(m,S2).

If m1 6= ∅, then m1 < m. Now if the central agent rule is applied, then
the condition has to be met meaning that there is formula [�∗il G]n in S1

and m1 < n. At the same time (remember Lemma 3.4.7) n < m. Be-
cause simplification rule cannot be applied to [�∗il G]n in S1, {�∗il G} *
Pref(m1, S1), however {�∗il Gi←m} ⊆ Pref(m,S2). Thus it can be con-
cluded that {�i(m1)

c F,�∗il G} ∈ CPow(S1), but {�i(m)
c F,�∗il G

i←m} /∈
CPow(S2) and that c(S2) < c(S1).
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Now, it is easy to show that for any agent l it is true that �+
l (S2) v

�+
l (S1) and �−l (S2) v �−l (S1). What is more, only marks of cen-

tral agent modality is altered and marks of modalities of other agents
are not changed. Moreover, every formula of the form [�∗jl H]n, that
is part of S1 is also part of S2 with the same number. Therefore,
Pref(l,m, S2) w Pref(l,m, S1) for any agent l and any mark m. Thus,
by analogous reasoning as in the part of logical rules, it can be con-
cluded that Pow(S2) v Pow(S1) and therefore p(S2) 6 p(S1).

4. Once again, it is not hard to see that nm(S2) 6 nm(S1). Let’s say that
a-transitivity rule is applied to formula�i(m)

a F and after the application
m is changed to m1. Once again, it is obvious, that for any agent l it
is true that �+

l (S2) v �+
l (S1) and �−l (S2) v �−l (S1). If m 6= ∅,

then only occurrences of �a and possibly �c can be marked. Thus all
the occurrences of �a′ for any a

′ 6= a (and a
′ 6= c) are not marked

in both S1 and S2. Therefore, for any F ∈ �+
a′ (S1), a′ 6= a it is true

that if set {F i←m1} ∪ ∆i←m1
1 ∈ Pow(S2), then {F} ∪ ∆1 ∈ Pow(S1).

Moreover, Pref(a,m
′
, S2) w Pref(a,m

′
, S1) for any m′. From this fact by

the analogous reasoning to the central agent rule part follows that for
any F ∈ �+

a (S1) it is true that if set {F i←m1}∪∆i←m1
1 ∈ Pow(S2), then

{F}∪∆1 ∈ Pow(S1). In an analogous way to the central agent rule part
it is possible to find a set ∆ ∈ Pow(S1) such that ∆i←m1 /∈ Pow(S2).
Therefore, p(S1) < p(S2).

If however m = ∅, then if there are no marked modalities in S1, except
possibly �c, then the case is analogous to the one where m 6= ∅.
Otherwise, let �i

′
(m

′
)

a′ G be part of �+(S1). Because the formula is
marked, there obviously exists S ′

2 below S1 in the same branch, which
is a premise of application of a′-transitivity rule to �i

′
(m

′′
)

a′ G, and there
are no applications of a1-transitivity rule, a1 6= a

′, between S1 and S
′

2.
Let the conclusion of such application be S ′

1. Because �i
′
(m

′′
)

a′ G is part
of the succedent of S ′

1 and it is also subformula of some formula of S1,
then its superformula must be part of the antecedent of S ′

1. Moreover,
for such formula to be part of S ′

2 it must be of the form �∗j
a′H. Let

�∗i
′′

a′ G
′ be the longest such formula. There is no superformula of �∗i

′′

a′ G
′

in S
′

2. What is more, this formula is part of antecedent of S1 and
it has no superformula in S1 also. Therefore, �∗i

′′

a′ G
′ ∈ �−(S1), but
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�∗i
′′

a′ G
′
/∈ �−(S2). It is easy to see, that �−(S2) v �−(S1). Therefore,

�−(S2) @ �−(S1) and nm(S2) < nm(S1).

The next task is to show, that neither measure can decrease infinitely.

Lemma 3.4.13. In any derivation search tree of G∗S4c
n if for some labelled

sequent S:

1. l(S) = 0 then it is not possible to apply any logical or simplification
rule to S.

2. sm(S) = 0 then it is not possible to apply reflexivity rule to S.

3. c(S) = 0 then it is not possible to apply central agent rule to S.

4. p(S) = 0 then it is not possible to apply any transitivity rule to S.

Finally, nm(S) > 0.

Proof. If l(S) = 0 then by the definition there are no logical operators in S
and thus neither logical nor simplification rule can be applied to S.

If sm(S) = 0 then there are no not-starred negative indexes in S but
reflexivity rule can only be applied to the formulas of the type ��il F .

Say that c(S) = 0 and central agent rule (→ �c,i) is applied to formula
�i(m)
c F . If (m) = ∅ then {�icF} ∈ Pow(S) and thus p(S) > 0. Otherwise

the condition of central agent rule must be met, meaning that there is
formula [�∗jl G]n in antecedent of S such that m < n. In that case {�∗jl G} *
Pref(m,S), therefore {�i(m)

c F,�∗jl G} ∈ Pow(S) and p(S) > 0. Both cases
result in contradictions so it must be concluded that central agent rule can
only be applied if c(S) > 0 and consequently if c(S) = 0 central agent rule
can not be applied to S. The case of p(S) = 0 is analogous.

The fact that nm(S) > 0 follows immediately from the definition of
nm(S).

The direct corollary of Lemmas 3.4.12 and 3.4.13 is the following theorem.

Theorem 3.4.14. Calculus G∗S4c
n is terminating.

Proof. The reasoning is the same as in the proof of Theorem 3.1.3.
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3.4.3 Soundness and Completeness of the Calculus

Now it must be shown that calculus G∗S4c
n is sound and complete. For

this, calculus GS4c
n, which is sound and complete, is used. To prove the

soundness the admissibility of weakening structural rule must be proved.

Lemma 3.4.15. Weakening structural rule is admissible in GS4c
n.

Proof. The proof is analogous to the proof of Lemma 1.4.8.

Theorem 3.4.16. Calculus G∗S4c
n is sound. That is for any sequent S if

labelled sequent Lab(S) is derivable in G∗S4c
n then sequent S is derivable in

GS4c
n.

Proof. To prove this first it must be noticed that logical rules and reflexivity
rule of G∗S4c

n are the same as in GS4c
n except that the rules of GS4c

n do not
contain labels. What is more, after removing all the labels from the applica-
tion of some succedental rule of G∗S4c

n, it can be replaced by application of
respective succedental rule and some applications of reflexivity rule of GS4c

n.
Next, simplification rule of G∗S4c

n can be replaced by weakening structural
rule, which is admissible in GS4c

n. Finally, after deletion of labels from the
axioms of G∗S4c

n, axioms of GS4c
n are obtained. Therefore a derivation tree

in G∗S4c
n can be easily transformed to the derivation tree in GS4c

n.

To prove the completeness of G∗S4c
n several intermediate calculi are used.

This is done to make the proof more clear by introducing one change to
the calculus at a time, therefore each intermediate calculus differs from the
previous one in one aspect only.

First of all G∗S4c
n-style succedental rules are introduced to GS4c

n.

Definition 3.4.17. Let G1S4c
n be the calculus obtained from GS4c

n by chang-
ing succedental rules to:

Γ1,�lΓ1 → F
(→ �l)2

�lΓ1,Γ2 → ∆,�lF
Γ1,�∗Γ1 → F

(→ �c)2
�∗Γ1,Γ2 → ∆,�cF

Lemma 3.4.18. If a sequent is derivable in GS4c
n, then it is derivable in

G1S4c
n.7

Proof. Let’s say that D is a derivation tree of sequent S in GS4c
n. If there

are no applications of succedental rules in D, then D is already a derivation
7Analogously to Footnote 1 in page 77, although G1S4c

n is sound, only completeness of the calculus is proved.
Soundness is not needed for the completeness proof of the loop-free calculus G∗S4c

n. This note applies to all the
intermediate calculi.
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tree in G1S4c
n. Otherwise, let’s take the lowest such inference and let S1 be

its premise. Say that it is an application of transitivity rule (→ �l). The case
of central agent rule is completely analogous. Now, because of invertibility
of reflexivity rule, after such application of rule it is possible to add one
application of (�l →) for each formula of the form �lF in the antecedent
of S1. Then such application of transitivity rule and recently introduced
applications of reflexivity rule can be replaced with single application of
(→ �l)2 to get derivation tree D1. If D1 still contains at least one application
of succedental rule, then let’s continue this change inductively to the lowest
application of succedental rule in D1. Otherwise, D1 is already a derivation
tree in G1S4c

n.

Next, a prohibition to apply transitivity rule for central agent is included.

Definition 3.4.19. Let G2S4c
n be the calculus obtained from G1S4c

n by re-
placing the transitivity rule to:

Γ1,�aΓ1 → F
(→ �a)2

�aΓ1,Γ2 → ∆,�aF

where a is any agent, except the central one.

To prove the completeness, admissibility of weakening is needed.

Lemma 3.4.20. Weakening structural rule is admissible in G2S4c
n.

Proof. The proof is analogous to the proof of Lemma 1.4.8.

Lemma 3.4.21. If a sequent is derivable in G1S4c
n, then it is derivable in

G2S4c
n.

Proof. Let’s say that D is a derivation tree of sequent S in G1S4c
n. If there

are no applications of c-transitivity rule, then D is already a derivation tree
in G2S4c

n. Otherwise, let’s take the topmost such inference:

D1
Γ1,�cΓ1 → F

(→ �c)2
�cΓ1,Γ2 → ∆,�cF

Note, that because this is the topmost application of (→ �c)2, derivation tree
D1 is already a derivation tree in G2S4c

n. Now to remove this application of
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transitivity rule, let’s change it to the application of central agent rule and
some applications of weakening structural rules:

D1
Γ1,�cΓ1 → F

Γ1,�cΓ1,Γ
′

2,�6=cΓ
′

2 → F
(→ �c)2

�cΓ1,�6=cΓ
′

2,Γ
′′

2 → ∆,�cF
By inductively continuing this change, it is possible to remove all the ap-
plications of c-transitivity rule.

Now, labels are introduced to the calculus.

Definition 3.4.22. Let G3S4c
n be the labelled sequent calculus obtained from

G2S4c
n by adapting it to labelled sequents. That is, the axiom is changed to

Γ, [F1]n1 → [F2]n2,∆, where Proj(F1) = Proj(F2), logical rules are changed
to logical rules of G∗S4c

n, and reflexivity, transitivity and central agent rules
are replaced by:

Two rules of reflexivity:

[F ]n, [�∗il F ]n,Γ�i∗ → ∆�i∗
(��il →)

[��il F ]n,Γ → ∆
[F ]n, [�∗il F ]n,Γ → ∆

(�∗il →)
[�∗il F ]n,Γ → ∆

Transitivity rule:
{
[Γi←n1 ]n,�λaΓi←n1 → [F ]n

}6=a: 6∗, 6()

(→ �ia)λ
�λaΓ1,Γ2 → ∆, [�i(m)

a F ]n−1

where a 6= c, �λaΓ1 consists of formulas of the form ��ja G or �∗ja G, i
is some index or i = ∅, (m) is some mark or (m) = ∅.
Central agent rule:

[Γi←n]n,�λ∗Γi←n → [F ]n
(→ �c,i)λ

�λ∗Γ1,Γ2 → ∆, [�i(m)
c F ]n−1

where �λ∗Γ consists of formulas of the form ��jl G or �∗jl G, i is some
index or i = ∅, (m) is some mark or (m) = ∅.

Lemma 3.4.23. If sequent S is derivable in G2S4c
n then labelled sequent

Lab(S) is derivable in G3S4c
n.

Proof. Note, that because of extra reflexivity rule and different formulation
of succedental rules labels do not add any restrictions to the calculus. That
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is, to get a derivation tree in G3S4c
n it is only needed to add appropriate

labels to every sequent of derivation tree in G2S4c
n. The labelling of initial

sequent is according to the definition 3.4.4. After that if the conclusion
of some inference is a labelled sequent, then labels are introduced to the
premise (or premises) as described in the definition of the rules of G3S4c

n.
No application of rule is added or removed from the derivation tree in G2S4c

n.

G3S4c
n and all the following intermediate calculi are labelled. As men-

tioned earlier, in a derivation search tree of labelled sequent calculus the
initial sequent must be obtained by labelling of the sequent that does not
contain any labels. This is important for the correctness of some lemmas.

Now, let’s introduce next restriction. This one restricts applications of
succedental rules. The aim is to prohibit the application of succedental rule
to the sequent if some logical or (��il →) rule of G3S4c

n can be applied to it.
This change is introduced by changing the succedental rules.

Definition 3.4.24. Let G4S4c
n be the labelled sequent calculus obtained from

G3S4c
n by changing succedental rules to:

Transitivity
{
[Γi←n1 ]n,�∗aΓi←n1 → [F ]n

}6=a: 6∗,6()

(→ �il)
�∗aΓ1,�∗6=aΓ2,Σ1 → Σ2,�∗∆, [�i(m)

a F ]n−1

where a 6= c, Σ1 and Σ2 are empty or consist of propositional variables
only, i is some index or i = ∅, (m) is some mark or (m) = ∅.
Central agent rule:

[Γi←n]n,�∗∗Γi←n → [F ]n
(→ �c,i)

�∗∗Γ,Σ1 → Σ2,�∗∆, [�i(m)
c F ]n−1

The meaning of the notation is the same as in transitivity rule.

To prove the completeness of this calculus, invertibility of logical and
reflexivity rules are needed.

Lemma 3.4.25. Logical, (��il →) and (�∗il →) rules are invertible in G3S4c
n.

Proof. The proof is analogous to the proof of Lemmas 1.4.11 and 1.4.12.

Lemma 3.4.26. If a labelled sequent is derivable in G3S4c
n then it is deriv-

able in G4S4c
n.
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Proof. This is a direct corollary of Lemma 3.4.25.

Next the restriction on applications of reflexivity rule is introduced. That
is, all the applications of (�∗il →) rule are removed.

Definition 3.4.27. Let G5S4c
n be the labelled sequent calculus obtained from

G4S4c
n by removing the rule (�∗il →).

To prove the completeness of G5S4c
n, admissibility of contraction struc-

tural rules must be shown.

Lemma 3.4.28. Contraction structural rules are admissible in G5S4c
n.

Proof. The proof is analogous to the proof of Lemma 1.4.13.

Lemma 3.4.29. If a labelled sequent is derivable in G4S4c
n, then it is deriv-

able in G5S4c
n.

Proof. For this proof the marks are completely ignored. Moreover, negative
indexes are also ignored, except when needed for the proof. Thus it is
said that �∗il F and �∗jl G are equal, if Proj(F ) = Proj(G). This is done
to simplify the proof, however as indicated later this does not change the
correctness of it.

Let’s say that D is a derivation tree of labelled sequent S in G4S4c
n. Let’s

denote the number of applications of (�∗il →) in D for any l and i by r(D).
If r(D) = 0, then D is already a derivation tree in G5S4c

n. Otherwise, let’s
take the topmost such application:

S2 = [F ]n, [�∗il F ]n,Γ → ∆
(�∗il →)

S1 = [�∗il F ]n,Γ → ∆
Initial sequent S does not contain starred modalities. Moreover, all stars

from modalities of agent l are removed after application of rule l1-transitivity
rule, where l1 6= l. Thus, below S1 there must be sequent S ′

1, which is a con-
clusion of application of (��il →) rule to ��il F and there are no applications
of l1-transitivity rule between S1 and S ′

1, except possibly if l1 = l8:

S2 = [F ]n, [�∗il F ]n,Γ → ∆
(�∗il →)

S1 = [�∗il F ]n,Γ → ∆
· · ·

S
′

2 = [F ]n1, [�∗il F ]n1,Γ′ → ∆′

(��il →)
S

′

1 = [��il F ]n1,Γ′ → ∆′

8In fact, F in S1 and F in S
′
1 can differ in marks and some negative indexes in the latter could be starred

in the former. However this difference is ignored, because the inside of the formula F is changed by other rules,
that are not eliminated after elimination of inappropriate application of reflexivity rule.
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Let D1 be a path of the derivation from S
′

2 to S1. If there are no applications
of succedental rules in D1, then let’s apply the rule (c→) to [F ]n1 in S ′

2 and
then let’s apply all the rules of D1 to the premise in the same order as they
appear in D1. This results in sequent S3:

S3 = [F ]n1, [�∗il F ]n,Γ → ∆
· · ·

[F ]n1, [F ]n1, [�∗il F ]n1,Γ′ → ∆′

(c→)
S

′

2 = [F ]n1, [�∗il F ]n1,Γ′ → ∆′

(��il →)
S

′

1 = [��il F ]n1,Γ′ → ∆′

Notice that S2 differs from S3 only with respect to the number of the formula
F . Therefore, after making this change, all the appropriate numbers and
marks in sequents of derivation above S3 have to be changed. The result of
these changes is derivation tree D2 and r(D2) < r(D).

Otherwise if there is at least one application of succedental rule in D1,
let’s take the one closest to S1. Let D3 be a path of D1 from the premise
of such application to S1. Formula [�∗il F ]n1 is definitely part of the an-
tecedent of conclusion of such application, therefore the antecedent of the
premise contains [F ]n2. Let’s apply (c→) to [F ]n2 in the premise and af-
terwards let’s apply all the rules of D3 in the same order. Only the case
of l-transitivity rule is displayed, because the case of central agent rule is
completely analogous.

S4 = [F ]n2, [�∗il F ]n,Γ → ∆
· · ·

[F ]n2, [F ]n2, [�∗il F ]n1, [Γ′′

1]n2,�∗lΓ
′′

1 → [G]n2

(c→)
[F ]n2, [�∗il F ]n1, [Γ′′

1]n2,�∗lΓ
′′

1 → [G]n2

(→ �jl )[�∗il F ]n1,�∗lΓ
′′

1,�
∗
6=lΓ

′′

2,Σ1 → Σ2,�∗∆
′′
, [�jlG]n3

· · ·
S

′

2 = [F ]n1, [�∗il F ]n1,Γ′ → ∆′

(��il →)
S

′

1 = [��il F ]n1,Γ′ → ∆′

Once again S2 differs from S4 only with respect to the number of the formula
F and all the appropriate numbers and marks in sequents of derivation
above S4 must be changed. The result of such changes is derivation tree D4

and r(D4) < r(D).
Thus by applying these changes inductively it is possible to completely

eliminate applications of (�∗il →) rule for any l and i.

Now, let’s insert simplification rule to the calculus.
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Definition 3.4.30. Let G6S4c
n be the labelled sequent calculus obtained from

G5S4c
n by adding simplification rule:

[�∗il F ]n1,Γ → ∆
(�n1,n2

l →)
[�∗il F ]n1, [�∗il F ]n2,Γ → ∆

where n1 < n2. If possible, simplification rule must be applied first.

Once again, admissibility of contraction structural rules is needed.

Lemma 3.4.31. Contraction structural rules are admissible in G6S4c
n.

Proof. The proof is analogous to the proof of Lemma 1.4.13.

Lemma 3.4.32. If a labelled sequent is derivable in G5S4c
n then it is deriv-

able in G6S4c
n.

Proof. Let’s say that D is a derivation tree in G5S4c
n. Let’s find the topmost

sequent of the form [�∗il F ]n1, [�∗il F ]n2,Γ → ∆, where n1 < n2, in D. If there
is no such sequent, then D is already a derivation tree in G6S4c

n. Otherwise,
let’s apply simplification rule to the sequent. Now, it is possible to apply
contraction structural rule to the premise of newly introduced application
of simplification rule:

[�∗il F ]n1, [�∗il F ]n1,Γ → ∆
(c→)

[�∗il F ]n1,Γ → ∆
(�n1,n2

l →)
[�∗il F ]n1, [�∗il F ]n2,Γ → ∆

This derivation can be continued as in D, except numbers and marks of
sequents above the premise of application of (c→) must be altered.

This procedure can be repeated inductively until a derivation tree in
G6S4c

n is obtained.

It should be noticed, that any derivation in G6S4c
n and following inter-

mediate calculi follows the conditions set out in Lemma 3.4.7.
Finally the other restriction on applications of succedental rules is in-

serted.

Definition 3.4.33. Let G7S4c
n be the labelled sequent calculus obtained from

G6S4c
n by adding the following restrictions:

1. Transitivity rule with main formula [�i(m)
a F ]n can be applied to the

sequent �∗aΓ1,�∗6=aΓ2,Σ1 → Σ2,�∗∆, [�i(m)
a F ]n if either (m) = ∅ or

�∗aΓ1 contains at least one formula of the form [�∗ja C]n1 where m <

n1 6 n.
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2. Central agent rule with main formula [�i(m)
c F ]n can be applied to the se-

quent �∗∗Γ,Σ1 → Σ2,�∗∆, [�i(m)
c F ]n if either (m) = ∅ or �∗∗Γ contains

at least one formula of the form [�∗jl C]n1 for some l, where m < n1 6 n.

Lemma 3.4.34. If a labelled sequent is derivable in G6S4c
n then it is deriv-

able in G7S4c
n.

Proof. Our task is to remove all the applications of succedental rules that
do not follow the newly introduced restriction. That is, a-transitivity rule
is applied to formula marked by m and in the antecedent all the formulas of
the form �∗ja G are numbered lower than or equal to m or central agent rule
is applied to formula marked by m and in the antecedent all the formulas
of the form �∗jl G for any l are numbered lower than or equal to m. Such
applications are called inappropriate and are denoted as (→ �ia)inappropriate and
(→ �c,i)inappropriate.

Say, that D is a derivation tree of labelled sequent S in G6S4c
n. Let

s(D) be the number of inappropriate applications of succedental rules. If
s(D) = 0, then D is already a derivation tree in G7S4c

n. Otherwise, let’s
take the lowest (closest to S) inappropriate application of succedental rule.
Let S1 be the conclusion of such inference.

First, let’s analyse the case of a-transitivity rule. The main formula of the
application is marked, but all the marks of modalities of agent a are removed
after the application of a1-transitivity rule, where a1 6= a. Therefore, below
S1 there must be a sequent, which is a conclusion of application of (→ �ia)

rule to the same formula and there are no applications of a1-transitivity rule
between S1 and this sequent, such that a1 6= a. Let S ′

1 be such sequent,
that is closest to S1:

S2 =
{
[Γi←n1 ]n,�∗aΓi←n1 → [F ]n

}6=a:6∗,6()

(→ �ia)inappropriate
S1 = �∗aΓ1,�∗6=aΓ2,Σ1 → Σ2,�∗∆, [�i(m)

a F ]n−1

· · ·
S

′

2 =
{
[(Γ′

1)i←m]m, (�∗aΓ
′

1)i←m → [F ]m
}6=a:6∗,6()

(→ �ia)
S

′

1 = �∗aΓ
′

1,�
∗
6=aΓ

′

2,Σ
′

1 → Σ′

2,�∗∆
′
, [�i(m1)

a F ]m−1

Now because of the calculus, it is obvious that (�∗aΓ
′

1)i←m ⊆ �∗aΓ1. What
is more, as the presumption states, there are no formulas in �∗aΓ1 with
numbers greater than m. Therefore all the formulas that are part of �∗aΓ1,
but do not belong to (�∗aΓ

′

1)i←m are numbered m. Let’s say that �∗aΓ1 =
[�∗i1a G1]m, . . . , [�∗ika Gk]m, (�∗aΓ

′)i←m.
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Now let’s follow a path of D from S
′

2 to S2. Let’s start from S
′

2. If there
is an application of l-transitivity or central agent rule before S1, then let
S

′

3 be the conclusion of the first such application. Otherwise let S ′

3 = S1.
Neither logical, nor reflexivity, nor simplification rules can be applied to S ′

3.
Moreover, [�∗ija Gj]m, j ∈ [1, k] are part of antecedent of S ′

3, because after
the application of succedental rule to S ′

3 all the new formulas are going to
be numbered m + 1. Therefore, there is an application of reflexivity rule
between S ′

2 and S ′

3 for each [��ija Gj]m. To sum up, S ′

3 is obtained from S
′

2
by applying all the possible logical and simplification rules to formula [F ]m,
formulas [Gj]m, j ∈ [1, k], formulas from [(Γ′

1)i←m]m and their subformulas.
Now, let’s follow derivation tree D above S2. Let S be the set of different

labelled sequents and for every S∗j ∈ S, S∗j is the first sequent in a branch
above S2 that is either an axiom or a conclusion of application of succedental
rule. Once again, every sequent of S is obtained from S2 by applying all
the possible logical and simplification rules to formula [F ]n, formulas from
[Γi←n1 ]n (which consists of formulas [Gi←n

j ]n, j ∈ [1, k] and formulas from
[(Γ′

1)i←n]n) and their subformulas. Therefore, there is a sequent S3 ∈ S, such
that Proj(S3) = Proj(S ′

3). This means that all the rules of the derivation
tree D above S3 can be applied straight to S ′

3 thus eliminating at least one
inappropriate application of transitivity rule and getting derivation tree D1.

Now, because numbers and marks are different in S3 and S
′

3, also num-
bers and marks in D1 above S ′

3 is going to differ from those of D above S3.
Because of that it must be shown that there are no inappropriate applica-
tions of succedental rule in D1 that are not part of D. To demonstrate that
let’s compare the marks and numbers in D and D1. Having in mind Lemma
3.4.7 the following can be noticed:

• Every formula numbered n′
> m in subderivation of D1 above S ′

3 (let’s
call it D3), is numbered n′ +n−m in subderivation of D above S3 (let’s
call it D2); every formula numbered n

′
6 m in D3, is numbered n

′ in
D2. This is because D below S

′

3 is the same as D1 below S
′

3. But in
derivation D1 above S ′

3 all formulas get new numbers in the same order
as in D above S3, except that in the latter they are larger because of
the path of derivation from S

′

3 to S3 that is missed out in D1.

• The contrary is also correct: every formula numbered n
′
> n in D2, is

numbered n′ − n+m in D3; every formula numbered n′
6 m in D2, is

numbered n′ in D3.
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• If a formula of the form �∗ja G numbered n
′
,m < n

′
6 n appears in

D then simplification rule is applied next, that makes the formula
disappear from further derivation. Thus no such formulas appear in
antecedent of conclusions of succedental rule. This is due to the prop-
erties of �∗aΓ1 and (�∗aΓ

′

1)i←m, that were discussed earlier. Therefore,
S2 (and the derivation above) does not contain formulas numbered n′,
m < n

′
6 n, and these formulas are not part of D3.

• Every occurrence of �jl in D3 marked with m
′
> m is marked with

m
′ + n−m in D2. Every occurrence of �jl in D3 marked with m′

6 m

is marked with m′ in D2.

• Some occurrences of �ja that are marked in D2 are not marked in D3.
This is the case, if there is an application of (→ �ja) rule between S

′

2
and S1, j 6= ∅ and the outermost modality of the main formula of the
inference is not marked.

Having this in mind, it is not hard to argue that for any inappropriate ap-
plication of succedental rule in D3, the respective application of succedental
rule in D2 is also inappropriate. Thus s(D1) < s(D).

The case of central agent rule is completely analogous.
By inductively applying this elimination to D1 it is possible to get a

derivation tree in G7S4c
n.

Now the only difference between G7S4c
n and G∗S4c

n is the axiom. In the
former it is Γ, [F1]n1 → [F2]n2,∆, where Proj(F1) = Proj(F2), and in the
latter it is required that n1 = n2. However, it is easy to show that those
too calculi are equivalent. Once again, only one part of the equivalence is
mentioned. The other one is obvious.

Lemma 3.4.35. If an indexed sequent is derivable in G7S4c
n then it is deriv-

able in G∗S4c
n.

Proof. Let D be a derivation tree in G7S4c
n. Let’s say that in D there is

an axiom S1 = Γ, [F1]n1 → [F2]n2,∆ and n1 6= n2. It is easy to show that
any derivation search tree in G7S4c

n follows the conditions set out in Lemma
3.4.7. Therefore, the only possible situation is that Proj(F1) = Proj(F2) =
�lG. Moreover, for the same reason F1 = �∗jl G1, where Proj(G1) = G.
Let’s say that F2 = �i(m)

l G2, where Proj(G2) = G, i is some index or i = ∅,
m is some mark or m = ∅.
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Let’s apply logical and reflexivity rules of G7S4c
n to S1 and its premises

until no such rule can be applied. The result of such process is sequent S2 =
�∗lΓ1,�∗6=lΓ2, [F1]n1,Σ1 → Σ2, [F2]n2,�∗∆1. If it is possible to apply succe-
dental rule to the formula F2 in S2 then the premise of such application is
going to be sequent S3 = Γ3, [G1]n2+1 → [G2]n2+1 and Proj(G1) = Proj(G2).
S3 is axiom of both G7S4c

n and G∗S4c
n.

Otherwise, if succedental rule cannot be applied to F2 in S2, then m 6= ∅.
If l 6= c, then there is no such formula of the form [�∗j

′

l H]n
′

in �∗lΓ1, [F1]n1

such that m < n
′. Therefore, n1 6 m. Moreover, below S1 there is an

application of (→ �il) to F3 such that Proj(F3) = Proj(F2). Let’s denote
the premise of such application S4 and the conclusion S

′

4. If n1 < m,
then in the antecedent of S ′

4 there is a formula [F4]n1 such that Proj(F4) =
Proj(F1). Therefore S4 is of the form Γ4, [G4]n3 → [G3]n3, where Proj(G4) =
Proj(G3). Thus S4 is an axiom of both G7S4c

n and G∗S4c
n, and the derivation

above it is not needed. If n1 = m, then between S4 and S2 there is an
application of the rule (��j

′

l →) to the formula F5 such that Proj(F5) =
Proj(F1). Let’s say that the premise of such application is S5. Because
n1 = m, there are no applications of succedental rules between S4 and
S5. Now let’s eliminate all the applications of logical and reflexivity rules
to formula G3 and its subformulas from subderivation between S4 and S5.
This results in S6 = Γ5, [G5]n1 → [G3]n1,∆, where Proj(G5) = Proj(G3).
Once again, it is obvious that S6 is axiom in both G7S4c

n and G∗S4c
n and the

derivation above it should be omitted.
The case, when l = c is completely analogous.
A derivation tree in G∗S4c

n is obtained by applying this change to every
axiom of D, where n1 6= n2.

From this the completeness of G∗S4c
n follows immediately.

Theorem 3.4.36. Calculus G∗S4c
n is complete. That is, if sequent S is

derivable in GS4c
n then sequent Lab(S) is derivable in G∗S4c

n.

Proof. A direct consequence of Lemmas 3.4.18, 3.4.21, 3.4.23, 3.4.26, 3.4.29,
3.4.32, 3.4.34 and 3.4.35.

3.5 Logics K4 and K4c
n

As mentioned in [4], the terminating calculus for logic K4 can be derived
using similar ideas as in calculus G∗S4. The only difference between logics
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of K4 and S4 is that reflexivity axiom is not part of HK4 and therefore
reflexivity rule is not part of GK4. Because of this, the negative indexation
of modalities is not needed.

Definition 3.5.1. A sequent is called labelled for K4, if every positive oc-
currence of � that is in the scope of negative occurrence of � is indexed
with integer and all the formulas are numbered.

Definition 3.5.2. Labelling for K4 of sequent S is denoted LabK4(S) and
labelled for K4 sequent LabK4(S) is obtained from S by (1) indexing all
the positive occurrences of � that are in the scope of negative occurrence
of � with different natural numbers, and (2) attaching number 1 to every
formula. No marks are needed in LabK4c

n
(S).

Except these differences, the terminating calculus for K4 is the same as
G∗S4 with a little change to the restriction of application of transitivity rule.

Definition 3.5.3. The labelled sequent calculus without loops for logic K4
(G∗K4) consists of axiom Γ, [F1]n → [F2]n,∆, where Proj(F1) = Proj(F2),
the same logical rules and simplification rule as G∗S4 and transitivity rule:

[Γi←n]n,�Γi←n → [F ]n
(→ �i)

�Γ,Σ1 → Σ2,�∆, [�i(m)F ]n−1

where Σ1 and Σ2 are empty or consist of propositional variables only, i is
some index or i = ∅, (m) is some mark or (m) = ∅.

What is more, transitivity rule can only be applied if either (m) = ∅ or
�Γ contains at least one formula of the form [�H]l where m 6 l 6 n− 1.

Analogous changes are introduced to G∗S4c
n to obtain the terminating

calculus for logic K4c
n.

Definition 3.5.4. A sequent is called labelled for K4c
n, if every indexable

occurrence of �l is indexed with integer and all the formulas are numbered.

Definition 3.5.5. Labelling for K4c
n of sequent S is denoted LabK4c

n
(S) and

labelled for K4c
n sequent LabK4c

n
(S) is obtained from S by (1) indexing all

the indexable occurrences of �l with different natural numbers, and (2) at-
taching number 1 to every formula. No marks are needed in LabK4c

n
(S).

Now the calculus is defined as follows.
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Definition 3.5.6. The labelled sequent calculus without loops for logic K4c
n

(G∗K4c
n) consists of axiom Γ, [F1]n → [F2]n,∆, where Proj(F1) = Proj(F2),

the same logical and simplification rules as in G∗S4c
n and rules:

Transitivity:
{
[Γi←n1 ]n,�aΓi←n1 → [F ]n

}6=a: 6()

(→ �ia)
�aΓ1,�6=aΓ2,Σ1 → Σ2,�∗∆, [�i(m)

a F ]n−1

where Σ1 and Σ2 are empty or consist of propositional variables only,
a 6= c, i is some index or i = ∅, (m) is some mark or (m) = ∅.
Sequent {S} 6=a: 6() is obtained from S by replacing all the occurrences of
�j(m

′
)

l to �jl for every l 6= a, every j and every m′.
What is more, transitivity rule can only be applied if either (m) = ∅
or �aΓ1 contains at least one formula of the form [�aC]n1 where m 6
n1 6 n− 1.
Central agent:

[Γi←n]n,�∗Γi←n → [F ]n
(→ �c,i)

�∗Γ,Σ1 → Σ2,�∗∆, [�i(m)
c F ]n−1

where Σ1 and Σ2 are empty or consist of propositional variables only,
i is some index or i = ∅, (m) is some mark or (m) = ∅.
Once again, central agent rule can only be applied if either (m) = ∅
or �∗Γ contains at least one formula of the form [�lC]n1 for some l,
where m 6 n1 6 n− 1.

The proofs of the soundness, completeness and derivation search termi-
nation of both G∗K4 and G∗K4c

n are analogous to the respective proofs for
G∗S4 and G∗S4c

n and require only small and obvious changes.
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Conclusions

In this dissertation new sequent calculi for multimodal logic Kc
n, Tc

n, K4c
n and

S4c
n with central agent axiom are presented. These calculi are obtained from

regular multimodal calculi by adding the rule for central agent axiom. The
similarity of central agent rule to rule (→ �l) ensures, that cut-elimination
theorem for the calculi can be proved without much difficulty. This idea
can also be used to develop sequent calculi for other multimodal logics with
central agent axiom. It also can be extended to other similar axioms. For
example, axioms of the form �l1F ⊃ �l2F .

Next, the work presents a new way to obtain termination in derivation
search. This method uses four kinds of labels: stars, indexes, marks and
formula numbers. Although in the dissertation this technique is applied
only to sequent calculi of monomodal logics K4 and S4 and to multimodal
logics K4c

n and S4c
n, it can be used in other cases too. First of all, by remov-

ing central agent rule from the calculi for logics K4c
n and S4c

n, Gentzen-type
calculi for regular multimodal logics K4n and S4n are obtained. Next, it is
possible to apply this method for multimodal logics with different interac-
tion axioms. Moreover, the separate ideas of this method can be adapted
to other multimodal logics. For example, stars in this dissertation were
used to ensure the termination of derivation search in sequent calculi for
multimodal logics Tc

n.
Finally, as mentioned in the dissertation, the knowledge of central agent

is actually a distributed knowledge of other agents. Therefore, all the tech-
niques used in this thesis can be employed in developing terminating sequent
calculi for logics with distributed knowledge.
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Appendix A

Proof of Lemma 2.3.6

In this appendix the formal proofs of derivability of formulas, presented in
Lemma 2.3.6, are provided. The appendix is organized in the same manner
as the formulation of the lemma. Therefore, it is divided into two sections
according to the set of calculi in which the formulas are derivable. Moreover
the order of proofs is the same as the order of the formulas in Lemma 2.3.6.

A.1 Formulas Derivable in HKc
n, HK4c

n, HTc
n and HS4c

n

The formulas, discussed in this section, are derivable in all the defined
Hilbert-type calculi with central agent axiom. Therefore, for the proofs of
the derivability only the axioms and rules of HKc

n can be used, because they
are also part of other calculi.

Lemma A.1.1. Formula (F ∨G) ⊃ (G ∨ F ).

Proof. The derivation is simple:
1. F ⊃ (G ∨ F ) Axiom 3.2, {G/F , F/G}.
2. G ⊃ (G ∨ F ) Axiom 3.1, {G/F , F/G}.
3. (F∨G) ⊃ (G∨F ) R∨ rule from 1 and 2.

Lemma A.1.2. Formula (F ⊃ G) ⊃ (¬F ∨G).

Proof. This formula is a well known tautology of classical logic and it is easy
to show that �L (F ⊃ G) ⊃ (¬F ∨G) according to Definition 1.3.3 and the
definition of validity, where L ∈ {Kc

n,K4c
n,T

c
n, S4c

n}.
Indeed the reasoning does not depend on the logic used. For suppose

contrary, that there is some structure S = 〈W ,Rc,R1, . . . ,Rn,Φ〉 and world
w ∈ W such that S, w 2 (F ⊃ G) ⊃ (¬F ∨ G). Then according to the
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definition S, w �F ⊃ G and S, w 2¬F ∨G. From the latter it follows that
S, w 2¬F , therefore S, w �F , and S, w 2G. And this contradicts the fact
that S, w �F ⊃ G, therefore formula (F ⊃ G) ⊃ (¬F ∨G) is true in every
world of every Kripke structure and according to the definition it is valid in
Kc

n, K4c
n, Tc

n and S4c
n.

Now from the completeness of the calculi C, it follows immediately, that
`C (F ⊃ G) ⊃ (¬F ∨G), where C ∈ {HKc

n,HK4c
n,HTc

n,HS4c
n}.

Lemma A.1.3. Formulas:

1. (F ∨G) ⊃ (¬F ⊃ G).

2. (¬F ∧ ¬G) ⊃ ¬(F ∨G).

3. ¬(F ∧G) ⊃ (¬F ∨ ¬G).

Proof. As well as in Lemma A.1.2, these formulas are also well known tau-
tologies of classical logic and therefore valid in all the modal logics. Their
derivability directly follows from the completeness of the calculi. Therefore
the proof of this lemma is analogous to the proof of Lemma A.1.2.

Lemma A.1.4. Formula (�lF1 ∧ . . . ∧ �lFn) ⊃ �l(F1 ∧ . . . ∧ Fn), where
n > 1.

Proof. If n = 1, then the formula is �lF1 ⊃ �lF1 and it is derivable accord-
ing to Example 1.1.6. Otherwise, the proof is by induction on n.

The base case. If n = 2, then the formula is (�lF1∧�lF2) ⊃ �l(F1∧F2)
and the derivation of the formula is as follows:
1. F1 ⊃ (F2 ⊃ F1) Axiom 1.1, {F1/F , F2/G}.
2. (F2 ⊃ F1) ⊃

(
(F2 ⊃ F2) ⊃

(
F2 ⊃ (F1 ∧ F2)

))
Axiom 2.3, {F2/F , F1/G, F2/H}.

3. F1 ⊃
(

(F2 ⊃ F2) ⊃
(
F2 ⊃ (F1 ∧ F2)

))
Tr rule from 1 and 2.

4. (F2 ⊃ F2) ⊃
(
F1 ⊃ (F2 ⊃ F2)

)
Axiom 1.1, {F2⊃F2/F , F1/G}.

5. F2 ⊃ F2 As in Example 1.1.6.
6. F1 ⊃ (F2 ⊃ F2) MP rule from 5 and 4.
7. F1 ⊃

(
F2 ⊃ (F1 ∧ F2)

)
R⊃ rule from 3 and 6.

8. �l
(
F1 ⊃

(
F2 ⊃ (F1 ∧ F2)

))
NGl rule from 7.

9. �lF1 ⊃ �l
(
F2 ⊃ (F1 ∧ F2)

)
K l rule from 8.

10. �l
(
F2 ⊃ (F1 ∧ F2)

)
⊃
(
�lF2 ⊃ �l(F1 ∧ F2)

)
Axiom (Kl), {F2/F , (F1∧F2)/G}.

11. �lF1 ⊃
(
�lF2 ⊃ �l(F1 ∧ F2)

)
Tr rule from 9 and 10.

12. (�lF1 ∧�lF2) ⊃ �lF1 Axiom 2.1, {�lF1/F ,�lF2/G}.
13. (�lF1 ∧�lF2) ⊃ (�lF2 ⊃ �l(F1 ∧ F2)) Tr rule from 12 and 11.
14. (�lF1 ∧�lF2) ⊃ �lF2 Axiom 2.2, {�lF1/F ,�lF2/G}.
15. (�lF1 ∧�lF2) ⊃ �l(F1 ∧ F2) R⊃ rule from 13 and 14.
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The induction step. Suppose that the formula is derivable, if n < k. Let’s
show that formula (�lF1 ∧ . . . ∧�lFk−1 ∧�lFk) ⊃ �l(F1 ∧ . . . ∧ Fk−1 ∧ Fk)
is also derivable. The derivation is as follows:
1. (�lF1 ∧ . . .∧�lFk−1 ∧�lFk) ⊃ (�lF1 ∧ . . .∧�lFk−1) Axiom 2.1, {�lF1∧...∧�lFk−1/F ,�lFk/G}.
2. (�lF1 ∧ . . . ∧�lFk−1) ⊃ �l(F1 ∧ . . . ∧ Fk−1) Induction hypothesis (n = k − 1).
3. (�lF1 ∧ . . . ∧�lFk−1 ∧�lFk) ⊃ �l(F1 ∧ . . . ∧ Fk−1) Tr rule from 1 and 2.
4. (�lF1 ∧ . . . ∧�lFk−1 ∧�lFk) ⊃ �lFk Axiom 2.2, {�lF1∧...∧�lFk−1/F ,�lFk/G}.
5. (�lF1 ∧ . . . ∧�lFk−1 ∧�lFk) ⊃(

�l(F1 ∧ . . . ∧ Fk−1) ∧�lFk
) R∧ rule from 3 and 4.

6.
(
�l(F1∧ . . .∧Fk−1)∧�lFk

)
⊃ �l(F1∧ . . .∧Fk−1∧Fk) Induction hypothesis (n = 2).

7. (�lF1∧ . . .∧�lFk−1∧�lFk) ⊃ �l(F1∧ . . .∧Fk−1∧Fk) Tr rule from 5 and 6.

Lemma A.1.5. Formula (�l1F1∧ . . .∧�lnFn) ⊃ (�cF1∧ . . .∧�cFn), where
n > 1.

Proof. The proof is by induction on n.
The base case. If n = 1, then the formula is �l1F1 ⊃ �cF1. If l1 6= c,

then it is an axiom (C). If however l1 = c, then it is derivable according to
Example 1.1.6.

The induction step. Suppose that the formula is derivable, if n < k.
Let’s show that formula (�l1F1 ∧ . . .∧�lkFk) ⊃ (�cF1 ∧ . . .∧�cFk) is also
derivable. The derivation is as follows:
1. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃

(�l1F1 ∧ . . . ∧�lk−1Fk−1)
Axiom 2.1, {�l1F1∧...∧�lk−1Fk−1/F ,�lk

Fk/G}.

2. (�l1F1∧. . .∧�lk−1Fk−1) ⊃ (�cF1∧. . .∧�cFk−1) Induction hypothesis (n = k − 1).
3. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃

(�cF1 ∧ . . . ∧�cFk−1)
Tr rule from 1 and 2.

4. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃ �lkFk Axiom 2.2, {�l1F1∧...∧�lk−1Fk−1/F ,�lk
Fk/G}.

5. �lkFk ⊃ �cFk Induction hypothesis (n = 1).
6. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃ �cFk Tr rule from 4 and 5.
7. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃

(�cF1 ∧ . . . ∧�cFk−1 ∧�cFk)
R∧ rule from 3 and 6.

A.2 Formula Derivable in HK4c
n and HS4c

n

This formula is derivable only in transitive modal logics. Therefore, only
axioms and rules of HK4c

n can be used in the proofs, because they are also
part of HS4c

n.

Lemma A.2.1. Formula (�l1F1∧. . .∧�lnFn) ⊃ (�l1�l1F1∧. . .∧�ln�lnFn),
where n ≥ 1.
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Proof. By induction on n.
The base case. If n = 1, then the the formula is �l1F1 ⊃ �l1�l1F1 and it

is an axiom (4l1) of HK4c
n and HS4c

n.
The induction step. Suppose that the formula is derivable, if n < k. Let’s

show that it is also derivable for n = k. The derivation is as follows:
1. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃

(�l1F1 ∧ . . . ∧�lk−1Fk−1)
Axiom 2.1, {�l1F1∧...∧�lk−1Fk−1/F ,�lk

Fk/G}.

2. (�l1F1 ∧ . . . ∧�lk−1Fk−1) ⊃
(�l1�l1F1 ∧ . . . ∧�lk−1�lk−1Fk−1)

Induction hypothesis (n = k − 1).

3. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃
(�l1�l1F1 ∧ . . . ∧�lk−1�lk−1Fk−1)

Tr rule from 1 and 2.

4. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃ �lkFk Axiom 2.2, {�l1F1∧...∧�lk−1Fk−1/F ,�lk
Fk/G}.

5. �lkFk ⊃ �lk�lkFk Induction hypothesis (n = 1).
6. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃ �lk�lkFk Tr rule from 4 and 5.
7. (�l1F1 ∧ . . . ∧�lk−1Fk−1 ∧�lkFk) ⊃

(�l1�l1F1∧. . .∧�lk−1�lk−1Fk−1∧�lk�lkFk)
R∧ rule from 3 and 6.
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