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Abstract 

The dissertation investigates the issues of medical data analysis that can be 

visualized by optical spectra. The main topics of research include digital 

recordings of human eye fundus images as well as thermovisual data of cardiac 

surgery. The purpose of the dissertation is to employ such image analysis 

methods and algorithms for automated eye fundus image and thermovisual data 

examination which allows us to follow the changes depending on the problem 

domain. 

The dissertation approaches a few major tasks such as detecting the optic 

nerve disc in eye fundus images, as well as visualization of the thermal 

anisotropy zone of the heart tissue during the radiofrequency ablations. 

The dissertation consists of Introduction, five sections including 

Conclusions, References, and 3 Annexes. 

The introduction reveals the investigated problem, importance of the thesis 

and the object of research. It describes the purpose and tasks of the dissertation, 

research methodology, scientific novelty, the practical significance of the results 

examined in the paper and defended statements. The introduction ends with the 

list of author's publications on the subject of the dissertation. 

In the first section, a short overview of data mining, pattern recognition and 

knowledge discovery in terms of medical practice is provided. In addition, the 

basic means of medical image acquisition are discussed as well. 

In the second section, investigation of the eye fundus vasculature is taken 

into account. Namely, the methods for vasculature elimination from the eye 

fundus image are presented. 

In the third section, the task for optic nerve disc localization and 

approximation by the elliptical cone is discussed. 

In the fourth section, the problem of eye fundus image registration is 

investigated. 

Finally, in the fifth section, the analysis of proposed algorithms is provided. 

The thermovisual data analysis of cardiac surgery is also presented in this 

section. The discussion on the tissue anisotropy zone is provided here. 

10 articles that focus on the subject of the dissertation are published:  

3 publications are included in the Institute of Scientific Information Citation 

Index Expanded (ISI Web of Science) list; 1 publication is printed in the journal 

that is included in the Institute of Scientific Information Conference  

(ISI Proceedings) list; 1 publication printed in journal approved by Lithuanian 

Science Council; 5 publications are printed in the national and international 

conference proceedings. The main results of the work have been presented and 

discussed at 12 national and international conferences, workshops, seminars. 
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Reziumė 

Disertacijoje nagrinėjami vaizdiniai medicininiai duomenys. Pagrindinė tyrimų 

sritis yra susijusi su vaizdais gaunamais oftalmologinėje ir kardiochirurginėje 

praktikoje. Didţiausias dėmesys disertacijoje yra skiriamas akies dugno vaizdų 

apdorojimui. Yra nagrinėjami tokie objektai kaip akies dugno kraujagyslių 

tinklas, regos nervo diskas, jo aptikimas bei aproksimavimas kreive. Taip pat 

antroje disertacijos pusėje pateikiama termovizinių duomenų analizė siekiu 

identifikuoti širdies audinio anizotropijos zonas veikiant audinį radiodaţninėmis 

abliacijomis. 

Įvade atskleidţiama nagrinėjamos problematikos svarba, įvardinamas 

tyrimų objektas. Aprašomi keliami tikslai bei uţdaviniai, mokslo naujumas ir 

praktinė rezultatų reikšmė. 

Pirmasis skyrius skirtas duomenų ir ţinių gavybos apţvalgai. Taip pat šiame 

skyriuje trumpai pateikiami būdai vaizdiniams medicininiams duomenims 

suformuoti. 

Antrame skyriuje nagrinėjami būdai, kurie leidţia automatiniu būdu šalinti 

bei išskirti kraujagyslių struktūras iš akies dugno vaizdų. 

Trečias skyrius skirtas regos nervo disko automatinio atpaţinimo ir 

aproksimavimo kreive klausimams nagrinėti. 

Ketvirtame skyriuje nagrinėjama akies dugno vaizdų pozicionavimo 

problema. 

Penktame skyriuje pateikiama probleminių sričių duomenų analizė. Taip pat 

šiame skyriuje atliekama termovizinių duomenų analizė siekiant automatiškai 

identifikuoti širdies audinių temperatūrinės anizotropijos zonos dinamiką. 

Disertaciją sudaro penki skyriai ir literatūros sąrašas. Bendra disertacijos 

apimtis 108 puslapiai, 57 paveikslai ir 8 lentelės, neįskaitant priedų. 

Tyrimų rezultatai publikuoti 10 mokslinių leidinių: 3 straipsniai leidiniuose, 

įtrauktuose į Mokslinės informacijos instituto (ISI Web of Science) sąrašą,  

1 straipsnis leidinyje, įtrauktame į Mokslinės informacijos instituto 

konferencijos darbų (ISI Proceedings) sąrašą, 1 straipsnis Lietuvos mokslų 

tarybos patvirtintame leidinyje, 5 straipsniai konferencijų pranešimų medţiagoje. 

Tyrimų rezultatai buvo pristatyti ir aptarti 12-oje respublikinių ir tarptautinių 

konferencijų ar seminarų. 
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Notations 

Symbols 

𝐶𝑥  – Ellipsis centre coordinate along the 𝑥 axis. 

𝐶𝑦  – Ellipsis centre coordinate along the 𝑦 axis. 

𝐸𝐴𝑛𝑔𝑙𝑒  – Ellipsis rotation angle in radians. 

𝐸𝐴𝑟𝑒𝑎  – Ellipsis area. 

𝐸𝑆 𝑥, 𝑦  – Edge strength at a particular point. 

𝐸𝑜(𝑥, 𝑦) – Gradient direction at a particular point. 

𝐸𝑝𝑎𝑟𝑎𝑚  – Vector of cone parameters. 

𝐹𝐼(𝑥, 𝑦) – Inverse two-dimensional Fourier transformation at a particular point. 

𝐺𝜎(𝑥, 𝑦) – Two-dimensional Gaussian function at a particular point. 

𝐼𝑗 (𝑥, 𝑦) – Intensity of a particular point in the 𝑗th intensity image. 

𝐼𝑥(𝑥, 𝑦) – Gradient along the 𝑥 axis at a particular point. 

𝐼𝑦𝑦(𝑥, 𝑦) – Gradient along the 𝑦 axis at a particular point. 

𝑅𝑥  – Semi-minor ellipsis axis. 

𝑅𝑦  – Semi-major ellipsis axis. 

𝑇𝑖  – 𝑖th binary image. 

𝑋𝑝 ′
 – Object in a 𝑝′-dimensional space. 
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𝑌𝑖  – 𝑖th feature vector. 

𝑌𝑝  – Object in a 𝑝-dimensional space. 

𝑢𝑖  – 𝑖th eigen-vector. 

𝛩𝑋 𝐸𝑝𝑎𝑟𝑎𝑚   – Minimisation function of cone parameters with respect to a set of 

coordinates. 

𝜆𝑖  – 𝑖th eigen-value. 

𝜇𝑗 (𝜏𝑖) – Intensity mean of the 𝑗th class. 

𝜎𝐵
2 𝜏𝑖  –Variance between classes. 

𝜏𝑖  – 𝑖th threshold level. 

{𝐵} – Two-dimensional matrix of intensity values of the blue channel. 

{𝐶} – Two-dimensional matrix of intensity values of the cyan channel. 

{𝐺} – Two-dimensional matrix of intensity values of the green channel. 

{𝐾} – Two-dimensional matrix of intensity values of the black channel. 

{𝐿} – Two-dimensional matrix of intensity values of the lightness channel. 

{𝑀} – Two-dimensional matrix of intensity values of the magenta channel. 

{𝑅} – Two-dimensional matrix of intensity values of the red channel. 

{𝑌} – Two-dimensional matrix of intensity values of the yellow channel. 

{𝑎} – Two-dimensional matrix of intensity values from red to green. 

{𝑏} – Two-dimensional matrix of intensity values from blue to yellow. 

(𝑥, 𝑦) – Discrete approximation of two-dimensional Gaussian function at a particular 

point. 

𝐵(𝑥, 𝑦) – Intensity of a particular point in the blue channel. 

𝐶 – Matrix of constraints. 

𝐶(𝐼,𝑍) – Mathematical morphological closing. 

𝐷 – Design matrix. 

𝐷(𝐼,𝑍) – Mathematical morphological dilation. 

𝐸(𝐼,𝑍) – Mathematical morphological erosion. 

𝐹(𝑝, 𝑞) – Discrete two-dimensional Fourier transformation at a particular point. 

𝐹 𝐸𝑝𝑎𝑟𝑎𝑚 ,𝑋  – General representation of a cone. 

𝐹 𝑋𝑖  – Algebraic distance from the 𝑖th coordinate to a cone. 

𝐺(𝑥, 𝑦) – Intensity of a particular point in the green channel. 

𝐼,𝐴, 𝐼𝑗  – Two-dimensional arrays representing an image. 

𝑂(𝐼,𝑍) – Mathematical morphological opening. 

𝑅(𝑥, 𝑦) – Intensity of a particular point in the red channel. 

𝑆 – Scatter matrix. 

𝑊 – Vector of weights. 
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𝑋 – Set of two-dimensional point coordinates. 

𝑌 – Set of feature vectors. 

𝑍 – Structuring element. 

𝑐 – Constant. 

𝑓(𝐷𝐴) – Transformation function of image 𝐴 intensity values. 

𝑓 𝑠  – Activation function. 

𝑟 – Circle radius. 

𝑠 – Weighted sum. 

𝛻𝐼 𝑥, 𝑦  – Gradient at a particular point. 

𝜆 – Eigen-value. 

𝜎 – Standard deviation. 

𝜔(𝜏𝑖) – Probability of separating two classes. 

Abbreviations 

BRKU – Department of Ophthalmology of the Institute for Biomedical Research of 

Kaunas University of Medicine. 

CIE – International Commission on Illumination. 

CMYK – Colour System (Cyan, Magenta, Yellow, Black). 

DFT – Discrete Fourier Transform. 

DNA – Deoxyribonucleic Acid. 

EKS – Excavation. 

FPA – Focal Plane Array. 

HSL – Colour System (Hue, Saturation, Lightness). 

HSV – Colour System (Hue, Saturation, Value). 

HVS – Human Visual System. 

Lab(CIELab) – Colour System (Luminance, a is the red-green axis, b is the  

blue-yellow axis). 

Lch – Colour System (Lightness, Chroma, Hue). 

MRI – Magnetic Resonance Imaging. 

NR – Neuroretinal Rim. 

OND – Optic Nerve Disc. 

PCA – Principal Component Analysis. 

PSNR – Peak Signal to Noise Ratio. 

RFA – Radio Frequency Ablations. 

RGB – Colour System (Red, Green, Blue). 

RNA – Ribonucleic Acid. 
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SSE – Sum of Squared Error. 

YIQ – Colour System (Y – luminance, I and Q have a relation to the modulation method 

used to encode the carrier signal). 
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Introduction 

The Investigated Problem 

The most important challenge for an information society is to serve for a human, 

and in particular, most important, to serve for his/her essential needs. Health is 

an invaluable not only human, but also national public asset. Recently, health 

care services have become quite successful in the development of information 

technologies, as well as in the accumulation of experience while developing 

methods for medical diagnosis. Every day a huge amount of heterogeneous data 

is generated where the heterogeneity is associated with the complexity of a 

human body. In the past decades, the technological improvements enabled us to 

collect the data in digital form, regardless of the manner the data are represented: 

no matter whether it is a blood pressure, electro-cardiogram, magnetic resonance 

or eye fundus images. The aggregation of such heterogeneous data further can be 

used to predict the state of the investigative domain according to some problem. 

However, despite the fact that the most productive source of heterogeneous data 

is modern medicine, perception of the gathered data is not straightforward and it 

is a matter of research. Perception of data itself is a fairly complex task, 

especially when the data indicate a complex object, a phenomenon that can be 

described by a set of parameters or in a visual form. 
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Significance of the Thesis 

Nowadays the amount of information the physician has to deal with is huge. 

Thus, a careful analysis of such a data set is hardly possible.  

Eye fundus examination is one of the most important diagnostic procedures 

in ophthalmology. A high quality colour photograph of the eye fundus helps in 

the accommodation and follow-up of the development of the eye disease. 

Evaluation of the eye fundus images is complicated because of the variety of 

anatomical structure and possible fundus changes in eye diseases. Sometimes it 

requires high-skilled experts for evaluation. However, as the investigation in this 

dissertation shows, even high-skilled expert's assumptions on the same object, 

shown in the images, differ. The problem arises while making a medical 

decision when the state of a patient has to be assigned to the initially known 

class. For clarity, the class can be defined as ailing or healthy. However, the 

boundary between the alternatives of diagnosis is not straightforward in most 

cases and the decision for the disease presence can be made very subjectively. In 

the medical context it is a topical problem. If an ailing patient is classified as 

healthy, the results could be unpredictable. In this dissertation the methods for 

an automated eye fundus images processing is presented with the aim to ease the 

evaluation of important features. 

In cardiac surgery, corrections of many cardiac disorders are treated by 

applying some destructive energy sources. One of the most common sources and 

the related methodology is to use radio-frequency ablations. In medical practice 

treatment capabilities have expanded almost to the whole area of the cardiac 

texture zones. However, despite the latest technical, navigational methods for 

localizing the affected zone, the rate of the risk of complications including a 

disease recurrence remains very high. The drawback of the methodology used is 

that the suchlike surgery procedure cannot be monitored by a visual spectra. This 

fact concludes in the inability to control the treating procedure. With the aim to 

understand the nature of possible complications and to control the treating 

process the means of thermovision is used. The dissertation discloses the lesion 

area dependency on time and electric current power parameters at different heart 

tissues. 

The Object of Research 

The research object of this work is analysis of visual medical digital data, as well 

as the ways of improving data understanding of the subject matter: 

 Eye fundus images: 
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o Eye fundus vasculature. 

o Optic nerve disc. 

o Eye fundus registration. 

 Thermovisual data: 

o Pulmonary vein and atrium tissue lesion area dynamics under 

the sway of radio-frequency ablations. 

The Goal of the Thesis 

The target of the thesis is to develop state-of-the-art algorithms for automated 

medical image processing that could be used in ophthalmologists' or cardiac 

surgery practice. Thesis focus on the automated means for the visual information 

processing that could lead to a decision support. 

The main goal can be decomposed as follows: 

1. To eliminate/extract the tree of vasculature form colour eye fundus 

images in an automated way. 

2. To locate and parameterize the optic nerve disc in colour eye fundus 

images in an automated way. 

3. To register eye fundus images in an automated way. 

4. To identify the heart tissue thermal anisotropy by thermovisual data. 

The Tasks of the Thesis 

The tasks of the thesis are methods of image processing for structure 

segmentation and parameterization. Thus, the related subjects to the tasks are: 

1. Pixel-wise operations. 

2. Mathematical morphological image processing. 

3. Image thresholding. 

4. Image segmentation. 

5. Object topology extraction. 

6. Edge detection. 

7. Cone fitting. 
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8. Non-linear colour system conversions. 

Research Methodology 

The methods for image processing are applied in this thesis, especially, the 

methods of mathematical morphology, edge detection, and topology extraction. 

Besides, the methods of statistical analysis, clustering and classification are also 

applied in data evaluation. 

Importance of Scientific Novelty 

Many blood vessel detection methods are available, but the results are not 

always satisfactory due to time-consuming computation or the segmentation 

quality. This dissertation presents an automated, robust kernel-based methods for 

blood vessel elimination/extraction in colour retinal images. Methods rely on 

mathematical morphology operations and pixel-wise analysis. They does not 

incorporate any Laplace or Gaussian image threshold or cross-section 

calculations. Also, there is no need to invoke artificial neutral networks 

computation methods for matched filter computing. Next, the task is expanded to 

the image registration problem. An efficient algorithm of two image registration 

is presented. Finally, an automated algorithm is introduced for optic nerve disc 

localization and parameterization by an ellipse that can be used by the 

physicians as a reference one for optic nerve disc size estimation. 

At the end of the dissertation, the algorithm for automated heart tissue 

thermal anisotropy zone identification is presented. The analysis of the data 

obtained let us evaluate the dependency of anisotropy area according to 

electrodes impulse current power and lesion time. 

Practical Significance of Achieved Results 

The results of this research revealed new viewpoints in the evaluation of the 

optic nerve disc boundary parameterization. Also, the uniqueness of the 

structures of the eye fundus was explored. Furthermore, analysis of the 

thermovisual data disclosed the heart tissue lesion dynamics according to time 

and impulse current power parameters. Research were partly supported by the 

Lithuanian State Science and Studies Foundation projects: 
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 ”Information technologies for human health – support for clinical 

decisions (eHealth), IT health (No. C-03013)” Start date: 09-2003; 

finish date: 10-2006. 

 ”Information technology tools of clinical decision support and citizens 

wellness for e.Health system (No. B-07019)” Start date: 09-2007; finish 

date: 12-2009. 

 ”Development of special data mining methods to explore the anisotropy 

of texture’s temperatures of the heart (No. T-08153)” Start date:  

04-2008; finish date: 12-2008. 

The Defended Statements 

1. Disc-shaped structuring element can be used for blood-vessel removal 

and extraction in colour eye fundus images. 

2. Recombination of the eye fundus image channels into a colour 

representation does not introduce colour distortion after the 

mathematical morphological processing. This results in an algorithm 

that leads to a high accuracy of automated optic nerve disc localization 

in eye fundus images. 

3. It suffices a linear transformation of an image to solve the eye fundus 

registration problem when used the topology of eye fundus vasculature. 

4. The heart tissue thermal anisotropy dynamics remains almost the same 

during heating and cooling stages at different impulse current power 

settings. 

Approval of the Results 

The main results of the investigation are published in 10 scientific publications; 

3 publications are included in the Institute of Scientific Information Citation 

Index Expanded  (ISI Web of Science) list; 1 publication is printed in the journal 

that is included in the list of the Institute of Scientific Information Conference  

(ISI Proceedings); 1 publication printed in journal approved by Lithuanian 

Science Council; 5 publications are printed in the national and international 

conference proceedings. The research results were presented and discussed in 

the following national and international conferences, workshops and seminars in 

Lithuania and abroad: 
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 Scientific conference ”Information Technologies”, 2005. Kaunas, 

Lithuania. 

 Scientific conference ”Computer Days”, 2005. Klaipėda, Lithuania. 

 International conference ”Biomedical Engineering” 2005, 2008. 

Kaunas, Lithuania. 

 Lithuanian Eye Physician Congress, 2005. Palanga, Lithuania. 

 Workshop of Academy of Sciences of the Czech Republic. Institute of 

Computer Science, Department of Computational Methods, 2005. 

Praha, Czech Republic. 

 6th Nordic conference on eHealth and telemedicine ”From Tools to 

Services”, 2006. Helsinki, Finland. 

 Lithuanian conference of young scientists ”Operation Research and 

Application (LOTD)”, 2007. Vilnius, Lithuania. 

 Workshop of informatics summer school ”Modern Data Mining 

Technologies”, 2007. Druskininkai, Lithuania. 

 International conference ”Advancing Science through Computation”, 

2008. Krakow, Poland. 

 Seminar at AvayaLabs ”Feature Extraction from Medical Images”, 

2008. Basking Ridge, New Jersey, United States of America. 

 International workshop ”GraVisMa: Computer Graphics, Vision and 

Mathematics”, 2009. Plzen, Czech Republic. 

Structure of the Thesis 

The thesis consists of the Introduction, five sections, and the summary of the 

results. There are three annexes, as well. 

The volume of work is 108 pages, excluding annexes; are used 36 numbered 

formulas, 57 figures, and 8 tables in the text. The thesis lists 140 references. 
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1. Knowledge Discovery  

and Medical Imaging 

Perception of data is a difficult task, especially when the data indicate a complex 

object whether it is presented in a parametric form or in spatial domain as an 

image. The analysis of the data with a view to obtain an information is 

comprehensive task and can be defined by the phases of knowledge discovery 

process. In the first part of this section the short overview of the principal phases 

of knowledge discovery process is presented. In the second part, the ways that 

forms the medical images are discussed as well. 

1.1. Data Mining 

The aim of data mining is to make sense of large amounts of mostly 

unsupervised data, in some domain (Cios et al. 2007). The statement that 

describes data mining is easy to understand. As usual, users of data mining are 

the experts of the problem domain. These experts not only collect data, but also 

have an understanding of data meaning as well as the process, which generated 

it. However, a better understanding of data to an expert is not the primary task. 
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The experts desire to gain additional knowledge about the problem domain, 

which may lead to a novel, possibly better way of problem solving. 

In practice the term make sense has a different meaning, since it is closely 

related to the user's experience in the domain. It is obvious that the sense should 

incorporate knowledge as well. This implies that, in order to describe the sense, 

we have to address a series of the attributes such as understandable, valid, novel, 

and useful (Fayyad et al. 1996). The attribute of the greatest importance for data 

owners in order to get knowledge is understandable, since they aim at gaining 

some advantage. This results in a model of the data which can be outlined in 

easy to understand terms, let us say, by introducing the production rules: 

 

IF abnormality (obstruction) IN optic nerve disc 

THEN eye disease. 

 

For this kind of example the input data may be images of the eye fundus. If 

the initial data have already been examined by an ophthalmologist, then such 

data (images of the eye fundus) are called learning or training data. There are 

data mining techniques as described by (Apte and Weiss 1997), which do 

generate the production rules and the ophthalmologist can accept or reject them 

after the analysis. However, not all the rules generated by data mining may be 

known to the physician. These rules which were unknown for the data owners, 

but perform well on the not yet used data are known as test data. 

Assume that the provided example and the rules generated by the data 

mining methodology are already known for data users. Of course, this validates 

the data mining methodology, but, in terms of knowledge novelty, it would be 

useless and the project results would end in failure, since the data owners have 

already gained the knowledge in the past. By taking into account the new unseen 

or unfamiliar rules we arrive at the third attribute which describes the term 

making sense. This attribute is of utmost importance – namely the discovered 

knowledge has to be novel. Further, assume that the knowledge how to diagnose 

the patient has been gathered not by the rule production technique, but from the 

neural networks. The neural network itself would not be acceptable for the 

physician, since, in a broad sense, it is a black box that in general is hard to 

understand. However, if the neural network is trained and proved to act well in 

many cases and is used to automate the analysis (pre-screening) of the eye 

fundus images before the patient comes to the ophthalmologist, then it would be 

acceptable. After the simple analysis provided above, we find the fourth 

attribute. In this manner, one can associate the term making sense with the 

requirement that the disclosed knowledge has to be useful. However the 

meaning of usefulness has to be preserved regardless of the type of data mining 

model used.  
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Especially one should note that the data mining techniques deal with a large 

amount of data. The scope of data mining does not cover the small data sets that 

can be easily managed manually. 

As usual, one of the last definitions describes the type of data used in data 

mining. It is obvious that to collect unsupervised data is much easier and less 

expensive, because when dealing with supervised data one has to know the 

inputs with the appropriate output determined by the problem domain specialist. 

Naturally, the process of unsupervised data collection rises a problem, what 

should we do with the data collected? This issue is most difficult in terms of data 

mining. It demands to use such algorithms that are able to find existing 

groupings or clusters of the data, moreover, it has to find the relationship or 

associations in the data provided by the data owners. If we are lucky and clusters 

are found in the data and they are labelled by the experts, then it transforms the 

initial problem to a resulting problem which is evaluated in a much easier way, 

since our data become supervised. Basically it does not matter which data 

mining technology we are using. If one uses the clustering technique, then this 

approach lacks of the a priori knowledge on clusters that are present in the data. 

Similarly, by using association-rule mining algorithms, it is required to specify 

some parameters that allow the generation of an appropriate number of  

high-quality associations. In both cases it is necessary to apply aggregate 

algorithms. 

In medical practice it is very common to have only a few images of the eye 

fundus that have been diagnosed. The situation above, where the available data 

are semi-supervised, means that there are only a few known training data points 

with respect to a plenty unsupervised data points. Intuitively one can doubt if 

these few data points can be somehow used to make sense of the entire data set. 

In principle, there exist methods for semi-supervised learning  

(Vatsavai et al. 2005), which take the advantages of these few training data 

points. However, the majority of data mining techniques works well using the 

supervised data, but not all of them are scalable. Scalability is the property of the 

data mining technique which works well on both a small or large data set. Yet 

there are only a few of them. 

The final term in the definition of data mining is domain. The success of the 

project depends on the obtained level of the domain knowledge. At this stage it 

is very important that data miners and domain data owners work together in 

order to gain the required understanding of the problem domain. This process is 

highly interactive and iterative, because at every iteration one has to evaluate the 

knowledge obtained and to incorporate this information into the next iteration. 

Hence, it is impossible to take a successful data mining system designed for 

some domain and apply it to another in the hope of good results. 
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Data mining is not just about making sense of the data. It is important to 

realize that the data mining methods are data driven, not the model driven. For 

example, in statistics one tries to find the smallest data size that gives 

satisfactory estimates over the whole data set. However, in data mining one tries 

to find a not too complex model that would well describe a huge data set. This 

task is extremely difficult, thus we always need to look for the balance between 

model completeness and model complexity. 

1.1.1. Components of the Data Mining Process 

Data mining seeks to find models which fit or determine the patterns from the 

data observed. Typically, in this problem the human interaction is required in 

order to make a decision whether the model reflects the knowledge or not. 

According to (Mitra et al. 2002) data mining algorithms are basically tripartite: 

1. The model: The function of the model such as classification or 

clustering together with its representational form which can be linear, 

say, discriminant or neural networks. All these models have parameters 

that must be determined from the data. 

2. The preference criterion: One has to know the preference criterion of 

one set of parameters over another. Of course, this has to be done by 

taking into account the initial data. The criterion describes how well the 

model fits to the provided data. However, the criteria have to be selected 

such that preserved model over fitting or avoidance of too many model 

parameters. 

3. The search algorithm: The search algorithm has to find the model 

parameters, and the preference criterion for the given data. Typically, 

the algorithm of data mining is the instance of the model, preference, 

and the search components. 

1.1.2. Data Mining Tasks 

Data mining and analysis involve a mass of algorithms. The analysis of the 

literature exposed that those algorithms depend on the nature of the problem 

domain. In this context, algorithms attempt to find models that have suchlike 

characteristics as the data provided. In the aggregate the current tasks or 

functions of data mining include: 

1. The analysis of association rules. Analysis of the association rules tends 

to describe the relationship among the attributes of the problem domain. 

Typically, these attributes belong to different classes. A well known 



1. KNOWLEDGE DISCOVERY AND MEDICAL IMAGING 11 

 

example of the association rule discovery is the market basket case. 

Suppose that the market basket is an aggregate of the items, the buyers 

of items, and it is an individual transaction for the specific customer. 

The analysis over the transaction database can show items or sets of 

items that frequently emerge. Thus, each extracted object consists of the 

items and, moreover, one can count how much items has been sold. This 

knowledge can be incorporated into business to improve the placement 

of items in a store (Dunham 2002). Though by increasing the number of 

the attributes such a problem formulation makes the task a challenging 

one. The analysis of the association rule discovery process has to imply 

that associations do not show the functional dependency of the 

attributes. 

2. Clustering. The term clustering is used to describe the methods which 

map data objects to clusters or groups according to the provided 

similarity metrics or probability density models (Fayyad et al. 1996). As 

an instance of the data object could be the description of the state of a 

patient either in textual or in spatial (image) form. Then the clustering 

algorithm will try to find natural groupings of similar patients together 

by maximizing the differences between different groups of patients. It 

should be noted that the outlier analysis is a special clustering case. 

Usually outliers do not belong to predefined or extracted natural 

groupings and originate as a noise in the data or as supplementary data 

for uncommon situations seen in the problem domain. 

3. Classification. The aim of the classification is to identify descriptive 

parameters of the class to which an object belongs. This task differs 

from clustering. A distinction is that, in the classification case, one has 

to know categorical classes or the classes have to be defined a priori 

(Mitra et al. 2001). This technique can be used to solve some prognosis 

tasks.  

4. Sequence analysis. The sequence analysis models objects that are 

connected to others in some predefined way. This analysis does not take 

into account the type of object connectivity, it explores a group of the 

objects attributes or trends in a time, spatial or textual domain. The 

investigative data for such an analysis can be time-series in order to 

evidence the trends. Moreover, the sequence analysis aims to find the 

repetitive small sequences, let say, in the sequence of RNA or DNA, 

which could probably indicate unwanted changes or a disease. This 

particular task is very important in the background of bioinformatics 

(Kuisienė et al. 2008). 
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5. Regression. The principle of regression is well known: in order to 

predict new data values, already the known ones are used. Basically 

regression uses standard statistical methods, such as linear, non-linear 

regression. However, in most cases the data in a linear manner cannot be 

expressed by the previous data, thus the sophisticated method has to be 

used (Noda et al. 1999). 

6. Summarization. The task of summarization describes the data we are 

dealing with. Before we start to shape a model, we have to realize the 

data we are going to investigate. This realization can be expressed in 

terms of statistics: mean, variance, deviation or even histogram mode, 

quantiles, etc. One has to make a hypothesis which of them we will have 

to support or reject during the process of data mining  

(Bernatavičienė 2008). 

7. Dependency modelling. Dependency modelling analyses important 

dependencies among variables or the attributes of data. 

In a view of the image processing, most important task is classification. 

Basically, the classification task of is solved by converting the colour or 

intensity image to the black and white where the boundaries of the classes are 

explicitly defined. Then the sequence analysis can be introduced to attribute the 

feature pixel to some object. However, the problem is that the result of the 

classification depends on the clustering algorithm used. Clustering algorithm, in 

turn, does depend on the summarization task. If the data is misunderstood the 

model will not reflect the existence of the classes and the clustering algorithm 

will not be able to distinguish the boundary between them. 

1.1.3. Data Mining Tools 

There is a wide number of data mining algorithms described in literature. They 

cover such fields as statistics, pattern recognition, machine learning, or even 

databases. On the face of it, these algorithms represent a lengthy list of unrelated 

methods. However some representative groups can be identified  

(Hand et al. 2001): 

1. Statistical models. The models of statistical analysis, for example linear 

discriminants (Ye 2007; Hastie et al. 2009) make number analysis on 

the provided dataset. This analysis enables us to conclude on the impact 

relationships of a variety of attributes. The results achieved can be 

applied to describe the functionality of the exploratory phenomenon or 

to estimate the trends of further evolution. 
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2. Probabilistic graphical dependency models, for example, Bayesian 

networks or hidden Markow models. Such models are graphical when a 

probability can be broken down into a combination of several 

elementary contributions and it can then be represented as a graph 

(Moreau et al. 2003). 

3. Decision trees and rules. In the case of models and rules of decision 

trees, first of all a tree, which models the process of classification, is 

created. In the tree structure, leaves represent classifications and 

branches represent conjunctions of features that lead to those 

classifications. Thus, these algorithms segment the input space and each 

segment describes the investigative classes (Dunham 2002; 

Fielding 2006). 

4. Inductive logic programming based models. In order to describe the 

inductive logic we have to separate the kind of arguments. There are 

deductive and inductive arguments. The premises of deductive 

arguments are aimed to guarantee the truth of their conclusions, while 

inductive arguments involve some risk of their conclusions being false, 

even if all of their premises are true (Hurley 2005). Thus, the inductive 

logic programming based models are based on the latter ones. 

5. Example-based methods. The common example of the example-based 

methods is a method of nearest neighbours. The classification task of 

element grouping is solved not according to the rules identified during 

the analysis, but the task is subject to likeness of element properties to 

the properties of neighbours. This implies that the base of these 

methods is a comparison of the investigative object to the set of already 

known ones (Bernatavičienė et al. 2006). 

6. Neural network-based models. The primary objective of the neural 

network theory is not to model biological neurons in detail, but to 

describe and apply the principal mechanisms of biological neurons with 

a view to achieve more effective systems of information processing. 

Currently these models score a great success, since they are capable to 

model sophisticated either classification-based or proposing functions 

(Medvedev 2007; Bernatavičienė et al. 2005). 

7. Fuzzy set, fuzzy system models. Fuzzy systems offer a very powerful 

framework for approximate reasoning since they attempt to model the 

human reasoning process at a cognitive level. Such systems acquire 

knowledge from domain experts and this is encoded within the 

algorithm in terms of the set of If-Then rules. Fuzzy systems employ 
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this rule-based approach and interpolative reasoning to respond to the 

new inputs (Khan and Abraham 2003). 

8. Rough set theory-based models. Now it is obvious that the data can be 

acquired from some measurements or from the experts of the problem 

domain. The main goal of the rough set analysis is to synthesize the 

approximation of concepts from the acquired data. Later on, this 

synthesis evolves towards information granules under the tolerance 

relation (Komorowski et al. 1999). 

9. Genetic algorithm-based models. There are a lot of problems for which 

computational algorithms show themselves poor. Basically, problems 

arise in the class of algorithms which are in some global optimization 

search within a large space. It is often possible to find an effective and 

computationally practical algorithm the solution of which is relatively 

optimal. One approach which deals with such problems is to use genetic 

algorithms which are based on the principles of natural evolution  

(Berry and Browne 2006). 

10. Hybrid and soft computing models (Kecman 2001). These models 

describe an innovative approach to construct computationally efficient 

and intelligent hybrid systems, consisting of an artificial neural 

network, fuzzy logic, approximate reasoning and derivativeless 

optimization methods, such as genetic algorithms (Khan and 

Abraham 2003). 

All the data mining algorithms describe the flexibility of the algorithm and 

interpretability of a model to the problem domain specialist. The more complex 

model, the better it describes or fits the provided data (Han and Kamber 2005). 

However the complexity has its own drawbacks. It decreases the 

understandability of the model, moreover, it does not guarantee the reliability. 

None of the groups of models are universal or perfect. By selecting a model, one 

has to consider the operational or logical complexity, the cost of computational 

time and the resource consumption, and, especially, the reliability of the 

analysis. Moreover, reliability of the analysis in medical practice has to be 

comprehensively evaluated. 

1.2. Pattern Recognition 

Pattern is compact and rich in semantics representation of raw data  

(Taniar 2007).The process of pattern recognition mainly deals with a problem of 

designing algorithms or methodologies which can be applied in the computer 
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systems in order to accomplish the recognition tasks that human have to in 

everyday life. The motivation is self-explanatory, computers can perform a task 

more accurately, faster and in most cases more economically than the problem 

domain specialists. Thus, the aim of the pattern recognition is to find the ways 

and means to automate some decision making process, which further will lead to 

classification and recognition (Witten and Frank 2005).  

As stated in earlier in this section, the aim of data mining is to make sense 

of large amounts of mostly unsupervised data, in some domain  

(Cios et al. 2007). Moreover, data mining analyses huge data sets from the 

problem domain but excludes the knowledge interpretation part. Usually these 

massive data sets are characterized not only by numeric values, but also can be 

textual, symbolic, pictorial or sonic and even more they can by mixed. In 

addition, they may have redundancy problems, imprecise data, missing data, and 

so on. This implies that in order to gain some new knowledge, one has to deal 

with heterogeneous data. Namely the pattern recognition plays an important role 

in the knowledge discovery process. Therefore, from this perspective, data 

mining can be viewed as application of pattern recognition and machine learning 

principles in the context of voluminous, possibly heterogeneous data sets  

(Pal 2001). 

Basically, the machine recognition of pattern is comprised of two tasks. One 

task consists of learning the common properties of a set of samples which 

describes the class in the problem domain. The other task is to decide if a new 

sample is a possible instance of the class. The decision should be made 

according to the similarity criterion between the instance attributes and the class 

attributes. Generally, the task can be described as a transformation from the 

measurement space to the feature space, and finally to the decision space  

(Cios et al. 1998). Mostly a typical pattern recognition system joins three phases 

(Pal and Mitra 2004): 

 Data acquisition phase: Generally, the data structures, from the problem 

domain data sets, that are used in pattern recognition systems, are of 

two types object data vectors and relational data: 

o Object data or a set of numerical vectors are represented in the 

sequence as 𝑌𝑝 =  𝑦1 ,𝑦2 ,… ,𝑦𝑛 , a set of 𝑛 feature vectors in 

the 𝑝-dimensional measurement space. 

o Relational data are a set of numerical relationships between 

pairs of objects. 

 Feature selection/extraction: is a process of selecting a map of the form 

𝑋𝑝 ′ = 𝑓(𝑌𝑝), by which a sample  𝑌𝑝 ∈  𝑦1 ,𝑦2 ,… ,𝑦𝑝  in the  

𝑝-dimensional measurement space is transformed into the point 
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  𝑋𝑝 ′ ∈  𝑥1 ,𝑥2 ,… , 𝑥𝑝′   in the 𝑝′ - dimensional feature space, where 

𝑝′ < 𝑝. 

Feature selection or extraction is usually apprehensible as a process of 

finding such a subset of features from the features of the original set that 

forms patterns in a given data set, according to the optimal defined goal and 

criterion of feature selection (Suraj and Delimata 2006). This leads to two 

aspects: formulation of a suitable criterion to evaluate the goodness of a 

feature set and search of the optimal set in terms of the criterion. The good 

criterion for the feature selection is such that does not change under any 

possible variation of attributes within a predefined class while emphasising 

some differences which are important to distinguish two different patterns. 

The major mathematical measures are mostly statistical and can be broadly 

classified into two categories: feature selection in the measurement space 

and feature selection in a transformed space (Pal and Mitra 2004). The first 

category reduces the dimensionality of the measurement space by 

discarding redundancy or least information carrying features. Those in the 

second category use information contained in the measurement space to 

obtain a new transformed space. Hence it maps a higher pattern to a lower 

one, in terms of dimensionality. 

 Classification/Clustering phase. This phase incorporates the methods 

described in Sections 1.1.2 and 1.1.3. 

Typically, data sets are selected using a set of sensors. Then the data are 

passed to the phase of feature selection or extraction. At this phase, the 

dimensionality of the initial data from the problem domain is reduced. As 

described above, the process of reduction should preserve only the key features 

or properties from the initial data set according to some criteria. Namely, the 

phase of feature selection-extraction is crucial in entire recognition process. 

Finally, in the classification-clustering phase, the selected-extracted features are 

passed on to the classifying-clustering system that evaluates the incoming 

information and makes a final decision. This phase basically establishes a 

transformation between the features and the classes-clusters (Pal and  

Mitra 2004). 

1.3. Knowledge Discovery 

Knowledge discovery is a nontrivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data, provided by 

the problem domain specialists (Pal and Mitra 2004).  
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As described by (Shapiro and Frawley 1991), assume that one deals with the 

given facts or raw data, some certainty, and the language. Then the pattern can 

be described as a statement in language that determines the relationship between 

two sets: subset of facts according to statement, and the initial set of raw facts. 

Furthermore, determined relationship has to meet the desired certainty. Then, 

identification of pattern is valid only if pattern is simpler than the enumeration of 

all the facts in subset of initial facts. Moreover, the pattern has to be interesting, 

according to the provided interest measure, and certain enough. The term 

interestingness of a pattern involves validity, novelty, usefulness, and 

understandability. In other words, the interestingness selects a number of 

discovered patterns that incorporate novelty and understandability or can be used 

by the problem domain specialist in everyday practice. Whether the pattern is 

novel depends on the frame of reference. It can be the scope of the system's 

knowledge or that of the user. 

Basically the interestingness of the pattern can be determined by an 

objective or subjective approach. In the objective approach, the rule 

interestingness is estimated of the pattern structure. However, this approach 

suffers from the pattern discovery process, since it fails to capture the process 

complexity. On the other hand, in the subjective approach, the measure of 

interestingness is subject to the user that examines the pattern.  

Thus, data mining is only a step in the knowledge discovery process. This 

step incorporates data analysis and discovery algorithms that are able to 

enumerate the patterns in the given data set. The enumeration is accomplished 

by taking into account acceptable computational limitations. The principal 

scheme of the knowledge discovery process is presented in Fig. 1.1. 

Usually it involves the following steps (Pal and Mitra 2004): 

1. Data cleaning and pre-processing. This step includes operations such as 

noise or outlier removal, pre-processing of missing data. This step is 

introduced to proceed the real world data that are often inconsistent, 

incomplete or erroneous. The low quality data should be cleaned before 

data mining process takes place.  

2. Data condensation and projection. The process is intended to find the 

features or samples that can be useful or used for a better data 

representation. This step includes the methods for dimensionality 

reduction or transformation if it is required by the object of the task. 

3. Data integration and wrapping. In the real word, mostly all the data are 

heterogeneous. Heterogeneity is introduced by using different means 

for data acquisition devices. Thus, the aim of this step is to provide 

description of the heterogeneous data that could ease the future use.  
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4. Choosing the data mining function(s) and algorithm(s). Basically, this 

step is aimed at determining the purpose of the model that is required 

by the data mining algorithm. The purpose can be classification, 

clustering, association rules, etc. Also, selection of methods or models 

used in search of a pattern in data has to be considered as well. A brief 

description of such methods is presented in Section 1.1.3. 

5. Data mining. The step of data mining consists in search of patterns of 

interest. This search is aimed at achieving a particular representational 

form or even a set of such representations. 

6. Interpretation and visualization: This step is self explanatory; it 

includes the interpretation and/or visualization of discovered patterns. 

The purpose of the activity is to identify really interesting/useful 

patterns for the user. 

7. Using discovered knowledge. Incorporation of the knowledge achieved 

in everyday practice that improves the problem domain understanding. 

 

Fig. 1.1. Scheme of knowledge discovery process (Pal and Mitra 2004) 

Thus, the aim of the knowledge discovery process is to map the initial data, 

provided by the experts, to a higher level where some useful and interesting 

knowledge can be achieved from the data. 

1.4. Medical Imaging 

Technology now allows us to capture and store vast quantities of data. Finding 

patterns, trends, and anomalies in these datasets, and summarizing them with 

simple quantitative models, is one of the grand challenges of the information 

age – turning data into information and turning information into knowledge 

(Witten and Frank 2005). Images are the principal sensory pathway to 

knowledge about the natural world (Hendee and Ritenour 2003) Thus, one has to 
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look for the new data mining techniques or modify existing ones in order to 

enumerate existing patterns in the provided data. Finally, this can lead to new 

knowledge discovery. Further in this sub-section a short review of basic imaging 

techniques used in medicine will be carried out. 

1.4.1. Electron Microscopy 

Electron microscopy studies objects that cannot be studied in the optical way. 

This effect has a pure physical explanation, i. e., the wavelength of a photon is 

much larger than the wavelength of an electron. Basically, there are two types of 

microscopes: transmission electron microscope, and scanning electron 

microscope (Bozzola and Lonnie 1998). 

Usually, an optic telescope is an aggregate of a light source, condenser, that 

focuses the light to the investigative object, object holder, lens, and ocular. The 

same principle results in an electron microscopy. However, the light source is 

replaced by an electron gun, the object holder is replaced by a metal grid, and 

instead of lenses electrostatic and electromagnetic lenses are used (Dykstra and 

Reuss 2003).  

Transmission electron microscope. The electron beam is accelerated by high 

voltage at the cathode. This generates a great difference of potentials with 

respect to the anode. This beam is passed to the anode through the electrostatic 

and electromagnetic lenses. The purpose of these lenses is to turn the beam 

through the investigative object to the anode. The major part of electrons goes 

through the investigative object. The specimen is in part transparent to electrons 

and in part scatters them out off the beam. Thus, after emerging from the 

investigative object the beam carries the information about the structure of the 

specimen. Then the resulting beam is magnified by the lenses and after all, kind 

of, a spatial image is projected on the fluorescent screen. It is worth noting that 

electron microscopes operate only in vacuum, since the electrons have a very 

low permittivity. This property of electrons requires a specimen to be ultra thin 

(about 50nm). Spatial image produced by transmission electron microscope is 

presented in Fig. 1.2 on the left-hand side. 

Scanning electron microscope. Contrary to the transmission electron 

microscope, the electron beam emerged does not carry the complete spatial 

image information on the investigative object. The microscope probes the 

specimen surface over the rectangular area by applying a raster scan pattern. 

Raster scan is a method when the rectangular area is covered by parallel lines. 

Yet the microscope scans the specimen line by line with the beam of electrons. 

Similarly as the transmission electron microscope, the investigative object is in 

part transparent and in part not to the electrons. When the beam hits the sample 

it loses its energy. This loss evidences in heat, emergence of secondary 
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electrons, light emission, and X-rays. Thus, by mapping the scattered energy as 

intensity onto the display in a position corresponding to the position of the beam 

when the signal was generated, we obtain the spatial image (Fig. 1.2 right-hand 

side) of the investigative object. 
 

  

Fig. 1.2. The transmission (right-hand side) and scanning electron 

microscope (left-hand side) images, source:  

(Analytical Imaging Facility 2005) 

Generally, the scanning electron microscope produces images of lower 

magnitude than those acquired by the transmission electron microscope. 

However, the former microscope enables us to explore investigative objects in 

more detail and also the specimen can reach the size of 15 centimetres. However 

both types of microscopes cannot examine living objects since they operate in a 

vacuum. 

1.4.2. Projection Radiography 

The process of object exposure by high-energy form of electromagnetic 

radiation and capturing the remnant beam as a latent image is called a projection 

radiography (Farr and Allisy-Roberts 1996). In this case, X-rays are used as 

electromagnetic radiation. The X-rays have a unique property which enables 

them to be used as a non-invading, surgery-free method for patient screening. 

The wavelength of X-rays is from 0.01 to 10 nanometres, while the wavelength 

of visible light is from 380 to 750 nanometres. One can notice the similarity of 

the X-rays to the gamma rays in terms of wavelength, since they overlap each 

other. The distinction of the two types of electromagnetic radiation is that X-rays 

are electrons emitted outside the nucleus, and gamma rays are emitted by the 

nucleus (Grupen et al. 2005). 

Usually, if we are talking about the visible electromagnetic spectrum, such a 

light can be characterized by the properties of refraction or even by using the 
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lens it can be focused. However, X-rays also refract but the refraction is hardly 

notable, thus the technique of beam focusing is not used in practice. As 

described in Section 1.4.1 considering the electron permittivity, to produce the 

X-rays, the vacuum lamp is needed. In the usual type of the X-ray tube, an 

incandescent filament supplies the electrons and thus forms the cathode, or 

negative electrode, of the tube. X-rays are produced when electrons, travelling at 

a high speed, collide with matter or change direction. A high voltage applied to 

the tube drives the electrons to the anode, or the target. The sudden stop of these 

rapidly moving electrons on the surface of the target results in the generation of 

X-radiation (Quinn 1980). Generated radiation then passes through the less 

dense material such as fat, muscles, air, or other tissues, while the more dense 

tissues as bones, lungs, effected by pneumonia, scatter the radiation. Radiation 

arising from the investigative patient then strikes the fluorescent phosphorus 

screen and exposes the film. The darker the region on the film, the more  

X-radiation that region has absorbed (Fig. 1.3. left-hand side). The X-rays are 

used not only to expose the dense tissues of the human body. They allow us to 

monitor some structures in motion in real time. In this case, the radio-contrast 

agent has to be absorbed by the patient. The purpose of the radio-contrast is to 

make the investigative tissues denser. This allow us, for example, to monitor the 

blood flow in arteries and veins (Parsons et al. 2005). Such a technique is called 

fluoroscopy and the fluoroscopy of the arteries and veins are called angiography. 

A characteristic image is shown in Fig. 1.3, on the right-hand side. 
 

  

Fig. 1.3. Chest X-ray (left-hand side), source: (RadiologyInfo 2010). 

Angiogram of the eye fundus (right-hand side),  

source: (New York Eye and Ear Infirmary 2010) 

Another appliance of the X-rays is the technique called tomography or 

computed tomography. During this type of patient screening the X-ray tube is 

not fixed but rotates in a circle while the patient is lying still. On the opposite 

side of the X-ray tube the detector rotates as well. Thus, by rotating the X-ray 

generator along with the detector in 360 degrees a slice of a body can be 
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obtained in digital form. During the investigation a detector registers the 

attenuation of X-rays when they pass through an object. Basically, object is 

modelled as a two-dimensional X-ray attenuation constant and the total 

attenuation suffered by a beam of X-rays. Finally, digitalization of the image is 

computed using the Radon transformation (Carlton et al. 2005). Nowadays the 

computed tomography can produce a three-dimensional representation of an 

investigative object as well. 

1.4.3. Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is quite a new technology. It aims to 

visualize the internal structure and function of a body (Ţitkevičius 2007). This 

technology is mainly based on three complementary parts: magnet, resonance, 

and, finally, data visualization part (Todd 2000). 

Usually. the magnetic resonance imaging technique can be established by 

three types of magnets. It should be noted that, in the magnetic resonance 

imaging, the power of the magnet varies from the 0.5 to 2.0 Tesla (1 Tesla 

equals 10,000 Gauss). For comparison the Earth's electromagnetic field is equal 

to 0.5 Gauss. 

The resistive magnet is a compound of coils or cylinders around which 

wires are wrapped. Then, in passing the electricity through the wires, a magnetic 

field is generated. This type of magnet has a relatively low cost and the 

magnetism disappears when the electricity is shut down. However, to maintain 

the magnetic field it consumes a huge amount of electricity. Permanent magnets 

are the same as the resistive ones, but the magnetic field is generated constantly, 

thus it costs nothing to maintain the electromagnetic field that is generated all 

the time at full strength. The main drawback of such a magnet is that, depending 

on the power of the magnet, the weight increases dramatically. Finally, the last 

type of magnets is semiconducting magnets which are most commonly used. 

These types of magnets are like the resistive ones, yet the wires are placed in the 

liquid helium at the temperature about 452 C below zero. This causes a drop in 

natural wire resistance to almost zero and dramatically decreases the electricity 

consumption, what makes the operation of the device more economical. 

Another principle on which the technology depends is the resonance 

property of nuclei (Mitchell and Cohen 2004). A body consists of billions of 

different atoms, however the most important is the hydrogen. The hydrogen 

atom has two important properties that make it interesting, namely, one proton 

and a large magnetic moment. The magnetic moment means that the atom has a 

strong tendency to line up with the direction of the magnetic field. Another thing 

to be mentioned is that the nucleus of an atom precesses about an axis and has 

two spin eigenstates. In the normal conditions, where there is no magnetic field 
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the sum of the eigenstate energies are equal to zero. Yet things change when the 

magnetic field is introduced. By putting some tissue in a strong magnetic field, it 

gets magnetized, i. e., protons align along the magnetic field axis in either 

parallel or anti-parallel direction. The greatest part of the protons aligns in 

parallel to the magnetic field direction. Thus, the tissue gets magnetized. The 

parallelism of the protons depends on the Lamb shift (Lamb and Retherford 

1947). Those protons which are anti-parallel have lower energy and are most 

interesting 

(Brown and Semelka 2003). After applying the radiofrequency wave, these 

protons reach a high level by absorbing wave energy. This feature is known as a 

resonance. When the radiofrequency wave is cut, the protons, that absorbed 

energy, slowly emit the absorbed energy in a resonant wave frequency while 

returning to the natural position. By registering the frequency and phase of a 

resonant wave and applying the inverse Fourier transform, the achieved signal 

information can be visualized in a spatial domain. Some pictures of magnetic 

resonance imaging are presented in Fig. 1.4. 

  

Fig. 1.4. MRI images, source: (Johnson and Becker 1999) 

1.4.4. Ultrasound 

Ultrasound as the name implies is the high frequency acoustic waves. It should 

be mentioned that acoustic waves are longitudinal. This means that waves shift 

the particles in the same direction as the wave is passing. Yet this type of waves 

cannot pass through the vacuum and need a supporting medium, unlike the 

waves of a visible spectrum. In the medical context, the frequency of the waves 

varies from the 2 to 15 megahertz, and it is obvious that sound waves travel at 

different speeds (Thrush and Hartshorne 1999). In this case, the speed depends 

on the density of the material, however within same material it remains constant. 

The more denser the material the slower a wave travels through it. Thus, the 

privity of sound speed is needed in order to get knowledge how far the wave has 
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travelled in the tissue. In the medical context, in most systems it is assumed that 

the speed of sound is constant for all tissues and equals to 1540 meters per 

second.  

The ultrasound is generated using a piezoelectric effect. Usually, 

piezoelectric materials vibrate as the voltage is applied over them. Then, by 

varying the voltage, the frequency of the vibration varies as well. The thickness 

of piezo-material describes the resonant frequency, i. e., the most effective 

vibration. Then, again, the piezoelectric effect is introduced, which is aimed to 

gather the reflected vibrations from the tissue and convert into an electrical 

signal. It should be noted that all the ultrasound devices operate using pulsed 

generation of sound waves. If a continuous wave is passed to the tissue, then the 

reflecting waves will also be continuous along the passing path and thus it will 

be impossible to predict where the returning echoes reflect from. Each pulse 

consist of a range of frequencies of different amplitudes. When the generated 

ultrasound beam hits the tissue, some portion of ultrasound will be transmitted 

further, and some portion reflected back to the transceiver (Mačiulis et al. 2009). 

If two tissues have a similar density then most part of the signal will be 

transmitted, otherwise, reflected back. 

Yet in terms of gathering the reflected beam, the position of the transceiver 

with respect to the investigative tissue is crucial in order to reconstruct the 

image. It is desirable that the transceiver and the investigative tissue were 

perpendicular to each other. If this condition is not met, the effect of refraction 

and angular reflection can be observed. This would result in a loss of the  

tissue-reflected signal registration and the resulting image in less detail. The 

rough boundary of the investigative object and the particles that are smaller than 

the wavelength of a beam also result in reflecting beam scattering. 

Finally, by registering the reflected sound wave one can reconstruct an 

image. Image reconstruction is based on the assumption that in the tissue sound 

waves travels at a constant speed. This assumption enables us to calculate the 

distance the wave has travelled from the reflective boundary to the transducer. 

The amplitude of the received signals will depend on the back-scattered signal 

and on the amount of the attenuated signals along its path. Usually, there can be 

two types of the scan modes that yields in a different meaning of the images 

produced, that is: B-scan, and M-scan. If serial ultrasound pulses are produced 

along the adjacent path and displayed in an image as adjacent scan lines, then 

such image is called B-mode image (Fig. 1.5, left-hand side). On the other hand, 

if consecutive ultrasound pulses are sent along the same path and the returning 

echoes are displayed as adjacent scan lines, an M-mode image is generated that 

enables us to investigate the tissue motion (Fig. 1.5, right-hand side). 
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Fig. 1.5. B-scan ultrasound image (left-hand side),  

source: (The Advanced Fertility Center of Chicago 2010).  

M-scan ultrasound image (right-hand side), source: (George 2006) 

In other words, the M-scan image represents pixel intensity over the time at 

the 𝑥 axis and depth at the 𝑦 axis, and the B-scan image represents pixel 

intensity over the distance at the 𝑥 axis and the depth at the 𝑦 axis of the 

investigative tissue. 

1.4.5. Photo Acoustic Imaging 

Photo acoustic imaging is a relatively new hybrid imaging modality that 

combines the physics of optical and ultrasound imaging (Zhang et al. 2009). 

Photo acoustic imaging is a promising complement to pulse-echo ultrasound 

imaging, since it provides a contrast between areas with different light 

absorption characteristics (Fig. 1.6.). 
 

 

Fig. 1.6. Photo acoustic image, source:  

(Medical Physics and Bioengineering 2010) 

Specifically, the regions with a higher blood concentration can be identified, 

which is useful for imaging vascularisation and the early detection of cancer 

(Wygant et al. 2005). It provides both the high contrast and spectroscopy based 
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specificity of optical techniques and the high spatial resolution of ultrasound. 

The technique involves delivering nanosecond pulses of near infrared laser or 

visible laser light to the surface of the skin (Zhang et al. 2009). Absorption of 

the laser energy results in a rapid thermo-elastic expansion and the emission of 

broadband pulses of ultrasound. Later, propagated ultrasound pulses to the 

surface where are detected at different spatial points using either an array of 

ultrasound receivers or a single mechanically scanned detector. By measuring 

the times-of-arrival of the ultrasound pulses at the surface and knowing the 

speed of sound in a tissue, an image of the absorbed optical energy distribution 

can be reconstructed. Spatial resolution is defined by the physics of ultrasound 

propagation and is limited by the frequency-dependent attenuating 

characteristics of a soft tissue. The image contrast, on the other hand, is based 

largely on optical absorption, which means that the technique is particularly well 

suited to imaging blood vessels due to the strong optical absorption of 

haemoglobin. 

1.4.6. Thermovisual Imaging 

Thermovisual imaging can also be referred as infrared (medium or long 

wavelength infrared) imaging and it is not a new concept in the evaluation of 

objects. Basically, infrared imaging, also known as thermovisual imaging, 

converts thermal fluxes into a human perceptual form. In other words, every 

physical body eradiate varying length infrared waves if the temperature of the 

body is higher than absolute zero (Fig. 1.7.). 
 

 

Fig. 1.7. Thermovisual image 

The intensity of the eradiated energy is proportional to the body temperature 

or molecular kinetic energy and also depends on the substance itself. New 

technological achievements in infrared imaging, such as advanced uncooled 

microbolometer focal plane array (FPA), detector technology, delivers high 

resolution long wave infrared images that allow us to determine thermal 

variances as low as 0.12 ˚C. Real time scanning at standard video rates (up to  
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60 Hertz) enable us to see rapid, thermally transient events, which gives an 

opportunity to visualize temperature dynamics of the investigative object (Lekas 

et al. 2009). However, it is necessary to note that a thermal image shows the 

emitted, transmitted and reflected infrared energy from the object. This property 

can be efficiently used in testing the electric component connectivity (Izmailov 

et al. 2009) or in building heat emission (Avdelidis and Moropoulou 2003). 

Another wide context in which thermovisual imaging can be used is medicine. 

(Veikutis et al. 2008) diagnose ischemic damage of myocardium and state that it 

is an important problem to see the coronary arteries blood circulation in  

open-heart surgery. Insufficient blood circulation results in tissue temperature 

dropdown which can be monitored by means of thermovisual imaging. The 

dropdown of temperature may lead to a serious influence on post-operation 

complications or even mortality. Other investigations of the same author disclose 

the characteristics of non-contact temperature registration method and the 

possibility to estimate the effect of application of radiofrequency energy to 

different heart structures, using standard intra-cardiac electrodes 

(Veikutis et al. 2008b). 

1.4.7. Ophthalmology Imaging 

The majority of perceptual information humans get using their eyes. A human 

eye is a complicated system of neuro-receptors which is able to receive and 

analyse the electromagnetic waves from the visible part of electromagnetic 

spectrum. The reliable and early diagnosis of the eye disease typically depends 

on the observation of even minimal or slight alterations in eye structures. When 

the functional disorders comes in play there is nothing more than patients 

reaction to the pathological process. These disorders are informative for the 

diagnostic process itself, however, for an ophthalmologist the morphological 

criteria are more important (such as the optic nerve disc size, the size of 

excavation, etc.). These criteria allow us to distinguish a healthy eye tissue or 

structure from the diseased one (Janulevičienė et al. 2008). The main and most 

informative way of investigating the optic nerve disc and eye fundus is 

ophthalmoscopy. Basically, there are four main methods for the eye fundus 

examination.  

First and the simplest one, is when physician investigates eye fundus with a 

powerful magnifying lens. Lens provides an inexpensive, fast, and easy way of 

investigation, however, it has some drawbacks. Depending on the distance 

between the investigative eye and the lens, the magnification errors may occur, 

especially when a high degree of refraction is present. Another drawback of this 

method is that in the case of myopia, the optic nerve disc is seen too small, and 

in the case of hypermetropy it is seen too large. 
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Second method relies on the laser scanning technology. This principle filters 

out all the reflected laser beams which do not come from the focal plane object. 

Thus, laser has to scan the whole fundus point by point. This is done by two 

vibrating lenses which are arranged on the path of reflecting beam. This is a fast 

and objective technique to investigate the eye fundus and does not require to 

apply a pupil mydriasis procedure. But the main disadvantage of this technique 

is that the physician has to subjectively measure the size of optic nerve disc. 

The third method is optical coherence tomography. The operation of a 

tomograph is based on the near-infrared laser wavelength interval. It uses two 

beams to investigate the eye fundus. Basically, owing to the different reflection 

times of the beams from different structures of the eye it is possible to compute 

the depth. Thus, by scanning region by region of the eye, one can construct a 

three-dimensional model of the fundus. This method automatically calculates the 

size of the optic nerve disc, but it is very expensive and needs a mydriasis 

procedure, and the scanning template is fitted to the average eye axis length. 

The fourth method is an eye fundus photography. The image of the patient's 

eye fundus is taken by a special camera connected to the microscope, if eye 

drops are applied in dilation. Then the microscope saves the obtained image for 

further investigation. This method is relatively cheap and fast, however, the size 

of the optic nerve disc has to be measured subjectively. 

A high quality colour photograph of the eye fundus (Fig. 1.8.) is helpful in 

the accommodation and follow-up of the development of the eye disease. 
 

 

Fig. 1.8. Eye fundus image 

However, evaluation of the eye fundus images is complicated because of the 

variety of anatomical structure and possible fundus changes in eye diseases 

(Osarech 2004). Sometimes it requires high-skilled experts for evaluation. 

The ways of a better fundus image evaluation is the use of modern 

information technologies for processing and parameterization of the main 

structures of the eye fundus (Treigys et al. 2006). There are three main structures 

in the eye fundus image, used for making a diagnosis in ophthalmology  

(Treigys et al. 2008b): 
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 Optic nerve disc. 

 Blood vessels (retinal arteries and veins). 

 Retina. 

The optic nerve disc appears in the normal eye fundus image as a yellowish 

disc with whitish central cupping (excavation) through which the central retinal 

artery and vein pass. 

The eye fundus images used in this dissertation were collected in the 

Department of Ophthalmology of the Institute for Biomedical Research of 

Kaunas University of Medicine (BRKU), using the fundus camera  

Canon CF-60UVi, at a 60° angle. 6.3 Mpixel images (image size 3072 by 2048 

pixels) were taken. The magnification quotient is 0.0065248 mm/pixels, 

common magnification quotient for the system eye fundus camera is 

0.556782±0.000827 (mean±SD). The scale (mm to pixel) for the fundus camera 

is 0.01171875 mm per pixel. 

1.5. Conclusions for the First Section 

New information technologies provide a possibility of collecting a large 

amount of medical images into databases. The greatest part of the collected data 

in medical practice is unsupervised. This fact naturally raises a doubt about data 

usefulness. The aim of pattern recognition is to find the ways and means to 

automate the decision making process, which later could lead to a better 

unsupervised data classification or pattern recognition. Thus, the techniques of 

data mining, pattern recognition, and knowledge discovery can be efficiently 

used and allow us to automate processing of images for clinical decision. 

The overview of medical image formation principles provides the idea for a 

new knowledge discovery. The collected data cannot be examined in detail by a 

human since the amount is too large, however, it provides the crucial 

information on the state of the patient.  

For example, changes in the eye fundus can be associated either with 

numerous vision threatening diseases such as glaucoma, optic neuropathy, 

swelling of the optic nerve disc, or related to some systemic disease. Finally, 

tracking the progress of a possible disease of the patient becomes very difficult 

due to numerous anatomical structures, such as tree of blood vessels, fovea, 

macula, excavation, etc. Moreover, the structures does not have the predefined 

place or the size and may emerge in the image at different locations. 
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2. Investigation of Blood Vessels 

in Eye Fundus Images 

The initial source of information on the state of disease of patient 

ophthalmologists obtains from the eye fundus images. When examining eye 

fundus, it is very important for an ophthalmologist to recognize the optic nerve 

disc as well as qualificatory parameters in the colour retinal images quickly. 

Later, these parameters could be used to identify numerous ophthalmologic 

disease cases. However, in the automated case of optic nerve disc identification, 

the problems that cause the tree of eye fundus vasculature should be overcome. 

The opposite task of the blood vessel tree extraction will be considered as well. 

2.1. Survey of Methods for Vasculature Processing  
in Eye Fundus Images 

In everyday clinical practice a physician describes or sketches eye fundus taken 

under examination. In this case, the eye fundus examined is a matter of subject. 

The eye fundus imaging is an objective method which can further be evaluated 

by hand. Presently, eye fundus images can be stored in digital form and 

furthermore such images can be analysed by automated means. 
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One of the main tasks in the ophthalmologist practice is parameterization of 

the optic nerve disc. This is only possible in vivid (qualitative, explicit 

anatomical structure) images. This makes the task very difficult, since automated 

methods have to locate the position of the optic nerve disc and apply some 

parametric form in order to observe the possible changes in the future 

examinations. 

In order to search for the optic nerve disc in retinal images, it is important to 

eliminate the noise. The noise in automated localization and parameterization is 

apprehensible as a structure of vasculature, since vessels pass through the optic 

nerve disc (Treigys 2005b). Thus, the analysis of methods for removing blood 

vessel forms one of section task. Basically, almost all segmentation methods 

work on a gradient image and lock onto homogeneous regions enclosed by 

strong gradient information. This task is extremely difficult in our context since 

the region of the optic nerve disc, as mentioned before, is invariably fragmented 

into multiple regions by the blood vessels. By applying some mathematical 

morphological operations we will show that this technique is suitable for the 

vasculature extraction and elimination tasks. 

Mathematical morphological operations for the colour images have not been 

widely explored. According to (Mendels et al. 1999) mathematical 

morphological operations were applied on luminance images of YIQ colour 

system. However the initial data set of the eye fundus pictures was scanned from 

the slide photos of the eye with the resolution of 285 by 400 pixels. This 

definitely results in loss of information or signal distortion by the scanner itself. 

Another lack is that the authors do not prove the necessity of conversion from 

RGB to as well as application of mathematical morphology operations only to 

luminance domain. 

The HSL (hue, saturation, lightness) colour space tends to describe 

perceptual colour relations in more detail than the RGB colour space does. The 

mathematical morphology has been investigated in this colour space by  

(Peters 1997; Handbury and Serra 2001). It is a computational cost-effective 

model for colour representation. However, most problematic is the hue domain 

described by 𝐻 ∈ [0,2𝜋), though domain lightness and saturation are linear 

components and can be ordered as real numbers. It means that component 𝐻 is a 

unit circle that has neither relevant order nor dominant position. It follows that 

we cannot construct a lattice on a unit circle if we do not assign it to some 

arbitrary origin (Vardavoulia et al. 2002). The same problem results in the HSV 

(hue, saturation, value) colour space (Louverdis et al. 2002). Depending on the 

hue origin, different orders and intuitive sense of what is lower or higher 

disappear. Moreover, the lexicographical order should be introduced when we 

talk about the pair of points that lie on the same surface. There are many 

techniques for the automated hue origin selection (Handbury and Serra 2001), 
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but all of them have disadvantages – we need a priori information about the 

colour to be preserved in the image. For example, if the origin is set to 0, then it 

means that the overall image will be processed taking into account the red colour 

representation. 

Later on, the principles described above were applied to the Lab colour 

space, where {𝐿} is luminance, {𝑎} stands for the distance between the red and 

green colours, and {𝑏} is the distance between the yellow and blue colours. Also, 

the authors have adapted the scheme to the Lch colour space as well. Here 𝑐 

stands for 𝑐 =  𝑎2 + 𝑏2  and  stands for  = 𝑡𝑎𝑛−1 𝑏

𝑎
 (Handbury and 

Serra 2002). 

The opposite task is automated extraction of the vasculature from eye 

fundus images. The methods for extracting vasculature can be assigned to one of 

the three groups: kernel-based, classifier-based and tracing-based  

(Vermer et al. 2004). In the kernel-based methods, an image is convolved with a 

predefined kernel in most cases. Further, the Gaussian filter is introduced in 

order to model cross-section of the vessels. Afterwards the vessel identification 

filters (Hoover and Goldboum 2003) are applied. Such a class of vasculature 

structure extraction algorithms is commonly modelled together with artificial 

neural networks (Matsopoulos et al. 2004) and is a very time-consuming task. 

Classification-based methods are composed of two steps. During the first step, 

segmentation of an image is performed. Segmentation (Staal et al. 2004; Soares 

et al. 2006) is basically accomplished by the kernel-based methods. In the 

second step, a set of features has to be provided for the algorithm. Such a set 

describes the vessels visible in the image. These methods that belong to this 

class allow processing of the objects with complex structures (Chanwimaluang 

et al. 2006). This enables algorithms to run faster, however, these algorithms 

cannot be automatic in most cases. In the tracing-based class of algorithms 

(Dongxiang et al. 2000), the algorithm traces the structure of a vessel between 

predefined points. Basically tracing ends at the provided reference points. It is 

common that these reference points are provided interactively by the human. 

2.2. Elimination of Vasculature  
from Colour Eye Fundus Images 

The main disadvantage in the ophthalmologist practice and automated eye 

fundus processing is that the optic nerve disc can appear anywhere in the image. 

The size of the optic nerve disc varies and, moreover, it is invariantly segmented 

by the vessels. Thus, the use of mathematical morphological operations was 

introduced, since they do not depends neither on location of the objects in the 
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image nor on the size of the object to be preserved. Mathematical morphological 

operations typically process an image with a small shape or template known as a 

structuring element. The four basic morphological operations are erosion, 

dilation, opening, and closing (Soille 1999). Further, we will explore the basics 

of mathematical morphological operations. 

2.2.1. Mathematical Morphology on Binary Images 

Each image naturally can be described by a heap or set of discrete or continuous 

coordinates. Assume that subsets in the set represent some points of objects. In 

Fig. 2.1, two objects 𝐼 and 𝑍 are presented. It should be noted that the presence 

of the coordinate systems is necessary (Young et al. 2003). 
 

 

Fig. 2.1. Two objects on the Cartesian grid, source: (Young et al. 2003) 

Further, assume that object 𝐼 is comprised of points 𝑜, all of which satisfy 

the same property 𝐼 = {𝑜|𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑜) = 𝑇𝑟𝑢𝑒}. According to the coordinate 

system, object Z is described by the coordinates: {[0,0], [1,0], [0,1]} (Fig. 2.1). 

The basic operations that can be associated with object 𝐼 are: translation, 

union, intersection, and complement. 

The translation (𝐼 + 𝑥) of object 𝐼 can be defined by 𝐼 + 𝑥 = {𝑜 + 𝑥|𝑜 ∈ 𝐼}, 

when 𝑥 stands for a vector and 𝐼 is an object. It should be noted that some 

restrictions have to be applied to the vector 𝑥, since the digital image is 

composed of pixels at the integer coordinate positions. 

It is substantial to observe that every element that comprises set 𝑍 is not 

only a pixel, but also a vector, since it has a precise position with respect to the 

origin of [0,0]. If we have two sets 𝐼 and 𝑍, then the Minkowski addition and 

subtraction can be defined as follows: 

𝐼 ⊕ 𝑍 =   𝐼 + 𝑧 𝑧∈𝑍 , (2.1) 

𝐼 ⊝ 𝑍 =   𝐼 + 𝑧 𝑧∈𝑍 . (2.2) 

In view of the Minkowski equations fundamental operations of the 

mathematical morphology, such as erosion and dilation, will be depicted as: 
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𝐷 𝐼,𝑍 = 𝐼 ⊕ 𝑍 =   𝐼 + 𝑧 𝑧∈𝑍 , (2.3) 

𝐸 𝐼,𝑍 = 𝐼 ⊝  −𝑍 =   𝐼 − 𝑧 𝑧∈𝑍 . (2.4) 

where  −𝑍 =  −𝑧|𝑧 ∈ 𝑍 . The result of dilation and erosion is presented in  

Fig. 2.2. Finally, the complement of set 𝐼 is assumed to be a background and is 

defined as 𝐼c= 𝑜 o∉I . 
 

 

Fig. 2.2. Dilation (left-hand side), erosion (right-hand side),  

source: (Young et al. 2003) 

Both of the sets, 𝐼 or 𝑍, can be treated as an image, however, in practice set 

𝐼 is assumed to be the image and set 𝑍 is called a structuring element. 

Dilation and erosion on binary images are closely related to the convolution 

operations over the Boolean algebra. Hence it can be described in terms of 

logical operations. There is a similarity between the convolution operations and 

that of mathematical morphology, both of them analyse neighbouring pixels 

according to the provided structuring element. The structuring element 

essentially describes the structure to be kept in the image. If one uses a  

round-shaped structuring element, then the structure of round objects will be 

kept in the image. In a separate case, a rectangular structuring element preserves 

a linear structure, however, it namely depends on the orientation of rectangular 

structuring element whether the structure preserved will be horizontal or vertical. 

Let us explore the erosion in detail, assuming that the structuring element is 

described by [1,1,0] and is of horizontal orientation. The value of the point under 

analysis depends on the logical multiplication followed by addition. That is, the 

investigative point becomes equal to 1 only if all the points overlaid by the 

structuring element (including the investigative itself) are equal to one. In the 

opposite case, the investigative point becomes 0. The scheme of erosion is 

presented in Fig. 2.3. Here the origin is at coordinates (0,0). 
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Fig. 2.3. The scheme of the binary erosion, source: (Shih 2009) 

A dilation operation is example of the opposite effect. Let the structuring 

element to be of form [1,0,1]. This operation will cause the white regions in the 

binary image to shrink. Actually, not necessary are the white regions, they also 

can be black; since it depends on the agreement whether white means 1 or 0. All 

the circumstances under which the erosion is acting are valid for dilation as well. 

Yet the logical operations applied are addition followed by multiplication. The 

scheme of dilation is presented in Fig. 2.4. 
 

 

Fig. 2.4. The scheme of the binary dilation source: (Shih 2009) 

Fig. 2.4 and Fig. 2.3 shows the initial binary image on the left-hand side, in 

the middle there is a structuring element, and on the right-hand side we see the 

binary image after erosion and dilation. A combination of the dilation and 

erosion operations allows building higher order mathematical morphological 

operations: 

𝐶 𝐼,𝑍 = 𝐸 𝐷 𝐼,−𝑍 ,−𝑍 , 
(2.5) 

𝑂 𝐼,𝑍 = 𝐷 𝐸 𝐼,𝑍 ,𝑍 . 
(2.6) 

Here 𝐶(𝐼,𝑍) stands for closing and 𝑂(𝐼,𝑍) stands for opening operations. 

2.2.2. Mathematical Morphology on Intensity Images 

Basically mathematical morphological operations are applicable to binary 

images, but the operations such as erosion, dilation, closing, and opening can be 

applied to intensity images as well. Erosion and dilation in intensity images 

matches the non-linear search for minimum or maximum. 
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The intensity image erosion can be described as a calculation of the 

minimum pixel value within the structuring element centred on the current pixel 

𝑂𝑖 ,𝑗 . Denoting an intensity image by 𝐼 and a structuring element by 𝑍, the 

erosion operation is defined at a particular pixel (𝑥,𝑦) as: 

𝐸(𝐼,𝑍) = 𝑚𝑖𝑛(𝑖,𝑗 )∈𝑍(𝐼𝑥+𝑖,𝑦+𝑗 ), (2.7) 

where 𝑖 and 𝑗 are index of the pixel of 𝑍. 

The intensity image dilation is considered in a dual manner and thus can be 

written as: 

𝐷(𝐼,𝑍) = 𝑚𝑎𝑥(𝑖,𝑗 )∈𝑍(𝐼𝑥+𝑖 ,𝑦+𝑗 ). (2.8) 

The scheme of the search for the maximum is presented in Fig. 2.5 
 

 

Fig. 2.5. Dilation of intensity images, source: (The MathWorks 2010) 

Fig. 2.5 represents the scheme of the dilation operation. Boxed rectangles on 

the background are assumed to be the image before the dilation (left-hand side) 

and the resulting image after the dilation (right-hand side). The numbers in 

rectangles mean intensity values. In the foreground a rectangular structuring 

element is shown. A rounded middle cell of the structuring element means that 

the intensity value can be changed in the resulting image. The intensity value of 

the rounded element will be changed to the maximum value of the neighbouring 

values overlaid by the structuring element. 

By introducing dilation and erosion we arrive at higher order mathematical 

morphological operations. The opening of an image is defined as erosion 

followed by dilation: 

𝑂 𝐼,𝑍 = 𝐷(𝐸 𝐼,𝑍 ,𝑍) = 𝑚𝑎𝑥 𝑖,𝑗  ∈𝑍 𝑚𝑖𝑛 𝑖,𝑗  ∈𝑍 𝐼𝑥+𝑖,𝑦+𝑗   . (2.9) 

In a dual manner the image closing includes dilation followed by erosion. 

Thus, the mathematical morphological operation as closing can be defined as 

follows: 

𝐶 𝐼,𝑍 = 𝐸 𝐷 𝐼,𝑍 ,𝑍 = 𝑚𝑖𝑛 𝑖,𝑗  ∈𝑍 𝑚𝑎𝑥 𝑖 ,𝑗  ∈𝑍 𝐼𝑥+𝑖 ,𝑦+𝑗   . (2.10) 
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The closing operator usually smoothes away the small-scale dark structures 

from intensity retinal images. As closing only eliminates the image details 

smaller than the structuring element used, it is convenient to set the structuring 

element large enough to cover all possible vascular structures, but still small 

enough to keep the actual edge of the OND. However, the fundamental concepts 

of mathematical morphology operations in intensity images cannot be directly 

applied to colour ones (Goutsias et al. 1995). 

2.2.3. Mathematical Morphology on Colour Images 

It is well known that every pixel in a colour image can be described by three 

components, namely: red {𝑅} channel, green {𝐺} channel, and blue {𝐵} channel 

pixel intensity values. Then, every image that consists of 𝑁 by 𝑀 pixels can be 

described by three separate matrices:  𝑅 ,  {𝐺}, and {𝐵}, where  

𝑥 =  1,… ,𝑁;  𝑦 =  1,… ,𝑀. If we assume that each of these matrices represents 

the intensity image 𝐼 (Fig. 2.6), then we can apply the mathematical 

morphological closing operation (2.10) to each matrix with some structuring 

element. 
 

   

   

Fig. 2.6. Colour image decomposed into colour vectors (top row),  

images after mathematical morphological closing (bottom row) 

As mentioned in Section 2.2.1, the structuring element describes the shape 

of the objects to be preserved in the image. In our case, since we want to remove 

the linear-shaped elements, i. e., the tree of the vasculature, we used a  

disc-shaped structuring element (Fig. 2.7). It should be noted that zeros in the 

figure represent pixels covered by the structuring element in the image and do 

not have any effect on the operation (2.10). The meaning of the element in the 

figure is the same as that explained in Fig. 2.5 (see Section 2.2.2). The intensity 
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value at the location of the point of interest may be changed according to the 

surrounding pixel intensity values. It is exactly the surrounding pixels that 

describe the structuring element's members set to one. 

 

Fig. 2.7. Disc-shaped structuring element with the diameter of 7 pixels, 

source: (The MathWorks 2010) 

Fig. 2.7 shows a disc-shaped structuring element. The diameter of the 

structuring element should not be smaller than the widest vessel underlying in 

the image. After a careful analysis, the diameter of the disc-shaped structuring 

element was chosen experimentally equal to 14 pixels. We explored that the 

vessels in the eye fundus images, provided by the medics, were not wider than 

14 pixels. 

2.2.4. Recombination of the Results 

After decomposing the retinal image into {𝑅},  {𝐺}, {𝐵} channels and processing 

each channel separately, we can recombine the results. However, a recombined 

result is not valid in general. 

As described by (Peters 1997), let us consider a separate erosion of 
 𝑅 ,  {𝐺}, and {𝐵} channels, using the structuring element 𝑍. Each pixel after 

erosion 𝐸({𝑅},𝑍) is the minimum value of initial 𝑅 within the structuring 

element neighbourhood of the pixel. Descriptions of 𝐸 {𝐺},𝑍  and 𝐸({𝐵},𝑍) are 

similar. The problem is that the minimum is valid only for the separate {𝑅},  {𝐺}, 

and {𝐵} bands. After we recombine those separate bands into a structure for 

colour representation, it becomes not clear which minimum should be used. 

Thus, this fact violates the property of erosion (2.7), where the minimum has to 

be over all the three channels within the structuring element 𝑍. The same scheme 

is valid for dilation. 

However, the recombination of processed bands of the retinal image does 

not introduce a colour distortion and we achieve a closed colour retinal image 

(Fig. 2.8). The colour distortion is avoided because, in general, the mathematical 

morphological closing fills the dark holes in bright regions. Further, the optic 

nerve disc is a bright region in the retinal image, and the brighter the region, the 
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higher the value of each band’s pixel brightness. Hence, by selecting an 

appropriate structuring element’s size, we eliminate dark regions formed by the 

vasculature and replace them by the surrounding brighter region, located around 

the vessels replaced. 
 

  

Fig. 2.8. The initial (left-hand side) and  

closed (right-hand side) retinal images 

In this sub-section the principles of mathematical morphology operations 

were discussed. The first step for the blood vessel removal form eye fundus is to 

decompose the image to separate colour channels. Then the mathematical 

morphology closing operation with disc-shaped structuring element was applied 

over them. The analysis of the structuring element size showed that it is 

sufficient to use the element with the radius of 7 pixels. Despite the fact that the 

recombination of the processed channels into a colour representation is not valid 

in terms of mathematical morphology we were able to remove the structure of 

the blood vessels from the optic nerve disc area. 

2.3. Extraction of Vasculature from Eye Fundus 
Images 

The structure of the eye fundus vasculature in the retinal images is very 

important in terms of making medical diagnoses (Šaltenis and Treigys 2005). In 

some medical aspects, the structure of vasculature is the main objective of 

investigation, in other – it becomes nothing more than noise (Treigys 2005a). It 

depends on the topics of investigation. Yet the information provided by the 

structure of the vasculature can be used by ophthalmologist in various ways. The 

practice shows that this information can be used to diagnose the stage of a 

predefined disease or as supplementary information to diagnose the disease 

itself. The analysis based on the information from the eye fundus vasculature can 

benefit in watching the pathological changes influenced by such diseases as 



2. INVESTIGATION OF BLOOD VESSELS IN EYE FUNDUS IMAGES 41 

 

diabetes, hypertension, atherosclerosis (Thitiporn and Guoliang 2003;  

Lowell et al. 2004). 

2.3.1. Image Pre-processing 

In order to calculate the monochrome luminance (conversion to intensity image) 

of a colour image, we need to apply coefficients related with the eye's sensitivity 

to each of the RGB channel. This is performed according to (Johnson 2006) and 

can be expressed by: 

𝐼 𝑥,𝑦 = 0.3𝑅 𝑥,𝑦 + 0.59𝐺 𝑥,𝑦 + 0.11𝐵 𝑥,𝑦 . (2.11) 

for each 𝑥 =  0,… ,𝑁 − 1; 𝑦 =  0,… ,𝑀− 1. Here, functions 𝑅(𝑥, 𝑦), 𝐺(𝑥,𝑦), 

and 𝐵(𝑥, 𝑦) returns the specific intensity value of the channel at the position of 

(𝑥,𝑦). 𝐼 is the intensity image with integer values ranging from the minimum of 

zero, to the maximum of 255.  

Let the variable 𝐼1 represent the initial eye fundus image converted to the 

monochrome luminance. Also, let the variable 𝐼2 represent the monochrome 

luminance image after the mathematical morphological closing operation (see 

Section 2.2.2). The results of conversion from the colour representation to the 

monochrome luminance and the closing operation are presented in Fig. 2.9. 
 

  

Fig. 2.9. Intensity retinal image (left-hand side),  

closed intensity retinal image (right-hand side) 

2.3.2. Equalization of Histogram 

In order to see the differences of two spatial images, the technique of intensity 

value subtraction is frequently used. This operation can be defined as follows: 

𝐴 𝑥,𝑦 =  𝐼1 𝑥,𝑦 − 𝐼2 𝑥,𝑦  . After this operation (for each 𝑥 =  0,… ,𝑁 − 1; 
𝑦 =  0,… ,𝑀− 1), if, at a particular time there are no changes in the spatial 

domain, the subtracted intensity values acquire the value of 0, otherwise, if there 

are some differences, the intensity value does not become 0. In order to visualize 

the subtracted image, we have to apply the intensity adjustment procedure  

(Fig. 2.10). This is needed because the vessel intensity values in colour images 
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are very low compared to the surrounding background of the retinal image. This 

result from the subtraction operation where the image achieved is nothing more 

than a black rectangle. 
 

 

Fig. 2.10. The sample transformation function 

In Fig. 2.10 upper left corner represents desirable unknown function for 

intensity transformation. Further we will show, that values of this function are 

proportional to the intensity distribution function values of the investigative 

image 𝐴 see (2.16). 

The intensity adjustment procedure can mainly be described in this way. 

Assume that the distribution of intensity values of the subtracted image 𝐴 and 

the transformation function 𝑓(𝐷𝐴) are continuous in the interval [0,1]  

(Gonzalez and Woods 1992). Moreover, assume that the transfer function is 

single-valued 𝐷𝐴 = 𝑓−1(𝐷𝐵) and also, monotonically increasing (see Fig. 2.10). 

Then the real intensity levels, in the shown interval, will be recalculated using 

the function 𝑓 to the desired intensity levels in a desired interval. 

Densities of all the initial image histogram intensities in the interval 

[𝐷𝐴 ,𝐷𝐴 + 𝑑(𝐷𝐴)] will be recalculated in the desired interval [𝐷𝐵 ,𝐷𝐵 + 𝑑(𝐷𝐵)]. 
The surface areas 𝐴(𝐷𝐴)𝑑𝐷𝐴 and 𝐵(𝐷𝐵)𝑑𝐷𝐵  will be equal (Fisher et al. 2007). 

Hence, if the histogram  is a continuous probability function 𝑝 that depicts the 

distribution of intensities, then one can write: 

𝑝𝐵 𝐷𝐵 =
𝑝𝐴 (𝐷𝐴 )

𝑑(𝐷𝐴 )
. (2.12) 

All the output probability densities should be an equal fraction of the 

maximum number of intensity levels in the input image, hence: 
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𝑝𝐵 𝐷𝐵 =
1

𝐷𝑀
. (2.13) 

where 𝐷𝑀 = 𝑚𝑎𝑥 𝐷𝐵 =255 while 𝑚𝑖𝑛 𝐷𝐵 =0. Thus, we arrive at: 

𝑑 𝐷𝐴 =
𝑑𝑓(𝐷𝐴 )

𝑑𝐷𝐴
= 𝐷𝑀𝐹𝐴(𝐷𝐴). (2.14) 

Further, by substituting 𝐷𝐴 with 𝑢 and by rearranging (2.14) to: 

𝑑𝑓 𝑢 = 𝐷𝑀𝑝𝐴(𝑢)𝑑𝑢. 
(2.15) 

we integrate both sides of the formula: 

𝑓 𝐷𝐴 = 𝐷𝑀  𝑝𝐴(𝑢)𝑑𝑢
𝐷𝐴

0
= 𝐷𝑀𝐹𝐴(𝐷𝐴). (2.16) 

Here 𝐹𝐴(𝐷𝐴) is the histogram of point intensities obtained from the initial 

image (probability distribution). Hence, such a point intensity recalculation 

flattens the histogram and spreads the intensities over the desired intensity 

interval. In a discrete computational form it can be written as follows: 

𝑓 𝐷𝐴 = 𝑚𝑎𝑥(0, 𝑟𝑜𝑢𝑛𝑑  𝐷𝑀
𝑛𝑘

𝑁𝑀
 ), (2.17) 

whereas 𝑁 is the height of the image in pixels, 𝑀 is the width of the image in 

pixels and 𝑛𝑘  is the sum of pixels which intensity level is 𝑘 or lower. The result 

of intensity adjustment is shown in Fig. 2.11. 
 

 

Fig. 2.11. Subtracted image after the intensity adjustment 

The Gamma correction factor was set to 1. It means that the transformation 

function 𝑓(𝐷𝐴) is nearly linear. 

2.3.3.  Otsu Threshold 

By introducing mathematical morphological operations with a view to remove 

the vasculature, the areas of the outlier points can be seen. The outliers are 

points which do not belong to the tree of the vasculature. Also, it should be 
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stated that the intensity levels of the outlier points is considerably lower than that 

belonging to the tree of the vasculature. This implies that the outlier points have 

to be removed somehow. It means that the intensity image has to be converted to 

a binary one, where the foreground is assumed to be the tree of the vasculature 

and set to white, and the background with all the outliers has to be set to black. 

Thus, for an automated threshold level calculation, we use Otsu’s method based 

on the weighted histogram calculation (Otsu 1979). Otsu’s method maximizes 

the between-class variance 𝜎𝐵
2(𝜏1) given by: 

𝜎𝐵
2(𝜏1) = 𝜔 𝜏1  1 −𝜔 𝜏1   𝜇1 𝜏1 − 𝜇2 𝜏1  

2
, (2.18) 

where 𝜔 𝜏1 =  
𝑛 𝑖

𝑁

𝜏1
𝑖=0 ; 𝜇1 𝜏1 =  𝑖

𝜏1
𝑖=0

𝑛 𝑖

𝑁
; 𝜇2 𝜏1 =  𝑖𝐿−1

𝑖=𝜏1

𝑛 𝑖

𝑁
. 

The optimal threshold 𝜏1 is found by Otsu’s method through a sequential 

search for the maximum of 𝑚𝑎𝑥0≤𝜏1<𝐿 𝜎𝐵
2(𝜏1) of 𝜏1, where 𝑛𝑖  represents the 

number of pixels at the intensity 𝑖, 𝐿 is the number of intensities, and 𝑁 is the 

total number of pixels in the image (Tian et al. 2003). 

Fig. 2.12 represents the tree of vasculature (coloured part) of the retinal 

image. 
 

 

Fig. 2.12. Tree of the vasculature after the threshold application 

In this sub-section the opposite task to the blood vessel elimination from eye 

fundus images was investigated. The proposed method for the blood vessel tree 

extraction rely on the resulting image after elimination algorithm. Next, the 

subtraction of pixel intensities is applied over vessel-free and the initial eye 

fundus images. The resulting image contains the structure of the vasculature and 

the noise generated by elimination algorithm. The noise was removed by 

thresholding the equalized image. For the threshold level calculation the Otsu 

algorithm was introduced and allowed us to automate the task of blood vessel 

extraction from eye fundus images. 
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2.4. Conclusions for the Second Section 

The tasks of automated blood vessel elimination and extraction were considered 

in this section. The investigation of the automated optic nerve disc localization 

and parameterization problem has highlighted that it is only possible in vivid 

(qualitative, explicit anatomical structure) images. Thus, employment of the 

segmentation methods does not fit in this context, since they work on a gradient 

image and lock onto homogeneous regions enclosed by strong gradient 

information. The task of the robust automated blood vessel elimination from eye 

fundus images was solved by introducing mathematical morphological closing 

operation to a separate colour channels with 7 pixel radius disc-shaped 

structuring element. Further, the recombination of processed channels into a 

colour representation showed that the tree of the blood vessels was efficiently 

eliminated from eye fundus image while keeping the actual edges of the optic 

nerve disc. 

The opposite task for the automated extraction of the blood vessel tree was 

investigated in this section also. Analysis of the literature has disclosed that 

vasculature extraction methods from retinal images can be classified into one of 

the groups: kernel, classifier, and tracing based. However, these groups of 

algorithms cannot be automated in most cases and require either a priori 

knowledge of the structures of vasculature, either some human interaction. 

Moreover, they use the line-shaped structuring elements that cannot process 

every image pixel of blood vessel. We have showed that the combination of the 

elimination algorithm, histogram equalization and non-static image thresholding 

methods, robust extraction of the vasculature from the eye fundus images 

becomes possible in an automated way with a disc-shaped structuring element. 





 

47 

47 

 3 
3. Investigation of Optic Nerve Disc  

in Eye Fundus Images 

Automated localization and parameterization of the optic nerve disc is 

particularly important in making a diagnosis of glaucoma, because the main 

symptoms in these cases are relations between the optic nerve disc and the 

excavation parameters. In this section we will describe the algorithm for the 

automated optic nerve disc localization and parameterization by an ellipse in 

colour eye fundus images. It is assumed that for the optic nerve disc localization 

and parameterization task, the blood vessel tree is eliminated from eye fundus 

image according to algorithm provided in Section 2.2. 

3.1. Survey of Methods for Optic Nerve Disc 
Localization in Eye Fundus Images 

The optic nerve disc is the main structure for localizing other eye fundus 

structures as well as a very important structure for diagnosing some eye and 

neurological diseases. As mentioned before, the optic nerve disc appears in the 

normal eye fundus image as a yellowish disc with whitish central cupping 

(excavation) through which the central retinal artery and vein pass  
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(Jegelevicius et al. 2008). Changes of the optic nerve disc can be associated with 

numerous vision threatening diseases such as glaucoma, optic neuropathy, 

swelling of the optic nerve disc, uveal melanoma or related to some systemic 

disease (Jegelevicius et al. 2002; Zupan et al. 1997). 

This section focuses on automated optic nerve disc (OND) localization and 

approximation by an ellipse in retinal images with the aim to produce the 

parametric form of it. The intensity of the optic nerve disc is much higher than 

the surrounding retinal background. Thus the position of OND can roughly be 

estimated by finding the region or point with the maximum variance 

(Sinthanayothin et al. 1999). However, such a straightforward method often fails 

due to non-uniform illumination or photographic noise seen in the retinal 

images.  

Moreover, this problem is extremely difficult since, in general, the OND in 

the eye fundus image does not have a homogenous structure. This is due to a 

vascular tree within the optic nerve disc, and we have to deal with a colour 

images. Thus, the algorithm that removes the vasculature but keeps the actual 

edges of the optic nerve disc in eye fundus image provided in Section 2.2 was 

applied. 

The first problem of automated OND localization is to identify its position 

in retinal images. In the literature, there are many algorithms for OND 

localization. Basically these methods deal with image segmentation, dynamic 

contours and geometric models. 

In (Sinthanayothin et al. 1999; Boyd 1996), the vessel detection and 

convergence analysis are based on the region of nearly vertical vessels 

emanating in the area of OND. This algorithm led the authors to achieve an 

accuracy of 80 %. A separate case of convergence analysis is introduced in 

(Hoover and Goldboum 2003). Here every vessel forms a separate line and the 

voting for the constructed lines is performed. Since this is an extension of 

methods (Boyd 1996; Chaudhuri et al. 1989), this provides the accuracy of 

89 %. In the paper (Tobin et al. 2006) is described an accurate vasculature 

segmentation method and achieve the localization accuracy up to 87 %. Also 

segmentation method is presented in paper (Grau et al. 2006). In this paper 

authors discusses anisotropic Markov random field models for gathering prior 

knowledge of the geometry of the optic nerve disc structure. A different 

approach was used in (Goldbaum et al. 1996), where the main idea is 

segmentation accomplished by using matched spatial filters of bright and dark 

blobs. However, quantitative results for nerve localization were not provided. In 

(Pinz et al. 1998) the localization of optical nerve disc is accomplished by 

segmenting a retinal image into vessels, fovea, and nerve. The lack of this 

method is that the authors have a priori knowledge where OND is in the retinal 

image, and the data set used was very small. The accuracy of this method is 
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91 %. Segmentation and the vessel tracking methods are also presented in 

(Tolias and Panas 1998). Nerve localization is based on the brightest region 

search in a restricted third of the image. The testing data set consisted only of 

three fundus images, so the results are very questionable. The use of active 

dynamic contours, described in (Morris and Donnison 1999), is introduced, too. 

The main idea is that edge gradients and terminations in the image are converted 

into energies. This covers the actual OND by a curve. This approach is explored 

in article (Xu et al. 2007). In this article authors present modified active contour 

algorithm by introducing knowledge-based clustering and smoothing update 

techniques. This allow authors to achieve better success rate (94 %) compared to 

standard gradient vector flow snake model 12 %. Geometric models, presented 

in (Foracchia et al. 2004), probe the fundus image in a spatial or frequency 

domain with a predefined model for optic nerve disc localization. Another 

approach is presented in (Lowell et al. 2004). Here authors deals with blurred 

images from diabetic screening programme. Article incorporates specialized 

template matching filters and active segmentation methods for OND localization 

and leads to accuracy of edge excellent-fair performance (evaluated by 

ophthalmologist) of 83 %. Almost all of these methods rely on the quality of 

vasculature segmentation. 

The automated optic nerve disc approximation by a parametric curve such 

as an ellipse is a second goal of this section. Of course, 3D model parameters of 

optic disc could be much more informative, but this is not possible to explore, 

since this problem is related to the equipment involved with 3D photography. 

The analysis of the literature showed that the OND parameterization is 

insufficiently explored. The research is mostly concentrated on exudates, drusen 

detection and parameterization, but not the optic nerve disc itself. 

Further, we will describe an algorithm for OND localization in retinal 

images and parameterization by an ellipse. 

Use of new information technologies provides a possibility of collecting a 

large amount of fundus images into databases. It allows us to use automated 

processing and classification of images for clinical decisions.  

The automated localization and parameterization of the optic nerve disc is 

particularly important in making a diagnosis of glaucoma, because the main 

symptoms in these cases are links between the optic nerve and cupping 

parameters and differences in the symmetry between eyes. Besides, tracking of 

the disease progress is almost impossible without a quantitative change in 

patient’s fundus images with the lapse of time. Thus, the parameterization of the 

optic nerve disc is crucial. 
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3.2. Localization of the Optic Nerve Disc 

In order to localize OND, first of all we have to pre-process an image. The first 

step of image pre-processing is accomplished by scaling down the retinal image 

to the size of 768 times 512 pixels. Scaling is performed in order to decrease the 

computation time. Basically the circular Hough transform is the most time 

consuming procedure, since for every pixel in a spatial domain it calculates 

circle of radius r in a Hough space. In the case of the initial image, it has to be 

done 6291456 times. In the case of a scaled down image it has to be done 16 

times less. This leads to a substantial acceleration of approximation by the 

ellipse, which is very important at this stage. Besides, the size of the optic nerve 

disc is much larger than the details lost in the scaling operation. Also, as shown 

in the results section, quantitative parameters have a minor difference between 

that, achieved from a non-scaled image, and those achieved from the scaled 

down fundus image. 

In further investigation, in order not to lose the optic nerve disc details, we 

will use the closed colour retinal image converted to gray-scale (see  

Section 2.2.3), since the OND edge describes all the three colour bands. This 

approach suffers from unwanted details seen in the {𝑅} and {𝐵} bands, which do 

not belong to the optic nerve disc. Thus, as a reference the closed {𝐺} band 

fundus image for the same patient’s eye is also used which is least polluted with 

additional details. 

After the pre-processing step has been completed, we have to localize the 

OND centre. The difficulty is that we even do not know a priori where the optic 

nerve disc lies in the retinal image. Thus, localization is performed in two steps, 

by applying the Canny edge detector and Hough transform to the edge-detected 

image. 

3.2.1. Edge Detection 

Canny has defined three criteria to derive the equation of an optimal filter for 

step edge detection: good detection, good localization, and clear response, i. e., 

only one response to the edge (Canny 1986). We have used a scheme of the 

Canny edge detector algorithm as follows.  

The first step was to filter out any noise in the original image before trying 

to detect and locate any edges. Consider a two-dimensional Gaussian function: 

𝐺𝜎 𝑥,𝑦 =
1

 2𝜋𝜎2
𝑒
 −

𝑥2+𝑦2

2𝜎2  
, (3.1) 

where 𝑥 = 1, . . . ,𝑁, 𝑦 = 1, . . . ,𝑀 and 𝑀, 𝑁 are the dimensions of the discrete 

approximation matrix. 
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The main advantage of the Gaussian function is that we can easily 

approximate by a discrete convolution kernel. The discrete approximation can be 

calculated using: 

(𝑥,𝑦) =
𝑒
 −

𝑥2+𝑦2

2𝜎2  

  𝑔𝑦𝑥
. (3.2) 

In our case, the standard deviation for noise suppression used 𝜎 = 2. This 

parameter was set experimentally. 

Once a suitable mask has been calculated, the Gaussian smoothing is 

performed using the standard convolution methods. 

3.2.2. Edge Gradient Detection 

After smoothing the image and eliminating the noise, the next step is to find the 

edge strength by taking the gradient of the image.  

Thus, for each pixel value at (𝑥,𝑦) in the smoothed retinal image 𝐼, was 

calculated: 

𝛻𝐼 𝑥,𝑦 =  𝐼𝑥 𝑥,𝑦 , 𝐼𝑦 𝑥,𝑦  
′
, (3.3) 

where 𝐼𝑥(𝑥,𝑦) and 𝐼𝑦(𝑥,𝑦) are image gradients along the 𝑥 and 𝑦 axis at a 

coordinate (𝑥,𝑦), respectively. This task is resolved to calculation of edge 

strength and direction. Calculation of edge strength is performed by: 

𝐸𝑠 𝑥,𝑦 =  𝐼𝑥
2 𝑥,𝑦 + 𝐼𝑦

2 𝑥,𝑦 . (3.4) 

Once the gradient has been found, the calculation of its direction comes to 

be possible: 

𝐸𝑜 𝑥,𝑦 = 𝑡𝑎𝑛−1  
𝐼𝑥  𝑥 ,𝑦 

𝐼𝑦  𝑥 ,𝑦 
 . (3.5) 

Further non-maximum suppression has to be applied. There are only four 

directions when describing the surrounding pixel degrees: 0, 45, 90, and 135. 

Thus, each pixel has to be grouped in one of these directions to which it is 

closest. Next we check whether each non-zero pixel at coordinate (𝑥,𝑦) in the 

image is greater than its two neighbours perpendicular to the gradient direction 

𝐸𝑜(𝑥, 𝑦). If so, keep the pixel at (𝑥,𝑦),or else set it to 0. 

And the final phase of the Canny edge detector is to apply the hysteresis 

threshold. Before the hysteresis threshold can be applied the threshold levels 

have to be known. The problem is that the eye fundus images even of the same 

patient differs. Thus, the application of the static threshold level fails and false 
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detection of the optic nerve disc edges emerges. The dynamic threshold level 

calculation was introduced to Canny edge detector scheme and the calculation of 

the parameters is provided in section below. 

3.2.3. Image Binarization 

By thresholding the previous result at two different levels 𝜏1 and 𝜏2, we obtain 

two binary images 𝑇1 and 𝑇2. The difficulty is that we can not apply the static 

threshold level 𝜏1 since there are no retinal images with identical properties. For 

automated threshold level calculation we use Otsu’s method (see Section 2.3.3). 

We assume that to calculate the threshold level 𝜏1, the black background 

around the retina is omitted. Also, after image pre-processing, a supplementary 

noise is observed. This leads to the appearance of unwanted details since, in 

origin, Otsu's method was designed for weak gradient change detection. After 

the threshold the edge detected images contain too many edge details. Thus, 

after a careful computation, the original parameter 𝜏1 is scaled to 25 % and the 

parameter 𝜏2 is calculated as follows: 𝜏2 = 0.1𝜏1. 

3.2.4. Hysteresis Threshold 

After the parameters 𝜏1 and 𝜏2 have been calculated, we threshold the image at 

these two levels. For all unvisited pixels at coordinate (𝑥, 𝑦) in the image 𝑇2 we 

trace each segment in to its end and set them as contour points. At the segment 

end in the image 𝑇2 we seek its neighbours in the image 𝑇2  (since this image has 

much more details). If there are neighbouring pixels in the image 𝑇2, we denote 

them as contour points, too. 

As described in the recombination of the results (see Section 2.2.4), to 

detect edges, we use intensity images from the closed band {𝐺}, and the closed 

colour retinal image converted to gray-scale. This is necessary because there are 

cases where band {𝐺} does not provide any information about OND, and the 

bands {𝐵}, {𝑅} are very noisy. In addition, using the closed gray-scale image 

with all bands, we retain all the nested information about OND. 

The results of the edge detection scheme described are shown in Fig. 3.1 

and Fig. 3.2. Here, in the right-side figures, the boundaries of OND are 

displayed 5 times magnified. 
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Fig. 3.1. The closed {𝐺} channel and edge detected images  

  

Fig. 3.2. The closed intensity and edge detected images 

The result of the Canny edge detection algorithm is an image with object 

boundaries identified. Suggested dynamic threshold level calculation allow us 

efficiently employ the properties of the Canny algorithm in automated edge 

extraction. However, the edges that describe the optic nerve disc may occur at 

every position in the image. Moreover, the boundary image contain not only the 

OND edges but also a supplementary edges described by excavation, fovea etc. 

Thus the next step is to apply the Hough transformation with the aim to identify 

the true position of optic nerve disc in eye fundus image. 

3.2.5. Hough Transform 

After the edge detection has been completed, we apply the Hough transform 

(Hough and Paul 1962) to the optic nerve disc localization. This is necessary 

because the optic disc structure in retinal images is nearly circular. We describe 

here the main idea. The general Hough transform can be found in  

(Ballard 1981).  

The circular Hough transform is the method for transforming the image 

domain into the Hough domain. Each picture element in the image domain is 

transformed into a circle in the Hough domain. 

Thus, in the case of a circle, this model has three parameters: two 

parameters indicate the centre of the circle and one parameter the radius. In this 

scheme the parameter space is congruent with the image space, that is, each 
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point in the image maps to a point in the same position in the parameter space 

(Ashbrook and Thacker 1998). To detect a circle of radius 𝑟, the circles of this 

radius are plotted in the Hough parameter space centred on every edge pixel 

found in the image. Thus, an array of peaks is formed for each edge-detected 

fundus image. A peak emerges when the circles in the Hough space intersect one 

another. Such peaks in the Hough parameter space indicate the possible centres 

of 𝑟 radius circles. 

The problem is that we do not know both: where the OND lies in the retinal 

image and how large it is. We iterate the circular Hough transform each time 

with the different circle radius 𝑟 and select the highest peak value in the peak 

array formed (Fig. 3.3). 
 

 

Fig. 3.3. The scheme of Hough transformation 

Fig. 3.4 shows the optic nerve disc boundary after Canny edge detection and 

the resulting iterative Hough transform circle (dashed line). 
 

  

Fig. 3.4. The result of iterative Hough transformation 

After the parameters for the circle that match the true optic nerve disc 

boundary have been calculated, we assume that we have approximately found 

the OND in eye fundus image. Then the selection of the optic nerve disc 

boundary coordinates and the approximation of the elliptical cone is possible to 

accomplish. 
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3.3. Optic Nerve Disc Approximation by the Ellipse  

After we have approximately calculated a radius of the circle and its centre 

coordinates, the next step is to choose the points describing the OND boundary. 

This is done by varying the circle radius on polar coordinates. The OND 

boundary can lie (as seen in Fig. 3.4) either within the circle found or outside it. 

In this case, we state that the binary image point (𝑥,𝑦) is selected as a boundary 

of the optic disc by iteration: 

phi=0; dphi=0; 
Do While phi < 2 *   
 Increase phi by dphi 
 radius = r*0.9  
 Do While (radius < r * 1.1) 
  x = Hough centre x + (radius * Cos(phi)) 
  y = Hough centre y + (radius * Sin(phi)) 
    If point(x,y)=TRUE Then 
    Add point(x,y) to boundary point 

    accumulator 
    End If 
   Increase radius 
 Loop radius 
 Increase dphi 

Loop phi 
Here: 𝑝𝑖 is a direction; 𝑑𝑝𝑖 is a direction angle step; 𝑟𝑎𝑑𝑖𝑢𝑠 is the current 

radius, 𝑟 is the radius obtained by the iterative Hough transform. 

In other words, we iterate the angle and the radius in polar coordinates, 

found by the iterative Hough transform, and check whether the image point 

(𝑥,𝑦) is set to 1. If so, we add it to the boundary point accumulator, or else 

move further to check another point (𝑥, 𝑦). 
Here the radius 𝑟 is restricted to the interval [0.9𝑟, 1.1𝑟], whereas there are 

many cases where, after detecting the edge inside the area of OND, we see the 

edges of excavation. As usual, these edges (we assume them to be noise) are 

located near the OND boundary and can be defined as false ones. Also, the optic 

nerve disc boundary is not always round or ellipse-shaped after edge detection. 

Consequently, several fragments of boundary arcs can form a disc-shaped 

structure and other fragments, starting from the true OND boundary, can stretch 

along the retina as a line (Fig. 3.5). These lines are no more than noise left from 

vessel tree removal. 
 



56 3. INVESTIGATION OF OPTIC NERVE DISC IN EYE FUNDUS IMAGES 

 

   

Fig. 3.5. OND boundaries with noise after edge detection 

After the optic nerve disc boundary coordinates have been accumulated 

from binary images (as described before, from the closed intensity and the 

closed {𝐺} channel image), we apply the least squares ellipse fitting algorithm 

that calculates the ellipsis parameters depending on the data set collected. 

3.3.1. Least Squares Method 

Since our objective is to parameterize the optic disc by an ellipse, we further 

introduce the least squares algorithm for fitting the ellipse. A full description of 

the algorithm can be found in (Fitzgibbon et al. 1999). Since this algorithm 

solves the best fit problem to the data set, it also controls the rotation of a cone 

and guarantee that the calculated parameters of an elliptic cone fit best to the 

given data set. 

In general, the cone can be expressed as: 

𝐹(𝐸𝑝𝑎𝑟𝑎𝑚 ,𝑋) = 𝐸𝑝𝑎𝑟𝑎𝑚 𝑋 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑥 + 𝑓 = 0. (3.6) 

Where 𝐸𝑝𝑎𝑟𝑎𝑚 =  𝑎, 𝑏, 𝑐,𝑑, 𝑒, 𝑓  are the parameters of a cone and  

𝑋 =  𝑥2 ,𝑥𝑦,𝑦2 ,𝑥,𝑦, 1  is a set of pixel coordinates from the boundary 

accumulator array. 𝐹(𝑋𝑖) is the so-called algebraic distance from the 𝑖-th point 

(𝑥,𝑦) to the cone 𝐹(𝐸𝑝𝑎𝑟𝑎𝑚 ,𝑋) = 0. So the fitting of the general cone can be 

approached by minimizing the sum of squared algebraic distances: 

𝛩𝑋(𝐸𝑝𝑎𝑟𝑎𝑚 ) =  𝐹(𝑋𝑖)
2𝑁

𝑖=1 . (3.7) 

(Bookstein 1979) has shown that problem (3.7) can be solved as a problem 

of eigen-values: 

𝐷𝑇𝐷𝐸𝑝𝑎𝑟𝑎𝑚 = 𝜆𝐶𝐸𝑝𝑎𝑟𝑎𝑚 . (3.8) 

Here 𝐷 is the design matrix and 𝐷 =  𝑥1 ,𝑥2 ,… , 𝑥𝑛  
𝑇, 𝐶 is the constraint 

matrix. 

The appropriate constraint on the ellipse is well known, namely, that the 

discriminant 𝑏2 − 4𝑎𝑐 has to be negative. However, this constrained problem is 

difficult to solve in general, since the Kuhn-Tucker (Rao 1984) conditions do not 
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guarantee the solution. Data scaling is performed by applying  

𝐸𝑝𝑎𝑟𝑎𝑚
𝑇 𝐶𝐸𝑝𝑎𝑟𝑎𝑚 = 1 quadratic constraint 𝐶 of the form: 

𝐸𝑝𝑎𝑟𝑎𝑚
𝑇

 
 
 
 
 
 
0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 

 
 
 
 
 

𝐸𝑝𝑎𝑟𝑎𝑚 = 1, (3.9) 

which compels the constraint to become 4𝑎𝑐 − 𝑏2 = 1. Thus, this reduces the 

ellipse fitting algorithm to minimizing: 

𝐸 =  𝐷𝐸𝑝𝑎𝑟𝑎𝑚  
2
, (3.10) 

with respect to the constraint 𝐸𝑝𝑎𝑟𝑎𝑚
𝑇 𝐶𝐸𝑝𝑎𝑟𝑎𝑚 = 1. 

Therefore, by differentiating the equation and assuming that  is a Lagrange 

multiplier, we arrive at the system of equations: 

𝑆𝐸𝑝𝑎𝑟𝑎𝑚 = 𝜆𝐶𝐸𝑝𝑎𝑟𝑎𝑚 , (3.11) 

𝐸𝑝𝑎𝑟𝑎𝑚
𝑇 𝐶𝐸𝑝𝑎𝑟𝑎𝑚 = 1, (3.12) 

where S is the scatter matrix and 𝑆 = 𝐷𝑇𝐷. 

The problem described is easily solved by eigen-vectors of (3.11). If (𝜆𝑖 ,𝑢𝑖) 

solves (3.11), then it also does solve (𝜆𝑖 , 𝑐𝑢𝑖) for any 𝑐, and from (3.12) we can 

find 𝑐𝑖  that satisfies 𝑐𝑖
2𝑢𝑖

𝑇𝐶𝑢𝑖 = 1 by using: 

𝑐 
1

𝑢 𝑖
𝑇𝐶𝑢 𝑖

=  
1

𝑢 𝑖
𝑇𝑆𝑢 𝑖

. (3.13) 

Finally, by applying 𝐸𝑝𝑎𝑟𝑎𝑚
^

𝑖
= 𝑐𝑖𝑢𝑖, we solve (3.13). 

Thus, by the (Fitzgibbon et al. 1999) scheme, the best parameters of the 

ellipse correspond to an eigen-vector identified by a minimal positive  

eigen-value. 

3.4. Evaluation of Localization  
and Approximation Results 

The testing set consisted of 54 retinal images. Within the scope of our 

investigation, only the retinal images of glaucomatous and healthy eyes were 

taken. 
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The results were evaluated by two criteria: optic nerve disc position in 

retinal image identification and approximation by ellipse accuracy. In the first 

case, in the OND localization there was only one false result which leads the 

proposed algorithm to the accuracy of 98.14 %. In the second case, in the optic 

nerve disc approximation by ellipse correctness measurements we excluded the 

case where the OND localization failed. Next, a comparative parameter space 

was constructed. In this step, the ophthalmologists from the BRKU set the points 

describing the optic nerve disc boundary by hand in the provided retinal images. 

These fundus images were not scaled down. Further, the least squares method 

described above was incorporated to produce the parametric form of each optic 

disc from all the 54 retinal images. Since the reference points were set by 

ophthalmologists, the defined elliptic parameters formed a reference parameter 

space for the proposed automated algorithm testing. As described in the least 

squares section, the rotation of ellipse is totally controlled by the algorithm. 

Besides, the reference points and that gathered by an automated algorithm were 

provided to the same least squares algorithm to get a parametric cone 

representation. 

The comparative parameter space was formed of major and minor axes as 

well as horizontal and vertical diameters of the ellipse. The vertical and 

horizontal diameters of a cone were used here to indirectly show and evaluate 

the rotation of the ellipse. For the approximated examples shown in Fig. 3.6,  

Fig. 3.7 and Fig. 3.8 both data sets (ellipse parameters from the reference points 

and ellipse parameters from the proposed algorithm) is provided in Table 3.1. 

Table 3.1. Some values from two data sets compared 

Ellipse parameters from reference 

points 

Ellipse parameters from proposed 

algorithm 
Avg. 

error 

rate 

% 

OND 

major 

axis 

OND 

minor 

axis 

OND 

horizontal 

diameter 

OND 

vertical 

diameter 

OND 

major 

axis 

OND 

minor 

axis 

OND 

horizontal 

diameter 

OND 

vertical 

diameter 

2.54 2.44 2.44 2.54 2.56 2.46 2.54 2.49 1.89 

2.18 2.09 2.09 2.18 2.17 2.08 2.14 2.08 1.96 

2.27 2.15 2.19 2.22 2.28 2.16 2.19 2.19 0.52 

2.28 2.16 2.18 2.25 2.22 2.11 2.11 2.21 2.44 

2.22 2.06 2.08 2.20 2.29 2.07 2.23 2.12 3.54 

2.43 2.29 2.31 2.41 2.45 2.43 2.42 2.42 3.02 

2.59 2.56 2.53 2.51 2.49 2.42 2.47 2.40 4.02 

2.30 1.97 1.98 2.19 2.34 1.95 2.19 1.98 5.80 

2.45 2.43 2.42 2.42 2.50 2.29 2.21 2.21 6.19 

2.41 2.02 2.04 2.39 2.40 2.21 2.40 2.21 8.64 

2.22 2.15 2.20 2.18 1.70 1.57 1.57 1.73 24.8 

2.25 2.14 2.21 2.18 1.51 1.35 1.50 1.34 35.2 
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We assume that the excellent approximation is when the average of 

parameters from two sets differ less than 3 %, a good approximation is when the 

average of parameters are between 3 % and 6 %, and a poor approximation is 

when the average of parameters is more than 6 %. 

The overall average error rate achieved for the major axis of the ellipse was 

4.97 %, for the minor axis – 6.06 %, for the horizontal diameter – 9.26 % and for 

the vertical diameter of the ellipse – 7.37 %. 

Such a high error rate of the horizontal and vertical diameters of the ellipse 

is self-explanatory. Since the OND in retinal images has nearly a circular shape 

(the average difference in the provided data-set of minor and major axes is 

0.2mm), thereof the ellipse rotation angle with respect to the positive Cartesian 

of the axis x is very neat. In other words, OND has more degrees of freedom to 

be rotated to vouch for the best fit problem. 

As can be seen from Table 3.1, the last two lines the average error between 

parameters is more than 20 %. In all such cases in eye fundus images the optic 

nerve disc has a very weak edge gradient and can hardly be seen even by eye, as 

shown in Fig. 3.8, the last two images. Consequently, the made up OND 

boundary data set collected is very small. This is because we restrict the radius r 

when selecting boundary points in the section of optic nerve disc approximation 

by the ellipse and that leads to the fact that the least squares method fails to 

produce the right parametric form of the ellipse. 

Some examples of the algorithm work are provided in Fig. 3.6, Fig. 3.7 and 

Fig. 3.8. 
 

    

Fig. 3.6. Excellent approximation by the ellipse 

    

Fig. 3.7. Good approximation by the ellipse 
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Fig. 3.8. Poor approximation by the ellipse 

3.5. Conclusions for the Third Section 

In this section, the problem of optic nerve disc localization and 

approximation by the elliptical cone is presented. The Canny edge detection 

algorithm was used to determine a boundary of the optic nerve disc. The 

introduction of non-static threshold level computation by Otsu’s method 

extended this algorithm. The extension let automatically select levels for the 

hysteresis threshold depending on the intensity distribution of each eye fundus 

image. To localize the optic nerve disc, the iterative circular Hough transform 

was used that led the algorithm accuracy of the localization up to 98.14 % from 

54 eye fundus images. 

Finally, the least squares method was applied to calculate the ellipse 

parameters on the set of OND boundary points. The resulting ellipse parameters 

were compared and showed that the elliptic parameters, obtained by the 

proposed algorithm, on the average did not differ from those obtained by the 

reference points more than 9.26 %. The reference points have been taken from a 

non-scaled down image, which shows that the loss of information is minor in 

this context of problem. 
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 4 
4. Positioning of Overlapping  

Eye Fundus Images 

In order to assess the diagnosis it is important to identify not only the structures 

seen in eye fundus image but also the tendency of structures change. The 

tendency may be evaluated from either from a parametric estimates of a 

structures or from the visual investigation of the eye fundus images. In order to 

facilitate visual identification of anatomical structures change emerges the 

necessity of the eye fundus image registration. 

4.1. Survey of Methods for Eye Fundus Registration 

In this section, we present an algorithm for automated retinal image registration 

(Treigys et al. 2008a). Image registration is the process of transforming the 

different sets of data into one coordinate system. In this particular situation, the 

registration should be performed so that the visible structures in two images 

overlapped each other in the resulting image (Fig. 4.1, right-hand side). The 

resulting image is described by a registration quality parameter. Besides, this 

section shows that, in order to solve the eye fundus registration problem, a linear 

transformation is sufficient. 
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Fig. 4.1. Base retinal image (left-hand side), committed for registration 

retinal image (centre), superimposed retinal images (right-hand side) 

The eye fundus images were scaled to 768 times 512 of pixels. This leads to 

a substantial acceleration of vessel structure extraction. Further, the colour eye 

fundus image was converted to monochrome luminance as described in Section 

2.3.1 and finally, the scheme for vasculature extraction, presented in Section 2.3, 

was applied. 

For the registration problem the blood vessel tree of the eye fundus may be 

used. The main difficulty is to extract the vascular tree in a reliable way. The 

authors of the paper (Zana and Klein 1999) present an algorithm for temporal 

and multimodal registration of retinal images, based on the bifurcation point 

correspondences in a vascular tree. Further, an angle-based invariant probability 

is computed for every point match. Finally, the Bayesian Hough transform is 

used to sort the transformations with their respective likelihoods. Another 

approach was presented in the paper (Choe and Choen 2005). The authors 

propose a Y-feature extraction method, based on the local classification of image 

gradient information. An appropriate cost function is proposed for fitting the 

model, using a gradient-based approach. In the paper (Can et al. 2002;  

Stewart et al. 2003) authors use a model-based approach. The parameters of this 

model are estimated by matching vascular landmarks extracted by an algorithm 

that recursively traces the blood vessel structure. In another approach the 

iterative closest point algorithm is used. Another model-based approach is 

presented in (Tsai et al. 2003). The authors improved the approach by specifying 

a branching area and calculates the centre position of Y-feature. The centre 

position is estimated from the closest point of the three linearly approximated 

traces. Nevertheless, the algorithm proposed produces multiple Y-features in one 

branch. But the problem is that the majority of algorithms have been applied to 

the registration of fluorescent eye fundus images obtained after a fluorescent dye 

injection (Basevičius 2005), based on tracing or they are iterative and use local 

features of the eye fundus vasculature. 

To avoid a false indication of Y-features, we propose to use the whole tree 

of the vasculature. Next, we have to get rid of supplementary information on the 

vasculature, i. e., the colour or width of blood vessels. Thus, the point of interest 
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is the topology of the blood vessel tree and that application of medial axis 

transformation. 

4.2. Medial Axis Transformation 

Let us assume that the above presented scheme is applied to two images: the 

base one and the investigative one. The next step is to extract the topology of 

vasculature from both images: from the base image and the image to be 

registered. For this end we have used the medial axis transform (skeletonization) 

(Mukherjee et al. 2002). Basically, the skeletonization operation is calculated by 

shifting the origin of the structuring element (Fig. 4.2) to each possible pixel 

position in the image. Then, at each position it is compared with the underlying 

image pixels. If the foreground and background pixels in the structuring element 

match exactly the foreground and background pixels in the image, then the 

image pixel situated under the origin of the structuring element is set to the 

background, otherwise, it is left unchanged. Here we denote that a foreground 

pixel is assumed to be 1 and a background pixel is 0. An empty cell means that a 

particular pixel is of no interest, and it is not taken into account for evaluation. 
 

 

Fig. 4.2. Structuring elements used for skeletonization 

In Fig. 4.2, images are first skeletonised by the left-hand structuring 

element, and afterwards by the right-hand one. Then the above presented process 

is performed with the remaining six 90° rotations of those two elements during 

the same iteration. The iteration process is stopped when there are no changes in 

the image for the last two iterations, i. e., the resulting image contains only the 

topology of the blood vessels. 

4.3. Transformation to the Frequency Domain 

In order to register two vasculature trees achieved by medial axis transformation 

we have to incorporate some cross-correlation method. It is well known that for 

big images the convolution methods designed for cross-correlation runs very 

slowly. This problem can be solved by introducing a discrete Fourier transform 

(DFT) (Karmen and Heck 2002). Usually DFT is defined for the discrete 
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function 𝑓(𝑥,𝑦) that is non-zero over the finite region 0 ≤ 𝑥 ≤ 𝑀 − 1 and 

0 ≤ 𝑦 ≤ 𝑁 − 1. In our case, this function represents a retinal image in the spatial 

domain. Then, the two-dimensional discrete Fourier transformation of the matrix 

𝑀 by 𝑁 can be calculated as follows: 

𝐹(𝑝, 𝑞) =   𝑓(𝑥,𝑦)𝑒
−𝑖 

2𝜋

𝑀
 𝑝𝑥

𝑒
−𝑖 

2𝜋

𝑁
 𝑞𝑦𝑁−1

𝑦=0
𝑀−1
𝑥=0 , (4.1) 

where 𝑝 = 0,… ,𝑀− 1 and 𝑞 = 0,… ,𝑁 − 1. The inverse DFT can be achieved 

by applying: 

𝐹𝐼(𝑥, 𝑦) =
1

𝑀𝑁
  𝐹(𝑝, 𝑞)𝑒

𝑖 
2𝜋

𝑀
 𝑝𝑥

𝑒
𝑖 

2𝜋

𝑁
 𝑞𝑦𝑁−1

𝑞=0
𝑀−1
𝑝=0 . (4.2) 

Here 𝑥 = 0,… ,𝑀− 1 and 𝑦 = 0,… ,𝑁 − 1. 

The Fourier transform produces a complex number valued output image. 

This image can be displayed with two images, either with the real and imaginary 

part or with magnitude and phase.  

In our investigation, we apply (4.1) to the base retinal image. The retinal 

image committed for the registration process is rotated by 180, since the 

convolution operation itself reverses the provided pattern (Smith 1997). Then, 

the (4.1) is applied to the rotated pattern as well. This results in four arrays, the 

real and imaginary parts of the two images being convolved. Multiplying the real 

and imaginary parts of the base image by the real and imaginary parts of the 

image committed for registration generates a new frequency image with the real 

and imaginary parts. Taking an inverse DFT of the newly created frequency 

image, described by (4.2), completes the algorithm by producing the final 

convolved image. The value of each pixel in a convolved correlation image is a 

measure of how well the target image matches the searched image at a particular 

point. The new correlation image calculated is composed of noise plus a single 

high peak, indicating the best match of vasculature of the image to be registered 

in the base retinal image vasculature. Simply by locating the highest peak in this 

image, it would specify the detected coordinates of the best match. 

The frequency transformation procedure described above is applied by 

taking the structure of vasculature of the image which has to be registered on 

itself. This is done because other coordinates are necessary that shows where the 

best match of image on itself is (Fig. 4.3). 

In Fig. 4.3 on both sides a smaller peak corresponds to the two different 

images convolved together. The biggest peak corresponds to the image 

convolved by itself. Then, by introducing a simple linear transform to the retinal 

image, committed for registration, we shift pixels by the calculated distance 

along the x and y axes. The result of shift calculation is shown in Fig. 4.4. 
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Fig. 4.3. Match point after cross-correlation in frequency domain 

 

 

Fig. 4.4. Superimposed structures of the extracted vasculature 
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Fig. 4.4 shows two structures of vasculature extracted by the method 

proposed above. The stronger structure belongs to the base retinal image on 

which a retinal image intended for registration has to be put. The weaker 

structure of vasculature belongs to the retinal image intended for registration. 

The top image represent two superimposed topologies of the vasculature. The 

bottom image represent the registered topologies of the vasculature. 

4.4. Evaluation of Positioning Results 

The testing set consisted of 19 patients’ eye fundus images of both, left and right 

eyes. A great number of each patient’s eye fundus images were taken. Thus, in 

testing the algorithm, we have analysed 55 retinal images of the left eye and 56 

retinal images of the right eye in all. It should be noted that registration of 

images is possible only if those images are of the same patient and of the same 

eye. This comes from the fact that the structure of eyes vasculature of each 

human is unique. In order to verify this fact and to obtain the factor of 

registration error, the registration algorithm described above was applied to the 

retinal images taken from different patients of the same eye (Fig. 4.5). 
 

  

Fig. 4.5. The correlation between two different images (left-hand side),  

self-correlation of retinal images (the right-hand side) 

Fig. 4.5 shows the magnitudes of convolved images along the x axis. In this 

particular case, where it is not the same person is taken for investigation, note, 

that magnitudes on the left image are dramatically lower than that in the image 

on the right.  

Thus, to evaluate the quality of the registration, we computed the ratio of 

the peak-signal to noise (PSNR). 119 possible pairs of eye fundus images have 

been investigated. The conditions for those images to be of the same person and 

also of the same eye have been satisfied. The results achieved are shown in  

Fig. 4.6. 
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Fig. 4.6. Histogram of the peak signal to noise ratio 

In Fig. 4.6, a histogram of the ratio peak-signal to noise is presented. 

According to (Netravali and Haskell 1995), acceptable PSNR values are between 

20 and 40 decibels. The higher the value of decibels, the better registration is 

performed. Fig. 4.7 shows the registration result of the quality f 51 decibels. 

Here we can draw the conclusion on automated human identification from 

retinal images. If the ratio peak-signal to noise dramatically lower than 25 

decibels one can made the decision that it is not the same person. In case shown 

in Fig. 4.5 calculated PSNR value was 4.3 decibels. Beside, the comparative 

PSNR analysis can be made over the patients’ database in order to automatically 

identify the person taking the physician consultation. This can be used for 

solving the problem of patient’s data protection because physician will be 

working only with the data about the state of the patient without knowing who 

really the patient is. 
 

  

Fig. 4.7. Two superimposed (left-hand side), 

registered retinal images (right-hand side) 

4.5. Conclusions for the Fourth Section 

In this section an automated technique for retinal image registration is presented. 

The goal of the problem was to register two retinal images so that optic nerve 
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discs in the resulting image overlaps each other in the best way. The task was 

accomplished by introducing the intensity level mathematical morphology 

operations for vessel extraction. Then the intensity adjustment procedure was 

performed to enhance the resulting image after subtraction. This operation was 

followed by the image binarization, where the skeletonization operation was 

introduced. In the next step the spatial domain of the extracted vasculature 

structure was converted into the frequency domain, which resulted in a fast 

convolution of two images. This fact enables us to calculate the image shift 

along the Cartesian axes. The analysis of provided retinal images showed that 

the registration quality parameter basically occurs within the bounds of decibels 

accepted in literature. By introducing the global topology of the blood vessel 

tree, we have shoved that for OND registration problem a linear transformation 

is enough to obtain satisfactory results. 

Disclosed problem on human identification revealed that proposed 

algorithm is also suitable to solve the identification-related class problems. 

However, more careful analysis in order to evaluate the identification results 

should be made. 
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 5 
5. Data Analysis: Software Tools  

and Applications 

In the first part of this section we will present the software for the automated 

optic nerve disc approximation by the ellipse. Next, a comparative analysis of 

the parameters gathered in an automated way and the parameters of the ellipse 

defined interactively by physicians will be discussed. In the third part of this 

section, the neural network will be explored as a disease classifier. In our 

investigation, the sets of parameters describing glaucomatous and healthy eyes 

are taken. These sets represent the structure of the optic nerve disc which resides 

in a patient’s eye fundus image. As a separate case, the excavation can be seen in 

the image as well. These two sets describe the elliptical shape of both structures 

and comprise the initial data for the neural network. Finally, in the fourth part of 

the section thermovisual data will be investigated with a view to detect thermal 

anisotropy of the tissue. 

5.1. Software Implementation 

Despite the promising results provided in Section 3.4 which were achieved on 

the initial data set of 54 images, it is necessary to explore the collected OND 
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parameters in a manual and automated way. To this end, a software has been 

developed. This software was aimed to collect experts' experimental data and 

compare with automated algorithm described in Section 3. In this case, experts 

mark the points of the optic nerve disc boundary by hand. Later on, least squares 

elliptical fitting is performed at these points. Further, the analysis of these 

parameter sets can be accomplished. The basic functionality of the program is 

provided in the use case diagram (Fig. 5.1). 
 

 

Fig. 5.1. High-level software use cases 

The basic activity (see Fig. 5.2) of user interaction with the software can be 

described as follows: 

When the user starts the software, the main window is shown. Then the user 

can decide either to practice with the software by the “Demo” mode, either to do 

an experiment by selecting “Do experiment”. In both cases, the basic scenario 

steps are the same except that, in the “Demo” mode, the user does not have to 

perform the registration procedure and the results of the manual or automated 

point selection are not saved in the database. On the shown eye fundus image, 

the user: 

1. Points the centre of the optic nerve disc. 

2. Invokes the “Draw axes” function by clicking the appropriate button. 

This results in drawing lines on the image that cross in the marked optic 

nerve disc centre and divide the OND region into twelve equal parts. 

These two steps were predefined by the problem domain users. 
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3. If the result satisfies the user's expectations, the user proceeds with the 

fourth scenario step, or else he can repeat the first two. 

4. Selects twelve points along each axis that points to the boundary of the 

optic nerve disc. The user can move the selected point to precise 

location, if he wants. 

5. Finally, the coordinates of points are committed to the database. 

6. Further, depending on the user needs, OND boundary marking points 

can be automatically approximated by the ellipsis in the least squares 

sense. 

7. Besides, automated localization of the ellipsis can be accomplished as 

well, on the active eye fundus image, or on an arbitrarily selected one. 

 

Fig. 5.2. Basic scheme of user's interaction with the software 
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An example of the approximation result is provided in Fig. 5.3. Further, in 

order to compare the results, the same ellipsis approximation algorithm will be 

applied to manually selected and automatically gathered (algorithm is provided 

in Section 3) sets of points that describe the OND boundary. 
 

 

Fig. 5.3. Example of the elliptical approximation 

In the case of experiment, this scheme has to be repeated on each image 

provided by the software except the registration procedure. When the user 

finishes the processing of the image, the next image is shown on the screen. 

Overall there are six images selected by ophthalmologists as the basic reference. 

The experiment for one user has to be carried out in a series. If the experiment 

falls into an exception, it has to be repeated from the very beginning. The 

software implements the algorithms described in Sections 2.2 and 3. 

In addition, the client software for automated eye fundus images 

accumulation and processing was developed (Fig. 5.4). The software relied on 

the client-server technology. All the images as well as the image approximation 

data are saved on the server. At present the registered user has access to two 

groups of provided functionality, i. e., Patients and Administration. 

 The user in the Patients group can: 

o Register a new patient. 

o Edit the registered patient. 

o Delete the data of the registered patient. 

o Upload eye fundus images for the patient. 

o Process uploaded eye fundus images. 

o Select the corresponding diagnosis on the uploaded eye fundus 

image. 

 The user in the Administration group can: 

o Create, edit, delete, and manage user rights. 
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o Edit server connection data. 

o Create, edit, and delete the diagnosis. 

By selecting an investigative image from the list on the left and  

right-clicking on the shown eye fundus image, the user is able to process image 

the for OND localization and parameterization. Finally, after processing by 

double-clicking on the resulting image, the image with the approximation result 

is shown (Fig. 5.5). 
 

 

Fig. 5.4. The main window of the software 

 

Fig. 5.5. Processed eye fundus image 
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The processed data are saved in the database and are related to the user and 

the patient, moreover, the software allows each user to see only his/her own 

data. This scheme allows us to accumulate the independent experimental results 

that further can be analysed. 

5.2. Analysis of the Optic Nerve Disc Parameters 

The results of this sub-section rely on the report of the investigation which was 

accomplished in (Paunksnis 2009). An algorithm which automatically detects 

the location and calculates the ellipsis parameters the optic nerve disc is 

described in Section 3, besides, its implementation is briefly described in the 

Section 5.1. Thus, naturally there arises a question, whether software 

implementation produces an elliptical cone which is similar to that defined by 

the ophthalmologist defined elliptical cone. In other words, if we have a set of 

eye fundus images and a set of different elliptical cones defined by 

ophthalmologists in each of the image, is it possible to distinguish an elliptical 

cone produced by the software from that defined by physicians.  

All the optic nerve disc contours are parameterized according to the same 

methodology as it is done in diagnostic purposes. Each optic nerve disc is 

parameterized by the elliptical cone. The ellipsis parameters taken for the further 

investigation are: 

 Horizontal coordinate of the ellipsis centre 𝐶𝑥 . 

 Vertical coordinate of the ellipsis centre 𝐶𝑦 . 

 Longer semi-axis of the ellipsis 𝑅𝑥 . 

 Shorter semi-axis of the ellipsis 𝑅𝑦 . 

 Ellipsis rotation 𝐸𝐴𝑛𝑔𝑙𝑒 . 

 Restricted area of the ellipsis 𝐸𝐴𝑟𝑒𝑎 . 

6 eye fundus images were taken under investigation. The contours of the 

optic nerve disc estimated fifteen different physicians. The data related to each 

image are provided in Annex A from Table A1 to Table A6. In each table, the 

first column rows numbered from 1 to 15 represent physicians' data. However, in 

Table A6, provided in Annex A, the results of the fifth and the fifteenth 

physician have not been saved. The row with the parameter “Software” 

represents data gathered during the automated approximation of ellipsis. 

Besides, additional parameters are provided for each parameter such as average, 
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minimum, and maximum values as well as the results of investigation. Next, the 

successive parameters after the parameter “Software” meanings are: 

 Sigma from average value; describes the difference (in squared 

deviation 𝜎 sence) from the automatically estimated value and a 

physician's average value of a particular parameter. 

 Overfits physician boundary; value is set to one if the value estimated 

in an automated way is higher than the physician's value interval. 

 Overfits physician average; if the value is 1 it means that the value 

estimated in an automated way is higher than the average of the 

physicians' values. 

 4th physician sigma from average; value describes the difference of the 

fourth physician's value (in the squared deviation sense) from that of 

the parameter average evaluated by other physicians 

 Successive data under the row called Excluding 4th physician represent 

analogous data meaning as above with excluded values of the fourth 

physician. 

It should be remembered that in the case of normal distribution, the values 

drifted from the average by 1.96 sigma, statistically not belong to the 

distribution with 5 % importance interval. In practice, the difference of two 

sigma is applied to unknown distributions, when we have to identify outlier 

points. 

Fig. 5.6 shows the evaluated area of OND according to each 

ophthalmologist. This figure represents the area of the same optic nerve disc 

while Fig. 5.7 visualizes the distribution of the ellipsis area in each image for 

each physician. 

According to Fig. 5.6 and Fig. 5.7 different physicians provide different 

values. As an example for an important parameter Area (see Annex A Table A1 

and Table A4) maximum values are 1.5 times higher than minimum values. 

Moreover, according to Table 5.1 and Fig. 5.7 the values estimated by the fourth 

physician are higher than the values estimated by the rest doctors. This physician 

tends describe OND larger than others. This fact can also be seen from the 

parameter line 4th physician sigma from average. In three cases the values of 

𝑅𝑥 , 𝑅𝑦 , and 𝐸𝐴𝑟𝑒𝑎  differ from the other physicians' parameter average more than 

by two sigma. Thus, the data from this ophthalmologist can be treated as a 

systemic error or outlier and can be excluded from further investigation. Despite 

this fact, Fig. 5.7 shows that the values provided by the rest physicians 

incidentally scattered. Thus, this results in a need of measurement unification or 

standardization. 
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Fig. 5.6. Measurement area scattering 

 

Fig. 5.7. OND area measurement according to ophthalmologists' settings 
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Fig. 5.8. Automatically obtained OND area values in comparison with the 

values of physicians 

 

Fig. 5.9. Automatically obtained OND area values in comparison with the 

values of physicians, except for 4th doctor 

Table 5.1. Count of the value maximum among measurements 
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As can be seen from Fig. 5.8 and data provided in tables from Table A1 to 

Table A6 in Annex A, the proposed algorithm tends to increase the OND. In five 

of the six cases, an automatically calculated OND area is larger than that 

measured by all physicians. In one case, the automatically selected OND area is 

larger than the maximum calculated by all doctors, other 4 cases are very close 

to the maximum. In three images from six, the automatically calculated OND 

area is statistically significantly different from all the doctors' data and machine 

results are quite similar to the OND boundary marked by the 4th physician. 

Rejection of the 4th physician's data, yields a greater difference between the 

software results and that of physicians. As can be seen from Fig. 5.9, in four 

cases out of six the automatically obtained OND area is larger than the 

maximum area according to physicians' measurements. In five images, the 

automatically obtained OND size is significantly different from the 14 

physician's data: in four cases it is significantly higher, in one case – 

significantly lower. 

5.2.1. Artificial Neural Network as a Disease Classifier 

The aim of the investigation of this sub-section is to check whether the artificial 

neural network can be used as a healthy-glaucoma disease classifier from the 

parameters of eye fundus image. 

Assume that some set of parameters characterizes the optic nerve disc and 

excavation (Treigys and Šaltenis 2007). Hence, it becomes possible to construct 

an 𝑛-dimensional vector 𝑌 =  𝑦1 ,𝑦2 ,⋯ ,𝑦𝑛 . Each 𝑛-dimensional vector 

corresponds to one fundus image and describes the disease. 

The goal is to attribute the vector 𝑌𝑖  to one of the known classes, where 

𝑖 = 1,… ,𝑚 and 𝑚 is the number of patients. 

The set of 27 parameters of each eye fundus image has been measured. 

Generally, these parameters fall into four groups (Bernatavičienė et al. 2007): 

 Parameters of optic nerve discs:  

o Length of major and minor axes of OND ellipse.  

o Length of semi-major and semi-minor axes of OND ellipse. 

o Horizontal and vertical diameter of OND ellipse. 

o Area, perimeter, and eccentricity of OND ellipse. 

 Parameters of excavation (EKS): 

o Length of major and minor axes of EKS ellipse. 

o Length of semi-major and semi-minor axes of EKS ellipse. 
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o Horizontal and vertical diameter of EKS ellipse. 

o Area, perimeter, and eccentricity of EKS ellipse.  

 Ratios between various OND, EKS, neuroretinal rim (NR) parameters. 

Neuroretinal rim is a tissue between EKS and OND: 

o Ratios between EKS and OND horizontal and vertical 

diameters.  

o NR area. 

o Ratio between NR and OND areas. 

o Ratio of EKS and OND. 

 Thickness of NR parts:  

o Inferior, superior, nasal, and temporal disc sectors. 

Two groups of items are investigated: vectors, corresponding to the healthy 

eyes (24 items); vectors, corresponding to the eyes, damaged by glaucoma  

(24 items). Unknown EKS parameters were assumed to be zeros. This happens 

when the excavation is absent or not measured in the eye fundus image. 

In mathematical terms, we can state that for the input vector 𝑌 (set of values 

representing the problem domain) and the weight vector 𝑊 (set of weights 

describing how important each problem domain value is) the weighted sum of 

the neuron can be found by: 

𝑠 = 𝑤0 +  𝑦𝑖𝑤𝑖
𝑛
𝑖=1 , (5.1) 

where 𝑛 is the dimension of the input vector 𝑌, 𝑤0 is the bias and 𝑤𝑖  is the 𝑖th 

weight. Further, the activation function 𝑓(𝑠) of the form:  

𝑓 𝑠 =
1

1+𝑒−𝑠
. (5.2) 

was used. 

The main disadvantage of the single-layer artificial neural network is that it 

can easily operate and show itself fine until the classes described by the vectors 

𝑌 are separable. But, as the dimensionality 𝑛 of the vector 𝑌 increases, in most 

cases it forms not linearly separable regions. As stated before, with no hidden 

layer, the neuron can only perform linearly separable tasks. Let us consider the 

network shown in Fig. 5.10. Here 𝑥, 𝑦 are values representing a point on the 

plane. The output can be calculated as follows: 

 
1,𝑓 𝑠 > 0.5,
0,𝑓(𝑠) ≤ 0.5.

  (5.3) 
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(5.3) describes two regions on the plane 𝑥𝑦. Actually it exposes the region 

to which the given point corresponds. 
 

 

Fig. 5.10. Artificial neural network with one hidden layer 

Let us assume that the same point (𝑥,𝑦) is introduced into the network  

(Fig. 5.10). Since there are four neurons in the hidden layer and they are 

independent of each other, the given point is classified into four pairs of linearly 

separable regions. Each region is described by a unique line produced by each 

neuron in the hidden layer. Finally, the output layer performs some logical 

operation on the outputs of the hidden layer, so that the network ascribes the 

input point either to one region or another that might not be linearly separable 

(Fig. 5.11). 
 

 

Fig. 5.11. Initial point (left-hand side); region formed by hidden layer  

(centre image); output layer response (right-hand side) 

Thus, by varying the number of neurons in the hidden layer, the number of 

hidden layers, and output nodes, we can attribute the number of points of 

arbitrary dimensions into the required number of groups. 

The artificial neural network with one hidden layer with the log-sigmoid 

activation function and second order Levenberg-Marquardt (Marquardt 1963) 

learning algorithm was used. This learning algorithm is more robust and in many 

cases finds a solution even if it starts very far off the minimum (Abraham and 

Nath 2001). 

For the artificial neural network training, the set of 48 vectors was divided 

into two separable subsets of 24 vectors. One subset was used for the artificial 
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neural network training and the other – for the cross testing procedure. Cross 

testing is performed to prevent the artificial neural network from overtraining 

(Saarinen et al. 1993).  

The class to which each vector belongs is known in advance. The proposed 

classifier has to be able to tell apart glaucomatous from healthy eyes by the 

given parameters, corresponding to one investigative eye fundus image. The 

artificial neural network with one hidden layer was used for investigation.  

At first, the optimal number of hidden neurons in the hidden layer was not 

known. In this case, to find the optimal number of units, an iterative procedure 

was used. The parameter vector consisted of 27 measured features of the optic 

nerve disc structure. Thus, in the first iteration, only one hidden unit was used. 

In the second iteration, two hidden units were investigated, in the third iteration, 

three hidden units were used, etc, up to 27 hidden units. Each iteration was 

repeated 100 times because of initially selected random weights for artificial 

neural network units. During the evaluation of network error, all the 48 

parameter vectors were provided for the network classification task. The 

network error was measured in the sense of the sum of squared errors (SSE). The 

diagram of the best SSE drawn for a particular number of units in a hidden layer 

is shown in Fig. 5.12. 
 

 

Fig. 5.12. Sum of squared error according to the number of hidden units 

Fig. 5.12 shows that the optimal number of hidden units is 8 for this 

problem statement in the SSE sense.  

Second, the network was tested as a disease classifier. The results achieved 

are provided in Table 5.2. We can see from the table that the minimum of SSE is 

when the number of hidden units is 8. All the healthy eyes were identified 

correctly and only one case of glaucomatous eyes was classified as healthy. 

However, the result shown in Fig. 5.12 is questionable, since the curve has a 

lot of peaks. To explain such curvature, the standard deviation of network error 
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was explored. As stated earlier in this sub-section, the initial weights are selected 

randomly. Thus, it becomes possible to measure what influence those starting 

values have on the sum of squared error. In the case of 8 hidden units, where the 

SSE was minimal, the standard deviation was 3.25. 

Table 5.2. Classification results with respect to number of hidden units on non-scaled 

data 

Number of 

hidden 

units 

True 

glaucoma 

False 

glaucoma 
False norm True norm SSE 

1 20 4 1 23 3.775 

2 21 3 3 12 3.362 

3 22 2 4 20 2.823 

4 21 3 1 23 1.706 

5 22 2 2 22 2.698 

6 22 2 2 22 2.642 

7 23 1 0 24 2.141 

8 23 1 0 24 1.077 

9 22 2 0 24 1.935 

10 22 2 2 22 2.371 

11 22 2 1 23 2.194 

12 20 4 0 24 2.488 

13 22 2 0 24 2.005 

14 23 1 1 23 1.464 

15 23 1 3 21 2.209 

16 22 2 0 24 1.890 

17 22 2 0 24 1.637 

18 20 4 1 23 2.230 

19 21 3 1 23 2.536 

20 23 1 1 23 1.971 

21 22 2 0 24 2.048 

22 22 2 1 23 1.933 

23 22 2 0 24 1.426 

24 22 2 2 22 1.829 

25 21 3 4 20 2.481 

26 23 1 4 20 2.528 

27 22 2 3 21 2.862 

 

In addition, the influence of derivative parameters was investigated. In this 

case, the principal component analysis (PCA) was made as the initial step for 

pre-processing data vectors, which retain only those components that contribute 
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more than 1 % to the variance in the given data set (Medvedev 2007). Such an 

analysis has showed that in the case of the given variance it is enough to take 10 

parameters in each feature vector. Further, the artificial neural network was 

trained under the same conditions with the pre-processed data set. The graphical 

result of sum of squared errors is shown in Fig. 5.13. 
 

 

Fig. 5.13. Sum of squared error according to the number of hidden units 

with pre-processed data set 

One can see that contrary to Fig. 5.12, the network SSE response variance is 

smoother. However, the overall error is greater than that with not pre-processed 

data. The classification results are presented in Table 5.3. 

Table 5.3. Classification results with respect to number of hidden units on scaled data 

Number of 

hidden 

units 

True 

glaucoma 

False 

glaucoma 
False norm True norm SSE 

1 22 0 5 19 3.175 

2 22 2 3 21 3.129 

3 22 2 3 21 2.867 

4 17 7 1 23 3.170 

5 21 3 2 22 2.642 

6 24 0 3 21 2.936 

7 22 2 1 23 2.856 

8 22 2 1 23 2.856 

9 24 0 1 23 1.825 

10 22 2 1 23 2.621 
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In the case of data pre-processed by the PCA algorithm, the minimal sum of 

squared errors was obtained with nine hidden units. The best classification error 

achieved was 1.825 with the standard deviation of 2.13. 

In both cases, no matter that the initial data were pre-processed or not, only 

one feature vector was erroneously classified. The classification accuracy of 

97.91 % were achieved of the investigated artificial neural network. The 

previous results presented in (Paunksnis 2006) on the same data set were: 

 Naïve Bayes – 83 %; 

 Decision Trees – 83 %; 

 k Nearest Neighbour – 83 %; 

 Support Vector Machine – 77 %; 

By setting the unknown excavation parameters to zeros, we could increase 

the accuracy of classification performance by 14.91 % compared to the results 

presented in the report (Paunksnis 2006). However, the deviation of the 

classification errors implies that the classification result is questionable in both 

cases. 

5.3. Analysis of Thermovisual Data 

Thermography is a contact-free method used in experiments and cardiovascular 

surgery to investigate the myocardium and coronary artery function. When 

performing a coronary bypass without artificial blood circulation, it is important 

to be aware of how a cut off in blood flow affects the myocardium and 

restoration of coronary blood flow after surgery. Diagnosis and treatment of the 

ischemic disease are the most important problems in cardiology. In many cases a 

sudden death is caused by myocardial ischemia and is accompanied by 

ventricular arrhythmias. It has been proved that ischemic slowdown of excitation 

spread provokes the formation of recurrence of arrhythmia, ventricular 

tachycardia and ventricular fibrillation (Lekas et al. 2009). During coronary 

artery bypass grafting operations a surgeon requires information regarding 

coronary flow, coronary anatomy and myocardial perfusion. Additional 

quantitative flow estimation is desirable to detect graft failures as early as 

possible. Thermography imaging, such as advanced, uncooled microbolometer 

detector technology, delivers high-resolution long-wave infrared images that 

allow to determine thermal variances. Real-time scanning at standard video rates 

enables us to see rapid, thermally transient events, which gives an opportunity to 

visualize temperature dynamics of the beating heart. Camera specification is 
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provided in Annex B Table B7. Circulation disorders in the tissue should be 

associated with local temperature changes. Some pictures taken from the 

thermovisual video stream are presented in Fig. 5.14.  

At present, corrections of many cardiac disorders are treated by applying 

some destructive energy sources. One of the most common sources and the 

related methodology is to use radiofrequency ablations. 
 

  

Fig. 5.14. Artery dressing location (left-hand side), spreading of cold across 

the left ventricular wall (right-hand side) 

In medical practice treatment capabilities have expanded almost to the 

whole area of the cardiac texture zones. However, despite the latest technical, 

navigational methods for localizing the affected zone, the rate of the risk of 

complications, including a disease recurrence, remains very high and in some 

case may reach 70 % (Tan et al. 2008). Thus, in order to understand the nature 

of possible complications, the technique of thermovisual monitoring can be 

introduced. This technique is a non-invasive method and enables us to track the 

temperature changes over time. Thermovisual data offer a possibility to use a 

wide range of analysis methods in terms of video or image processing. The 

object of the research proposed is to explore the impact of temperature on the 

heart texture anisotropy based on the thermovisual data in order to analyse the 

possibilities to reduce a risk of complications. 

The pilot research has proved that the thermovisual data are rather 

promising for estimating the heart state (Lekas et al. 2009). Also, these results 

have shown the necessity to extend the research. The aim of this sub-section is to 

investigate the dependency parameters of the radiofrequency ablation (RFA) 

procedure by registering the dynamics of absorption and spread of heat on 

various cardiac structures over a certain time in a video stream  

(Dzemyda et al. 2008). Thus, by incorporating the methods of mathematical 

morphology and transformations, we can approximate the thermal anisotropy 

zone. Moreover, that enables us to automatically identify, register, and track the 

changes in the structure as well as to evaluate the dynamics in time of the 

affected zone (Fig. 5.14). In this section, we will disclose the dependency of the 
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area of the affected zone on the energy and time of radiofrequency ablation 

procedure. 

Thus, in order to disclose the affected zone, the overview of the colour 

models will be accomplished. In general, colour which a human understands is 

the brain reaction to a visual stimulus. The precise colour description can be 

achieved by measuring the spectral power distribution of electromagnetic waves. 

However, in the case of human vision, it falls into redundancy. This is related to 

a human perception of the colour. The human eye roughly has three types of 

cones which can perceive red, green, and blue light (Shanker 2001). Moreover, 

by transmitting a signal to the brain together with the signals received by rods 

that measures the intensity, we are able to perceive colour. Later, a colour space 

can be defined. A colour space or model is nothing more than a method for 

creation, specification and visualization of a colour (Hunt and Horwood 1998). 

Hence, there is a lot of colour systems which are different and can be efficiently 

used in different applications. The CIE has defined (Rencz 1999) a system that 

classifies colours according to the human visual system (HVS). Using this 

system, we can specify any colour in terms of its CIE coordinates and hence be 

confident that a CIE defined colour will match another with the same CIE 

definition. In a sequel, a short description of the most popular colour systems 

will be provided. 

The RGB (Red, Green, Blue) is an additive colour system, based on the  

tri-chromatic theory (Rencz 1999). Despite the fact that the RGB colour system 

is easy to implement, however it is nonlinear with a visual perception. This 

colour system is device-dependent and the specification of the colour is  

semi-intuitive (Ford and Roberts 1998). 

The CMYK (Cyan, Magenta, Yellow, Black) colour system is also device 

dependent, but it is a subtractive colour system. This system is also nonlinear 

with a visual perception, Component {𝐾} (Black) is introduced to improve the 

density and the available colour gamut (Williams 2008). This colour system is 

mostly used in printing or in hard copy output related tasks. 

The Lab (CIELab) is a spherical colour system and is considered to be 

perceptually uniform (Russ 2006) and nearly uniform with visual perception. 

This is related to the fact that this colour system is based on the CIE system of 

colour measurement which is based on the human vision, where {𝐿} is a  

gray-scale axis or luminance, while {𝑎} and {𝑏} are two orthogonal axes that 

define the colour and saturation. {𝑎} axis runs from red to green and {𝑏} axis 

runs from yellow to blue. 

One of the most difficult tasks of image analysis and processing is to 

segregate objects in image. In order to better identify the problem domain area 

the characteristic, such as image intensity histogram distribution has been 

visualized for different colour systems (Fig. 5.15). The first row shows the {𝑅}, 



5. DATA ANALYSIS: SOFTWARE TOOLS AND APPLICATIONS 87 

 

{𝐺}, and {𝐵} channel histogram intensities, the middle line {𝐿}, {𝑎}, and {𝑏} 

intensities histogram, the lowest one represents {𝐶}, {𝑀}, {𝑌}, and {𝐾} channel 

intensity histograms. The intensity of the charts (middle line {𝑎} and lower line 

{𝑀}) forms two classes of peaks, with different intensity densities. One the 

equivalence classes is the heated area, and the other represents the background. 

Further, by applying the histogram equalization procedure described in Section 

2.3.2, the achieved results can be visualized in the spatial domain (Fig. 5.16). 

 

Fig. 5.15. The intensity distribution histograms  

of the colour systems channels 

Fig. 5.15 shows the histograms of different colour system channels. On the 

𝑥 axis, the intensity levels are shown.  
 

  

Fig. 5.16. Result in the {𝑎} colour channel (left-hand side),  

result in the {𝑀} colour channel (right-hand side) 
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5.3.1. Analysis of the Anisotropy Zone 

As already mentioned in Section 5.3, one of the most difficult tasks for image 

analysis is to distinguish objects in contact. In order to identify the objects they 

must be segregated. Segregation is commonly accomplished by converting the 

intensity image into a black and white one. However, this task is not easy to 

implement. Basically, a problem arises in the context of different circumstances 

depending on which video was made. First of all, video stream was cut into 

frames and each frame was processed separately. The composition of steps 

required (Treigys et al. 2009) for each frame processing was the calculation of 

threshold level (see Section 2.3.3). Afterwards mathematical morphology 

processing was introduced in order to clear the objects in contact with the 

perimeter of the frame. This happens when the physician's hand acts closer to a 

microbolometer than the tissue being filmed. This results in greater emission of 

the heat registered by the thermal camera as well as in an anisotropy zone 

localization error. Moreover, the closing operation of mathematical morphology 

(see Section 2.2.1) was used to fill the dark holes of the heated zone resulting 

after the threshold operation. Finally, the zone perimeter marker was put around 

the segmented anisotropy zone (Fig. 5.17). 
 

 

Fig. 5.17. Segmented heated zone 

Fig. 5.17 represents the heated zone that was segmented automatically. A 

double line around the heated area is due to the fact that the segmentation was 

performed using two colour systems. In order to evaluate the dynamics of the 

heated area, the temperature range was fixed on the thermal camera. If the 

temperature range was not fixed, we only could evaluate the temperature 

dynamics with respect to the fixed anisotropy zone, but not the area dynamics 

with respect to the changing temperature. 
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5.3.2. Analysis of Heart Tissue Damage Dynamics 

The lesions were experimentally assessed on the pulmonary vein and atrium 

with different features of the experimental conditions. Both the pulmonary vein 

and atrium were exposed by epicardial electrodes, of different impulse current 

power and different lesion time. The parameters that describe the experiment on 

pulmonary veins are presented in Table 5.4 and that on atrium in Table 5.5. All 

the experiments were carried out while the range of temperature recorded by the 

thermovisor was fixed, namely, the range of 29–41 C. Further, the recorded 

footage was analysed. The analysis covered the tissue reaction to lesion. Some 

individual frames from the video footage with the approximated lesion are 

provided in Fig. 5.18. 

Table 5.4. Experiment parameters of the pulmonary vein lesions 

Experiment No.: Power of electrode Lesion time 

1 20 Watts 10 Seconds 

2 20 Watts 20 Seconds 

3 30 Watts 10 Seconds 

4 30 Watts 20 Seconds 

5 50 Watts 10 Seconds 

6 50 Watts 20 Seconds 

Table 5.5. Experiment parameters of the atrium lesions 

Experiment No.: Power of electrode Lesion time 

1 20 Watts 20 Seconds 

2 30 Watts 20 Seconds 

3 50 Watts 20 Seconds 

 

  

Fig. 5.18. The lesion of the pulmonary vein (left-hand side),  

the lesion of atrium (right-hand side) 
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As is shown in the Fig. 5.18, lesions in the different tissue sites are different. 

Moreover, since all the experiments were filmed by thermal camera it is possible 

to analyse the dynamics of the anisotropy zone referring to the electrode impulse 

current power and lesion duration. Results are presented in Annex C in Fig. C1 

and C2. In both figures, lesion area in pixels is presented on the 𝑦 axis, and 

footage frames are presented on the 𝑥 axis. 

Next, the cone fitting to the data points that represent the lesion area was 

accomplished. The analysis of the data has showed that it suffices the 5th order 

polynomial to maintain 𝑅2 > 0.9 criteria in most cases (see Annex C from Fig. 

C3 to Fig. C9). 𝑅2 is a fraction of the variance in the data that is explained by 

regression. The data for the fitting process were normalized by the mean and 

standard deviation. If the parametric cone is represented as  

𝑦 = 𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓, then the values for each experiment of 

the parameters are provided in Table 5.6 and Table 5.7. 

Table 5.6. Parameters of the cone for a separate experiment on the pulmonary vein 

Parameters/Experiment 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑅2 
20 Watts 10 seconds 3.23 3.85 -5.56 -114.8 -2.04 288.2 0.96 

20 Watts 20 seconds 63.37 25.11 -201 -254.3 95.05 615 0.95 

30 Watts 10 seconds -26.4 -12.35 219.3 -96.27 -437 425.6 0.98 

30 Watts 20 seconds 50.65 50.61 -93.08 -344.4 -99.3 661.3 0.95 

50 Watts 10 seconds -31.1 8.87 231.9 -147 -432 398.5 0.94 

50 Watts 20 seconds 88.84 102.2 -243.6 -481.5 11.6 734.6 0.96 

Table 5.7. Parameters of the cone for separate experiment on atria 

Parameters/Experiment 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑅2 
20 Watts 20 seconds -15.02 3.83 60.63 -234.3 -62.4 630.3 0.69 

30 Watts 20 seconds 269.5 -423.8 -577.9 1149 -846 756.4 0.98 

50 Watts 20 seconds 253.7 -294.9 -567.7 830 -901 1084 0.96 

 

As it can be seen in Fig. C1 in Annex C, dynamics of the anisotropy zone is 

essentially different from the rest when the zone is operated at an electrode 

impulse current power of 20 Watts and the operation time is set to 10 seconds. In 

the case of pulmonary veins anisotropy, where the applied impulse current 

power outputs of the electrode are 20 and 30 Watts, respectively, after 20 

seconds of operation dynamics of the lesion affected area remains almost 

identical. However, when the electrode impulse current output power is set to 50 

Watts, at the beginning the region of lesion spreads dynamically, but the cooling 

period is much faster than in the case of application of 20 or 30 Watts output 
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power, respectively. Furthermore, according to the data provided in Fig. C2 in 

Annex C, atrium tissue dynamics of the damage area is almost identical when 

the electrode impulse current output power of 30 and 50 Watts was applied, 

during heating and cooling periods (Fig. 5.19 and Fig. 5.20). 
 

 

Fig. 5.19. Approximated data points by a polynomial.  

Case: atria; parameters: 30 Watts 20 seconds 

 

Fig. 5.20. Approximated data points by a polynomial.  

Case: atria; parameters: 50 Watts 20 seconds 

By investigating this topic in a broader context, it is not necessary to limit 

ourselves to the available colour system channels. It is possible to construct a 

nonlinear ways for video signal to be represented as pixel intensities in a spatial 

domain. A possible nonlinear approach is obtained by using the Lab colour 

system properties. Using this colour system, all pixels can be compared together 

by Euclidean distances. In this case, the distance can be thought as some 

similarity measure. Suppose that we want to compare the values of all points, 

defined in Lab colour system, with the black point value. To this end we 

construct a 𝑁 by 𝑀 matrix, where 𝑁 is the image width and 𝑀 is the image 

height. Each element in the matrix corresponds to the distance between the 
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current point and the black point value. After rearranging the matrix distance 

values in the interval [0 ... 255], it comes possible to visualize the image in a 

spatial domain as the intensity image. Finally, after applying the histogram 

adjustment and automated threshold calculation, the resulting image with 

separated classes is shown in Fig. 5.21. 
 

  

Fig. 5.21. Euclidian distance matrix as the intensity image (left-hand side), 

two class separation result in Euclidean distance matrix (right-hand side) 

Another experiment was carried out using the method of principal 

component analysis. This method was used to find out the correspondence of 

pixel points with {𝑅}, {𝐺}, and {𝐵} components correspondence to gray 

intensity. To achieve this goal, the video stream from the thermovisior was split 

into frames, then, for each frame, the principal directions of components of all 

pixels {𝑅}, {𝐺}, and {𝐵} were calculated. Next, by selecting the direction with 

the largest dispersion, we calculate the projection of colour components for each 

frame pixel in the selected direction. Finally, the calculated projection is 

rearranged in the interval [0 ... 255]. After the principal component analysis the 

resulting images as well as the classified image are shown in Fig. 5.22. 
 

  

Fig. 5.22. Image after principal component analysis (left-hand side),  

classification result (right-hand side) 
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It should be noted that, in this experiment, we did not have a possibility to 

choose real temperatures from the thermal camera, only video footage was taken 

into consideration. However, the analysis of data in a wider context has revealed 

that, if we were aware how the thermal camera converts the temperature to 

colour representation, then the temperature could be visualized as an image, thus 

the problem would remain the same, i. e., to distinguish two classes in the 

provided image. 

In this sub-section the investigation of the thermovisual data was carried out 

with a view to identify the thermal anisotropy dynamics in different heart tissues 

that are under the sway of radio frequency ablation procedure. Proposed method 

let us measure and record the tissue temperature changes. This, in turn, enables 

to decrease the rate of the risk of complications. The method proposed rely on 

the analysis of the colour spaces, mathematical morphological processing and 

the result clusterization by the Otsu method. 

5.4. Conclusions for the Fifth Section 

Evaluation of the developed software of the OND parameterization showed that 

it produces parameters of the optic nerve disc which are similar to that of one of 

fifteen physicians' measurements. The OND size, calculated by the software, is 

usually obtained slightly larger than that obtained by the majority of physicians. 

Besides, the artificial neural network was investigated as a healthy-

glaucoma disease classifier. In both cases, whether the pre-processed data 

whether not were used, the classification accuracy of 97.91 % was achieved. 

However, variation of SSE response and large dispersion values implies that the 

results may be questionable.  

Further, proposed method for thermovisual data processing let us measure 

and record the tissue temperature changes. This, in turn, allows the real time 

control of destruction boundaries of the tissue in order to avoid adverse effects 

and preserve the structures in which the damage would have injurious 

consequences.  

The principal component analysis, as well as the analysis of vector lengths 

have exposed that the task comes to a two-class separation problem, regardless 

of the manner in which the initial colour system pixel intensities are mapped on 

the gray level intensity interval. For example, he analysis made on the spread of 

the risk area using the electrode ablation impulse current power of 30 or  

50 Watts and the operation time of 20 seconds, has shown that the tissue thermal 

anisotropy dynamics, is almost the same in heating and cooling stages. 
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Conclusions 

A large amount of data is produced by technological means in everyday practice. 

The collected data cannot be examined in detail by a human since the amount is 

too large, however, this provides the crucial information on the state of the 

patient. Thus, the techniques of data mining, pattern recognition, and knowledge 

discovery are very efficient and can be used for decision support. The topics 

investigated in the thesis allow us to conclude that: 

1. A disc-shaped structuring element can be used for the blood vessel tree 

extraction and removal tasks from colour eye fundus images. In the case of 

vasculature extraction the computation time is saved and every image pixel 

that represent a vessel is processed.  

2. The recombination of processed channels of the retinal image by the 

mathematical morphological closing operation does not cause a colour 

distortion. It results in the 98 % optic nerve disc localization accuracy. The 

elliptic parameters, obtained by the proposed algorithm, on the average did 

not differ from those obtained by the reference points more than 10 %. 

3. The blood vessel tree is unique and can be used for eye fundus registration. 

The algorithm, proposed, for blood vessel extraction that uses disc-shaped 

structuring element, enables us to position eye fundus images according to 

the features of global topology. Thus, a linear transformation is sufficient to 
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solve the eye fundus image registration problem. The analysis of a set of 

retinal images has showed that the registration quality parameter is 

sufficient and occurs within the framework of 20–40 decibels, which 

indicates the qualitative result of registration. 

4. The analysis of the peak-signal-to-noise parameter has revealed that the 

algorithm proposed for image registration is also suitable to solve the 

identification-related class problems. However, a more thorough analysis 

should be made in order to evaluate the identification results. 

5. The analysis of the principal components as well as of vector lengths has 

proved that the problem of unknown temperatures can be reduced to that of 

separating two classes, no matter how the initial colour system pixel 

intensities are mapped into the gray level intensity interval. 

6. The analysis of spread of the risk area, made according to the electrode 

ablation impulse current power and time, has showed that the tissue thermal 

anisotropy dynamics, regarding 30 and 50 Watt power and 20 seconds 

lesion time settings on the atria tissue, remains almost the same during 

heating and cooling stages. 

7. The artificial neural network with one hidden layer was tested as a  

healthy-glaucoma disease classifier. The classification accuracy of 97 % 

was achieved on the initial as well as pre-processed data. However, in both 

cases the variation of sum of squared error response may mean that either 

the given parameters do not reflect the real incidence of classes, or this 

parameter system is improper for the classification task. 
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ANNEXES 

Annex A. Analysis Results of the OND Parameters 

Table A1. Analysis data for the first image 

Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
1 1251.7 969.44 147.13 121.64 56225 1.06 

2 1241.4 971.68 120.03 109.86 41427 0.95 

3 1250.9 963.24 148.74 119.24 55719 0.90 

4 1242.9 974.86 145.32 136.85 62477 0.92 

5 1244.8 967.56 136.01 119.99 51270 1.15 

6 1247.3 960.28 138.59 122.31 53253 1.09 

7 1243.7 973.21 148.87 130.52 61043 1.13 

8 1252.0 970.23 142.19 122.82 54864 1.10 

9 1240.9 965.24 133.73 151.12 48365 1.15 

10 1244.3 966.35 128.35 113.45 45746 1.22 

11 1246.1 968.93 135.27 121.02 51429 1.07 

12 1246.5 968.39 143.76 125.84 56834 1.18 

13 1241.8 976.00 151.4 1.34.24 63833 1.11 

14 1243.7 967.75 129.66 117.47 47850 1.22 

15 1247.6 964.61 135.97 122.6 52370 1.06 

Average 1245.7 968.51 139.00 122.2 53514 1.06 
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Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
Sigma 3.6112 4.3043 8.8818 7.3645 6235.5 0.10 

Max 1251.8 975.95 151.36 136.85 63833 1.22 

Min 1240.9 960.28 120.03 109.86 41427 0.90 

Software 1245.2 975.19 144.72 134.86 61314 1.14 

Sigma from 

average 
0.1366 1.5508 0.6442 1.7193 1.2510 0.5840 

Overfits 

physician 

boundary 

- - - - - - 

Overfits 

physician 

average 

- 1 1 1 1 1 

4th physician 

sigma from 

average 

0.94 1.72 0.70 2.59 1.70 2.26 

Excluding 4th physician 

Sigma from 

average 
0.19 1.75 0.68 2.15 1.42 0.51 

Overfits 

physician 

boundary 

- - - 1 - - 

Overfits 

physician 

average 

- 1 1 1 1 1 

Table A2. Analysis data for the second image 

Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
1 793.95 1086.4 165.86 150.26 78295 0.42 

2 796.2 1090.9 167.78 147.15 77562 0.33 

3 797.65 1090.1 164.31 147.13 75947 0.63 

4 795.05 1078.3 186.02 171.34 100131 0.70 

5 798.36 1090.9 165.03 150.49 78023 0.76 

6 799.24 1090.7 167.36 158.27 83215 0.33 

7 794.49 1084 184.66 169.78 98494 0.71 

8 799.15 1085.8 176.3 163.94 90800 0.50 

9 795.05 1082.3 169.37 152.02 80889 0.61 

10 802.2 1090.6 161.64 150.59 76471 0.40 

11 792.04 1080.5 185.11 164.71 95785 0.71 

12 797.36 1087.4 167.35 157.36 82731 0.64 

13 795.29 1092 169.87 149.64 79857 0.44 

14 799.4 1091.4 163.85 149.17 76785 0.36 
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Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
15 797.57 1089.9 163.8 148.38 83423 0.48 

Average 796.87 1087.4 170.55 155.35 83423 0.54 

Sigma 2.6238 4.3454 8.3438 8.3466 8541 0.15 

Max 802.21 1091.6 186.02 171.34 100131 0.76 

Min 792.04 1078.3 161.64 147.13 75948 0.60 

Software 801.92 1086 184.68 171.54 99525 0.60 

Sigma from 

average 
1.93 0.32 1.69 1.94 1.89 0.42 

Overfits 

physician 

boundary 

- - - 1 - - 

Overfits 

physician 

average 

1 - 1 1 1 1 

4th physician 

sigma from 

average 

0.72 2.55 2.13 2.26 2.30 1.14 

Excluding 4th physician 

Sigma from 

average 
1.84 0.55 2.05 2.36 2.32 0.51 

Overfits 

physician 

boundary 

- - - 1 1 - 

Overfits 

physician 

average 

1 - 1 1 1 1 

Table A3. Analysis data for the third image 

Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙 𝑒  
1 722.49 1127.3 141.74 127.56 56801 0.57 

2 723.34 1129.7 147.52 134.3 62227 0.67 

3 719.44 1124.8 142.23 130.82 58454 0.67 

4 727.9 1128.3 146.54 130.59 60120 0.54 

5 722.18 1130 143.42 130.89 58975 0.70 

6 722.82 1127.6 143.52 127.36 57424 0.67 

7 724.88 1127.9 146.87 131.59 60716 0.58 

8 725.66 1125.9 146.01 130.16 59705 0.51 

9 721.58 1123.5 147.1 129.86 60012 0.76 

10 723.1 1130 142.81 128.21 57522 0.46 

11 727.44 1128.9 147.34 129.74 60054 0.70 

12 725.84 1127.7 146.46 132.86 61131 0.64 
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Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙 𝑒  
13 723.29 1127.3 145.26 131.4 59964 0.56 

14 725.38 1129.9 149.3 126.79 59478 0.63 

15 723.2 1129.8 144.5 129.18 58643 0.71 

Average 723.9 1127.9 145.38 130.09 59415 0.63 

Sigma 2.2588 2.0084 2.2345 2.0671 1471 0.08 

Max 727.86 1130.4 149.32 134.27 62227 0.76 

Min 719.44 1123.5 141.74 126.79 56801 0.46 

Software 726.83 1141.6 126.12 120.52 47752 0.00 

Sigma from 

average 
1.30 6.80 8.62 4.63 7.93 1.30 

Overfits 

physician 

boundary 

- 1 1 1 1 - 

Overfits 

physician 

average 

1 1 - - - - 

4th physician 

sigma from 

average 

1.98 0.25 0.62 0.47 0.74 1.05 

Excluding 4th physician 

Sigma from 

average 
1.57 6.58 8.36 4.45 7.67 7.51 

Overfits 

physician 

boundary 

- 1 1 1 1 1 

Overfits 

physician 

average 

1 1 - - - - 

Table A4. Analysis data for the fourth image 

Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
1 2245.8 1044.9 144.93 123.41 56190 1.51 

2 2242.1 1042.4 145.65 122.63 56112 1.53 

3 2243.8 1042.6 142.92 120.54 54122 1.55 

4 2233.4 1042.7 164.79 151.68 78525 -1.17 

5 2243.8 1043.3 143.51 122.94 55427 1.54 

6 2244.1 1045.2 145.07 121.59 55415 1.47 

7 2244 1045.9 143.24 122.2 54990 1.36 

8 2243 1040.8 154.43 139.76 67805 -1.57 

9 2242.1 1043 145.25 121.27 55337 1.44 

10 2244 1044.6 142.64 119.39 53501 1.51 
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Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
11 2244.7 1043.6 147.49 121.89 56478 1.49 

12 2245.9 1036.5 156.04 126.83 62174 -1.55 

13 2241.7 1043.4 143.4 118.13 53418 -1.56 

14 2243.6 1041.9 146.62 121.78 56094 1.52 

15 2244.1 1043.1 143.7 120.45 54377 1.48 

Average 2243.1 1042.9 147.35 124.97 57998 0.70 

Sigma 2.9349 2.2179 6.2513 8.9366 6795.4 1.36 

Max 2245.9 1045.9 164.79 151.68 78525 1.55 

Min 2233.4 1036.5 142.64 118.13 53418 -1.57 

Software 2240.6 1047.4 158.13 147.85 73449 -1.43 

Sigma from 

average 
0.84 2.02 1.72 2.56 2.27 1.57 

Overfits 

physician 

boundary 

- 1 - - - - 

Overfits 

physician 

average 

- 1 1 1 1 - 

4th physician 

sigma from 

average 

8.73 0.12 4.35 5.27 5.45 1.47 

Excluding 4th physician 

Sigma from 

average 
2.53 1.94 2.92 4.75 4.37 1.75 

Overfits 

physician 

boundary 

1 1 1 1 1 - 

Overfits 

physician 

average 

- 1 1 1 1 - 

Table A5. Analysis data for the fifth image 

Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
1 861.02 1119.1 142.96 133.72 60057 1.51 

2 864.13 1119.9 144.85 130.05 59181 -1.51 

3 866.13 1121.1 141.17 128.47 56976 -1.39 

4 867.17 1117 146.274 132.38 60819 -1.47 

5 870.99 1121.9 143.73 141.56 63920 0.01 

6 867.32 1120.3 144.83 128.21 58335 -1.55 

7 863.26 1122.4 141.57 132.68 59010 1.53 

8 861.79 1118.7 151.08 137.83 65419 1.24 
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Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
9 864.4 1114.6 147.87 126.71 58863 1.44 

10 867.15 1120.1 144.54 125.26 56879 -1.50 

11 864.2 1117.1 150 128.92 60752 1.35 

12 861.69 1120 149.32 134.39 63043 1.38 

13 863.15 1118.7 145.34 129.51 59134 1.55 

14 865.39 1121.1 145.16 128.46 58582 -1.55 

15 864.46 1118.2 143.62 129.76 58547 -1.52 

Average 864.82 1119.3 145.49 131.19 59968 -0.03 

Sigma 2.6338 2.0615 2.9446 4.3276 2459.4 1.47 

Max 870.99 1122.4 151.08 141.56 65419 1.55 

Min 861.02 1114.6 141.17 125.26 56879 -1.55 

Software 872.27 1123.3 158.32 156.36 77770 0.87 

Sigma from 

average 
2.83 1.92 4.36 5.82 7.24 0.62 

Overfits 

physician 

boundary 

1 1 1 1 1 - 

Overfits 

physician 

average 

1 1 1 1 1 1 

4th physician 

sigma from 

average 

0.90 1.18 0.24 0.26 0.32 1.15 

Excluding 4th physician 

Sigma from 

average 
2.88 1.86 4.23 5.64 7.03 0.55 

Overfits 

physician 

boundary 

1 1 1 1 1 - 

Overfits 

physician 

average 

1 1 1 1 1 1 

Table A6. Analysis data for the sixth image 

Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
1 2303 978.6 158.3 153.4 76302 -0.96 

2 2302 975.6 156.7 150.6 74148 0.31 

3 2303 977 159.4 155.7 77985 -1.13 

4 2305 977 163.1 158.4 81199 -0.61 

5       

6 2303 978.5 159.3 154.1 77126 -1.27 
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Parameters: 𝐶𝑥  𝐶𝑦  𝑅𝑥  𝑅𝑦  𝐸𝐴𝑟𝑒𝑎  𝐸𝐴𝑛𝑔𝑙𝑒  
7 2306 978.8 160.4 155.5 78378 -0.96 

8 2305 977.5 160.5 154.6 77939 -0.88 

9 2304 973.6 168.9 153.9 81627 -1.31 

10 2304 976 161.3 154.3 78186 -0.93 

11 2304 977.7 156 151.4 74199 -1.12 

12 2306 974.5 164.3 156.1 80543 -1.14 

13 2304 976.3 165.7 154.7 80532 -0.91 

14 2306 979.3 153.22 145.12 69854 -1.10 

15       

Average 2304 977 160.5 153.7 77540 -0.92 

Sigma 1.261 1.711 4.208 3.249 3.329 0.41 

Max 2306 979.9 168.9 158.4 81627 0.31 

Min 2302 973.6 153.2 145.1 99854 -1.31 

Software 2310 982.6 158 156.3 77543 -0.62 

Sigma from 

average 
4.282 3.306 0.614 0.792 0.001 0.74 

Overfits 

physician 

boundary 

1 1 - - - - 

Overfits 

physician 

average 

1 - - 1 1 - 

4th physician 

sigma from 

average 

0.68 0.03 0.57 1.60 1.12 3.15 

Excluding 4th physician 

Sigma from 

average 
4.26 3.17 0.55 0.97 0.09 0.79 

Overfits 

physician 

boundary 

1 1 - 1 - - 

Overfits 

physician 

average 

1 1 - 1 1 1 

 



116 ANNEXES 

116 

116 

Annex B. Parameters of Thermal Camera 

Table B7. Thermal camera ThermaCamTM – T400 specification 

 

Video and 

optics data 

Angle of view  25

 x 18.75


 

Minimal focusing distance 0.4 m (1.31 ft) 

Focal length 18.04 mm (0.710 inch) 

IFOV (thermal resolution) 1.36 mRad 

Lens identification Automatic 

Aperture 1.3 

Thermal sensitivity <0.08
0
C (<0.17

0
F) @ + 30

0
C 

(+86
0
F) 

Frame rate Depends on geographical 

location: 

 9Hz 

 30Hz 

Focusing Automatic or manual 

Detector 

Detector type Uncooled focal plane array  

microbolometer 

Spectral interval 7.5–13 µm 

Resolution 320 by 240 pixels 

Display 3.5“ (inch) (320 by 24 pixels) 

Display type Touch LCD 

Colour depth 16K colours 

Aspect ratio 3:2 

Video 

Camera resolution 1.3Mpixels 

Video focusing Predefined 

Video format 5:4 

Video frame rate 10 Hz 

Video colour depth 24 bits 

Illumination 1000 cd 
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Annex C. Lesion Area Dynamics With Respect to 
Time 
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Fig. C3. Approximation of data points by a cone.  

Case: pulmonary vein; parameters: 20 Watts 10 seconds 

 

Fig. C4. Approximation of data points by a cone.  

Case: pulmonary vein; parameters: 20 Watts 20 seconds 

 

Fig. C5. Approximation of data points by a cone.  

Case: pulmonary vein; parameters: 30 Watts 10 seconds 
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Fig. C6. Approximation of data points by a cone.  

Case: pulmonary vein; parameters: 30 Watts 20 seconds 

 

Fig. C7. Approximation of data points by a cone.  

Case: pulmonary vein; parameters: 50 Watts 10 seconds 

 

Fig. C8. Approximation of data points by a cone.  

Case: pulmonary vein; parameters: 50 Watts 20 seconds 
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Fig. C9. Approximation of data points by a cone.  

Case: atria; parameters: 20 Watts 20 seconds 
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