https://doi.org/10.15388/vu.thesis.448
https://orcid.org/0000-0001-9046-0788

VILNIUS UNIVERSITY

llona Veitaité

Enterprise Knowledge-Based UML
Dynamic Models Generation Method

DOCTORAL DISSERTATION

Technological Sciences,
Informatics Engineering [T 007]

VILNIUS 2023

This dissertation was written between 2011 and 2015 during PhD studies at
Vilnius University.
The dissertation is defended on an external basis.

Academic Consultant:
Prof. Dr. Audrius Lopata (Vilnius University, Technological Sciences,
Informatics Engineering — T 007).

This doctoral dissertation will be defended in a public/closed meeting of the
Dissertation Defence Panel:

Chairman — Prof. Habil. Dr. Gintautas Dzemyda (Vilnius University,
Technological Sciences, Informatics Engineering — T 007).

Members:

Prof. Dr. Vitalij Denisov (Klaipéda University, Technological Sciences,
Informatics Engineering — T 007),

Prof. Dr. Nikolaj Goranin (Vilnius Gediminas Technical University,
Technological Sciences, Informatics Engineering — T 007),

Prof. Habil. Dr. Rimvydas Simutis (Kaunas University of Technology,
Technological Sciences, Informatics Engineering — T 007),

Prof. Habil. Dr. Marcin Wozniak (Silesian University of Technology,
Technological Sciences, Informatics Engineering — T 007).

The dissertation shall be defended at a public meeting of the Dissertation
Defence Panel at 14:30. on the 23rd of March, 2023 in Room 203 of the
Institute of Data Science and Digital Technologies of Vilnius University.
Address: Akademijos str. 4, LT-04812, Vilnius, Lithuania.

The text of this dissertation can be accessed at the libraries of Vilnius
University, as well as on the website of Vilnius University:
www.vu.lt/It/naujienos/ivykiu-kalendorius

https://doi.org/10.15388/vu.thesis.448
https://orcid.org/0000-0001-9046-0788

VILNIAUS UNIVERSITETAS

llona Veitaité

Organizacijos Ziniomis pagrjstas UML
dinaminiy modeliy generavimo
metodas

DAKTARO DISERTACIJA

Technologijos mokslai,
Informatikos inZinerija [T 007]

VILNIUS 2023

Disertacija rengta 2011 — 2015 metais studijuojant doktoranttiroje Vilniaus
universitete.
Disertacija ginama eksternu.

Mokslinis konsultantas:
prof. dr. Audrius Lopata (Vilniaus universitetas, technologijos mokslai,
informatikos inZinerija, T 007).

Gynimo taryba:

Pirmininkas — prof. habil. dr. Gintautas Dzemyda (Vilniaus universitetas,
technologijos mokslai, informatikos inZinerija — T 007).

Nariai:

prof. dr. Vitalij Denisov (Klaipédos universitetas, technologijos mokslai,
informatikos inZinerija — T 007),

prof. dr. Nikolaj Goranin (Vilniaus Gedimino technikos universitetas,
technologijos mokslai, informatikos inZinerija — T 007),

prof. habil. dr. Rimvydas Simutis (Kauno technologijos universitetas,
technologijos mokslai, informatikos inZinerija — T 007),

prof. habil. dr. Marcin Wozniak (Silezijos technikos universitetas,
technologijos mokslai, informatikos inzinerija — T 007).

Disertacija ginama vieSame Gynimo tarybos posédyje 2023 m. kovo mén. 23
d. 14:30 val. Vilniaus universiteto Duomeny mokslo ir skaitmeniniy
technologijy instituto 203 auditorijoje. Adresas: Akademijos g. 4, LT-04812
Vilnius, Lietuva.

Disertacijg galima perziuréti Vilniaus universiteto bibliotekoje ir VU interneto
svetainéje adresu: https://www.vu.lt/naujienos/ivykiu-kalendorius

ACKNOWLEDGEMENT

The thesis author would like to express her gratitude to her supervisor,
Prof. Dr. Audrius Lopata, for the valuable scientific consultations and insights
provided during the PhD studies, for the advice, suggestions and constant
support, to the colleagues of the Kaunas Faculty, to the PhD students for their
cooperation and help, to her family for inspiration, support and understanding.

ACRONYMS

CASE — Computer-Aided Software Engineering
CISE — Computerised IS Engineering

CIM — Computation Independent Model

EM — Enterprise Model

EMM — Enterprise Meta-Model

GUI — Graphic User Interface

IEC — International Electrotechnical Commission
IS — Information System

ISEDS - IS Engineering Development Stages
ISO — International Organisation for Standardization
IT — Information Technology

KB — Knowledge-Based

KBISE — Knowledge-Based IS Engineering
MDA — Model Driven Architecture

MOF — Meta-Object Facility

OMG — Object Management Group

PIM — Platform Independent Model

PSM — Platform Specific Model

SAM - Strategic Alignment model

SIM - Society for Information Management
TISE — Traditional IS Engineering

UML — Unified Modeling Language

GLOSSARY

Computer-Aided Software Engineering (CASE) — the implementation of
computer-facilitated tools and methods in software development.

Computation Independent Model (CIM) — model to describe user
requirements for a system and business processes. This model does not contain
information about the technology platform on which the system will be
implemented.

Enterprise Knowledge — knowledge subsystem consisting of the Enterprise
Meta-Model and Enterprise Model.

Enterprise Meta-Model (EMM) — a formal structure ensuring a more
qualified project development process and knowledge base data collection.
This model was created by the collaborative scientific group of Vilnius
University and other science institutions.

Enterprise Model (EM) — the primary source of the necessary knowledge
of the particular problem domain for IS engineering and IS re-engineering
processes based on the Enterprise meta-model (EMM).

Information system (IS) — Enterprise software, also known as enterprise
application software (EAS), is computer software which is used to satisfy the
demands of an organisation rather than individual users. Enterprise software
can be categorized by type of business function, and each type of enterprise
application can be considered a “system” that supports an organization's
particular business management process or function.

Graphic User Interface (GUI) — a form of a user interface allowing users
to interact with electronic devices through graphical icons and an audio
indicator such as primary notation, instead of text-based Uls, typed command
labels or text navigation.

Model Driven Architecture (MDA) — an approach to software design,
development and implementation spearheaded by the OMG. MDA provides
guidelines for structuring software specifications that are expressed as models.

Meta-Object Facility (MOF) — an Object Management Group (OMG)
standard for model-driven engineering.

Object Management Group (OMG) — an international, open membership,
not-for-profit technology standards consortium.

7

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Organization

Platform Independent Model (PIM) — a model describing the architecture
and behaviour of a system without specifications for a specific technology
platform. By annotating the model with platform-specific information, a
platform-dependent model is created.

Platform Specific Model (PSM) — a model describing the architecture and
behaviour of a system with specifications for a specific technology platform
(e.g. programming language, operating system).

Strategic Alignment Model (SAM) — a conceptual model that has been
used to understand strategic alignment from the perspective of four
components, i.e. Business Strategy, IT Strategy, Organisational Infrastructure,
and IT Infrastructure, and their interdependencies.

Unified Modeling Language (UML) —is a general-purpose, developmental
modelling language in the field of software engineering intended to provide a
standard way to visualize the design of a system.

UML Dynamic models — also known as behavioural models: Use Case,
Information Flow, Activity, State Machine, Interaction: Sequence,
Communication, Timing, Interaction Overview. These models emphasize the
behaviour of objects in a system, including their methods, interactions,
collaborations, and state histories.

TABLE OF CONTENTS

ACKNOWLEDGEMENT ...ttt 5
ACRONYMS L. 6
GLOSSARY ..ottt bbbt 7
TABLE OF CONTENTS ...ttt 9
LIST OF FIGURES........ooiiiiiiiii it 11
LIST OF TABLES ...t 14
INTRODUCTION ...ttt 16
1. ANALYSIS OF RELATED WORKSccccoiiiiiiiineeneeseeens 22
1.1. Strategic Alignment Model Relation to Enterprise Model................. 22
1.2. Strategic Zachman Framework’s Approach..........ccccoviniininninennne 25
1.3. Traditional IS Engineering Definitioncccoovvivincnencicnnn, 26
1.4. Enterprise Model CONCEPL.......ccecviieiiiice e 27
1.5. Comparison of Traditional and Knowledge-Based IS Engineering... 29
1.6. Relation Between MOF and UMLcccocooiiiiiiiiiincceeeee 35
1.7. 1SO Standards in IS ENGINEEIINGcovvvvveieiicieie e 37
1.8. ISO Standards in the Requirements Specification Phase.................... 39
1.9. 1SO-Based Requirements Storing to Enterprise Model 41
1.10. Model Driven Architecture and Enterprise Modeling............cccceu.... 42
1.11. First Part CONCIUSIONSccviveiirieiie et 43
2. EM TO UML MODELS TRANSFORMATION METHOD............. 44
2.1. UML Models Top-Level Transformation Algorithm......................... 48
2.2. UML Use Case Diagram Transformation Algorithm 52
2.3. UML Activity Diagram Transformation Algorithm 54
2.4. UML State Machine Diagram Transformation Algorithm 55
2.5. UML Sequence model Diagram Transformation Algorithm 57
2.6. UML Communication Diagram Transformation Algorithm.............. 59
2.7. UML Timing Diagram Transformation Algorithm............c...cccc........ 60
2.8. UML Interaction Overview Diagram Transformation Algorithm 62
2.9. MDA Approach Extended with the Knowledge-Based Subsystem... 64
2.10. Second Part CONCIUSIONS.........cccuviveieieieeese et 65
3. METHOD REPRESENTATION WITH THE EXAMPLES............. 66
3.1. UML Use Case Model GENEration...........cccccevveveeieivesiesiereseeieniens 66
3.2. UML Information Flow Model Generationccccceecvrviieirriennne 68
3.3, UML Activity Model Generation...........c.ccoceveerinenieneieneseseeee 75
3.4. UML Sequence Model GENerationccccceeeeveenieieeneneene e 80
3.5, UML Timing Model GENeration............ccceeevveerinenenenienesieseeeee 82

3.6. UML Interaction Overview Model Generation..........ccccoevvveeeieiveeesins 84

3.7. Generated UML Models of Ticket Buying Process Example............ 86
3.8. Generated UML Models of Hospital Information Management Process
EXAMPIE. ..o e 93
3.9. Proposed Method Principals’ Application in Financial Data Analysis
111
3.10. Evaluation of UML Dynamic Models Generation Method Based on
Presented EXamples RESUILS ..o 112
3.11. Third Part CONCIUSIONS.......cccciviiiiriiie e 113
CONCLUSIONS ..ottt 115
REFERENCES........coi ittt anea 116
SUMMARY IN LITHUANIANcoiiiiiniit it 127
APPENDICES. ..ottt 149
LIST OF PUBLICATIONS.......ooiiicestie e 150
LIST OF CONFERENCES AND SCIENTIFIC EVENTS.......ccccccovvnene. 158

10

LIST OF FIGURES

Figure 1. Research SChema ... 21
Figure 2. Strategic Alignment Model............ccccevevieiiiiiiiicccecece e, 23
Figure 3. Business and IT Alignment Model and Knowledge Storage of CASE
TOON e e 24
Figure 4. Zachman Framework Cells with Possible Diagrams’ Types 26
Figure 5. Traditional IS Engineering CASE Tool Components................... 27
Figure 6 Enterprise Meta-Model Class Modelc.cccovveviiiiicicinenenne, 28
Figure 7. An Enterprise Meta-Model Graphical Schema Based on Malcev
F A [1=] o] PSSO SR 29
Figure 8. Principal Schema of Traditional IS Engineering and Knowledge-
Based IS Engineering DIfferenCesccccoveveieiciiiiniie e 30
Figure 9. Knowledge-Based CASE Tool Components.........c.ccceeveeverveenenne. 33
Figure 10. Knowledge-Based Subsystem Connection to the Enterprise Model
and Enterprise Meta-Model Inside @ CASE TOOL.........ccoocvvvevviiviinieciennne 34
Figure 11. MOF Architecture with Additional EM Layer...........c.cccccovenenee. 37
Figure 12. I1SO Standards in the Requirements Phase of the Information
Systems DevelopmMENTt PrOCESS........ccoveviiiiiie e se e sre e 40
Figure 13. The Sequence of Requirements Processes and Specifications.... 41
Figure 14. MDA Layers and the ProCESS...........ccoeiveiniiiinenenieneneeeeseens 43
Figure 15. UML Diagrams (Version 2.5.1)ccccccovveiiviiiicvineniese e 45
Figure 16. Knowledge-Based IS Engineering CASE Tool Components and
UL et 46
Figure 17. Knowledge-Based Subsystem and UML Diagrams Relationship
.. 47
Figure 18. UML model generation by transformation algorithms 47
Figure 19. The Top-Level Transformation Algorithm of UML Model
Generation from the EM ProCESScccceverierieieieicesese e 50
Figure 20. The Transformation Algorithm of UML Use Case Model
Generation from EM PrOCESSccviveieiiiieie it 53
Figure 21. UML Activity Model Transformation Algorithm...................... 54
Figure 22. UML State Machine Model Transformation Algorithm............. 56
Figure 23. UML Protocol State Machine Model Transformation Algorithm
.. 57
Figure 24. UML Sequence Model Transformation Algorithm.................... 58
Figure 25. UML Communication Model Transformation Algorithm.......... 60
Figure 26. UML Timing Model Transformation Algorithmcccc...... 61

11

Figure 27. UML Interaction Overview Model Transformation Algorithm.. 63
Figure 28. MDA Approach Extended with the Knowledge-Based Subsystem

.. 64
Figure 29. UML Use Case Metamodelccccoeevviieviii e 66
Figure 30. UML Use Case Elements Generated from EM............ccccovennne. 67
Figure 31. Transformation Algorithm of UML Information Flow Model
Generation from EM PrOCESSccccvviiiiinieieieiesesese e 68

Figure 32. 1 Stage of the Scheduled Workflow for Ultrasound Examination
for the Pet in the Veterinary Clinic Example Presented as the UML
Information Model Generated from the Enterprise Model...............ccce.... 74
Figure 33. Complete UML Information Model Generated from Enterprise
Model of Scheduled Workflow for Ultrasound Examination for the Pet in

VEterinary CHNICccoviiiiiieee e 75
Figure 34. UML Activity Diagram Metamodelc.ccccooveveviivieiesnennene. 76
Figure 35. Mapping of EM Elements to UML Activity Model Elements (1)
.. 78

Figure 36. Mapping of EM elements to UML Activity model elements (2) 78
Figure 37. Mapping of EM Elements to UML Activity Diagram Elements (3)

.. 79
Figure 38. An Example of Generated UML Activity Model 80
Figure 39. Graphical Schema of UML Sequence Model Based on Malcev
F N [0 1=] o] - PSS USROS 81
Figure 40. Graphical Scheme of Intersection Between Enterprise Model and
UML Sequence Model Elements Based on Malcev Algebra...........ccccc...... 82
Figure 41. Graphical Schema of UML Timing Model Based on Malcev
AlGEDIA ... 83
Figure 42. Graphical scheme of intersection between Enterprise Model and
UML Timing Model elements based on Malcev algebra............ccccccevennee. 83

Figure 43. An Example of UML Timing Model, Project Life cycle Phases 84
Figure 44. An Example of UML Interaction Overview Model: Online Service

(@] 0 1= PSS 86
Figure 45. UML Use Case Model of Ticket Buying Example.................... 88
Figure 46. UML Sequence Model of Ticket Buying Example.................... 90
Figure 47. UML State Model of Ticket Buying Example...........cccccoevnnnne. 91
Figure 48. UML Activity Model of Ticket Buying Example..........c.c......... 92
Figure 49. UML Use Case Model of Hospital Information Management
ProCcess EXaMPIEoo ittt 95

Figure 50. UML Activity Model of Hospital Information Management
Process Example: Registrationcccovvveieiveiiesie s 97
Figure 51. UML Activity Model of Hospital Information Management
Process Example: Ward ASSINMENTccoovvveievieciene e 98
Figure 52. UML Activity Model of Hospital Information Management
Process Example: Medical TeStS........coviiiiieieicieise e 99
Figure 53. UML Activity Model of Hospital Information Management
Process Example: Treatment ProCeSS..........cooevveieiniiiininineseeeeeeeeins 101
Figure 54. UML Activity Model of Hospital Information Management
Process Example: DIiSCharging..........ccovvieriieeiisieiisisese e 102
Figure 55. UML Sequence Model of Hospital Information Management
Process Example: Patient AAMISSIONc.ccoveiieviiieviiie e 104
Figure 56. UML Sequence Model of Hospital Information Management
Process Example: Test and Treatmentccccceveveevenienieeveseece e 105
Figure 57. UML Sequence Model of Hospital Information Management
Process Example: DiSCharging........c.ccovvieieneieiisiinise e 107
Figure 58. UML State Model of Hospital Information Management Process
EXample: PAIENTooiiiiiiecc e 108
Figure 59. UML State Model of Hospital Information Management Process
EXamMPIe: PAtIENTooeiiiiie et 109
Figure 60. UML State Model of Hospital Information Management Process
EXAMPIE: WaAIG.......coiiiiiicceeeee ettt 110

13

LIST OF TABLES

Table 1. Differences of IS Engineering Development Stages..............c....... 32
Table 2. EM Process, Function, Actor and Business Rules elements roles
variations as different UML dynamic models elements.............cccccovvvinnnne 48
Table 3. UML Use Case Model Elements..........c.cccoovevveviiiievniieie e 52
Table 4. UML Activity Model Elements............cccccovviviiiiiiciniiecc e 54
Table 5. UML State Machine Model Elements.........cccccooovvivevviieiienncieninne 55
Table 6. UML Protocol State Machine Model Elementsc..cccocecvennee 55
Table 7. UML Sequence Model EIementsccceoveiviiiininincnccc 57
Table 8. UML Communication Model Elements.........c.c.ccccovviviieieciennens 59
Table 9. UML Timing Model EIements..........cccccevevieiiinieiie i 61
Table 10. UML Interaction Overview Model Elementcccccovvrvennne 62
Table 11. Generated UML Use Case Elements.........cccccevvvviveveiesieseciennens 67
Table 12. Steps 1, 2 in the UML Information Flow Model Generation Process
.. 71
Table 13. Steps 3, 4 in the UML Information Flow model generation process
.. 72
Table 14. Steps 5, 6 in the UML Information Flow Model Generation Process
.. 72
Table 15. Steps 7, 8, 9 in UML Information Flow Model Generation Process
.. 73
Table 16. Steps 10, 11 in UML Information Flow Model Generation Process
.. 73

Table 17. Step 12 in UML Information Flow Model Generation Process ... 73
Table 18 Step 13 in UML Information Flow Model Generation Process 74
Table 19. Step 14 in the UML Information Flow model generation process74
Table 20. Generated EM Elements to UML Activity Model Elements 77
Table 21. An Example of EM and UML Activity Model Element Mapping79
Table 22. The Intersection Between EM and UML Sequence Model Elements

.. 81
Table 23. Intersection Between Enterprise Model and UML Timing Model
EIBMENLS ..ot 84
Table 24. EM and Online Service Ordering UML Interaction Overview Model
EIBMENTS ... s 85
Table 25. UML Use Case Model Elements Generated from Enterprise Model
of Ticket BUying EXamMPIeccooiiiieiiie et 87

Table 26. UML Sequence Model Elements Generated from Enterprise Model

of Ticket BUying EXaMPIEccoocoiiiiiiiiecie et 88
Table 27. UML State Model Elements Generated from Enterprise Model of
Ticket Buying EXample.......c.coovoiiiiiiiccece e 90
Table 28. UML Activity Model Elements Generated from Enterprise Model
of Ticket Buying EXamPplecooiiiiiiieee e 91
Table 29. UML Use Case Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example............cccccccovevnnnne. 94

Table 30. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example, Registration Part. 96
Table 31. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Ward Assignment97
Table 32. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Medical Tests 98
Table 33. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Treatment Process

Table 34. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Discharging 101
Table 35. UML Sequence Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Patient Admission

Table 36. UML Sequence Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Test and Treatment

Table 37. UML Sequence Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Discharging 106
Table 38. UML State Model Elements Generated from Enterprise Model of

Hospital Information Management Process Example: Patient................... 108
Table 39. UML State Model Elements Generated from Enterprise Model of
Hospital Information Management Process Example: Doctor 109
Table 40. UML State Model Elements Generated from Enterprise Model of
Hospital Information Management Process Example: Ward. 110
Table 41. Comparison of IS Analyst’s Activities by Criteria.................... 112

15

INTRODUCTION

The alignment of business and IT has been a significant management concern
for over two decades because it remains an essential goal. Superior strategic
alignment between business and IT strategy should lead to superior
performance compared to lower stages of strategic alignment. There is much
discussion about the term “business-IT alignment” [12]. Some would argue
that alignment is a weak goal that can be achieved only by a small number of
organisations, where everyone prefers the help desk and the IT budget is
enough to fund any proposed project. Moreover, some would agree that
business and IT alignment ensure the proper function of the entire organisation
[10][11]. Professionals suggest that organisations need to achieve strategic
business and IT alignment to be competitive. Strategic business and IT
alignment affect business performance and IT effectiveness [11][12].

In today’s organisations, issues of shared understanding between business
and IT exist. Information technology strategy planning is a multistage process,
and information system development depends on implementing each phase of
IS development life cycle. A combination of the leading business and IS
development goals does not have a direct relation. To ensure business and IT
alignment, it is essential to create communication between these two sides.
Implementing management processes provides clarity in decision-making, at
the same time, explains what IT is responsible for. Management takes
decisions away from IT and gives them to those who have a concern for the
success of initiatives and projects [11][12][34]. It means that the business
stakeholders present the case to an appropriate working group. That kind of
communication often leads to stronger relationships and partnerships and also
can help identify common needs between disparate user groups. This
knowledge improves communication, and people become more enlightened
about the challenges IT faces when trying to satisfy user requirements
[12][34].

In order to help stimulate communication and understanding, many
organisations are establishing business-facing roles that have significant
responsibility for establishing and maintaining alignment between IT and the
business fields. The balance of technology and business vision and the ability
to explain business and technology challenges with equal clarity should be
ensured. It is pretty often that forward-thinking and understanding how to
adopt new technologies to impact business is clear just for one side, and
talking about this technology does not always serve well [12][34][36]. It is

16

vital to move away from using technical terms or talking about the challenges
to explain correctly what the business needs and how the working team will
be able to meet these needs only if some conditions change or how the end-
stage will better support the organisation and its business goals, not just how
the changes will make the IT team more effective.

Motivation

A knowledge-based IS engineering offers system modelling and decision-
making methods and tools, which help to develop a more accurate and detailed
subject domain corresponding to the project [18][31[33]. IS project developer
and/or programmer is allowed to use not only the knowledge of the project,
which is stored in the traditional CASE tool repository, but also the
knowledge-based repository, where subject domain knowledge tested
according to formal criteria is stored. There are many standards and business
modelling methodologies which can make this process easier
[21][23][30][31][47].

The Unified Modeling Language (UML) is a general-purpose,
developmental modelling language in the field of software engineering. It is a
universal 1S modelling language applied to many methodologies and used in
the most popular modelling tools, such as Enterprise Architect, System
Architect, MagicDraw, and others [5][13][15]. The method of UML model
generation from the Enterprise Model presented by the author implements a
knowledge-based design phase in the IS development cycle [26][27][28].

A knowledge-based subsystem as a CASE tool component containing
Enterprise Meta-Model (EMM) and Enterprise Model (EM) inside can help
solve this issue. The Enterprise Meta-Model and Enterprise Model (EM) are
a formal structure that ensures a more qualified project development process
and knowledge base data collection [26][27]. Enterprise Model and Enterprise
Meta-Model make the generation of UML project models possible, which
makes the design process more efficient and qualitative and ensures fewer
errors in the final phase of IS development [26][50][56][57].

Object and Scope of Research

The research object of this work is the process of generating UML dynamic
models from the Enterprise Model (EM) as a part of knowledge-based IS

17

engineering following MDA approach with the integration of ISO standards
and MOF.
The scope of the research encompasses the following fields:

o Knowledge-based information system engineering.

e |ISO standards that provide possible solutions and help achieve
benefits for almost all sectors of activity. These standards are
documented agreements containing technical specifications or
other precise criteria to be used consistently as rules, guidelines,
or definitions of characteristics, to ensure that materials, products,
processes, and services are fit for their purpose [38][44].

e MOF isan Object Management Group (OMG) standard for model-
driven engineering. Its purpose is to provide a type system for
entities and a set of interfaces through which those types can be
created and manipulated. MOF only provides a means to define a
language or data’s structure or abstract syntax [74].

e MDA — Model Driven Architecture is an approach to software
design, development and implementation spearheaded by the
OMG. MDA provides guidelines for structuring software
specifications that are expressed as models.

Problem Statement

Traditional IS engineering phases — from the specification of user
requirements to project development — are empirically based, and traditional
CASE tools implement an empirical UML-based IS project development
process. It means that IS project creation depends mainly on analyst
knowledge and experience [26][27][57][60].

One of the many computerised IS engineering methods’ disadvantages is
the fact that IS design models are generated only partially since, in the design
phase, the designer forms design models based on one’s personal or analyst’s
experience rather than applying the principles of using knowledge, which is
stored in Enterprise Model, for design models generation. The solution to
these problems is the integration of the Enterprise Model, as the core subject
knowledge repository, into the knowledge-based IS engineering process [49].
The knowledge-based subsystem implemented as a CASE tool component,
including Enterprise Meta-Model and Enterprise Model, can manage these
issues.

18

Research Goal and Objectives

The goal of this research is to extend capabilities for generating system design
phase UML dynamic models from the Enterprise Model via the usage of
transformation algorithms. Research tasks are the following:
1. To analyse the different perspectives of UML dynamic models in
IS engineering.
2. To create transformation algorithms UML dynamic models from
Enterprise Model in a knowledge-based IS engineering.
3. Experimentally check the transformation algorithms with real-
world subject domain examples.
4. Evaluate the advantages of a knowledge-based method of UML
dynamic models generation.

Research Methodology

The current situation and the relevance of the research have been evaluated by
analyzing the scientific literature related to IS engineering, IS development
life cycle phases, Enterprise Modelling, UML, ISO standards, MOF
architecture, model-driven development, and other areas. The research was
carried out using the Design Science research methodology [35]. The method
of UML dynamic model generation from Enterprise Model by using
transformation algorithms was created by the author to ensure a more effective
and qualified generation process, and a lower number of mistakes and errors
in the final IS development life cycle phase. All the examples were included
to evaluate the presented method’s applicability and prove its suitability.

Defended Propositions

Propositions, defended by the research:
1. AnEnterprise Model (EM) that corresponds to an Enterprise Meta-
Model (EMM) is a sufficient source of subject domain knowledge
to generate the dynamic models defined in the UML specification.
2. The created transformation algorithms ensure the generation of
UML dynamic models from the enterprise model (EM) in different
subject domains.

Major Contributions and Novelty
19

The significant contribution of this work is the Enterprise knowledge-based
method for UML dynamic models generation from Enterprise Model. The
knowledge-based generation method combines the main principles of
knowledge-based techniques, ISO standards, MOF and MDA. This method
gives the possibility to create advanced software development approaches.
Within the research, the existing Enterprise Meta-Model [23][32][57] was
analysed and used for the UML dynamic model generation of different subject
domains. In order to implement UML dynamic model generation from
Enterprise Model, new UML model transformation algorithms were created.

Practical Significance

The primary practical significance of the research is the step towards making
the modelling process better understandable and usable for all participants of
IS development life cycle. Application of the proposed knowledge-based
generation method provides the opportunity to use supplementary models
validation methods that Enterprise Meta-Model defines.

Scientific Approval

The research results were presented at 14 international and 3 Lithuanian
conferences, 6 international seminars as poster presentations, and 1 PhD
symposium. Section “List of conferences and scientific events” contains a
detailed list of scientific events and conferences. 4 articles were published in
periodical scientific publications in journals referred in Clarivate Analytics
Web of Science database publications with a citation index. 9 articles were
published in conference proceedings referenced in the Clarivate Analytics
Web of Science database. 9 articles were published in peer-reviewed
conference proceedings. 2 articles as a book’s chapters were published in
Springer book series, classified as other peer-reviewed periodicals, continuous
or one-time scientific publications. Section “List of publications” contains a
detailed list of publications.

Thesis Structure
The thesis structure and main parts are provided in the research schema

(Figure 1). The introduction presents the entire content of the thesis, then as
20

follows: related works analysis, models transformation method, examples,
results and conclusions.

Zachman Method
Frarnework UML Models verification in

Introduction

Transformation Different
Method Subject
Domains

T

Separate UML | | Ticket Buying
Dynamic Process
Models Example

Traditional and

Related Works Knowledge-
Analysis Based

Engineering

MDA, MOF

Hospital
Information

Management
Process Example

. Results
@~ Conclusions .
Evaluation

Source: created by the author according to [35]
Figure 1. Research Schema

The first chapter analyses scholarly literature with a primary focus on business
and IT alignment challenges, ISO standards and MOF architecture usage,
traditional and knowledge-based IS engineering, Enterprise Modelling
solutions, phases of the IS development life cycle processes and model-driven
architecture solutions. The second chapter presents the knowledge-based
UML model generation method. This chapter presents a detailed description
and composition of the provided method by describing UML dynamic models
compositions, transformation rules, and their transformation algorithms from
Enterprise Model. The third chapter introduces separate and two combined
UML dynamic model generation examples from different subject domains by
using transformation algorithms proposed by the author. This chapter verifies
and proves that the Enterprise Model is suitable for UML dynamic model
generation and can be used through created transformation algorithms.

21

1. ANALYSIS OF RELATED WORKS

The first section consists of an analysis of scholarly literature with a particular
focus on business and IT alignment challenges, ISO standards, MOF and
MDA usage, traditional and knowledge-based IS engineering, Enterprise
Modelling solutions, and phases of the IS development life cycle processes.

1.1. Strategic Alignment Model Relation to Enterprise Model

One of the organisational solutions in enterprises is the application of business
and IT alignment. The most widespread and accepted conceptual model of
alignment was proposed by J.C. Henderson and N. Venkatraman [11][12][34].
This theoretical construct is known as the strategic alignment model (SAM).
The concept of strategic alignment is based on two dimensions (Figure 2): first
— the strategic fit between external focus, directed towards the business
environment, and internal focus, directed towards infrastructure and processes
and second — functional integration between business and IT [11][34][76].
Strategic fit refers to the concordance between internal and external domains.
Functional integration refers to the incorporation of the IT strategy into the
business strategy, particularly the integration of the internal IT strategies into
the internal organisational procedures and strategies. Altogether, the model
defines four domains that must be harmonized to achieve alignment
[78][87][93]. The alignment models derived from it help us understand
alignment from the view of the involved components, such as Business
Strategy, IT Strategy, Organisational Infrastructure, and IT Infrastructure, and
their interdependencies [12][34]. However, analyzing the alignment among
Business and IT requires a more detailed interpretation and definition than
presented in this model [77][78].

All later alignment models and consulting practices start from or refer to
Henderson and Venkatraman’s SAM [34]. Several assessment frameworks
and processes are developed from such foundations to indicate an expected
value of alignment.

22

(" [Business Strategy I/T Strategy
/ Business / Technolng\,r\l
- Scope \ Scope
H —
& 4 o-e
/D|sl|nct|\.e\ /Busmess\\ 6stsmn:
Qampetenw—d Gouelnanm/ Compelancmc nvsrnancn
\ -
STRATEGIC FIT Automation ,31:\ Linkage
u
s —
/:dmlnlslratla /A ' \
Inilastruclu;/ \rc itectures |
é _\ A ,_x_/' <
£ f - —
g / ~ / \ —\
| Processes / \\ Skills) roesses Skills
_ Organizational Infrastructure & Processes IS Infrastructure & Processes
i A e A
Business Information Technology

FUNCTIONAL INTEGRATION

Source: [34]
Figure 2. Strategic Alignment Model

In the field of strategic business and IT alignment, competing approaches
(typically labelled models or frameworks) are found to describe the nature of
the alignment phenomenon [1-8]. In this research, Luftman’s strategic
business and IT alignment assessment are adopted [67][68] as the
operationalized theory that correctly describes the complex phenomena of
alignment since it is empirically well-founded [34][67]. It is based on a
combination of twelve relationships between SAM components and research
results from previous studies on alignment inhibitors and enablers and has
been used in 60 global companies [68][93]. Some might, of course, argue
against considering his strategic business and IT alignment as a genuinely
representative approach, but that discussion is not the subject of this research.
Luftman’s strategic business and IT alignment assessment approach, from
now on cited as Luftman’s alignment assessment approach, has been the
subject of benchmark studies jointly sponsored by the Society for Information
Management (SIM) and The Conference Board and has been applied in large
and small companies at all levels. The alignment allows one to measure how
well the technical and business organisations work together. It examines six
dimensions, rating each on a scale of 1 (lowest) to 5 (highest) [12][34][67].

Henderson and Venkatraman described the interrelationship between
business and IT strategies. Strategic Alignment Model (SAM) was created in

23

order to describe these relations. The model consists of four domains:
Business Strategy Domain, Business Infrastructure Domain, IT Strategy
Domain, IT Infrastructure Domain and relationships between them. The
model is based on two parts: strategic integration and functional integration
[34][67]. As mentioned previously, strategic integration recognizes that the IT
strategy should be expressed in terms of an external domain (how the
organisation is positioned in the IT environment) and an internal domain (how
the IT infrastructure should be configured and managed). There are two types
of functional integration: strategic and operational. The first one is the
relationship between business strategy and IT strategy. The second one covers
the internal domain and deals with the relationship between business
infrastructure and IT infrastructure [11][12]. Functional integration considers
how choices made in the IT domain impact those made in the business domain
and vice versa. The strategic alignment model describes four basic alignment
perspectives: Strategy Execution, Technology Transformation, Competitive
Potential, and Service Level [34][93].

The proposed business and IT strategy alignment model (SAM) is
conceptual. It does not provide a practical framework to implement this kind
of alignment, despite that there are alignment mechanisms developed and used
in organisations to achieve the business and IT synthesis, but these
mechanisms are mainly oriented to business, not to IT [34][76][78].

Business

Strategy < » IT Strategy

4 howledge storage of CASE Tool +

KB Subsystem

Central

Repository| EMM
L 4

Business | » IT Infrastructure
Infrastructure

Source: created by the author [63A]
Figure 3. Business and IT Alignment Model and Knowledge Storage of
CASE Tool

The knowledge-based CASE Tool subsystem in business and IT
management can be used as the primary source for particular alignment
[64A][100A]. These frameworks specify all relevant structures within the
organisation, including business, applications technology, data and their

24

relationships to perform business [22][23][24]. For business and IT alignment
processes, specific data is necessary and used in a knowledge-based
subsystem (Figure 3). The business strategy domain provides business goals
to the knowledge base. Business goals are described by the business managers
and are received from the business environment, and IT goals are described
by the IT managers. The business infrastructure domain delivers business
rules, constraints, processes, functions and other related data; this can be
defined using diverse methods, tools and techniques: natural language, formal
templates, decision tables, and applications. IT infrastructure domain delivers
information about IT infrastructure, which describes current software and
hardware and can also be defined using various methods [70][88]. All this
information is stored in the knowledge base and can be used through the
Enterprise Model, which is validated according to the Enterprise Meta-Model
[63A][64A][65A].

1.2. Strategic Zachman Framework’s Approach

Another possible organisational solution in the enterprise is the adaptation and
application of a specific framework. The Framework for Enterprise
Architecture is a two-dimensional classification scheme for descriptive
representations of an enterprise [1][5][7]. It was derived through observation
of descriptive representations (design artefacts) of various physical objects
like aeroplanes, buildings, ships, computers, and others in which it was
empirically observed that the design artefacts (the descriptive representations,
the product descriptions, the engineering documentation) of complex products
could be classified by the audience for which the artefact was constructed (the
Perspective) as well as classified by the content or subject focus of the artefact
(the Abstraction) [1][5][7][19][112].

Different perspectives are represented in the process of engineering and
manufacturing complex products. The descriptive representations of the
product that are prepared over this process are designed to express
concepts/constraints relevant to the various perspectives [7][46]. That is, not
only do the design artefacts depict the necessary engineering information, but
they depict it in such a manner that it is intelligible to the perspective
(audience) for which they were created [53][54].

This set of perspectives appears to be universal and is easily observed in
the architecture of buildings, independent of geography, culture, language,
politics, or technology. Thousands of years of precedence establish that

25

presently, in every case, there is the Bubble Charts or sketches (Scope),
Architect’s Drawings (Owner’s View), Architect’s Plans (Designer’s View),
Contractor’s Plans (Builder’s View) and Sub-Contractor’s Plans (Out-of
Context View) and finally, the building (end product) itself [46][82][112].

Model Driven Generation (MDG) Technology for Zachman Framework
was proposed, which further extends the Enterprise Architect diagram set to
support the framework. Figure 3 shows the diagram types appropriate to each
cell of the Zachman Framework [53][54][80][112].

The Zachman Framework pages of the Enterprise Architect UML Toolbox
provide elements and relationships for all the Zachman Framework diagrams
that the MDG Technology supports. The Zachman Framework Toolbox pages
can be accessed using more tools in the Zachman Framework menu option.
They can be docked on either side of the diagram or freely float on top of the
diagram to expose more surface for editing [7][19][112].

The DATA (D) FUNCTION (F) NETWORK (N} PEOPLE (P) TIME (T) MOTIVATION (M)
Zachman What How Where Who When Why
Framework (things) (process) (location) (people) (Time) (motivation)
OBJECTIVEl | °S0 OsF oSN osp osT osMm
SCOPE (05) Package Diagram Technical Reference Organization Chart Technical Reference Goal Diagram
(contextual) Class Diagram Model Hierarchical Diagram Model
Use Case Diagram Activity Diagram
Planner Use Case Diagram
EMD Object Model EMF EMN EMP EMT EMM
ENTERPRISE Data Map Process Analysis M odel ‘Work Flow Model
MODEL (EM) Process lan Ackiviy Diagram Functional Logistic Organizational Chatt | \DEF3 OSTIN (Opyect Stat Business Plan
‘ Class Diagram, Work Flow 1 odel System Decomposition Al Grid Transtion Network) Goal Relationshi
(conceptual) IDEFIX State Disgram VP ol P Use Case Diagram s 5 P
Ow ner Composite Structure Diagram Interaction Diagram ackages Diagram Adtivity Diagram equence Diagram
CWM, EDOC GRAl Nets, EDOC. Collaboration Diagram Use Case Diagram
SMD SMF SMP SMT SMM
SYSTEM MODEL Data CRUD Watrices Process Diagram Systems Diagram
SM) (logical Class Diagram Adivity Diagram ¥ .
(SM) (logical) ERD, ERM, IDEF1X State Diagram - ﬁ”DL woyment | U gRAIuG'r‘uE.W 5 gt“fm.rn‘ag':m FDLD(F"S‘ O"jrerb%“gm"
Designer Package Diagram Use Case Diagram “’"p“”[;agr;r“] oyme Rt e [;‘aa”;a‘s‘" ecision Table
, e Cemponent Diagram Interaction Diagram N
Logical DespnsT Requrements o EAl Prafile EDOC IDEF3
CWM, EDOC, EAl Profile EDOC EA Profile
TECHNOLOGY [TmD F TMN ™P ™ MM
MODEL (TM Class Diagram
(oh swc(a\)) IDEF1X C”’“””"‘D‘*Q‘FE"“""‘ Deployment Diagram Use Case Diagram UML Sequence & FOL (First Order Logic),
phy cwH Adity Disgram NET UML Web Profile Collaboration Diagram Decision Table
Builder EDOC £D0C. NET EJB Cg;; Interaction Diagrams
Prystal Design 5T Sauon Design CORBA
DETAILED DRD DRF DRN DRP DRT DRM
REPRESENTATION EA Code Generation URL, IP, TCPIP
DR EA DOL Generation Component Diagram Generated Code Business Rules as Code
(d(t \ld) DB Schema NET NET
etaile saL EJB EJB
Programmer CORBA CORBA

Source: created by the author according to [7][19][54][80][112].
Figure 4. Zachman Framework Cells with Possible Diagrams’ Types

Figure 4 shows that the diagram or model of different notations could be
used for each Zachman Framework cell. A pretty high number of cells can be
covered with UML diagrams. That is one more confirmation of how important
the role of UML models in IS engineering is essential [53][82][112].

1.3. Traditional IS Engineering Definition

Information systems engineering — is an information system development
process, the execution of which is implemented through the IS development
26

life cycle phases (planning, requirements analysis, modelling, design,
development, testing and integration, implementation, maintenance.

Each phase of the IS development life cycle was implemented
independently from the others because there was no computerised knowledge
repository that included all phases of the life cycle. Analysts and designers
used conventional or object-oriented IS engineering methods [23][25]. IS
projects were implemented either in a non-computerised way or by using
specially created computerised tools intended for the specific user
requirements specifications to solve the problem [23][29]. Later,
computerised IS development methods were implemented. IS development
was improved by computerised IS development tools — CASE systems which
included a part of the IS development life cycle phases — design,
documentation and coding. Analysts and designers used the CASE system’s
IS development tools for conceptual and detailed design phases, and in the
practical realization, phase programmer used the tools designed to generate
code. In this case, a computerised system was based on traditional IS
engineering and (or) object-oriented IS engineering methods [28][59][61].

- <« Process Modeling Tools

|

<« Detailed Analysis Tools |

Central | g Transformation Tools |
|

|

Repository «—>»| Database/Application Design Tools
<> Application Generation Tools

Source: created by the author [60][62A][105A]
Figure 5. Traditional IS Engineering CASE Tool Components

With the development of the traditional IS engineering process, the CASE
system covered the entire IS development life cycle — from Enterprise
Modeling to code generation. These life cycle phases are implemented with
CASE tool components (Figure 5) [16]. The Enterprise Modeling process is
integrated into IS engineering instruments.

1.4. Enterprise Model Concept

The Enterprise Meta-Model (EMM) is a formally defined Enterprise Model
(EM) structure, which consists of a formalized Enterprise Model in line with
the general principles of control theory [23][26][27]. Enterprise Model is the
primary source of the necessary knowledge of the particular subject domain
for IS engineering and IS re-engineering processes (Figure 6) [28][58][70].

27

Enterprise Meta-Model manages Enterprise Model composition.
Enterprise Model stores knowledge that is necessary for IS development
process only and will be used during all phases of IS development life cycle
[26][27][57]. EM and EMM are the main components of the knowledge-based
subsystem of the CASE Tool. Collecting the necessary knowledge to the
knowledge-based subsystem of the particular CASE Tool would be
appropriate. This subsystem is the main source of knowledge necessary for
design phase models (including UML diagrams) and the source code
generation process.

EM

Event

I—: Actor Process Actor
<

Function Actor

Process

Objective
I: Function :‘
™

MaterialFlow

InformationActivity || BusinessRule

E Materialln putFlow

i)

—¢ InformationFlow Interpretation

MaterialOutputFlow

Realization Interpretation Rule

————
ProcessOutputAtributes | |[TPOutputAttributes

InformationProcessin Realization Rule

[PInputAttributes ProcesslnputAtributes

InformationProcessing Rule

Source: [23][26][23]
Figure 6 Enterprise Meta-Model Class Model

Figure 7 presents the Enterprise Meta-Model class model proposed two
decades ago [23][6]. Also, Enterprise Model can be described as Malcev
algebra-based algebra system (Figure 6) [57][64A]:

M1=<K, R> (1)
where M1 — Enterprise Model as algebra system; K — elements set of M1
system; K={K1, K2,..., K21}, where K1,....K21 EM meta-classes; R — set of
relationships between elements, where R={r1, r2, r3}.

For each set of K element Kn composition is defined as: Kn=<{anl,
an2,...,ank}, {mnl, mn2,...,mnl}>, where {anl, an2,...,ank} — attributes of
Kn element, {mnl, mn2,...,mnl}- methods of Kn element.

Enterprise Model M1 composition is as follows:

28

M1=<{K1, K2,..,K21}, {r1, 12, r3}> 2

I T -
P a1l
L& s (K3) _
4 o (K4)
\’ -,
(K7), s N/
S e <
= i, Tl
(K8) N~ 2 (K13) T~
\ c 2 TN \\ 7 " X (i
e R by (K14 }—o \KIT)
(t12) 2 277 N\\ N\ 2} | — b et
«\1\18) (K21)\ ;‘/n\{l. ‘ e ;\\
— AN/ \ (k1) y \K16)
-~ ~ / > \ \ \ / P .
7/~ \(K20) N\ i
(k19 \>7) N/ (K15
— (K10 F —

Source: [57]
Figure 7. An Enterprise Meta-Model Graphical Schema Based on Malcev
Algebra

where: K1 — meta-class Process, K2 — meta-class Function, K3 — meta-
class Actor, K4 — meta-class Event, K5 — meta-class Goal, K6 — meta-class
Material Flows, K7 — meta-class Input Material Flow, K8 — meta-class Output
Material Flow, K9 — meta-class Information Flow, K10 — meta-class
Interpretation, K11 — meta-class Data Processing and Solution Making, K12
— meta-class Realization, K13 — meta-class Information Activity, K14 — meta-
class Business Rules, K15 — meta-class Interpretation Business Rules, K16 —
meta-class Data Processing and Solution Making Business Rules, K17 — meta-
class Realization Business Rules, K18 — meta-class Process Output, K19 —
meta-class Information processing Input Attributes, K20 — meta-class
Information processing Output Attributes, K21 — meta-class Process Input, r1
— Aggregation, r2 — Generalization, r3 — Association [57].

1.5. Comparison of Traditional and Knowledge-Based IS
Engineering

Information systems (IS) are becoming more complicated, and textual
information with elementary schemes is insufficient to describe business
processes. Specific models are applied for computerised requirements
specification and modelling of IS. Enterprise Modelling has become an
integral part of IS development process. During this process, user

requirements, business domain knowledge, software architecture, and other
29

essential components are modelled [17][20][25][26]. Recently, the
organisation’s business modelling has become an important phase of
modelling design processes [14][22][23][56][57].

IS engineering phases, from modelling to code generation, are traditionally
implemented empirically. A computerised model of the subject domain is
formed by the experience of the analyst, while traditional CASE system design
models are formed based on the information collected on the business domain,
which is being computerised [28][30][48]. The leading role is given to the
analyst, and enhanced knowledge of the subject domain is not fully or
insufficiently controlled by formalized criteria [56][57].

Currently, computerised IS engineering, in order to avoid the empiric, is
developing based on new knowledge-based methods [28][30]. Computerised
information system in knowledge-based information system engineering is
developed by using the stored enterprise knowledge base of the subject
domain, i.e., the Enterprise Model, the composition of which is defined by
formal criteria. Computerised IS software development based on that model
is known as knowledge-based IS engineering [48][57].

A knowledge-based subsystem as a CASE tool component with Enterprise
Meta-Model (EMM) and Enterprise Model (EM) inside it can solve this issue.
The Enterprise Meta-Model is a formal structure which ensures a more
qualified project development process and knowledge base data collection
[29][30][33][57] Usage of the Enterprise Model and Enterprise Meta-Model
makes the UML project models generation process more effective and
qualified.

i

IS Engineer

IS
Development

————————————

! l Erlterpnse ' User Specification
: Moget : Requirements Information
____________ System
Source: created by the author according to [23][27]

Figure 8. Principal Schema of Traditional IS Engineering and Knowledge-
Based IS Engineering Differences

Traditional 1S engineering and knowledge-based IS engineering have
qualitative differences (Figure 8). In the case of traditional IS engineering —
there is an empirical IS engineering, where the individual user does not

30

include whole enterprise processes [22][33]. A knowledge-based IS
engineering covers the whole enterprise specification (Enterprise Model)
because it specifies the essential organisation’s characteristics. Formalized
Enterprise Model is based on a theoretical organisation’s management
principles [32][33][45].

The information system is developed empirically in traditional
computerised IS engineering [23][24][29]. In knowledge-based computerised
IS engineering, an IS is developed by using an enterprise knowledge
repository, where necessary and sufficient computerised knowledge of the
subject domain is stored [26][33][58][101A].

The table presented below shows the differences in the types of IS
engineering methods, sources of knowledge, i.e. participants who are involved
in IS development process and necessary software [30][32][33][64A].

CASE system is applicable not only in IS engineering but also in Enterprise
Modelling and re-engineering. CASE systems are complemented with
Enterprise Modelling tools and CASE system repository — Enterprise Model
subsystem. A system analyst is the main user of the Enterprise Modelling
CASE tool component. The computerised IS development process is based on
the design from the model sequence execution, where every other phase of the
design model is created interactively in the presence of the analyst, designer
and programmer [30][32][33].

At that period, CASE systems automatically generated only the logical
database diagrams, user interface fragments and code, which programmers
basically had to adjust. Thus, the traditional computerised IS engineering, IS
development life cycle starting from the initial and ending with its last phase,
takes place empirically, and many design models in CASE tools were
generated partially (Table 1). The only analyst could fully implement them
based on empirical experience [30][32][33][105A]. Explanations of
abbreviations in the table: ISEDS — IS Engineering Development Stages;
TISE — Traditional IS Engineering (non—computerised); CASE — Computer-
aided software engineering; CISE with EM — Computerised IS Engineering
(with Enterprise Modelling); KBISE — Knowledge-based IS engineering.

31

Table 1. Differences of IS Engineering Development Stages

Sources of
ISEDS Methods kno_w_ledge Software
(participants)/
People
IS development life User Database design tools
TISE cycle phases based Analyst Development Tools
design using individual | Designer
methods Programmer
Computer-aided User User requirements
software engineering Analyst specification tools
method includes parts Designer Database design tools
CASE from IS development Programmer User interface design tools
life cycle: Use Case tools
Design method Development tools
Realization method
Computerised IS User Enterprise Modelling tools
Engineering (CASE) Analyst User requirements
method includes all 1S Designer specification tools
CISE development life cycle: | Programmer Database design tools
with EM | Enterprise Modelling User interface design tools
Design method Use Case tools
IS realization method Development tools
Knowledge-based User, Analyst Enterprise Modelling tools
CASE method includes: | Designer Knowledge-based
Enterprise knowledge Programmer subsystem
modelling CASE knowledge- | User requirements
KBISE Enterprise Modelling based subsystem specification tools
Design method Database design tools
Realization method User interface design tools
Use Case tools
Development tools

Source: created by the author according [30][32][33][64A]

The computerised IS engineering-specific methods are developed based on
common requirements, which systematise the selected methodology. There
are some necessary components for knowledge-based IS engineering
methodology (Figure 9) [30][32][33]:

e The core of Enterprise Modelling’s theoretical basis is the
theoretical Enterprise Model. Its purpose is to identify the
necessary and sufficient business components for IS
engineering, which implements the organisation’s business
management. Theoretical Enterprise Model is a formalised
enterprise management model that identifies business
components and their interactions, enterprise management
and their interactions.

32

e The theoretical enterprise knowledge model is the Enterprise
Meta-Model. Based on the IS development life cycle phases,
the theoretical model components and their interactions are
described as Enterprise Meta-Model. The Enterprise Meta-
Model is a structural model which specifies the necessary and
sufficient components of IS engineering enterprise
management features and interactions.

e The theoretical basis of the knowledge-based IS engineering
process is IS engineering process model (methodology) that
justifies the knowledge-based IS development process by
using an Enterprise Model as an additional knowledge source
besides the analyst and the user.

o Computerised IS engineering systems development is based
on knowledge-based IS engineering tools: an Enterprise
Modelling approach, design models, and use case methods.
The right tools are needed for the implementation of the
knowledge-based IS development life cycle phase, such as
practical knowledge-based modelling methods or model sets.
Practical knowledge-based modelling methods are intended
for the development of functionality of traditional CASE
systems by creating a knowledge-based — CASE intelligent
system.

e A computerised knowledge-based IS engineering project
management basis is a CASE system knowledge-based
subsystem. CASE system’s knowledge-based subsystem's
core component is the knowledge base, which essential
elements are Enterprise Meta-Model specification and
Enterprise Model for the particular subject domain. A
knowledge-based subsystem is one more active participant in
IS engineering process besides the analyst, whose purpose is
to verify the results of IS development life cycle phases.

T s Process Modeling Toals |

<> Detailed Analysis Tools |

Central | g KB <> Transformation T00IS |
Reposilory Subsystem <«»| Database/Application Design Tools |
<> Application Generation Todls |

Source: created by the author [23][64A]
Figure 9. Knowledge-Based CASE Tool Components

33

(CASE Tool
)

Query (Knowledge

Query (Data)

Query (Restrictions)

Required(Restrictions‘ |

Analyst Required (Data)

Required (Knowledge)
- —

Source: created by the author [23][65A]
Figure 10. Knowledge-Based Subsystem Connection to the Enterprise Model
and Enterprise Meta-Model Inside a CASE Tool

Knowledge-based CASE systems contain essential components which
organize knowledge: knowledge-based subsystem’s knowledge base, which
essential elements are Enterprise Meta-Model specification and Enterprise
Model for certain subject domains. In the principal figure scheme of
interaction between the CASE tool’s knowledge-based subsystem, Enterprise
Model and Enterprise Meta-Model and how this system is related to the
analyst is presented (Figure 10) [23][65A][71][79].

There are fewer logical breaks in a knowledge-based, computerised IS
engineering design than in traditional computerised IS engineering. The
logical break of design is when a consistent automated information system
design process is terminated to allow the analyst to enter the missing
information of IS engineering process [23][26]. Logical breaks exist not only
in theoretical IS engineering models but also are observable in many CASE
tools, such as System Architect, MagicDraw, Enterprise Architect and others.
The majority of CASE tool's project models are generated only partially, and
their complete implementation is possible just by using the systems analyst
experience [51][57][73].

In a knowledge-based computerised 1S engineering, all project models can
be generated interactively using generation algorithms if the necessary
knowledge is collected into the knowledge repository. At least the
participation of an analyst and designer is required to ensure a missing
knowledge entry [26][51][57]. Knowledge is tested for completeness and
verified to ensure automatically generated design models and software code
quality in knowledge-gathering into the knowledge repository stage [73][85].

The differences in the IS engineering development stages are engineering
methods, sources of knowledge, i.e. participants who are involved in IS

34

development process and the necessary software are mentioned in Table 1 and
more detailed described below [23][26][100A]:

e Traditional IS Engineering (non-computerised) — Methods: IS
development life cycle phases based design using individual
methods; Sources of knowledge (participants)/People: User,
Analyst, Designer, Programmer; Software: Database design
tools, Development Tools.

o Computer-aided software engineering — Methods: Computer-
aided software engineering method includes parts from 1S
development life cycle: Design method, Realization method,;
Sources of knowledge (participants)/People: User, Analyst,
Designer, Programmer Software: User specification tools,
Database design tools, User interface design tools, Use Case
tools, Development tools

e Computerised IS Engineering (with Enterprise Modelling) —
Methods: Computerised IS Engineering (CASE) method
includes all IS development life cycle: Enterprise Modelling,
Design method, IS realization method; Sources of knowledge
(participants)/People: User, Analyst, Designer, Programmer
Software: Enterprise Modelling tools, User requirements
specification tools, Database design tools, User interface
design tools, Use Case tools, Development tools

e Knowledge-based IS engineering — Methods: Knowledge-
based CASE method includes: Enterprise knowledge
modelling, Enterprise Modelling, Design method,
Realization method; Sources of knowledge
(participants)/People: 1. User, Analyst, Designer,
Programmer 2. CASE knowledge-based subsystem Software:
Enterprise Modelling tools, Knowledge-based subsystem,
User requirements specification tools, Database design tools,
User interface design tools, Use Case tools, Development
tools.

1.6. Relation Between MOF and UML

Nowadays, information system description with textual information and basic

schemes is not enough because of their complexity of them [15][45][62A].

Modern information systems are engaged in a variety of data, information, and
35

knowledge-based problems. Earlier, most information systems were data-
oriented only, and their initial purpose was to store, retrieve and control data
[771[89][96A][98A].

Information system engineering extends through the whole life cycle of
systems. Information system engineering is based on the traditional
knowledge and empirical experience of the analyst combined with
supplementary abilities achieved from previous practice [45][62A][77][89].
The information systems engineering process is a logical sequence of actions
and solutions that converts operational demands into a description of system
performance configuration [90][95A][96A].

The Meta-Object Facility (MOF) is an Object Management Group (OMG)
standard for model-driven engineering. Its purpose is to provide a type system
for entities and a set of interfaces through which those types can be created
and manipulated. MOF only provides a means to define the structure or
abstract syntax of a language or data [74].

Enterprise Modelling has become an inextricable part of the information
system development process. MOF architecture supplemented with Enterprise
Meta-Model assures the appropriate information system development process
[62A][77][89].

Computerised IS engineering is developing based on new knowledge-
based methods in order to avoid empirical influence. A knowledge-based 1S
engineering offers system modelling and decision-making methods and tools,
which help to develop a more precise and detailed subject domain
corresponding to the project [62A][77][89].

The Meta-Object Facility (MOF) standard is designed as a four-layered
architecture. It provides a meta-meta model at the top layer, called the M3
layer. This M3-model is the language used by MOF to build meta-models,
called M2-models. The most prominent example of a Layer 2 MOF model is
the UML meta-model, which describes the UML itself. These M2-models
describe elements of the M1-layer, and thus M1-models, for example, models
written in UML. The last layer is the MO-layer or data layer. It is used to
describe real-world objects of the particular subject domain. MOF is a closed
meta-modelling architecture; it defines an M3-model, which conforms to itself
[74].

36

metamodel
meta-metadata

M2 ‘ metamodel
=

M1 ‘metadatamodel‘ ‘ UML Models ‘

‘ ‘ UML Metamodel ‘

M3 meta-metamodel MOF Meta-
metamodel
‘ [M* Enterprlse J

=
Mo ‘

data ‘ ‘Modelledsystems

Source: created by the author according to [74][90][96A][98A]
Figure 11. MOF Architecture with Additional EM Layer

As described above, M3 is a meta-meta model, the base for a meta-
modelling architecture, which defines the language to describe meta-models.
Moreover, M2 meta-model is an instance of a meta-meta model, which defines
the language to describe models. According to the thesis author, among M3
and M2 layers, one more layer is needed to ensure more accurate usage of MOF
architecture [74][96A][98A]. This additional layer consists of Enterprise Meta-
Model (EMM) (Figure 11). Enterprise Meta-Model, as already mentioned, is a
formal structure which ensures a more qualified information system
development process and knowledge-based data collection. Enterprise Model
and Enterprise Meta-Model make the UML design model generation process
more efficient and eligible [62A][96A][98A].

1.7. 1SO Standards in IS Engineering

ISO standards make a positive contribution to the world. They provide
solutions and achieve benefits for almost all sectors of activity [38][39]. ISO
Standards are documented agreements containing technical specifications or
other precise criteria to be used consistently as rules, guidelines, or definitions
of characteristics, to ensure that materials, products, processes and services are
fit for their purpose [41][42][44].

Practically, information systems engineering extends during the entire life
cycle of systems, involving requirement definitions, functional designs,
development, testing, and evaluation. As it is mentioned, information systems
engineering is based on the traditional knowledge and personal experience of
the analyst combined with additional abilities gained from previous practice
[24][29][95A].

37

ISO (the International Organisation for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized system for
worldwide standardization. In the field of information technology, ISO and
IEC have established a joint technical committee, ISO/IEC JTC 1. The main
task of the joint technical committee is to prepare International Standards for
IT services and software and systems engineering [39][41][42][44].

International standards in IT service management and software and system
engineering are also excellent references to what is considered good practice
by the international community of professionals that work in these areas
[15][25]. Modelling languages are quite strictly specified in 1SO standards.
Several standards and business modelling methodologies are used in the
information systems development process [24][29], and UML is one of the
most common software specification languages. UML modelling language has
become popular for modelling software-intensive systems [52][72][91]. There
is part of ISO standards where UML usage or methods based on UML are
described.

According to creators, the Enterprise Meta-Model is a formally defined
Enterprise Model structure, which consists of a formalized Enterprise Model
in line with the general principles of control theory [24][25][58]. Enterprise
Meta-Model manages Enterprise Model composition and stores knowledge
that is necessary for IS development process only and can be used during all
phases of IS development life cycle. The necessary knowledge is collected to
the knowledge-based subsystem, where the main components are Enterprise
Model and Enterprise Meta-Model. Formalized Enterprise Model provides a
knowledge base, which ensures quality and verified knowledge in specific IS
development-related situations [33][63A][98A].

ISO standards-based information system development life cycle (19505,
19501) ensures formality, where appropriate sets of criteria and restrictions for
the professional practice of software engineering are established [40][43].
Regarding these criteria, professional decisions can be made in the information
system development process [39][41][44].

In the past, UML was often criticized as being too large to be implemented
as a whole and too complex to be realized in detail [52][91]. UML models
based on Enterprise Model implement knowledge-based information systems
development cycle because Enterprise Model stores knowledge necessary for
IS development process. The usage of the Enterprise Model is appropriate to
collect the necessary knowledge for the UML model generation process
[63A][95A].

38

1.8. ISO Standards in the Requirements Specification Phase

The ability to design, implement and manage information systems has
highly improved in the last twenty years. A core body of knowledge in
software and systems engineering now exists. Its necessity remains because
of the demand to create and deliver more complex applications, systems and
services in a shorter period [55].

Developing more complex information systems under a short time-frame
and delivering the required IT services in the most cost-effective range will
remain an aspiration. International standards play an essential part in this
process [38].

As it was mentioned, international standards in software and system
engineering are an excellent indication of what is considered good practice by
the international community of professionals that work in these areas
[38][39][41][42][44].

Subcommittee 7 (SC7) is responsible for IT services and software and
systems engineering standardization: software and systems engineering
processes, software system products, enterprise architecture, software
engineering environment, software engineering body of knowledge,
management of IT assets [42][44].

SC7 standards are constantly updated by developing and improving on
standards. One of the main scopes is integrating IT and business system
definitions as one of the main SAM goals and providing the software and
system engineering tools to implement enterprise information systems
[42][44].

SC7 standards collection consists of several blocks, where one of the most
relevant is process implementation and assessment. It consists of standards for
the life cycle in major, assessment and certification, IT service management
and all phases of the information system development process. Life cycle
standards are divided into the following groups: systems engineering,
software engineering, life cycle management and small entities. The
requirements specification phase is one of the essential phases of the
information systems life cycle phases. There are standards designated for this
phase (Figure 11) [42][44].

ISO/IEC 12207 was published on 1 August 1995 and was the first
International Standard to provide a comprehensive set of life cycle processes,
activities and tasks for software that is part of a more extensive system and for
standalone software products and services [42][44][95A].

39

Life Cycle Very Small
Systemns Entities
EngmeerlrE] _____ lifeCycle | 0| __ _ _ _ _ _ _ _ _ _
I[." Software || management I| Life Cycle :
|| Engineering | l[Software Engineering |
|

= I
|

i [. | : [12207] [24748-3 |
Documentation |l|-Requirements | Architecture | -
= % —— -
; Software Requirements |
Testing Maintenance Management __‘l‘[29148]

‘ rRekand |1 | - -7
Integrity
Process Implementation and Assessment

Source: created by the author [95A]
Figure 12. ISO Standards in the Requirements Phase of the Information
Systems Development Process

The current version ISO/IEC 12207:2008 establishes a common
framework for software life cycle processes, with well-defined terminology
that can be referenced by the software industry (Figure 12). The limitation of
this International Standard is that it does not detail the life cycle processes in
terms of methods or procedures required to meet the requirements and
outcomes of a process [38][42][44][88]. ISO/IEC TR 24748-3:2011 is a guide
for applying ISO/IEC 12207:2008. It addresses system, life cycle, process,
organisational, project, and adaptation concepts [42][44][95A].
ISO/IEC/IEEE 29148:2011 provides additional guidance in the application of
requirements engineering and management processes for requirements-related
activities in ISO/IEC 12207. The content of ISO/IEC/IEEE 29148:2011 can
be added to the existing set of requirements-related life cycle processes
defined by ISO/IEC 12207 or can be used independently [39][42]. It is also
possible to rely on ISO/IEC 19501 and 19505 and use them independently
[40][43].

It is widely known amongst researchers and industry practitioners that
software projects are significantly vulnerable when the requirements related
activities are barely accomplished [39][95A]. According to ISO 29148
requirements quality characteristics, qualities of requirements specification
are completeness, consistency, affordability, boundedness, and characteristics
of individual requirements are a necessity, implementation freeness, non-
ambiguity/uniquity, completeness, singularity, feasibility, traceability and
verifiability [42][95A].

The software requirements knowledge area is related closely to software
design, software testing, software maintenance, software configuration

40

i

| ‘ Measurement ‘

management, software engineering management, software engineering
process, software engineering models and methods, and software quality
knowledge area [38][44].

1.9. 1ISO-Based Requirements Storing to Enterprise Model

According to ISO 29148 requirements, processes and their specifications
depend on the coverage of the system for which the requirements are defined.
The stakeholder requirements specification (StRS), the system requirements
specification (SyRS) and the software requirements specification (SRS) are
intended to represent different sets of required information items. The
specifications correspond to the requirements in Figure 13 as follows: StRS —
stakeholder requirement (business management level and operational business
level); SyRS — system requirements; and SRS — software requirements. These
information items can be applied to multiple specifications (instances)
iteratively or recursively [42][87][95A]; they can be applied to various
templates, tools or applications and can be used in decision tables. Enterprise
model element Business rules can be stored for the requirements, especially
all constraints.

éxternal Environment h
(Jrganizatien Environment A
RP Business Operation I
{Organization) R
/3ystem Operation
RP i (!
(Business) ! System |
-StF\‘.S RP System Element ||!
Business r RP i
Operational " (System) yRS |
e RP System Element ||!
Concept of Systeni Operational (Software) i
Operation Copcept ’y
=)
N h)

Source: created by the author [95A]
Figure 13. The Sequence of Requirements Processes and Specifications

The concept of operation and the system operational concept are helpful in
eliciting requirements from various stakeholders in an organisation and as a
practical means to communicate and share the organisation’s intentions. At
the organisation level, the concept of operation addresses the leadership's
intended way of operating the organisation. The system operational concept
addresses the specific system-of-interest from the user's viewpoint.
Information items represented in the StRS, SyRS, SRS, the concept of

41

operation and the system operational concept documents are interdependent

[42][95A].

1.10. Model Driven Architecture and Enterprise Modeling

The main idea of Model Driven Architecture (MDA) is to separate the models
that describe the functionality of a system from the models that describe how
that functionality should be implemented (the technical aspects of
implementation), i.e. to separate the “what to do” from the “how to do”
[2][4][6]. MDA distinguishes three qualitatively different types of models
(layers) that are used in IS development [4][8]:

CIM — computation Independent Model. It is a model of the
functional and non-functional requirements of a system. The
procedures for building this model, its structure, and change
management are equivalent to the requirements gathering and
management phases of classical software development
methods. The MDA does not contain a precise specification
for the structure of this model as well as for the compilation
procedures, which is why the CIM compilation has been
interpreted differently by different authors. A CIM can be
composed of a set of models that separately describe a
system’s static and dynamic information, with UML as one
example.

PIM — a platform-independent abstract model that contains
enough information to be transformed into a platform-
specific model (PSM). A platform-independent model
describes the structure and functions of a system at the
architectural level but not how they are implemented.

PSM — a platform-specific model that contains information
about what the system should do (functional information) and
how it should do it (technical implementation information).
This model is created by transforming the PIM model, i.e. by
using additional annotations on object types, platform-
specific object relationships and elements.

The OMG specifications are used to create a single CIM model for
software development, which must specify all system requirements and
processes, and to create a single PIM model based on this model using
transformations (Figure 14). The number of PSM models is unlimited (but not

42

less than one) and depends on the specific project’s needs. In software
development based on MDA principles, the process starts with the
specification of user requirements and the creation of a CIM model [86][111].
This phase is empirical, i.e. the systems analyst interprets the information
provided by the user about the system requirements and formalises them using
the chosen modelling language. To avoid empirical impact for further process
Enterprise model as storage of subject domain knowledge can be used [86].

Subject Domain

‘ Subject domain data ‘

Ly
H

CiM

‘ Transformations ‘

!

PIM

il

‘ Transformations ‘

PSM

Ly
H

‘ Transformations ‘

Code

[-

Source: created by the author according to [86]
Figure 14. MDA Layers and the Process

The model is transformed into an architectural model (PIM). This
transformation can be performed automatically, provided that the CIM model
has been described using formal modelling languages, UML, in this research
case and that CIM to PIM interface maps exist. PIM to PSM transformations
are performed automatically by replacing the base PIM types with platform-
specific types and relationships. Software code generation from the PSM
model is also done automatically using code generation tools.

1.11. First Part Conclusions

The first part consists of an analysis of the business and IT alignment model
and its challenges, of how ISO standards can be used in IS development
process, its advantages and disadvantages of them, of differences between
traditional and knowledge-based IS engineering, of definitions of MOF and
MDA frameworks. This part presents how the Enterprise model can be used
as one of the IS development process elements.

43

2. EM TO UML MODELS TRANSFORMATION METHOD

The second section presents the knowledge-based generation method. This
chapter introduces a detailed description and composition of the provided
method by describing UML dynamic model compositions, transformation
rules and presenting transformation algorithms from the Enterprise Model
[51[24][81].

The Unified Modeling Language (UML) is a common language for
software architects, business analysts and developers used to specify,
describe, design and document the existing or new business processes and
structure of IS under development. UML 1.4.2 specification, which became
the international standard 1SO 19051, explains software development
importance: delivers guidance as to the order of a team’s activities, refers to
what artefacts should be developed, specifies the tasks of the team as a whole
and individual developer and proposes criteria for measuring and monitoring
a project’s activities and products [9][75][91].

The current version of UML is UML 2.5.1, released in December 2017.
2.5.1 tools will have to support a complete UML specification (Figure 13).
Information flows, models, and templates will no longer be auxiliary UML
constructs. At the same time, use cases, deployments, and information flow
become UML supplementary concepts [75][91].

UML specification defines two major kinds of UML diagrams: structure
or static diagrams and behaviour or dynamic diagrams (Figure 15). Structure
diagrams show the static structure of the system and its parts on different
implementation and abstraction levels and how they are related to each other
[75][77]1[81]. The elements in structure diagrams represent the meaningful
concepts of a system. The elements may include abstract, real-world and
implementation concepts. Behaviour diagrams show the dynamic behaviour
of the objects in a system, which can be described as a series of changes to the
system over time. [84][91][110].

44

UML 2.5.1

A

I Structure Diagram ‘ ‘

i)

. Use Case
CassOsgam [—— =

Behavior
Diagram

----- e
Object Diagram Information Flow |

' ___Diagram__
Package Diagram Sgé‘:gym B TS
jmmm s s s I
I Model Diagram - taie Machine
[Diagram
Composite :“Béﬁa?ﬁ@.TStété'}
Structure Diagram 1 Machine Diagram !
I~ femal Structure | B 1~ ~piofed SR)
i____Dagram___ 1" i_Machine Diagram |

}“Cdﬂa‘lb‘o?a‘tlﬁﬁﬂs‘e_ i
| Diagram

Interaction H
____________ Diagram :
Diagram Diagram
fon™ Communication
Diagram

Diagram

Interaction
Overview Diagram

[

o
8
g
5

Profile Diagram

Source: [75][91]
Figure 15. UML Diagrams (Version 2.5.1)

Computer-aided design tools facilitate the designer’s work but still do not
automate enough because serious inclusion of the analyst is required. Great
attention is paid to modelling, and the designer has to spend a lot of time on
that, especially when the final result is the whole IS instead of design models.
The primary purpose is to formalise the model creation process as much as
possible. A variety of methodologies has been designed, but still, there are
missed opportunities that would improve the IS design methods that are
controlled by CASE tools.

UML modelling language intended to describe the design decisions. It is a
modelling language that defines a graphical notation for the various aspects
and perspectives of software architecture modelling [77][92].

Information systems design methods specify the sequence of systems
engineering actions, i.e. how, in what order and what UML diagrams to use in
the design process and how to implement the process [75][77][81]. Many of
them are based on several types of diagrams describing various aspects of the
system’s properties. The meaning of each of them can be defined individually,
but more important is the fact that each diagram is the projection of the same
system [84][91][110].

45

This kind of system description is quite confusing because most of the
information in the diagrams overlaps and describes the same things, just in
different ways. An inexperienced specialist can misuse UML diagrams, and
the description of the system will possibly be inconsistent, incomplete and
controversial. Currently, UML CASE tools cannot help the designer much
[24][100A].

Formalisation brings new software and information systems design and
development opportunities. When the maximum coherence of UML models
is reached, models are linked to each other, clearly articulated by the rules,
expressed stronger and more completely. It greatly facilitates the task of
automated software development.

Since December of 1997, when the OMG announced UML as a standard.
This increasingly popular language makes a significant impact on IS design.
During the first year of using this language, it was used for modelling
information systems, but it is suitable for modelling business processes and
gained ground among business analysts. UML is capable of defining the
appropriate business structural and behavioural rule aspects. The use of UML
language can provide stability of documentation and make communication

easier between the designers and all other types of stakeholders [75][84][91].
Relationship between KB based CA SE Tool Components and UML

- «—> E UML Diagrams 0ols
«>»[De Structure | Boi5

Central | ¢ KB | 1L Dlagram |5
Repository Subsystem <«—»[Databas| EBaEEE lign Tools |
<> Appli Diagram Tools

Source: created by the author [64A][98A]
Figure 16. Knowledge-Based IS Engineering CASE Tool Components and

UML

Interaction between UML diagrams and Enterprise Model can be realized
through the transformation algorithms. Business elements (participants,
processes, functions, constraints) — subject domain knowledge stored in the
Enterprise Model can be generated as UML diagrams elements using
transformation algorithms. The integration of knowledge-based subsystem
and Enterprise Model usage makes it possible to generate knowledge proven
by formal criteria into the UML models (Figure 16). Usage of the Enterprise
Model and knowledge-based IS development process automatization saves
the working hours of designers and other stakeholders. Knowledge-based

46

subsystems and UML interaction inside the CASE tool are shown in Figure
17.

Enterprise Model as an organisation’s knowledge repository allows to
generate UML diagrams after using the transformation algorithms (Figure 18).
Such a repository can be used not only for knowledge of the organisation’s
accumulation but also as a tool that minimizes IS reengineering scope of work
if changes occur in an organisation.

UML Diagrams

Structure
Diagrams

KB Subsystem

Enterprise Enterprise
Meta-Model Model Behavior

\‘___________,-/ Diagrams
Source: created by the author [64A]
Figure 17. Knowledge-Based Subsystem and UML Diagrams Relationship

Enterprise Models have been concluded in accordance with the notations
(such as Data flow diagrams, workflow models and so on). However, their
composition has not been checked by the characteristics of the specific subject
domain, but this knowledge may be used as a background for UML model
generation [64A][98A].

UL

Transformatio

Enterprise
Model

Source: created by the author [64A]
Figure 18. UML model generation by transformation algorithms

UML dynamic models can be generated from the Enterprise Model using
transformation algorithms (Figure 18). Firstly, a specific UML model must be
identified for the generation process; after this identification, the initial — main
element of this UML model must be selected from the Enterprise Model.
Secondly, all related elements must be selected according to the initial
element, and all these related components must be linked according to related

47

constraints necessary for the UML model type identified at the beginning of
the process [64A][98A].

2.1. UML Models Top-Level Transformation Algorithm

Information systems design methods specify the arrangement of systems
engineering actions and which UML models’ element can be generated from
the EM element (Table 2). Many of them are based on diverse types of models
describing different aspects of the system properties. The sense of each model
can be defined individually, but more important is that each model is the
projection of the same system and will be helpful in the whole IS development
process [100A].

Table 2. EM Process, Function, Actor and Business Rules elements roles
variations as different UML dynamic models elements

E | UML Model |UML Model |Description
M | element

Use Case Use Case A use case is a type of behavioural classifier that

model defines a unit of functionality achieved by actors or
subjects to which the use case applies in
combination with one or more actors.

Activity Activity Describes a parameterised behaviour as a
model correlative flow of actions.

- | Behavioural State Machine | Specifies individual behaviour of a part of a
% State Machine | model designed system through limited state transitions

S |Protocol State | Protocol State | Expresses a usage protocol or the life cycle of some
Y | Machine Machine classifier.

8 model

© | Message Sequence Describes one specific kind of communication
e model between the lifelines of an interaction.

Frame Communicati | Describes a unit of behaviour that concentrates on
on model the appreciable exchange of information between

connectable elements.

Frame Interaction Describes a unit of behaviour that concentrates on
Overview the appreciable exchange of information between
model connectable elements.

Actor Use Case Represents a role played by some person or system
Model external to the modelled system.

Subject ,L\J/Is; dgla s Represents the behaviour of the participant.

S | Partition Activity Describes actor or actor group actions that have
< Model some common characteristics.

Lifeline Sequence Represents the lifeline of the actor.

Model

Lifeline Communicati Represents part of the sequence model lifeline.

on Model

48

Business Rules

Lifeline Timing Model Represe_nts an individual participant in the
interaction
Use Case Extend is a directed relationship that specifies how
Model and when the behaviour defined in usually
Extend supplementary (optional) extending use case can be
inserted into the behaviour defined in the extended
use case.
Use Case Use case include is a directed relationship between
Include Model MO use cases which is _used.to. show t.hat the
included use case’s behaviour is inserted into the
included use case's behaviour.
Use Case Each wuse case represents a unit of proper
Model functionality that subjects provide to actors. An
Association association between an actor and a use case
indicates that the actor and the use case somehow
interact or communicate with each other.
Activity Use_d to coordi_ngtg the flows t_Jetween o_tr]er nqdes.
Control Nodes Model It includes: initial, flow final, activity final,

decision, merge, fork, join.

Pseudostate State Machine | An abstract node that encompasses different types
model of transient vertices in the state machine graph
Protocol Protocol State . .
Transition Machine Useq _for the protqc_ol state machl_nes, which
specifies a legal transition for an operation
model
Execution Sequence L N
Specification | model Represents a period in the participant’s lifetime.
Sequence Defines a combination (expression) of interaction
Combined model fragments. An interaction operator and
Fragment corresponding interaction operands define a
combined fragment.
Interaction Sequence Allows to use (or call) another interaction.
Use model
. Sequence Represents a runtime constraint on the participants
State Invariant . -
model of the interaction.
Destruction Sequence Represents the destruction of the instance described
Occurrence model by the lifeline.
. Timing model | Refers to a duration interval. The duration interval
Duration . - .
- is the duration used to determine whether the
constraint S
constraint is satisfied.
. Timing model | Refers to a time interval. The time interval is the
Time . - .
. time expression used to determine whether the
Constraint A -
constraint is satisfied.
Destruction Timing model | Represents the destruction of the instance described
Occurrence by the lifeline.
. Interaction Refers to a duration interval. The duration interval
Duration
- Overview is the duration used to determine whether the
Constraint s ph
model constraint is satisfied.
. Interaction Refers to a time interval. The time interval is the
Time
. Overview time expression used to determine whether the
Constraint L R
model constraint is satisfied.

49

Interaction Interagtion . .
Use Overview Allows to use (or call) another interaction.

model

Interaction Used to coordinate the flows between other nodes.
Control Nodes | Overview It includes: initial, flow final, activity final,

model decision, merge, fork, join.

Source: created by the author according to [75][91][98A]

Identifying a particular UML model and selecting the initial model element
is quite significant because the further generating process depends on it. Many
UML model elements repeat in different UML models, but these elements
define various aspects of the system [64A][75]. In the example, Enterprise
Model elements, such as Process, Function, Actor and Business Rules, can be
generated into different UML dynamic model elements depending on which
UML model is chosen for a generation [91][98A].

In IS engineering, all design models are implemented based on empirical
expert experience. Experts, who participate in the IS development process, do
not gain enough knowledge, and process implementation in requirements
analysis and specification phases can take too much time. Enterprise Meta-
Model contains essential elements of business modelling methodologies and
techniques, that ensure a suitable UML model generation process [64A][98A].

Identify UML Model for
generating process

Is there
identified UML
Model type

Identify initial element
from EM for selected
UML Model

Is there
identified initial

Are there
more links

Business
Rules

Source: created by the author [L01A][103A]
Figure 19. The Top-Level Transformation Algorithm of UML Model
Generation from the EM Process
50

The transformation algorithm (Figure 19) is a top-level algorithm for
Enterprise Meta-Model-based UML models generating process. The main
steps for generating process are identifying and selecting the UML model for
generating process, identifying starting elements for the selected UML model
and selecting all related elements, mapping Enterprise Model elements to
UML model elements and generating the selected UML model [101A][103A].

The transformation algorithm of UML model generation from the
Enterprise Model process is depicted by the following steps
[101A][103A][104A]:

e Step 1: Particular UML model for generation from the Enterprise
Model process is identified and selected.

e Step 2: If the particular UML model for generation from the
Enterprise Model process is selected, then the algorithm process is
continued, else the particular UML model for generation from the
Enterprise Model process must be selected.

e Step 3: The first element from Enterprise Model is selected for the
UML model, identified previously, generation process.

o Step 4: If the selected Enterprise Model element is an initial UML
model element, then the initial element is generated, else the other
Enterprise Model element must be selected (the selected element
must be an initial element).

e Step 5: The element related to the initial element is selected from
the Enterprise Model.

e Step 6: The element related to the initial element is generated as a
UML model element.

e Step 7: The element related to the previous element is selected
from the Enterprise Model.

e Step 8: The element related to the previous element is generated as
a UML model element.

e Step 9: If there are more related elements, they are selected from
the Enterprise Model and generated as UML model elements one
by one, or the link element is selected from Enterprise Model.

e Step 10: The link element is generated as a UML model element.

e Step 11: If there are more links, then they are selected from the
Enterprise Model and generated as UML model elements one by
one, else the Business Rule element is selected from the Enterprise
Model.

51

Step 12: The Business Rule element is generated as a UML model

element.

Step 13: If there are more Business Rules, then they are selected
from Enterprise Model and generated as UML model elements one
by one, else the generated UML model is updated with all
elements, links and constraints.

Step 14: The generation process is finished.

2.2. UML Use Case Diagram Transformation Algorithm

UML Use Case diagrams are usually referred to as dynamic models used
to describe a series of actions that some system or systems should or can
implement in contribution to one or more external users of the system. Each
use case should grant some observable and valuable results to the actors or
other participants of the system. UML Use Case model elements
[101A][102A][103A][104A].

Table 3. UML Use Case Model Elements

EM
element

UML Use Case
model element

Description

Actor

Actor

An actor is a behavioural classifier that defines a role played
by an external entity.

Subject

A subject is a classifier representing a business, software
system, physical system or device under analysis, design, or
consideration, having some behaviour to which a set of use
cases applies.

Function,
Process

Use Case

A use case is a type of behavioural classifier that describes a
unit of functionality performed by actors or subjects to which
the use case applies in collaboration with one or more actors.

Business
Rule

Extend

Extend is a directed relationship that specifies how and when
the behaviour defined in usually supplementary (optional)
extending use case can be inserted into the behaviour defined
in the extended use case.

Include

Use case include is a directed relationship between two use
cases which is used to show that the included use case’s
behaviour is inserted into the included use case's behaviour.

Association

Each use case represents a unit of proper functionality that
subjects provide to actors. An association between an actor
and a use case indicates that the actor and the use case
somehow interact or communicate with each other.

Source: created by the author according [L01A][102A][103A][104A]
Input (elements from Enterprise Model) and output (elements generated to

UML Use Case model) elements are presented in Table 3
[101A][102A][103A][104A].

52

Generate Actor
element

Select Actor
element

no

Select Function

Generate Use Case

Is Actor a
Subject Link Use Case to
yes Actor/Subject
Generate Subject
element

yes

Generate an
Source: created by the author in previous publications
[101A][102A][103A][104A]

Figure 20. The Transformation Algorithm of UML Use Case Model
Generation from EM Process

Figure 20 presents the transformation algorithm of UML Use Case model
generation from the EM process [101A][102A]. UML Use Case model
generation from Enterprise Model initial element is actor or subject, after the
generation of this element, follows the selection of Enterprise Model element:
process or function and Use Case element are generated. After the generation
of these two elements, they have to be linked to each other with some type of
relationship: association, extension or inclusion, defined by the Enterprise
Model element Business Rule. After all these elements are generated, there is
an update of the actor or subject element and check if more actor elements are
left in the Enterprise Model [103A][104A].

53

2.3. UML Activity Diagram Transformation Algorithm

The Activity diagram is a UML dynamic model that shows a flow of control
or object flow with emphasis on the sequence and conditions of the flow. The
actions which are coordinated by activity models can be initiated because
other actions finish executing because objects and data become available or
because some events external to the flow occur
[94A][101A][102A][103A][104A].

Table 4. UML Activity Model Elements

EM element UML Activity | Description
model element

Describes actor or actor group actions that have some

Actor Partition et
common characteristics.

Represents a parameterized behaviour as the

Function, Process | Activity coordinated flow of actions.

Material Flow,

. Object Nodes | Used to define object flows in an activity.
Informational Flow

Used to coordinate the flows between other nodes. It
Business Rules Control Nodes | includes: initial, flow final, activity final, decision,
merge, fork, join.

Source: created by the author [91][101A][102A][103A][104A]
Input (elements from Enterprise Model) and output (elements generated to

UML Activity model) elements are presented in Table 4
[94A][101A][102A][103A][104A].

Select Actor Select Function
element

no

Generate Activity

no > y
Update Partition
element

Are there
ore Actor

O
Source: created by the author[101A][102A][103A][104A]

Figure 21. UML Activity Model Transformation Algorithm
54

In UML Activity model generation from Enterprise Model (Figure 21)
initial element is a partition; after the generation of this element, follows a
selection of Enterprise Model element: process or function and activity
element is generated. Afterwards, the generation of these two types of
elements must be linked to each other. Object nodes are generated from
Enterprise Model material or informational flow elements in activity models.
Furthermore, all these generated elements are connected through control
nodes based on Enterprise Model business rule elements. Later all these
elements are generated, there is an update of the partition element, and check
there are more actor elements left in Enterprise Model
[101A][102A][103A][104A].

2.4. UML State Machine Diagram Transformation Algorithm

UML State machine diagram is used for modelling discrete behaviour
through finite state transitions. In addition to expressing the behaviour of a
part of the system, state machines can also be used to express the usage
protocol of a part of a system. These two types of state machines are referred
to as behavioural state machines and protocol state machines
[91][101A][102A][103A][104A].

Table 5. UML State Machine Model Elements

EM UML State Machine | Description

element model element

Process, Behavioural State Used to specify discrete behaviour of a part of a

Function Machine designed system through finite state transitions

Informatio | Simply State Defined as a state that has no substates.

n Flow Composite State Defined as a state that has substates.

Business An abstract node that encompasses different types of
Pseudostate . o A

Rule transient vertices in the state machine graph

Source: created by the author [91][101A][102A][103A][104A]
Table 6. UML Protocol State Machine Model Elements

EM UML State Machine | Description

element model element

Proce_ss, Protocol State Machine Used_tp express a usage protocol or a life cycle of some

Function classifier.

Informatio Present an external view of the class that is exposed to
Protocol State S

n Flow its clients.

Business - Used for the protocol state machines, which specifies
Protocol Transition L -

Rule a legal transition for an operation

Source: created by the author [91][101A][102A][103A][104A]

55

Input (elements from Enterprise Model) and output (elements generated by
the UML State Machine model and UML Protocol State Machine model)
elements are presented in Tables 5 and 6 [LI01A][102A][103A][104A].

Select Function

enerate
Behavioural State
Machine

Generate
Pseudostate

yes Rule a
Update Be a\ngura Ink Behavioura ink Behavioural
State Machine State Machine to State Machine to
element Simply State Composite State
) es
Are there no e'the y
. more ‘
Processe Information

@no
Source: created by the author [L01A][102A][103A][104A]
Figure 22. UML State Machine Model Transformation Algorithm

In UML Behavioural State Machine model generation from Enterprise
Model (Figure 22), the initial element is a process or function, which means
that the behavioural state machine element is generated from these Enterprise
Model elements. Subsequently, this element generation second related
element is simply state or composite state, which is generated from
information flow. Furthermore, the first two elements are linked to each other
and with the pseudostate element generated from the business rule. After that,
there is an update of the initials element and check if there are more process
elements left in Enterprise Model [101A][102A][103A][104A].

Moreover, the second type of State machine is the UML Protocol State
Machine model, which defines usage protocol or the life cycle of some
classifier [14].

56

http://www.uml-diagrams.org/classifier.html

Update Protoco
State Machine

Generate Protocol
Transition

Source: created by the author [101A][102A][103A][104A].
Figure 23. UML Protocol State Machine Model Transformation Algorithm

In UML Protocol State Machine model generation from Enterprise Model
(Figure 23), initials element is also process or function, from these Enterprise
Model elements protocol state machine element is generated. After this
element generation, the information flow is selected, and the Protocol state
element is generated. These two elements are linked to each other and also
with the protocol transition element, which is generated from the business
rule. Afterwards that there is an update of the initial element and check if there
are more process elements left in Enterprise Model.

2.5. UML Sequence model Diagram Transformation Algorithm

UML Sequence diagram is the most common kind of interaction model
which focuses on the message interchange between objects (lifelines). The
Sequence model shows how the objects interact with others in a particular
scenario of a use case [91][101A][102A][103A][104A].

Table 7. UML Sequence Model Elements

EM element | UML Sequence Description
Model element

Represents an individual participant in the
interaction. While parts and structural features may

Actor Lifeline have a multiplicity greater than 1, lifelines represent
only one interacting entity.
Process, Defines one specific kind of communication between
- Message el . :
Function the lifelines of an interaction.

57

Execution

Specification

Represents a period in the participant's lifetime.

Defines a combination (expression) of interaction

Combined Eragment fragments. ~ An interaction operator and
Business 9 corresponding interaction operands define a
Rules combined fragment.

Interaction Use

Allows to use (or call) another interaction.

State Invariant

Represents a runtime constraint on the participants of
the interaction.

Destruction
Occurrence

Represents the destruction of the instance described
by the lifeline.

Source: created by the author according [91][101A][102A][103A][104A]
Input (elements from Enterprise Model) and output (elements generated to

UML Sequence
[102A][103A][104A].

model)

elements are presented in Table 7

Select Actor
element

Generate Lifeline
element

Select Process

iy

Select Function

Generate Message

no

es
Is Message ™ Y€S

yes

o
Update Lifeline
element

Are there
more Actors

Generate an Execution
Specification

Generate a
Combined Fragment

Generate a
Destruction Occurence

no

Source: created by the author [101A][102A][103A][104A]
Figure 24. UML Sequence Model Transformation Algorithm

In UML Sequence model generation from Enterprise Model (Figure 24)
initial element is the lifeline; after the generation of this element, follows the
selection of Enterprise Model element: process or function and message
element are generated. Afterwards, the generation of these two types of
elements must be linked to each other. In sequence models, execution
specification, combined fragment, interaction use, state invariant and

58

destruction occurrence are generated from Enterprise Model business rule
elements. Later all these elements are generated, and there is an update of the
lifeline element and check whether there are more actor elements left in
Enterprise Model.

2.6. UML Communication Diagram Transformation Algorithm

The UML Communication diagram (called collaboration diagram in UML
1.x) is a type of UML interaction model which shows interactions between
objects and/or parts (represented as lifelines) using sequenced messages in a
free-form arrangement [91][101A][102A][103A][104A]

Table 8. UML Communication Model Elements

EM UML Communication Model | Description

element element

Process Represents a unit of behaviour that focuses on

Functio’n Frame the observable exchange of information
between connectable elements.

Actor Lifeline Represents an individual participant in the
interaction.

Ln'f:c;cr);nvatlo Message Indicates the direction of the communication.

Source: created by the author [L01A][102A][103A][104A]
Input (elements from Enterprise Model) and output (elements generated to

UML Sequence model) elements are presented in Table 8
[101A][102A][103A][104A].

The UML Communication Model is another type of interaction models
group, and it focuses on the interaction between participants called lifelines
where the architecture of the internal structure and how this corresponds with
the objects called message passing is central
[91][101A][102A][103A][104A].

59

Select Function

no

Generate Frame

Link Frame to

Lifeline

Select Actor
element
Generate Lifeline
element

Select Process

Is Frame a

yes

yes
Update Lifeline
element

no
Select Information
Flow

yes

Are there
ore Actor.

o

Source: created by the author [101A][102A][103A][104A]
Figure 25. UML Communication Model Transformation Algorithm

The initial element is the lifeline in the UML Communication model
generation from Enterprise Model (Figure 25). After the generation of this
element, the selection of Enterprise Model element follows: process or
function and frame element is generated. Subsequently, the generation of these
two types of elements must be linked to each other. In communication models,
message elements are generated from the information flow element. Later all
these elements are generated, there is an update of the lifeline element, and
check if there are more actor elements left in Enterprise Model
[101A][102A][103A][104A].

2.7. UML Timing Diagram Transformation Algorithm

The UML Timing diagram is an interaction model that shows interactions
when the primary scope of the model is to reason about time. The timing
model focuses on terms changing within and among lifelines along a linear
time axis. Timing models define the behaviour of both individual classifiers
and interactions of classifiers, focusing attention on the time of events causing
changes in the modelled terms of the lifelines
[91][97A][101A][102A]103A][104A].

60

Table 9. UML Timing Model Elements

EM element | UML Timing | Description
Model element
Represents an individual participant in the interaction. While
Actor Lifeline parts and structural features may have a multiplicity greater
than 1, lifelines represent only one interacting entity.
Information State or Shows states of the participating classifier or attribute, or
Condition .
Flow N some testable conditions
Timeline
Duration Refers to a duration interval. The duration interval is the
constraint duration used to determine whether the constraint is satisfied.
. . Refers to a time interval. The time interval is the time
Business Time . . Lo
. expression used to determine whether the constraint is
Rules Constraint

satisfied.

Destruction
Occurrence

Represents the destruction of the instance described by the
lifeline.

Source: created by the author [91][101A][102A][103A][104A].
Input (elements from the Enterprise Model) and output (elements

generated to UML Timing model) elements are presented in Table 9
[91][101A][102A][103A][104A].

The UML Timing model is also one of the interaction model groups and
defines interactions when the model’s primary purpose is to reason about time.
Timing models concentrate on conditions changing inside and between
lifelines ahead of a linear time axis [91][101A][102A][103A][104A][105A].

{

Select Actor
element

Generate Lifeline
element

yes

Timeéline
no

E_ink Lifeline to State or

Condition Timeline ~C RuleaTi

me

[Generate Duration

Constraint

Link Lifeline to
Duration Constraint

Are there
more Actors

@10

yes

Rille

Generate Time
Constraint

no

Generate Destruction
Occurence

Source: created by the author [91][101A][102A][103A][105A].
Figure 26. UML Timing Model Transformation Algorithm

61

The initial element is a lifeline in the UML Timing model generation from
Enterprise Model (Figure 26). After the generation of this element, the
selection of Enterprise Model element information flow follows, and a
timeline or duration constraint element is generated. Subsequently, the
generation of these two types of elements must be linked to each other. In
timing models, time constraint and destruction occurrence elements are
generated from the business rule element. Later all these elements are
generated, there is an update of a lifeline element, and check whether there are
more actor elements left in Enterprise Model
[91][101A][102A][103A][106A].

2.8. UML Interaction Overview Diagram Transformation
Algorithm

The UML Interaction Overview diagram identifies interactions through a
variant of activity models in a way that sustains an overview of the control
flow. The interaction Overview model focuses on the overview of the flow of
control where the nodes are interactions or interaction uses, and the lifelines
and the messages do not fulfil this overview level. UML Interaction Overview
model coordinates elements from activity and interaction models
[91][101A][102A][103A][104A]:

o from the activity model: initial node, flow final node, activity
final node, decision node, merge node, fork node, join node;

e from the interaction models: interaction, interaction use,
duration constraint, time constraint.

Table 10. UML Interaction Overview Model Element

EM UML Interaction Description
element | Overview model
element
Represents a unit of behaviour that focuses on the
Process, . .
: Frame observable exchange of information between
Function
connectable elements.
Refers to a duration interval. The duration interval is the
Duration constraint duration used to determine whether the constraint is
. satisfied.
Business Refers to a time interval. The time interval is the time
Rules Time Constraint expression used to determine whether the constraint is
satisfied.
Interaction Use Allows to use (or call) another interaction.

62

Used to coordinate the flows between other nodes. It
Control Nodes includes: initial, flow final, activity final, decision,
merge, fork, join.

Source: created by the author [91][101A][102A][103A][104A]

Input (elements from the Enterprise Model) and output (elements
generated to UML Timing model) elements are presented in Table 10
[91][101A][102A][103A][104A].

The UML Interaction Overview model is the last of the interaction models
group, which defines interactions through a variant of models in a way that
stimulates an overview of the control flow. Interaction overview models focus
on the overview of the flow of control where the nodes are interactions or
interaction uses. The participants, like lifelines and objects like messages, do
not appear at this overview level [91][101A][102A][103A][104A].

Select Process no
Select Business
Is Frame a ™Y®S, Rule
process
YeS Aré there N yes Busi

IsBusiness

yes Rule a
Generate a Duration ano
N Duration Contraint Atrai
no Generate a Time es S Busines
Update Frame Constraint Rule a Time
element anstrain

Generate a
Interaction Use
Rrocess

Generate a Control
\/ no Nodes

Source: created by the author [L01A][102A][103A][104A]
Figure 27. UML Interaction Overview Model Transformation Algorithm

Are there
more

In the UML Interaction model generation from Enterprise Model (Figure
27), the initial element is a process or function, which means that the frame
element is generated from these Enterprise Model elements. All other
elements: duration constraint, time constraint, interaction use and control
nodes, are related to the initial frame element and depend on the Enterprise
Model business rule element. Later all these elements are generated, there is
an update of a frame element and check if there are more process or function
elements left in Enterprise Model [101A][102A][103A][106A].

63

http://www.uml-diagrams.org/activity-diagrams.html
http://www.uml-diagrams.org/sequence-diagrams.html#interaction-use

2.9. MDA Approach Extended with the Knowledge-Based
Subsystem

As mentioned above, MDA is an IS development concept based on the use of
models to capture the functional and non-functional requirements of
information systems, as well as for IS design and software code generation.
Within the scope of the study, the focus is on the development of IS design
models [4][6]. The MDA only defines general principles for using models but
does not provide detailed specifications [69]. Thus, most MDA-based IS
engineering approaches need to improve the construction of the CIM layer,
and the verification of the system models concerning the subject domain and
a knowledge-based subsystem would resolve this issue.

CIM (Subject domain data)

L T Transformations

Knowledge-Based Subsystem

Constraints

¢ T Transformations

PIM

L T Transformations

PSM

L T Transformations

Application

Source: created by the author according to [86]
Figure 28. MDA Approach Extended with the Knowledge-Based Subsystem

It can be done by adding to the MDA concept the principles of knowledge-
based IS engineering, represented by an Enterprise model (based on an
Enterprise meta-model) and transformation algorithms into UML dynamic
models (Figure 28). Model transformation algorithms are used to perform
transformations between MDA models (C1M, PIM) and the Enterprise model.
The Enterprise model is built between the CIM and PIM models and is
responsible for verifying the user requirements and business processes of the
information system under development. The main advantage of the
knowledge-based MDA approach is that the requirements gathered in the

64

MDA CIM model can be checked in terms of the rules of the Enterprise meta-
model; thus, the other MDA models (PIM and PSM) are developed with less
influence of empirical factors. The knowledge-based MDA approach
incorporates the principles of traditional MDA concept models in IS
engineering. It extends this methodology by introducing a new element, the
Enterprise knowledge-based model, used to validate the empirically collected
subject domain data.

2.10. Second Part Conclusions

The second part defines the transformation method from Enterprise to UML
models. Seven UML dynamic model transformation algorithms are presented
with EM and UML element mapping descriptions. After the UML dynamic
model transformation algorithms are presented, the extended knowledge-
based subsystem MDA approach is defined. It helps to understand how a
knowledge-based subsystem can improve the generation process and how it
may be useful in avoiding negative empirical factors in IS development
process.

65

3. METHOD REPRESENTATION WITH THE EXAMPLES

The third section presents two different and combined UML dynamic model
generation examples from different subject domains using transformation
algorithms. This section verifies and proves that the Enterprise Model is
suitable for UML dynamic model generation and can be used through created
transformation algorithms.

As it was mentioned earlier, information system design methods specify
the sequence of systems engineering actions and which UML models to use
in the design process; to make the process of implementation easier
[44][58][59][61][63A]. According to the previous section, it can be declared
that interaction between Enterprise Model and UML models is realized
through the transformation algorithms (Figure 17) [64A][99A][100A].

Enterprise Model as an organisation’s knowledge repository allows
generating UML models after using the transformation algorithms. Enterprise
Meta-Model contains essential elements of business modelling methodologies
and techniques, ensuring suitable UML model generation [63A][64A].

The ISO 12207 purpose of the Software requirements analysis process is
to establish the requirements of the software elements of the system. Analysis
process tasks of software requirements are solved using knowledge storing
into Enterprise Model and generating UML models from its match with the
outcomes and quality characteristics of the 1ISO 29148 [37][38][84].

3.1. UML Use Case Model Generation

UML Use Case model, at its simplest, is a representation of a user’s interaction
with the system that shows the relationship between the user and the different
use cases in which the user is involved (Figure 27). The UML Use Case model
can identify the different types of users of a system and the different use cases
and will often be accompanied by other types of models as well. Commonly,
it is used to define possible requirements.

Subject

Extension Point Use Case Diagram ﬂ :‘mnr
|-]
, Use Case
Include
xtend

Exten

Source: created by the author [102A]
Figure 29. UML Use Case Metamodel

66

Mainly, the UML Uses Case model is created by a system analyst, which
analyses the domain field and functional and non-functional user requirements
for the system.

The transformation algorithm presented in Figure 18 is an algorithm for
Enterprise Meta-Model based UML Use Case model generation process. The
main steps for generating process are: identifying and selecting UML use case
model for generating process, identifying starting element, selecting all related
elements, mapping Enterprise Model elements to UML model elements and
generating selected UML use case model elements (Table 11, Figure 30
(Figure 6 and Figure 29 elements)).

Table 11. Generated UML Use Case Elements

EM elements Formal description | Generated UML Use Case elements
Actor ol Actor

Process, Function 02 03 Use Case

Business Rules 04 5 96 Extension Point, Exclude, Include
Information Activity | ¢7 Association

Event 08 Subject

Source: created by the author [102A]

ProCess b . _._. 4| [C.—
}————Function o

C—
Material Flow | @ t0— — — — — -
&

MateriallmputFlow

Il
TPInputAtiributes | [ProcessinputAtirbutes

[]
Source: created by the author [102A]
Figure 30. UML Use Case Elements Generated from EM

The quality of requirements phase specifications is significant for the
success of the information systems development process, and mistakes in this
phase can cause huge problems and cost a lot of time and expenses to fix.
International standards provide qualified guidance for the information system
development process. However, international standards do not detail specific
methodologies or methods that should be used.

There are many standards and business modelling methodologies, and
UML is one of the most common software specification standards. Enterprise

67

Model includes business management information process essential
properties. Enterprise Meta-Model specification and Enterprise Models with
particular business data ensure quality and verified knowledge in specific
situations. Each element of the UML model can be generated from the
Enterprise Model using a knowledge-based Enterprise Model and
transformation algorithms. The method of the UML model generation process
from the Enterprise Model can implement the whole knowledge-based IS
development cycle design phase. This is partially proved by the example with
the UML use case model’s generated elements.

According to the combined usage of 1SO Standards and UML models that
can be generated from a knowledge-based Enterprise Model, the information
systems development process becomes consistent, more efficient.

3.2. UML Information Flow Model Generation

The UML Information Flow Model belongs to the dynamic UML models part
and shows the exchange of information among system entities at some high
levels of abstraction, and it is directly related to UML Class and Use Case
models. This model describes information flows and provides information to
Class and Use Case models [99A][101A][102A][104A].

Information flows can be useful in describing the circulation of
information through a system. These flows represent aspects of models not yet
wholly specified or with fewer details.

Select Actor Generate Actor
element element

> Select Process

Generate Class j

Generate

Information item

s Informatiol
iteman IP
put Attribute

Link Information
item to Information
Flow

Link Information
Flow to Class
Afe the more

Information
low,

Select Information
Flow

2
(Generate j [Select IP Input

Information Flow Attributes

no

Link Class to Actor
yes

Source: created by the author [99A]
Figure 31. Transformation Algorithm of UML Information Flow Model
Generation from EM Process

68

The transformation algorithm of UML information Flow model generation
from the Enterprise Model process is presented in Figure 31 and is illustrated
by the following steps [99A]:

Step 1: According to the top-level transformation algorithm
of UML model generation from the EM process, the UML
Information Flow model is identified for the generation
process. So the initial element for the UML Information Flow
model is the Actor element.

Step 2: UML Information Flow model Actor element is
generated from the Enterprise Model.

Step 3: The process element from Enterprise Model related to
the initial actor element is selected.

Step 4: UML Information Flow model Class element is
generated from the Enterprise Model.

Step 5: The information Flow element as a link to other
elements from the Enterprise Model related to the process
element is selected.

Step 6: UML Information Flow model Information Flow
element as a link of other elements is generated from the
Enterprise Model.

Step 7: Information processing Input Attributes element as a
definition of link element from Enterprise Model related to
the process element is selected.

Step 8: If the UML Information Flow model Information item
element is a definition of a link to the next element, it is
generated from the Enterprise Model.

Step 9: Else, the Information processing Output Attributes
element as a definition of a link to the previous element from
the Enterprise Model is selected.

Step 10: UML Information Flow model Information item
element as a definition of a link to the previous element is
generated from the Enterprise Model.

Step 11: UML Information flow elements Information item
and Information Flow are linked.

Step 12: UML Information flow elements Information Flow
and Class are linked.

69

e Step 13: There is checking if there are more Information
flows in the Enterprise Model related to the UML Information
Flow model. In case, there are, the algorithm goes back to step
5.

e Step 14: UML Information flow elements Class and Actor are
linked.

e Step 15: There is checking if there are more Processes in the
Enterprise Model related to the UML Information Flow
model. In case, there are, the algorithm goes back to Step 3.

e Step 16: UML Information flow element Actor is updated.

e Step 17: There is checking if more Actors in Enterprise Model
are related to the UML Information Flow model. In case,
there are, the algorithm goes back to step 1.

e Step 18: Else, all UML Information Flow model elements and
links are generated from the Enterprise Model.

The generation of the UML Information Model is illustrated with the
example of the Scheduled workflow for Ultrasound examination for the pet in
a Veterinary clinic [99A]. The subject domain information of this example is
stored in the Enterprise Model. The example shows how the pet owner
registers his pet in the veterinary clinic for a veterinary appointment in order
to get an ultrasound examination, surgeon evaluation and veterinary
consultation. Firstly, the pet owner registers his pet in the Veterinary clinic
registration system, orders the ultrasound examination in the ultrasound
information system, then follows the process of the examination, data storage
and examination data sending to the surgeon. The surgeon analyses
examination data, writes the diagnosis using the reviewing and evaluating
system and sends it to the veterinary through the reviewing and evaluating
system, which gives the result to the pet owner [99A].

Detailed stages of Veterinary clinic example processes stored in the
Enterprise Model are described [99A]:

e Stage 1 — The pet owner registers his pet in the veterinary
clinic registration system. The information system manages
pet owner registration and service ordering and is responsible
for updating information.

e Stage 2 — Pet registration information from the veterinary
clinic registration system is connected to the ultrasound

70

examination registration system, and the system manages
examination order scheduling.

e Stage 3 — Data gaining system acquires and creates medical
data while a pet is present (in the example: ultrasound,
tomography and so on).

e Stage 4 — Data storage system manages examination data
storage and sharing inside the Veterinary clinic.

e Stage 5 - The surgeon gets data from the data storage system,
evaluates it by reviewing and evaluating the system and
prepares a diagnosis response.

e Stage 6 — Veterinary gets the diagnosis response prepared by
the surgeon by reviewing and evaluating the system.

e Stage 7 — The pet owner gets diagnosis information during
the appointment with the veterinarian.

Transformation algorithm of UML Information Flow model generation of
Stage 1 of Scheduled workflow for Ultrasound examination for the pet in
Veterinary clinic example from the Enterprise Model process is illustrated by
the following steps [99A]:

o Step 1. Selected initial element for the UML Information
Flow model is the Actor element.

e Step 2: The Actor element of the UML Information Flow
model is generated from the Enterprise Model; in a particular
example, the first actor is the Pet owner.

The first two steps of the transformation algorithm are presented in Table 12.

Table 12. Steps 1, 2 in the UML Information Flow Model Generation

Process
Transformation alaorithm part Enterprise Generated UML Information
9 P Model element Flow model element
® Pet Owner
A e A)| LACtOr i

Source: created by the author [99A]

e Step 3: The process element from Enterprise Model, related
to the initial actor element, is selected.

e Step 4: The Class element of the UML Information Flow
model is generated from the Enterprise Model; in a particular
example, the first class is Pet registration.

The other two steps of the transformation algorithm are presented in Table 13.

71

Table 13. Steps 3, 4 in the UML Information Flow model generation process

Transformation Enterprise Model Generated UML Information
algorithm part element Flow model element

Process Pet registration

Select Process

Generate Class

Source: created by the author [99A]

e Step 5: The Information Flow element as a link to other
elements from the Enterprise Model related to the process
element is selected.

e Step 6: The Information Flow element of the UML
Information Flow model, as a link of other elements, is
generated from the Enterprise Model; in a particular example,
the first Information flow is between the Pet owner and Pet
registration.

The other two steps of the transformation algorithm are presented in Table 14.

Table 14. Steps 5, 6 in the UML Information Flow Model Generation
Process

Transformation Enterprise Generated UML Information
algorithm part Model element Flow model element

- TG
Information Flow
Source: created by the author [99A]

e Step 7: Information processing Input Attributes element as a
definition of link element from Enterprise Model related to
the process element is selected.

e Step 8: If the UML Information Flow model Information item
element is a definition of a link to the next element, then it is
generated from Enterprise Model; in a particular example, the
first Information item is Pet information.

e Step 9: Else, the Information processing Output Attributes
element as a definition of a link to the previous element from
the Enterprise Model is selected.

The following two (in another case — three) steps of the transformation
algorithm are presented in Table 15.

72

Table 15. Steps 7, 8, 9 in UML Information Flow Model Generation Process

Transformation Enterprise Model Generated UML Information
algorithm part element Flow model element

[SelectIP Input
Atfributes

¥

~ Generale | -
15 Information Information item IPInputAttributes

iteman 1P~ v = pet information
Input Atributes IPQutputAttributes

N
Select IP Output
Attibutes |

Source: created by the author [99A]

e Step 10: The UML Information Flow model Information item
element as a definition of a link to the previous element is
generated from the Enterprise Model.

e Step 11: UML Information flow elements — Information item
and Information Flow — are linked.

The following two steps of the transformation algorithm are presented in
Table 16.

Table 16. Steps 10, 11 in UML Information Flow Model Generation Process
Transformation Enterprise Model Generated UML Information
algorithm part element Flow model element

ink Tnformation
item to Information

pet information

Flow IPOutputAttribute s =z=flow=>

Source: created by the author [99A]

e Step 12: The UML Information flow elements — Information
Flow and Class — are linked.
Step 12 of the transformation algorithm is presented in Table 17.

Table 17. Step 12 in UML Information Flow Model Generation Process

Transformation Enterprise Model Generated UML Information
algorithm part element Flow model element
v
‘“ Link Information \| pet information pet eyt
| FlowtoClass o fesEon
_ Flow1to Class

Source: created by the author [99A]
e Step 13: There is checking if there are more Information
flows in the Enterprise Model related to the UML Information
Flow model. In case, there are, the algorithm goes back to step
5, and all steps from the 5 are repeated.
Step 13 of the transformation algorithm is presented in Table 18, showing the
result after repetition steps from step 5.

73

Table 18 Step 13 in UML Information Flow Model Generation Process

Transformation Enterprise Generated UML Information
algorithm part Model element Flow model element

[CActor] Examination order

placing

S

AT the more.
< nfomaton
“-E!{JTWS-"' IPinputAttributes pet information
N IPOutputAttributes R ~ %= Petregistration

pet A
egistration! <<flow=>

Source: created by the author [99A]

e Step 14: The Class and Actor elements of UML Information
flow are linked; in this particular example, the Pet owner is
linked to pet registration.

Step 14 of the transformation algorithm is presented in Table 19, showing the
result after repetition steps from step 5.

Table 19. Step 14 in the UML Information Flow model generation process

Transformation Enterprise Generated UML Information
algorithm part Model element Flow model element
P—
mm placng

~ L{ Link Class to Actor |
)

Pet regetraion

[nformationFlow

Source: created by the author [99A]

After 14 steps of the transformation algorithm generating of Scheduled
workflow for Ultrasound examination for the pet in Veterinary clinic data
from Enterprise Model, Stage 1 — pet owner registers his pet in the veterinary
clinic registration system. The information system managing pet owners’
registration and services order is responsible for updating information, and it
is shown in Figure 32.

VETERINARY CLINIC
REGISTRATION SYSTEM

Examination order
placing

pet
registration] <<flow=>
|

Pet Owner pet information
—————————— | Pet registration
=z=flow==

Source: created by the author [99A]
Figure 32. 1 Stage of the Scheduled Workflow for Ultrasound
Examination for the Pet in the Veterinary Clinic Example Presented as
the UML Information Model Generated from the Enterprise Model

74

The full UML Information flow model after all steps of the transformation
algorithm generating Scheduled workflow for Ultrasound examination for the

pet in the Veterinary clinic example is shown in Figure 33.

VETERINARY CLINIC EXAMINATION
REGISTRATION SYSTEM REGISTRATION SYSTEM
Examination order | order Examination
placing <flow scheduling
pet ‘ order |
reg\slration}«ﬂow>> information | <<flow=>
. : DATA Tmlwl? SYSTEM
Pet Owner pet information
A f-———————--- | Petregistration
n] <<flow=> Data gaining
<<flow>> | !
LN :
1
! 1 <<flows> us data} <<flow=>
Veterinar] ' DATASTORAGE
|y !._ - _d_\a_gr_w ok R y SYSTEM
I
=<flow>> i REVIEWING AND
1 EVALUATING SYSTEM Data Management
|
|
-+ Examination data US datal <<flows>
Surgeon diagnosis A A
_______________ ! US data :
————————— Data Archivin
<<flow=> I <<flow>> g
|
US data }
77777777 <flows>

Source: created by the author [99A]
Figure 33. Complete UML Information Model Generated from Enterprise
Model of Scheduled Workflow for Ultrasound Examination for the Pet in
Veterinary Clinic

After the implementation of all the steps of the transformation algorithm,
it can be undoubtedly declared that the chosen example perfectly illustrates
the accuracy of the UML Information flow elements generated from the
Enterprise Model.

3.3. UML Activity Model Generation

The Activity model is described in the previous section, and the UML Activity
diagram meta-model is presented in Figure 34. UML Activity diagram is
essentially an advanced version of a flow chart that models the flow from one
activity to another activity [64A][91][94A][102A][103A][107A].

75

Initial Node

Object Node

Fork Node

[3 Join Node
Activity Partition —e@s Activity Diagram Control Node
d.__
4 Decision Node
Activity Node Merge Node
—— Activity Edge Flow Final Node
Final Node (<}—

[<F—— Activity Final Node

Control Flow Obiject Flow

Source: created by the author according to [94A]

The following
[75][91][94A]:

Figure 34. UML Activity Diagram Metamodel

elements are typically drawn on UML Activity diagrams

Activity node — a node can be the execution of a subordinate
behaviour, such as arithmetic computation, a call to an
operation, or manipulation of object contents. It also includes
the flow of control constructs, such as synchronization,
decision, and concurrency control. Activities may form
invocation hierarchies invoking other activities, ultimately
resolving to individual actions. In an object-oriented model,
activities are usually invoked indirectly as methods bound to
directly invoked operations.

Activity partition — an activity group for actions that have
some common characteristics. Partitions often correspond to
organisational units or business actors in a business model.
Object node — indicates an instance of a particular classifier,
possibly in a particular state and may be available at a
particular point in the activity. Object nodes can be used in
various ways, depending on where the objects are flowing
from and to, as described in the semantics sub-clause.
Control node — coordinating the flows between other nodes.

76

e Activity edge — an abstract class for the directed connections
along which tokens or data objects flow between activity
nodes. It includes control edges and object flow edges. The
source and target of the edge must be in the same activity as

the edge.
Table 20. Generated EM Elements to UML Activity Model Elements
Control Nodes Acti
UML Activity Model vity
Edge
Final
Node
g
@ § (-] § z
gl £ Bl o Z| § = ©
S & 8 g o2 8T 3 S
2 2 4 2 8 § 2 & = S| L z
EM 2 2 B < £ 2 § 352 & 8 8
Sl 5 2 ¥ = 5 3 B i I
< < 5 9 8 & 5| & g5 88
Act Process Actor +
r -
cto Function Actor +
Event +
P Material Input Flow + | +
rocess Material Output Flow + | +
. Interpretation Rule +
Business —
Rules Realization Rule S I S I
Information Processing Rule + |+ |+ |+ +
Process Input Attributes +
.5 Informati Process Output Attributes +
8| on Flow IP Input Attributes .
s IP Output Attributes +
.| Interpretation +
Informati —
on Realization +
Activity [Information Processing +

Source: created by the author [64A][91][94A][102A][103A]
Table 20 presents the generated EM elements to UML Activity model

elements. The Activity partition element in the UML Activity model maps the
actor element in EM as well as the activity node maps the event, the object
node and object flow map the process, control nodes map business rules
[94A].

77

Actor € — — — — > Activity Partition Process € — — — —>{ Object Node < ——>
__EM
- * GMLAD | apped
element
Process Actor MaterialFlow k& — — — — — — — > Activity Edge
=
Function Actor MateriallnputFlow
Control Flow Object Flow
Event | — S{ Activity Node MaterialOutputFlow

Source: created by the author [94A]
Figure 35. Mapping of EM Elements to UML Activity Model Elements (1)
Figure 35 presents part of the generated EM elements to UML Activity
model elements. EM actor element is mapped as an activity partition element
of the UML Activity model. EM event element is mapped as an activity node
element of the UML Activity model. EM process element is mapped as an
object node element of the UML Activity model. And EM material flow
element is mapped as an activity edge element of the UML Activity model
[94A].

Initial Node
— BusinessRule & — — — — — — — — — — — |
K
|
: Fork Node
Interpretation Rule Realization Rule | [
| -
\V Join Node
, _ ontrol Node
InformationProcessing Rule
Decision ‘Node
Function [(Em |$—-—> Merge Node
UML AD Mapped —
element Flow Final Node
Final Node <+
< -Activity Final Node

Source: created by the author [94A]
Figure 36. Mapping of EM elements to UML Activity model elements (2)

Figure 36 presents the second part of the generated EM elements to UML
Activity model elements. EM business rule element is mapped as the control
node element of the UML Activity model.

78

Function

InformationActivity & — —>>1-Activity Edge

Interpretation ——> InformationFlow

Control Flow | | Object Flow.

Realization

ProcessOutputAtributes | || IPOutputAttributes

InformationProcessing

IPInputAttributes | | ProcessinputAtributes

é,\,,a‘p,;d}
element

Source: created by the author [94A]
Figure 37. Mapping of EM Elements to UML Activity Diagram Elements
@)

Figure 37 presents the third part of the generated EM elements to UML
Activity model elements, where EM information Activity element and
information flow are mapped as activity edge element of the UML Activity
model [94A].

The transformation algorithm presented in Figure 19 is an algorithm for
Enterprise Meta—Model-based UML Activity model generating process. The
main steps for generating processes are identifying starting elements, selecting
all related elements, mapping Enterprise Model elements to UML model
elements and generating selected UML Activity model elements [4].

Table 21. An Example of EM and UML Activity Model Element
Mapping

EM

UML
Activity
Model
Example

Order Request Activation

Initial Node
Requested Order
Receive Order
Decision Node
Fill Order

Filled Order
Fork Node

Send Invoice
Send Payment
Payment
Invoice

Ship Order
Shipped Order
JAccept Payment
lAccept Invoice
lAccept Order
Join Node
Merge Node
Close Order

IActivity Final Node

Actor

* Manager
* (Client

Event

+
+
+
+
+
+
+
+
+
+

Process

+
+
+
+

Material

Input

79

Material + | + + |+ |+ |+
Output

Business + + + + | +
Rules

Informati + +
on Flow

Function

Informati + + + +
on
Activity

Source: created by the author [6A][94A]

Table 21 presents the example in which Enterprise Model elements are
mapped as UML Activity model. Business activity of order request and its
closure is used as an example for the UML Activity model generation process.
Order requested activation is starting elements from the client side, and the
requested order is the input parameter of the activity. After the order is
accepted and all the required information is filled in, the payment is accepted,
and the order is shipped. Note that this business flow allows order shipment
before the invoice is sent or the payment is confirmed.
[

Order
Regquest | Send
Activation Payment

- Payment

Accept |

’ Invoice

Requested f
Order

[Accept
Order

Receive 4 | Shipped
Order Order

Send I
2 5 Invoice
Invoice

= Filled Close
7 FilOrder M orger " orer |

Mana

Accept

4.
Payment .

4 Ship Order |

Source: created by the author [91][94A][107A]
Figure 38. An Example of Generated UML Activity Model

Figure 38 presents an example of a generated UML Activity model from
the Enterprise Model. The necessary elements were received from the CASE

tool’s knowledge-based subsystem’s Enterprise Model, where all subject
domain knowledge is stored [107A].

3.4. UML Sequence Model Generation

UML Sequence model is the most common type of interaction model, which
focuses on the message interchange between actors, objects (lifelines). The
Sequence model shows how the objects interact with others in a particular
scenario of a use case [91][96A][101A][102A][103A][104A].

80

There is a given formalized UML Sequence model description. UML
Sequence model also can be described as Malcev algebra-based algebra
system [96A]:

M2=<K, R>; 3
where M2 — UML Sequence model as algebra system;

K — elements set of M2 system

K={K22, K23,..., K27}, where K22,....K27 UML Sequence model meta-
classes

R — set of relationships between elements, where R={r1, r2, r3}.

UML Sequence Model M2 composition is as follows:

M2=<{K22, K23,...,K27}, {r1}>; 4)
where: K22— meta-class Message, K23 — meta-class Execution, K24 —
meta-class Lifeline, K25 — meta-class State Invariant, K26 — meta-class
Combined Fragment, K27 — meta-class Destruction Occurrence, rl —
Aggregation. UML Sequence Model graphical schema is presented in Figure

39 [96A]:

(K24} (K26

o

S

Source: created by the author [96A]

Figure 39. Graphical Schema of UML Sequence Model Based on Malcev
Algebra

The intersection between Enterprise Model and UML Sequence model
elements is presented in Table 22, and the graphical scheme is in Figure 40.

Table 22. The Intersection Between EM and UML Sequence Model

Elements

Enterprise Model set element UML Sequence Model set | Formal
element description

Process (K1) Message (K22) ol: K1—K22
Function (K2) Destruction Occurrence (K27) | ¢2: K2—K27
Actor (K3) Lifeline (K24) 03: K3—K24
Data Processing and Solution Making (K11) | Execution (K23) 04: K11-5K23
Business Rules (K14) Combined Fragment (K26) 05: K14—5K26
Data Processing and Solution-Making | State Invariant (K25) 06: K16—K25
Business Rules (K16)

Source: created by the author [96A]

81

UML Sequence
Model M2

Source: created by the author [96A]
Figure 40. Graphical Scheme of Intersection Between Enterprise Model and
UML Sequence Model Elements Based on Malcev Algebra

The transformation algorithm presented in Figure 23 is an algorithm for
Enterprise Meta—model-based UML Sequence model generating process. The
main steps for the generating process are identifying and selecting the UML
Sequence model for the generating process, identifying starting elements,
selecting elements types, selecting relationships between elements types,
selecting all related elements, mapping Enterprise Model elements to UML
model elements and generating selected UML sequence model elements
[96A].

3.5. UML Timing Model Generation

One of the UML dynamic models is the Timing model. Timing models are
UML interaction models used to show interactions when the model’s primary
purpose is to reason about time. Timing model focus on conditions changing
within and among lifelines along a linear time axis. Timing models describe
the behaviour of both individual classifiers and interactions of classifiers,
focusing attention on the time of events causing changes in the modelled
conditions of the lifelines [91][97A][101A][102A][103A][104A].

There is a given formalized UML Timing model description (Figure 41).
UML Timing model also can be described as Malcev algebra-based algebra
system [97A]:

M3=<K,R> (5)
where M2 — UML Timing model as algebra system; K — elements set of
M2 system; K={K28, K29,..., K33}, where K28,.... K32 UML Timing model
meta-classes; R — set of relationships between elements, where R={r1, r2, r3}.

82

UML Timing model M2 composition is as follows:
M3={K28, K29,..., K33},{rl}> (6)
where: K28— meta-class Lifeline, K29 — meta-class State or Condition
Timeline, K30 — meta-class Interval Constraint, K31 — meta-class Duration

Constraint, K32 — meta-class Time Constraint, K33 — meta-class Destruction
Occurrence, r1 — Aggregation [97A].

JE——

e — h TN

e oA {Rag)
{1man | s \ \\ ,/d \
\&30) (Ko
*-—{-‘ N " T

| w (K3 \.

\ i ._7_.'/ \ 1)
(K32 (K33)

\ J L i

Source: created by the author [97A]
Figure 41. Graphical Schema of UML Timing Model Based on Malcev
Algebra

l//f"’;’\\\, Enterprise Model M1

N Y ¥/

\ﬁ}@l‘/) UML Timing Q‘Kﬁxr
~— Model M3 =

Source: created by the author [97A]
Figure 42. Graphical scheme of intersection between Enterprise
Model and UML Timing Model elements based on Malcev algebra

According to Figure 42, it is clear that Enterprise Model elements: Actor,
Function and Business rules can be generated as UML Timing model
elements: Lifeline, Destruction Occurrence, Intervals Constrains, Durations
Constraint, Time Constraint and State or Condition Timeline [97A].

83

Table 23. Intersection Between Enterprise Model and UML Timing Model

Elements
Enterprise Model set | UML Timing model set element Formal
element description
Actor (K3) Lifeline (K28) ¢ol: K3—K28
Business Rules (K14) Interval Constraint (K30) ¢2: K14—K30
Business Rules (K14) Duration Constraint (K31) ¢3: K14—-K31
Business Rules (K14) Time Constraint (K32) 04: K14—K32
Business Rules (K14) Destruction Occurrence (K33) ¢5: K14—K33
Information Flow (K9) State or Condition Timeline (K29) ¢6: K9—K29

Source: created by the author [97A]

Table 23 presents the intersection between Enterprise Model and UML
Timing model elements, where a formal description of Enterprise Model
elements generated to UML Timing model elements according to Malcev
algebra can be found.

Project Lifecycle
Stages 2. 4wk
=——>

Stage 1: Project Initiation 12.4 wk

Stage 2: Project Planning

Stage 3: Project Execution

‘project

Stage 4: Project Monitoring and Centrol {2.4wk}

Stage 5: Project Closure L

Source: created by the author [97A]
Figure 43. An Example of UML Timing Model, Project Life cycle Phases

In the example (Figure 43) of the UML Timing model, which presents
project life cycle phases and their duration, certain elements generated from
the Enterprise Model can be found: lifeline — project, state or condition —
project phases, timelines, duration and timing constraints and destruction
occurrence, where destruction event is depicted by a cross in the form of an X
at the end of a timeline.

3.6. UML Interaction Overview Model Generation

UML Interaction Overview model determines interactions through a variant

of activity models in a manner that maintains an overview of the control flow.

The interaction Overview model concentrates on the overview of the flow of

control where the nodes are interactions or interaction uses. The lifelines and

the messages do not perform at this overview level. As it is mentioned earlier,
84

the UML Interaction Overview model combines elements from activity and
interaction models [65A][91][101A][102A][103A][104A]. UML Interaction
Overview model generation from Enterprise Model transformation algorithm
presented in Figure 25.

Table 24 presents UML Interaction Overview model elements generated
from the Enterprise Model. Frame as Interaction model element is generated
from EM Actor element. Interaction Use as Interaction model element is
generated from EM Information Activity, Initial Node, Decision Node, Merge
Node, Final Node as Activity model elements are generated from EM
Business Rules elements and Decision Guard as Activity model element is
generated from EM Information Flow element [65A].

Table 24. EM and Online Service Ordering UML Interaction Overview
Model Elements

UML Interaction
Overview model

Interaction Use (Interaction model element)
Initial Node (Activity model element)
Decision Node (Activity model element)
Merge Node (Activity model element)
Final Node (Activity model element)
Decision Guard (Activity model element)

+ [Frame (Interaction model element)

EM
Actor
Event
Process Material Input
Material Output
Business Rules + + + +
Function Information Flow +
Information Activity +

Source: created by the author [65A]

85

Interaction: Online Service Order

i
search]
arch Services K
.
N View Services -
{tincy wei]
+ ling)
i
= - 5 ces
{donel orowse]

Source: created by the author [65A]
Figure 44. An Example of UML Interaction Overview Model: Online
Service Order

Figure 44 presents an example of the UML Interaction Overview model.
The necessary elements through transformation algorithms were received
from the CASE tool’s knowledge-based subsystem’s Enterprise Model, where
all knowledge of the subject domain is stored. In this figure, all necessary
UML Interaction Overview model elements generated from the Enterprise
Model are clearly seen [65A].

3.7. Generated UML Models of Ticket Buying Process Example

This section deals with a detailed explanation of the Ticket buying process
and how this process can be designed by using a knowledge-based Enterprise
Model, where all subject domain knowledge related to the described example
is stored. It is also explained what knowledge is used for the generation of
particular UML models through specific transformation algorithms created for
each UML model generation process [101A][103A][104A][108A]. The UML
Use Case, Sequence, State and Activity models generated from Enterprise
Model are described.

The process of Ticket buying may seem very simple, but if this process
were analyzed from different perspectives in the information systems design
phase, this process would be projected and designed for the fulfilment of all
possible functions. It would take a lot of time and effort from an analyst,
designer and so on [108A].

86

In IS development life cycle design phase, all the details must be estimated.
These details, this knowledge, is stored in the previously described Enterprise
Model, and they are already verified and validated [108A].

3.7.1. UML Use Case Model of Ticket Buying Process Example

The UML Use Case model is the primary form of system requirements for a
new IS underdeveloped. Use cases specify the expected behaviour —what, and
not the precise method of making it take place — how? A key concept of use
case modelling is that it assists in designing a system from the end user’s
perspective [108A].

Table 25. UML Use Case Model Elements Generated from Enterprise Model
of Ticket Buying Example

Enterprise | UML Use Ticket Buying Description
Model Case Model | Example
element element
Actor Client There are three actors, each of them is a
Actor Manager behavioural classifier which defines a role
Ticket system played in a particular example.
Use Case Enquire ticket
availability
Fill form
Book ticket There are three use cases; each use case is a type
Process, ; ; of behavioural classifier that describes a unit of
Function Pay ticket price ' !
- functionality performed by three actors.
Print form
Refund payment
Cancel ticket
Include There are six elements included; each is a
Business Six include directed relationship between two use cases
Rule elements used to demonstrate that the included use case’s
behaviour is inserted into the included use case.

Source: created by the author [108A]
Table 25 presents UML Use Case model elements generated from the

Enterprise Model of Ticket buying example. In the Enterprise Model, all
information related to actors, their functions and relationships between these
functions is stored. There are three actors: Client, Manager and Ticket System.
Ticket System as an actor is associated with all seven functions — use cases:
Enquire ticket availability, Fill the form, which includes use case of ticket
booking or ticket cancelling, ticket booking includes ticket price payment and
form printing, this includes ticket cancelling and this includes payment

87

refunding. Client as an actor is associated with all functions except payment
refunding because it is the Ticket system’s function. Manager as an actor is
associated only with two functions — use cases: form printing and ticket
cancelling [108A].

" Enc quire ticket ~

(" Filform

T —

T <<include>> |

Bookticket)1

— i
\,‘\\<<mclud‘e>l>

<<include>>"

Print form

/ \ \ ! /
X L <<include>> / /

\ / /
N A\ <<include>> ! / /

/N \ | : V4 o L,_;
Manager N) "

(Refund payment \)
~— s

/ -
/ -
4 <<include>>

(" cancel ticket)

Source: created by the author [L08A]
Figure 45. UML Use Case Model of Ticket Buying Example

Figure 45 presents the UML Use Case model of Ticket buying example
generated step by step from the Enterprise Model through the UML Use Case
transformation algorithm [108A].

3.7.2. UML Sequence Model of Ticket Buying Process Example

UML Sequence model is an interaction model that details how operations are
implemented. This model captures the interaction between objects in the
context of a collaboration. [108A].

Table 26. UML Sequence Model Elements Generated from Enterprise
Model of Ticket Buying Example

Enterprise | UML Ticket Buying Description
Model Sequence Example
element Model element

There are three actors in the UML Sequence
Client model three Lifelines, which are shown
using a symbol that consists of a rectangle
forming its “head” followed by a vertical
Ticket system line, and these lines represent the lifetime of
the actor—participant of the process.

Actor Lifeline

88

Ticket

Login ()
Validate ()
Return ()
Request form ()
Create form ()
Message Submit details ()
Create ticket ()
Send details ()
Ticket created
Acknowledge
Take print ()

Process,
Function

Eleven messages are related to actors and
define communication between them.

Business
Rules

Each of the ten execution specification
elements represents a period in the actor's
lifetime.

Execution Ten Execution
Specification | Specifications

Source: created by the author [L08A]

Table 26 presents UML Sequence model elements generated from the
Enterprise Model of Ticket buying example. All information related to actors
and their collaboration is stored in the Enterprise Model. There are three actors
— process participants, which are called Lifelines in the UML Sequence model:
person — Client, subject — Ticket system, object — Ticket. The Ticket has one
execution specification, receives one message with details and sends one
message of the created ticket; Ticket system has three execution
specifications; one is assigned for validation after the Client logs in, it returns
the result; the second is assigned for form creation and third for ticket creation;
all these are related to messages from Client. The Client logs in, requests a
form, submits details, prints a ticket — the client sends four messages and
receives two: validate login and acknowledgement of all requests of this
particular process [108A].

89

1: login () |

Ticket system

J

3: return ()

,,,,,,,,,,,,,,,,,,,,,,,,, L
E :
|

4: request form () 1

U

H 6: submit details () N

J

10: acknowledge

I

I

I

|

}

11: take print () |

I

|

| I

]2: validate ()

i
]
]
]
]
i
i
i
i
i
]
i
i
]5: create form ()]
i
i
i
i
7: create ticket () i
i

i

]

8: send details ()

9: ticket created

Source: created by the author [108A]
Figure 46. UML Sequence Model of Ticket Buying Example

Figure 46 presents the UML Sequence model of the Ticket buying example
generated step by step from the Enterprise Model through the UML Sequence
transformation algorithm [108A].

3.7.3. UML State Model of Ticket Buying Process Example

UML State Model shows the different states of an entity. The State model can
also demonstrate how an entity responds to various events by changing from
one state to another [97A].

Table 27. UML State Model Elements Generated from Enterprise Model of

Ticket Buying Example

Enterprise | UML State | Ticket Buying Description
Model Model Example
element element
Enter login details
P Behavioural | Enter bus details Five states are used to specify the discrete
rocess, - :)
Function State _ Enter self details behawou_r o_fa part of the_d_esngned system
Machine Booking successful | through finite state transitions.
Logout
Validation
Information | Composite Auvailability check | Four states of an entity are defined as a
Flow State Booking Ticket state that has substates.

Printing

Source: created by the author [108A]

90

Table 27 presents UML State model elements generated from the
Enterprise Model of Ticket buying example. In the Enterprise Model, all
information related to processes, functions and their state is stored. This model
is from the Client’s perspective. There are four information flows — composite
states of a Client entity: validation, availability check, ticket booking and
printing. All these composite states are conducted by a particular behavioural
state machine: Enter log in details, Enter bus details, Enter self details,
Booking successful, Logout.

Enter login details

Validation Enter bus details

Availability check

Enter self details

Printing Booking successful
Logout

Source: created by the author [L08A]
Figure 47. UML State Model of Ticket Buying Example
Figure 47 presents the UML State model of the Ticket buying example
generated step by step from the Enterprise Model through the UML State
transformation algorithm [108A].

Booking ticket

3.7.4. UML Activity Model of Ticket Buying Process Example

UML Activity model describes how activities are coordinated to provide a
service which can be at different levels of abstraction [108A].

Table 28. UML Activity Model Elements Generated from Enterprise Model
of Ticket Buying Example

Enterprise UML Ticket Buying Description
Model Activity Example
element Model
element
. . There is one partition, and all activities are
Actor Partition Client directly related to that actor.
Search bus There are eight activities directly related to
Check tickets one partition — Client. They represent a
availability parameterized behaviour as a coordinated
Function, Activity Book tickets flow of actions.
Process Fill details
Submit details
Make payment
Print ticket

91

Logout

There are four control nodes: one node —
The initial node in the beginning; one
Initial node, two | decision node, regarding which process
activity final finishes in the success or otherwise; two
nodes, decision activity final nodes: one in case of a
node — are there | successful process, another in case of an
available tickets | unsuccessful process. Basically, control
nodes are used to coordinate the flows
between other nodes.

Business Control
Rules Nodes

Source: created by the author [108A]

Table 28 presents UML Activity model elements generated from the
Enterprise Model of Ticket buying example. In the Enterprise Model, all
information related to actors, their activities and relationships between these
functions is stored. There is one business rule — the control node, related to the
process beginning, the initial node. In this case, there is only one actor — one
partition — the Client. There are two Client activities before the decision node:
bus searching and checking ticket availability. In case there are no available
tickets, the process finishes unsuccessfully with one of the final activity nodes.
In another case, if there are available tickets, the Client books tickets, fills
details, submits details, makes payment and prints the ticket. This process
finishes as successful with the second final activity node [108A].

Figure 48 presents the UML Activity model of Ticket buying example
generated step by step from the Enterprise Model through the UML Activity
transformation algorithm [108A].

Check tickets
availability

‘Are there
available
ickets

Y
Book tickets H Fill details H Submit delails}
% Print ticket H Make paymem}

Source: created by the author [108A]
Figure 48. UML Activity Model of Ticket Buying Example
All four UML dynamic models: Use case, Sequence, State and Activity of
one Ticket buying process example, are generated from Enterprise Model
according to the subject domain knowledge stored inside. These four UML

models define the same example but from diverse perspectives by showing
92

No Logout

different actors’ activities, states and use cases. A knowledge-based Enterprise
Model is sufficient storage of data, which is necessary for UML model
generation by specific transformation algorithms of each UML model.

3.8. Generated UML Models of Hospital Information
Management Process Example

The Hospital intended to manage outside patients is the object of the presented
example. In this institution, a doctor is only associated with one specialized
hospital department (cardiology, paediatrics, etc.) at a time. Each doctor has a
visiting time and day in a week [109A].

The patient data is entered at the reception, and the necessary fees are also
taken. The patient is tracked on the basis of the ID number, which is generated
automatically [109A].

Usually, a patient can visit the doctors in two possible ways: directly
selecting a doctor or getting admitted to the hospital [L09A].

A doctor can prescribe tests based on the patient’s described condition. The
patient visits the laboratory to get done the tests prescribed by the doctor. The
reports of the tests are given to the patient. The payments related to the tests
are made at the reception. According to the reports, the doctor prescribes the
patient medicine or further tests if needed or asks to admit the patient to the
hospital [109A].

If available, a patient is admitted into a ward of a particular department as
per the doctor’s prescription. The number of available wards is limited, and
the patient’s admission is rescheduled if there is no free ward [109A].

Also, in case of the doctor’s prescription, the patient is operated on a
scheduled date and time as decided by the doctor responsible for the operation
[109A].

After finishing the treatment, a patient may get discharged on the advice
of his doctor and upon the full payment of all due charges at the reception. On
payment of total dues, the receptionist generates a discharge card for the
patient [109A].

All data of a particular subject domain, in this case, Hospital Information
Management data, is stored in Enterprise Model described previously. The
stored information in Enterprise Model is already verified and validated by
experts and analysts, so it is ready to be used for UML model generation
[109A].

93

3.8.1. UML Use Case Model of Hospital Information Management
Process Example

UML Use Case model is the initial form to identify and present system
requirements for a new IS. Use cases identify the expected behaviour — what
should be done, not the exact method of how it should be done. It is a powerful
technique for communicating system behaviour in the user's conditions by
specifying all externally visible system behaviour [98A].

Table 29. UML Use Case Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example

Enterprise | UML Hospital Information Management | Description
Model Use Case | process example
element Model
element
Actor Actor Patient There are four actors, each of
Doctor them isa _behavioural classi_fier
_ which defines a role played in a
Receptionist particular example.
Laboratory Assistant
Process, Use Case | Laboratory Visit for the Test There are fourteen use cases;
Function Test Report Generation each use case is a type of
_ behavioural classifier that
Payment for the Test at Reception describes a unit of functionality
Registration for Treatment performed by three actors.
ID Generation
Fee Payment
Admission to Ward
Discharging
Account Settlement
Discharging Card Generation
Test Prescription
Test Report Analysis
Prescription for Medicines
Operation Performing
Business Include | Six include elements There are six included
Rule elements; each includes a

directed relationship between
two use cases which is used to
demonstrate that behaviour of
the included use case is inserted
into the behaviour of the
included use case.

Source: created by the author [109A]

94

Table 29 presents UML Use Case model elements generated from the
Enterprise Model of Hospital Information Management process example. In
Enterprise Model, all information related to actors, their functions and
relationships between these functions is stored. There are four actors: Patient,
Doctor, Receptionist and Laboratory Assistant; Receptionist is related to five
use cases; Laboratory Assistant — with one use case; Doctor is related to three
use cases and the Patient is related to seven use cases. Four use cases include
some additional use cases, six relationships in total. These elements and their
relationships are presented in the following figure.

T ——— ~Caboratory Visit for
o~ TestReport " ccincludes>—- £ g Al
_ Generation Lo theTest A

—— <<include>>" I

~Payment for theTest" ~ Registration for .

~.__atReception - . Treatment FA

7 7;7_, ‘_‘”"C'““e”- :7" - ~ AN Lah‘ara‘tﬂly
- . Assistant

(" ID Generation - R
" <<include>>
. (_Admission to Ward)

\ (FeePayment (" Discharging) |
Receptionist \| — " Patient
- <<include>> . p A

\ (Account Settiement)

{ ‘. Test Prescription

|~ Discharging Card
. Generation -~ 2
I (Test Report Analysis

<<include>> T Doctor
" Prescription for (Operation Performing)
L Medicines

Source: created by the author [109A]
Figure 49. UML Use Case Model of Hospital Information Management
Process Example

Figure 49 presents the UML Use Case model of the Hospital Information
Management process example generated step by step from the Enterprise
Model through the UML Use Case transformation algorithm.

3.8.2. UML Activity Models of Hospital Information Management
Process Example

The UML Activity model describes how activities are coordinated, dependent
on the actor or previous activity. Usually, an event needs to be gained by some
operations, mainly where the operation is intended to gain a number of
different things that require coordination or how the events in a single use case
relate to one another, especially use cases where activities may overlap and
require coordination [104A][109A].

95

According to the previously described UML Use Case model, there is
possible to identify at least five different UML Activity models: Patient
Registration, Ward Assignation, Medical Tests, Treatment Process and
Discharging.

UML Activity Model: Patient Registration

First UML Activity Model generated from EM is Patient Registration, where
two participants — actors take part: the Patient and the Receptionist.

Table 30. UML Activity Model Elements Generated from Enterprise Model

of Hospital Information Management Process Example, Registration Part

Enterprise | UML Hospital Information Description

Model Activity Management process

element Model example

element

Actor Partition Patient There are two partitions, and
Receptionist activities are related to these actors.

Function, | Activity Reception Visit There are five activities directly

Process Personal Data Provision | related to two partitions: Patient —
Data Entering into the three activities, Receptionist — two.
System They represent a parameterized
Patient ID Generation behaviour as the coordinated flow of
Fee Payment actions.

Business Control Initial Node There are two control nodes: one

Rules Nodes : node - the initial node in the
Final Node beginning, the final node at the end of

the process.

Source: created by the author [109A]

Table 30 presents UML Activity model elements generated from the
Enterprise Model of Hospital Information Management process example,
Registration part. Actor — first UML Activity model partition Patient starts
registration process: visits reception, provides personal data, Actor — second
partition Receptionist enters patient’s data and provides patient’s ID number,
last activity Fee Payment is related with first partition, Patient pays the fee and
registration process ends.

96

,E [Reception Visit j [Fee Payment]—)@
g
Personal Data

Provision
k] Data Entering into
.3 System
a
@
o Patient ID
o Generation

Source: created by the author [109A]

Figure 50. UML Activity Model of Hospital Information Management
Process Example: Registration

Figure 50 presents the UML Activity Model of Hospital Information
Management process example, the Registration part generated step by step
from the Enterprise Model through the UML Activity model transformation
algorithm [104A][109A].

UML Activity Model: Ward Assignment

The second UML Activity Model generated from EM is Ward Assignment,
where two participants — actors take part: Patient and Receptionist [109A].

Table 31. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Ward Assignment

Enterpri | UML Hospital Information Description

se Model | Activity Management process

element | Model example

element

Actor Partition Patient There are two partitions, and activities are
Receptionist related to these actors.

Function, | Activity Ward Availability Check | Four activities are directly related with

Process Provision of New Dates | two partitions: Patient — one activity,
Ward Assignment Receptionist — three. They represent a
New Dates Inquiry parameterized behaviour as the

coordinated flow of actions.

Informati | Object Ward Assignation details | There are two Object Flow Edges which

on Flow | Flow Edge | to the Patient are activity edges used to show a data
Ward Information flow between activities
Update to Reception

Business | Control Initial Node There are five control nodes: one node —

Rules Nodes initial node in the beginning; decision

Decision Node

Join Node

Fork Node

Final Node

node — for ward availability check; join
and fork nodes — to relate Object Flow
Edges, the final node at the end of the
process.

Source: created by the author [109A]

97

Table 31 presents UML Activity model elements generated from the
Enterprise Model of Hospital Information Management process example,
Ward Assignation part. Actor — first UML Activity model partition
Receptionist starts Ward Assignment process: Checks ward availability,
assigns it, or inquires for new dates because there are no free wards, Actor —
second partition Patient provides a new date for the ward assignment, last
activities are related with first partition, Receptionist prepares information for
the patient and updates information in Reception and process ends [109A].

Dates
Ward Availabilit:
@ ot Available: .
Available
Source: created by the author [L09A]

Figure 51. UML Activity Model of Hospital Information Management
Process Example: Ward Assignment

Patient

Ward Assignation B
Details to Patient

Ward Information
Update to Reception

Receptionist

Ward Assignment

Figure 51 presents the UML Activity Model of Hospital Information
Management process example, Ward Assignment part generated step by step
from the Enterprise Model through the UML Activity model transformation
algorithm [104A][109A].

UML Activity Model: Medical Tests

The third UML Activity Model generated from EM is Medical Tests, where
three participants — actors take part: Patient, Laboratory Assistant and
Receptionist.

Table 32. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Medical Tests

Enterpri | UML Hospital Information Description
se Model | Activity | Management process
element | Model example
element
Actor Partition | Patient There are three partitions, and activities

Laboratory Assistant are related to these actors.

Receptionist

Function, | Activity | Laboratory Visit for Test There are ten activities directly related
Process Doctor’s Prescription Check | with three partitions: Patient — four
Sample Inquiry activities, Laboratory Assistant — five

98

Sample Provision

activities, Receptionist — one. They

Performing the Test

represent a parameterized behaviour as

Payment Order Generation

the coordinated flow of actions.

Report Generation

Fee Payment

Issuing Receipt

Payment Receipt Provision

There are four control nodes: one node

Business | Control Initial Node
Rules Nodes Join Node — the initial node in the beginning;_join
and fork nodes — to relate additional
Fork Node activities; the final node at the end of
Final Node the process.

Source: created by the author [109A]
Table 32 presents UML Activity model elements generated from the

Enterprise Model of Hospital Information Management process example,
Medical Tests part. Actor — first UML Activity model partition Patient starts
Medical Tests process: visits laboratory and provides sample after inquiry,
Actor — second partition Laboratory checks doctor’s prescription, inquires for
sample, performs the test, generates payment order and prepares the report for
the doctor; Actor — third partition Receptionist confirms payment form the
patient and provides receipt; Patient makes payment and after payment
confirmation receives receipt and process ends [109A].

Laboratory Visit for
Test

Sample Provision '—‘
Performing of the
Test

Payment Order
Generation

Patient

r(Fee Payment [Payrﬂem Recewm)l
Provision

Doctor's
Prescription Check

|

\

Report Generation

Issuing Receipt l»

Laboratory
Assistant

Sample Inquiry]

Receptionist

Source: created by the author [L09A]
Figure 52. UML Activity Model of Hospital Information Management
Process Example: Medical Tests
Figure 52 presents the UML Activity Model of Hospital Information
Management process example, Medical Tests part generated step by step from
the Enterprise Model through the UML Activity model transformation

algorithm [104A][109A].

99

UML Activity Model: Treatment Process

The fourth UML Activity Model generated from EM is Medical Tests, where
two participants — actors take part: Patient and Doctor.

Table 33. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Treatment Process

Enterpri | UML Hospital Information Description
se Model | Activity | Management process example
element | Model

element

Actor Partition | Patient There are two partitions, and
Doctor activities are related to these actors.

Function, | Activity | Patient Visit Ten activities are directly related

Process Test Report Provision with two partitions: Patient — two
Report Analysis activities, Doctor — eight. They
Issuing Discharge represent a parameterized
Test Requirements Check behaviour as the coordinated flow
Test Prescription of actions.

Treatment Requirement Check
Operation Scheduling
Confirmation of Operation
Performing Operation

Business | Control Initial Node There are five control nodes: one
Rules Nodes node — initial node in the beginning;
three decision nodes — for test
Final Node report status, for more tests
possibility, for treatment type; the
final node at the end of the process.

Decision Nodes

Source: created by the author [109A]

Table 33 presents UML Activity model elements generated from the
Enterprise Model of Hospital Information Management process example,
Treatment Process part. Actor — first UML Activity model partition Doctor
starts Treatment Process: meets the patient, analyses provided test reports,
regarding test results, decides to discharge the patient or continue treatment
process. The doctor decides if there is a need to do more tests or not, assigns
treatment method medicine or operational intervention; after actor — second
partition Patient confirmation, Doctor performs the operation, and the process
ends [109A].

100

Test Reports Confirmation of
Provision Operation

Patient

Required
Test Prescription
Patient Visit
[Operation Performing
2 Scheduling Operation
Reports Analysis Positives| 1€t Rcehq:g(emem
Operation

Negative Not Required

Treatment Ffe atmei
Issuing Discharge Requirement Check Required?

I

Doctor

Source: created by the author [109A]
Figure 53. UML Activity Model of Hospital Information Management
Process Example: Treatment Process
Figure 53 presents the UML Activity Model of the Hospital Information
Management process example, the Treatment Process part generated step by
step from the Enterprise Model through the UML Activity model
transformation algorithm [L04A][109A].

UML Activity Model: Discharging

The fifth UML Activity Model generated from EM is Discharging, where two
participants — actors take part: Patient and Receptionist.

Table 34. UML Activity Model Elements Generated from Enterprise Model
of Hospital Information Management Process Example: Discharging

Enterprise | UML Hospital Information Description
Model Activity Management process
element Model example
element
Actor Partition Patient There are two partitions, and

Receptionist activities are related to these actors.

Function, | Activity Approaching with Six activities are directly related
Process Discharge Advice with two partitions: Patient — two
Data Check activities, Receptionist — four.
Discharge Card Generation | They represent a parameterized
Payment Check Order behaviour as the coordinated flow
Due Amount Payment of actions.
Discharge Card Provision
Business Control Initial Node There are two control nodes: one
Rules Nodes node — the initial node in the

Decision node beginning; the decision node — for

Final Node payment status final node at the end
of the process.

Source: created by the author [109A]
Table 34 presents UML Activity model elements generated from the
Enterprise Model of Hospital Information Management process example,

101

Discharging part. Actor — first UML Activity model partition Patient starts
discharging process: approaches with discharge advice from the doctor,
Actor — second partition Receptionist checks data, generates discharge card,
checks payment status after a patient makes the payment, provides discharge
card and process ends [109A].

Approaching with Due Amount
Discharge Advice Payment

Discharge Card
Data Check pgndmg

Patient

Paid
(Cmmmer o s .
Source: created by the author [109A]

Figure 54. UML Activity Model of Hospital Information Management
Process Example: Discharging

Receptionist

Figure 54 presents the UML Activity Model of Hospital Information
Management process example, Discharging part generated step by step from
Enterprise Model through the UML Activity model transformation algorithm
[1L04A][109A].

3.8.3. UML Sequence Models of Hospital Information Management
Process Example

The UML Sequence model is time focused and visually shows the order of the
interaction by using the model’s vertical axis to deliver time, what messages
are sent and when [104A][109A].

According to the previously described UML Use Case and UML Activity
models, there is possible to identify at least three different UML Sequence
models: Patient Admission, Tests and Treatment, and Discharging.

UML Sequence Model: Patient Admission
The first UML Sequence Model generated from EM is Patient Admission,

where four participants — Lifelines take part: Patient, Receptionist, Database
and Ward.

102

Table 35. UML Sequence Model Elements Generated from Enterprise
Model of Hospital Information Management Process Example: Patient

Admission
Enterpri | UML Hospital Information Description
se Model | Sequence Management process
element | Model example
element
Actor Lifeline Patient There are four actors in the UML
Receptionist Sequence model four Lifelines,
which are shown using a symbol
Database that consists of a rectangle
Ward forming its “head” followed by a

vertical line, and these lines
represent the lifetime of the
actor—participant of the process.

Process, | Message Register(data) Eleven messages are related to
Function Addnew(data) actors, and they define
Return communication between them.
Return

Wardrequest()
Auvailabilitycheck()
Return(status)

[not available] return(n/a)
[if available] ward

update(data)

Return

Return(noward)
Business | Execution Five Execution Specifications |Each of the five execution
Rules Specification specification elements represents

a period in the actor's lifetime.

Source: created by the author [109A]

Table 35 presents the UML Sequence model elements generated from the
Enterprise Model of Hospital Information Management process example,
Patient Admission part. In Enterprise Model, all information related to actors
and their collaboration is stored. There are four actors — process participants,
which are called Lifelines in the UML Sequence model: persons — Patient,
Receptionist, subject — Database, object — Ward. The Patient registers to the
hospital; the Receptionist enters gathered data; the Patient requests the ward,
the Receptionist checks availability and confirms or denies ward availability
[109A].

103

‘ :Patient ‘
T

‘ :Receptionist ‘
T

:Database ‘

1 reglster(data)—b‘— }

|
|
——2" addnew(data |
|
|
€ ——— -3 return - - - - !
< —- -4 return- - - -4 ; !
i i

5: wardrequest()—» } }

6 availabilitycheck (}————»

8 [not available] | ----=-----~ T return(statusy-----------

return(n/a) |

| i
| 9- [if available] wardupdate(data)———————|

|
m<f 11: return(noward)—
|

————————————— 10: return- = == = === === ==
I I

| |
T | |

Source: created by the author [109A]
Figure 55. UML Sequence Model of Hospital Information Management
Process Example: Patient Admission
Figure 55 presents the UML Sequence model of the Hospital Information
Management process example, the Patient Admission part generated step by
step from the Enterprise Model through the UML Sequence model
transformation algorithm [1L04A][109A].

UML Sequence Model: Tests and Treatment

The second UML Sequence Model generated from EM is Tests and
Treatment, where four participants — Lifelines take part: Patient, Doctor,
Operation and Test.

Table 36. UML Sequence Model Elements Generated from Enterprise
Model of Hospital Information Management Process Example: Test and

Treatment
Enterpri | UML Hospital Information Description
se Model | Sequence Management process
element | Model example
element
Actor Lifeline Patient There are four actors in the UML
Doctor Sequence model four Lifelines, which
are shown using a symbol that
consists of a rectangle forming its
Operation “head” foll_owed by a vertice?l l_ine,
Test and these lines represent the lifetime
of the actor—participant of the
process.
Process, | Message Performcheckup() There are thirteen messages related to
Function Return actors that define communication
Prescribemedicine() between them.
Return
Prescribetest()

104

Providesamples(samples)
Return(report)
Inquirereview(reports)
Prescribemedicine()
Prescribeoperation()

Moretest()

Getoperated()

Operate()
Business | Execution Five Execution Each of the five execution
Rules Specification | Specifications specification elements represents a

period in the actor’s lifetime.

Source: created by the author [109A]

Table 36 presents the UML Sequence model elements generated from the
Enterprise Model of Hospital Information Management process example,
namely, the Test and Treatment part. In EM, all information related to actors-
lifelines and their collaboration is stored. There are four actors — process
participants, which are called Lifelines in the UML Sequence model: persons
— Patient, Receptionist, objects — Operation, Test. The Doctor performs check-
ups and prescribes medicine if necessary, prescribes tests, the Patient provides
samples and gets reports, the Doctor reviews reports and prescribes more
medicine or prescribes operation if necessary, prescribes more tests and
operates [109A].

\ :Dolctor H :Operation ‘ | :Test ‘

re—1: performcheckup()—4

t—3: prescribemedicine()
7777777 4: return- - - - - Z
l+—5 prescribetest() !

(—6: providesamples(samples)———»
————————————————— - retum(reporf}‘,————————————ﬂ

—8: inquirereview (reports)—»
t«—9: prescribemedicine()
10: prescribeoperation ()~ ;
12: getoperated(
—11: mﬂrelest(}—/ |—13:0perate)—»

T |

Source: created by the author [109A]
Figure 56. UML Sequence Model of Hospital Information Management
Process Example: Test and Treatment

Figure 56 presents the UML Sequence model of the Hospital Information
Management process example, the Test and Treatment part generated step by
step from the Enterprise Model through the UML Sequence model
transformation algorithm [104A][109A].

UML Sequence Model: Discharging

105

The third UML Sequence Model generated from EM is Discharging, where
five participants — Lifelines take part: Doctor, Patient, Reception, Database
and Ward.

Table 37. UML Sequence Model Elements Generated from Enterprise
Model of Hospital Information Management Process Example: Discharging

Enterpri | UML Sequence | Hospital Information | Description
se Model | Model element | Management process
element example
Actor Lifeline Doctor There are five actors in the UML
Patient Sequence model with four Lifelines,
Reception which are shown using a symbol that
consists of a rectangle forming its
Database “head” followed by a vertical line,
Ward and these lines represent the lifetime
of the actor—participant of the
process.
Process, | Message Dischargeadvice() There are fifteen messages related to
Function Requestdiscgarge() actors that define communication
Checkdues(patientid) | between them.
Return(dues)
Askpayment(amount)
Paydues(amount,patien
tid)
Update(amount,patient
id)
Return(receipt)
Return(receipt)
Return
Updatedischargedata(p
atientid)
Updateward()
Return
Return
Grantdicharge
(dichargecard)
Business | Execution Ten Execution Each of the ten execution
Rules Specification Specifications specification elements represents a
Parallel Two Parallels period in the actor's lifetime. Each

parallel defines potentially parallel
execution of behaviours of the
operands of the combined fragment.

Source: created by the author [109A]

Table 37 presents the UML Sequence model elements generated from the
Enterprise Model of Hospital Information Management process example,
Discharging part. In EM, all information related to lifelines and their
cooperation is stored. There are five actors — process participants, which are
called Lifelines in the UML Sequence model: persons — Patient, Doctor,

106

subjects — Reception, Database, object — Ward. The Doctor provides discharge
advice, the Patient requests for discharge, Reception checks information
related to payments, inquires for payment, the Patient makes the payment,
Reception updates financial information in Database, provides Receipt,
Reception updates discharge information and information related to the ward,
in the end, Reception provides Discharge card [109A].

I :Doctor | ‘:Patient‘ | :Database H ‘Ward ‘
T T T T

Hp dischargeadvice()» | |

2: requestdischarge(id . 3: checkduesfid I
»»»»» 4: return(dues)-----
5. askpayment(amount)——

I

I

I

I

/ !
6: paydues(amount,id)—;b } }
I

’ I
I

I

I

I

7: update(amount, icf)
————— 8: return(receipt)- - - - —

- ==-=9: return(receipf)- - —P’— 1
’

___________ N
10: return 4':11 updatedischargedata(id, !

|
7)—1 2 updateward()ﬂ
I

6}’**7713: retum-—————— _‘Q !

1 H {j ———————————— 14: retum- - ——————————

} D-—WS: grantdischarge(dischcard)— - D
1

l

l

Source: created by the author [109A]
Figure 57. UML Sequence Model of Hospital Information Management
Process Example: Discharging

Figure 57 presents the UML Sequence model of the Hospital Information
Management process example, Discharging part generated step by step from
Enterprise Model through the UML Sequence model transformation algorithm
[104A][109A].

3.8.4. UML State Models of Hospital Information Management Process
Example

UML State Model demonstrates the diverse states of an entity [98A].
According to previously described UML models, it is possible to identify at
least three different UML State model description states: Patient, Doctor and
Ward.

UML State Model: Patient

The first UML State Model generated from EM describes the states of the
Patient.

107

Table 38. UML State Model Elements Generated from Enterprise Model of
Hospital Information Management Process Example: Patient

Enterprise | UML Hospital Information | Description

Model State Management process

element Model example

element

Process, Transition | Doctor Visit Transitions from one state to the next

Function Doctor Review respond to the activities, events, what
Issue to Discharge causes the state’s change.

Informatio | Simple Patient Registered The internal activities compartment holds

n Flow State Treatment in Progress |a list of internal actions or state (do)
Discharged activities (behaviours) performed while

the element is in the state.
Business Initial and | Initial State Initial and final states are particular states
Rules Final states | Final State signifying the beginning and closing

processes of defined states.

Source: created by the author [109A]

Table 38 presents the UML State model elements generated from the
Enterprise Model of Hospital Information Management process example,
Patient part. In Enterprise Model, all information related to processes,

functions and their states is stored. This model

is from the Patient’s

perspective. In the model, these elements are presented: initial state, which
starts the process; the first state — Patient registered; its state changes after the
doctors’ visit: a patient receives treatment, additional doctor’s visit, after
which the doctor advises discharge procedure and patient’s state changes
again, the patient is discharged, the process ends with final state [109A].

Object:
PATIENT
()]

(Discharged)
do/

Payment of Treatment
| Dichargs Card Issus |

[

do /

Issue to discharge
Do Test

Patient Registered
entry / Enter Patient Data
exit / Generate ID of the Patient

Dector visit

" Treatment in Progress

Take Medicine

Provide Report
Have Operation

Doctor Review.

Source: created by the author [109A]
Figure 58. UML State Model of Hospital Information Management Process
Example: Patient

Figure 58 presents the UML State model of the Hospital Information
Management process example, Patient part.

UML State Model: Doctor

108

The second UML State Model generated from EM describes the states of the

Doctor.

Table 39. UML State Model Elements Generated from Enterprise Model of
Hospital Information Management Process Example: Doctor

Enterprise | UML State | Hospital Information Description
Model Model Management process
element element example
Process, Transition Patient Registered Transitions from one state to the next
Function Patient (re)Checkup respond to the activities, events, what
Planned leave of the causes the state's change.
Doctor
Informatio | Simple State | Doctor Registered The internal activities compartment
n Flow Appointing Treatment holds a list of internal actions or state
Doctor Inactive (do) activities (behaviours)
performed while the element is in the
state.
Business Initial and Initial State Initial and final states are particular
Rules Final states | Final State states signifying the beginning and
closing processes of defined states.

Source: created by the author [109A]

Table 39 presents UML State model elements generated from the
Enterprise Model of Hospital Information Management process example,
Doctor part. In Enterprise Model, all information related to processes,
functions and their states is stored. This model is from Doctor’s perspective.
In the model, these elements are presented: the initial state, which starts the
process; the first state Doctor registered; its state changes after the patient
registers for the visit: Doctor prescribes treatment, checks up on treatment
results, after the patient’s discharge procedure Doctor’s state changes, he is
not needed for this particular patient, the process ends with the final state

[109A].

] Doctor Registered A
Patient Registered— entry / Accept Data
exit/ lssue ID
v |de / Check Data)

Appointing Treatment |
do /

Planned leave

of the Doctor
Doctor Inactive
do / Release of Doctors ID |
Patient ,-'I-
"(Re)Checkup .‘

Source: created by the author [109A]

Figure 59. UML State Model of Hospital Information Management Process
Example: Patient

109

Prescribe Medicine
Prescribe Test
Analyse Report
Prescribe Operation
Parform Operation

Figure 59 presents the UML State model of the Hospital Information
Management process example, the Doctor part.

UML State Model: Ward

The third UML State Model generated from EM describes the states of Ward.

Table 40. UML State Model Elements Generated from Enterprise Model of
Hospital Information Management Process Example: Ward

Enterprise | UML State | Hospital Information | Description

Model Model Management process

element element example

Process, Transition Request to Occupy Transitions from one state to the next

Function Patient Discharged respond to the activities, events, what
causes the state's change.

Informatio | Simple State | Free The internal activities compartment

n Flow Occupied holds a list of internal actions or state
(do) activities (behaviours) performed
while the element is in the state.

Business Initial and Initial State The initial state is a particular state

Rules Final states signifying the beginning process of
defined states.

Source: created by the author [109A]

Table 40 presents UML State model elements generated from the
Enterprise Model of Hospital Information Management process example,
Ward part. In Enterprise Model, all information related to processes, functions
and their state is stored. This model is from Ward’s perspective. In the model,
these elements are presented: an initial state which starts the process; the first
state means the ward is free; its state changes after the request to occupy; after
the patient is discharged ward state changes again to free [109A].

Object:)
WARD
Free

Ldo/ Maintanance J

Patient Discharged ~ Request to Occupy

| Occupied ‘

exit / Update Ward Information ‘
do / Cleaning

Source: created by the author [109A]
Figure 60. UML State Model of Hospital Information Management Process
Example: Ward

Figure 60 presents the UML State model of the Hospital Information
Management process example, Ward part.
110

Having analysed the Hospital Information Management process example,
the results of four UML models are the following: Use Case, Activity,
Sequence and State generation from Enterprise Model through transformation
algorithms are presented straightforwardly; all models define the same
example but from different perspectives. In almost every subsection of the
described example, there is more than one model of the same type presented:
generated UML Use Case model presents all participants (Actors) who are
involved in the Hospital Information Management process and their
functions/processes (Use Cases); generated UML Activity models illustrate
different activities from different perspectives (Registration, Ward
Assignation, Medical Tests, Treatment process and Discharging) of the same
example, and it is not the final list of possible models of the same type;
generated UML Sequence model also defines sequence processes and
functions sequences from different perspectives (Patient Admission, Tests and
Treatment, Discharging) of the same example, and it is also not the final list
of possible UML Sequence models; generated UML State model describe
different states from the perspectives of objects (Patient, Doctor and Ward),
and states of more objects of the same example can be generated [109A].

Provided example of the Hospital Information Management process
shows and confirms that it is not the final amount of UML models which can
be generated from EM; there are more different perspectives for UML model
generation of the same example. As stated previously, the knowledge-based
Enterprise Model, which stores verified and validated data of a specific subject
domain, is enough data storage for the generation of various UML models
[1L09A].

3.9. Proposed Method Principals’ Application in Financial Data
Analysis

Proposed method principals were applied in the project “Enterprise
Financial Performance Data Analysis Tools Platform” activities. The aim of
this project was to develop a finance and audit analytics system to automate
business, finance and internal audit activities using artificial intelligence (Al),
machine learning (ML) and big data technologies.

The proposed method was used to create dynamic models, by adapting the
transformation algorithms presented in the thesis to the project specifics. The
created dynamic models were applied for financial data analysis, for example
Altman Z score indicator and behavioural change indicators (BCI's)

111

calculation [66A] and identification of irregular financial operations [83A].
The workflow and decision automation platform Camunda, supporting
Decision Model and Notation (DMN), and Natural Language Processing
NLP-based algorithms were used to reach a part of the project interim goals.
The project was successfully completed on time and the solutions have been
applied in practice.

3.10. Evaluation of UML Dynamic Models Generation Method
Based on Presented Examples Results

As mentioned before, traditional IS engineering is based on the analyst’s
experience. The analyst participates during the entire IS development life
cycle process by analysing the subject domain, modelling and designing all
project models, in our case UML models, needed, using different tools for this
purpose, relying only on his personal experience and good practices. The
analyst’s activities may be described as analysis of the enterprise situation,
identification of opportunities for improvements, design of an information
system which will add value to the organisation. The analyst gathers subject
domain information, identifies all requirements, searches for suitable meta-
models, verifies and validates data, and starts implementing IS by designing
UML models. There is always a risk of new problems, information or
requirements appearing, which cause complicated project models updating
and improving the process. The duration of IS developing process is
increasing, and the number of errors is growing.

Using Enterprise Model as the core subject domain knowledge repository
in IS engineering process ensures the corectness and quality of generated IS
project models after any possible subject domain data update.

Table 41. Comparison of IS Analyst’s Activities by Criteria

Criteria Traditional IS engineering | Enterprise Knowledge-Based UML
Dynamic Models Generation Method

The analyst gathers
information from The analyst gathers information from

Gat_hermg . | stakeholders, subject domain | stakeholders, subject domain analysis,
subject domain Ivsi - : - i
data analysis, previous systems previous systems by using different

by using different methodologies
methodologies

The analyst collects,
Requirements | identifies and specifies the
identification | requirements of the
particular subject domain

The analyst collects, identifies and
specifies the requirements of the
particular subject domain

112

Data
preparation for
modelling

The analyst prepares data for
modelling, uses any possible
modelling tools of his own
choice, relying on his own
empirical experience.

The analyst prepares data for modelling,
uses the enterprise model, which is
formalised by enterprise meta-model;
verifies and validates knowledge of the
particular subject domain and fills the
enterprise model with necessary data

Project models
design

The analyst creates design
models by using design tools
according to his empirical
experience

Necessary UML dynamic models are
generated from the enterprise model by
using transformation algorithms

Subject domain
data update

The analyst approves the
necessary changes and
updates the subject domain
data

The analyst verifies and validates the
necessary changes and updates subject
domain data in the enterprise model

Project model

The analyst re-creates or

Necessary UML dynamic models are
generated from enterprise model with

idriSI?c?vemen t Lrgi%ro;zziderz‘s;gglgnodels by updated data by using transformation
P 9 g algorithms
gg/ﬁ%ser?];ﬁt For design models UML dynamic models are generated
rocessl? improvement, additional from enterprise model faster than
proce time is needed without transformation algorithms
duration
- - There is less possibility of getting an

| e o e 1, | o rumter f s e

. subject domain data was verified and
errors higher

validated in advance

Source: created by the author

By using Enterprise Model in IS engineering process, the analysts enter all
gathered subject domain data into EM. Subject domain knowledge stored in
EM is used for UML model generation through transformation algorithms.
After any possible new data upload to the EM, it is re-used and new UML
models based on improved data are generated. The analyst does not need to
re-do the entire project model design process. The main difficulties can be
related to a lack of analyst experience during the process of subject domain
analysis, gathering necessary data and completing the Enterprise model.

3.11. Third Part Conclusions

The third part represents how the presented Enterprise knowledge-based UML
dynamic model generation method can be used for different subject domains.
Different examples of different UML dynamic models and two more complex
examples are presented: Ticket Buying Process and Hospital Information
Management Process. Two complex examples demonstrate the wide range of
UML models that can be created during the IS development process. This
variety of models is not final; there is a possibility to create more models in

113

the design phase and present the system under development in a more detailed
way. There are also defined advantages of the proposed method from the
perspective of analyst role evaluation in traditional and knowledge-based IS
engineering process.

114

CONCLUSIONS

The analysis of information systems engineering methods and
standards showed that existing methods and CASE tools created on
their basis can generate IS project fragments in UML notation, such
as: user interface prototype, database specifications, program code
fragments, but no solutions for generating UML dynamic models of
the design phase of IS development have been found. The application
of the proposed method improves the efficiency of the IS design phase.
The transformation algorithms developed in the work and
experimentally verified prove that the composition of the enterprise
model (EM) is sufficient to generate UML dynamic models (use case
model, activity model, state machine model, sequence model,
communication model, timing model, interaction overview model).
Seven transformation algorithms developed in the work were used in
the experiment, and they were used to generate dynamic UML models
from activity models of eight subject areas. The generated dynamic
models meet the requirements of the UML specification, because all
elements of the composition of each type of UML dynamic model and
the relationships between them are generated.

The proposed UML dynamic model generation method was evaluated
by comparing the performance of an IS analyst in traditional and
knowledge-based IS engineering. The proposed method is superior in
performing dynamic model corrections (semi-automatic) and has
advantages in the process of creating primary models. The results of
the comparison are presented in table 41.

The results of this work provide a basis for the development of CASE
tool plug-ins enabling the generation of dynamic models of an IS
project from the subject domain knowledge stored in the CASE tool's
knowledge repository.

115

10.

11.

REFERENCES

Aier, S., Gleichauf, B., Winter, R.: Understanding enterprise architecture
management design - an empirical analysis. Wirtschaftsinformatik
Proceedings, 2011.
Aksit M., Kindler E., McNeile A., Roubtsova E., (2009) Behaviour
Modelling in Model Driven Architecture. CTIT Workshop Proceedings
Series WP09-04, ISSN 0929-0672, Enschede, the Netherlands.
Alouini, W., Guedhami, O., Hammoudi, S., Gammoudi, M., Lopes, D.:
Semi-Automatic Generation of Transformation Rules in Model Driven
Engineering: The Challenge and First Steps. International Journal of
Software Engineering and Its Applications. Vol. 5 No. 1, January, (2011).
Asadi, M., Ramsin, R. (2008) MDA-based Methodologies: An Analytic
Survey. Proceedings of the 4th European conference on Model Driven
Architecture: Foundations and Applications. pp. 419-431, Berlin
Bente, S., Bombosch, U., Langade, S., Collaborative Enterprise
Architecture: Enriching EA with Lean, Agile, and Enterprise 2.0
Practices. Elsevier, Inc., 2012.
Bousetta B., El Beggar O.,, Gadi T., (2013) A methodology for CIM
modelling and its transformation to PIM. Journal of Information
Engineering and Applications www.iiste.org ISSN 2224-5782 (print)
Vol.3, No.2, 2013.
Buckl, S., A Design Theory Nexus for Situational Enterprise Architecture
Management. Proceedings of the 14th International IEEE Enterprise
Distributed Object Computing Conference. IEEE Computer Society.
Vitoria, Brazil, 2010, pp. 3-8.
Butleris R., Lopata. A., Ambraziunas M.; Gudas. S. (2012) The Main
Principles of Knowledge-Based Information Systems Engineering.
Electronics And Electrical Engineering, Vol. 120, No 4 (2012), pp. 99-
102, ISSN 1392-1215
Cabot, J.; Pau, R.; Raventos, R. From UML/OCL to SBVR
specifications: A challenging transformation. Information Systems, 2008,
p. 1-24.
Chen, C.K., Construct Model of the Knowledge-based Economy
Indicators, Transformations in Business & Economics, Vol. 7, No 2(14),
2008.
Chen, R., Sun, Ch., Helms, M., Jihd, W., Aligning information
technology and business strategy with a dynamic capabilities
116

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

perspective: A longitudinal study of a Taiwanese Semiconductor
Company. International Journal of Information Management 28 366—
378, 2008.
Cuenca, L., Boza, A., Ortiz, A. Architecting Business and IS/IT Strategic
Alignment for extended Enterprises. Studies in Informatics and Control,
Vol. 20, No. 1, March 2011.
Dobing, B., Parsons, J., How UML is used. Communications of the ACM
- Two decades of the language-action perspective. Volume 49 Issue 5,
May 2006 Pages 109-113. ACM New York, NY, USA, 2006.
Dunkel J., Bruns R., Model-Driven Architecture for Mobile
Applications. Proceedings of the 10th Inter-national Conference on
Business Information Systems (BIS), Vol. 4439/2007, pp. 464-477, 2007.
Eichelberger H., Eldogan, Y., Schmid K. (2011) A Comprehensive
Analysis of UML Tools, their Capabilities and Compliance. Software
Systems Engineering. Universitat Hildesheim. August 2011.
FFIECC. Development Procedures. IT Examination Handbook InfoBase.
Available from [Accessed May 2013]: http://ithandbook.ffiec.gov/it-
booklets/development-and-acquisition/development-procedures.aspx
Fouad A., Phalp K., Kanyaru J. M., Jeary S., Embedding requirements
within Model-Driven Architecture. Software Quality Journal, Vol. 19,
No 2, pp. 411-430, 2011.
Freiberg, M., Baumeister, J., Puppe, F., Interaction Pattern Categories —
Pragmatic Engineering of Knowledge-Based Systems. 6th Workshop on
Knowledge Engineering and Software Engineering (KESE6) at the 33rd
German Conference on Artificial Intelligence September 21, Karlsruhe,
Germany, 2010.
Gerber A., le Roux P., Kearney C., van der Merwe A. The Zachman
Framework for Enterprise Architecture: An Explanatory IS Theory. In:
Hattingh M., Matthee M., Smuts H., Pappas ., Dwivedi Y., Méntymaki
M. (eds) Responsible Design, Implementation and Use of Information
and Communication Technology. I3E 2020. Lecture Notes in Computer
Science, vol 12066. Springer, Cham. 2020.
Gruber, T.R. Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. Technical report, KSL-93-04. Knowledge Systems
Laboratory, Stanford University, 1993, p. 1-23.
Gudas S., Ziniomis grindziamos informacijos sistemy inZinerijos procesy
modeliai. Habilitacijos procedurai teikiamy mokslo darby apzvalga
Kaunas: Kauno technologijos universitetas, 2005.

117

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Gudas S. Enterprise knowledge modelling: Domains and aspects.
Technological and economic development of Economy. Baltic Journal
on Sustainability, 281-293, 2009.

Gudas S. Ziniomis grindziamos IS inZinerijos metody principai. -
Konferencijos pranesimy medziaga ,, Informacinés technologijos 2004 ",
T.2, Kaunas, Technologija, 2004, p.713-717 — ISBN 9955-09-788-4
Gudas S., Informacijos sistemy inzinerijos teorijos pagrindai. Vilniaus
universiteto leidykla ISBN 978-609-459-075-7, 2012.

Gudas S., Architecture of Knowledge-Based Enterprise Management
Systems: a Control View, Proceedings of the 13th world multiconference
on systemics, cybernetics and informatics (WMSCI2009),) July 10 — 13,
2009, Orlando, Florida, USA, Vol. I, p.161-266 ISBN -10: 1-9934272-
61-2 (Volume I1).ISBN -13: 978-1-9934272-61-9 (Volume II1).

Gudas S., Lopata A. Informacijos istekliy identifikavimas veiklos
modelio pagrindu. Vilniaus universiteto leidykla, 2001.

Gudas S., Lopata A. Vartotojo poreikiy modelio generavimas veiklos
modelio pagrindu. Informacijos mokslai 2003 , p. 134- 140. ISSN 1392-
0561.

Gudas S., Lopata A. Ziniomis grindziama informacijos sistemy
inzinerija. Informacijos mokslai, Mokslo darbai, T.30, Vilnius, Vilniaus
Universiteto leidykla, 2004, p.90-98 ISSN 1392-0561.

Gudas S., Lopata A. Ziniomis grindZiama sistemy inZinerija. Mokomoji
medZziaga. Vilniaus universiteto Kauni humanitarinis fakultetas. 2011.
Gudas S., Lopata A., Skersys T. Framework for knowledge-based IS
engineering. Advances in Information Systems: Third International
Conference, ADVIS 2004, Izmir, Turkey, October 20-22, 2004, p. 512
Gudas S., Lopata A., Skersys T. Domain Knowledge Integration For
Information Systems Engineering. Informacinés technologijos verslui
2002: konferencijos pranesimy medziaga. Kaunas: Technologija 2002.
p.56-59

Gudas, S., Brundzaite R. Knowledge-Based Enterprise Modelling
Framework. Advances in Information Systems. Lecture Notes in
Computer Science, 2006, Volume 4243/2006, 334-343, DOI:
10.1007/11890393_35

Gudas, S., Lopata, A.; Skersys, T. Approach to Enterprise Modelling for
Information Systems Engineering. Informatica. no. 2, 175-192, DOI
10.15388/Informatica.2005.092

118

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

Henderson, J., Venkatraman, N., Strategic Alignment: Leveraging
Information Technology for Transforming Organizations, IBM Systems
Journal, Vol. 38, No 2,3, pp.472-484, 1999.

Hevner, A.R.; March, S.T.; Park, J.; Ram, S. Design Science in
Information Systems Research. MIS Quarterly, 28 (1), 2004.
Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van der
Merwe, A., Woitsch, R.: A new paradigm for the continuous alignment
of business and IT: combining enterprise architecture modelling and
enterprise ontology. Computers in Industry. 79, 77-86, 2016.

Hofstede, A.H.M.T.; Proper, H.A. How to formalize it? Formalization
Principles for Information Systems Development Methods. Information
and Software Technology, 1998, 40(10), p. 519-540.

IEEE Computer Society. Guide to the Software Engineering Body of
Knowledge SWEBOK. Version 3.0. Paperback ISBN-13: 978-0-7695-
5166-1., 2014.

ISO/IEC 12207. Systems and software engineering — Software life cycle
processes. Reference number ISO/IEC 12207:2008(E) IEEE Std 12207-
2008.

ISO/IEC/IEEE 15288:2015. Systems and software engineering —
System life cycle processes. Reference number ISO/IEC 15288:2015(en)
ISO/IEC 19505-1, 19505-2. Information technology - Object
Management Group Unified Modelling Language (OMG UML),
Infrastructure. ISO/IEC19505-1,-2:2012(E).

ISO/IEC 29148. Systems and software engineering — Life cycle processes
- Requirements engineering. Reference number ISO/IEC/IEEE
29148:2011(E).

ISO/IEC 19501:2005 Information technology — Open Distributed
Processing — Unified Modeling Language (UML) Version 1.4.2
ISO/IEC JTC 1. Information technology standards. Available from
[Accessed May 2014] https://www.iso.org/committee/45086.html
Jenney J. Modern Methods of Systems Engineering: With an
Introduction to Pattern and Model Based Methods. ISBN-13:978-
1463777357, 2010

Kappelman, L.A., Zachman, J.A.: The enterprise and its architecture:
ontology and challenges. Journal of Computer Information Systems
Summer 2013(4):87-95, June 2013.

119

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

o7.

58.

59.

60.

Kardo§, M., Drezdovd, M. Analytical Method of CIM to PIM
Transformation in Model Driven Architecture (MDA). Journal of
Information & Organizational Sciences; 2010, Vol. 34 Issue 1, p89.
Kerzazi, N., Lavallée, M., Robillard, P.N.,, A Knowledge-Based
Perspective for Software Process Modelling. e-Informatica Software
Engineering Journal, Volume 7., 2013.

Koch, Ch., Introduction to Information Technology, Scientific e-
Resources, 2018, ISBN 1839472405, 9781839472404

Kirikova M., Finke A., Grundspenki J., What is CIM: an information
system perspective, Advances in Databases and Information Systems,
Vol. 5968, pp. 169-176., 2010.

Kiister, J.M., Sendall, S., & Wahler, M., Comparing Two Model
Transformation Approaches, 2004.

Lamsweerde A., Requirements engineering: from system goals to UML
models to software specifications. Chichester Wiley, 2011.

Lapalme, J., Gerber, A., van der Merwe, A., de Vries, M., Hinkelmann,
K.: Exploring the future of enterprise architecture: a Zachman
perspective. Computers in Industry. 79, 103-113, 2016.

Lin, F., Dyck, H.: The value of implementing enterprise architecture in
organizations. Journal of International Technology and Information
Management 19, 2010.

Lonnfors, S., Theoretical and practical Requirements Engineering.
Degree Thesis, 2012.

Lopata A., Veiklos modeliy sudéties analizé. Informacinés technologijos
ir valdymas, 2000.

Lopata A. Veiklos modeliu grindziamas kompiuterizuotas funkciniy
vartotojo reikalavimy specifikavimo metodas. Disertacija, 2004.

Lopata A., Ambraziinas M., Gudas S., Knowledge Based MDA
Requirements Specification and Validation Technique, Transformations
in Business & Economics, Vol. 11, No. 1 (25), pp. 248-261. 2012
Lopata A., Ambrazitiinas M., Gudas S., Butleris R., The Main Principles
of Knowledge-Based Information Systems Engineering, Electronics and
Electrical Engineering, Vol. 11, No 1 (25), pp. 99-102, ISSN 2029-5731,
2012

Lopata A.; Gudas S. Meta-Model Based Development of Use Case
Model for Business Function, Information Technology and Control, vol.
36, No. 324 2007

120

61.

62.

63.

64.

65.

66.

67.

68.

Lopata, A., Ambraziiinas, M., Gudas, S., Butleris, R. The main principles
of knowledge-based information systems engineering. Electronics and
Electrical Engineering, 2012, 4(120) 99-102. ISSN 1392-1215.

Lopata, A., Ambrazitinas, M., Veitaité, 1., Masteika, S., Butleris, R.,
SysML and UML models usage in knowledge based MDA process,
Elektronika ir elektrotechnika. Kaunas : KTU. ISSN 1392-1215. elSSN
2029-5731. 2015, vol. 21, no. 2, p. 50-57 (A — author).

Lopata, A., Veitaité, 1., UML diagrams generation process by using
knowledge-based subsystem, Business Information Systems Workshop
2013, Poznan, Poland, June 2013 / Witold Abramowicz (ed.). Berlin :
Springer, 2013. ISBN 9783642416866. p. 53-60. (A — author).

Lopata, A., Veitaité, L., Gudas, S., Butleris, R., Case tool component -
knowledge-based subsystem UML diagrams generation process.
Transformations in business & economics. Vilnius University, Brno
University of Technology, University of Latvia. Brno, Kaunas, Riga,
Vilnius, : Vilniaus universitetas. ISSN 1648-4460. 2014, VVol. 13, No. 2B
(32B), p. 676-696. (A — author).

Lopata, A., Veitaité, 1., Zemaityté, N., Enterprise model based UML
interaction overview model generation process. Business information
systems workshops : BIS 2016 international workshops, Leipzig,
Germany, July 6-8, 2016 : revised papers / Editors: Abramowicz, Witold,
Alt, Rainer, Bogdan, Franczyk . - Series: Lecture notes in business
information processing. Vol. 263. ISSN: 1865-1348. Berlin : Springer
International Publishing, 2017. ISBN 9783319524634. elSBN
9783319524641. p. 69-78. (A — author).

Lopata, Audrius; Gudas, Saulius; Butleris, Rimantas; Rudzionis,
Vytautas Evaldas; Zioba, Liutauras; Veitaité, Ilona; Dilijonas, Darius;
Grisius, Evaldas; Zwitserloot, Maarten. Financial data anomaly
discovery using behavioral change indicators // Electronics. Basel :
MDPI. ISSN 2079-9292. 2022, vol. 11, iss. 10, art. no. 1598, p. 1-14.
DOI: 10.3390/electronics11101598. (A — author).

Luftman, J., Assesing Business-IT Alginment Maturity. Communications
of the Association for Information Systems vol.4(14), 2000.

Luftman, J., Lewis, P.R., Oldach, S.H. Transforming the Enterprise: The
Alignment of Business and Information Technology Strategies. IBM
Systems Journal, vol.32(1), p.198, 1993.

121

69.

70.

71.

72.

73.

74.

75.

76.

17,

78.

79.

Melouk M., Rhazali Y., Youssef H. (2020) An Approach for
Transforming CIM to PIM up To PSM in MDA. Procedia Computer
Science. Volume 170, 2020, Pages 869-874.

Morkevicius A., Gudas S., Enterprise Knowledge Based Software
Requirements Elicitation, Information Technology and Control, Vol. 40,
No 3, pp. 181-190, 1392 — 124X, 2011.

Ndie T., Tangha C., Ekwoge F., MDA (Model-Driven Architecture) as a
Software Industrialization Pattern: An Approach for a Pragmatic
Software Factories, Journal of Software Engineering and Applications,
Vol. 3 No. 6, pp. 561-571, ISSN 1945-3124, 2010.

Nemuraite, L.; Ceponiene, L.; Vedrickas, G. Representation of Business
Rules in UML&OCL Models for Developing Information Systems. In:
The Practice of Enterprise Modeling. LNBIP, vol. 15, 2008. Springer
Berlin Heidelberg, Germany, ISBN 978-3-540-89217-5, p. 182-196.
Normantas, K. Research on Business Knowledge Extraction from
Existing Software Systems. Doctoral thesis, 2013. Vilnius Gediminas
Technical University.

OMG MOF. Meta Object Facility. Available from [Accessed May 2013]:
https://www.omg.org/spec/MOF/2.5/Betal/ About-MOF/

OMG UML. Unified Modelling Language version 2.5.1 Unified
Modelling. Available from [Accessed May 2020]:
https://www.omg.org/spec/UML/About-UML/

Peak, D., Guynes, C., Prybutok, V., Xu, Ch., Aligning information
technology with business strategy: An action research approach. JITCAR,
Volume 13, Number 1, 2011.

Perjons, E., Model-Driven Process Design. Aligning Value Networks,
Enterprise Goals, Services and IT Systems. Department of Computer and
Systems Sciences, Stockholm University. Sweden by US-AB, Stockholm
ISBN 978-91-7447-249-3, 2011.

Plazaola, L., Flores, J., Vargas, N., Ekstedt, M., Strategic Business and
IT Alignment Assessment: A Case Study Applying an Enterprise
Architecture-based Metamodel. Proceedings of the 41st Hawaii
International Conference on System Sciences. 1530-1605/08, 2008.
Poole, J. D. Model-Driven Architecture: Vision, Standarts And Emerging
Technologies. European Conference on Object-Oriented Programming
Workshop on Metamodeling and Adaptive Object Models, 2001.

122

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Rahimi, F., Gotze, J., Moller, C.: Enterprise architecture management:
toward a taxonomy of applications. Communications of the Association
for Information Systems. 40, 120-166, 2017.

Rosen, S., A glimpse into the current state of UML use. Architexa —
Working with Large Codebases, 2010

Rouhani, B.D., Mahrin, M.N., Nikpay, F., Ahmad, R.B., Nikfard, P.: A
systematic literature review on enterprise architecture implementation
methodologies. Information and Software Technology. 62, 1-20, 2015.
Rudzionis, Vytautas; Lopata, Audrius; Gudas, Saulius; Butleris,
Rimantas; Veitaité, Ilona; Dilijonas, Darius; GriSius, Evaldas;
Zwitserloot, Maarten; Rudzioniene, Kristina. Identifying irregular
financial operations using accountant comments and natural language
processing techniques // Applied sciences. Basel : MDPI. ISSN 2076-
3417. 2022, vol. 12, iss. 17, art. no. 8558, p. 1-15. DOI:
10.3390/app12178558. (A — author).

Rumbaugh, J., Jacobson, 1., Booch, G., The Unified Software
Development Process, Addison Wesley Professional, p. 496, 1999.
Sajja, P.S., Akerkar, R., Knowledge-Based Systems for Development.
Advanced Knowledge Based Systems: Model, Applications & Research,
Vol. 1, 2010.

Sharifi, H. R., Mohsenzadeh M. (2012) A New Method for Generating
CIM Using Business and Requirement Models. World of Computer
Science and Information Technology Journal (WCSIT), ISSN: 2221-
0741, Vol. 2, No. 1, p.p. 8-12.

Silvius, G., Business & IT alignment in theory and practice, IEEE
proceedings of the 40th Hawaii international conference on System
Science, 2007.

Soares, M.S., Vrancken, J., Model-Driven User Requirements
Specification using SysML, Journal of Software, Vol. 3, No. 6, pp. 57-
68, ISSN 1796-217X, 2008

Sommerville, 1., Software engineering — 9th ed. Pearson Education, Inc.,
publishing as Addison-Wesley. ISBN-13: 978-0-13-703515-1, 2011
Ulrich W.M., Information systems transformation: architecture-driven
modernization case studies. Newcomb Amsterdam. Elsevier. Morgan
Kaufmann xix, 2010

UML Diagrams. Unified Modeling Language website, Available from
[Accessed February 2020]: www.uml-diagrams.org

123

92.

93.

94.

95.

96.

97.

98.

99.

Valatavicius, A., Gudas, S.: Toward the deep, knowledge-based
interoperability of applica-tions. Information sciences, Vol. 79, 2017.
Vargas Chevez, N., A Unified Strategic Business and IT Alignment
Model: A Study in the public universities of Nicaragua. Licentiate Thesis
in Computer and Systems Sciences Royal Institute of Technology, KTH
Stockholm, Sweden, ISBN 978-91-7415-646-1, 2010.

Veitaite 1., Lopata A. Veiklos modeliu grindziamas UML diagramy
generavimas. XVII tarpuniversitetiné magistranty ir doktoranty
konferencija. Konferencijos pranesimy medziaga. Vilniaus universitetas.
ISSN 2029-249X, 2012. (A — author).

Veitaité, 1., Ambrazitinas, M., Lopata, A., Enterprise model and ISO
standards based information system's development process. Business
information systems: 2014 international workshops, Larnaca, Cyprus,
May 22-23, 2014: Revised Papers: proceedings.- Series: Lecture notes in
business information processing (ISSN 1865-1348), Vol. 183/ Editors :
Witold Abramowicz, Angelika Kokkinaki. Berlin : Springer, 2014. ISBN
9783319114590. p. 73-79. (A — author).

Veitaité, 1., Lopata, A., Additional knowledge based MOF architecture
layer for UML models generation process, Business information systems:
2015 international workshops: revised papers: proceedings.- Series:
Lecture notes in business information processing (ISSN 1865-1348),
Vol. 226 / Editors : Witold Abramowicz, Angelika Kokkinaki. Berlin :
Springer International Publishing, 2015. ISBN 9783319267616. eISBN
9783319267623. p. 56-63. (A — author).

Veitaite, 1., Lopata, A., Enterprise knowledge based UML timing model
generation process. XXII tarpuniversitetiné magistranty ir doktoranty
konferencija Informaciné visuomené ir universitetinés studijos
(IVUS2017 : pranesimy medziaga. Kaunas : Technologija. ISSN 2029-
249X. 2017, p. 189-193. (A — author).

Veitaité, 1., Lopata, A., Enterprise model, MOF and ISO standards based
information system’s development process. Informacinés technologijos
2015: XX tarpuniversitetiné magistranty ir doktoranty konferencija :
Konferencijos pranesimy medziaga. Kaunas : Technologija. ISSN 2029-
249X. 2015, p. 77-81. (A — author).

Veitaite, 1., Lopata, A., Knowledge based UML information flow model
transformation algorithm. ICYRIME 2018: proceedings of the
international conference for young researchers in informatics,

124

100.

101.

102.

103.

104.

105.

mathematics, and engineering, Kaunas, Lithuania, April 27, 2018.
Aachen : CEUR-WS. 2018, p. 30-36. (A — author).
Veitaité, 1., Lopata, A., Knowledge-based transformation algorithms of
UML dynamic models generation from enterprise model. Data science:
new issues, challenges and applications. Dzemyda, Gintautas,
Bernatavic¢iené, Jolita, Kacprzyk, Janusz (Eds.). Cham : Springer Nature,
2020. ISBN 9783030392499. eISBN 9783030392505. p. 43-59.
Veitaité, 1., Lopata, A., Knowledge-based UML models generation from
Enterprise Model technique. Information and software technologies :
23rd international conference, ICIST 2017, Druskininkai, October12-14,
2017 : proceedings / editors: Robertas Damaseviéius, Vilma Mikasyté .
- Book series : Communications in Computer and Information Science.
Vol 756. Cham : Springer Nature. ISSN 1865-0929. eISSN 1865-0937.
2017, p. 314-325. (A — author).
Veitaité, 1., Lopata, A., Knowledge-based UML use case model
transformation algorithm. Business information systems workshops: BIS
2019 international workshops, Seville, Spain, June 26-28, 2019, revised
papers / eds.: Witold Abramowicz, Rafael Corchuelo. Cham : Springer,
2019. ISBN 9783030366902. eISBN 9783030366919. p. 39-48. (A —
author).
Veitaité, 1., Lopata, A., Problem domain knowledge driven generation of
UML models. Information and software technologies: 24th International
Conference, ICIST 2018, Vilnius, Lithuania, October 4-6, 2018 :
proceedings, edited by: Robertas Damasevicius, Giedré Vasiljeviené.
Cham : Springer, 2018. ISBN 9783319999715. elSBN 9783319999722,
p. 178-186. (A — author).
Veitaite, 1., Lopata, A., Transformation algorithms of knowledge based
UML dynamic models generation. Business information systems
workshops BIS 2017, Poznan, Poland, 28-30 June / editor Witold
Abramowicz . - Series : Lecture notes in business information processing.
Vol 303. Cham : Springer International Publishing, 2017. ISBN
9783319690223. eISBN 9783319690230. p. 59-68. (A — author).
Veitaite, 1., Lopata, A., Veiklos modelio taikymas informacijos sistemy
inzinerijos reikalavimy specifikavimo etape. Informacinés technologijos:
19-0ji tarpuniversitetiné magistranty ir doktoranty konferencija
Informaciné visuomené ir universitetinés studijos (IVUS 2014):
pranesimy medziaga. Kaunas : Technologija. ISSN 2029-4832. 2014, p.
40-46. (A — author).

125

106.

107.

108.

109.

110.

111

112.

Veitaite, 1., Lopata, A., Enterprise knowledge based UML timing model
generation process. CEUR workshop proceedings [e.source]: IVUS
2017: Proceedings of the IVUS International Conference on Information
Technology, Kaunas, Lithuania, April 28, 2017, Edited by Robertas
Damasevicius, ... [et al]. Aachen : CEUR-WS. ISSN 1613-0073. 2017,
Vol.1856, p. 75-79. (A — author).

Veitaité, I, Lopata, A., Knowledge-Based UML Activity Model
Transformation Algorithm. CEUR workshop proceedings [e.source]:
IVUS 2020: Proceedings of the Information Society and University
Studies 2020, Kaunas, Lithuania, April 23, 2020.: CEUR-WS. ISSN
1613-0073. 2020, Vol.2698, p. 114-120. (A — author).

Veitaite 1., Lopata A. (2020) Knowledge-Based Generation of the UML
Dynamic Models from the Enterprise Model Illustrated by the Ticket
Buying Process Example. In: Lopata A., Butkien¢ R., Gudoniené D.,
Sukacké V. (eds) Information and Software Technologies. ICIST 2020.
Communications in Computer and Information Science, vol 1283.
Springer, Cham. https://doi.org/10.1007/978-3-030-59506-7_3. (A -
author).

Veitaité, 1., Lopata, A., Knowledge-Based UML Dynamic Models
Generation from Enterprise Model in Hospital Information Management
Process Example Intelligent Systems for Sustainable Person-Centred
Healthcare. Kriksciuniene, Dalia, Sakalauskas, Virgilijus, (Eds.).:
Springer Book of Chapters, 2022. (A — author).

Vitiutinas R., Silingas D., Telksnys L., Model-Driven Plug-In
Development for UML Based Modelling Systems, Information
Technology and Control, Vol. 40, No 3, pp. 191-201, ISSN 1392 — 124X,
2011.

Yamin, M., Zuna, V., Bugami A. (2010) Requirements Analysis and
Traceability at CIM Level. Journal of Software Engineering and
Applications, ISSN 1945-3124, VVol.3 No.9, p.p. 845-851.

Zachman, J.A., A Framework for Information Systems Architecture. IBM
Systems Journal, Vol. 26, No. 3, 1987. (The same article was reprinted
in 1999 in a special double issue of the IBM Systems Journal that is easier
to locate: Vol. 38, Nos 2&3, 1999.)

126

SUMMARY IN LITHUANIAN

IVADAS

Verslo ir IT suderinamumas yra reikSminga valdymo proceso dalis ir jau
daugiau nei du deSimtmecius tai iSlieka pagrindiniu organizacijy tikslu.
Aukstesnio lygio strateginis verslo ir IT strategijos derinimas turéty padéti
pasiekti geresnius rezultatus, palyginus su zemesnio lygio strateginio
derinimo etapais. Pastaruoju metu intensyviai diskutuojama apie savoka
,»verslo ir IT suderinamumas* ir Sio proceso poveiki [12]. Kai kurie teigia, kad
derinimas yra neesminis ir paprastas tikslas, kuris gali bati pasiekiamas tik
nedaugelio organizacijy, kai teikiama pirmenybé techniniam palaikymui ir
turimas pakankamas IT biudZetas tokio tipo projektams finansuoti. Kai kurie
sutinka, kad verslo ir IT suderinamumas uztikrina tinkama visos organizacijos
valdymg [10][11]. Profesionalai teigia, kad pasiektas strateginis verslo ir IT
suderinamumas suteikia organizacijoms reikSminga konkurencinj pranasuma.
Taip pat strateginis verslo ir IT suderinamumas turi teigiamos jtakos verslo
rezultatams ir IT efektyvumui [11][12].

Siandieninése organizacijose egzistuoja gana didelis atotriikis tarp verslo
ir IT. Informaciniy technologijy strategijos planavimas yra daugiapakopis
procesas, o informaciniy sistemy kirimas priklauso nuo kiekvieno IS
gyvavimo ciklo etapo jgyvendinimo. Pagrindiniai organizacijos verslo tikslai
ir IS plétros tikslai daznai neturi tiesioginio rySio. Todél norint uztikrinti
verslo ir IT suderinamuma, svarbu rasti sasajas tarp iy dviejy pusiy. Valdymo
procesy jgyvendinimas suteikia aiSkumo priimant sprendimus, taip pat
jvertinama, kuriuose procesuose biitina naudoti IT ir kaip IT padeda juos
optimizuoti. Organizacijy vadovai turi suprasti, kurie IT sprendimai svarbis
ir turi jtakos pagrindiniams verslo sprendimams, atitinkamai juos priimant turi
dalyvauti tai suprantantys dalyviai [11][12][34]. Kitaip tariant,, verslo pusés
dalyviai deleguoja verslo atvejus atitinkamai darbo grupei. Toks bendravimas
daznai sutvirtina abiejy pusiy — verslo ir IT — dalyviy santykius, o jy
bendradarbiavimas gali padéti nustatyti bendrus skirtingy vartotojy grupiy
poreikius. Dalijantis ziniomis, pageréja bendravimas ir visi proceso dalyviai
patenkinti vartotojo reikalavimus [12][34].

Siekiant paskatinti komunikacijg ir supratimg, daugelyje organizacijy
reglamentuojami su verslu susij¢ vaidmenys, nustatant atsakomybe uz rysiy
uzmezgima ir palaikymg tarp IT ir verslo pusiy dalyviy. Tokiu bidu
stengiamasi uztikrinti technologijy ir verslo vizijos pusiausvyra, galimybe

127

vienodai aiskiai priimti ir jvertinti verslo ir technologijy i$siikius. Gana daznai
vienai pusei aiSkus ateities matymas ir supratimas, kaip pritaikyti naujas
technologijas versle, ir tokios informacijos perteikimas visiskai
nesuprantamas Kitai pusei [12][34]. Svarbu, kalbant apie i$§akius, nevartoti
vien techniniy terminy. Butina tinkamai paaiskinti, ko reikia verslui ir kaip
bus patenkinti visy dalyviy poreikiai, o ne tik nusviesti tai, kaip pokyciai
padarys efektyvesnj IT puses dalyviy darba.

Motyvacija. Ziniomis grjsta IS inZinerija pasiilé sistemos modeliavimo ir
sprendimy priémimo metodus ir priemones, kurios padeda sukurti tikslesnius
ir i§samesnius, dalykine sritj atitinkanéius projektus [18][31][29]. IS projekty
K@iréjui ir (ar) programuotojui suteikiama galimybé naudotis ne tik projekty
Ziniomis, kurios saugomos tradiciniy CASE priemoniy saugykloje, bet ir Ziniy
saugykla, kurioje saugomos formaliais kriterijais patikrintos dalykinés srities
Zinios [21][23]. Tam yra sukurta daug standarty ir verslo modeliavimo
metodiky [30][31][47].

UML yra vienas i$ labiausiai paplitusiy programinés jrangos specifikavimo
standarty. Tai universali IS modeliavimo kalba, kurig taiko daugelis
metodology ir kuri vartojama populiariausiose modeliavimo priemonése,
pavyzdziui, ,,Enterprise Architect”, ,,System Architect, ,MagicDraw* ir
kitose [13][15]. Darbe pateikiamas UML diagramy generavimo i§ veiklos
modelio metodas jgyvendina Ziniomis grista IS kurimo ciklo projektavimo
etapa [26][27][28].

Tyrimo objektas — UML dinaminiy modeliy generavimo i§ veiklos
modelio (EM) procesas, pagristas Ziniomis grista IS inzinerija, integruojant
modeliais grindziamg architektiirg (MDA), ISO standartus ir MOF.

Tyrimo apimamos sritys:

e Ziniomis grjstos informacinés sistemos inZinerija.

e [SO standartai, kurie teikia sprendimus ir uztikrina nauda beveik
visiems veiklos sektoriams. Sie standartai — tai formalis
susitarimai, kuriuose pateikiamos techninés specifikacijos ir (ar)
kiti tikslais kriterijai, nuosekliai naudojami kaip taisyklés, gairés ar
charakteristiky apibrézimai, siekiant uztikrinti, kad medziagos,
produktai, procesai ir paslaugos atitikty savo paskirtj [38][44].

e MOF. Tai Object Management Group (OMG) standartas, skirtas
modeliais gristai inzinerijai. Jo tikslas — pateikti esybiy tipy
sistema ir sgsajy rinkinj, per kurj tuos tipus galima kurti ir jais

128

manipuliuoti. MOF suteikia tik kalbos priemones duomeny
struktiirai arba abstrak¢iai sintaksei apibrézti [74].

e MDA, arba modeliais grjsta architektiira. Ttai OMG programinés
jrangos projektavimo, kiirimo ir diegimo metodas. MDA pateikia
gaires, kaip struktirizuoti programinés jrangos specifikacijas,
kurios iSreiskiamos kaip modeliai.

Darbo problema. Tradiciniai IS inzinerijos etapai — nuo naudotojo
reikalavimy specifikavimo iki projekto kiirimo — yra empiriSkai pagristi, o
tradicinés CASE priemonés jgyvendina empirinj UML grista IS projekty
kirimo procesa. Vadinasi, IS projekto karimas daugiausia grindZiamas
analitiky ziniomis ir patirtimi [26][27][57][60].

Vienas i§ daugelio kompiuterizuoty IS inzinerijos metody trilkumy yra tas,
kad IS projektavimo modeliai sukuriami tik i§ dalies, nes projektavimo etape
projektuotojas formuoja projektavimo modelius, remdamasis asmenine ar
analitiko patirtimi, uzuot taikes ziniy, kurios saugomos veiklos modelyje,
generavimo principus. Sias problemas galima isspresti integruojant veiklos
modelj, kaip pagrinding dalykiniy ziniy saugykla, j IS projektavimo procesa.
Ziniomis grindZiama posistemé, kaip CASE jrankio komponentas su jtrauktais
veiklos metamodeliu ir veiklos modeliu, gali buti tokios problemos
sprendimas.

Tikslas ir uZzdaviniai. Sio darbo tikslas — iSplésti galimybes generuoti
sistemos projektavimo etapo UML dinaminius modelius i§ veiklos modelio,
naudojant transformacijos algoritmus.

Tyrimo uzdaviniai:

1. ISanalizuoti jvairius UML dinaminiy modeliy naudojimo IS
inZinerijoje atvejus.

2. Sukurti UML dinaminiy modeliy i§ veiklos modelio (EM)
transformacijos algoritmus Ziniomis gristoje IS inZinerijoje.

3. EksperimentiSskai patikrinti transformacijy algoritmus realiy
dalykiniy sri¢iy pavyzdziais.

4. Jvertinti ziniomis gristo UML dinaminiy modeliy generavimo
metodo privalumus.

Tyrimo metodika. Dabartiné situacija ir tyrimo aktualumas buvo jvertinti
analizuojant moksling literattira, susijusig su IS inZinerija, IS gyvavimo ciklo
etapais, veiklos modeliavimu, UML, ISO standartais, MOF architektiira,
modeliais gristu kirimu ir kitomis sritimis. Tyrimas atliktas taikant Design
Science Research metodika [31]. Siekiant uztikrinti efektyvesnj ir labiau

kvalifikuota generavimo procesa bei mazesnj klaidy ir paklaidy skaiCiy
129

galutiniame IS kiirimo etape, buvo sukurtas UML dinaminiy modeliy
generavimo i§ veiklos modelio metodas, taikant transformacijos algoritmus.
Siekiant jvertinti naujojo metodo taikymo galimybes ir jrodyti jo tinkamuma,
pateikiami keli atskiri pavyzdziai.

Ginamieji teiginiai:

1. Veiklos modelis (EM), atitinkantis veiklos metamodelj (EMM),
yra pakankamas dalykinés srities ziniy S$altinis generuoti UML
specifikacijoje apibréztus dinaminius modelius.

2. Sukurti transformacijos algoritmai uztikrina UML dinaminiy
modeliy generavimg i§ veiklos modelio (EM) skirtingose
dalykinése srityse.

Pagrindinis Sio darbo rezultatas — organizacijos ziniomis grijstas UML
dinaminiy modeliy generavimo i§ veiklos modelio metodas. Ziniomis grjstas
generavimo metodas sujungia pagrindinius ziniomis grindziamy metody, ISO
standarty, MOF ir MDA architektiiry principus. Sis metodas suteikia galimybe
kurti pazangias programinés jrangos kiirimo technikas. Atliekant tyrimg buvo
iSanalizuotas esamas veiklos metamodelis (EMM) [23][32][57] ir panaudotas
jvairiy dalykiniy sri¢iy UML dinaminiams modeliams generuoti. Siekiant
igyvendinti UML dinaminiy modeliy generavima i§ veiklos modelio, buvo
sukurta naujy modeliy transformacijos algoritmy.

Pagrindiné praktiné Sio darbo reikSmé — tai zingsnis link to, kad
modeliavimo procesas tapty suprantamesnis ir naudingesnis visiems IS
karimo ciklo dalyviams. Taikant pasitilyta ziniomis grjsta generavimo metoda
atsiranda galimybé naudoti papildomus modeliy tinkamumo metodus, kuriuos
apibrézia veiklos metamodelis (EMM).

Rezultaty aprobavimas. Tyrimy rezultatai buvo pristatyti 14 tarptautiniy
ir 3 Lietuvos konferencijose, 6 tarptautiniuose seminaruose (stendiniai
prane$imai) ir 1 doktorantiros simpoziume. 4 straipsniai paskelbti
periodiniuose mokslo leidiniuose, Zurnaluose, nurodytuose Clarivate
Analytics Web of Science duomeny bazes leidiniuose su citavimo indeksu.
9 straipsniai paskelbti konferencijy prane$imuose, referuojamuose Clarivate
Analytics Web of Science duomeny bazéje. 9 straipsniai buvo paskelbti
recenzuojamuose konferencijy leidiniuose. 2 straipsniai kaip knygos skyriai
publikuoti Springer knygy serijose, kurios priskiriamos kitiems
recenzuojamiems periodiniams, testiniams ar vienkartiniams mokslo
leidiniams. Pabaigoje pateikiamas i§samus publikacijy sarasas.

Disertacijos apimtis ir struktiira. Pirmaja dalj sudaro mokslinés

literatiiros analizeé, kurioje daugiausia démesio skiriama verslo ir IT
130

suderinamumo i§8ikiams, ISO standartams, MOF, MDA architektiry
naudojimui, tradicinei ir Ziniomis grindziamai IS inzinerijai, veiklos
modeliavimo sprendimams ir IS kiirimo proceso etapams. Antrojoje dalyje
pristatomas Ziniomis grjstas generavimo metodas. Sioje dalyje pateikiamas
i§samus metodo apraSymas ir sudétis, aprasant UML dinaminiy modeliy
kompozicijas, transformacijos taisykles ir pateikiant jvairiy transformacijos i$
veiklos modelio algoritmy. Treciojoje dalyje pateikiami atskiri ir du
kombinuoti UML dinaminiy modeliy generavimo pavyzdziai, taikant
pasiiilytus transformacijos algoritmus. Sioje dalyje patikrinama ir jrodoma,
kad veiklos modelis (EM) tinka UML dinaminiams modeliams generuoti ir
gali biiti naudojamas taikant sukurtus transformacijos algoritmus.

1. SUSIJUSIYU DARBU ANALIZE
Pirmajj skyriy sudaro mokslinés literatiros analizé, kurioje daugiausia
gristai IS inzinerijai, veiklos modeliavimo sprendimams ir IS kiirimo procesy
etapams.

Labiausiai paplitusj ir priimting konceptualy suderinamumo modelj
pasiilé Henderson ir Venkatraman [34]. Sis teorinis modelis dar vadinamas
strateginio suderinamumo modeliu (SAM). Strateginio suderinamumo
koncepcija grindZiama dviem dimensijomis: pirma — strateginiu atitikimu tarp
iSoriniy veiksniy, nukreipty j verslo aplinka, ir vidiniy veiksniy, nukreipty j
infrastrukttirg ir procesus, antra — funkcine verslo ir IT integracija. Strateginis
atitikimas reiskia vidaus ir iSorés sri¢iy suderinamuma. Funkcing integracija —
tai IT strategijos jtraukimas j verslo strategija, ypa¢ vidiniy IT strategijy
integravimas | vidines organizacijos procediiras ir strategijas. IS viso modelyje
apibréziamos keturios sritys, kurios turi biiti suderintos, kad biity pasiektas
suderinamumas [11][34][76][78]. Modelj sudaro keturios sritys: verslo
strategijos domenas, verslo infrastrukttiros domenas, IT strategijos domenas,
IT infrastruktiros domenas, ir rySiai tarp jy [34][67].

Ziniomis grista CASE jrankiy posistemé verslo ir IT valdyme gali biiti
naudojama kaip pagrindinis tam tikry sistemy S3altinis. Siose sistemose
nurodomos visos svarbios organizacijos struktiros, jskaitant versla,
taikomasias technologijas, duomenis ir jy rySius, reikalingus verslui vykdyti
[22][23][24]. Verslo ir IT derinimo procesams reikalingi tam tikri specifiniai
duomenys, kurie naudojami ziniy posistemeéje. Verslo strategijos sritis Ziniy
bazei pateikia verslo tikslus. Verslo tikslus apraso verslo vadovai ir juos

131

surenka i§ verslo aplinkos, o IT tikslus apraso IT wvadovai. Verslo
infrastruktiiros domenas pateikia verslo taisykles, apribojimus, procesus,
funkcijas ir kitus susijusius duomenis, o IT infrastruktiros domenas pateikia
informacija apie IT infrastruktira, kurioje apraSoma esama programine,
techniné jranga. Visa $i informacija saugoma ziniy bazé¢je ir gali biti
naudojama taikant veiklos modelj, kuris patvirtinamas pagal veiklos
metamodelj [63A][64A][65A].

Kitas galimas organizacinis sprendimas jmonése — tam tikros sistemos
pritaikymas pagal poreikius. ,,Enterprise Architecture® sistema yra dvimaté
klasifikavimo schema. MDG (angl. Model Driven Generation) Technology
sukurtas Zachman Framework metodas dar labiau iSplecia ,,Enterprise
Architect diagramy (modeliy) rinkinj [53][54][80][112]. Kiekvienam
Zachman sistemos elementui gali biiti naudojamos skirtingy notacijy
diagramos arba modeliai. Gana daug sistemos elementy galima padengti UML
diagramomis. Tai dar karta patvirtina, kad UML diagramy vaidmuo IS
inzinerijoje yra svarbus [53][82][112].

Informaciniy sistemy inzinerija — tai informacinés sistemos kirimo
procesas, kurio vykdymas jgyvendinamas per IS kiirimo gyvavimo ciklo
etapus. Kiekviena IS kirimo gyvavimo ciklo fazé anksCiau buvo
igyvendinama nepriklausomai nuo kity, nes nebuvo kompiuterizuotos ziniy
saugyklos, j kurig biity jtrauktos visos gyvavimo ciklo fazés. Analitikai ir
projektuotojai taiké jprastinius arba | objektus orientuotus IS inzinerijos
metodus [19][29]. IS projektai buvo jgyvendinami nekompiuterizuotai arba
naudojant specialiai sukurtus kompiuterizuotus jrankius, skirtus konkre¢ioms
vartotojy reikalavimy specifikacijoms spresti [27][33]. Véliau pradéti taikyti
kompiuterizuoti IS kiirimo metodai. Gerinant IS kiirimg buvo tobulinamos
kompiuterizuotos IS kiirimo priemonés — CASE sistemos, kurios apémé dalj
IS kiirimo gyvavimo ciklo etapy — projektavima, dokumentavima ir kodavima.
Analitikai ir projektuotojai naudojo CASE sistemos IS kiirimo priemones
koncepcinio ir detaliojo projektavimo etapuose, o praktinio realizavimo etape
programuotojas naudojo kodui generuoti skirtas priemones. Siuo atveju
kompiuterizuota sistema buvo grindziama tradiciniais IS inzinerijos ir (arba)
1 objektus orientuotos IS inzinerijos metodais [28][59][61].

Veiklos metamodelis (EMM) yra formaliai apibrézta veiklos modelio
struktiira, kurig sudaro formalizuotas veiklos modelis, atitinkantis bendruosius
valdymo teorijos principus. Veiklos modelis yra pagrindinis IS inzinerijos ir
IS reinzinerijos procesams reikalingy ziniy apie konkrecig dalyking sritj
Saltinis [23][26][27][28][58][70].

132

Veiklos metamodelis valdo veiklos modelio sudétj. Veiklos modelyje
saugomos tik IS kiirimo procesui reikalingos dalykinés srities Zinios, kurios
paskui naudojamos visuose IS kiirimo gyvavimo ciklo etapuose [26][27][57].
Veiklos modelis ir veiklos metamodelis yra pagrindiniai CASE jrankio Ziniy
posistemés komponentai. Bty tikslinga surinkti reikalingas Zinias i
konkre¢ios CASE priemonés Ziniomis grindziama posisteme. Si posistemé yra
pagrindinis ziniy, reikalingy projektavimo etapo modeliams (jskaitant UML
diagramas) ir pirminio kodo generavimo procesui, $altinis.

Veiklos modelis @

Z} Vykdytojas | [Proceso vykdytojas
f
1 [

—]
Funkcijos vykdytojas

Tikslas

} { Funkcija [1
Materialus srautas t

[Tnformacijos veikia | [Veiklos taisykiés (VT) <
Jeigos materialus srautas

| |

| srautas |
18eigos materialus srautas } ‘
]
— VT | Rz

} Proceso iSeiga H Informacijos apdor. iSeiga } Duomeny apdorojimas T sprendimi prié || e |
]! J } } jimo ir sprenimy priémimo VT _|

[ijos apdoroj
I apdor.jeiga] [Prosesojeiga] } |

[| [|
Saltinis: sudaryta autorés pagal [26][27][50]
1 pav. Veiklos metamodelio klasiy modelis
Veiklos modelio pagrindu modeliuojami organizacijoje vykstantys
procesai, jvertinant organizacijos aplinkos poveikj paciai organizacijai.
Veiklos modeliavimas apima Sias sudétines dalis: funkcijas, elgsena, iSteklius

ir jy valdyma. IS inZinerijoje svarbu unifikuoti veiklos modeliavima, nes kiti
funkcionuojantys veiklos modeliai neatitinka veiklos modeliavimo
reikalavimy IS inzinerijos srityje [21]. Todé¢l IS inzinerijoje yra siekiama
naudoti formalizuota ziniy apie veiklos valdymg struktirg — veiklos
metamodelj. Veiklos metamodelyje integruoti skirtingi veiklos modeliavimo
pozitriai ir metodikos. I$skiriami du esminiai veiklos metamodelio elementai:
funkcija ir procesas. Procesas apibtidina materialiaja, 0 funkcija — informacine
veiklos puse.

Ziniomis grindziamos CASE sistemos pagrindiniai komponentai padeda
organizuoti zinias, naudojant ziniy posistemés ziniy baze, kurios esminiai
elementai yra veiklos metamodelio specifikacija ir tam tikros dalykinés srities
veiklos modelis [23][65A][71][79].

133

Tradiciné IS inzinerija ir ziniomis grindziama IS inZinerija turi kokybiniy
skirtumy. Tradicinés IS inzinerijos atveju tai empiriné IS inzinerija, kai
individualus naudotojas neapima visos organizacijos procesy. Ziniomis
grindziama IS inzinerija apima visos organizacijos specifikacijas (veiklos
modelis), nes joje nurodomos esminés organizacijos charakteristikos.
Formalizuotas veiklos modelis grindziamas teoriniais organizacijos veiklos
valdymo principais [22][25].

Tradicinés IS inzinerijos atveju informaciné sistema kuriama empiriskai,
taikant tradicine ir (ar) kompiuterizuotg IS inZinerija. Ziniomis grindziamoje
kompiuterizuotoje IS inzinerijoje informaciné sistema kuriama naudojant
veiklos ziniy saugykla, kurioje saugomos reikalingos ir pakankamos
kompiuterizuotos dalykinés srities zinios [23][25][26][57].

Ziniomis grindziamoje kompiuterizuotoje IS inZinerijoje visi projektiniai
modeliai gali biiti generuojami interaktyviai, generavimui naudojant
transformavimo algoritmus, jei reikiamos Zinios sukauptos ziniy saugykloje.
Triukstamam ziniy jkélimui uztikrinti butinas minimalus analitiko ir
projektuotojo dalyvavimas. Ziniy i§samumas tikrinamas; tai daroma siekiant
uztikrinti automatiskai generuojamy projektiniy modeliy ir programinio kodo
kokybe Ziniy rinkimo j ziniy saugykla etape [26][51][57][73][85].

2. MODELIU TRANSFORMAVIMO IS EM | UML METODAS
Antrajame skyriuje pateikiamas ziniomis grindZziamas generavimo metodas.
Sioje dalyje pateikiamas i$samus pateikto metodo apradymas ir sudétis,
aprasant UML dinaminiy modeliy sudétj, transformacijos taisykles ir
pateikiant transformacijos algoritmus generavimui i§ veiklos modelio
[5][24][81].

UML modeliavimo kalba, skirta programinés jrangos projektavimo
sprendimams aprasyti. Tai modeliavimo kalba, apibrézianti jvairiy
programinés jrangos architektiiros modeliavimo aspekty grafine notacija
[77][92]. Nuo (1997 m. gruodzio) OMG (angl. Object Management Group)
paskelbé UML kaip standartg, kuris daro didziule jtakg IS projektavimui.
Pirmaisiais $ios kalbos gyvavimo metais ji buvo vartojama informacinéms
sistemoms modeliuoti, tadiau ji tinka ir verslo procesams modeliuoti, tad
sugebéjo stipriai jsitvirtinti tarp verslo analitiky. UML geba apibrézti
atitinkamus verslo struktiirinius ir elgsenos taisykliy aspektus. Vartojant UML
kalbg galima uztikrinti dokumentacijos stabilumg ir palengvinti projektuotojy
ir verslo kiiréjy bendravimg [75][84][91].

134

UML diagramy ir veiklos modelio sgveika jgyvendinama naudojant
transformacijos algoritmus. Veiklos modelyje saugomi verslo elementai gali
buti generuojami kaip UML modeliy elementai naudojant transformacijos
algoritmus. Ziniy posistemés ir veiklos modelio naudojimo integracija leidzia
generuoti formaliyjy kriterijy patikrintas zinias § UML modelius. Veiklos
modelio naudojimas ir Ziniomis grindziamo IS kiirimo proceso
automatizavimas taupo projektuotojy ir uzsakovy darbo valandas.

UML dinaminiai modeliai gali biiti sugeneruoti i§ veiklos modelio
naudojant transformacijos algoritmus. Pirma, reikia pasirinkti tam tikrg UML
modelj generavimo procesui, tada i§ veiklos modelio identifikuojamas
pradinis — pagrindinis §io UML modelio — elementas. Antra, pagal pradinj
elementg turi buti parinkti visi susij¢ elementai ir visi jie turi bati susieti
vadovaujantis verslo taisyklése esanciais apribojimais, bitinais anksciau
pasirinktam UML modelio tipui generuoti [64A][98A].

Pateiktas transformavimo algoritmas yra auks¢iausio lygio algoritmas,
skirtas veiklos metamodeliu grindziamam UML modeliy generavimo
procesui. Pagrindiniai generavimo proceso etapai yra Sie: UML modelio
identifikavimas ir parinkimas generavimo procesui, pasirinkto UML modelio
pradiniy elementy identifikavimas ir visy susijusiy elementy parinkimas,
veiklos modelio elementy atvaizdavimas j UML modelio elementus ir
pasirinkto UML modelio generavimas [101A][103A].

Identifikuoti UML modelio
tipg generavimo procesui

AT identifikuotas
UML modelio
tipas

Identifikuoti pradinj
elementy i EM
pasirinktam UML modeliui

Generuoti su pradiniu
elementu susijusj
elementg

Ar identifikuota
pradinis
elementa;

ne

Ar yra
daugiau A, Generuoti susijusj
= Generuoti rySio elementg
rysio elementg

elemen

@ ne|

Pasirinkti verslo taisykle
i8 EM
Generuoti verslo taisykle

) w

Saltinis: sudaryta autorés [91]
2 pav. Auksciausio lygio UML modeliy generavimo is veiklos modelio transformavimo
algoritmas

135

e
@ Aryra

taip Pasirinkti rysio elementg |_ne daugiau
is EM susijusiy
elementy
ne
Atnaujinti UML modelj

Toliau aprasomi skirtingy UML dinaminiy modeliy tipy transformavimo
algoritmai.

UML taikomyjy uzdaviniy diagramos paprastai vadinamos dinaminiais
modeliais, naudojamais veiksmy, kuriuos tam tikra sistema ar sistemos turéty
ar gali atlikti bendradarbiaudamos su vienu ar keliais iSoriniais sistemos
naudotojais. Kiekvienas taikomasis uzdavinys turéty suteikti tam tikrus
matomus ir vertingus rezultatus sistemos veikéjams ar kitiems dalyviams
[101A][102A][103A][104A].

UML taikomyjy uzdaviniy modelio generavimo i§ EM procese pradinis
elementas yra veikéjas, sugeneravus veikéjo elementa, pasirenkamas
taikomojo uzdavinio elementas, tada pasirenkami jtraukimo, iSplétimo ir
susiejimo rySiai. UML taikomyjy uzdaviniy modelio generavimo i§ veiklos
modelio procese pradinis elementas yra veikéjas, arba subjektas, sugeneravus
§j elementa, pasirenkamas veiklos modelio elementas — procesas arba
funkcija, ir generuojamas taikomojo uzdavinio elementas. Sugeneruoti $iy
dviejy tipy elementai turi biti susiejami tarpusavyje tam tikro tipo rySiais:
asociacija, iSplétimu arba jtraukimu, kurie apibréziami pagal veiklos modelio
elemento verslo taisykle. Sukiirus visus S$iuos elementus, atnaujinamas
veikéjo, arba subjekto, elementas ir patikrinama, ar veiklos modelyje liko
daugiau veikéjo elementy [103A][104A].

UML veiklos diagrama — tai UML dinaminis modelis, kuriame
vaizduojamas valdymo arba objekty srautas, akcentuojant srauto sekg ir
salygas. Veiksmai arba veiklos, kurias koordinuoja veiklos modeliai, gali biiti
inicijuojami dél to, kad kiti veiksmai arba veiklos baigiami vykdyti, kadangi
Kiti objektai ir duomenys tampa prieinami arba dél to, kad jvyksta tam tikry
srautui nepriklausanéiy jvykiy [94A][101A][102A][103A][104A].

Generuojant UML veiklos modelj i§ veiklos modelio, pradinis elementas
yra veikéjas arba veikéjo skiltis, sugeneravus §j elementg pasirenkamas
veiklos modelio elementas: procesas arba funkcija, ir generuojamas veiklos
elementas. Sugeneruoti Siy dviejy tipy elementai turi buti susiejami
tarpusavyje. Veiklos modeliuose objekty mazgai generuojami i§ veiklos
modelio ziniy arba informacijos srauto elementy. Visi §ie sugeneruoti
elementai sujungiami per valdymo mazgus, kurie grindziami veiklos modelio
verslo taisykliy elementais. Véliau visi Sie elementai sukuriami, atnaujinamas
veikéjo elementas ir patikrinama, ar veiklos modelyje liko daugiau veikéjo
elementy [91][101A][102A][103A][104A].

UML buseny diagrama naudojama elgsenai modeliuoti taikant baigtiniy

buseny peréjimus. Biisenos gali biiti naudojamos ne tik sistemos dalies
136

elgsenai, bet ir sistemos dalies naudojimo protokolui iSreiksti.
[91][101A][102A][103A][104A].

UML buiseny modelio generavime i§ veiklos modelio pradinis elementas
yra procesas arba funkcija, taigi is siy veiklos modelio elementy generuojamas
busenos elementas. Véliau pagal §j elementa generuojamas antrasis susijes
elementas — paprasta buisena arba sudétiné biuisena, kuriama i§ informacijos
srauto. Be to, pirmieji du elementai susiejami tarpusavyje ir su pseudobiisenos
elementu, generuojamu i§ verslo taisyklés. Paskui atnaujinamas pradinis
elementas ir patikrinama, ar veiklos modelyje liko daugiau proceso elementy
[101A][102A][103A][104A].

Antrasis biiseny modelio tipas yra UML protokolo biisenos modelis, kuris
apibrézia naudojimo protokola arba tam tikro klasifikatoriaus gyvavimo cikla
[14].

UML protokolo biiseny modelio generavime i§ veiklos modelio pradinis
elementas taip pat yra procesas arba funkcija, i$ $iy veiklos modelio elementy
sukuriamas protokolo biisenos elementas. Sugeneravus §j elementg
pasirenkamas informacijos srautas ir generuojamas protokolo biisenos
elementas. Sie du elementai susiejami tarpusavyje ir su protokolo peréjimo
elementu, generuojamus i§ verslo taisyklés. Paskui atnaujinamas pradinis
elementas ir patikrinama, ar veiklos modelyje liko daugiau proceso elementy
[91][101A][102A][103A][104A].

UML seky diagrama yra labiausiai paplitusi sgveikos modeliy rasis, joje
daugiausia démesio skiriama praneSimy mainams tarp veikéjy, objekty
(gyvavimo linijy). Seky modelis parodo, kaip objektai sgveikauja su kitais
objektais konkrec¢iame naudojimo scenarijuje
[91][101A][102A][103A][104A].

Generuojant UML seky model; i§ veiklos modelio pradinis elementas yra
veikéjas-gyvavimo linija, sugeneravus §j elementog pasirenkamas veiklos
modelio elementas: procesas arba funkcija, ir prane§imo elementas.
Sugeneruoti iy dviejy tipy elementai turi baiti susiejami tarpusavyje. Sekos
modeliy vykdymo specifikacijoje i§ veiklos modelio verslo taisykliy elementy
generuojami kombinuotas fragmentas, sgaveikos naudojimas, biisena ir
pabaigos jvykis. Véliau, kai visi Sie elementai sugeneruojami, atnaujinamas
veikéjo-gyvavimo linijos elementas ir patikrinama, ar veiklos modelyje liko
daugiau veikéjo-gyvavimo linijos elementy.

UML komunikacijos diagrama (UML 1.x versijoje vadinama
bendradarbiavimo diagrama) — tai UML sgveikos modelio tipas, kuris parodo
objekty ir (arba) daliy (vaizduojamy kaip veikéjas-gyvavimo linija) sgveika

137

naudojant nuoseklius laisvos formos pranesimus
[91][101A][102A][103A][104A].

Generuojant UML komunikacijos modelj i§ veiklos modelio, pradinis
elementas yra veikéjas-gyvavimo linija, 0 sugeneravus §j elementg
pasirenkamas veiklos modelio elementas: procesas arba funkcija, ir
sukuriamas strukttiros elementas. Sugeneruoti siy dviejy tipy elementai paskui
turi bati susiejami tarpusavyje. Saveikos modeliuose pranesimy elementai
generuojami i§ informacijos srauto elemento. Kai visi $ie elementai
sugeneruojami, atnaujinamas veikéjo-gyvavimo linijos elementas ir
patikrinama, ar veiklos modelyje liko daugiau veiké&jo-gyvavimo linijos
elementy [101A][102A][103A][104A].

UML laiko diagrama — tai sgveikos modelis, kuriame vaizduojama saveika,
kai pagrindiné modelio taikymo sritis yra laiko pagrindimas. Laiko modelyje
démesys sutelkiamas j veikéjy-gyvavimo linijy terminy viding ir tarpusavio
kaita pagal linijine laiko a$j. Laiko modeliai apibrézia tiek atskiry
klasifikatoriy, tiek klasifikatoriy saveikos elgseng, sutelkdami démesj j jvykiy,
sukelian¢iy modeliuojamy veikéjy-gyvavimo linijy terminy pokycius, laika
[91][101A][102A][103A][104A].

UML laiko modelio generavimo i§ veiklos modelio pradinis elementas yra
veikéjas-gyvavimo linija, sugeneravus §j elementg pasirenkamas veiklos
modelio elemento informacijos srautas ir generuojamas laiko juostos arba
trukmés apribojimo elementas. Véliau sugeneruoti $iy dviejy tipy elementai
turi bati susiejami tarpusavyje. Laiko modeliuose laiko apribojimo ir pabaigos
atsiradimo elementai generuojami i$ verslo taisyklés elemento. Véliau visi $ie
elementai sugeneruojami, atnaujinamas veikéjo-gyvavimo linijos elementas ir
patikrinama, ar veiklos modelyje liko daugiau veikéjo-gyvavimo linijos
elementy [101A][102A][103A][104A].

UML saveikos diagramoje sgveikos nustatomos naudojant veiklos modeliy
variantg taip, kad bty galima apzvelgti valdymo srautg. Saveikos modelyje
démesys sutelkiamas j valdymo srauto apzvalga, kur mazgai yra saveikos arba
sgveikos naudojimo biidai. Veikéjai-gyvavimo linijos ir praneSimai neatitinka
Sio apzvalgos lygio. UML sgveikos modelis koordinuoja veiklos ir sgveikos
modeliy elementus [91][101A][102A][103A][104A]:

e 1§ veiklos modelio: pradinis mazgas, srauto galutinis mazgas, veiklos
galutinis mazgas, sprendimo mazgas, susijungimo mazgas, Sakutés
mazgas, prisijungimo mazgas;

138

e i§ saveikos modeliy: saveika, saveikos naudojimas, trukmeés
apribojimas, laiko apribojimas.

Generuojant UML saveikos modelj i§ veiklos modelio pradinis elementas yra
procesas arba funkcija, vadinasi, i§ Siy veiklos modelio elementy
generuojamas struktiiros elementas. Visi kiti elementai: trukmés apribojimas,
laiko apribojimas, sgveikos naudojimo ir valdymo mazgai, yra susij¢ su
pradiniu struktiiros elementu ir priklauso nuo veiklos modelio verslo taisyklés
elemento.

3. METODO PRISTATYMAS PAVYZDZIAIS

Trec¢iajame skyriuje pateikiama atskiry UML modeliy ir vieno jungtinio UML
modeliy generavimo pavyzdziy santrauka ir vienas detalus UML dinaminiy
modeliy generavimo pavyzdys naudojant transformacijos algoritmus. Siame
skyriuje patikrinama ir jrodoma, kad veiklos modelis (EM) tinka UML
dinaminiams modeliams generuoti ir gali bati taikomas naudojant sukurtus
transformacijos algoritmus.

Iprastai informaciniy sistemy projektavimo ir kiirimo metodai nurodo
sistemy inzinerijos veiksmy seks, t. y. kaip, kokia tvarka ir kokius UML
modelius naudoti projektavimo procese ir kaip S§j procesa jgyvendinti
[44][58][59][61][63A]. UML modeliy ir veiklos modelio saveika
jgyvendinama taikant transformacijos algoritmus. [64A][99A][100A].

Veiklos modelis, kaip organizacijos Ziniy saugykla, leidZia generuoti UML
modelius per transformacijos algoritmus. Veiklos metamodelis apima
esminius verslo modeliavimo metodiky ir techniky elementus, kurie uztikrina
tinkamg UML modeliy generavimo procesa [63A][64A].

Atskiry dalykiniy sri¢iy UML modeliy generavimo pavyzdziai
Siame skyrelyje pateikiami atskiri UML dinaminiy modeliy generavimo
pavyzdziai:

e UML taikomyjy uzdaviniy modelio generavimo atveju pateikiamas
veiklos modelio ir jame saugomy elementy bei UML taikomyjy
uzdaviniy modelio generuojamy elementy sarysis.

e UML informacijos srauty modelio generavimas iliustruojamas
konkreciu suplanuoto augintinio ultragarsinio tyrimo eigos per vizita
veterinarijos klinikoje pavyzdziu. Pazingsniui aprasoma UML

139

informacijos srauty modelio generavimo pagal ansktesniame skyriuje
apraSyta transformacijos algoritmga eiga.

e UML veiklos modelio generavimas aiSkinamas parodant veiklos
modelyje saugomy elementy ir UML veiklos modelio generuojamy
elementy sarysj. Sis sarysis iliustruojamas prekés uzsakymo
pavyzdziu: uzsakymo uzklausos aktyvinimas yra Kkliento teikiamas
pradinis elementas , o uzsakymas yra veiklos jvesties parametras.
Priémus uzsakyma ir uzpildzius visg reikiama informacija, priimamas
mokeéjimas ir uzsakymas iSsiunciamas, Sis veiklos srautas leidzia
i8siysti uzsakyma prie$ iSsiunciant saskaita faktiirg arba patvirtinant
mokéjima.

e UML seky modelio generavimo atveju, naudojant Malcev algebrg ir
grafi§kai atvaizuojant, pateikiamas veiklos modelio ir jame saugomy
elementy bei UML seky modelio generuojamy elementy sarysis..

e UML laiko modelio generavimas pateikiamas grafiskai atvaizuojant
veiklos modelyje saugomy elmenty ir UML laiko modelio
generuojamy elementy sarysj bei iliustruojant projekto gyvavimo
ciklo pavyzdziu, kuriame pateikiamos projekto gyvavimo ciklo fazés
ir jy trukmé. I8 veiklos modelio galima sugeneruoti Siuos elementus:
gyvavimo linija — projektas, busena arba buklé — projekto fazés,
terminai, trukmé, laiko apribojimai ir pabaigos jvykis laiko juostos
pabaigoje.

e UML saveikos modelio generavimas pateikiamas per paslaugos
uzsakymo internetu pavyzdj, iliustruojant, kurie veiklos elementai per
transformacijos algoritma sugeneruojami j konkretaus UML sgveikos
modelio elementus.

Bilieto pirkimo proceso UML modeliy generavimo pavyzdziai
Siame skyrelyje i§samiai paaiskinamas biliety pirkimo procesas ir tai, kaip §j
procesg galima suprojektuoti naudojant ziniomis grindziamg veiklos modelj,
kuriame saugomos visos su anks¢iau minétu pavyzdziu susijusios Zinios. Taip
pat paaiskinama, kokios zinios taikomos generuojant konkrecius UML
modelius naudojant tam tikrus transformacijos algoritmus, sukurtus
kiekvienam UML modelio generavimo procesui
[101A][103A][104A][108A].

Biliety pirkimo procesas gali atrodyti labai paprastas, taciau jei
informaciniy sistemy projektavimo etape $is procesas bty analizuojamas

140

Ivairiais aspektais i$ jvairiy perspektyvy, jei Sis procesas biity projektuojamas
ir kuriamas taip, kad atlikty visas jmanomas funkcijas, tai pareikalauty daug
laiko ir analitiko, dizainerio bei kity proceso dalyviy pastangy [108A].

IS gyvavimo ciklo projektavimo etape turi biti jvertintos visos detalés.
Sios detalés, Sios Zinios saugomos ankséiau aprasytame veiklos modelyje ir
jau yra patikrintos bei patvirtintos analitiko [108A].

Siame skyrelyje aprasomi keturiy tipy UML modeliai, sugeneruoti i3
veiklos modelio: UML taikomyjy uzdaviniy, UML seky, UML buseny ir
UML veiklos modeliai.

Veiklos modelyje saugoma visa informacija, susijusi su dalyviais, jy
funkcijomis ir rySiais tarp $iy funkcijy, reikalingy UML taikomyjy uzdaviniy
modeliui generuoti. Yra trys veikéjai : Klientas, vadybininkas ir biliety
sistema. Biliety sistema kaip veikéjas yra susijes su visomis Septyniomis
funkcijomis (taikomaisiais uzdaviniais): biliety uzsakymas apima bilieto
kainos apmokéjima ir formos spausdinima, taip pat bilieto atSaukima ir
mokéjimo grazinimg. Klientas kaip veikéjas yra susijes su visomis
funkcijomis, i$skyrus mokéjimo grazinimg, nes tai yra biliety sistemos
funkcija. Vadybininkas kaip veikéjas yra susijes tik su dviem funkcijomis
(taikomaisiais uzdaviniais): formos spausdinimo ir bilieto atSsaukimo [108A].

Veiklos modelyje taip pat saugoma visa su dalyviais ir jy
bendradarbiavimu susijusi informacija, reikalinga UML seky modeliui
generuoti. Yra trys veikéjai — proceso dalyviai, kurie UML seky modelyje
vadinami veikéjais-gyvavimo linijomis: asmuo — Klientas, subjektas — biliety
sistema, objektas — bilietas. Bilietas turi vieng vykdymo specifikacija, gauna
vieng prane§ima su informacija ir iSsiuncia vieng sukurto bilieto pranesima;
biliety sistema turi tris vykdymo specifikacijas, viena skirta patvirtinimui, Kai
Klientas prisijungia; antroji skirta formai sukurti, o tre¢ioji — bilietui sukurti;
visos jos susijusios su praneSimais i§ Kliento. Klientas prisijungia, uzsako
forma, pateikia duomenis, atspausdina bilietg. Klientas i$siuncia keturis
praneSimus ir gauna du: prisijungimo patvirtinimo ir visy Sio konkretaus
proceso uzklausy patvirtinimo [108A].

Veiklos modelyje saugoma visa informacija, susijusi su procesais,
funkcijomis ir jy biisenomis, kuriy reikia UML biiseny modeliui generuoti. Sis
modelis pateikiamas i$ kliento perspektyvos. Yra keturi informacijos srautai —
sudétinés kliento esybés biisenos: patvirtinimas, priecinamumo patikrinimas,
biliety uzsakymas ir spausdinimas. Esybiy biisenas kei¢ia elgsenos biisenos:
jvesti prisijungimo duomenis; jvesti autobuso duomenis; jvesti savo
duomenis; uzsakymas sékmingas; atsijungimas.

141

Galiausiai veiklos modelyje saugoma visa informacija, susijusi su
dalyviais, jy veikla ir UML veiklos modeliui generuoti reikalingais rysiais tarp
§iy funkcijy. Yra viena verslo taisyklé — valdymo mazgas, susijes su proceso
pradzia, pradiniu mazgu. Siuo atveju yra tik vienas veikéjas — Klientas. Pries
sprendimo mazgg yra dvi kliento veiklos: autobusy paieSka ir biliety
pricinamumo tikrinimas. Jei laisvy biliety néra, procesas baigiamas
nesékmingai vienu i§ veiklos pabaigos mazgy. Jei laisvy biliety yra, Klientas
rezervuoja bilietus, uzpildo duomenis, pateikia duomenis, atlicka mokéjima ir
atspausdina bilieta. Sis procesas baigiamas s¢kmingai antruoju veiklos
pabaigos mazgu [108A].

Visy keturiy tipy UML dinaminiai modeliai: taikomyjy uzdaviniy, seky,
buseny ir veiklos, vieno bilieto pirkimo proceso pavyzdyje yra generuojami i$
veiklos modelio. Sie keturi UML modeliai apibréZia ta patj pavyzdj, tatiau i3
skirtingy perspektyvy, parodydami skirtingas dalyviy veiklas, biisenas ir
taikomuosius uzdavinius. Pavyzdys parodo, kad Ziniomis grindziamas veiklos
modelis yra pakankama duomeny, reikalingy UML modeliams generuoti,
saugykla.

Ligoninés informacijos valdymo proceso UML modeliy generavimo
pavyzdziai

Pateikiamo pavyzdzio objektas — ligoninés informacijos valdymo proceso
sistema, skirta pacienty srautams valdyti. Sioje jstaigoje gydytojas vienu metu
susijes tik su vienu specializuotu ligoninés skyriumi (kardiologijos, pediatrijos
ir kt.). Kiekvienam gydytojui nustatytas vizity laikas ir savaités diena [L09A].

Registratiroje jvedami paciento duomenys ir priimami reikiami
apmokéjimai. Pacientas stebimas pagal automatiskai sugeneruojama
identifikacinj numerj [109A].

Paprastai pacientas pas gydytojus patenka dviem galimais badais:
tiesiogiai pasirinkdamas vizitg pas gydytoja arba patekdamas j ligoning per
priimamajj [109A].

Gydytojas gali paskirti tyrimus pagal aprasyta paciento biiklg. Pacientas
apsilanko laboratorijoje, kad biity atlikti gydytojo paskirti tyrimai. Pacientui
pateikiamos tyrimy ataskaitos. Su tyrimais susij¢ apmokéjimai atliekami
registratiiroje. Remdamasis tyrimy rezultatais, gydytojas skiria pacientui
vaisty ar papildomy tyrimy, jei jy reikia, arba skiria gydyma ligoninéje
[109A].

142

Jei yra galimybé, pacientas guldomas j tam tikro skyriaus palata pagal
gydytojo paskyrima. Skyriuje palaty skaicius ribotas, o jei laisvy néra,
pacientas paguldomas j kita skyriy [109A].

Jei reikia,, pacientas operuojamas numatytg dieng paskirtu laiku, kaip
nusprendzia uz operacija atsakingas gydytojas [L109A].

Pasibaigus gydymui, gydytojui rekomendavus, pacientas gali bati
iSrasytas, kai sumoka visus mokescius registratiiroje. Sumokéjus registratiira
pacientui iSduoda iSrasymo kortele [109A].

Visi konkrecios dalykinés srities, Siuo atveju ligoninés informacijos
valdymo proceso, duomenys saugomi auks¢iau aprasytame veiklos modelyje.
Veiklos modelyje saugoma informacija jau yra patikrinta ir patvirtinta
eksperto ir analitiko, todél ja galima naudoti UML modeliams kurti [109A].

Generuojami UML taikomyjy uzdaviniy modelio elementai i§ ligoninés
informacijos valdymo proceso veiklos modelio. Veiklos modelyje saugoma
visa informacija, susijusi su dalyviais, jy funkcijomis ir rySiais tarp Siy
funkcijy. Yra keturi dalyviai: pacientas, gydytojas, registratorius ir
laboratorijos asistentas; registratorius susij¢s su penkiais taikomaisiais
uzdaviniais; laboratorijos asistentas — su vienu taikomuoju uZzdaviniu;
gydytojas susijgs su trimis taikomaisiais uzdaviniais, o pacientas — Su
septyniais taikomaisiais uzdaviniais. Keturi taikomieji uzdaviniai apima
keleta papildomy taikomyjy uzdaviniy, i$ viso $esi rysiai [L09A].

Pagal auksciau aprasytg UML taikomyjy uzdaviniy modelj galima
nustatyti bent penkis skirtingus UML veiklos modelius: pacienty registracija,
palatos paskyrimas, medicininiai tyrimai, gydymo procesas ir iSraSymas
[109A].

Generuojami UML veiklos modelio elementai i veiklos modelio ligoninés
informacijos valdymo proceso pacienty registracijos dalies. Veikéjas
pacientas — pirmasis UML veiklos modelio elementas — pradeda registracijos
procesg: apsilanko registratiiroje, pateikia asmens duomenis, veikéjas
registratorius — antrasis UML veiklos modelio elementas — jveda paciento
duomenis ir nurodo paciento identifikacinj numerj. Paskutiné¢ veikla,
mokesc¢io sumokeéjimas, susijusi su pirmuoju veikéju: pacientas sumoka
mokestj, ir registracijos procesas baigiasi [109A].

Generuojami UML veiklos modelio elementai i veiklos modelio ligoninés
informacijos valdymo proceso palatos priskyrimo dalies. Veikéjas
registratorius — pirmasis UML veiklos modelio elementas — pradeda palatos
paskyrimo procesa: veikéjas pacientas — antrasis elementas — pateikia nauja

palatos paskyrimo data, paskutiniai veiksmai yra susij¢ su pirmuoju elementu,
143

registratorius parengia informacija pacientui ir atnaujina informacija
registratiiroje, ir procesas baigiasi [109A].

Generuojami UML veiklos modelio elementai i§ veiklos modelio ligoninés
informacijos valdymo proceso medicininiy tyrimy dalies. Veikéjas pacientas
— pirmasis UML veiklos modelio elementas — pradeda medicininiy tyrimy
procesa: apsilanko laboratorijoje ir po uzklausos pateikia meéginj, veikéjas
laboratorija — antrasis elementas — patikrina gydytojo recepta, uzklausia dél
méginio, atlieka tyrimg, suformuoja mokéjimo nurodyma ir parengia ataskaita
gydytojui; veikéjas registratorius — tre€iasis elementas — patvirtina paciento
mokéjimg ir pateikia kvita; pacientas atliecka mokéjima, patvirtinus mokéjima
gauna kvita, ir procesas baigiasi [109A].

Generuojami UML veiklos modelio elementai i veiklos modelio ligoninés
informacijos valdymo proceso gydymo proceso dalies. Veikéjas gydytojas —
pirmasis UML veiklos modelio elementas — pradeda gydymo procesa:
susitinka su pacientu, analizuoja pateiktas tyrimy ataskaitas, atsizvelgdamas i
tyrimy rezultatus nusprendzia, ar iSra$yti pacientg, ar testi gydyma. Gydytojas
nusprendZia, ar reikia atlikti daugiau tyrimy, ar ne, paskiria gydymo metoda —
medikamentus arba operacing intervencijg, 0 Kai veikéjas pacientas — antrasis
UML veiklos modelio elementas — patvirtina, gydytojas atliecka operacija, ir
procesas baigiasi [109A].

Generuojami UML veiklos modelio elementai i veiklos modelio ligoninés
informacijos valdymo proceso iSraSymo dalies. Veikéjas pacientas — pirmasis
UML veiklos modelio elementas — pradeda iSraS§ymo procesa: kreipiasi j
gydytoja dél rekomendacijos iSrasyti, veikéjas registratorius — antrasis
elementas — patikrina duomenis, suformuoja iSraSymo Kkortelg, patikrina
mokéjimo bikle, pacientui sumokéjus, pateikia iSraSymo kortele, ir procesas
baigiasi [1L09A].

Pagal auks¢iau aprasytus UML taikomyjy uzdaviniy ir UML veiklos
modelius galima nustatyti bent tris skirtingus UML seky modelius: pacienty
priémimas, tyrimai ir gydymas bei iSraSymas [109A].

Generuojami UML seky modelio elementai i§ veiklos modelio ligoninés
informacijos valdymo proceso pavyzdZzio pacienty priémimo dalies. Veiklos
modelyje saugoma visa su dalyviais ir jy bendradarbiavimu susijusi
informacija. Yra keturi veikéjai — proceso dalyviai, kurie UML seky modelyje
vadinami veikéjais-gyvavimo linijomis: asmenys — pacientas, registratorius,
subjektas — duomeny bazé, objektas — palata. Pacientas uzsiregistruoja
ligoninéje, registratorius jveda surinktus duomenis, pacientas praSo palatos,

144

registratorius patikrina, ar yra laisvy viety, ir patvirtina arba paneigia, kad
palata yra laisva [109A].

Generuojami UML seky modelio elementai i§ veiklos modelio ligoninés
informacijos valdymo proceso pavyzdzio tyrimo ir gydymo dalies. Veiklos
modelyje saugoma visa informacija, susijusi su veikéjais-gyvavimo linijomis
ir jy bendradarbiavimu. Yra keturi veikéjai — proceso dalyviai, kurie UML
seky modelyje vadinami veikéjais-gyvavimo linijomis: asmenys — pacientas,
registratorius, objektai — operacija, tyrimas. Gydytojas atlicka apziiirg ir skiria
vaisty, prireikus skiria tyrima, pacientas pateikia méginius ir gauna ataskaitas,
gydytojas perziiiri ataskaitas ir skiria daugiau vaisty, jei reikia, — operacijg ar
daugiau tyrimy ir operuoja [109A].

Generuojami UML seky modelio elementai i§ veiklos modelio ligoninés
informacijos valdymo proceso pavyzdzio iSraSymo dalies. Veiklos modelyje
saugoma visa su veikéjais-gyvavimo linijomis ir jy bendradarbiavimu susijusi
informacija. Yra penki veikéjai — proceso dalyviai, kurie UML seky modelyje
vadinami veikéjais-gyvavimo linijomis: asmenys — pacientas, gydytojas,
subjektai — registratiira, duomeny baz¢, objektas — palata. Gydytojas teikia
iSraSymo rekomendacijas, pacientas praso iSraSyti, registratira tikrina su
mokéjimais susijusig informacija, teiraujasi dél mokéjimo, pacientas atlieka
mokéjima, registratira atnaujina finansing informacija duomeny bazéje,
pateikia kvitg, taip pat atnaujina iSraS§ymo informacijg ir su palata susijusia
informacija, galiausiai pateikia iSraSymo kortelg [L09A].

Pagal auksc¢iau apraSytus UML dinaminius modelius galima i$skirti bent
tris skirtingus UML buseny modelius, apibiidinancius biisenas: pacientas,
gydytojas ir palata [L09A].

Generuojami UML biiseny modelio elementai i§ veiklos modelio ligoninés
informacijos valdymo proceso pacienty dalies. Veiklos modelyje saugoma
visa su procesais, funkcijomis ir jy biisenomis susijusi informacija. Sis
modelis pateikiamas i§ paciento perspektyvos. Modelyje pateikiami S$ie
elementai: pradin¢ biisena, kuria pradedamas procesas, pirmoji biisena —
pacientas uzregistruotas, jo blisena kei¢iasi apsilankius gydytojui — pacientas
gauna gydyma, papildomai apsilankes gydytojas pataria iSraS§ymo procediira,
ir paciento biisena vél keiCiasi, pacientas iSraSomas, procesas baigiasi galutine
busena [109A].

Generuojami UML buseny modelio elementai i$ veiklos modelio ligoninés
informacijos valdymo proceso gydytojo dalies. Veiklos modelyje saugoma
visa su procesais, funkcijomis ir jy biisenomis susijusi informacija. Sis
modelis pateikiamas i§ gydytojo perspektyvos. Modelyje pateikiami Sie

145

elementai: pradiné bisena, nuo kurios prasideda procesas, pirmoji biisena
gydytojas uZzsiregistravo, ji pasikeifia pacientui uZsiregistravus vizitui:
gydytojas skiria gydyma, patikrina gydymo rezultatus; pacientg israSius
gydytojo biisena pasikeiCia, jis nebereikalingas Siam konkrec¢iam pacientui,
procesas baigiasi galutine biisena [109A].

Generuojami UML biiseny modelio elementai i§ veiklos modelio ligoninés
informacijos valdymo proceso palatos dalies. Veiklos modelyje saugoma visa
informacija, susijusi su procesais, funkcijomis ir jy bikle. Sis modelis
pateikiamas i§ palatos perspektyvos. Modelyje pateikiami Sie elementai:
pradiné biisena, kuria pradedamas procesas, pirmoji biisena — palata yra laisva,
jos biisena pasikeicia pateikus praSyma uzimti; iSraSius pacientg palatos
biisena vél pasikeicia j laisva [109A].

Naudojant ligoninés informacijos valdymo proceso pavyzdj sugeneruoti
keturiy UML tipy modeliai. Visi sugeneruoti modeliai apibrézia ta patj
dalykinés srities pavyzdj, taciau i$ skirtingy perspektyvy. Beveik kiekviename
aprasyto pavyzdzio poskyryje pateikiamas daugiau nei vienas to paties tipo
modelis: sugeneruotas UML taikomyjy uzdaviniy modelis pristato visus
dalyvius (veikéjus), kurie dalyvauja ligoninés informacijos valdymo procese,
ir jy funkcijas (procesus); sugeneruoti UML veiklos modeliai iliustruoja
skirtingas to paties pavyzdzio veiklas i§ skirtingy perspektyvy (registracija,
tai néra galutinis galimy UML veiklos modeliy sgraSas; sugeneruoti UML
seky modeliai taip pat apibrézia tos pacios dalykinés srities procesy ir funkcijy
sekas i§ skirtingy perspektyvy (paciento priémimas, tyrimai ir gydymas,
iSraSymas), ir tai taip pat néra galutinis galimy UML seky modeliy sarasas;
sugeneruoti UML biiseny modeliai apibtidina skirtingas biisenas i§ objekty
(paciento, gydytojo ir palatos) perspektyvy, ir galima sugeneruoti daugiau tos
pacios dalykinés srities objekty biiseny modeliy [109A].

Pateiktas ligoninés informacijos valdymo proceso pavyzdys rodo ir
patvirtina, kad tai néra galutinis UML dinaminiy modeliy, kuriuos galima
sugeneruoti i§ veiklos modelio, kiekis, yra ir daugiau skirtingg UML
dinaminiy modeliy tai paciai dalykinei sriCiai projektuoti. Kaip minéta
auksciau, ziniomis grjstas veiklos modelis, kuriame saugomi patikrinti ir
patvirtinti konkrec€ios dalykinés srities duomenys, yra pakankama duomeny
saugykla UML modeliams generuoti [109A].

Gauty rezultaty vertinimas

146

Kaip minéta auksciau, tradiciné IS inzinerija grindziama analitiko patirtimi.
Analitikas dalyvauja visame IS kirimo gyvavimo ciklo procese,
analizuodamas dalyking sritj, modeliuodamas ir kurdamas visus reikalingus
projekto modelius, nagrinéjamu atveju — UML modelius, naudodamas jvairias
tam skirtas priemones, pasikliaudamas tik savo asmenine patirtimi ir geraja
praktika. Analitiko veikla galima apibiidinti taip: veiklos situacijos analize,
tobulinimo galimybiy nustatymas, informacinés sistemos, kuri sukurs
pridétine verte organizacijai, projektavimas. Analitikas surenka informacija
apie dalykine sritj, nustato visus reikalavimus, ieSko tinkamo metamodelio,
patikrina ir patvirtina duomenis ir pradeda kurti IS projektinius UML
modelius. Visada iSliecka rizika, kad atsiras nauja problema, daugiau
informacijos ar reikalavimy, todél projekto modeliy atnaujinimo ir tobulinimo
procesas labai sudétingas. IS kiirimo proceso trukmé ilgéja, o klaidy skaicius
didéja.

Naudojant veiklos modelj (EM) kaip pagrinding dalykinés srities Ziniy
saugykla IS inzinerijos procese, uztikrinamas sukurty IS projektiniy modeliy
teisingumas ir kokybé, atnaujinus bet kokius dalykinés srities duomenis.

1 lentelé. IS analitiko veiklos palyginimas pagal kriterijus

Kriterijus

Tradiciné IS inZinerija

Ziniomis grindziamas UML modeliy
generavimo i$ veiklos modelio metodas

Dalykinés srities

Analitikas renka informacijg i§
suinteresuotyjy $aliy, dalykinés

Analitikas renka informacijg i§
suinteresuotyjy Saliy, dalykinés srities

duomen . . e P . L0
uomeny srities analizés, ankstesniy sistemy, | analizés, ankstesniy sistemuy,
surinkimas . L . . o .
taikydamas jvairias metodikas taikydamas jvairias metodikas
. . Analitikas renka, nustato ir apibrézia | Analitikas renka, nustato ir apibrézia
Reikalavimy

identifikavimas

tam tikros dalykinés srities
reikalavimus

tam tikros dalykinés srities
reikalavimus

Analitikas parengia duomenis

Analitikas parengia duomenis
modeliavimui, naudoja veiklos modelj,

Duomeny modeliavimui, savo nuoziiira naudoja | kuris formalizuotas vadovaujantis
paruo$imas visas galimas modeliavimo veiklos metamodeliu; patikrina ir
modeliavimui priemones, remdamasis savo patvirtina tam tikros dalykinés srities
empirine patirtimi zinias ir uzpildo veiklos modelj
reikalingais duomenimis
Analitikas kuria projektavimo e S .
Projektiniy modelius naudodgmjasis Reikiami UML dinaminiai modeliai

modeliy kiirimas

projektavimo jrankiais, remdamasis
savo empirine patirtimi

generuojami i§ veiklos modelio
naudojant transformacijos algoritmus

Dalykinés srities
duomeny
atnaujinimas

Analitikas patvirtina biitinus
pakeitimus ir atnaujina dalykinés
srities duomenis

Analitikas patikrina ir patvirtina
bitinus pakeitimus ir atnaujina
dalykinés srities duomenis veiklos
modelyje

Reikiami UML dinaminiai modeliai

Projektiniy Analitikas i§ naujo sukuria arba eneruojami it veiklos modelio su
modeliy patobulina projektinius modelius generuojal 0)
g -| atnaujintais duomenimis naudojant
atnaujinimas naudodamasis projektavimo jrankiais e .
transformacijos algoritmus
Padidéjusi IS UML dinaminiai modeliai i§ veiklos

kairimo proceso
trukmé

Projektiniy modeliy tobulinimui
reikalingas papildomas laikas

modelio sukuriami greiciau nei be
transformacijos algoritmy

147

Mazesné tikimybé, kad klaidy skai¢ius
padidés, nes dalykingés srities duomenys
i§ anksto patikrinami ir patvirtinami

Padidéjes klaidy | Didesné tikimybé, kad bus didesnis
skaicius klaidy skaicius

Saltinis: sudaryta autorés

Naudojant veiklos modelj IS inZinerijos procese analitikai j veiklos modelj
ikelia visus surinktus dalykinés srities duomenis. Veiklos modelyje saugomos
dalykinés srities zinios naudojamos UML modeliams generuoti naudojant
transformacijos algoritmus. | veiklos modelj jkélus bet kokius galimus naujus
duomenis, vél panaudojami transformacijos algoritmai ir pagal atnaujintus
duomenis generuojami nauji UML modeliai. Analitikui nereikia i§ naujo
atlikti viso projektiniy modeliy kiirimo proceso.

ISVADOS

1. Informaciniy sistemy inZinerijos metody ir standarty analizé parodé,
kad rinkoje egzistuojantys metodai ir jy pagrindu sukurti CASE
irankiai gali generuoti IS projekto fragmentus UML notacija, tokius
kaip: vartotojo sgsajos prototipas, duomeny bazés specifikacijas,
programinio kodo fragmentus, taciau nebuvo aptikta IS kirimo
projektavimo etapo UML dinaminiy modeliy generavimo sprendimy.
Pasitilyto metodo taikymas gerina IS projektavimo etapo efektyvuma.

2. Sukurti ir eksperimentiskai patikrinti transformacijos algoritmai jrodo,
kad veiklos modelio (EM) sudétis yra pakankama generuoti UML
dinaminius (taikomyjy uzdaviniy, veiklos, buseny, seky,
komunikacijos, laiko, sgveikos) modelius.

3. Eksperimente patikrinti darbe sukurti septyni transformacijos
algoritmai, jie panaudoti generuoti dinaminius UML modelius i§
aStuoniy dalykiniy sri¢iy veiklos modeliy. Sugeneruoti dinaminiai
modeliai tenkina UML specifikacijos reikalavimus, nes sugeneruojami
visi kiekvieno tipo UML dinaminio modelio sudéties elementai bei
rysiai tarp jy.

4. Sukurtas darbe Organizacijos veiklos Ziniomis gristas UML dinaminiy
modeliy generavimo metodas buvo vertinamas lyginant IS analitiko
veiklg tradicinéje ir ziniomis gristoje IS inZinerijoje. Pasiflytas
metodas yra pranaSesnis atliekant dinaminiy modeliy korekcijas
(pusiau-automatinis) ir turi pranasumy pirminiy modeliy kiirimo
procese. Palyginimo rezultatai pateikti 41 lenteléje.

5. Sio darbo rezultatai suteikia pagrinda kurti CASE jrankiy jskiepius
jgalinancius IS projekto dinaminiy modeliy generavimg i§ CASE
jrankio Ziniy saugykloje saugomy dalykinés srities Ziniy.

148

APPENDICES

List of Publications
List of Conferences and Scientific Events

149

LIST OF PUBLICATIONS

Journals listed in Web of Science database with citation index

RudZionis, Vytautas; Lopata, Audrius; Gudas, Saulius; Butleris,
Rimantas; Veitaité, Ilona; Dilijonas, Darius; GriSius, Evaldas;
Zwitserloot, Maarten; Rudzioniene, Kristina. Identifying irregular
financial operations using accountant comments and natural language
processing techniques // Applied sciences. Basel : MDPI. ISSN 2076-
3417. 2022, vol. 12, iss. 17, art. no. 8558, p. 1-15. DOI:
10.3390/app12178558. [Science Citation Index Expanded (Web of
Science); Scopus; Dimensions] [IF: 2,838; AlF: 5,795; IF/AIF: 0,490; Q2
(2021, InCites JCR SCIE)] [CiteScore: 3,70; SNIP: 1,026; SJR: 0,507;
Q2 (2021, Scopus Sources)] [S.fld.: T 007, S 004] [Contribution: 0,111]
Lopata, Audrius; Gudas, Saulius; Butleris, Rimantas; Rudzionis,
Vytautas Evaldas; Zioba, Liutauras; Veitaite, Ilona; Dilijonas, Darius;
Grisius, Evaldas; Zwitserloot, Maarten. Financial data anomaly
discovery using behavioral change indicators // Electronics. Basel:
MDPI. ISSN 2079-9292. 2022, vol. 11, iss. 10, art. no. 1598, p. 1-14.
DOI: 10.3390/electronics11101598. [Science Citation Index Expanded
(Web of Science); Scopus; Dimensions] [IF: 2,690; AlF: 4,505; IF/AIF:
0,597; Q3 (2021, InCites JCR SCIE)] [CiteScore: 3,70; SNIP: 1,013;
SJR: 0,590; Q2 (2021, Scopus Sources)] [S.fld.: T 007] [Contribution:
0,111]

Lopata, Audrius; Ambraziiinas, Martas; Veitaité, Ilona; Masteika,
Saulius; Butleris, Rimantas. SysML and UML models usage in
knowledge based MDA process // Elektronika ir elektrotechnika.
Kaunas: KTU. ISSN 1392-1215. elSSN 2029-5731. 2015, vol. 21, no. 2,
p. 50-57. DOI: 10.5755/j01.eee.21.2.5629. [Science Citation Index
Expanded (Web of Science); Scopus; INSPEC] [IF: 0,389; AlF: 1,847;
IF/AIF: 0,211; Q4 (2015, InCites JCR SCIE)] [CiteScore: 1,60; SNIP:
0,588; SJR: 0,337; Q3 (2015, Scopus Sources)] [S.fld.: T 007]
[Contribution: 0,200]

Lopata, Audrius; Veitaite, llona; Gudas, Saulius; Butleris, Rimantas.
Case tool component - knowledge-based subsystem UML diagrams
generation process // Transformations in business & economics = Verslo
ir ekonomikos transformacijos. Vilnius : Vilniaus universitetas. ISSN

1648-4460. 2014, vol. 13, no. 2B (32B), p. 676-696. [Social Sciences
150

Citation Index (Web of Science); Scopus; EconLit with Full Text] [IF:
0,374; AIF: 1,514; IF/AIF: 0,247; Q4 (2014, InCites JCR SSCI)]
[CiteScore: 0,50; SNIP: 0,303; SJR: 0,275; Q3 (2014, Scopus Sources)]
[S.fld.: T 007, S 003] [Contribution: 0,250]

ARTICLES IN SCIENTIFIC CONFERENCE PROCEEDINGS
Conference proceedings indexed by Web of Science database

Veitaite, llona; Lopata, Audrius. Problem domain example of
knowledge-based enterprise model usage for different UML behavioral
models generation // Business information systems workshops: BIS 2021
international workshops virtual event, June 14-17, 2021: revised selected
papers / W. Abramowicz, S. Auer, M. StroZyna (eds.). Cham : Springer,
2022. ISBN 9783031042157. eISBN 9783031042164. p. 45-55. (Lecture
notes in business information processing, ISSN 1865-1348, eISSN 1865-
1356; Vol. 444). DOI: 10.1007/978-3-031-04216-4_5. [Conference
Proceedings Citation Index - Science (Web of Science); Scopus] [S.fld.:
T 007] [Contribution: 0,500] [Indélis autoriniais lankais: 0,393]

Lopata, Audrius; Butleris, Rimantas; Gudas, Saulius; Rudzionis,
Vytautas; Rudzioniené, Kristina; Zioba, Liutauras; Veitaité, Ilona;
Dilijonas, Darius; Grisius, Evaldas; Zwitserloot, Maarten. Financial data
preprocessing issues // Information and software technologies: 27th
international conference, ICIST 2021, Kaunas, Lithuania, October 14—
16, 2021: proceedings / A. Lopata, D. Gudoniené, R. Butkiené (eds.).
Cham: Springer Nature, 2021. ISBN 9783030883034. elSBN
9783030883041. p. 60-71. (Communications in computer and
information science, ISSN 1865-0929, eISSN 1865-0937; vol. 1486).
DOI: 10.1007/978-3-030-88304-1_5. [Conference Proceedings Citation
Index - Science (Web of Science); Scopus] [S.fld.: T 007] [Contribution:
0,100] [Indélis autoriniais lankais: 0,086]

Veitaité, llona; Lopata, Audrius. Knowledge-based UML use case model
transformation algorithm // Business information systems workshops:
BIS 2019 international workshops, Seville, Spain, June 26-28, 2019:
revised papers / W. Abramowicz, R. Corchuelo (eds.). Cham: Springer,
2019. ISBN 9783030366902. eISBN 9783030366919. p. 39-48. (Lecture
notes in business information processing, ISSN 1865-1348, eISSN 1865-
1356; Vol. 373). DOI: 10.1007/978-3-030-36691-9. [Conference

151

Proceedings Citation Index - Science (Web of Science); Scopus] [S.fld.:
T 007] [Contribution: 0,500] [Indélis autoriniais lankais: 0,357]
Veitaité, Ilona; Lopata, Audrius. Problem domain knowledge driven
generation of UML models // Information and software technologies:
24th International Conference, ICIST 2018, Vilnius, Lithuania, October
4-6, 2018: proceedings / edited by: Robertas Damasevicius, Giedré
Vasiljeviené. Cham: Springer, 2018. ISBN 9783319999715. elSBN
9783319999722. p. 178-186. (Communications in Computer and
Information Science, ISSN 1865-0929, elSSN 1865-0937; vol. 920).
DOI: 10.1007/978-3-319-99972-2. [Conference Proceedings Citation
Index - Science (Web of Science); Scopus] [S.fld.: T 007] [Contribution:
0,500] [Indélis autoriniais lankais: 0,322]

Lopata, Audrius; Veitaité, Ilona; Zemaityté, Neringa. Enterprise model
based UML interaction overview model generation process // Business
information systems workshops: BIS 2016 international workshops,
Leipzig, Germany, July 6-8, 2016: revised papers / Editors: Abramowicz,
Witold, Alt, Rainer, Bogdan, Franczyk . - Series: Lecture notes in
business information processing. Vol. 263. ISSN: 1865-1348. Berlin :
Springer International Publishing, 2017. ISBN 9783319524634. eISBN
9783319524641. p. 69-78. DOI: 10.1007/978-3-319-52464-1 7.
[Conference Proceedings Citation Index - Science (Web of Science);
Scopus; DBLP (Computer Science Bibliography)] [S.fld.: T 007]
[Contribution: 0,333] [Indélis autoriniais lankais: 0,238]

Veitaité, TIlona; Lopata, Audrius. Knowledge-based UML models
generation from enterprise model technique // Information and software
technologies: 23rd international conference, ICIST 2017, Druskininkai,
October12-14, 2017: proceedings / editors: Robertas Damasevicius,
Vilma Mikasyté . - Book series: Communications in Computer and
Information Science. Vol 756. Cham: Springer Nature. ISSN 1865-0929.
elSSN 1865-0937. 2017, p. 314-325. DOI: 10.1007/978-3-319-67642-
5 26. [Conference Proceedings Citation Index - Science (Web of
Science)] [S.fld.: T 007] [Contribution: 0,500] [Indélis autoriniais
lankais: 0,429]

Veitaité, llona; Lopata, Audrius. Transformation algorithms of
knowledge based UML dynamic models generation // Business
information systems workshops BIS 2017, Poznan, Poland, 28-30 June /
editor Witold Abramowicz. - Series: Lecture notes in business

information processing. Vol 303. Cham: Springer International
152

10.

Publishing, 2017. ISBN 9783319690223. eISBN 9783319690230. p. 59-
68. DOI: 10.1007/978-3-319-69023-0. [Conference Proceedings Citation
Index - Science (Web of Science); Scopus] [S.fld.: T 007] [Contribution:
0,500] [Indélis autoriniais lankais: 0,357]

Veitaité, Tlona; Lopata, Audrius. Additional knowledge based MOF
architecture layer for UML models generation process // Business
information systems: 2015 international workshops: revised papers:
proceedings.- Series: Lecture notes in business information processing
(ISSN 1865-1348), Vol. 226 / Editors: Witold Abramowicz, Angelika
Kokkinaki. Berlin: Springer International Publishing, 2015. ISBN
9783319267616. elSBN 9783319267623. p. 56-63. DOI: 10.1007/978-
3-319-26762-3_6. [Scopus; Conference Proceedings Citation Index]
[S.fld.: T 007] [Contribution: 0,500] [Indélis autoriniais lankais: 0,286]
Veitaite, [lona; Ambraziiinas, Martas; Lopata, Audrius. Enterprise model
and ISO standards based information system's development process //
Business information systems: 2014 international workshops, Larnaca,
Cyprus, May 22-23, 2014: Revised Papers: proceedings.- Series: Lecture
notes in business information processing (ISSN 1865-1348), Vol. 183/
Editors : Witold Abramowicz, Angelika Kokkinaki. Berlin: Springer,
2014. ISBN 9783319114590. p. 73-79. DOI: 10.1007/978-3-319-11460-
6_7. [Scopus; Conference Proceedings Citation Index; SpringerLink]
[S.fld.: T 007] [Contribution: 0,334] [Indélis autoriniais lankais: 0,024]
Lopata, Audrius; Veitaité, [lona. UML diagrams generation process by
using knowledge-based subsystem // Business Information Systems
Workshop 2013, Poznan, Poland, June 2013 / Witold Abramowicz (ed.).
Berlin : Springer, 2013. ISBN 9783642416866. p. 53-60. [Conference
Proceedings Citation Index] [S.fld.: T 007] [Contribution: 0,500] [Indélis
autoriniais lankais: 0,286]

Other peer-reviewed conference proceedings

Lopata, Audrius; Butleris, Rimantas; Gudas, Saulius; RudZionieng,
Kristina; Zioba, Liutauras; Veitaité, Ilona; Dilijonas, Darius; GriSius,
Evaldas; Zwitserloot, Maarten. Financial process mining characteristics
/I Information and software technologies: 28th international conference,
ICIST 2022, Kaunas, Lithuania, October 13-15, 2022: proceedings / A.
Lopata, D. Gudoniené, R. Butkiené (eds.). Cham: Springer, 2022. ISBN
9783031163012. eISBN 9783031163029. p. 209-220. (Communications
153

in computer and information science, ISSN 1865-0929, eISSN 1865-
0937; vol. 1665). DOI: 10.1007/978-3-031-16302-9_16. [S.fld.: T 007]
[Contribution: 0,111] [Indélis autoriniais lankais: 0,095]

Veitaité, Ilona; Lopata, Audrius. Knowledge-based UML use case and
UML activity models generation from enterprise model. school of
languages case study // CEUR workshop proceedings: 1IVUS 2021:
Information society and university studies 2021: Proceedings of the 26th
international conference on information society and university studies
(IVUS 2021), Kaunas, Lithuania, April 23, 2021 / edited by: 1. Veitaite,
A. Lopata, T. Krilavic¢ius, M. Wozniak. Aachen: CEUR-WS. ISSN 1613-
0073. 2021, vol. 2915, art. no. 13, p. 112-121. [Scopus] [S.fld.: N 009]
[Contribution: 0,500] [Indélis autoriniais lankais: 0,357]

Veitaité, Ilona; Lopata, Audrius. Knowledge-based UML activity model
transformation algorithm // CEUR workshop proceedings: 1VUS 2020:
Information society and university studies 2020: proceedings of the
information society and university studies, 2020, Kaunas, Lithuania,
April 23, 2020 / edited by: A. Lopata, V. Sukacke, T. Krilavi¢ius, 1.
Veitaité, M. Wozniak. Aachen: CEUR-WS. ISSN 1613-0073. 2020, vol.
2698, p. 114-120. [Scopus; Compendex] [S.fld.: T 007] [Contribution:
0,500] [Indélis autoriniais lankais: 0,250]

Veitaité, Tlona; Lopata, Audrius. Knowledge-based generation of the
UML dynamic models from the enterprise model illustrated by the ticket
buying process example // Information and software technologies: 26th
international conference, ICIST 2020, Kaunas, Lithuania, October 15—
17, 2020: proceedings / eds.: Audrius Lopata, Rita Butkiené¢, Daina
Gudoniené, Vilma Sukacké. Cham : Springer, 2020. ISBN
9783030595050. eISBN 9783030595067. p. 26-38. (Communications in
Computer and Information Science, ISSN 1865-0929, eISSN 1865-0937;
vol. 1283). DOI: 10.1007/978-3-030-59506-7_3. [Scopus; SpringerLink]
[S.fld.: T 007] [Contribution: 0,500] [Indélis autoriniais lankais: 0,465]
Veitaité, Ilona; Lopata, Audrius. Knowledge based UML information
flow model transformation algorithm // ICYRIME 2018: proceedings of
the international conference for young researchers in informatics,
mathematics, and engineering, Kaunas, Lithuania, April 27, 2018.
Aachen: CEUR-WS. 2018, p. 30-36. (CEUR workshop proceedings,
ISSN 1613-0073; vol. 2152). [Scopus] [S.fld.: T 007] [Contribution:
0,500] [Indélis autoriniais lankais: 0,250]

154

10.

Veitaite, Ilona; Lopata, Audrius. Enterprise knowledge based UML
timing model generation process // Informacinés technologijos 2017:
XXII tarpuniversitetiné magistranty ir doktoranty konferencija
"Informaciné¢ visuomené ir universitetinés studijos" (IVUS2017):
prane$imy medziaga. Kaunas: Technologija. ISSN 2029-249X. 2017, p.
189-193. [S.fld.: T 007] [Contribution: 0,500] [Indélis autoriniais
lankais: 0,179]

Veitaité, Ilona; Lopata, Audrius. Enterprise knowledge based UML
timing model generation process / CEUR workshop proceedings: IVUS
2017: Proceedings of the IVUS International Conference on Information
Technology, Kaunas, Lithuania, April 28, 2017 / Edited by Robertas
Damasevicius, ... [et al]. Aachen: CEUR-WS. ISSN 1613-0073. 2017,
Vol.1856, p. 75-79. [Scopus] [S.fld.: T 007] [Contribution: 0,500]
[Indélis autoriniais lankais: 0,179]

Veitaite, Ilona; Lopata, Audrius. Enterprise model, MOF and ISO
standards based information system’s development process //
Informacinés technologijos 2015: XX tarpuniversitetiné magistranty ir
doktoranty konferencija: Konferencijos pranesimy medziaga. Kaunas:
Technologija. ISSN 2029-249X. 2015, p. 77-81. [S.fld.: T 007]
[Contribution: 0,500] [Indélis autoriniais lankais: 0,179]

Veitaité, llona; Lopata, Audrius. Veiklos modelio taikymas informacijos
sistemy inzinerijos reikalavimy specifikavimo etape // Informacinés
technologijos : 19-0ji tarpuniversitetiné magistranty ir doktoranty
konferencija "Informaciné visuomené ir universitetinés studijos" (IVUS
2014) : praneSimy medziaga. Kaunas: Technologija. ISSN 2029-4832.
2014, p. 40-46. [S.fld.: T 007] [Contribution: 0,500] [Indélis autoriniais
lankais: 0,250]

Veitaité, Ilona; Lopata, Audrius. Veiklos modeliu grindziamas UML
diagramy generavimas // Informacinés technologijos 2012: 17-0si0os
tarpuniversitetinés magistranty ir doktoranty konferencijos pranesimy
medZiaga. Vilnius. ISSN 2029-249X. 2012, p. 109-114. [S.fld.: N 009]
[Contribution: 0,500] [Indélis autoriniais lankais: 0,215]

ABSTRACTS IN CONFERENCE PROCEEDINGS

Lopata, Audrius; Veitaité, Ilona. Transformation algorithms of UML

models generation process. UML dynamic models generation examples

/l 11th international workshop on data analysis methods for software
155

systems, Druskininkai, Lithuania, November 28-30, 2019 / Lithuanian
Computer Society, Vilnius University Institute of Data Science and
Digital Technologies, Lithuanian Academy of Sciences. Vilnius : Vilnius
University, 2019. ISBN 9786090703243. eISBN 9786090703250. p. 50.
[S.fld.: T 007]

Lopata, Audrius; Veitaité, Ilona. Knowledge-based UML models
transformation algorithm // DAMSS 2018 : 10th international workshop
on "Data analysis methods for software systems”, Druskininkai,
Lithuania, November 29 - December 1, 2018: [abstract book]. Vilnius:
Vilniaus universitetas, 2018. ISBN 9786090700433. p. 55. [S.fld.: T 007]
Veitaité, Ilona; Lopata, Audrius. Knowledge-based UML models
generation transformation algorithms from enterprise model // 9th
International workshop on Data Analysis Methods for Software Systems
(DAMSS), Druskininkai, Lithuania, November 30 - December 2, 2017.
Vilnius : Vilniaus universitetas, 2017. ISBN 9789986680642. p. 53. DOI:
10.15388/DAMSS.2017. [S.fld.: T 007]

Veitaité, Ilona; Lopata, Audrius. Knowledge-based UML dynamic
models generation method usage in IS lifecycle design stage // Data
analysis methods for software systems: 8th international workshop on
data analysis methods for software systems, Druskininkai, December 1-
3, 2016. Vilnius: Vilniaus universiteto leidykla, 2016. ISBN
9789986680611. p. 65-66. [S.fld.: T 007]

Veitaité, ITlona; Lopata, Audrius. Knowledge based UML dynamic
models generation method // Data analysis methods for software systems:
7th international workshop, Druskininkai, December 3-5, 2015:
[abstracts book]. Vilnius : Vilniaus universiteto Matematikos ir
informatikos institutas, 2015. ISBN 9789986680581. p. 52-53. [S.fld.: T
007]

Veitaité, Ilona; Lopata, Audrius. Enterprise knowledge based UML
dynamic models generation process // Data analysis methods for software
systems : 6th International Workshop: [abstracts book], Druskininkai,
Lithuania, December 4-6, 2014. [Vilnius], 2014. ISBN 9789986680505.
p. 57. [S.fld.: T 007]

PARTS OF BOOKS
Parts of scientific publications
(parts of scientific monographs, studies, synthesizing scientific works)

156

Veitaite, llona; Lopata, Audrius. Knowledge-based UML dynamic models
generation from enterprise model in hospital information management process
example // Intelligent systems for sustainable person-centered healthcare:
[collective monograph] / Dalia Kriksciuniene, Virgilijus Sakalauskas (eds.).
Cham: Springer, 2022, ch. 12. ISBN 9783030793524. eISBN 9783030793531.
p. 225-250. (Intelligent systems reference library, ISSN 1868-4394, elSSN
1868-4408; vol. 205). DOI: 10.1007/978-3-030-79353-1_12. [Scopus] [M.kr.: T
007]

Parts of others books
(parts of science, art promotion and other books)

Veitaité, Ilona; Lopata, Audrius. Knowledge-based transformation algorithms of
UML dynamic models generation from Enterprise Model // Data science: new
issues, challenges and applications / Dzemyda, Gintautas, Bernatavicieng, Jolita,
Kacprzyk, Janusz (Eds.). Cham: Springer Nature, 2020. ISBN 9783030392499.
elSBN 9783030392505. p. 43-59. (Studies in computational intelligence, ISSN
1860-949X, elSSN 1860-9503 ; vol. 869). DOI: 10.1007/978-3-030-39250-5_3.
[Scopus] [M.kr.: T 007] [Indélis: 0,500]

157

https://doi.org/10.1007/978-3-030-79353-1_12

10.

11.

12.

13.

14.

15.

LIST OF CONFERENCES AND SCIENTIFIC EVENTS

17th Inter University Conference for master and phd students on
Information Technology 172012, Kaunas, Lithuania, April 2012.
International Conference Business Information Systems BIS2013,
Poznan, Poland, June 2013.

19th Inter University Conference for master and phd students
Information Society and University Studies 1VUS2014, Kaunas,
Lithuania, April 2014.

International Conference Business Information Systems BIS2014,
Larnaca, Cyprus, May 2014.

6th International Workshop Data Analysis Methods for Software
Systems DAMSS2014, Druskininkai, Lithuania, December 2014.

20th Inter University Conference for master and phd students on
Information Technologies IT2015, Kaunas, Lithuania, April 2015.
International Conference Business Information Systems BIS2015,
Poznan, Poland, May 2015.

7th International Workshop Conference Data Analysis Methods for
Software Systems DAMSS2015, Druskininkai, Lithuania, December
2015.

International Conference Business Information Systems BIS2016, |,
Leipzig, Germany, July 2016.

8th International Workshop Conference Data Analysis Methods for
Software Systems DAMSS2016, Druskininkai, Lithuania, December
2016.

22nd International Conference for master, phd students and young
researcherrs, Information Society and University Studies 1VUS2017,
Kaunas, Lithuania, April 2017.

International Conference Business Information Systems BI1S2017,
Poznan, Poland, June 2017.

23rd International Conference Information and Software Technologies,
ICIST2017, Druskininkai, Lithuania, October 2017.

9th International Workshop Conference Data Analysis Methods for
Software Systems DAMSS2017, Druskininkai, Lithuania, December
2017.

2nd International Conference for young researchers in informatics,
mathematics, and engineering ICYRIME 2018, part of 23rd International
Conference for master, phd students and young researcherrs, Information

158

16.

17.

18.

19.

20.

21.

22.

23.

24,

Society and University Studies IVUS2018, Kaunas, Lithuania, April,
2018.

24th International Conference Information and Software Technologies,
ICIST2018, Vilnius, Lithuania, October 2018.

10th International Workshop Conference Data Analysis Methods for
Software Systems DAMSS2018, Druskininkai, Lithuania, December
2018.

International Conference Business Information Systems BIS2019,
Seville, Spain, June 2019.

11th International Workshop Conference Data Analysis Methods for
Software Systems DAMSS2019, Druskininkai, Lithuania, November
2019.

25th International Conference for master, phd students and young
researcherrs, Information Society and University Studies 1VUS2020,
Kaunas, Lithuania, April, 2020.

26th International Conference Information and Software Technologies,
ICIST2020, Kaunas, Lithuania, October 2020.

26th International Conference for master, phd students and young
researcherrs, Information Society and University Studies 1VUS2021,
Kaunas, Lithuania, April, 2021.

27th International Conference Information and Software Technologies,
ICIST2021, Kaunas, Lithuania, October 2022.

28th International Conference Information and Software Technologies,
ICIST2022, Kaunas, Lithuania, October 2023.

159

Ilona Veitaité
Enterprise Knowledge-Based UML Dynamic Models Generation Method

DOCTORAL DISSERTATION

Technological sciences,

Informatics Engineering [T 007]

Thesis Editor: UAB ,,Bella Verba“, info@bellaverba.lt, +370 655 69981

llona Veitaite

Organizacijos ziniomis pagristas UML dinaminiy modeliy generavimo
metodas

DAKTARO DISERTACIJA

Technologijos mokslai

Informatikos inzinerija [T 007]

Santraukos redaktorius: UAB ,,Bella Verba®, info@bellaverba.lt, +370 655
69981

Vilniaus universiteto leidykla
Saulétekio al. 9, III rimai, LT-10222 Vilnius
El. p. info@leidykla.vu.lt, www.leidykla.vu.lt

Tirazas 20 egz.

