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Abstract

According to the Global Marine Insurance Annual Report, marine casualties
remain a major issue between human and non-human risk factors. Vessel
collisions and anomalies at sea are among these factors. By analysing the
massive historical data obtained from automatic identification systems (AIS),
intelligent transport systems are being developed to address the challenges of
predicting vessel trajectories. Most often, attempts are made to improve the
accuracy of regression predictions by examining historical vessel behaviour,
movement patterns, and similarities. Clustering techniques are also frequently
adopted, as situational awareness of maritime traffic is a critical factor in
maritime transport safety. Nevertheless, no globally agreed-upon solution has
yet been proposed.

Situational awareness, which involves observing and interpreting the
environment and making predictions about future dynamics, is perceived as the
highest level of awareness (level 3). This dissertation investigates deep learning
architectures and their hyperparameters, performs feature engineering on the
derived data, and develops a recursive model that generates the most accurate
prediction. In particular, this thesis investigates deep recurrent neural network
architectures and builds models based on semi-structured AIS big data to
extrapolate further geographic coordinates by regression. It has been empirically
determined that the architecture with the highest accuracy is the multi-step
multivariate Long short-term memory (LSTM) autoencoder, which includes
vessel and meteorological observations. The thesis proposes solutions to
improve the initial prediction and develop a generalised model. One suggestion
would be to use different coordinate systems to determine vessel position
locations. A second proposal is calculating the delta vector difference instead of
absolute coordinates, and to recursively reconstruct sequence positions by
adding those deltas to the last known point. In addition, a method is proposed
to integrate categorical vessel-type data into a common dataset. Finally, an
assessment of the uncertainty in prediction accuracy is made by combining
statistical estimates such as ellipsoidal prediction regions (EPRs), conformal
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prediction regions (CPRs) and prediction intervals (PIs), which allow us to
estimate the boundaries of probabilistically overlapping regions and, therefore,
to identify possible vessel collisions.

The dissertation examines one of the most recent vessel collisions in 2021
near Bornholm Island in the Baltic Sea as one of the verifications of the accident
investigations. Using deep recurrent neural networks, the developed models can
predict the subsequent multi-step trajectory of the vessel, which is combined
with probabilities and statistics to form regions of prediction intervals with a
confidence level of 95% to calculate collision risk estimates. The integration of
confidence indicators shows that a non-parametric approach with conformal
regions can detect most of the possible collision scenarios. The results of
the real-world accident case studies confirm that deep learning models with
advanced predictive capabilities can effectively improve navigational decisions
by contributing to the prevention of maritime incidents.
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1 Introduction

1.1 Research Relevance and the Need for Enhanced
Maritime Monitoring

Shipping is vital for global trade, but growing vessel traffic increases collision,
security, and environmental risks. Information on vessel locations, trajectories,
and destinations underpins effective maritime safety and environmental
protection. According to the International Union of Marine Insurance (IUMI),
about 10% of losses in 2019 stemmed from collisions, with additional losses
from crew errors, equipment failures, and weather conditions [81]. Despite
intense activity, shipping volumes continue to rise: in 2020, marine underwriting
premiums reached USD 30.0 billion, a 6.1% increase from 2019, with cargo
vessels accounting for 57.2% of premiums [80]. This surge underscores the
need for enhanced monitoring to mitigate safety and security threats.

Rising vessel activity produces vast amounts of Automatic Identification
System (AIS) data that exceed the capacity of human operators and traditional
machine learning (ML) methods to process in real time. Effective situational
awareness has three levels: initial levels focus on assessing the surrounding
environment, while Level 3 involves perception and prediction of future states
[63]. Achieving Level 3 requires advanced techniques such as deep learning
(DL) to handle large, noisy time series. Recent incidents highlight this need: in
March 2025, the oil tanker MC Stena Immaculate collided under fog off the
Humber Estuary; in late 2018, the frigate Helge Ingstad struck a tanker in
Norway; and the Nord Stream pipeline explosion disrupted Baltic Sea traffic.
Such events show how quickly congested or strategic waterways can become
hazardous, underscoring the urgency of developing reliable multi-step trajectory
prediction models and real-time monitoring tools.

Sonar and radar help vessels detect nearby obstacles, but radar can miss
smaller objects behind larger ones, and both systems are limited in low visibility
or cluttered settings. Many ships also carry AIS transponders, but real-time AIS
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updates can be delayed by minutes and cannot by themselves forecast future
movements. In contrast, historical AIS records combined with meteorological
and categorical vessel type data are well-suited for DL methods. Recurrent
neural networks (RNNs), especially multi-step multivariate models, can learn
from these time series to predict a vessel’s trajectory and flag potential collisions
or abnormal manoeuvres. By leveraging AIS signals in DL models, RNN-based
forecasting can improve situational awareness and support proactive safety
measures in increasingly congested maritime environments.

1.2 Research Problem

There is a growing need for accurate, long-term vessel trajectory forecasts
to support maritime safety and traffic management. Surveys of ML and
DL in land-based traffic systems (e.g., [4]) show that 45% of efforts target
congestion prediction and 30% focus on flow management approaches that
assume homogeneous vehicles and stable data. In contrast, maritime AIS
streams are irregular, vessel types vary widely, and environmental factors (e.g.,
wind, currents) strongly influence movement. Large, loaded ships may require
20–25 minutes to stop (completely), so precise forecasts over that horizon are
essential for timely risk mitigation [38].

Traditional monitoring tools, such as radar, sonar, and AIS, provide only
current state awareness and can be misleading in congested or low visibility
conditions: radar can miss smaller targets behind larger objects, and AIS
transmissions can lag or drop, leaving gaps in coverage. Historical AIS data
provide rich trajectory records, but their irregular sampling intervals and noise
make simple extrapolation unreliable beyond a few minutes, and AIS data do
not provide an awareness analysis.

Many existing maritime models rely on short-term or linear predictions,
apply Universal Transverse Mercator (UTM) transformations without justifying
their impact, or build separate predictors for each vessel type, requiring
extensive pre-processing and failing to capture multivariate dependencies
such as speed, heading, and environmental inputs. As a result, there is no
generalised approach to handle all vessel type behaviours. Deep RNNs can learn
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long-term patterns from noisy AIS time series; however, prior work has not fully
integrated categorical vessel-type labels and meteorological features into a
single model, nor addressed the compounding error in multi-step forecasts.

Nowadays, collision-risk assessment typically relies on deterministic
metrics such as the Closest Point of Approach (CPA) and Time to CPA
(TCPA), which calculate the single future point at which two vessels will
be closest to each other within a fixed guard-zone radius (e.g., 0.25 NM
or 15 minutes). While CPA/TCPA are widely used for real-time collision
assessment, they ignore uncertainty in each vessel’s predicted path, cannot
handle overlapping trajectories among multiple ships, and make it difficult to
assign a meaningful probability to a collision. To address these limitations, the
proposed methodology evaluates clusters of uncertainty and extends beyond
CPA’s fixed-point analysis, offering a broader assessment of future vessel
trajectories. By incorporating a 20-minute prediction window aligned with the
stopping times of large vessels and forecasting dynamic trajectory boundaries,
this approach replaces static proximity and time thresholds with probabilistic
overlap metrics that better capture the range of possible interactions.

This dissertation develops a unified framework that leverages deep RNNs
to produce accurate, multi-step vessel trajectories from historical semi-structured
AIS data; integrates vessel-type and meteorological features into a single model
to improve generalisation across all vessel classes; and replaces single-point
CPA/TCPA rules with probabilistic risk zones that account for model and data
uncertainty. By combining these elements, the proposed approach enhances
real-time maritime situational awareness and provides actionable risk estimates
when they are needed most.

1.3 Research Object

AIS-based multivariate, multi-step vessel trajectory data for prediction and
collision-risk assessment. RNN methods are the application tool to study the
object.
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1.4 Aims and Objectives of the Research

The aim of this research is to propose and investigate deep neural network-based
algorithms for multi-vessel trajectory prediction and evaluate collision risk in
maritime navigation.

To achieve this aim, the following objectives are established:

1. Conduct a literature review on multi-step multivariate vessel trajectory
prediction methodologies, examining different modelling approaches,
data representations, and their applications in maritime situational
awareness and safety.

2. Develop and compare RNN architectures for long-term vessel trajectory
prediction, evaluating their robustness, hyperparameter sensitivity, and
optimisation criteria to determine the most effective model configurations
for vessel trajectory prediction.

3. Assess the impact of vessel trajectory prediction accuracy on categor-
ical, meteorological, and spatial data, including coordinate system
transformations, and identify the techniques for processing categorical
data.

4. Evaluate and identify effective proposed techniques for assessing vessel
collision risks by using model uncertainty quantification to measure
forecast reliability, and applying deterministic statistical approaches to
detect and quantify potential trajectory overlaps indicative of collision
scenarios.

5. Validate collision detection techniques through an empirical study using
unseen vessel trajectory data, having actual historical sea incidents.

1.5 Scientific Novelty and Practical Value

This research introduces several novel methods that together advance vessel-
trajectory forecasting and collision-risk assessment in maritime navigation. Its
main contributions are:
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1. Identification of the LSTM autoencoder (AE) as the most effective
supervised RNN for multi-step vessel-movement extrapolation and
discovery of a critical cell-count threshold. Comparing various RNN
architectures on time-series regression shows that the LSTM AE best
captures long-term dependencies. Using between 75 and 300 LSTM cells
optimises accuracy, while additional cells yield negligible gains yet
dramatically increase computational cost, leading to an efficient model
design.

2. Unified integration of vessel-type and meteorological data alongside AIS
minimises pre-processing and improves generalisation across all ship
classes. Embedding categorical vessel types together with environmental
factors (e.g., wind speed, currents) in a single dataset ensures that
forecasts account for real-world conditions, boosting accuracy and
robustness in diverse operating environments.

3. Instead of predicting absolute coordinates directly, the model forecasts
position vector differences between consecutive time steps. These
predicted deltas are recursively added to the current known position
to reconstruct the trajectory. This approach, applied in both World
Geodetic System (WGS84) and UTM coordinate systems, helps reduce
cumulative error, improves spatial continuity, and maintains consistency
over long-term forecasts without requiring complex drift correction
mechanisms.

4. Introduced non-parametric conformal prediction regions (CPR) for vessel
collision detection by constructing probabilistic risk zones from an
ensemble of LSTM AE forecasts. Sampling varied hyperparameter
configurations generates a non-Gaussian distribution of possible positions,
and CPR envelops these predictions without assuming any specific error
distribution. When two vessels’ CPR zones overlap, a collision risk score
is computed, offering a region-based metric that captures uncertainty
across multiple forecasts rather than a single-point CPA/TCPA estimate.
This novel application of CPR directly leverages model variability and
noisy data to provide more informative collision-risk assessments.
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1.6 Claims to be Defended

The following research-based claims are defended in the thesis:

1. When predicting a vessel’s trajectory with LSTM in a neural network
architecture, selecting the number of cells from a certain threshold no
longer affects, or has a very minimal effect on, the accuracy of the
prediction, but increasing the number of cells significantly slows down
the model training.

2. In multi-step multivariate vessel trajectory extrapolation, recursive
recalculation of the prediction time series from the previous coordinate
allows a more accurate determination of the next prediction point,
especially in the initial prediction steps.

3. The inclusion of vessel types and meteorological information in the
common training dataset of the LSTM recurrent multi-step multivariate
neural network improves the accuracy of vessel trajectory prediction
when using an embedded encoding approach.

4. CPR allows the detection of vessel collision boundaries with the highest
statistical probability at the 95th confidence level when the data are
multivariate and do not contain a normal distribution.

The structure of the dissertation is described and presented in the following
way. The introduction chapter presents the general situation of maritime traffic,
the topic’s relevance, the study’s aim, the issues, the thesis statements and a
workflow diagram of the whole research. Chapter 2 conducts a literature review
of the subject area and examines DL recurrent network architectures, categorical
data encoding techniques and prediction intervals for uncertainty detection.
Chapter 3 presents a recurrent LSTM AE approach, which incorporates
categorical and meteorological data and creates prediction regions for vessel
collision detection. Chapter 4 describes the research data, its processing and the
stages of model development. This chapter also describes the course of the
empirical experiment. Chapter 5 presents the results, and the thesis is finalised
with the general conclusions.
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The thesis consists of 158 pages, with the summary in Lithuanian starting from
page 129, 7 tables, 40 figures, 7 tables, 5 appendices, and 122 references.

The research process can be divided into the main parts (see Fig. 1.1):
1. Introducing the source and structure of the data; 2. The raw data pre-
processing step, where the data are cleaned, filtered, normalised and structured
into fixed sequences (vectors) of equal length suitable for RNNs; 3. Presenting
methods that empirically attempt to improve the prediction of vessel trajectory
through so-called feature engineering, where additional information is created or
manipulated from existing features; 4. Adapting recurrent network architectures,
providing network hyperparameters (network, training, architecture) and
including a hidden layer of categorical and meteorological data with vessel
types; 5. The developed models are evaluated by a test sample using classical
regression metrics, with the derivative of the mean absolute value of the
Haversian (MAEH) distance used to determine the error; 6. The developed
models are practically applied to find prediction regions and calculate the
probability uncertainties of vessel collisions when the experiment evaluates the
coverage probability with the sequences of the test sample and validates on a
previously unseen real marine incident.
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2 Related Studies on Maritime Traffic
Prediction and DL Approaches

This chapter reviews scientific literature on vessel trajectory prediction and
maritime situational awareness, including related thesis work. It then examines
algorithmic approaches, particularly deep RNNs, and their integration into
maritime situational awareness. The section also explores various RNN
architectures, including basic LSTM, bidirectional LSTM, simple RNNs, GRU,
stacked LSTMs, and LSTM AEs, explaining their theoretical foundations and
practical uses. Additionally, it covers categorical data encoding techniques such
as ordinal encoding, one-hot encoding, and multidimensional embedding, which
are essential for integrating multi-vessel types and meteorological data into
prediction models. The methods for determining prediction boundaries are also
discussed, which are important for assessing the uncertainty and reliability of
model predictions. The findings of this chapter were presented at scientific
conferences [D.1–D.5].

2.1 Incidents, Accidents, and Risk in Maritime
Transportation

Within the safety and risk management framework, particularly pertinent
to maritime transportation, workplace safety, and emergency services, the
terms "incident" and "accident" are frequently invoked. While these terms
are interrelated and often used interchangeably in colloquial discourse, they
possess distinct technical meanings. An incident is characterised as an event or
circumstance with the potential for causing harm or disruption, irrespective of
the materialisation of actual harm. In contrast, an accident is an event that
has resulted in detrimental outcomes, which may include injuries, property
damage, or loss. The diligent management of incidents is critical as it serves
as the first line of defence in preventing their escalation into accidents and
mitigating the risk potential. Incidents, particularly those involving vessel
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movements, can escalate into collisions if not addressed promptly. The Marine
Accident and Incident Investigation Committee (MAIC) categorises accidents
based on severity, from very serious marine casualties to serious and less
serious ones, down to marine incidents [60]. Such categorisations highlight
the importance of early detection and intervention, where accurate vessel
trajectory predictions and collision risk assessments play a pivotal role. By
anticipating vessel movements and identifying potential anomalies or collision
risks, decision-makers can act proactively to prevent incidents from escalating
into accidents. These classifications consider the extent of damage inflicted
upon the vessel, the environmental repercussions, and the effects on the crew.
The precise delineation of these terms establishes a foundation for regulatory
practices and guides the systematic investigation and reporting protocols. This
taxonomy is instrumental in shaping the strategies for accident prevention and
fostering a culture of safety within the maritime industry.

Despite all the information systems, specific rules at sea should be
considered and followed in certain situations to avoid collisions. For example,
in open waters, it is an accepted rule that vessels should maintain a distance of 1
to 1.5 nautical miles apart CPA to avoid creating a hazard when passing each
other. These rules are reminiscent of road traffic rules outlined in the COLREG
(Convention on the International Regulations for Preventing Collisions at Sea,
1972). The guidelines also specify how vessels should act to avoid collisions if
at least one vessel makes a slight course change. For instance, Rule 14 head-on
situation says, "When two power-driven vessels are meeting on reciprocal
or nearly reciprocal courses to involve risk of collision, each shall alter her
course to starboard so that each shall pass on the port side of the other". If the
captain has not determined whether there is a danger and a real threat, the
situation is considered hazardous, and all possible actions must be taken to
avoid a disaster. In addition to Rule 5 (look-out): "Every vessel shall at all times
maintain a proper look-out by sight and hearing as well as by all available
means appropriate in the prevailing circumstances and conditions to make
a full appraisal of the situation and or the risk of collision". Even so, there
are situations where human errors occur and rules are broken, which is why
additional systems are needed. Accurate predictions made 20–25 minutes ahead
are particularly critical in such cases, as they allow enough time for vessels to
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assess risks and take corrective action. This is especially important considering
that large, loaded vessels, such as tankers, may require up to half an hour to
come to a complete stop, highlighting the need for timely trajectory forecasts to
prevent collisions [38].

The consequences of collisions can be severe, particularly regarding loss of
life, including crew members, and environmental pollution from fuel or cargo
spills. If pollutants are spilt into the waters (whether local or open), the vessel’s
captain must inform local authorities immediately. In the event of a collision
resulting in hull damage, the time and cost required for repairs are substantial.
Even minor defects can take one to six months or longer to repair. A damaged
vessel loses its offshore permit and, after restoration, must pass all inspections
to regain it. Larger shipping companies are better equipped to handle these
financial challenges, while smaller companies may face the risk of bankruptcy.
Compared to other means of transport, such as cars or aeroplanes, the processes
involved are significantly more complex, underscoring the importance of
minimising such incidents.

In a comprehensive examination of marine safety over the past three
decades, Polish researcher Magdalena Bogalecka et al. [9] provided an
interesting analysis of ship accidents in the Baltic Sea. Their work meticulously
documents a series of specifically chosen accidents, including those involving
the vessels Dan Trimmer, Eagon W, Breant, and Victoria Seaways, among
others. These events have been uniformly classified as serious within the
parameters set forth by the MEPC.3/Circ.3 Convention [36]. Notably, the
predominant causative factor identified in nearly all these cases was severe
meteorological and climatic conditions. The Baltic Sea, which is the focus of
this research, remains one of the most active yet environmentally sensitive
maritime regions. More about potential accidents and the situation in the Baltic
Sea are investigated in the article [90].

The Baltic Sea Environment Protection Commission’s (HELCOM)
2020 report provides a pertinent overview of maritime casualties within the
region, indicating that cargo vessels were predominantly involved in such
incidents. In 2020 alone, they accounted for 51% of all reported maritime
casualties, amounting to a total of 125 incidents. Additionally, passenger
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vessels accounted for 29% of the casualties, with 74 reports logged [102].
These statistics demonstrate that cargo and passenger vessels represent the
bulk of maritime traffic in the Baltic Sea. A significant observation is that
most collisions occur in areas of port activity, or when vessels navigate their
approach or within the confines of the ports themselves, contributing to 30%
of all maritime accidents. Ports represent highly congested and dynamic
environments where frequent vessel manoeuvres such as stopping, turning, and
docking are necessary, increasing the risk of collisions. Accurate trajectory
predictions in such regions are critical for collision avoidance, as vessels must
account for limited manoeuvring space, interactions with other vessels, and
static obstacles. However, despite the high collision rate in ports, maritime
incidents are not limited to these areas. Offshore collisions also pose substantial
risks, as demonstrated by HELCOM reports and real-world events, such as
the 2021 collision near Bornholm. Therefore, this study incorporates both
port-adjacent (Netherlands region) and offshore (Baltic Sea) scenarios to ensure
the applicability of the proposed methods across diverse maritime environments.
Collisions have been further categorised by the nature of the entity they involve,
which includes collisions with other moving vessels, static objects such as
bridges, docks, or breakwaters, and a range of other causes such as being adrift,
on fire, containment loss, or flooding. This stratification of collision types
offers a nuanced perspective on maritime accident dynamics and is integral to
developing targeted safety measures and regulations.

Figure 2.1: HELCOM maritime incidents map in the Baltic Sea.
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HELCOM provides an interactive map (see Fig. 2.1) that shows different
incidents in the Baltic Sea, including collisions, various contacts, fires,
groundings, pollution, etc. For example, on December 13, 2021, a significant
maritime incident occurred in the Baltic Sea, where two cargo ships collided
near the Danish island of Bornholm, off the coast of the southern Swedish town
of Ystad. By forecasting and predicting the trajectory of a particular vessel, it
would have been possible to assess the risk of a collision or to detect abnormal
behaviour in ongoing traffic. Although increasingly complex constructions of
deep neural networks are emerging, LSTM networks are still being analysed and
applied to solve the problem of maritime traffic forecasting [16, 29, 31]. This
research aims to investigate integrating DL algorithms in improving maritime
navigational decisions and the progression of risk management techniques to
enhance maritime safety.

2.2 Review of Algorithms and Related Research in
Maritime Awareness

Traditional approaches to vessel trajectory prediction and maritime awareness
rely on classical algorithms, such as regression models (linear regression,
polynomial regression, ARIMA), clustering techniques (k-means, DBSCAN,
hierarchical clustering, SOM), and physics-based simulations (Kalman filters,
Particle filters, Monte Carlo simulations). These methods have been widely used
to estimate vessel movement, identify navigational patterns, and assess collision
risks. While interpretable and computationally efficient, these models struggle
to handle large-scale AIS data, complex vessel interactions, and highly dynamic
maritime environments. As maritime traffic continues to increase, the need for
more scalable and adaptive predictive models becomes evident.

DL is a subset of ML and AI, leveraging multi-layer neural networks to
model and understand complex data patterns. Modern DL algorithms can
process vast amounts of data, making them essential for automating vessel
movement prediction in intensive shipping environments. Utilising AIS satellite
data, these algorithms provide crucial support for monitoring and managing the
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increasing maritime traffic and its participants, thereby enhancing maritime
safety and operational efficiency.

This thesis applies DL architectures, specifically RNNs, to predict future
vessel movements. The architectural model is sequence-based, capturing
how data change over time. The investigation focuses on identifying the
optimal recurrent network architecture and hyperparameters to achieve accurate
prediction results. Various recurrent network architectures, including fully
connected (simple) RNNs, basic (vanilla) RNNs, bidirectional LSTM networks,
stacked LSTM networks, LSTM AE, and gated recurrent units (GRU), are
tested for their inherent ability to model temporal dependencies and retain
long-term memory. Recurrent networks excel at recognising and memorising
longer patterns in sequential data, compared to algorithms like a multi-layer
perceptron or similar, which is valuable for vessel trajectory prediction, where
historical movement plays a significant role in forecasting future positions.
Prediction accuracy for each architecture is evaluated by varying the number of
cells in the hidden layer, incorporating meteorological data, and applying
various coordinate system transformations to enhance prediction quality. While
transformer models with attention mechanisms have shown great success in
fields like natural language processing, preliminary experiments conducted
during this study indicated no significant improvement over RNNs for the AIS
dataset used. Due to their higher computational demands when processing
extensive time series data, transformers were not explored in greater depth;
however, further detailed analysis could be undertaken as part of future research.
Meanwhile, transformers often require larger training datasets and substantial
fine-tuning to achieve comparable performance for long-term time-series
predictions. One of the articles [85] presents results where the attention
mechanism did not improve the trajectory prediction. In contrast, recurrent
networks are well-suited for time-dependent tasks and provide a balance
between computational efficiency and prediction accuracy, making them more
appropriate for the specific requirements of vessel trajectory forecasting in this
thesis.

Additionally, categorical vessel type data and meteorological data are
incorporated into the models to enhance trajectory predictions. Different
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categorical encoding techniques, such as ordinal, one-hot, and multidimensional
embedding, are employed to assess the impact on prediction accuracy. Long-
short memory models are used for recursive multi-step forecasting across these
encoding techniques.

Two datasets are utilised in this research. The first dataset, from the
Netherlands (North Sea) coastal region, tests different RNN architectures
and determines the most accurate prediction model. Results show that the
bidirectional LSTM and LSTM AE network architectures provide the most
precise vessel trajectory predictions, with minimal variance even with the
most minor cell selection. The AE network architecture demonstrates reliable
performance, depending on the appropriate cell size selection, particularly with
increases in 100 and 150 cells. Experiments, arguments and discussions from all
the studies are presented in the results section of this thesis.

The second dataset focuses on the Baltic Sea region, which was selected
due to its high maritime activity and complexity. The previously identified top
three RNN architectures - LSTM AE, bidirectional LSTM, and GRU - were
rigorously re-evaluated and tested with the new AIS dataset. These experiments
involved deeper investigations, including extensive hyperparameter fine-tuning,
comparative analyses of various spatial coordinate system transformations
(WGS84 and UTM projections), integration of meteorological data, and the
application of advanced vessel collision detection techniques. Moreover, the
models were validated using real-case maritime incidents, notably the 2021
collision between the cargo ships Scot Carrier and Karin Hoej, demonstrating
their practical applicability and reinforcing their effectiveness in real-world
maritime safety scenarios.

To ensure the reliability of the predictions, deep RNN models are combined
with statistical uncertainty quantification techniques to produce reliable collision
risk assessments. Bounds are constructed and compared based on prediction and
confidence intervals (PIs, CIs), ellipsoidal prediction regions (EPRs), and
conformal prediction regions (CPRs). These techniques are applied to simulated
test scenarios and actual case studies to validate the effectiveness of approaches.

The findings indicate that DL models with advanced predictive capabilities
and integrated reliability indicators can significantly enhance navigational
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decisions and pre-emptive maritime safety strategies. The integration of
categorical vessel-type data, meteorological data, and predictive trajectory
bounds ensures accurate and reliable vessel trajectory predictions. This approach
encourages a shift toward more proactive, AI/ML-enhanced maritime risk
management protocols, ultimately contributing to the prevention of incidents
and promoting safer navigation.

Related Thesis Work

To demonstrate relevance in maritime awareness at the doctoral level, the
following PhD dissertations in this field will be examined.

One of the earliest doctoral theses in this field, presented by Philipp
Last [45] in 2016 at Jacobs University Bremen, Germany, primarily addressed
short-range predictions. These predictions visualised potential vessel movements
within a short time frame, helping mariners identify collision risks. The
system aimed to enhance decision-making for collision avoidance by indicating
the radius of potential vessel movements with uncertainty bands, allowing
mariners to take preventive actions. The thesis did not employ explicit dynamic
models such as collision risk probability metrics or ship domain infringement
evaluations. Instead, it relied on visual analysis tools and a background model
derived from AIS data to flag abnormal behaviours, such as vessels deviating
from traffic directions or leaving restricted waterways. These features were
intended to assist vessel traffic services (VTS) operators in identifying and
addressing risky situations, indirectly contributing to collision detection.

The study primarily focused on Class A AIS systems used by professional
vessels, including cargo ships, tankers, and passenger ships. Its approach did not
involve learning from data or adopting pattern-based models (e.g., supervised
learning, clustering, or neural networks). Instead, it utilised fixed mathematical
rules derived from the vessel’s physical state and dynamic AIS data, classifying
it as rule-based or physics-based modelling rather than ML. The prediction
algorithm was a motion model based on dynamic AIS data, such as speed over
ground (SOG), course over ground (COG), and rate of turn (ROT). Linear
extrapolation with adjustments for dynamic parameters formed the basis of
this model. However, the accuracy of predictions depended heavily on the
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consistency of AIS reporting intervals and the availability of dynamic data fields
(e.g., ROT and heading). Missing or inconsistent data increased uncertainty and
led to prediction drift.

In 2021, Lei Du [25] defended a doctoral thesis at Aalto University,
Finland, introducing a novel framework for maritime traffic risk assessment,
emphasising near-miss detection based on ship manoeuvres. The research
integrated the non-linear velocity obstacle (NLVO) algorithm to model the
spatiotemporal relationships between vessels, projecting collision risks into
velocity domains. This method identified conflicting velocities, termed the
velocity obstacle zone, to determine whether a vessel’s current trajectory
posed a collision risk. The framework used AIS data to calculate multiple risk
indicators, such as perceived navigator risk, action quality, and compliance
with COLREGs, tailored for both ship pairs and multi-vessel encounters. The
study highlighted that collision risks were concentrated in high-density traffic,
such as the Gulf of Finland and waterways near Stockholm and Turku. It also
incorporated vessel attributes, such as type, size, and manoeuvrability, to
customise risk assessments. For instance, passenger ships were found to adopt
earlier evasive manoeuvres than cargo ships and tankers, reflecting different risk
perceptions and operational strategies.

However, the thesis assumed that vessels primarily change course, not
speed, to avoid collisions, which may not fully reflect real-world behaviour,
particularly in close-quarters scenarios. Environmental factors, such as wind
and currents, were excluded from the risk modelling, potentially limiting the
accuracy in dynamic maritime environments. While the results aligned with
earlier studies in the Baltic Sea, broader validation across different regions
and environmental contexts remains unexplored. This work underscores the
importance of combining AIS data with manoeuvre-based analysis for maritime
safety while highlighting the need for expanded environmental considerations
and real-world validations to achieve more robust results.

In 2021, Brian Murray [63] defended his doctoral thesis at the Arctic
University of Norway. The research focused on enhancing navigational safety
by emulating human-like situational awareness through historical AIS data. It
explored three levels of situational awareness: perception of the environment,
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comprehension of the situation, and projection of future dynamics. By leveraging
clustering techniques such as Gaussian Mixture models and hierarchical
density-based clustering (HDBSCAN), the author categorised ship behaviour
into distinct patterns and matched observed trajectories to these clusters.
Predictive models were developed to project future ship behaviours within a
30-minute window, supporting proactive collision avoidance. Additionally, the
research introduced methods for live trajectory predictions, aiming to improve
computational efficiency and accuracy in maritime traffic regions.

Despite these contributions, the study had notable limitations. It did not
incorporate meteorological data or parameters, which are critical for capturing
real-world conditions that affect ship behaviour. Collision risk assessments
relied on conventional techniques such as CPA and ship domain evaluation.
However, the research did not address multi-vessel encounters or scenarios
involving proactive collision avoidance by both vessels. Furthermore, while the
methods aimed to enhance situational awareness for navigators, the effectiveness
of long-range predictions in operational settings was not validated, leaving a
gap in assessing their practical utility. The study emphasised the need for
further exploration of classification techniques, hyperparameter tuning, and the
integration of long-range and short-range prediction models to achieve more
comprehensive solutions.

Finally, in 2024, Lubna Mohamed Eljabu [27] defended a doctoral
thesis at Dalhousie University, Canada. The thesis contributed to Maritime
Situational Awareness (MSA) through advanced data-driven frameworks for
destination port prediction. It focused on detecting maritime routes, identifying
anomalies, and predicting vessel destination ports by clustering trajectory
segments and employing similarity measures such as Discrete Fréchet Distance
(DFD) and Dynamic Time Warping (DTW). The author effectively segmented
trajectories and created graph representations of maritime routes, enhancing the
understanding of traffic flows and facilitating predictive modelling. Nonetheless,
the study did not extend its analysis to evaluate potential collision risks,
limiting its application in safety-critical scenarios. Reliance on similarity-based
clustering posed challenges in offshore environments with less structured
trajectory patterns. Overlapping clusters also complicated the classification
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tasks, occasionally resulting in misclassification.

The thesis did not address the evaluation of prediction uncertainty,
proposing it as a direction for future work. Monte Carlo simulations and
Polynomial Chaos Expansions (PCE) were suggested as potential methods for
assessing prediction uncertainties. While these techniques offer analytical rigour,
they were not implemented or evaluated in the research, leaving uncertainty
quantification as a theoretical proposition. These limitations highlight an
area for future research to strengthen the robustness and reliability of vessel
destination predictions.

These dissertations show the relevance of and interest in the topic
internationally because, as will be seen later, the number of individual articles in
scientific journals is growing. Two recent theses by Lithuanian researchers also
explore ML applications in maritime traffic.

The first thesis, titled "Machine learning-based prediction of the behaviour
of marine traffic participants and discovering non-standard marine traffic
situations" by Andrius Daranda [22], explores the application of ML methods
for manoeuvre modelling and threat assessment to enhance maritime safety.
Daranda’s work primarily uses clustering techniques like DBSCAN/OPTICS to
segment historical marine traffic data and ML algorithms to predict turning
points and vessel routes, aiming to support safe navigation planning. The
study also introduces a contextual knowledge method to evaluate threats in
manoeuvring situations.

While the study successfully utilises clustering methods to reduce data
size, its focus is more on route planning than precise trajectory prediction,
limiting its application in real-time collision avoidance. The prediction model
primarily forecasts the next turning point based on cluster centres, with limited
consideration of continuous movement dynamics such as vessel speed and
heading changes. Although neural networks, including RNNs and LSTMs, are
briefly mentioned, their potential for handling sequential data is not fully
utilised. The reliance on multi-layer perceptron (MLP) single-step predictions
instead of leveraging recursive strategies overlooks the benefits of temporal
dependency modelling, which is critical for accurate multi-step trajectory
forecasting and collision risk assessment. Furthermore, while clustering is used
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to detect anomalies, there is limited discussion on how these anomalies correlate
with collision risks, especially in the context of real-time AIS data. The choice
of parameters for clustering methods and the dependence on geographical
location are also important considerations. The study’s application of SVMs for
predicting manoeuvre points is based on static cluster results, lacking the
dynamic adaptability necessary for real-time safety assessments. As a result,
clusters that are "outliers" are considered an anomaly simply because their route
is not historically intensive. Integrating more advanced techniques, such as
recursive forecasting with RNNs and region-based methods like EPR and
CPR for assessing overlapping boundaries, could enhance the approaches’
applicability for predicting vessel trajectories and evaluating collision risks,
aligning more closely with the research focus on maritime safety.

The second thesis, "Semi-supervised and Unsupervised Machine Learning
Methods for Sea Traffic Anomaly Detection" by Julius Venskus [95], explores
marine vessel traffic anomaly detection as an extension of maritime situational
awareness. This work suggests combining AIS data with meteorological data,
utilising six key parameters (wind direction, speed, wave direction, height,
day/night cycle, and tide level) to predict vessel movements under various
traffic and weather conditions. A notable strength of this research is the use
of a multi-layer LSTM architecture to fill in missing data, enhancing the
dataset’s quality for downstream tasks. Additionally, the thesis introduces
upper and lower bounds models to calculate prediction regions, supporting
uncertainty estimation. The study also presents a modified self-organising
map (SOM) algorithm for classifying marine vessel movement data into
normal and abnormal classes, retraining strategies for SOM methods, a vessel
type prediction method using LSTM, and two LSTM-based methods for
unsupervised detection of abnormal marine vessel trajectories. These methods
aim to improve maritime situational awareness for smaller ports with moderate
traffic and enhance the detection of anomalous trajectories in larger areas with
substantial traffic.

Some observations can be made regarding the two theses. The focus is
primarily on data preparation, missing data imputation, and anomaly detection,
with less emphasis on trajectory prediction or collision risk assessment. While
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the usage of prediction boundary methods (upper and lower interval bounds)
is beneficial, these methods are more suited for data following a normal
distribution, which is often not the case in maritime traffic. Different vessel
types were also separated into distinct data samples, requiring additional
pre-processing and data handling. This segmentation approach contrasts
with methods integrating categorical data, such as embedding layers or one-
hot encoding, to create a unified dataset for diverse vessel types. Despite
these observations, the thesis offers valuable insights into anomaly detection
and advances the application of unsupervised and semi-supervised learning
techniques in maritime situational awareness.

2.3 Short-and Long-Term Predictions Using Multivariate
Data

Time series forecasts are widely used in the transport sector for various purposes.
Models have been developed to make short-term predictions, such as one-step
ahead forecasts [57, 85], where only the immediate next position is predicted.
Additionally, some approaches utilise rolling forecasting [22], a form of iterative
multi-step prediction where forecasts are continuously updated one step at a
time. The model is retrained using the latest observations and prior predictions
at each step. However, such forecasts may become increasingly distorted
over longer horizons as they rely on previously predicted values rather than
actual data, causing error accumulation. In maritime prediction, multi-step
multivariate prediction refers to the ability of a model to forecast multiple
future positions of a vessel over time using various input variables. Instead of
predicting the next immediate position, a multi-step model can simultaneously
extrapolate the vessel’s coordinates for several future time steps, allowing for
more comprehensive trajectory predictions.

Multivariate prediction involves the use of multiple features to inform these
forecasts. This can include data on the vessel’s current speed, heading, latitude,
longitude, vessel type, and relevant meteorological information in maritime
scenarios. By incorporating these diverse variables, the model can capture the
complex interactions and dependencies that influence a vessel’s movement.
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Thus, a multi-step multivariate model in maritime traffic prediction can
provide detailed and extended forecasts of a vessel’s future positions, leveraging
a rich set of input data to enhance the accuracy and reliability of the trajectory
predictions. Two WGS parameters are sufficient for the extrapolation of the
trajectory prediction data: longitude and latitude, which are time-varying and
can be geographically determined.

Predicting vessel trajectories holds increasing significance in maritime
safety, environmental conservation, and the optimisation of port operations. The
intricacies of maritime activities, encompassing diverse elements such as
weather conditions, vessel attributes, and human behaviour, pose significant
challenges to accurately predicting vessel trajectories. Typically, forecasts rely
on historical numerical data collected from AIS stations [17, 18, 74, 104, 113].
However, these predictions often overlook the distinct traffic characteristics of
different vessel types.

Situational awareness of maritime traffic is a key factor in maritime
transport safety. Modern research is primarily concerned with the control
of autonomous vessels, collision risks [1] and anomalies [41]. Movement
trajectories are a vessel’s forward or backwards passage, which is analysed
using vessel thrusters [44] to detect maritime traffic incidents, but often does not
focus on specific vessels, as shown even in the presented thesis described in
Chapter 1. At sea, as on land, different types of transport with established routes
and traffic flows can provide an additional context for maritime mobility.

2.4 Exploring Predictive Models for Vessel Trajectory
Navigation

Maritime transport data encompass the gross weight of goods, passenger
movements, and vessel traffic across waterways. The action at sea remains
intense, with maritime flows continuing to grow. However, the sector faces
persistent challenges, particularly regarding container vessels, severe weather
conditions (e.g., strong winds, waves, and floods), collisions, and other risks,
whether natural or man-made. To mitigate risks such as collisions, scientists are
actively researching and applying various methods to monitor and predict
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vessel movements. While considered a lower-level safety component of the
broader marine environment, accidents pose significant threats to human life,
economic activity, and environmental security. A complete representation of
the marine security matrix, detailing the relationships between actors and
components of maritime safety, is provided by Bueger [10]. Monitoring and
analysing naval shipping can help to ensure safety at sea. Such surveys are
made possible by information systems, such as AIS, which provide real-time
and historical vessel tracking data. AIS data, collected via terrestrial receivers
and satellites, enable researchers to develop and apply prediction methods to
anticipate vessel trajectories [46], identify anomalies, and assess collision risks.
Such data include the geographical position of the vessels, the directions of
movement, and many other characteristics, often not only about ships but also
about their environment. Large amounts of data allow researchers to use DL
methods, which provide superior information that can be useful in obtaining
more accurate research results. Various methods have been explored for vessel
trajectory prediction in recent years, ranging from traditional motion models to
advanced ML and DL techniques. These methods include statistical approaches,
rule-based systems, and modern data-driven models such as RNNs, LSTM
networks, and transformer architectures.

One of the tools that can help ensure safety is monitoring the movement
of ships and creating intelligent systems to improve the control of routes.
Historical ship routes can refine habits and learn usual patterns from previous
movements, as in research [7, 65]. According to the publication by Rong [76],
maritime traffic behaviour is based on AIS data, consisting of three main
steps: grouping ship trajectories, waypoints, route legs identification, and ship
behaviour characterisation. Patterns are used to identify whether the vehicle is
behaving normally and not deviating from the course.

Moreover, an essential criterion of accuracy emerges. Trajectory deviations
can be categorised and addressed by clustering or regression tasks and their
combinations. Unsupervised ML techniques can effectively address trajectory
deviations and abnormal vessel movements. For example, Venskus [99],
with co-authors, applied LSTM networks to detect real-time abnormal vessel
movements by adapting unsupervised learning techniques. Additionally,
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the same author implemented a SOM with a virtual pheromone model to
classify maritime vessel movements into normal and abnormal categories [97].
Further insights were provided in another experiment, where the SOM network
retraining achieved a significant reduction in computation time, nearly 50%
faster without compromising accuracy, even when tested across different
datasets [98].

For regression tasks, the focus is on predicting continuous trajectory
values, enabling the precise forecasting of vessel movement. Supervised
learning techniques, particularly neural network architectures, have been widely
applied. For instance, RNNs and LSTM networks are often combined with data
reduction techniques, such as convolutional neural networks (CNNs), to forecast
vessel traffic based on sparse trajectory (GPS) data [8, 23, 73]. Similarly,
spatiotemporal methods, such as those proposed by Wang [105], divide regional
flows into hexagonal grids for improved prediction accuracy. In comparative
studies, LSTM networks have demonstrated significant advantages in forecasting
cargo traffic, often outperforming classical methods like ARIMA, even with
incomplete time series values [51, 110]. LSTM networks are particularly
effective in automatically capturing spatial and temporal dependencies in traffic
flow data, as highlighted by Zhang [118]. Over recent years, AEs have gained
prominence for their ability to compress high-dimensional input data into a
latent space and reconstruct it, making them valuable for generative modelling.
These techniques have been successfully applied in maritime traffic predictions,
as demonstrated in studies by Capobianco [12] and others using dual-linear AE
approaches [64].

Geographical location is critical in positioning a vessel’s trajectory to solve
prediction problems. Across various architectures, geographic coordinates
(longitude and latitude) are widely used as inputs for predicting multi-step
vessel trajectories [32, 87]. These coordinates are sometimes transformed into
alternative map projections to simplify distance measurements and improve
computational efficiency. For instance, cartography’s standard WGS can
be converted into the UTM projection. In this transformation, geographic
coordinates are mapped to a Cartesian system, expressed as x (easting) and y
(northing) coordinates, as demonstrated by Keller [42]. Two-dimensional
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coordinate systems like UTM have been successfully integrated into the training
of deep neural networks for trajectory prediction [3, 66, 71]. However, despite
adopting such transformations, the choice of a particular coordinate system is
often not explicitly justified, and the benefits of these transformations remain
unclear. This thesis addresses this gap by systematically comparing multiple
positioning transformations across different coordinate systems and evaluating
their impact on trajectory prediction accuracy with various RNN architectures to
identify the most effective approach for accurate vessel trajectory forecasting.

2.5 Deep RNN Architectures

The characteristics of RNNs are defined by their cyclic pathways formed through
synaptic connections, allowing the network to retain and process sequential
information over time [75]. While standard feed-forward neural networks
process data in a single pass, typical RNNs transmit information recursively
from one block to another, enabling the modelling of temporal dependencies in
data sequences. The research investigates simple RNN and improved DL
recurrent networks, LSTM and GRU, with different architectural combinations.
These improved architectures can solve the problems of vanishing gradient and
long-term dependency [100] because it has feedback links and a unique memory
management structure (cells). A typical LSTM cell comprises input, output, and
forget gates that regulate the flow of information, allowing the network to
retain or discard information over long sequences selectively. In contrast, the
GRU simplifies this mechanism by using only update and reset gates, offering
a more computationally efficient alternative while managing dependencies
effectively. These memory cells enable the processing of sequential time-step
data, where the gates dynamically adjust the information flow between units.
Unlike traditional methods, LSTM-based models better predict vessel behaviour,
offering higher precision, better adaptability, and faster prediction speeds
[88]. These advantages make recurrent networks highly effective for maritime
trajectory forecasting, particularly LSTM and GRU models. The following text
provides a detailed overview of the architectures explored in this study.
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Basic LSTM

The standard LSTM network architecture consists of a single hidden LSTM cell
layer. The general network design includes an input layer, hidden LSTM
and dropout layers, and a dense output layer (see Fig. 2.2). The hidden layer
comprises blocks of LSTM cells connected in a unidirectional sequence,
allowing information to flow through the network. These LSTM cells are
interconnected by a main status signal, regulated by the cell’s gates to control
how information is stored, updated, or discarded over time.

Each LSTM cell contains specialised gates, input, forget, and output gates,
that manage the flow of information and enable the network to retain important
long-term dependencies while filtering out less relevant data. This gating
mechanism allows the network to address common issues, such as the vanishing
gradient problem, making it well-suited for modelling sequential data like vessel
movements. The dropout layer between the LSTM and output layers is a
regularisation technique, preventing overfitting by randomly deactivating certain
neurons during training. The dense output layer transforms the processed
information into final predictions, such as future vessel positions over multiple
time steps.

Figure 2.2: Basic unidirectional and bidirectional LSTM architectures. Note:
bidirectional marked with a red line.

Bidirectional LSTM

Bidirectional LSTMs enhance the standard LSTM architecture by processing
sequence data in both forward and backwards directions. This allows the
network to capture dependencies from past and future contexts simultaneously
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[112]. In this case, forward and backwards ways are constructed in the same
single LSTM hidden layer (see a note in Fig. 2.2). The rest of the architecture
remains similar to the standard LSTM, with a dropout layer applied to the
hidden layer to reduce overfitting by randomly deactivating input units during
training. The key difference lies in the dual flow of information signals
moving in both directions, enabling the network to learn more comprehensive
sequence representations. Literature [53] suggests that bidirectional LSTM
architectures often perform better in sequence prediction tasks than their
standard counterparts.

Simple RNN

Simple RNN processes sequential data by using a loop to iterate over each
time step in the sequence while maintaining an internal state that encodes
information from previous time steps. At any given point, the hidden state is
computed solely based on the current input and the prior hidden state without
additional mechanisms for managing long-term memory. This structure allows
the Simple RNN to model short-term dependencies effectively. Still, it makes it
less capable of capturing long-term patterns due to the absence of specialised
gates for memory control.

Figure 2.3: Simple RNN and GRU architectures.

Unlike more advanced recurrent architectures such as LSTM and GRU, the
simple RNN does not incorporate input, forget, or output gates to regulate
information flow. As a result, it is more prone to issues such as the vanishing
gradient problem, which limits its ability to learn long-range dependencies in
sequential data. The overall architecture of the simple RNN is similar to that of
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other recurrent models, consisting of an input layer, hidden RNN layers, and a
dense output layer. The primary difference lies in the internal cell structure of
the hidden layers, which lack the gating mechanisms seen in the LSTM and
GRU networks (see Fig. 2.3 with RNN cells).

Gated recurrent unit

The GRU is an advanced type of RNN that simplifies the memory management
process by combining the functionalities of LSTM’s multiple gates into two key
components: the update gate and reset gate. These gates control the flow of
information within the network, determining which data should be retained and
which should be discarded, thereby addressing the vanishing gradient problem
and enabling the model to capture longer-term dependencies more effectively
than a Simple RNN.

The update gate regulates how much past information should be carried
forward to future time steps, functioning similarly to the LSTM’s input and
forget gates combined. On the other hand, the reset gate determines how much
of the previous information to forget when computing the current state, allowing
the model to reset memory as needed adaptively. The overall architecture of the
GRU network is similar to that of a basic LSTM or RNN, consisting of an input
layer, hidden layers, and a dense output layer. The primary difference lies in the
cell structure within the hidden layers, where GRU cells replace LSTM or
standard RNN cells (see Fig. 2.3 with GRU cells).

Stacked LSTM

An extension of the standard LSTM architecture is the Stacked LSTM, which
consists of multiple LSTM layers stacked on top of one another to create a
deeper network [50]. Unlike the basic LSTM, which has a single hidden layer,
the stacked architecture allows the model to learn more complex and abstract
temporal patterns by passing information through multiple processing layers. In
this configuration (see Fig.2.4), the output from each LSTM hidden layer serves
as the input for the next hidden layer, enabling hierarchical feature extraction
across the sequence data.
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Figure 2.4: Stacked LSTM architecture.

A dropout layer is incorporated under each hidden LSTM layer to improve
generalisation and prevent overfitting. This dropout layer randomly deactivates
a portion of neurons during training, encouraging the model to learn more
generalised patterns. Based on findings in the literature [96], which compared
network accuracy across different layer depths, the stacked LSTM architecture
in this study was designed with three hidden LSTM layers.

LSTM Autoencoder

The LSTM AE is a specialised neural network designed to learn efficient data
representations by compressing input data into a lower-dimensional space
and then reconstructing it back to its original form [64]. This architecture is
particularly effective for sequence data, enabling the network to capture complex
temporal dependencies and patterns. The LSTM AE consists of three main
components (see Fig. 2.5): the encoder, the latent space vector, and the decoder.

The encoder compresses the input sequence into a compact latent
representation. This is achieved by processing the sequence through LSTM
layers that capture the temporal structure of the data and condense it into a
single vector that summarises the entire sequence. The resulting latent vector is
repeated n times to prepare it for decoding, where n is the number of time
steps in the output sequence. The decoder takes this repeated latent vector
and attempts to reconstruct the original input sequence. Using LSTM layers,
the decoder transforms the compressed information into the target sequence,
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Figure 2.5: LSTM AE architecture.

learning to replicate the input as closely as possible. Dimensionality reduction
in the LSTM AE is achieved by adjusting the number of LSTM cells in the
encoder. By limiting the number of units, the model is forced to compress the
input data, extracting only the most relevant features for reconstruction.

2.6 Impact by Vessel Type Category

Incidents do not often change the behaviour of traffic flows. The Nord Stream
gas pipeline explosion in the Baltic Sea resulted in a ban on traffic, transit,
anchoring, diving, use of underwater vehicles, geophysical mapping and other
activities in the area due to safety and investigations [86]. In addition, additional
traffic of military and reconnaissance vessels was intensified. Changes in traffic
flows and routing of conventional vessels increase the risk of collisions between
different types of vessels. The behaviour of vessels at sea is inherently diverse
and contingent on their respective types. The predominantly quantitative data
are invaluable for probing intricate phenomena, behaviours, and tendencies. The
primary challenge lies in effectively integrating this wealth of information into
the calculations performed by DL models.

Vessels can be categorised based on their intended purpose, such as
transportation, fishing, auxiliary, or technical roles, and later they were classified
according to the geographical areas they navigate, including offshore, raiding,
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inland, or mixed routes [72]. For instance, offshore vessels sailing more than
200 miles from port cover long distances. The extensive array of ship types
and their classifications is explored comprehensively in the article [19]. The
collective impact of these multifaceted factors significantly influences overall
maritime traffic, allowing for the re-purposing of historical data in system
modelling. When applied in analysing AIS data, the recursive method has
demonstrated notable advantages in various experimental contexts [56, 76,
120]. This method has proven effective in tasks such as anomaly detection,
computation of the width of categorical routes derived from maritime traffic
data [48], and the development of optimised Seq2Seq models tailored for
short-term ship trajectory prediction [107, 116].

The integration of categorical data into ML algorithms to enhance perfor-
mance has garnered attention in diverse domains, particularly transportation and
medicine, as highlighted in the authors’ paper [70], which focuses on disease
prediction. Delving into the nuanced processing of categorical data using
various encoding techniques, Dahouda and Joe explore the comparative efficacy
of one-hot encoding and DL embedding in their article [21]. While the work
predominantly contrasts these encoding methods, it duly acknowledges limita-
tions stemming from dataset constraints and the specific binary classification
problem under consideration.

In a separate investigation, Polish researcher Sebastian Gnat [33] performed
an experiment evaluating diverse encoding techniques within regression models.
Gnat’s findings indicate that one-hot encoding exhibits greater accuracy in
classical regression algorithms. Despite potential challenges associated with
high cardinality due to dummy variables, the article [14] proposes solutions for
complex problems without compromising accuracy.

Conversely, author Changro’s study [47] asserts the viability of employing
DL embedding encoding even with very high cardinality. The advantages of
embedded encoding are not isolated, as corroborated by findings in other
publications [15, 24, 43, 78, 101]. This collective body of research underscores
the multifaceted landscape of categorical data processing within ML paradigms
and offers insights into the diverse encoding strategies that can be applied to
address specific challenges.
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After the analytical exploration, it was identified that only a limited
number of studies have systematically analysed and compared categorical
data encoding techniques, particularly in the context of recursive multi-step
trajectory prediction. Previous works have often explicitly selected specific
vessel types for individual analysis or prepared separate datasets for distinct
vessel categories. This thesis, therefore, tries to integrate multiple vessel types
into a single unified dataset and evaluate the effectiveness of different encoding
methods in preserving inter-category relationships.

2.7 Trajectory Prediction Boundaries for Collision Risk
and Uncertainty Estimation

This subsection reviews the scientific literature on vessel trajectory prediction
methods and their integration with collision risk assessment frameworks.
Traditional maritime safety systems commonly rely on deterministic collision
detection measures, such as CPA and TCPA. However, these methods provide
limited insight when vessel behaviour dynamically changes due to environmental
conditions, human factors, or unforeseen circumstances. To address this
limitation, recent studies increasingly incorporate DL techniques, notably
RNNs, to enhance the precision of trajectory forecasts and quantify associated
uncertainties. Unlike deterministic approaches, advanced probabilistic methods
utilise uncertainty estimation, such as confidence intervals, prediction intervals,
and conformal prediction regions, to offer a more comprehensive assessment of
potential collision scenarios. This review emphasizes integrating accurate
forecasts with uncertainty quantification to strengthen maritime situational
awareness and safety by examining vessel trajectory prediction methodologies
alongside collision detection frameworks.

2.7.1 Vessel Trajectory Prediction Methods and Uncertainty
Estimation

In maritime navigation, the accurate prediction of vessel trajectories is paramount
to avoiding collisions and ensuring safety at sea. A body of research has been
dedicated to addressing this challenge, utilising a variety of sophisticated
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methodologies. For instance, one study by Biao Zhang [117] and colleagues
focuses on refining the precision of ship motion predictions, especially
within complex environments characterised by non-stationary, non-linear, and
stochastic variables. This research introduces the IWOA-TCN-Attention model,
a novel predictive framework that integrates DL networks, time-sequential data,
and an attention mechanism, substantially improving the prediction accuracy.

Complementing this, another study by Rong [77] approaches maritime
traffic prediction using a dual lens, contemplating both ship destination and
route. This study distinguishes itself by its methodology of extracting vessel
motion patterns from archival data, deploying multinomial logistic regression
alongside Gaussian Process regression models to construct probabilistic
forecasts. However, it observes that the hourly forecast increases the error and
notes that additional features may hypothetically reduce this error.

The research landscape reveals a diversity of approaches for assessing
predictions of vessel trajectories, notably focusing on their utility in identifying
anomalous marine traffic patterns. The detection and analysis of abnormal
vessel trajectories are carried out in a study by Kristoffer et al. [69], who
propose a kinematic similarity measure and even provide access to labelled data
to support further research on abnormal trajectory detection.

LSTM neural networks have also played a significant role in enhancing
the trajectory prediction accuracy. For example, Mehri [61] employs LSTM
models with a context-aware approach that integrates spatial data, such as vessel
type and meteorological conditions, for data-driven movement predictions.
Additional research explores the broader application of LSTM networks in ship
trajectory prediction, showcasing their versatility in handling maritime data [39,
89, 103, 119, 121].

Uncertainty quantification methods have been introduced to enhance the
reliability of trajectory predictions. Venskus [99] proposed unsupervised wild
bootstrapping to evaluate prediction reliability, demonstrating its effectiveness
in detecting a wide array of abnormal marine traffic behaviours. Additionally,
abnormal vessel trajectories have been tested by creating multivariate cases of
prediction intervals, assuming that the trajectory entering a defined region is
considered normal.
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Graphical methods for region detection, such as those proposed by
Carnerero et al. [13], utilise convex optimisation techniques to delineate
prediction regions. The reliability of predictions for multidimensional data is
further examined using boundary estimation techniques that define regions with
predefined nominal coverage rates. Golestaneh et al. [34] have contributed to
this field by constructing and evaluating multivariate EPRs, delineating the
uncertainty inherent in multidimensional stochastic processes. While not
directly applied to ship trajectory prediction, their findings offer insights into
minimising the conservativeness of prediction regions.

Forecasting models often rely on statistical approaches to evaluate
prediction reliability. Yin et al. [114] analyse bus travel time forecasts using the
construction of PIs, and Noma and Lucagbo [58, 68] discuss multidimensional
prediction and CIs in broader contexts. However, maritime forecasting data
frequently lack a clearly defined distribution, necessitating non-parametric
techniques such as CPRs. This approach, initially introduced by Shafer [83], has
been applied in diverse fields, including pedestrian localisation scenarios [20],
and, more recently, time-series prediction interval detection [2, 91].

2.7.2 Collision Risk Assessment and Predictive Frameworks

While trajectory prediction provides the foundation for maritime safety, collision
risk assessment is equally critical to ensuring safe navigation. Ship collisions
pose significant threats to maritime operations due to their potential to cause
substantial harm. Addressing this, Ryan Wen Liu [55] lays out a comprehensive
framework for assessing and analysing ship collision risks. This framework
incorporates advanced methodologies, including the quaternion ship domain and
kernel density estimation. It integrates a ConvLSTM model for spatial-temporal
risk prediction, marking a substantial stride in maritime collision avoidance
strategies.

In expanding on collision avoidance strategies, several studies propose
advanced decision-making frameworks. For instance, Xie et al. [108] introduce a
deep reinforcement learning (DRL) approach to multi-vessel collision avoidance
that adheres to COLREGs. Their model integrates a collision risk index (CRI)
into its reward function, optimising vessel behaviour in various encounter
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scenarios. Similarly, Seo et al. [82] develop a CRI-based A* algorithm that
balances economic route optimisation with safety considerations, effectively
addressing collision avoidance routing.

Yoshioka et al. [115] present a decision-making algorithm that utilises
collision risk maps to visually represent potential risks and guide route planning,
focusing on enhancing explainability for seafarers. Zhou et al. [122] focus
on determining collision avoidance timing using an ML framework that
incorporates dynamic and static factors to guide officers on Watch (OOW).
Additionally, Liu et al. [54] propose QSD-LSTM, a novel trajectory prediction
model that integrates a quaternion ship domain to enhance the prediction of
vessel interactions in complex maritime environments.

Probabilistic models for collision risk assessment have also been explored
in previous research. Mujeeb et al. [62] assess collision risks between vessels and
offshore platforms using a model based on traffic density, causation probabilities,
and mitigation measures. However, this approach lacks adaptability to real-time
dynamic conditions. Yim et al. [111] apply multiple linear regression to analyse
the perceived collision risks based on separation distance, though their reliance
on subjective evaluations limits the model’s real-time applicability.

In 2020, Du [26] developed a COLREG-compliant alert system for
stand-on vessels that classifies conflicts into four encounter stages and nine
severity levels to improve collision risk detection under dynamic conditions.
However, uncertainties regarding ship domain boundaries remain a challenge
in this framework. In 2024, Lin [52] introduced an encoder-decoder LSTM
model for regional collision risk prediction, achieving high accuracy but
facing limitations due to aggregation density and clustering uncertainties.
Likewise, Gao [30] (2024) employs ST-ENAGCN (spatiotemporal edge-node
attention graph convolutional network) to analyse multi-ship collision avoidance
scenarios. Yet, this approach may not fully address ship domain boundary
uncertainties, which are crucial for reliable collision risk assessment.

Additional research has focused on risk evaluation frameworks. Studies
such as those by Weng [106], Tritsarolis [92, 93], and Jia [37] delve into
collision risk assessment using probabilistic and statistical methods, further
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highlighting the complexity of accurately predicting and mitigating maritime
collision risks.

The thesis addresses the limitations of prior work by using a DL based
trajectory forecasting framework enhanced with advanced uncertainty quantifi-
cation techniques, including EPR, CPR, CI and PI. These approaches estimate
the probability distribution around RNN forecasts within defined trajectory
boundaries and compute collision risk scores from their overlaps, enabling more
reliable and proactive real-time maritime risk assessments.

By applying these predictive boundaries to real-world scenarios, such as
the 2021 collision between Scot Carrier and Karin Hoej, we demonstrate
the effectiveness of DL models in improving maritime safety with a 95%
confidence level. Our approach also integrates reliability indicators, particularly
emphasising the strength of conformal prediction in accurately predicting
potential collision scenarios. As the reviewed articles indicate, one specific
method or its derivatives is typically used to define prediction boundaries.
Therefore, this study applied various methods to specify the domain region of
vessels based on predictions from DL models while assessing the probability
score of collision risk for vessels in actual historical accidents.

2.8 Summary of the Chapter

This chapter reviewed the literature on advanced methodologies for multi-step
multivariate vessel trajectory prediction, emphasising their importance in
improving maritime situational awareness and safety. A particular focus was
placed on RNNs, especially advanced architectures like LSTM and GRU, for
their ability to process sequential maritime data. With their feedback links and
specialised memory structures, these networks effectively address challenges
such as the vanishing gradient problem and long-term dependencies, offering
high precision and adaptability in trajectory prediction. Given that large vessels,
such as tankers, require up to half an hour to come to a complete stop, accurate
long-term forecasts, mainly those made 20–25 minutes ahead, are crucial for
preventing collisions. Since AIS signal data are semi-structured and often
incomplete, extracting meaningful vessel behaviour patterns requires analysing
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spatiotemporal characteristics across multiple variables. As vessel movement
depends on various interrelated factors such as latitude, longitude, speed,
vessel type, and environmental conditions, trajectory prediction is inherently
a multivariate problem that requires models capable of capturing complex
dependencies within large-scale maritime data.

The review also highlighted the critical role of maritime awareness,
addressing the increasing maritime traffic, diverse vessel classifications, and
ongoing challenges like collisions and adverse weather conditions by applying
various methods. While some studies focus on anomaly detection using
unsupervised learning techniques such as data clustering, others employ
regression-based supervised learning to predict continuous vessel trajectories to
forecast vessel movement based on sparse GPS and AIS data. Moreover, the
impact of different coordinate system transformations has been explored in
previous research, demonstrating that the choice of representation, whether
WGS84 or UTM, can affect prediction accuracy. This is attributed to advantages
such as improved spatial distance calculations, uniform data scaling, and
enhanced clustering of ship movements. The transformation ensures consistent
distance metrics using Euclidean calculations rather than geodesic formulas, and
simplifies model computations. Furthermore, UTM projections provide a
structured view of AIS data, preventing distortions caused by latitude-longitude
scaling differences. These findings reinforce the need to investigate further
coordinate transformations in vessel trajectory forecasting and expand the
research focus beyond anomaly detection, allowing for long-term trajectory
predictions to be analysed later to identify deviations, unusual behaviour, or
other maritime risks.

Additionally, the chapter explored categorical data encoding studies for
integrating vessel-type information into predictive models alongside various
methods for defining prediction intervals and boundaries to assess the reliability
of model predictions. Some studies analysed vessel types separately by splitting
them into different datasets. In contrast, others focused only on a limited number
of vessel categories, potentially overlooking the relationships between various
types of ships. This highlights the need to investigate methods for integrating
multiple vessel types into a single prediction framework while preserving their
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inherent dependencies. When predicting vessel trajectories, an important aspect
is estimating the uncertainty of predictions, particularly in scenarios involving
multiple vessels in close proximity. Many studies focus on forecasting a single
vessel’s movement without explicitly considering how surrounding vessels
influence the overall risk of collision. Some researchers suggest that uncertainty
estimation could improve collision risk assessment, but few have implemented it
in practical applications. Existing approaches often assume that trajectory errors
follow a specific distribution (e.g., Gaussian), which may not accurately reflect
real vessel movement. As a result, non-parametric methods, which do not
rely on strong distributional assumptions, have been explored as alternative
solutions. Techniques such as Monte Carlo simulations have been proposed in
the previously analysed thesis. Still, other PI-based methods, including PI, CI,
EPR, and CPR, may provide a more flexible way to estimate uncertainty and
assess the probability of vessel interactions. Investigating these approaches is
essential for improving trajectory accuracy and the ability to detect potential
collision risks based on surrounding vessel movements.
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3 Guidelines on Methods

This chapter provides an in-depth analysis of the methods employed in the thesis,
highlighting new insights and advancements in vessel trajectory prediction and
maritime safety. One of the key innovations of this research is the development
of a recursive recalculation logic for forecasting outputs. Rather than building
models directly with specific (absolute) coordinate sequences, the study
identifies the differences between vector sequences. These differences are then
predicted and recursively extrapolated to determine the vessel’s future positions
based on the last known location. This approach enhances the accuracy and
reliability of trajectory predictions.

The chapter begins by exploring multi-step recursive models and explaining
this novel approach’s theoretical foundations and practical applications. It
then delves into various categorical data encoding techniques, including
ordinal encoding, one-hot encoding, and embeddings, which are important
for integrating categorical vessel-type data into DL models. These encoding
methods are compared to assess their impact on prediction accuracy.

Subsequently, the chapter addresses prediction intervals and boundaries,
which are essential for evaluating the reliability of predictive models. Detailed
discussions on PI, CI, EPR, and CPR are provided. These techniques offer
a probabilistic understanding of potential future vessel positions, enabling
dynamic assessments of collision risks and strategic planning to mitigate such
risks. The study demonstrates how DL models can effectively identify high-risk
scenarios and enhance maritime safety by integrating confidence levels and
prediction boundaries. These methods were presented in the main papers by
Jurkus et al. [A.1, A.2, B.1, B.2].

3.1 Multivariate, Multi-step and Recursive Models

The paradigm of multi-step forecasting extends beyond traditional single-step
predictions by forecasting a series of future values rather than only the immediate
next step. This approach is particularly valuable in maritime scenarios, where
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predicting vessel positions several time steps ahead is critical for timely risk
assessment and collision prevention. In multi-step forecasting, prediction
models are trained using sequences of historical AIS data containing various
features, such as latitude, longitude, speed, and heading, to output sequences
of future predicted values. Longitude and latitude determine an object’s
geographical location according to the globally accepted WGS84, which uses
polar coordinates. Latitude specifies the north-south position relative to the
equator, while longitude measures the east-west position relative to the prime
meridian. Thus, each sequence represents a chronological vessel movement
from one geographical point to another at determined time intervals. The neural
network uses such historical positions as input, while the output sequence
represents future positions that the model learns by optimising the selected
architecture’s loss function. A simple visual example is presented in Figure 3.1.

Figure 3.1: Multivariate multi-step structure of RNNs.

This multi-step forecasting approach is a supervised learning technique
because it relies on labelled historical data for training. The labels in this context
are multivariate, specifically consisting of actual geographic coordinates (latitude
and longitude) representing vessel positions over time. During the model
evaluation, these labelled sequences allow predictions to be directly compared
against actual vessel movements, thus enabling the objective assessment
of predictive accuracy and reliability. Given the inherent spatio-temporal
complexity of vessel movements, multivariate input data are essential to capture



58 Chapter 3. Guidelines on Methods

and accurately predict future trajectories. The prediction outputs are also
multivariate since each forecasted point consists of multiple features, typically
latitude and longitude coordinates. These models iteratively reuse previous
predictions as inputs, progressively extending the forecasting horizon.

Several transformations were applied in this study. Instead of directly
using geographic coordinates, the Haversine distance and azimuth angle were
calculated, from which geographic positions were recalculated. Additionally, the
Cartesian coordinate transformation using the UTM projection was employed.
In these experiments, the original structure remains the same, but in the output
of the network, for example, longitude and latitude are replaced by distance and
turning angle. A more detailed transformation experiment is described in the
paper [40].

The approach applied in this study involves transforming the geographic
coordinates (latitude and longitude) into two new spatial features: distance
and turning angle. The distance between two consecutive vessel positions is
calculated using the Haversine formula, which measures the shortest distance
between two geographic points along the Earth’s surface. This formula
calculates distances based on the Earth’s curvature and a mean radius of
approximately 6,371 kilometres. While accurate for short distances, the error
may slightly increase over long distances due to the Earth’s irregular shape.

The second feature involves calculating the azimuth angle, which indicates
the directional bearing from one vessel position to the following relative
to the geographic north. Azimuth angles range from 0° to 360°, measured
clockwise, with 0° corresponding to true north. The networks capture more
meaningful spatial and directional relationships by training the prediction
models using these derived distance and angle features. Subsequently, the
predicted distance and angle values are combined with the last known vessel
position to reconstruct a series of geographic coordinates, effectively providing
an accurate representation of future vessel trajectories.

The UTM projection was another transformation applied in this study.
Unlike geographic coordinates, UTM is a global coordinate system defined in
meters, allowing locations to be identified with high precision. The UTM
grid divides the Earth’s surface into 60 longitudinal zones, each spanning 6
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(a) (b)

Figure 3.2: Coordinate transformations: (a) UTM projection in the Netherlands
region; (b) distance and angle calculation projection (input is blue, output is
green).

degrees. Within these zones, positions are expressed using two coordinates,
easting and northing, analogous to x and y coordinates in a Cartesian coordinate
system. Each zone has a central meridian with an assigned false easting value of
500,000 meters to avoid negative coordinates. Specifically, the Netherlands
region, which serves as part of this study’s dataset, falls into UTM zone 31.

The transformation from longitude and latitude to UTM coordinates
employs trigonometric functions, resulting in x coordinates increasing eastward
and decreasing westward relative to the central meridian and y coordinates
increasing northward and decreasing southward. By converting geographic
positions into two-dimensional Cartesian coordinates, the scale of maritime
traffic routes can be better represented and analysed. In this study, the recurrent
neural network architectures are trained using these UTM coordinates and
formatted into flattened output vectors. Predictions made by these models are
subsequently reconverted from UTM back to WGS84 geographic coordinates,
ensuring compatibility and allowing comprehensive evaluation of the predicted
vessel trajectories against actual routes. The concepts for both transformations
are given in Figure 3.2.

Nevertheless, forecasting over extended horizons introduces inherent
challenges. Accumulating errors over successive predictions can compromise
forecast accuracy over longer prediction intervals. The study applied recursive
data extrapolation techniques to address this, particularly with transformations
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like Haversine distances, azimuth angles, and UTM projections. This recursive
approach allows improved accuracy by reducing cumulative error propagation,
thereby ensuring the adaptability and effectiveness of the model in managing the
complexities associated with multi-step predictions.

Figure 3.3: Recursive multi-step trajectory prediction model.

Vessel trajectory prediction constitutes a regression ML task falling under
the domain of supervised training, necessitating the availability of labelled data.
Within the RNN architectures, the input comprises sliced sequences, each
mirroring the aforementioned matrices’ length, with vessel features as the key
inputs. Concurrently, the output matrix typically represents the continuous
input coordinates of the vessel, effectively capturing the vessel’s evolving
trajectory. In this specific context, the sequence output deviates (∆lat, ∆long)
from direct geographical coordinates, instead presenting the disparity between
their respective vectors. To generate labels for this sequence output, the actual
(real) coordinates are computed by incorporating the last input timeline and
calculating the coordinate differences relative to it. During the predictive phase,
wherein the model anticipates these differences, retrieving actual coordinates
necessitates an additional step: vector addition (see Figure 3.3). Ingrained in the
architecture, this intricate process exemplifies the meticulous orchestration
required to transform predictions into meaningful geographical coordinates
within vessel trajectory prediction.

The sequence defined in Equation (3.1) can be illustrated through the
following simplified example. In this scenario, the input encapsulates vessel
features at distinct time points. For simplicity, assume the first two columns
denote longitude and latitude coordinates, and the output exclusively features
these coordinates. As highlighted in the predictions line, the neural network
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isn’t trained on precise geographical coordinates (or using other transformation
features as UTM coordinates) but learns disparities within these delta coordinates.
This concept is elucidated further in the comprehensive discussion in the
article [40]. The neural network yields learned differences as part of its output.
Recursive derivation of the original geographical coordinates from the last input
point unveils a more accurate prediction, particularly in the short term. This
demonstration underscores how the network’s training on coordinate differences
facilitates a more precise prediction of geographical coordinates, enhancing the
model’s efficacy.

Original Input and Output:
[
[1,1, . . .] [2,2, . . .] [3,3, . . .] . . . [4,4] [5,5] [6,6]

]
Output (differences):

[
(4−3,4−3) (5−4,5−4) (6−5,6−5)

]
Predictions:

[
[1,1] [1,1] [1,1]

]
Input and Output:

[
[1,1, . . .] [2,2, . . .] [3,3, . . .] . . . [1,1] [1,1] [1,1]

]
Output (based on the last point):

[
[3,3, . . .] . . . [4,4] [5,5] [6,6]

]
(3.1)

Recursive forecasting encompasses creating lagged features from the
target series and training ML models on delta features rather than absolute
positions. Past predictions are recursively utilised to generate new lagged
features as the prediction extends into the future. Precisely, models predict
incremental differences (deltas) between consecutive points rather than directly
predicting absolute positions. These predicted deltas are subsequently added
to the most recent absolute position, reconstructing future positions in the
trajectory. For instance, as illustrated in the equation above, the original absolute
positions are [1,1], [2,2], [3,3]...[4,4][5,5][6,6] are transformed into differences
(4−3,4−3),(5−4,5−4),(6−5,6−5). Predictions are then made on these
differences, and future absolute positions are reconstructed recursively by
adding predicted increments to the previously known absolute position. This
recursive recalculation reduces cumulative forecasting errors, thereby enhancing
the accuracy and reliability of multi-step trajectory predictions.
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Estimation of errors

The accuracy of the neural networks is initially assessed using rigorous
regression metrics in the Netherlands region dataset. These metrics, including
the Mean Absolute Error of the Haversine distance (MAEH), Mean Squared
Error (MSE, (3.2)), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Mean Absolute Percentage Error (MAPE), provide a detailed
evaluation of the model’s performance in predicting coordinate values. A
specific metric, MAEH, is derived from the Haversine distance function
based on Figure 3.4. This metric calculates the predicted and actual values
of geographic coordinates and measures the average sequence error across
multi-step points. The Haversine function facilitates distance calculations in
SI system units like meters or kilometres, offering a practical assessment of
predictive accuracy. This meticulous evaluation framework ensures a precise
and factual understanding of the neural networks’ performance in trajectory
prediction, considering diverse aspects of the predictive model. Due to its direct
spatial interpretability, MAEH serves as the primary criterion for subsequent
model evaluation and comparison. Estimates are calculated using the test
sample dataset:

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 (3.2)

where:

• n is the number of samples,

• yi is the true value,

• ŷi is the predicted value.
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Figure 3.4: Haversine distance error calculation in a trajectory.

Here, X denotes the matrix of vessel characteristics, which is the network’s
input (t = 30 time steps). Knowing the actual y and predicted direction of ŷ
movement (k = 20 time steps), it is possible to measure the distance between
each point in the time series Λk = ŷk− yk. The shortest path between two points
of a geographical position is calculated by the Haversine function (Λ), where
∆φ is latitude, ∆λ is longitude, R is the Earth’s radius (mean radius = 6,371
km), and n is the output sequence in the test dataset. Distance is measured in
kilometres. Furthermore, the total trajectory error is determined by the mean
absolute Haversine error MAEH (3.3). This principle determines how much
the predicted range differs from reality. By this logic, all architectures were
evaluated in the entire sample of test data.

MAEH =
1
n

n

∑
k=1

∣∣Λk
(
yk− ŷk

)∣∣ (3.3)
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Figure 3.5: AIS data trajectories by vessel type in the Baltic Sea region.

3.2 Encoding Techniques

Within the satellite data sample, vessel types are inherently non-numeric,
presented textually when transmitted by the vessel (see Fig. 3.5). Categorical
data, encapsulating various discrete types or labels of vessels, have over 20
unique classifications within the designated research region. Developing a
sophisticated deep ML model necessitates transforming categorical data into
a format compatible with the recurrent network algorithm. Some standard
methods for encoding categorical data are ordinal (similar to label encoding),
one-hot, and embedding techniques.

3.2.1 Ordinal Encoding

This encoding involves the conversion of each categorical value into an integer
representation. This technique is particularly relevant when the order of
categories holds significance, and preserving this order is imperative. Within the
entire region under consideration, 26 distinct vessel types exist (see Table 3.1).
In the process of ordinal encoding, values are systematically assigned and
transformed in increments ranging from 0 to 26. Notably, this assignment is
carried out randomly, acknowledging the unknown relationships between
various types of ships traversing the region. These vessel types span diverse
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Table 3.1: Ship type classification.

Ship Type ID Ship Type ID
Anti-pollution 1 Pleasure 14
Cargo 2 Port tender 15
Diving 3 Reserved 16
Dredging 4 SAR 17
Fishing 5 Sailing 18
HSC 6 Spare 1 19
Law enforcement 7 Spare 2 20
Medical 8 Tanker 21
Military 9 Towing 22
Not party to conflict 10 Towing long/wide 23
Other 11 Tug 24
Passenger 12 Undefined 25
Pilot 13 WIG 26

categories such as cargo, fishing, military, passenger, and tug. In both label and
ordinal encoding, each non-numeric category undergoes substitution with a
unique integer value. Subsequently, this encoded representation is introduced as
an additional feature, manifesting as an extra column in the input matrix at each
time step. For instance, cargo ships within the entire dataset are consistently
assigned a specific value, such as 1, facilitating the integration of ordinal
encoding as a meaningful component of the broader encoding strategy.

X (i)
Ordinal =

x(1,1)i x(1,2)i . . . x(1,n)i C(1,n+1)
i

. . . . . . . . . . . . . . .

x(t,1)i x(t,2)i . . . x(t,n)i C(t,n+1)
i




Ci

0
1
...

26

 (3.4)

In this input matrix (3.4), the index i represents different samples of
sequences, where x is the vessel feature (speed, coordinates, etc.), and each
sample has its label-encoded values C for the ship type (category number)
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feature at each time step t. The input of the recurrent neural network consists of
a three-dimensional matrix made up of the axes: the samples/sequences, the
time steps, and the vessel features.

3.2.2 One-hot Encoding

This encoding involves the transformation of categories into a binary system,
generating new attributes by allocating a value of one to the specific category
of interest and zero to all other categories. This technique adopts a binary
representation, efficiently capturing the presence or absence of each category
within the dataset. However, it is essential to acknowledge a notable drawback
associated with one-hot encoding, where each distinct category creates a
separate feature. Consequently, when dealing with a substantial number of
elements, the data matrix expands significantly, influencing the overall shape of
the data (with a subsequent increase in network parameters). For instance, if a
cargo ship is present in the dataset, the corresponding column in the encoded
matrix is set to 1. In contrast, all other categorical columns are uniformly
assigned a value of 0. This distinctive binary representation forms a fundamental
aspect of the one-hot encoding technique, albeit with considerations for its
impact on data dimensionality.

X (i)
One-hot =

x(1,1)i . . . x(1,n)i C(1,n+1)
i . . . C(1,n+ j)

i

. . . . . . . . . . . . . . . . . .

x(t,1)i . . . x(t,n)i C(t,n+1)
i . . . C(t,n+ j)

i




C1
i C2

i . . . C j
i

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


(3.5)

For instance, input matrix (3.5), for each different vessel type, it is required
to create an additional feature in the dataset [i, t,n+C j], where i is the sequence,
t is the time series, and n is the features combined with the one-hot encoding
matrix C j (binary values). Here, each vessel type is transformed into a binary
vector j.
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3.2.3 Embeddings

Embeddings is a process that reduces the dimensionality of data and preserves
the relationships between categories. In this technique, the embedding
layer changes the ordinarily assigned values for each vessel type and turns
positive integers (indices) into fixed-sized dense vectors. This study tests three
dimensions of the embedding matrices: 1D, 2D, and 3D. Embedding involves
representing categorical data as continuous vectors in a lower-dimensional space
(3.6), allowing the model to learn meaningful relationships between categories.

E =


e1,1 e1,2 . . . e1,d

e2,1 e2,2 . . . e2,d
...

...
. . .

...
e j,1 e j,2 . . . e j,d

 (3.6)

The model maps j unique categories in the dataset to an embedding layer
with d dimensions. Each type is tokenised, and a dictionary is created. The
dictionary lists unique ship types assigned a positive integer, as in ordinal
encoding. This prepared data passes as input through the neural network’s
embedding layer and outputs a compressed embedding matrix. During training,
the model learns the values of the embedding vectors. The embedding vectors
start with random values and are updated through gradient-based optimisation to
minimise a specific loss function. Subsequently, the dictionary converts each
sequence with a ship type to the appropriate index. The embedding layer looks
up the dense embedding vector for each category. The encoding layer facilitates
the development of a model capable of learning distinct vessel trajectories
corresponding to each categorical feature (vessel type). This means that the
LSTM AEs’ prediction trajectory will be designed for the relevant vessel type
context to include the context of ship types.

In this matrix (3.7), E represents the embedding matrix, where each row
corresponds to a unique category, and each column represents a dimension in the
embedding space. In other words, an embedding matrix is concatenated to the
numerical features of the vessel at each timestamp, which is reshaped to match
the sizes of the two matrices, as can be seen in the architecture of the LSTM AE.



68 Chapter 3. Guidelines on Methods

X (i)
Embed =

x(1,1)i x(1,2)i . . . x(1,n)i E(1)
i )

. . . . . . . . . . . . . . .

x(t,1)i x(t,2)i . . . x(t,n)i E(t)
i )


(3.7)

Embedding is particularly useful when dealing with high-cardinality
categorical features and allows the model to learn encoded representations. The
key idea is that ship types with similar meanings or contexts tend to have
similar embedding vectors, allowing the model to capture relationships between
categories. This technique is also often used in DL natural language processing
for word encoding. It helps reduce dimensionality over one-hot encoding
since the number of features can be controlled. It can be extended by adding
categorical data without fundamentally changing the architectural structure.

3.3 Prediction Intervals

This thesis investigates vessel trajectory prediction by integrating DL algorithms
with advanced statistical methods for trajectory forecasting, boundary estimation,
and collision risk assessment. DL models serve as the basis for generating
probabilistic forecasts of vessels’ future positions, explicitly accounting for
uncertainties inherent in maritime navigation. These trajectory predictions are
further analysed using statistical approaches such as PI, CI, EPR, and CPR,
defining boundaries that represent potential collision zones. Collision risk is
evaluated by comparing these probabilistically determined boundaries against
actual vessel positions, providing a dynamic and comprehensive assessment
of potential maritime collisions closely linked to the accuracy of trajectory
predictions.

3.3.1 Confidence and Prediction Intervals

CIs and PIs are statistical measures that are used to quantify uncertainty in
predictions, particularly for models that output numerical values, such as those
predicting vessel trajectories. Both intervals often rely on assumptions about
data distribution, for example, a normal distribution, and are typically derived
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from theoretical distributions. CIs estimate the range within which a population
parameter (e.g., mean) is expected to lie with a certain confidence level [59]. PIs
provide a range within which we can expect future data points to fall with a
certain confidence level, α , typically 95%. WPI is wider than WCI because it
accounts for the individual variability of each data point around the predicted
mean, not just the variability of the mean itself [49]. In our scenario, the
intervals for each time step are computed individually by aggregating point data
from various models that forecast the same sequence. This approach ensures
that the intervals accurately reflect the range of predictions and the associated
uncertainty at each specific moment, thereby accommodating the variability
inherent in the models’ outputs. A set of points at a given time containing the
predicted coordinates, the CI (3.9) and the PI (3.8) at the confidence level α

are calculated using the equations, where the upper and lower bounds are
subsequently found by adding/subtracting the sums from the sample mean and
formula expressions based on [11, 28, 84]:

WPI = t( 1+α

2 ,n−1) ·SD ·
√

1+
1
n
, (3.8)

WCI = t( 1+α

2 ,n−1) ·
SD√

n
, (3.9)

where the following applies:

• t 1+α

2 ,n−1 is the critical value of the Student’s distribution (t-score)
corresponding to the desired confidence level, α , and n−1 degrees of
freedom, where n is the sample size.

• SD is the sample’s standard deviation, representing the spread of the data
points.

• SD√
n is the standard error of the estimate, which adjusts the standard

deviation for the size of the sample.

• The term
√

1+ 1
n accounts for the added uncertainty when predicting a

single future observation rather than estimating the population’s mean.
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In standard univariate linear regression models, statistical intervals are
delineated and visualised in a relatively uncomplicated manner, typically with
time series data plotted along the x-axis and any other variable of interest
on the y-axis. However, in our scenario, the forecast data are multivariate,
encompassing longitude, latitude, and time series. For bivariate coordinate data,
these intervals are often represented as an ellipse around the mean of the data
points, capturing the uncertainty in both dimensions. Here, the intervals serve as
the ellipse’s radii. This approach is utilised to define the domain of the ship’s
trajectory, thereby accommodating the multidimensional nature of the data.

3.3.2 Ellipsoidal Prediction Regions

Unlike univariate data, which contains a single variable, multivariate data
contains multiple variables that can be related to each other. For example,
in geographic information systems (GISs), coordinates such as latitude and
longitude are often analysed together. In vessel trajectory prediction, quantifying
the uncertainty of the prediction is as important as the prediction itself. For this
purpose, the EPR is constructed to encapsulate the potential future position of
the vessel within a confidence range. EPR is mathematically formulated (3.10)
by considering the predicted trajectory points’ variance and spatial distribution
based on the author’s formulation [34]. The axes of the ellipsoid correspond
to the principal directions of variability in the data, and their lengths are
proportional to the standard deviations of the data along these directions. For
the expression of data points with mean vector µ and covariance matrix Σ, an
EPR that contains a 100(α)% portion of the distribution can be defined as

EPR = {x : (x−µ)T
Σ
−1(x−µ)≤ χ

2
p,α}, (3.10)

where x is a vector in the multivariate space, χ2
p,α is the critical value of the

chi-squared distribution with p degrees of freedom corresponding to the desired
confidence level α , and p is the number of variables. Given a set of predicted
points for a vessel’s trajectory and a centre point, the EPR can be calculated
using the provided pseudo-code, which the authors of the article provide.
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Algorithm 1: EPR Calculation
Input: points - array of latitude and longitude points
Input: center - centre point (mean) of the EPR
Output: epr - the calculated EPR as a polygon

1 hull← ConvexHull(points);
2 hullVertices← points[hull.vertices];
3 covMatrix← Covariance(hullVertices);
4 [eigValues,eigVectors]← Eigen(covMatrix);
5 con f idenceLevel← 0.95;
6 radii←

√
ChiSquaredInverse(con f idenceLevel,2)∗

√
eigValues;

7 angleArray← array of angles from 0 to 2π;
8 ellipsoidPoints← EmptyArray(size: 100, dimensions: 2);
9 for i← 1 to 100 do

10 ellipsoidPoints[i][1]← radii[1]∗ cos(angleArray[i]);
11 ellipsoidPoints[i][2]← radii[2]∗ sin(angleArray[i]);

12 end
13 rotatedPoints← eigVectors · ellipsoidPoints;
14 translatedPoints← rotatedPoints+ center;
15 epr← CreatePolygon(translatedPoints);
16 return epr

First, the convex hull surrounding all points is determined to find the outer
boundary. The covariance matrix is then derived, and eigenvalue decomposition
is performed to extract eigenvalues and eigenvectors. The chosen confidence
level (represented by α) is set to 0.95 (corresponding to 95%). The radius of the
EPR ellipsoid is calculated using the chi-square distribution, considering α and
the degrees of freedom, which, for a 2D point, are equal to 2, resulting in
the radius

√
χ2

2,α ·
√

λi. Angles ranging from 0 to 2π are then generated to
represent the ellipsoid parametrically. The surface points of the ellipsoid are
calculated using these radii and then rotated by the eigenvectors to align the
ellipsoid with the data distribution. Finally, an ellipsoid is formed from the
centre point, creating the EPR (see Algorithm 1).

EPRs have basic geometric characteristics and are classified as parametric
methods. This classification arises from the reliance on distribution parameters
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such as shape, orientation, and size to define the domain. Nonetheless,
these domains of the predictions are particularly valuable for the analysis of
multidimensional ship orbital collision data. Their usefulness becomes apparent
when the study focuses on understanding the ships’ geographical position and
spatial extent.

3.3.3 Conformal Prediction Regions

CPRs aim to provide a range (or a region, in the case of multidimensional
predictions) within which future observations are expected to fall, with a
predefined level of confidence or significance, using past data [6, 109]. CPR
leverages the past distribution of data to define prediction regions guaranteed to
contain the true value of new observations with a specified probability, assuming
that future data will resemble the past data.

For CPR, a calibration set C, consisting of data instances with known true
outcomes, is employed to calculate nonconformity measures, denoted as N.
This calibration set is distinct and non-overlapping with the model’s training and
test sets, ensuring the utilisation of validation samples previously employed to
ascertain the model’s accuracy during its training phase.

We use Yt to denote the actual multivariate coordinates at time step t and Ŷt

to denote the predicted coordinates. The nonconformity measure for each time
step is quantified using the Euclidean distance (3.11):

Nt(Yt ,Ŷt) = ∥Yt − Ŷt∥2 (3.11)

where t ∈ {1, . . . ,T} indexes the time steps within the sequence. The Euclidean
distance is a natural choice here and is suitable for determining the width of a
region. The nonconformity measure should account for errors in all dimensions
of the multivariate output, including latitude and longitude in the case of spatial
coordinates.

Considering the tendency for prediction errors to increase over longer
forecast horizons, the nonconformity scores are not aggregated over the entire
sequence. Instead, they are averaged at each time step, resulting in a distinct
threshold, τt , for each time step. This threshold is subsequently applied to new
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prediction sequences from the test sample to determine if each predicted point is
within the expected conformal region. To ensure an unbiased evaluation, the
calibration dataset comprises 15% of the full dataset, specifically selected from
the validation set. This dataset is distinct from the training data used for model
building and the test data used for evaluating the final model performance. The
model generates predictions for each instance using this calibration set, and
the corresponding nonconformity scores are calculated. In the multi-model
approach, these scores represent an average of the distances across all models at
each time step. The problem of calibrating CPR is approached by calculating
the average nonconformity scores across all models at each time step in the
calibration set. For the i-th instance in the calibration set and time step t, the
nonconformity score R(i)

t is defined as the Euclidean distance between the actual
value, Y (i)

t , and the predicted value, Ŷ (i)
t .

The average nonconformity score at time step t across all instances is
obtained using (3.12):

R̄t =
1
n

n

∑
i=1

R(i)
t , (3.12)

where n denotes the number of instances in the calibration set. Consequently,
we seek to optimise the following problem (3.13):

minimise Quantile({R̄1, . . . , R̄T},1−δ )

subject to
T

∑
t=1

αt R̄t = 1

αt > 0, t = 1, . . . ,T

(3.13)

Here, αt represents the parameters to be optimised, which scale the
nonconformity scores at each time step, and δ represents the desired confidence
level for CPR. The objective function minimises the quantile of the averaged
nonconformity scores, aligning with the confidence level to construct valid PIs.

Figure 3.6 illustrates the process from using the calibration data to
obtaining the new trajectory prediction with uncertainty estimation. The
calibration data sequences, which contain both the input and output parts (as
part of the supervised learning process), are used as input for the trained models
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Figure 3.6: Illustration of boundary width determination in CPR using
nonconformity scores.

to generate predictions (ŷ) over multiple time steps. These predictions are then
compared to the corresponding ground truth values (ytrue) from the calibration
set output to calculate nonconformity scores based on the Euclidean distances
between the predicted and actual values. These nonconformity scores are
then used to compute boundary thresholds for each time step, determined
by the confidence level 1−α . These thresholds define the prediction region
width, representing the outlying distance radius, illustrated as circles around
each future predicted position in the new trajectory. This ensures that the
true position lies within the defined regions with a given confidence level.
The region’s width for new predictions, which is consistent with the desired
confidence level, is established by this quantile, allowing for an assessment of
the accuracy of the forecasts. This method is more empirical, constructed from
the data without strong parametric assumptions, making it widely applicable.

3.4 Summary of the Chapter

This chapter provided a detailed overview of the algorithms employed to enhance
vessel trajectory prediction and improve maritime safety. The discussion began
with analysing multi-step recursive models, which predict the differences (∆lat,
∆long) between consecutive vectors rather than absolute values. By recursively
recalculating forecast outputs, this approach effectively reduces cumulative
errors over multiple time steps, resulting in more accurate long-term trajectory
predictions. The performance of these models was evaluated using standard
regression metrics such as MSE and MAE, alongside the introduced MAEH.

The chapter also explored various categorical data encoding techniques
for integrating vessel-type information into DL models. Methods such as
ordinal encoding, one-hot encoding, and embedding layers were evaluated for
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their effectiveness in representing categorical data. Embedding techniques, in
particular, were highlighted for their ability to capture relationships between
vessel types and minimise the MAEH metric, ensuring more precise trajectory
forecasts.

A critical focus was placed on using probabilistic measures to define
prediction intervals and assess the uncertainty of model predictions. Several
approaches were evaluated, including PI, CI, EPR, and CPR. These probabilistic
interval-based methods are essential for quantifying the uncertainty in trajectory
predictions, enabling the identification of safe navigation zones and even
assessing collision risks.

To evaluate the reliability of these prediction models, key probabilistic
metrics such as coverage probability and collision risk scores were incorporated.
Coverage probability assesses how often actual vessel trajectories fall within
the predicted regions, directly reflecting the model’s accuracy in uncertainty
estimation or implying an anomaly. The collision risk score, derived from the
Jaccard index, measures the degree of overlap between predicted trajectories of
vessels, providing a probabilistic assessment of potential collision risks. This
probabilistic evaluation method offers a significant advantage over traditional
deterministic methods like CPA and TCPA by considering the entire prediction
boundary rather than a single-point estimate.
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4 Data and Experiment Workflow
Setup

This chapter details the empirical experiments to develop previously discussed
methods and models, enhancing vessel trajectory prediction and maritime safety.
The experiments utilise AIS data and meteorological information from platforms
such as Ship Finder [G.2] and Danish Maritime Authority [G.1] databases.
These datasets provide comprehensive information on vessel movements and
environmental conditions, which is necessary for accurate trajectory prediction.

A key characteristic of big data is its variety, indicating that data often
comes from heterogeneous sources and is typically semi-structured rather
than fully structured. Therefore, the collected information must be processed
before it can be effectively applied. The initial step involves processing the
AIS and meteorological data, collected in comma-separated values (CSV)
format, to ensure they are appropriately structured for input into the RNN
algorithms. This process includes generating data sequences and augmenting
the dataset with relevant features, such as delta coordinate parameters and
related feature engineering transformations. These preparations aim to enhance
the model’s ability to capture complex patterns and dependencies in the data.
Moreover, the focus is on data frequency adjustment, where the irregular
time step intervals in the Netherlands region are modified using logarithmic
normalisation. Additionally, time-frequency resampling methods are employed
in the Baltic Sea region to standardise the frequency and reduce redundant
observations, ensuring a more consistent dataset.

Subsequently, the chapter explores the embedding of vessel types into the
dataset. The categorical data are transformed into a format that the DL models
can effectively utilise by employing various encoding techniques. This step is
essential for improving the prediction accuracy by providing the models with
richer and more informative inputs.

The core of the experimental work involves creating and training RNN
models, including the LSTM AE architecture, to predict vessel movements.
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These models are evaluated on their ability to accurately forecast the future
positions of vessels, taking into account both the temporal sequences and the
diverse set of input features. The predicted trajectories estimate collision
probabilities by assessing the overlap of prediction regions and identifying
potential high-risk encounters. This integration of trajectory prediction with
probabilistic collision risk assessment enhances the model’s practical application.
These experiments were presented in the main papers by Jurkus et al. [A.1, A.2,
B.1, B.2].

4.1 AIS and Meteorological Data

AIS units are designed to automatically communicate with one another, sharing
data about course, speed, and intended routes. This allows mariners to be aware
of other ships well before they are visible, ensuring timely and appropriate
actions can be taken. AIS data can be categorised into three types:

• static;

• dynamic;

• voyage-related.

Static information, entered during the system’s installation on the vessel,
includes details such as MMSI, IMO number, name, vessel length and
beam, and vessel type. Dynamic information is updated automatically and
includes parameters like speed, heading, geographical coordinates, and position
timestamp. Voyage-related information, which must be input from the dashboard,
covers details such as the type of cargo, voyage itinerary, and destination. This
information can be presented as text (alphanumeric) or through other suitable
equipment, such as radar with a graphical representation. AIS can contribute to
an international maritime information system, aiding voyage planning and
monitoring. However, there are certain limitations to be aware of. The OOW
needs to remember that not all vessels, especially leisure craft, fishing boats,
warships, and some coastal shore stations, including VTS centres, are equipped
with AIS. Additionally, very small vessels are not mandated to carry AIS, and
AIS can be switched off. Incorrect information about one ship displayed on the
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bridge of another can lead to dangerous confusion. All information, such
as AIS or automatic radar plotting aid (ARPA) data, is only as accurate as
the information from sources such as the gyro and speed log, excluding any
equipment error. This has a direct impact on the reliability of the data and
information. When using AIS information to assist in collision avoidance
decision-making, several cautionary points should be considered:

• AIS serves as an additional source of navigational information, comple-
menting but not replacing systems such as radar, ARPA, and VTS.

• The use of VTS does not relieve the OOW from the responsibility of
always adhering to the COLREG.

• Users should not rely solely on AIS for information; instead, they should
utilise all available safety information.

Meanwhile, the radar can only display all surrounding objects’ positions,
calculated courses, and speeds. However, it should be noted that the radar’s
range is not as extensive as AIS, yet it is the primary instrument for collision
prevention.

4.1.1 AIS from Ship Finder API

At the United Nations Conference on Trade and Development, the Review
of Maritime Transport 2023 highlighted that the Netherlands, particularly
the Port of Rotterdam, continues to dominate European maritime trade. In
2022, the port recorded a container throughput of approximately 14 million
twenty-foot equivalent units (TEUs), solidifying its position as Europe’s
busiest container port [94]. Due to this significant traffic density and strategic
importance, the Netherlands was selected as the primary region for this study on
vessel trajectory prediction. Traffic data for this region was obtained from
Ship Finder, a provider of vessel tracking and maritime intelligence services,
which relies on coastal AIS network stations (historical sea traffic data can be
downloaded at MarineCadastre1 or purchased from MarineTraffic2). Although
the collected dataset exhibited specific gaps and occasional signal disruptions

1https://marinecadastre.gov/ais
2https://www.marinetraffic.com/en/p/ais-historical-data
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(a) (b)

Figure 4.1: Collected data views: (a) visualisation of AIS traffic data in the
research region; (b) three-dimensional view of the vessel data structure.

inherent to AIS-based tracking systems, the data quality was sufficient for
conducting the intended trajectory prediction experiments. A graphical image
was generated to visualise the available data (see Fig. 4.1). Densely spaced data
indicate that traffic flow is significantly more intense. The primary dataset is
three-dimensional; the dimensions can be viewed by axis: sequences, vessel
features, and time steps.

Cargo ships are one of the most common industrial vessels in maritime
traffic, transporting goods and materials in containers between ports. Due to
their abundant AIS data availability, cargo ships were explicitly selected for the
initial research stage, which involved comparative analyses of different RNN
architectures. In subsequent stages conducted in the Baltic Sea region, the
research was expanded to incorporate all vessel types by integrating categorical
data into the neural networks, allowing for comprehensive multi-type vessel
trajectory forecasting. In the Netherlands, 5 months of cargo data were collected
between September 2018 and February 2019 (nearly 21 million records),
distributed in the territory of the North Sea. The research region’s latitude range
varies from 51’635 ° to 52’12 °, while the longitude value ranges between 3′10
and 4′50.

Raw vessel records are stored in multiple CSV files, segmented by
date-time periods. The collected AIS data contains inconsistencies such as
duplicate records, missing vessel characteristics, and undefined data types.
To ensure data quality, pre-processing was applied (subsection 4.2) to filter
incomplete records and standardise key vessel attributes. The dataset consists of
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essential vessel features that characterise traffic flow within the selected region,
enabling a structured approach to trajectory prediction. The dataset consists of
the main vessel features, which represent traffic flow in a particular region:

• VesselId (MMSI): maritime mobile service identity (Id used only for
sequence generation);

• Latitude: geographic latitude coordinate;

• Longitude: geographic longitude coordinate;

• SpeedKnt: vessel speed measured in knots (Speed Over the Ground,
SOG);

• HeadingDeg: vessel sailing direction;

• DateDiff: the difference between two time steps in the trajectory (4.1),
measured in minutes;

• ∆ Latitude: latitude difference of two time steps in time (4.2);

• ∆ Longitude: longitude difference of two time steps in time (4.3).

Changes in coordinates over time between two points can be derived
through feature engineering techniques [99]. These values represent the vessel’s
movement speed between consecutive time steps. The derived features are
integrated with existing parameters, combining temporal and spatial information
to enhance the predictive capability of the model:

X∆t = ts− ts−1 (4.1)

XδLat =
XLat,s−XLat,s−1

X∆t
(4.2) XδLon =

XLon,s−XLon,s−1

X∆t
(4.3)

where:

• s is the time in different measurement intervals,

• X∆t is the time difference value of the previous step,
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• XδLat is the latitude coordinate (variation),

• XδLon is the longitude coordinate (variation).

This dataset has several limitations: firstly, the amount of data is insufficient
(compared to the Danish historical dataset, which represents only 10% of the
sample); secondly, it lacks frequent time series observations and additional
relevant features. A key challenge is the inconsistency in trajectory sequences
due to missing vessel motion observations, leading to disproportionate changes
in time, space, and location. While such issues are often addressed by
interpolating missing records through resampling techniques, this study did not
apply such methods for data imputation. The dataset originates from AIS
tracking, where vessel observations may be delayed or intermittently lost,
resulting in data gaps. Instead of filling in missing values, resampling was
applied in the Baltic Sea region dataset to standardise the time intervals between
observations, ensuring structured and uniform data for analysis.

4.1.2 AIS from the Danish Maritime Authority

The Danish shore-based AIS system, which gathers and transmits data, is under
the ownership of the Danish Maritime Authority. While an external supplier
handles a portion of the system’s operation and maintenance, the responsibility
for data storage lies with the Agency for Governmental IT Services (Statens
IT). The Danish Maritime Authority stores the Danish AIS data and provides
real-time and historical access.

The validity of the initial results for the Netherlands region was verified
by experiments on a dataset from the Baltic Sea region close to Bornholm
using identical features. The AIS satellite data were obtained from a Danish
maritime service1. The location of the selected region is in the Baltic Sea, and
it borders Sweden, Poland, and Denmark (southeast of Copenhagen). This
region boundary box coordinates (see Fig. 4.2): west = 12’00 °, east = 15’00 °,
north = 56’00 °, south = 54’00 °. The data cover a six-month observation
period for selecting vessels (June 2021 to December 2021) belonging to the
cargo vessel type, including others. The dataset consists of the main vessel

1http://web.ais.dk/aisdata/
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Figure 4.2: Research area in the Baltic Sea off the island of Bornholm.

features: geographic coordinates (latitude, longitude), speed measured in knots,
sailing direction, and time series - the difference between two time steps in the
trajectory (minutes). Nearly 100 million observations with data points are
available.

Regardless of the features chosen for the research, the Danish Maritime
Authority also provides other information, which can be static, dynamic or
voyage. The data are stored in CSV format, without needing an additional API
to retrieve them, and include vessel trajectories and identifiers (Maritime Mobile
Service Identity, MMSI). Vessel trajectories are recorded with various attributes,
including timestamps, coordinates, speed, course, vessel type, and other
navigational parameters. AIS information comes from the vessels’ instruments.
The recorded information may contain errors or technical faults that can
misrepresent a vessel’s speed or position. Therefore, data pre-processing and
handling steps are necessary as part of the data mining stage to ensure accuracy.

A frequency graph was created to visualise the distribution of data points
within a defined geographical region (see Fig. 4.3(a)). Further data exploration,
illustrated in Figure 4.3(b), reveals that almost half of the original dataset
comprises observations of vessels with a speed of 0 knots, indicating that
these vessels are stationary or moored. Since these stationary data points
introduce noise in vessel trajectory predictions, they were excluded from
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subsequent analysis in both regions examined in this thesis. A representation of
the frequency distribution of the data after filtering is given in Appendix A.

4.1.3 Weather Data

One of the important factors influencing the movement of vessels is weather.
For instance, wind can affect aerodynamic force, depending on whether the
vessel is moving windward or leeward. Depth is another important aspect,
measured as the distance from the sea surface to the seabed, which can vary due
to tides caused by wind or moon phases, potentially leading to grounding
incidents. Seafarers must often consult nautical charts to navigate these changes.
Historical weather data are provided by various information systems, both in
real time and historically. One such provider is the Weatherbit.io API [G.3],
which offers high-quality weather forecasts, observations, and historical weather
data. This API integrates historical weather data from the NOAA Integrated
Surface Database, MADIS, and GHCN datasets. Additionally, Weatherbit.io
enhances its historical datasets by sourcing data from alternative sources,
including historical satellite data, rainfall radar, and reanalysis projects, to build
the most comprehensive historical weather data record possible.

In Figure 4.4, a grid has been constructed to extract weather data for
a given position, covering the Baltic Sea region in the second half of 2021,
ensuring that AIS and weather data overlap. The dataset contains hourly
aggregated observational data, including air temperature, wind direction and
speed, wave height and direction, swell height and direction, cloud cover,
visibility, water temperature, atmospheric pressure, and additional marine
weather parameters. The weather data grid was spatially matched to AIS data
points by identifying the grid point closest to each AIS position based on latitude
and longitude. Each AIS observation was thus assigned the corresponding
weather conditions from its nearest grid location.

4.2 Data Pre-processing and Sequence Generation

As the research is based on the principles of supervised training, where input
variables X and output variables Y are available, DL architectures can learn the
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(a)

(b)

Figure 4.3: Raw data visualisation: (a) frequency of not processed time series
data; (b) proportion between stationary and moving vessels.
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Figure 4.4: Weather region and API coordinate grid points.

interdependencies of these variables, allowing for the reconstruction of further
vessel trajectories from new data. The trajectory forecasting by time steps can
be divided into one-time step prediction and multiple time-step prediction. The
forecasting problem is being analysed by Xu Liu et al. [57] in their work to
create a bike-sharing opportunity and predict their availability. The authors
argued that a multi-time-step output LSTM is much better than the standard
uni-time-step output. Based on their research and the gathered AIS data, the
researchers developed a multivariate multi-step data structure.

The Netherlands region’s raw data must be analysed, structured and
prepared for use in the recurrent networks. The main dataset is three-dimensional
(see Fig. 4.1(b)), the dimensions of which can be viewed by axis: sequences,
vessel features, and time-steps. Analysing the data from the Netherlands region,
it was observed that only about 1/4 of the vessels were actively moving during
the studied period. A vessel is considered stationary or drifting when its speed
attribute value is zero. After several experiments, results showed that the
dataset with stationary vessel data contains noise that can offset net weights for
forecasting progress. Therefore, these records were eliminated, leaving only
vessels in motion (more than 5 million records).

The Baltic region’s raw data were processed: consolidated, cleared out,
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and structured into sequences. Observations with a vessel having zero speed
were removed from the data as noise. Also, time series data resampling was
performed, allowing the frequency of time step observations to be changed. In
the original dataset, observations were made several times per minute per vessel.
It was decided to select a time series every minute, applying the k-nearest
neighbour (k-NN) algorithm and thus eliminating widespread observations.
Here, the time difference feature is calculated in seconds. The other processes
shown in the workflow diagram in the thesis’s first chapter are identical in both
regions. The vessel flow was sorted by time and MMSI and cut into equal-length
sequences of 50 time steps. Normalisation was performed, and the sequences
were divided into training, validation, and testing samples with already applied
transformations described in this article. The total observations are ~11,450,000
(records) and ~460,000 generated sequences, of which 30 observations are input,
and 20 observations are output (forecast). Considering standard maritime
operational practices, a sequence of 30 historical AIS observations provides
a sufficient representation of vessel trajectory, while forecasting 20 future
observations align closely with the estimated stopping time and reaction
intervals required to effectively assess collision risk and perform preventive
manoeuvres. The distribution of time steps between observations is, on average,
about 1 minute. The average movement of the vessel is 340 meters, so here, in
one sequence, the vessel moves on average about 16 km (this is almost 10 km at
the input and 6 km at the output). Statistical estimates are shown in Table 4.1.

Table 4.1: Sequence data characteristics.

Feature Value
Total sequence length 50 time steps
Input trajectory length 30 time steps
Output trajectory length 20 time steps
Average time step change in time ~60 s
Average distance change in space ~320 m
Average length of one trajectory ~16 km
Number of generated sequences 943,584

The decomposition process of sequencing is illustrated in Figure 4.5,
where vessel features (Fn) are segmented into fixed-length sequences (i) using
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Figure 4.5: Vessel data sequencing.

a sliding window approach with overlapping time steps (tn). This method
ensures that each new sequence retains past observations, which is essential
for time series forecasting in recurrent networks. The overlap strategy helps
maintain temporal continuity by dividing each sequence in half, allowing the
model to capture dependencies over time. Each sequence is further split into
input (Xn,Fn) and output (Yn,Fn) matrices, representing feature-label pairs in
a supervised learning regression framework. The input features are passed
into the network, which predicts the output features. Since all deep recurrent
architectures in this study employ a two-dimensional output structure, the output
matrix is flattened before training to ensure compatibility with the model’s final
prediction layer. Figure 4.7 illustrates an example of the generated vessel
movement sequences in the Baltic Sea region, visually demonstrating the
extracted trajectories used in the study.

Specific criteria were applied for sequence generation to ensure consistency
and reliability across datasets. Each sequence is classified based on vessel type
(e.g., cargo or other categories), and no sequence contains data from multiple
MMSI identifiers. In the Netherlands dataset, a 150-minute filter was applied to
smooth the time steps and eliminate large gaps caused by inconsistent AIS
observations. This ensures that no time step interval exceeds 150 minutes,
maintaining a stable temporal relationship between consecutive data points. The
filter threshold was determined based on the frequency distribution of time step
differences, with the highest data concentration occurring within a 150-minute
range.



88 Chapter 4. Data and Experiment Workflow Setup

(a) (b)

Figure 4.6: Raw data filtering distributions: (a) distribution of time series
between t +1 records; (b) distribution of distance between t +1 records.

In contrast, the Baltic Sea dataset required different filtering parameters
due to variations in regional traffic density and AIS data sources. Here, an
800-meter spatial filter and a 120-minute time difference filter were used to
account for the higher frequency of recorded observations (see Fig. 4.6). These
adjustments reflect the distinct characteristics of AIS data collection in different
maritime regions, optimising sequence continuity and preserving the integrity
of vessel trajectory predictions. The complete data source and filtering are
provided in Appendix B.

4.3 Data Frequency Adjustment

4.3.1 Irregular Time Step Intervals in the Netherlands Region

One of the key areas for improving the Netherlands dataset is compressing the
wide range of sequence values into a narrow one between time steps, because
the data contains missed vessel motion observations. This means there may be a
disproportionate trajectory change in time, space, and location. Tasks of this
nature are often addressed by filling in the gaps with new data that mimic the
lack of records (resampling), but this method has not been applied in this region.
The actual data are from AIS, which means that the tracking of the vessel’s
observations may be interrupted (or delayed) in the system, and data gaps
may appear. One such trajectory is shown in Figure 4.8(a). This visualisation
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Figure 4.7: Generated vessel movement sequences in the Baltic Sea region,
where each colour represents the trajectory of an individual vessel over time.

demonstrates how the longitude coordinate of consecutive points changes with
the vessel moving further due to larger and irregular time steps toward the end
of the trajectory sequence. Applying normalisation to such a trajectory (4.5)
introduces another challenge: time series with higher data density become
excessively flat, with values approaching zero. Moreover, extensive data gaps
are rising critically and are becoming close to one on the y-axis. First, this
problem is minimised by applying a logarithmic scale (4.4), which reduces and
stabilises data gap spikes of the original data. Only then does normalisation
(4.5) apply to the entire set. This requires one additional step later to invert
the exponential function, returning the normalised and logarithmic values to
the initial coordinate system. The image shows that the trajectory is better
distributed (normalised) between 0 and 1 after the additional scale. Figure 4.8(b)
shows how the time steps (date difference feature) are distributed over the
entire data sample with normalisation only, and Figure 4.8(c) shows how the
normalisation covers the whole sample from 0 to 1 with the FLOG function.
The logarithmic scale makes it possible to create more favourable conditions
for the activation function to work better and perform a better dispersion of
normalised values between the minimum and maximum range. The given
functions, where X denotes the vessel’s features, are general.
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(a)

(b)

(c)

Figure 4.8: Dataset features transformation using normalisation and logarithmic
scaling: (a) a single sequence longitude normalisation, where the x-axis
represents time steps and the y-axis contains normalised values [0,1]; (b)
normalised date difference feature distribution over the output time step; (c) date
difference feature distribution after FLOG scale and normalisation.
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FLOG = log(x) (4.4)

4.3.2 Time Frequency Resampling in the Baltic Sea Region

A resampling method (see Fig. 4.9) is applied to address challenges in AIS data,
such as signal gaps, variability in reporting frequencies across different vessels,
and overlapping observations. In the Baltic Sea region, where maritime data
analysis requires consistent time intervals for accurate modelling, the k-NN
method is utilised to standardise the time series. This approach ensures a
uniform one-minute time step, mitigating inconsistencies in the dataset while
preserving essential patterns and trends.

The resampling process begins by identifying periods with multiple AIS
observations within each one-minute interval. The k-nearest data points are then
selected and averaged, effectively reducing redundancy while maintaining the
structural integrity of vessel trajectories. This method is particularly useful
when multiple observations are recorded rapidly, preventing excessive data
density and making the dataset more manageable for trajectory prediction
models. By enforcing a uniform time interval, the k-NN resampling process
eliminates irregularities while preserving the vessel’s movement characteristics,
ultimately enhancing the accuracy and reliability of predictive models for
maritime monitoring and collision risk assessment.

Figure 4.9: AIS data resampling based on time series. Grey dots represent all
AIS observations, while the red boundary circles indicate points selected using
the k-NN method for standardising steps.
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4.4 Embedding Vessel Types and Permutations

The vessel features and categorical data encoding techniques are represented in
the LSTM AE neural network architecture (see Fig. 4.10). The figure shows that
the numerical characteristics of the vessel do not change in the experiments
and that the vessel type features are connected by different encoding in each
empirical test. The input matrix into the RNN is distinctly disparate from
the encoding process, introducing an additional layer of complexity to the
algorithm, as demonstrated through empirical experimentation. The figure
shows how the data shapes are combined, how it is transmitted across different
layers and the output. For example, the shape (None, 30, 7) indicates that the
data are multidimensional, consisting of 30 time steps with 7 AIS features per
input sequence. Meanwhile, the shape of the output sequence (None, 40)
indicates a stack of two attributes (longitude and latitude or delta coordinates)
for 20 time steps when the shape is flattened. Different encoding techniques add
additional features to the numerical input data.

Figure 4.10: LSTM AE architecture with different vessel type encoding
techniques.

A vessel observation captures a vessel type identifier, of which there are
more than 20 in the region and over the period under study (see Fig. 3.5).
The area is characterised by the emergence of maritime routes and maritime
highways, where historical traffic is most intense. The more intense traffic is
concentrated in certain ship types: cargo, passenger, tankers, and other ship
types that are distributed throughout the region. Still, different ships have
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Figure 4.11: Permutations of dataset features.

specific routes and movements, such as pollution clean-up, harbour maintenance,
spare, ground effect vehicle (wing-in-ground-effect, WIG), etc.

In addition, feature permutations are added to calculate the permutations
(see Fig. 4.11), which show how each feature individually affects the ship’s
forecast. The permutations are calculated by shuffling the positions of the
features relative to each other when the accuracy of the network model is
evaluated. The image shows that all the selected features are essential, but
the most remarkable are direction, speed, and coordinates. It is evident that
removing the heading feature significantly increases coordinate dependence.
More details on feature permutations are given in [67].

4.5 Recurrent LSTM AE

In collision prediction within maritime navigation, a DL model utilising an
LSTM AE architecture is detailed in related publications [40]. The model’s
strength lies in its ability to encode temporal sequences of vessel movements into
a lower-dimensional latent space and reconstruct them, capturing the essential
features for predicting future trajectories. The architecture comprises three key
components: an encoder, a latent space, and a decoder. The encoder processes
input sequences, reducing their dimensionality, while the decoder reconstructs
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the output from the latent representation. This specific implementation involves
a sequence-to-sequence approach, where input data are flattened to transform
the time steps into a singular vector that encapsulates the temporal features
essential for predicting vessel paths. This architecture has already been selected
as the best forecasting architecture following comparisons with other RNNs.

The ensuing stage witnesses the deployment of a sophisticated deep
RNN, meticulously trained on the experimental dataset, featuring a dedicated
categorical data layer for ship types within the scope of training and validation
samples. Acknowledging the non-deterministic nature of neural networks, a
series of iterative tests is conducted to enhance the reliability and robustness of
the results obtained. The general concept of the data mining workflow can be
seen in Figure 4.12.

Figure 4.12: General workflow and permutations of dataset features.

During the research, the sequences are constructed from 50 time steps,
split into 30 steps for the input and 20 for the output, with an average time
interval of 1 minute. The data used for the network comprises features such as
encoded vessel type, geographical coordinates, speed, heading, and differences
in latitude and longitude between consecutive time steps. The output sequence
consists only of the coordinate features, while the input sequence consists of
the aforementioned vessel characteristics. These features are valuable for
understanding vessel behaviour and predicting further points along the trajectory.
The parameters used in the architecture are given in Table (4.2).

The dataset, comprising nearly one million sequences, was divided using a
standard 70:15:15 split for training, validation, and testing, respectively, a
practice commonly adopted in scientific research [5, 79] to ensure balanced
evaluation and generalisation. Before training, the generated and normalised
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Table 4.2: LSTM AE configuration.

Parameter Value Note

Layers 3 Total number of encoder and decoder
parts

Seq. Len. 50 30 input, 20 output
Epochs 100 —
Optimiser 0.001 Adam (with learning rate)
Regularisation 0.01 Dropout layers

Number of Units 275 Cells in each LSTM layer
Batch Size 128 Examples utilised in one iteration
Models Size 20 Models trained on the same data
Loss Function MSE Measures prediction quality
Activation Function ReLU Used in LSTM gates and Dense layers

sequence matrices were shuffled to minimise sequence dependency, reduce
variance, and improve gradient variability. Mixing the matrices ensures
that each new sequence in the model will be independent of the previous
sequence, reducing the variance and making the gradient more variable. This
randomisation enhances the model’s exposure to diverse scenarios, contributing
to better generalisation. Normalisation (4.5) was applied to all numerical
features, scaling values between 0 and 1 to ensure uniformity across features and
accelerate the learning process. The training subset was used to fit the models,
the validation subset was employed to monitor the training progress and prevent
overfitting, and the test subset was used to evaluate final performance. Notably,
the study employed not a single model but an ensemble of models trained
on the same dataset. Each model, influenced by factors like regularisation
and initialisation, produces slightly different predictions, enabling a more
comprehensive uncertainty assessment and supporting the robustness of the
applied collision detection techniques. The cross-validation results shown in
Appendix C further illustrate the models’ convergence and stability:

Xnorm =
X−Xmin

Xmax−Xmin
(4.5)
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where:

• X is the feature of the vessel,

• Xnorm is the normalised value,

• Xmax and Xmin are the maximum and minimum value of the feature.

The experiments were performed by changing the architectures and the
number of cells/units. The same network parameters and cell size interval keep
the same conditions for all architectures, and the same data order for training. In
the literature, RNNs commonly utilise cell sizes ranging from tens to several
hundred. Initially, the research followed this practice, evaluating cell sizes
incrementally from 25 to 300 cells, increasing by increments of 25. However,
to rigorously test the effect of cell size and verify whether the prediction
accuracy improves or stabilises beyond conventional sizes, further experiments
extended the range up to 5000 cells, employing larger increment steps. Each
cell-size configuration across different architectures, including experiments with
embedding techniques, was trained 10 times to ensure reliability and stability in
predictions. Subsequent experimental phases involving coordinate system
transformations, uncertainty quantification, and collision detection required
training additional models, resulting in an extensive set of trained configurations.
This comprehensive experimental approach enabled robust validation of model
performance across various conditions.

Various hyperparameter modifications were tested during the experiment,
such as the changed activation functions RELU and TANH. As a prevention for
regression models’ overfitting, L2 and dropout regularisation techniques were
tested. However, the most suitable parameters were obtained after practical
testing with the components listed in Table 4.2.

4.6 Collision Probability Estimation

According to one of the primary objectives, this thesis aims to enhance maritime
collision risk assessment by integrating prediction PIs, CIs, EPRs, and CPRs.
These interval-based methods provide a probabilistic understanding of vessels’
future positions, accounting for uncertainties inherent in maritime navigation,
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and allow for the definition of potential collision boundaries, highlighting areas
based on LSTM AE recursive predictions. The LSTM architecture is based on
real data from the Baltic Sea region using AIS. By combining confidence levels
with these predictive methods, the models dynamically assess collision risks
and identify high-risk scenarios from nearby vessels’ perspectives, enabling
pre-emptive safety measures.

Figure 4.13: Diagram of Vessel Path Prediction, Boundary Mapping, and
Collision Detection Workflow.

A comprehensive workflow has been developed to provide a clear study
overview (see Fig. 4.13). The diagram illustrates a general flowchart for vessel
trajectory prediction, which builds upon the results from the previous studies.
The primary focus of this study is on utilising model predictions to define
the boundaries of predicted trajectories, assessing overlapping regions with
collision risk scores in real-case scenarios, and evaluating prediction accuracy
using coverage probabilities. The study employs multiple trained models, each
capable of producing different predictions for the same trajectory due to inherent
uncertainties, allowing for the generation of diverse samples for probabilistic
estimates. These methods are discussed in detail throughout the thesis. Notably,
each model accepts an input sequence of 30 time steps (equivalent to 30 min)
and predicts the next 20 time steps (equivalent to 20 min). The process involves
evaluating the predicted trajectories using a test data sample, comparing the
real-time steps of the vessel’s movement against the prediction bounds, and
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Figure 4.14: AIS study region with highlighted evaluation area.

calculating how many actual positions fall within these predicted regions. The
study is validated using a historical maritime accident in the Baltic Sea in late
2021. This case study demonstrates how different methods generate distinct
boundaries and how these overlapping thresholds with collision risk scores can
be evaluated from the perspective of multiple vessels, highlighting the practical
application of the framework in real-world collision detection scenarios.

The geographical scope of the data collection is shown in Figure 4.14. The
regions used for simulated test case predictions are delineated in smaller subsets
of the data, called evaluation regions, in the figure. This subset is chosen due
to its high traffic density and proximity to ports. The research methods are
evaluated in this particular sample, although predictions could also be made
using other sequences over a wider range of data regions.

Predictions must be made for each sequence using a different model to
construct and evaluate the prediction regions. Figure 4.15 shows randomly
selected sequences and their trajectory predictions generated by the 20 models.
Each subplot in the figure represents a density estimate or distribution of
the predicted points at a given time. Areas with higher density around the
geometrical centre are shown in warmer colours (yellow tones), and areas with
lower probability are shown in cooler colours (blue tones). Actual positions are
marked with red dots corresponding to the 20-minute further predictions. The
plot indicates that the data do not exhibit a perfectly normal distribution, as
evidenced by the absence of a single distinct peak. This characteristic poses
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limitations for using parametric methods such as PI and CI, which rely on
assumptions of normality. However, forecast points are generally centralised,
especially early in the forecast period. This tendency to focus on the early
stages of forecasting is common in predictive analytics.

Figure 4.15: Distribution of data points for selected sequence predictions.

The estimated area of the width of a region is used for the standard
assessment. The evaluation of the sequences within the sub-region, totalling
8,984, and their corresponding prediction regions hinges on two principal
criteria: (a) an examination of whether the actual trajectory of the vessel at each
time step resides within the predicted region, a method known as coverage
probability; and (b) the verification of the methods’ effectiveness in a real
marine traffic incident through the calculation of probabilistic risk score of
collision. All the methods used correspond to a 95% confidence level.

Suppose A = {a1,a2, . . . ,an} represent the set of actual points, where ai is
the actual coordinate at time step i, and let Z = {z1,z2, . . . ,zn} represent the set
of predicted zones, where zi is the predicted zone at time step i. We define the
indicator function (4.6) I for each time step i as follows:

I(ai,zi) =

1 if point ai is contained within zone zi,

0 otherwise.
(4.6)
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The score for the full set of sequences, assessing the predicted zones’
suitability for the actual points, is the sum of the individual scores over all time
steps (4.7), where n is the total number of time steps or points. The accuracy of
the predicted zones can then be expressed as a percentage (4.8). This accuracy
metric shows the percentage of time steps where the actual coordinates fall
within the predicted intervals.

Score =
n

∑
i=1

I(ai,zi), (4.7)

Accuracy =

(
Score

n

)
×100%. (4.8)

To calculate the probability of intersection, for example, between the
predicted trajectories of ships (which are represented as ellipses/circles within
prediction zones), we use the following formula (E):

P(collision) =
VA∩B

VA +VB−VA∩B
, (4.9)

where VA and VB are the areas of the individual regions, and VA∩B is the area
of their intersection. The formula evaluates the areas of both zones and the
overlapping area. If the two regions do not intersect, the overlapping area is
zero, resulting in a zero probability of intersection.

The idea is related to a classical probability formula, where the probability
of an event C happening is the number of outcomes that result in C divided
by the total number of possible outcomes. We assess the likelihood of ships
intersecting based on their projected paths within their respective prediction
zones.

4.7 Summary of the Chapter

This chapter outlines the preparation of empirical experiments designed to
validate the proposed methods and enhance vessel-trajectory prediction using
AIS data from two areas: the Netherlands and the Baltic Sea region around
Bornholm Island, Denmark. The AIS data from the Netherlands, extracted
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from Ship Finder, provided information on cargo ships, a prevalent type of
industrial ship, comprising more than 5 million records after filtering. Despite
the abundance of data, the dataset had limitations due to insufficient size and
noticeable gaps in the time series. Simple normalisation overly compresses
dense sequences, flattening values near zero. Applying logarithmic scaling
effectively redistributed values across the entire range, ensuring an even and
consistent representation of the date difference feature from 0 to 1.

Conversely, the Danish AIS dataset, owned by the Danish Maritime
Authority, was significantly larger, comprising approximately 11,450,000
records from all vessel types. After filtering and resampling to adjust the
frequency of time-step observations, around 460,000 vessel movement sequences
were generated. By applying the k-NN algorithm, observations were resampled
to a consistent one-minute interval. Feature permutations were also introduced
to evaluate how individual features impact the ship’s forecast by shuffling their
positions relative to each other during model evaluation. The data frequency
adjustment addressed irregular time step intervals in the Netherlands region
through logarithmic normalisation and applied time frequency resampling in the
Baltic Sea region to reduce observation redundancy.

The chapter also describes the implementation of a DL model using an
LSTM AE architecture for collision prediction within maritime navigation. The
model’s performance was optimised by evaluating various hyperparameters,
resulting in an optimal configuration of 275 LSTM cells per layer, Adam
optimiser with a learning rate of 0.001, regularisation using dropout layers at a
rate of 0.01, MSE as the loss function, and Rectified Linear Unit (ReLU)
activation. The accuracy of the neural networks was assessed using rigorous
regression metrics, including MAEH, MSE, MAE, RMSE, and MAPE, to
evaluate the model’s performance in predicting coordinate values. The objective
was to minimise the prediction errors as much as possible.

Additionally, the weather dataset used in the experiments provided
comprehensive information such as wind direction, wind speed, temperature
(nighttime and daytime averages), mean sea level pressure, humidity, visibility,
cloud cover, moon phase, and other similar observational data. These data were
presented in a daily time series, recording the aggregated weather changes
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every hour. The permutation experiments were conducted by shuffling feature
positions relative to each other and assessing their impact on model accuracy,
revealing that the most critical AIS features for trajectory prediction are heading,
speed (SOG), latitude, and longitude.

Furthermore, the collision risk score was assessed using interval-based
methods described in Chapter 3, including EPR, CPR, PI and CI. These
techniques were applied to estimate the areas of predicted regions and evaluate
the coverage probability, ensuring that the actual trajectory of the vessel at each
time step falls within the predicted region. The effectiveness of these methods
was also verified by calculating the probabilistic risk of collision in real marine
traffic incidents. All methods employed corresponded to a 95% confidence level,
ensuring robust and reliable predictions.

The DL models are the foundation for predicting vessel trajectories, which
are then used to assess collision risks. Each model generates a probabilistic
forecast of the vessel’s future positions, accounting for uncertainties inherent in
maritime navigation. The predicted trajectories are further analysed using
statistical techniques such as prediction intervals, EPR, and CPR to establish
boundaries for possible collision zones. The likelihood of a collision is evaluated
by comparing the predicted boundaries with the actual positions of vessels. This
integrated approach ensures that the collision risk assessment is closely tied to
the accuracy of trajectory predictions, providing a dynamic and probabilistic
evaluation of potential collision scenarios.
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5 Results

This chapter presents the results of the experiments conducted to improve
vessel trajectory prediction and assess collision risks. The study begins with
a comparative evaluation of various DL models, focusing on RNNs using
the Netherlands dataset. This initial analysis identifies the most effective
architectures for trajectory forecasting by assessing prediction accuracy and the
impact of hyperparameters, such as cell size.

Building on these findings, the top-performing RNN models, LSTM AE,
bidirectional LSTM, and GRU, are further evaluated in both the Netherlands
and the Baltic Sea regions. The experiments incorporate multiple data
transformations, including coordinate system adjustments and recursive
forecasting strategies, to determine their influence on prediction accuracy.
Following this, the most promising model - the LSTM AE - was selected
for further refinement. Additional experiments examine the integration of
categorical vessel-type data using various encoding techniques, as well as the
incorporation of meteorological information to assess their contributions to
prediction performance.

Finally, the chapter presents the results of collision risk assessment using
real-case maritime incidents. The developed models are applied to historical
vessel collisions, where calculated trajectory boundaries and probabilistic
estimations are used to quantify potential risks. This practical validation
demonstrates the applicability of the proposed methods in real-world maritime
safety operations. These results were presented in the main papers by Jurkus et
al. [A.1, A.2, B.1, B.2].

5.1 DL Models Evaluation

The models were evaluated using test samples after training six deep RNN
architectures. The MSE loss was computed as the average across all experiments,
normalised by the number of trained models. The results, presented in Table 5.1,
provide a comparative analysis of each architecture’s prediction accuracy. A
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Table 5.1: MSE loss results with different cell hyperparameter sets.

Cells
RNN
×10−4

Basic LSTM
×10−4

LSTM Stack
×10−4

GRU
×10−4

AE
×10−4

BiLSTM
×10−4

25 6.910 5.181 4.434 5.563 4.581 6.582
50 5.334 4.381 4.361 4.620 3.944 3.939
75 4.904 4.211 4.146 4.290 4.010 4.177
100 4.819 3.947 4.150 4.021 4.031 3.697
125 4.702 4.039 4.075 3.914 3.688 3.721
150 4.739 3.875 4.240 3.916 3.996 3.683
175 4.635 3.920 4.067 3.914 3.789 3.822
200 4.628 3.999 4.564 3.826 3.706 3.900
225 4.679 4.024 4.482 3.819 3.987 3.636
250 4.630 4.085 4.133 3.742 3.946 3.736
275 4.660 3.998 4.099 3.827 3.724 3.645
300 4.681 4.086 3.956 3.710 3.782 3.618

lower MSE value indicates higher prediction accuracy, with the most effective
model achieving the smallest error in vessel trajectory forecasting. Regression
prediction is considered accurate when the error value is closest to zero.

Table 5.1 highlights each architecture’s lowest error values (marked in
bold) at the optimal cell size. The results indicate that the Bidirectional LSTM
achieved the lowest error on the test dataset, followed closely by the AE
and GRU models. A comparative ranking of all architectures, based on their
best-performing cell sizes, is visualised in Figure 5.1.

Descriptive statistics are illustrated through box plots (see Fig. 5.2), which
depict the distribution and skewness of the distance loss data for the recursive
multi-step prediction strategy. The comparison evaluates different architectures
by varying the number of cells and computing the average distance errors
across experimental trials. The results indicate that the AE and bidirectional
LSTM exhibit the most stable error distributions, while the latter also shows the
most remarkable variation between minimum and maximum error values.
Across all architectures, using more than 100 cells consistently reduces error,
demonstrating the impact of network capacity on prediction accuracy. For
a detailed empirical analysis of how varying the LSTM cell count affects
prediction accuracy, see Appendix D. Empirical results demonstrate that MAEH
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Figure 5.1: Architectures with the lowest loss with a combination of specific
cell sizes.

is consistently observed for models employing between 75 and 300 cells,
with errors clustered around 0.18–0.20 km. Beyond 300 cells, the prediction
accuracy stabilises, and further increments offer negligible improvements.
Notably, increasing the cell count significantly elevates computational demands,
especially evident in extreme cases (e.g., 5,000 cells), where training time is
markedly extended without proportional gains in accuracy, thus highlighting the
critical importance of optimal hyperparameter selection.

Figure 5.3 illustrates the results with the lowest average distance errors
across different architectures, independent of the selected number of cells. The
graph demonstrates that vessel trajectory predictions can be enhanced beyond
polar coordinate systems. Specifically, training RNNs using subtracted distances
and rotation angles improves accuracy, whether working with direct AIS data or
augmented delta features. However, the greatest improvement is observed when
employing the UTM projection, which converts geographic coordinates into a
two-dimensional space. Among all architectures, AE benefits the most from
this transformation, achieving a minimum error of 1.141 km in datasets with
irregular time steps, representing an improvement of nearly 30% compared to
AIS-based features without delta latitude and longitude adjustments. However,
the polar coordinate approach (distance and angle) and the UTM transformation
relied on a recursive conversion process, where predicted delta coordinates were
interpolated from the last known input point. This recursive recalculation likely
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(a) (b)

(c)

Figure 5.2: Standardised distribution of recursive models error: (a) AE MAEH
distance; (b) bidirectional LSTM MAEH distance; (c) GRU MAEH distance.

impacted accuracy more than the UTM transformation itself. This assumption
was confirmed through experiments conducted with geographic coordinates,
where output sequences were constructed using delta values. The results
demonstrated that recursively updating predictions from delta coordinates led to
more accurate forecasts than directly predicting absolute position values in the
sequence.

5.2 Assessing the Accuracy of Vessel Predictions

Figure 5.4 illustrates a comparative analysis of different coordinate transforma-
tions (WGS84 and UTM) and their recursive prediction counterparts based on
vector differences. The MAEH values indicate that recursively recalculating
predicted positions using delta coordinates significantly enhances prediction
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Figure 5.3: Lowest experiment distance loss results in the Baltic region among
cargo vessels.

accuracy across both coordinate systems. Specifically, the recursive WGS84
approach achieved the lowest prediction error (0.3537 km), demonstrating
superior accuracy compared to standard predictions without recursive recalcula-
tions. This emphasises the advantage of employing recursive delta methods
in trajectory forecasting over absolute values. Furthermore, incorporating
meteorological data, such as wind, wave, and temperature conditions, further
reduced MAEH to 0.3203 km, highlighting the added predictive value of
environmental context in vessel trajectory modelling. Predictions of the
trajectories of random vessels are given in Appendix E.

Figure 5.4: Lowest experiment distance loss results in the generalised model
between different coordinate systems.

A randomly selected sequence was used for the final network evaluation,
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with the results presented in Figure 5.5. The visualisation depicts the best-
performing model with optimal cell sizes. The blue line represents the input
sequence (30 time steps), while the green line marks the actual vessel trajectory
(20 time steps). The predicted vessel movement for the same period is illustrated
in yellow, and the grey lines indicate surrounding traffic intensity from other
sequences. The results show that the short-term forecast (~10 minutes) aligns
closely with the actual trajectory. In contrast, the long-term prediction exhibits
a slight decline in accuracy, which is expected in multi-step forecasting.
Additionally, the distance error in metres is displayed in red.

Figure 5.5: Actual and predicted random vessel movement in sea traffic.

The feature permutation analysis identifies the most impactful features for
vessel trajectory prediction accuracy (see Table 5.2). Heading and SOG were
consistently ranked as the top two most critical features across all models,
emphasising their substantial influence on trajectory prediction. Geographical
coordinates (latitude and longitude) and their derivatives (dLat/dt and dLong/dt)
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also showed considerable importance. Among meteorological data, wave
height, wind wave height, water temperature, air temperature, and wind speed
were identified as essential features. The last row in the table provides overall
prediction accuracy (MAEH error) for each model without feature permutation,
serving as a baseline for evaluating feature significance. A larger error resulting
from permutation indicates greater importance of that feature in determining
overall prediction accuracy.

Table 5.2: Feature importance determined by permutation for three different
trained models.

Rank Feature (Model 1) Value Feature (Model 2) Value Feature (Model 3) Value
1 Heading 3.7129 Heading 3.6744 Heading 3.6657
2 SOG 1.7340 SOG 1.7125 SOG 1.7171
3 Longitude 0.4614 Latitude 0.5019 Latitude 0.5209
4 Latitude 0.4535 Longitude 0.4808 Longitude 0.4993
5 dLong/dt 0.4088 windWaveHeight 0.4058 waveHeight 0.3892
6 waveHeight 0.4086 waveHeight 0.4002 windWaveHeight 0.3881
7 windWaveHeight 0.4054 dLong/dt 0.3817 waterTemperature 0.3767
8 dLat/dt 0.4054 airTemperature 0.3792 airTemperature 0.3766
9 windWavePeriod 0.4015 waterTemperature 0.3789 dLong/dt 0.3761
10 waterTemperature 0.4010 dLat/dt 0.3786 dLat/dt 0.3745
11 airTemperature 0.4003 windWavePeriod 0.3765 windWavePeriod 0.3737
12 windSpeed 0.3987 windSpeed 0.3745 windSpeed 0.3732
Overall 0.3963 0.3710 0.3693

Additional meteorological parameters, including secondary swell height,
swell direction, secondary swell period, swell height, secondary swell direction,
visibility, pressure, wind direction, swell period, cloud cover, wind wave
direction, and wave direction, were also evaluated. Although these did
not rank among the top features, their inclusion provides a comprehensive
environmental context that potentially enhances trajectory prediction accuracy.
These meteorological factors influence vessel dynamics and significantly impact
navigation conditions and trajectory movement. Consequently, integrating
these top-ranked and additional meteorological features ensures the model’s
predictions benefit from detailed and context-rich environmental information,
capturing the external influences on vessel movements more accurately. To
maintain a balanced feature set, seven top-ranked meteorological variables
(wave height, wind wave height, water temperature, air temperature, wind speed,
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wind wave period, and wind wave direction) were selected, ensuring that the
number of meteorological features did not exceed the primary AIS vessel
features.

5.3 Impact of Categorical Data on Vessel Trajectory
Prediction

The accuracy of the neural networks, specifically the LSTM AE trained on the
Baltic Sea dataset, is assessed using rigorous regression metrics on the test
dataset. These metrics, including MAEH, MSE, MAE, RMSE, and MAPE,
comprehensively evaluate the model’s performance in predicting coordinate
values and assessing trajectory accuracy with transformations (see Appendix D).

Figure 5.6: Repeated experiment
results of the MAEH metric using
different encoding techniques for cat-
egorical data.

Table 5.3: Mean error met-
rics of multidimensional em-
bedding.

Metric Embed 1D Embed 2D Embed 3D
MAEH 0.26252 0.26162 0.26124
MSE 2.51E-05 2.49E-05 2.47E-05
RMSE 0.00488 0.00485 0.00483
MAE 0.002046 0.002039 0.002036
MAPE 0.000110 0.000110 0.000109

The experimental findings on trajectory prediction accuracy are illustrated
in Figure 5.6. Incorporating vessel type as a feature in the dataset contributes to
more stable predictions by reducing error variance. Both one-hot and embedded
encoding techniques enhance accuracy, with embedded encoding, particularly
in a two-dimensional structure, demonstrating the lowest variance. Table
5.3 presents detailed results of the embedded encoding experiments. On
average, the inclusion of vessel type encoding improves prediction accuracy by
approximately 0.0027 kilometres compared to models without categorical
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vessel type information. These findings highlight the importance of encoding
techniques in enhancing model performance and overall trajectory prediction
reliability.

5.4 Analysis of Prediction Accuracy and Risk Estima-
tion

This subsection evaluates the model’s performance using predictions from the
Baltic Sea test dataset. The analysis includes the average prediction error by
time steps, offering insight into the accuracy of the model’s forecasts. The
coverage probability is also assessed to determine how frequently the actual
vessel positions fall within the predicted collision regions. Finally, the proposed
methods are verified through a real-world case study involving the cargo ships
Scot Carrier and Karin Hoej. This analysis calculates the predicted ship domain
boundaries based on future vessel positions using the various methods presented
in the research. The probability of a potential collision is assessed by evaluating
the overlap between these boundaries, offering a practical evaluation of the
model’s effectiveness in forecasting maritime safety risks.

The model’s accuracy utilising a derived MAEH function, which aligns
conceptually with MAE but calculates the discrepancy based on the distance
between the time series of the prediction and the actual sequence rather than
direct coordinate comparisons [40]. This approach quantifies the distance
error in the International System of Units (SI) as meters or kilometres. Figure
5.7(a) depicts the cumulative average prediction error across all models. The
error fluctuates between 30 to 730 meters for forecasts extending up to 20
minutes, increasing as the forecast timeline extends. This metric’s evaluation
was conducted on a designated test sample set (15% of all data sequences).
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(a)

(b)

(c)

Figure 5.7: Graphs of accuracy and evaluation results: (a) an average model
error by time series of trajectory prediction (km); (b) sequences with all time
steps within the calculated boundary widths (coverage probability) estimation;
(c) coverage probability count across individual time steps.
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Figure 5.7(b) assesses the subset sequences following the scoring method-
ology outlined previously (4.7), with an exception: this graph displays the
aggregate count of sequences accurately predicted by the methods, specifically
those instances where all-time series points within a sequence were contained
within the predicted region. It reveals that most predictions aligned with the
CPR areas, indicating high accuracy. Conversely, the confidence interval,
though set at a 95% confidence level, was markedly narrow, resulting in the
absence of sequences fully encompassed within these intervals. Figure 5.7(c)
illustrates the distribution of sequence entries in the forecast region across
time series and the applied method. It shows that as the forecast horizon
increases, the accuracy of EPR and the prediction and confidence intervals tend
to decrease. In contrast, CPR areas are established and calculated using the
calibration sample, featuring a broader radius. This characteristic increases
the likelihood of points falling within the CPR, enhancing its inclusiveness.
However, it is important to note that this method relies on empirical data from
past observations rather than a theoretical probabilistic assumption.

Visualisation of the regions as circular or elliptical vessel guard zones
(domains) is feasible if the semi-major and semi-minor axes are known or, at
the very least, the radius areas are known. In the case of EPR, both axes are
defined, allowing the domain to be represented as an ellipse. Conversely, in
CPR, only the radius is specified, resulting in a circular safe zone representing
the maximum Euclidean distance a vessel may deviate from the centre of the
predicted position. Figure 5.8 exhibits the marine incident case previously
discussed, showcasing various implementations of these methods (without
resorting to additional interpolations purely for visualisation purposes).
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Figure 5.8: Comparison of method boundary widths in a marine accident.

5.5 Verification: the Scot Carrier and Karin Hoej Cargo
Ships collision

On December 13, 2021, a critical maritime incident occurred in the Baltic Sea
involving a collision between two cargo ships. The event unfolded off the coast
of the southern Swedish city of Ystad and near the Danish island of Bornholm,
within Swedish territorial waters. This collision involved a Danish-flagged
vessel, Karin Hoej (MMSI: 219021240), and a British cargo ship, identified as
Scot Carrier (MMSI: 232018267). In the aftermath of the collision, the Danish
ship capsized, leading to an immediate and urgent search and rescue operation
for the crew members aboard. The search efforts, intensified by the participation
of Scot Carrier, focused on locating at least two people initially reported
missing. Tragically, the situation took a sombre turn when one of the missing
crew members from the Danish vessel was found dead in the hull, highlighting
the severe consequences of the incident. The collision, amidst fog and darkness,
has prompted a comprehensive investigation into the circumstances leading to
this unfortunate event, examining factors such as maritime traffic negligence and
the adherence to safety protocols in one of Europe’s busiest maritime corridors.
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Figure 5.9: Spatiotemporal analysis of maritime collision accident.

Figure 5.9 presents two scatter plots that delineate the spatiotemporal
trajectories of two vessels before and immediately following a collision in the
Baltic Sea. The data, extracted from the Danish Maritime Authority’s AIS,
offers a high-resolution depiction of the incident, which occurred around 2:27
a.m. on December 13, 2021. The “Zoomed-Out Area“ on the left illustrates the
direction paths of the parallel moving vessels identified by MMSI 219021240
(blue) and MMSI 232018267 (green) before their collision (timestamp 1:51
a.m.). The adjacent “Zoomed-In Area“ on the right provides a detailed view
of the vessel movements at one-minute intervals from 02:22 to 02:30 a.m.,
showing the collision zone and directions of movement. This granular temporal
resolution reveals the immediate navigational circumstances that led to the
collision. Following the collision, the AIS signal transmission from Karin Hoej
was disrupted, cutting off data flow to the information system.

This visual analysis is crucial for the forensic examination of the causes
and consequences of the collision. It precisely demonstrates the trajectories and
relative positions of the vessels, highlighting the importance of AIS data in
maritime safety investigations. The figure not only contributes to elucidating
this particular incident but also exemplifies the significance of AIS data from
maritime authorities for enhancing navigational safety protocols and collision
avoidance strategies.

According to the COLREGs, the captain of a vessel on the open sea should
maintain a minimum distance of 1.5 to 2 nautical miles from other vessels to
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avoid dangerous situations. One of the tools used in maritime and aviation
contexts is CPA, which represents the shortest distance between two moving
objects if they continue on their current course and speed without any changes.
Meanwhile, TCPA measures the time until two moving objects reach the CPA to
each other. In this study, these methods are applied to the collision verification
to utilise the existing tools. Measurements are made based on the position of the
vessels at 01:51 a.m. timestamp, as shown in the figures. The geographical
position (longitude and latitude), speed in knots, bearing, and angles in degrees
are used for the CPA calculation. The resulting CPA is 0.53 nautical miles,
indicating an increased risk since the distance is less than 1 nautical mile. TCPA
is calculated as 34.80 minutes to the calculated CPA points. Figure 5.10a
illustrates the results of the calculations, indicating the starting point of the
calculation with letters, the lines representing direction, and the projected
position points with numbers. In maritime navigation, collision avoidance
scenarios can be analysed using established theoretical models such as the
Imazu problem, which provides a framework for evaluating vessel manoeuvring
strategies to minimise collision risks. Our real-case scenario closely aligns with
the Imazu problem case 4 (see Fig. 5.10b), where the relative positions and
courses of two vessels necessitate a careful assessment of collision avoidance
measures [35].

(a) (b)

Figure 5.10: Graphs of collision risk assessment: (a) calculation of CPA and
TCPA for cargo vessels half an hour before collision; (b) Imazu problem case 4
schematic representation [35].
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Figure 5.11: Comparative trajectory predictions from DL models. Triangles
indicate the vessels’ moving direction.

Figure 5.11 displays a series of scatter plots juxtaposing actual and
predicted vessel trajectories leading up to the maritime collision near Bornholm,
as DL models forecasted. Each panel represents a different prediction start time,
ranging from 02:21 to 02:27 a.m., with a 30-step input sequence utilised for
predicting the future positions of the vessels. The plots depict the actual paths of
KARIN HOEJ (blue) and SCOT CARRIER (green), overlaying these with the
predicted trajectories (yellow and red) generated by our trained models at each
interval. The architecture of the DL AE, with its inherent complexities and the
incorporation of regularisation techniques such as Dropout layers, results in the
model producing a range of predictions with subtle variations. The rightmost
graph, titled “Single Best Model“, showcases the most precise model forecasted
trajectory, identified by its minimal error value. Additionally, all depicted paths
include directional indicators.

This ensemble of predictions illustrates the capabilities of our DL models
to anticipate vessel movements and their potential for application in real-world
maritime navigation and safety systems. It also underscores the value of
employing a suite of models to capture the variability and uncertainty inherent
in such dynamic prediction scenarios.
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Figure 5.12: Visualisation of prediction and confidence intersection zones for
bivariate spatial data.

Predictive calculations for the ship trajectories are initiated from the 2:25
a.m. timestamp, coinciding with observing the ships’ turning movement changes.
However, the starting point for predictions can be chosen at any time. Figure
5.12 comprises two panels illustrating the use of CIs in predicting bivariate
spatial data for maritime trajectory forecasting. The left panel, “Forecast
Confidence and Prediction Intervals“, depicts the calculated CIs for a 20-minute
(steps) prediction horizon determined by our trained model. For each step, the
data are represented by a dot, aligning within the shaded confidence interval
bands, demonstrating the range of potential vessel locations over time. The
centre of the predicted path is marked by cross symbols, which indicate the
model’s central forecast for the vessel’s position at each time step. The red
zone marks the intersection area, representing the forecasted convergence of
the two vessel paths. The graphical representation of the forecasts is made
by interpolating the data between the time series, as the prediction regions
are normally represented as circular, elliptical or sector-based (hybrid) ship
domains.

The right panel, named the “Collision Intersection Zone“, zooms in on the
area where the CIs of the two predicted trajectories overlap. This intersection
signifies a heightened risk of collision as indicated by the narrowing intervals in
the initial prediction steps. The darkest shaded area denotes the most immediate
risk zone, based on the closest predictions where the paths are forecasted
to intersect. The reliability of both intervals is 95%. The desired level of
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confidence and the range of the interval decrease (become narrower), and as the
confidence level increases, the range of the interval increases (becomes wider).

Together, these panels convey the dynamic nature of predictive modelling in
maritime navigation, emphasising the importance of calculating and visualising
the predictions and associated CIs to assess the risk of collision more effectively.
The models demonstrated a high degree of accuracy in forecasting the collision,
which occurred.

Figure 5.13: Ellipsoidal prediction regions. Numbers next to the red crosses
represent the corresponding prediction time steps.

Figure 5.13 presents a graphical analysis of vessel trajectory forecasts
using the EPR method. It consists of four distinct panels, each illustrating the
application of EPRs at different stages of the prediction process.
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In the first panel, labelled “EPR Intervals“, a series of ellipses represents
the EPRs for multiple forecasted time steps of the two vessels. The data points
(blue and red dots) indicate the actual positions of the vessels. At the same time,
the ellipses encapsulate the regions where the vessels are predicted to be with a
certain level of confidence. The ellipses oscillate, demonstrating the dynamic
nature of the prediction over time, with overlapping areas suggesting potential
collision risks.

The second panel, “The first 5 steps of the forecast“, zooms in on the
initial predictions. It shows a closer view of the individual EPR ellipses for the
first five time steps, where intersections of the ellipses (black outlines) indicate
moments where the prediction models suggest a higher likelihood of a collision.
The blue and red dots continue to represent the actual positions of the vessels,
and the “X“ marks denote the centres of the EPR ellipses, which are the model’s
best guess for the vessels’ future positions.

In the third and fourth panels, “EPR in the 4th time step“ and “EPR in
the 5th time step“, we see the isolated EPR snapshots at specific moments.
These individual ellipses provide a clear visual representation of the predicted
movement areas for each vessel at given time steps. The overlap between the
ellipses is shaded, highlighting the critical areas where the vessels’ paths are
predicted to converge, indicating moments of heightened collision risk.

Once an area is demarcated, its possible overlap with adjacent areas can be
analysed by predicting ship trajectories. To make it easier to understand the area
covered by each zone, they are converted to a UTM projection, which allows the
actual area of these zones to be calculated in square meters.

Applying the formula (E) can obtain a probability estimate of the collision
risk score. The data presented in Table 5.4 show that using the CPR method
results in a risk of collision between the two ships within a 5-minute time frame
of nearly 40%, as predicted at 02:24 a.m. Conversely, even if the risk of a
collision is 1%, i.e., an incident is likely to happen, it is much less likely. Zone
A is Karin Hoej, and Zone B is Scot Carrier. The intersection areas between the
trajectories of the two ships at a specific point in the time series, for instance, at
step 1, are examined by comparing them with the forecast trajectory of the other
ship at the same step, and this process continues sequentially. The centres
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Table 5.4: Collision risk score comparison over time steps (highest probability
marked in bold).

Time
Step

EPR

Area A, m2 Area B, m2 A∩B, m2 Prob (%)

1 11,425.5 32,978.4 0.0 0.00
2 35,960.2 117,517.0 0.0 0.00
3 72,216.4 220,926.0 0.0 0.00
4 132,867.0 368,967.0 96,986.7 23.96
5 198,320.0 536,512.0 22,066.5 3.10
6 274,578.0 762,444.0 0.0 0.00

Time
Step

CPR

Area A, m2 Area B, m2 A∩B, m2 Prob (%)

1 20,812.7 20,808.5 0.0 0.00
2 64,937.4 64,927.8 0.0 0.00
3 153,537.9 153,523.8 0.0 0.00
4 302,596.1 302,584.9 171,576.5 39.57
5 524,334.6 524,344.3 89,920.4 9.38
6 826,551.7 826,611.9 0.0 0.00

Time
Step

PI

Area A, m2 Area B, m2 A∩B, m2 Prob (%)

1 4,717.5 14,151.0 0.0 0.00
2 14,568.8 53,199.1 0.0 0.00
3 31,642.8 112,766.8 0.0 0.00
4 53,492.5 190,868.5 8,420.9 3.57
5 79,293.0 288,027.5 0.0 0.00
6 107,950.1 405,907.8 0.0 0.00

Time
Step

CI

Area A, m2 Area B, m2 A∩B, m2 Prob (%)

1 224.6 673.9 0.0 0.00
2 693.8 2,533.3 0.0 0.00
3 1,506.8 5,369.8 0.0 0.00
4 2,547.3 9,089.0 0.0 0.00
5 3,775.9 13,715.6 0.0 0.00
6 5,140.5 19,328.9 0.0 0.00
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of the predicted trajectories for all models are marked with red dots. This
methodical approach ensures a thorough evaluation of the potential overlaps or
intersections among the predicted paths of various vessels, providing insight
into the likelihood of close encounters or collisions at each step of the forecast.

By leveraging a multi-model approach, we effectively quantify prediction
variability, where uncertainty increases as the forecast horizon extends. This
is directly reflected in the size of the ellipsoidal boundaries, as longer-term
predictions exhibit greater divergence due to the accumulating error. This
characteristic is inherent in stochastic trajectory forecasting, where uncertainty
propagation is a fundamental aspect of risk assessment. The probabilistic
nature of EPRs allows for a more robust evaluation of vessel movement
safety compared to single deterministic methods such as CPA, which focus on
immediate proximity rather than future trajectory regions.

5.6 Summary of the Chapter

This chapter presents the results of the experiments conducted to enhance vessel
trajectory prediction and maritime safety. The research involved analysing and
developing recurrent networks based on time sequences managed by specific
cell structures. The study found that different cell sizes have a direct impact on
the results, depending on the type of architecture. Six different architectures
were tested: simple RNN, basic LSTM, LSTM stack, GRU, AE, and basic
bidirectional LSTM. The bidirectional LSTM and AE architectures achieved the
most accurate predictions and the lowest MSE loss, with optimal cell sizes
crucial for their performance.

DL models were evaluated in multiple stages, with the North Sea region
dataset initially used to compare different recurrent architectures. The
LSTM AE achieved the most precise trajectory predictions, with UTM-based
transformations producing the lowest MAEH error of 1.141 km, outperforming
other transformations such as distance and angle (1.266 km), delta latitude and
longitude (1.439 km) and raw AIS features (1.427 km).

Further studies in the Baltic Sea region introduced recursive delta
transformations with WGS84 and UTM coordinates. The results demonstrated
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that WGS84 delta-based predictions achieved the lowest MAEH error of
0.3537 km, showing comparable or superior performance to UTM-based
transformations (0.3839 km). Additionally, experiments assessing categorical
vessel-type encoding methods revealed that 3D embedding yielded the lowest
MAEH error (0.2636 km), outperforming one-hot encoding (0.2655 km) and
ordinal encoding (0.2681 km), while predictions without vessel-type information
resulted in a slightly higher error (0.2710 km). These findings highlight the
critical role of coordinate transformations, recursive delta-based predictions, and
vessel-type encoding in optimising vessel trajectory forecasts, demonstrating
that refined data representations and feature engineering significantly enhance
prediction accuracy. Incorporating key meteorological features such as wave
period, wind speed, wind wave period, air temperature, water temperature,
wind wave height, and wave height further enhanced the prediction accuracy,
demonstrating that environmental conditions play a crucial role in improving
vessel trajectory forecasts, reducing the MAEH to 0.3203 km.

The chapter also explored the use of prediction boundaries, including
prediction and confidence intervals, ellipsoidal prediction regions, and conformal
prediction regions, to estimate potential future positions of vessels. These
methods provided a probabilistic assessment of collision risks, with conformal
prediction regions proving particularly effective. Coverage probability analysis
across time steps demonstrated that CPR had the highest inclusion rate at 86.7%,
followed by EPR at 71.4%, PI at 51.0%, and CI at 4.9%, reinforcing their
reliability in maritime collision assessment.

A notable application was the real-case collision analysis between Scot
Carrier and Karin Hoej cargo ships, where the conformal methodology
predicted the accident with a 39.6% probability. These findings highlight the
advantage of probabilistic approaches over deterministic methods such as CPA
and TCPA, which rely on fixed threshold values rather than dynamic trajectory
uncertainties. The framework proposed by the study extends beyond traditional
methods by evaluating trajectory boundary overlaps dynamically, integrating
multiple models without bootstrapping, and aligning predictions with real-world
stopping times of large vessels.

The study emphasised the importance of integrating multiple models and
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employing advanced prediction techniques to estimate forecast intervals and
dynamically observe variability. Methods provided a probabilistic framework
for defining trajectory boundaries and assessing collision risks. Compared to
traditional approaches such as CPA and TCPA, these techniques offer a more
robust assessment of vessel movement uncertainty by evaluating clusters of
probabilistic boundaries rather than relying on a single deterministic point.

A key advantage of this approach is its ability to move beyond predefined
static thresholds, such as CPA’s fixed proximity and response time conditions,
by forecasting dynamic trajectory boundaries and evaluating their overlap
probabilistically. This method enhances long-term collision risk assessment,
aligning with real-world maritime conditions where vessel behaviour is
influenced by external factors such as weather, navigational constraints, and
operational decisions.

However, despite the advantages, challenges remain. The reliance on
multiple DL models increases computational demands, particularly for real-time
applications. Additionally, the effectiveness of these methods depends on
the accuracy of the underlying trajectory predictions, which are influenced
by AIS data quality, including potential gaps, delays, and inconsistencies.
Future research could further refine data pre-processing techniques, integrate
physical vessel parameters, and explore comparative studies with reinforcement
learning-based approaches. By addressing these limitations, the proposed
framework offers a promising step forward in maritime collision detection and
risk assessment, contributing to safer and more reliable vessel navigation
systems.
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6 General Conclusions

This thesis proposed and investigated DL approaches for multi-vessel trajectory
forecasting and probabilistic collision-risk assessment in maritime navigation.
Specifically, the thesis (a) reviewed existing trajectory-prediction methods,
highlighting RNNs ability to perform long-term forecasts rather than relying on
linear extrapolation; (b) designed, trained, and tuned various RNN architectures
to identify those yielding the lowest prediction error in vessel-movement fore-
casting; (c) examined input representations, such as coordinate transformations,
recursive delta recalculation, vessel-type embeddings, and meteorological data
to enhance prediction accuracy; (d) implemented and compared uncertainty
quantification techniques (EPR, CPR, PI, and CI) for collision-risk estimation;
and (e) applied these models to a previously unseen real-world collision incident
to demonstrate practical applicability. The key conclusions are:

1. RNNs (such as LSTM/GRU) are necessary for 20–25 minute vessel-trajectory
forecasts. Clustering or linear extrapolation cannot produce continuous
predictions over a 20–25 minute horizon, critical for large-vessel stopping
times. In the North Sea study, six architectures (simple RNN, basic LSTM,
stacked LSTM, GRU, LSTM AE, bidirectional LSTM) were compared:
bidirectional LSTM (300 cells, MSE = 3.618×10−4) and LSTM AE (125
cells, MSE = 3.688×10−4) achieved the lowest errors with a specific cell
combination. While bidirectional LSTM maintained stable accuracy across
configurations, AE gets plateaued beyond a threshold cell count, which
suggested that architecture and hyperparameter tuning dramatically affect
long-term accuracy.

2. Careful tuning of LSTM cell counts is critical: larger architectures do not
guarantee better accuracy. In the Baltic Sea experiments, determined models
with 75–300 LSTM cells achieved the lowest MAEH (around 0.18–0.20 km).
Beyond 300 cells, error reduction plateaued, and increasing cells past 1,000
caused a sharp rise in training time with negligible gains. Thus, selecting an
appropriate cell count is essential; excessively large architectures impair
efficiency without improving accuracy.
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3. Enhanced input representations, coordinate transformations, recursive
delta extrapolation, vessel-type embeddings, and meteorological features
substantially reduce prediction error.

• Introduced recursive delta recalculation (feeding each predicted position into
the next step), cut MAEH from 0.6171 km (raw WGS84) to 0.3537 km
(WGS84-delta) and from 0.4903 km (UTM) to 0.3839 km (UTM-delta),
preventing error accumulation, especially in early steps.

• In North Sea tests with the proposed LSTM AE, projecting raw AIS into
UTM reduced MAEH to 1.141 km (versus 1.427 km for raw WGS84), with
distance-angle transformations at 1.266 km and delta-lat/lon at 1.439 km.

• In Baltic Sea experiments with the proposed LSTM AE, integrating a 3D
embedding for vessel type reduced MAEH to 0.2636 km (versus 0.2655 km
for one-hot, 0.2681 km for ordinal, and 0.2710 km without any vessel-type).

• Integrating meteorological data with AIS inputs to capture the surrounding
environmental impact reduced MAEH from 0.3537 km to 0.3203 km,
confirming that richer, recursively updated, and locally projected inputs yield
more accurate multi-step forecasts.

4. Proposed probabilistic interval-based methods (CPR, EPR, PI, CI) outperform
CPA/TCPA. Forecasting trajectory-boundary overlap via CI, EPR, and
CPR provides a more complete uncertainty assessment than point-based
CPA/TCPA. CPR achieved 86.7% coverage (versus 71.4% for EPR, 51.0%
for PI, and 4.9% for CI) by avoiding normal distribution assumptions and
evaluating uncertainty clusters over a 20-minute horizon. This replaces
fixed guard zone rules with dynamic region overlaps for a more adaptive,
statistically sound collision-risk framework.

5. Real-world validation (Scot Carrier–Karin Hoej, 2021) confirms probabilistic
detection but highlights AIS limitations. Overlapping CPRs from multiple
LSTM AE forecasts yielded a larger 39.6% collision risk score at 95%
confidence, matching the actual incident. However, AIS gaps and delays still
constrain reliability; resampling reduced some noise, but incorporating
vessel-specific physical parameters (e.g., turning radii, inertia) could further
improve robustness.
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atradimas”. In: (2021). Prieiga per eLABa – nacionalinė Lietuvos
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A Appendix - Numerical data

(a)

(b)

Figure A.1: Baltic Sea region representation of: (a) AIS dataset distribution; (b)
weather dataset distribution.
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B Appendix - AIS data & filtering

Table B.1: Dataset meta information before and after processing.

Raw Data (Before Processing) Processed Data (After Filtering)
Total Entries: 93,822,057 Total Entries: 26,441,425

Features: Features:
# Timestamp: Object id: Int64

MMSI: Float64 DateTime: Datetime64

Latitude: Float64 # Timestamp: Object

Longitude: Float64 Latitude: Float64

Navigational status: Object Longitude: Float64

ROT: Float64 SOG: Float64

SOG: Float64 Heading: Float64

COG: Float64 DateDiff: Float64

Heading: Float64 dLat/dt: Float64

IMO: Object dLong/dt: Float64

Callsign: Object distance: Float64

Name: Object Ship type: Object

Ship type: Object

Cargo type: Object

Width: Float64

Length: Float64

Draught: Float64

Destination: Object

ETA: Object

Applied Filters: Applied Filters:
None SOG ̸= 0

DateDiff > 0

DateDiff ≤ 120

Distance ≤ 800

Resampling (60s)

Drop NA

Drop Duplicates
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C Appendix - Model learning process

(a)

(b)

Figure C.1: Cross-validation results for different models: (a) cross-validation
plot for a random model; (b) cross-validation plot for the best model.
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D Appendix - Cell Count Impact on
Prediction Accuracy

(a)

(b)

Figure D.1: Analysis of configurations and prediction accuracy: (a) impact of
LSTM cell count on MAEH prediction error; (b) comparative evaluation of
coordinate transformation experiments, where Exp-A uses raw AIS features,
Exp-B includes delta latitude and longitude, Exp-C employs distance and
azimuth angle transformations, and Exp-D utilises UTM projection coordinates.



E Appendix - Random routes

Figure E.1: Prediction examples (a).
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Figure E.2: Prediction examples (b). Baltic sea trajectories for different vessel
types: grey shows traffic intensity, red is the prediction of the current state, blue
is the model input, and green is the actual movement.
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trajektoriją naudojant giliuosius rekurentinius neuroninius tinklus bei jų
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[F.2] Klaipėda Industrialists Association Award for the Master’s thesis “LSTM
Deep Neural Network Research for Prediction of Vessel Movement Using
Big Traffic Data”, 2020, Klaipėda, Lithuania.
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Santrauka

Remiantis Pasauline jūrų draudimo metine ataskaita, nelaimės jūroje išlieka
svarbi problema, susijusi tiek su žmogiškaisiais, tiek su nežmogiškaisiais rizikos
veiksniais. Tarp jų – laivų susidūrimai ir eismo anomalijos. Analizuojant AIS
istorinius duomenis, kuriami intelektualūs sprendimai laivų trajektorijoms prog-
nozuoti. Dažniausiai siekiama gerinti regresinių prognozių tikslumą pasitelkiant
istorinių judėjimo modelių analizę, elgsenos panašumus ar klasterizavimo
metodus, nes situacinis jūrų eismo suvokimas yra ypač svarbus transporto
saugai. Vis dėlto, visuotinio sprendimo šioje srityje vis dar nėra pasiūlyta.

Situacinis suvokimas, apimantis aplinkos stebėseną, interpretavimą ir
būsimų pokyčių prognozavimą, laikomas aukščiausiu (3-iuoju) suvokimo
lygiu. Disertacijoje nagrinėjamos giliojo mokymosi rekurentinės tinklų
architektūros, jų hiperparametrai bei atliekama požymių inžinerija naudojant
pusiau struktūrizuotus AIS duomenis. Sukurtas rekursinis transformacijos
modelis leidžia tiksliau ekstrapoliuoti kelių žingsnių laivų trajektorijas. Em-
piriniai rezultatai parodė, kad tiksliausias modelis – daugiamačių duomenų
ilgos–trumpalaikės atminties autoenkoderis (angl. long short-term memory
autoencoder, LSTM AE), kuriame integruojami laivo tipų ir meteorologiniai
duomenys kaip generalizuotas sprendimas. Tikslumui gerinti siūloma taikyti
skirtingas koordinačių sistemas, apskaičiuoti delta erdvinių koordinacinių
taškų (vektorių) skirtumus – pokytį tarp ankstesnio bei einamojo taško ir
rekursyviai atkurti sekos pozicijas pridedant šias deltas prie paskutinio žinomo
taško, nenaudojant absoliučių reikšmių. Kategoriniai laivų tipų duomenys
integruojami į bendrą mokymo rinkinį naudojant skirtingas kodavimo technikas.
Prognozių patikimumui ir neapibrėžtumui įvertinti taikomi statistiniai metodai,
elipsiniai ir konforminiai prognozės regionai (sritys) bei intervalai, leidžiantys
apskaičiuoti tikimybinį trajektorijų persidengimą, ir nustatyti galimą greta
esančių laivų susidūrimo riziką.

Disertacijoje analizuojamas realus avarijos tyrimo atvejis – 2021 m. laivų
susidūrimas prie Bornholmo salos. Taikant giliuosius rekurentinius neuroninius
tinklus, sukurti modeliai prognozuoja kelių žingsnių į priekį trajektorijas ir
formuoja prognozės sritis 95 % pasikliovimo lygmeniu susidūrimo rizikai
vertinti. Neparametrinis konforminių sričių metodas pasirodė veiksmingas
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identifikuojant galimus susidūrimo scenarijus. Rezultatai rodo, kad giliojo
mokymosi modeliai, turintys trumpalaikio ir ilgalaikio prognozavimo galimybes,
gali reikšmingai pagerinti navigacijos sprendimus ir prisidėti prie incidentų
prevencijos.

I. Įvadas

Jūrų transportas yra gyvybiškai svarbus pasaulinei prekybai, tačiau didėjantis
laivybos intensyvumas kelia susidūrimų, saugumo ir aplinkosaugos rizikų.
Informacija apie laivų padėtį, trajektorijas ir paskirties vietas yra būtina siekiant
užtikrinti jūrų saugumą, aplinkos apsaugą ir ekonomikos stabilumą. Tarptautinė
jūrų draudimo sąjunga (IUMI) praneša, kad 2019 m. apie 10 % nuostolių kilo
dėl susidūrimų, o likusi dalis – dėl įgulos klaidų, įrangos gedimų ir nepalankių
oro sąlygų [81]. Nepaisant jau didelės apkrovos, laivybos apimtys toliau auga:
2020 m. IUMI duomenimis jūrų draudimo įmokos siekė 30 mlrd. USD, tai 6,1
% daugiau nei 2019 m., o krovinių laivai užėmė 57,2 % visos draudimo įmokų
sumos [80]. Tokie augantys srautai didina jūrų saugumo rizikas.

Didėjantis laivybos intensyvumas generuoja didžiulius automatinės
identifikavimo sistemos (angl. automatic identification system, AIS) duomenų
kiekius, kuriuos realiuoju laiku apdoroti ne tik sunku, bet dažnai ir neįmanoma
pasitelkiant tik žmogiškuosius išteklius ar įprastus mašininio mokymosi (angl.
machine learning, ML) metodus. Veiksmingas situacijos suvokimas turi tris
lygius: pradiniai lygmenys orientuojasi į aplinkos vertinimą, o III lygis apima ir
būsimos būklės suvokimą bei prognozavimą [63]. Norint pasiekti III lygį, reikia
pažangių metodų, tokių kaip gilusis mokymasis (angl. deep learning, DL),
kuriais galima analizuoti dideles, triukšmingas laiko eilučių duomenų apimtis.
Neseni incidentai tai puikiai iliustruoja: 2025 m. kovo mėn. tanklaivis „MC
Stena Immaculate“ rūke susidūrė su krovininiu laivu netoli Humberio žiočių;
2018 m. pabaigoje fregata „Helge Ingstad“ Norvegijoje susidūrė su naftą
gabenančiu laivu, o Baltijos jūroje 2022 m. „Nord Stream“ dujotiekio sprogimai
sutrikdė eismą. Tokie įvykiai rodo, kaip greitai perpildyti ar strateginiai vandens
keliai gali tapti pavojingi, trikdyti įprastą eismą, todėl reikalingi papildomi
sprendimai, pabrėžiant patikimų daugiažingsnių trajektorijų prognozavimo
modelių ir stebėjimo realiuoju laiku priemonių svarbą.
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Sonarai ir radarai padeda laivams aptikti artėjančias kliūtis, tačiau radaras
tankaus eismo sąlygomis gali nepastebėti mažesnių objektų, užstojamų didesnių
laivų, o abiejų sistemų patikimumas mažėja nepalankaus matomumo sąlygomis
ar triukšmingoje aplinkoje. Daugelis laivų naudoja AIS atsakiklius, tačiau
AIS duomenys realiuoju laiku gali vėluoti kelias minutes, be to, negali
savaime prognozuoti būsimų judėjimų, o teikia tik esamos situacijos būsenas.
Priešingai, istoriniai AIS įrašai, kartu su meteorologiniais ir kategoriniais
laivo tipo duomenimis, puikiai tinka DL metodams ir prognozėms modeliuoti.
Rekurentiniai neuroniniai tinklai (angl. recurrent neural networks, RNNs), ypač
kelių žingsnių daugiamačiai modeliai, geba mokytis iš tokių laiko eilučių,
prognozuoti laivo trajektoriją ir fiksuoti galimus susidūrimus ar neįprastus
manevrus. Pasitelkus AIS signalus DL modeliuose, RNN pagrįstos prognozės
prisideda prie geresnio situacijos suvokimo ir skatina proaktyvias saugumo
priemones jūrų vandenyse, kur pasitaiko vis daugiau spūsčių.

Tyrimo problematika

Nors pažangūs mašininio ir giliojo mokymosi metodai vis plačiau taikomi
sausumos transporto sistemose (pvz., apžvalginiame straipsnyje [4]), kur
45 % tyrimų skirti spūstims prognozuoti, o 30 % – srautams valdyti, jūrų
transporto specifika beveik nenagrinėjama. AIS duomenų srautai jūroje yra
netolygūs, laivų tipai – įvairesni, o aplinkos veiksniai (pvz., vėjas, srovės)
stipriai veikia judėjimą. Masyviems, visiškai pakrautiems laivams, pvz.,
tanklaiviams, gali prireikti net 20–25 minučių visiškai sustoti, todėl reikalingos
prognozės, apimančios ilgalaikius 20–25 min. išankstinius spėjimus, kad
esant poreikiui būtų galima išvengti susidūrimų ar priimti kitus svarbius laivo
valdymo sprendimus [38].

Įprastai laivams stebėti naudojami radarai, sonarai ir AIS, tačiau jie suteikia
tik dabartinės padėties vaizdą ir gali klaidinti tankaus eismo ar prasto matomumo
sąlygomis: radaras gali nepastebėti mažesnių objektų už didesnių laivų, o AIS
signalai kartais vėluoja arba prarandami, todėl sprendimai realiuoju laiku tampa
nepatikimi. Istoriniai AIS įrašai pateikia gausią trajektorijų informaciją, tačiau
jų netolygūs matavimo intervalai ir duomenų triukšmas apsunkina trajektorijų
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analizę bei panaudojimą prognozių ekstrapoliacijai, net trumpalaikiame (kelių
minučių) laikotarpyje, o vien AIS duomenys neapima prognozavimo galimybių.

Daugelis iki šiol taikomų jūrų trajektorijų prognozavimo modelių pagrįsti
trumpalaikiais arba tiesiniais spėjimais. Be to, neretai taiko universaliųjų
skersinių Merkatoriaus (angl. Universal Transverse Mercator, UTM)
koordinačių transformacijas be aiškaus paaiškinimo, kaip tai veikia prognozės
tikslumą, arba kuria atskirus modelius skirtingiems laivų tipams, o tai reikalauja
daug paruošiamojo darbo ir neįtraukia tokių kintamųjų kaip greitis, kursas ar
aplinkos sąlygos. Todėl nėra vieningo sprendimo, galinčio vienodai gerai
apdoroti visų laivų tipų elgseną. Gilieji rekurentiniai neuroniniai tinklai
gali įsiminti ilgalaikes priklausomybes iš triukšmingų AIS laiko eilučių,
tačiau ankstesniuose darbuose nėra ištirtas vienu metu integruotas kategorinių
laivų tipų ir meteorologinių duomenų panaudojimas, taip pat nebuvo spręsta
absoliučių koordinačių prognozavimo įtaka daugiažingsnėse prognozėse, kurią
galima gerinti modeliuojant vektorių pokyčius tarp paskutinių laiko taškų.

Susidūrimų rizikos vertinimas šiuo metu dažniausiai grindžiamas deter-
ministiniais rodikliais, tokiais kaip minimalus artimiausio priartėjimo taškas
(angl. closest point of approach, CPA) ir laikas iki minimalaus priartėjimo
(angl. time to closest point of approach, TCPA), kurie apskaičiuoja vieną
būsimą tašką, kai du laivai bus arčiausiai vienas kito fiksuoto atstumo intervale
(pvz., 0,25 jūrmylės arba 15 minučių). Nors CPA / TCPA plačiai naudojami
sprendimams realiuoju laiku, juos sudėtinga interpretuoti, nes jie apskaičiuoja
tik konkretų tašką, ignoruoja trajektorijos neapibrėžtumą, nesugeba tvarkyti
kelių laivų trajektorijų persidengimų ir neleidžia priskirti prasmingos susidūrimo
tikimybės. Siekiant pašalinti šiuos trūkumus ir pasiūlyti platesnį būsimų laivų
trajektorijų vertinimą, pristatomuose metoduose vertinami neapibrėžtumo
klasteriai ir plečiamas CPA fiksuoto taško analizės požiūris. Šis požiūris,
apimantis 20 minučių prognozės intervalą, atitinkantį didelių laivų stabdymo
laiką, ir numatantis dinamiškas trajektorijų ribas, pakeičia statinius atstumo ir
laiko ribojimus tikimybiniais persidengimų rodikliais, kurie geriau atspindi
galimų sąveikų įvairovę.

Šia disertacija kuriamas vieningas sprendimas, naudojant giliuosius
RNN ir siekiant gauti tikslesnius daugiažingsnius laivų trajektorijų spėjimus
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pagal istorinius, pusiau struktūrizuotus AIS duomenis; integruojami laivų tipų
elgsenos ir meteorologiniai kintamieji į vieną modelį, gerinantį prognozavimo
galimybes bendrai visoms laivų klasėms; ir pakeičiamos vieno taško CPA /
TCPA taisyklės tikimybinėmis rizikos sritimis, atsižvelgiančiomis į modelio ir
duomenų neapibrėžtumą. Dėl tokio derinio siūlomas požiūris sustiprina realaus
laiko jūrų situacijos suvokimą ir pateikia veiksmingus rizikos vertinimus tada,
kai jų labiausiai reikia.

Tyrimo objektas

Daugiamačiai, daugiažingsniai laivų trajektorijų duomenys, pagrįsti AIS, skirti
susidūrimų rizikai prognozuoti ir vertinti. RNN metodai yra taikymo priemonė
objektui tirti.

Tyrimo tikslai ir uždaviniai

Šio tyrimo tikslas – pasiūlyti ir ištirti giliųjų neuroninių tinklų pagrindu
veikiančius algoritmus, skirtus kelių žingsnių (ilgalaikėms) laivų trajektorijų
prognozėms ir susidūrimų rizikai vertinti jūrų navigacijoje.

Siekiant šio tikslo, keliami šie uždaviniai:

1. Atlikti kelių žingsnių daugiamačių laivų trajektorijų prognozavimo
metodų literatūros analizę, nagrinėjant skirtingas modelių kūrimo strategi-
jas, duomenų reprezentacijas ir jų taikymą jūriniam situacijos suvokimui
bei saugai.

2. Išvystyti ir palyginti RNN architektūras ilgalaikiam laivų trajektorijų
prognozavimui, vertinant jų patikimumą, jautrumą hiperparametrams ir
optimizavimo kriterijus, siekiant nustatyti veiksmingiausias trajektorijų
prognozavimo modelių konfigūracijas.

3. Įvertinti trajektorijų prognozavimo tikslumo priklausomybę nuo
kategorinių, meteorologinių ir erdvinių duomenų, įskaitant koordinačių
sistemų transformacijas, bei nustatyti tinkamiausias kategorinių duomenų
apdorojimo metodikas.
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4. Įvertinti ir identifikuoti veiksmingus siūlomus metodus laivų susidūrimų
rizikai vertinti, taikant modelio prognozių neapibrėžtumo kiekybinį
įvertinimą prognozės patikimumui nustatyti bei naudojant deterministinius
statistinius metodus galimiems trajektorijų persidengimams, rodantiems
susidūrimo scenarijus, aptikti ir kiekybiškai įvertinti.

5. Patikrinti susidūrimų aptikimo metodikas empirinio tyrimo metu, naudo-
jant anksčiau netirtus laivų trajektorijų duomenis su realiais istoriniais
jūriniais incidentais.

Mokslinis naujumas ir praktinė vertė

Šiame tyrime pristatomi keli naujoviški metodai, kurie kartu tobulina laivų
trajektorijų prognozavimą ir susidūrimų rizikos vertinimą jūrų navigacijoje.
Pagrindiniai indėliai yra:

1. Nustatyta, kad LSTM AE yra veiksmingiausia prižiūrimojo mokymo RNN
architektūra daugiažingsniam laivų judėjimo ekstrapoliavimui, ir atrasta
kritinė ląstelių skaičiaus riba. Palyginus įvairias RNN architektūras laiko
eilučių regresijai, paaiškėjo, kad LSTM AE geriausiai įsisavina ilgalaikius
priklausomybių modelius. Naudojant 75–300 LSTM ląstelių, pasiekiamas
optimalus tikslumas. Nors didinant ląstelių skaičių, papildomos ląstelės
suteikia menką naudą, tačiau smarkiai padidina skaičiavimo sąnaudas, o
tai padeda projektuoti veiksmingus modelius.

2. Laivų tipų ir meteorologinių duomenų (pvz., vėjo greičio, srovių), ir AIS
duomenų vieningo integravimo sprendimas sumažina duomenų paruošimo
apimtį ir gerina įvairių laivų klasių generalizavimą. Kategorinių laivų
tipų įterpimas (angl. embedding) drauge su aplinkos kintamaisiais vienoje
duomenų imtyje užtikrina, kad prognozės atspindi realias sąlygas, taip
didinant tikslumą ir patikimumą skirtingose aplinkose.

3. Užuot prognozavus absoliučias koordinates, modeliu prognozuojami
gretimų laiko žingsnių padėties vektoriaus pokyčiai (delta). Šie prog-
nozuoti delta vektoriai rekursyviai pridedami prie žinomos esamos
padėties, taip atkuriant trajektoriją. Šis metodas, taikomas tiek pasaulinėje
geodezinėje WGS84, tiek UTM koordinačių sistemose, padeda sumažinti
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kaupiamąją paklaidą, gerina erdvinį vientisumą ir užtikrina prognozės
nuoseklumą ilgesniam laikotarpiui.

4. Pasiūlyta naudoti neparametrines konforminių prognozės regionų (angl.
conformal prediction region, CPR) metodikas laivų susidūrimams aptikti,
konstruktyviai sudarant tikimybinės rizikos zonas iš kelių LSTM AE
prognozių. Imant skirtingas hiperparametrų konfigūracijas, susidaro
nežymių klaidų pasiskirstymas (stochastiškumas), o CPR apgaubia šias
prognozes nenaudodama jokių prielaidų apie klaidų pasiskirstymą. Kai
dviejų laivų CPR zonos persidengia, apskaičiuojamas susidūrimo rizikos
balas – tai suteikia regionu pagrįstą rodiklį, atspindintį neapibrėžtumą
keliuose prognozių rinkiniuose, o ne vieno taško kaip CPA / TCPA įvertį.
Naujoviškai taikant CPR, tiesiogiai naudojamas modelio kintamumas ir
triukšmingi duomenys, siekiant pateikti informatyvesnių susidūrimo
rizikos įvertinimų.

Ginamieji teiginiai

Disertacijoje ginami šie tyrimu pagrįsti teiginiai:

1. Kai laivo trajektorija prognozuojama naudojant LSTM tipo neuroninio
tinklo architektūrą, pasiekus tam tikrą LSTM ląstelių skaičių, prognozės
tikslumas nebekinta arba kinta nežymiai, tačiau tinklo mokymo trukmė
smarkiai pailgėja.

2. Kelių žingsnių daugiamačių laivų trajektorijos ekstrapoliacijai taikant
rekursyvų prognozės sekos perskaičiavimą nuo ankstesnio taško, galima
tiksliau nustatyti kitus prognozių taškus, ypač pradiniuose etapuose.

3. Laivų tipų ir meteorologinės informacijos įtraukimas į bendrą LSTM
rekurentinio kelių žingsnių daugiamačio neuroninio tinklo mokymo
duomenų rinkinį gerina laivų trajektorijų prognozavimo tikslumą, kai
taikomas įterptasis kodavimo metodas.

4. Konforminis prognozavimo regionas (CPR) leidžia nustatyti laivų
susidūrimo ribas su didžiausia statistine tikimybe (95 % pasikliovimo
lygiu), kai duomenys yra daugialypiai ir neturi normaliojo skirstinio.
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Disertacijos santraukoje pristatoma jūrų eismo situacija, tyrimo aktualumas,
tikslas, problematika, ginamieji teiginiai ir bendra darbo eiga. Antroje dalyje
apžvelgiami gilieji RNN, kategorinių duomenų kodavimo metodai ir prognozių
neapibrėžtumo vertinimo būdai. Trečioje dalyje nagrinėjamas LSTM AE
metodas su kategorinių ir meteorologinių duomenų integracija bei susidūrimų
prognozavimo sritimis. Ketvirtoje dalyje aprašomi tyrimo duomenys, jų
apdorojimas ir modelių kūrimo eiga. Penktoje dalyje pateikiami pagrindiniai
eksperimentų rezultatai, o disertacija užbaigiama bendrosiomis išvadomis.

II. Literatūros analizė

Laivų trajektorijų prognozė jūroje reikalauja daugiakriterinio požiūrio, nes
AIS duomenys yra nereguliariai atnaujinami ir sudėtingi. Daugiažingsnės
(angl. multi-step) prognozės, kurių rezultatas – kelių laiko žingsnių iš eilės
išskleistos koordinačių reikšmės, leidžia numatyti laivų judėjimą 20–25 minučių
intervalu, būtinu norint atsižvelgti į didelių laivų stabdymo laiką. Tokio tipo
modeliuose vienu metu naudojami požymiai: laivo greitis, kursas, geografinės
koordinatės ir meteorologiniai rodikliai (pvz., vėjo greitis, bangų aukštis), nes
vien tik absoliučios koordinačių vertės nebeužtikrina pakankamo tikslumo,
ypač dinamiškoje aplinkoje, kurioje veikia tiek meteorologinės sąlygos, tiek
įvairios povandeninės srovės ir pats jūrinis eismas. Tyrimuose pabrėžiama, kad
daugiamačiai (angl. multi-variate) duomenys leidžia atskleisti sudėtingus
priklausomybių sąryšius tarp laivo charakteristikų ir aplinkos veiksnių, gerinant
prognozių patikimumą [57, 85].

RNN, ypač LSTM ir sklendžių rekurentinių vienetų (angl. gated recurrent
unit, GRU) architektūros, tapo pagrindiniais įrankiais prognozuojant kelių
žingsnių trajektorijas. LSTM sprendžia gradiento nykimo problemą ir geba
išlaikyti ilgalaikes priklausomybes gana tiksliai apdorodamas sekų duomenis, o
GRU supaprastina LSTM struktūrą, išlaikydamas aukštą našumą, bet mažesnį
skaičiavimo laiką [18, 73]. Paprasti RNN modeliai dažnai neatlaiko ilgalaikių
priklausomybių, todėl daugumoje tyrimų vertinamos ir lyginamos skirtingos
RNN variacijos: paprastas RNN, LSTM, sluoksniuotas (angl. stacked) LSTM,
dvikryptis LSTM ir LSTM AE [22, 63]. Mokslinėje literatūroje įrodyta, kad
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LSTM autoenkoderiai efektyviai suspaudžia didelės apimties duomenis ir
sumažina paklaidų kaupimąsi daugiažingsnėse prognozėse[12, 64].

Kategorinių duomenų, tokių kaip laivo tipas, integravimas į modelius
taip pat yra svarbus tikslumo aspektas. Laivo tipai (transportinis, žvejybos,
pagalbinis ir kt.) lemia skirtingą elgseną vandenyje, todėl duomenų rinkinį
būtina papildyti kategorinėmis savybėmis. Dažniausiai taikomi kodavimo
metodai yra fiktyvus kodavimas (angl. one-hot), etiketinis / ordinalus (angl.
label/ordinal) ir įterptinis (angl. embedding) kodavimas [33, 47]. Tyrimai rodo,
kad įterptinis kodavimas ypač naudingas, kai kategorijų skaičius didelis, nes
leidžia sumažinti matmenų skaičių ir pagerinti modelio generalizavimą [24,
70]. Sistemingas skirtingų kodavimo metodų palyginimas laivų trajektorijų
prognozėse dar nėra išsamiai atliktas, todėl šiame darbe nagrinėjamas ordinalus,
fiktyvus ir įterptasis kodavimas, siekiant išsiaiškinti, kuris metodas geriausiai
atspindi tarpkategorinius ryšius [21].

Susidūrimų rizikos vertinimas yra kitas būtinas jūrų saugos elementas.
Įprastiniai artimiausio priartėjimo taško ir laiko iki artimiausio priartėjimo
taško metodai nustato laivų priartėjimo taškus pagal pastovų saugų atstumą ar
laiką, tačiau jie apskaičiuojami pagal esamą situaciją ir neįvertina trajektorijų
prognozių neapibrėžtumo bei negali prisitaikyti prie dinamiškai kintančių
situacijų [55, 108]. Dėl to plačiau analizuojamas tikimybinis vertinimas:
prognozės intervalai (angl. prediction interval, PI), pasikliovimo intervalai
(angl. confidence intervals, CI), elipsoidinės prognozės sritys (angl. elipsoidal
prediction region, EPR) ir konforminės prognozės sritys (angl. conformal
prediction region, CPR). Šios prognozių intervalais pagrįstos technikos suteikia
galimybę apibūdinti galimų trajektorijų regionus, atsižvelgiant į modelio ir
duomenų triukšmą [34, 83, 91]. EPR apibrėžia daugiamačius regionus, o CPR –
neparametrines sritis, tinkamas negausiems duomenims, nes nereikalauja
normalaus pasiskirstymo prielaidų [2, 13]. Šių sričių persidengimo analizė
leidžia kiekybiškai įvertinti susidūrimo rizikos įvertį, kai kelios trajektorijos gali
susikirsti vienu metu [20, 62].

Santraukos pabaigoje pažymėtina, kad nors daugiažingsnių daugiamačių
modelių kūrimas ir tobulinimas gerokai progresavo, vis dar trūksta sistemingo
kategorinių duomenų kodavimo ir skirtingų laivų tipų bei trajektorijų prognozių
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neapibrėžtumo įtraukimo į generalizuotą modelį. Siekiant aukštesnio tikslumo,
būtina toliau tirti skirtingų koordinačių transformacijų (pvz., WGS84 vs. UTM)
poveikį prognozės stabilumui [3, 42], taip pat plėtoti tikimybinio susidūrimų
rizikos vertinimo metodus, kurie veiktų realiuoju laiku ir prisitaikytų prie
kintančių jūrų sąlygų. Šios kryptys atveria galimybes sukurti patikimesnes ir
saugesnes navigacijos priemones jūrų transportui.

III. Metodų taikymas

Šiame skyriuje aprašomi pagrindiniai metodai, skirti sukurti laivų trajektorijų
prognozavimo modeliams pagerinti gaunamiems pirminiams rezultatams ir
pateikti susidūrimo rizikos vertinimo metodai. Pagrindiniai sprendimai yra:

• Rekursyvinė daugiažingsnė prognozė, paremta erdvinių koordinacinių
taškų skirtumu – vektoriaus pokyčiu tarp ankstesnio ir einamojo taško
(delta).

• Koordinačių transformacijos: WGS84, erdvinių koordinacinių taškų
skirtumai ∆ (lat / long), polinės (atstumas / kampas) ir Dekarto (UTM).

• Kategorinių duomenų (laivo tipo) kodavimo strategijos: etikečių /
ordinalus, fiktyvus ir įterptinis.

• Prognozių neapibrėžtumo metodai: pasikliovimo intervalai (CI),
prognozių intervalai (PI), elipsoidinės prognozės sritys (EPR) ir
konforminės prognozės sritys (CPR).

Daugiažingsnė rekursyvinė prognozė

Daugiažingsnė prognozė leidžia išskleisti kelių taškų seką į priekį, o ne vien
tik artimiausią poziciją. Pagrindinė idėja – prognozuoti vektorių skirtumus
(∆lat,∆long) vietoje absoliučių koordinačių, o vėliau rekursyviai atkurti:

1. Tinklas mokomas pagal istorinius AIS duomenis: platuma, ilguma,
greitis, kursas ir kt.
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2. Išvestis – sekos vektorių skirtumai: ∆latt = latt − latt−1, analogiškai
∆longt = longt − longt−1. Skirtumai gali būti skaičiuojami tiek UTM,
tiek WGS84 projekcijose.

3. Rekursyviai sumuojant su paskutine faktine absoliučia padėtimi, atstato-
mos pirminės koordinatės.

Toks požiūris sumažina ilgalaikės prognozės klaidų kaupimąsi ir geriau atspindi
trajektorijos nuokrypį [40].

Koordinačių transformacijos

Siekiant sumažinti geografinio mastelio iškraipymus ir pagerinti erdvinį
aiškumą, bandyti keli transformavimo būdai:

• WGS84 koordinatės (AIS požymiai): absoliučios reikšmės (ilgumos,
platumos duomenys).

• Vektorių skirtumai ∆ (lat / long): erdvinių koordinacinių taškų skirtumai,
kurie prognozuojami ir rekursyviai atstatomi į žinomą padėtį.

• Atstumas ir kampas: polinė koordinačių sistema, skaičiuojamas
Haversinis atstumas d ir azimuto kampas θ nuo paskutinio taško.

• UTM projekcija: geografinės koordinatės konvertuojamos į Dekarto
erdvę (x,y), leidžiančią tiesiogiai modeliuoti atstumus be geografinio
mastelio iškraipymų.

Eksperimentai ir moksliniai tyrimai rodo, kad rekursyvus delta metodas ir
UTM transformacija geriausiai sumažina MAEH ir kitas regresinių metrikų
paklaidas [57, 85].

Prognozių klaidų vertinimo metrikos

Prognozių tikslumas vertinamas keliais regresijos metrikų rinkiniais, naudojant
Šiaurės ir Baltijos jūros testavimo duomenų rinkinius. Čia pateikiamos trys
pagrindinės metrikos:
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• Vidutinė kvadratinė paklaida (angl. mean squared error, MSE):

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2

• Vidutinė absoliutinė paklaida (angl. mean absolute error, MAE):

MAE =
1
n

n

∑
i=1
|yi− ŷi|

• Vidutinė absoliutinė Haversinio atstumo paklaida (angl. mean
absolute error of Haversine, MAEH):

MAEH =
1
n

n

∑
i=1

∣∣Λi
(
yi− ŷi

)∣∣
Formulėse n – imčių skaičius; yi – tikroji reikšmė; ŷi – prognozuojama reikšmė;
Λ – Haversinė atstumo funkcija; i – daugiažingsnio laiko eilutė. Dėl erdvinio
aiškumo MAEH pasirinkta kaip pagrindinė metrika, matuojanti vidutinį
trajektorijos nuokrypį metrais arba kilometrais (SI sistemos vienetais).

Kategorinių duomenų kodavimo būdai

Dirbtiniai gilieji neuroniniai tinklai yra tam tikros struktūros matematinės
funkcijos, galinčios apdoroti didžiulius duomenų kiekius, kurių reikšmės privalo
būti diskrečios. Vis dėlto, daugumoje duomenų šaltinių dažnai susiduriama su
dviejų tipų kintamaisiais:

• diskretūs kintamieji – dažniausiai tai yra sveikieji arba dešimtainiai
skaičiai ir turi begalinį skaičių galimų reikšmių. Tokiomis reikšmėmis
laikomi duomenys apie laivo požymius: greitis, judėjimo kryptis, ilgumos
ir platumos koordinatės ir kt.;

• kategoriniai kintamieji – tai atskiri kintamieji, naudojami duomenims
skaidyti pagal tam tikras charakteristikas. Šioms reikšmėms priskiriami
skirtingi laivo tipai: krovininiai, keleiviniai, kariniai, žvejybos ir pan.
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Kuriant giliojo mašininio mokymo modelius, reikalinga transformuoti
kategorinius duomenis, kad būtų galima pritaikyti RNN tinklo algoritmus.
Laivo tipai (transportinis, žvejybos, pagalbinis ir kt.) pateikiami ASCII tekstu.
Kad būtų panaudoti neuroniniame tinkle, taikomi trys kodavimo būdai:

1. Etikečių / ordinalus kodavimas: tai procesas, kurio metu kiekvienam
tipui priskiriamas unikalus sveikasis skaičius. Nesuteikia žinių apie
tarpkategorinius panašumus, tačiau paprastas ir greitas. Ordinalus reiškia,
kad svarbus kategorijų eiliškumas ir svarbu išlaikyti vieningą tvarką;

2. Fiktyvus kodavimas: tai procesas užkoduojantis kategorijas dvejetainėje
sistemoje ir sukuriantis naujus požymius, priskiriant atitinkamai kategori-
jai vienetą, o kitoms nulį. Statistikoje, tai suprantama, kaip fiktyvių
kintamųjų sukūrimas. Šios technikos trūkumas, kad kiekvienai kategorijai
sukuriamas atskiras požymis, todėl turint labai daug elementų – labai išsi-
plečia duomenų struktūros matrica (padidėja ir tinklo parametrų skaičius).
Kiekvienam laivo tipui sukuriama K–matė vektoriaus reprezentacija, kur
K – kategorijų (laivo tipų) skaičius. Vienas elementas, atitinkantis laivo
tipą, žymimas 1, kiti – 0. Tinkamas, kai kategorijų nedaug, nes kitaip
didėja matmenys.

3. Įterptinis kodavimas: tai procesas, mažinantis duomenų matmenis ir
išsaugantis semantinius kategorijų ryšius. Teigiamus sveikuosius skaičius
paverčia fiksuoto dydžio vektoriais. Kiekvienam tipui priskiriamas vekto-
rius d. Modelio mokymosi metu šie vektoriai optimizuojami, leidžiant
atrasti kontekstinius panašumus tarp tipų. Dažniausiai pasirenkamas
d = 2 arba 3, atsižvelgiant į duomenų kiekį.

Eksperimentai rodo, kad įterptinis kodavimas sumažina MAEH paklaidą ir
geriau sugeba atspindėti tarpkategorinius ryšius, ypač kai laivo tipų įvairovė
didelė [21, 33, 47]. Nors panašūs rezultatai gauti ir su fiktyviu kodavimu, tačiau
esant dideliam kardinalumui jis yra mažiau tinkamas.

Prognozių neapibrėžtumo ir sričių nustatymo metodai

Norint patikimai įvertinti laivų susidūrimų riziką bei pačių prognozių tikslumą,
būtina ne tik atlikti trajektorijos prognozę, bet ir nustatyti jos neapibrėžtumo
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ribas. Pagrindiniai taikyti metodai:

• Pasikliovimo intervalai (CI): WCI = t 1+α

2 ,n−1 ·
SD√

n , kur SD – standartinis
nuokrypis, n – imties dydis, t – Studento pasiskirstymo kritinė reikšmė
(angl. t-Score), atitinkanti pageidaujamą pasikliautinąjį lygį α .

• Prognozių intervalai (PI): WPI = t 1+α

2 ,n−1 ·SD
√

1+ 1
n , čia intervalas

apima tiek modelio, tiek stebėjimo triukšmą, kur n−1 laisvės laipsnis, n –

imties dydis. Išraiška
√

1+ 1
n atsižvelgia į papildomą neapibrėžtumą, kai

prognozuojamas vienas būsimas stebėjimas, o ne vertinamas populiacijos
vidurkis.

• Elipsoidinės prognozės sritys (EPR): matricinė forma, paremtas
Mahalanobis atstumu (angl. Mahalanobis distance) nuo taško x iki
vidurkio µ:

EPR = {x : (x−µ)TΣ
−1(x−µ)≤ χ

2
p,α},

kur µ – vektoriaus vidurkis, Σ – kovariacijos matrica, χ2
p,α – χ2 –

skirstinio slenkstis, p = 2 nurodo, kad turime dvimatę erdvę. EPR
apibrėžia elipsę tolimesniems laiko žingsniams, įvertindama abiejų
koordinačių tarpusavio koreliaciją [34]. Sąlyga ≤ χ2

p,α nusako, ar taškas
x patenka į prognozavimo sritį (elipsę).

• Konforminės prognozės sritys (CPR): naudojama kalibravimo aibė C ir
neatitikimo matas kiekviename laiko žingsnyje Nt = ∥yt − ŷt∥2. , kur yt

yra faktinės kelių dimensijų koordinatės, ŷt atitinkamos prognozės. Neati-
tikimas apskaičiuojamas kaip Euklido atstumas, apimantis visų dimensijų
paklaidas. Atsižvelgiant į didėjančius prognozės neapibrėžtumus ilgesniu-
ose horizontuose, neatitikimai neapjungiami visai sekai, bet vidurkinami
kiekviename laiko žingsnyje, gaunant skirtingus slenksčius R̄t . Siekdami
suformuoti galutinę prognozės sritį su pasirinktu pasikliovimo lygiu 1−δ ,
optimizuojami svoriai {αt}, pritaikytus kiekvieno žingsnio vidutiniams
neatitikimams R̄t . Ši optimizacija leidžia apskaičiuoti bendrą slenkstį
pagal kvantilio kriterijų, kuris apibrėžia kiekvieno taško atstumą nuo
prognozės centro laikom momente t. Gautos sritys atitinka pasirinktą



168

pasikliovimo lygį be prielaidų apie tikslų duomenų pasiskirstymą [6, 83,
91].

Metodai leidžia apskaičiuoti dinamiškas prognozuojamo laivo trajektorijos
ribas, atsižvelgiant į neapibrėžtumą kiekviename laiko žingsnyje. Kai dviejų
laivų prognozės sritys (apskritimai arba elipsės) persidengia, galima įvertinti
susidūrimo tikimybę. Tam naudojamas Žakardo indeksu (angl. Jaccard
index) paremtas susidūrimo rizikos rodiklis (angl. collision risk score), kuris
apskaičiuojamas pagal prognozės sričių sankirtos ir bendro ploto santykį:

P(susidūrimas) =
VA∩B

VA +VB−VA∩B
,

kur VA ir VB yra atskirų regionų plotai, o VA∩B yra jų susikirtimo plotas.
Plotai apskaičiuojami naudojant UTM projekciją.

IV. Duomenų ir eksperimento darbo eiga

Eksperimentuose naudoti AIS ir meteorologiniai duomenys iš dviejų regionų:

• Nyderlandų regionas (Šiaurės jūra): pirminis šaltinis – „Ship Finder“
(istoriniai AIS duomenys), surinkti 2018 m. rugsėjo–2019 m. vasario
laikotarpiu. Vėliausiai atliekamoms testinėms prognozėms naudota 5 mėn.
įrašų, iš viso ∼21 mln. eilučių (naudoti tik krovininiai laivai). Duomenų
valymo etapu pašalinti dubliai, įrašai su trūkstamais signalais, neteisingais
MMSI ar greičio reikšmėmis. Dėl AIS stebėjimų nevienodumo laiko
intervalų eilutėse taikytas duomenų dažnio pertvarkymas: pritaikytas
logaritminis mastelio standartizavimas (FLOG), o tada įprastas [0,1]
normalizavimas, kad būtų sušvelninamas skirtumas tarp laiko eilučių
neatitikimų (laiko žingsniai nuo 1 min iki kelių šimtų min.). Regiono
koordinatės: platuma 51◦39′–52◦12′, ilguma 3◦10′–4◦50′.

• Baltijos jūros regionas (prie Bornholmo): AIS duomenys iš Danijos
jūrų administracijos apėmė 2021 m. birželio–gruodžio laikotarpį,
eksportuojami CSV formatu per https://web.ais.dk/aisdata/. Pradinėse
eksperimentinėse stadijose naudoti tik krovininių laivų duomenys, vėliau
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įtraukti visi to regiono laivų tipai. Dėl gausybės įrašų (∼100 mln.) ir
dažnų intervalų (<1 min.) taikyta laiko eilučių pakartotinė atranka (angl.
resampling) kas 1 min.: kiekvienam laivui vidurkinami k artimiausi
k–NN taškai, todėl kiekvieną minutę gaunamas vienas įrašas. Regiono
koordinatės: ilguma 12◦–15◦ E, platuma 54◦–56◦ N.

• Meteorologiniai duomenys: gauti naudojant Weatherbit.io API (su-
jungiant NOAA ISD, MADIS, GHCN ir papildomus palydovinius bei
klimatologinius šaltinius). Gauti duomenys yra Baltijos jūros regione,
suformuoti stačiakampio tinklelio (angl. grid) schema, o kiekvienam AIS
įrašui priskiriamas artimiausio meteorologinio tinklelio taško stebėjimas.
Stebimų parametrų sąrašas: kasvalandinis oro temperatūros vidurkis, vėjo
kryptis ir greitis, bangų aukštis ir kryptis, bangavimo bangos aukštis ir
kryptis, debesuotumas, matomumas, vandens temperatūra, atmosferos
slėgis ir kiti jūros meteorologiniai rodikliai.

Sekų generavimo tikslas – paversti AIS stebėjimus į atitinkamas, vienodo
ilgio, laiko eilučių sekas, kurios naudojamos RNN tinklams. Laivų srautas buvo
surūšiuotas pagal laiką ir MMSI bei suskirstytas į lygias 50 laiko žingsnių
ilgio sekas. Atlikta normalizacija, o seka paskirstyta į mokymo, validavimo
ir testavimo imtis, jau taikant straipsnyje aprašytas transformacijas [40]. Iš
visų ~11450000 stebėjimų (eilučių) sugeneruota ~460 000 sekų, iš kurių 30
stebėjimų yra įvesčiai, o 20 – išvesčiai (prognozei). Atsižvelgiant į įprastą
jūrų operacijų praktiką, 30 istorinių AIS stebėjimų seka gerai atspindi laivo
trajektoriją, o 20 būsimų stebėjimų prognozė atitinka numatomą sustojimo ir
reagavimo laiką, reikalingą veiksmingai vertinti susidūrimo riziką ir atlikti
prevencinius manevrus. Vidutinis laiko žingsnių skirtumas tarp stebėjimų yra
apie 1 min. Vidutinis laivo pajudamas atstumas – 340 metrų, todėl vienoje
sekoje laivas įveikia vidutiniškai apie 16 km (iš jų ~10 km įvesties ir ~6 km
išvesties). Statistiniai įverčiai pateikti 1 lentelėje.
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1 pav.: Laivų duomenų skaidymas į sekas.

1 lentelė: Sekų duomenų charakteristikos

Savybė Reikšmė
Sekos bendras ilgis 50 laiko žingsnių
Įvesties trajektorijos ilgis 30 laiko žingsnių
Išvesties trajektorijos ilgis 20 laiko žingsnių
Vidutinis laiko žingsnio pokytis ~60 s
Vidutinis erdvinis pokytis ~320 m
Vidutinis trajektorijos ilgis ~16 km
Sugeneruotų sekų skaičius 943 584

Sekų generavimo procesas iliustruojamas 1 pav., kur laivo savybės (Fn)
suskirstomos į fiksuoto ilgio sekas (i), naudojant slenkančio lango metodą su
persidengiančiais laiko žingsniais (tn). Šis metodas užtikrina, kad kiekviena
nauja seka išsaugo ankstesnius stebėjimus, kurie yra būtini laiko eilutėms
prognozuoti rekurentiniuose tinkluose. Persidengimo strategija padeda išlaikyti
laiko tęstinumą, padalijant kiekvieną seką per pusę, leidžiant modeliui fiksuoti
priklausomybes laiko atžvilgiu. Kiekviena seka dar labiau skaidoma į įvesties
(Xn,Fn) ir išvesties (Yn,Fn) matricas, kurios atitinka savybių ir etikečių poras
prižiūrimojo regresinio mokymo kontekste. Įvesties požymiai perduodami į
tinklą, kuris prognozuoja išvesties savybes. Visos giliųjų rekurentinių tinklų
architektūros šiame tyrime naudoja dvimatę išvestį, todėl matrica prieš mokymą
ištiesinama (angl. flatten), kad būtų suderinama su galutiniu prognozavimo
sluoksniu. Pateiktame 2 pav. yra sugeneruotų laivo judėjimo sekų pavyzdys
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2 pav.: Sukurtos laivų judėjimo Baltijos jūros regione sekos, kur kiekviena
spalva vaizduoja atskiro laivo judėjimo trajektoriją per tam tikrą laiką.

Baltijos jūros regione, vizualiai demonstruojantis tyrime naudojamas gautas
trajektorijas.

Tyrimo metu sekos buvo sudarytos iš 50 laiko žingsnių, padalytos į 30
įvesties žingsnių ir 20 išvesties žingsnių, vidutinio 1 minutės laiko tarpo
sąlygomis. Tinkle naudojami duomenys apėmė tokias savybes kaip užkoduotas
laivo tipas, geografinės koordinatės, greitis, kursas bei gretimų laiko žingsnių
platumos ir ilgumos skirtumai. Išvesties seka susidėjo tik iš koordinačių savybių,
o įvesties seka – iš minėtų laivo charakteristikų. Šios savybės padeda suprasti
laivo elgseną ir prognozuoti tolimesnius trajektorijos taškus. Architektūroje
naudoti parametrai pateikti 2 lentelėje.

Duomenų rinkinys, apimantis beveik milijoną sekų, padalytas 70:15:15
santykiu mokymui, validavimui ir testavimui, kas yra įprasta mokslo tyrimuose
[5, 79], siekiant užtikrinti subalansuotą vertinimą ir generalizaciją. Prieš mokymą
sugeneruotos ir normalizuotos sekų matricos buvo sumaišytos (angl. shuffle),
kad būtų sumažinta sekų priklausomybė, dispersijos poveikis ir pagerintas
gradientų kintamumas. Matricų maišymas užtikrina, kad kiekviena nauja seka
modelyje būtų nepriklausoma nuo ankstesnės sekos, taip sumažinant dispersiją
ir padidinant gradientų kintamumą. Ši atsitiktinė tvarka leidžia modeliui
susidurti su įvairiomis situacijomis, prisidedant prie geresnės generalizacijos.
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2 lentelė: LSTM AE konfigūracija.

Parametras Reikšmė Pastaba

Sluoksniai 3 Iš viso kodavimo ir dekodavimo dalių
Sekos ilgis 50 30 įvestyje, 20 išvestyje
Epochos 100 —
Optimizatorius 0,001 Adam (su nurodytu mokymosi greičiu)
Reguliarizavimas 0,01 Dropout sluoksniai

Ląstelių skaičius 275 Vienetų skaičius kiekviename LSTM
sluoksnyje

Partijos dydis 128 Vienos iteracijos metu naudoti
pavyzdžiai

Modelių kiekis 20 Pagal tuos pačius duomenis apmokyti
modeliai

Nuostolių funkcija MSE Prognozavimo kokybės priemonės
Aktyvavimo funkcija ReLU Naudojama LSTM vartuose ir išvesties

sluoksniuose

Normalizacija (E) taikyta visoms skaitinėms savybėms, transformuojant
reikšmes tarp 0 ir 1, siekiant užtikrinti savybių vienodumą ir pagreitinti
mokymosi procesą. Mokymo imtis (70 %) naudota modeliams apmokyti,
validavimo imtis (15 %) – mokymosi pažangai stebėti ir persimokymo
prevencijai, o testavimo imtis (15 %) – galutiniam modelių veikimui įvertinti.
Svarbu paminėti, kad tyrime nebuvo naudojamas vienas modelis, o modelių
rinkinys, apmokytas su tais pačiais duomenimis. Kiekvienas modelis, veikiamas
tokių veiksnių kaip reguliarizacija ir žinių pradinių reikšmių parinkimas,
generuoja šiek tiek skirtingas prognozes, leidžiančias išsamiau įvertinti
neapibrėžtumą ir stiprinti taikomų susidūrimo aptikimo metodų patikimumą.
Pateikiama normalizavimo funkcija:

Xnorm =
X−Xmin

Xmax−Xmin

kur:

• X – yra laivo savybė,
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• Xnorm – yra normalizuota reikšmė,

• Xmax ir Xmin – atitinkamai didžiausia ir mažiausia tos savybės reikšmės.

Eksperimentuose buvo keičiamas architektūrų tipas ir ląstelių skaičius. Tie
patys tinklo parametrai ir ląstelių dydžio intervalas užtikrino vienodas sąlygas
visoms architektūroms ir vienodą duomenų tvarką mokymui. Analizuotoje
literatūroje rekurentiniai neuroniniai tinklai dažniausiai naudoja ląstelių
skaičių nuo keliolikos iki kelių šimtų. Iš pradžių šiame tyrime taikytas šis
bandymas, vertinant ląstelių skaičių palaipsniui nuo 25 iki 300, didinant po
25 vienetus. Tačiau siekiant griežčiau patikrinti ląstelių skaičiaus įtaką ir
įsitikinti, ar prognozės tikslumas gerėja ar stabilizuojasi už įprasto intervalo
ribų, tolesniuose eksperimentuose išplėstas diapazonas iki 5000 ląstelių, taikant
didesnius padidėjimo žingsnius. Kiekviena ląstelių skaičiaus konfigūracija
skirtingose architektūrose, įskaitant eksperimentus su įterptojo kodavimo
metodais, buvo apmokoma 10 kartų, siekiant užtikrinti prognozių patikimumą ir
stabilumą. Vėlesniuose eksperimentų etapuose, apimančiuose koordinačių
sistemų transformacijas, neapibrėžtumo kiekybinį įvertinimą ir susidūrimo
aptikimą, prireikė įtraukti papildomų modelių apmokymą, todėl iš viso gautas
platus apmokytų konfigūracijų rinkinys. Šis išsamus eksperimentinis metodas
leido užtikrintai patvirtinti modelių jautrumą tinklo ląstelių hiperparametrams
įvairiomis sąlygomis.

Be to, eksperimentų metu išbandyti įvairūs hiperparametrų pakeitimai:
aktyvacijos funkcijų keitimas (ReLU vs. TanH), L2 ir dropout reguliarizacijos
technikos, siekiant apsaugoti regresinius modelius nuo persimokinimo. Vis
dėlto, geriausių rezultatų pasiekta praktiškai išbandžius su 2 lentelėje nurodytais
parametrais.

Eksperimentuose naudotas meteorologinių duomenų rinkinys papildė AIS
duomenis, įskaitant vėjo kryptį, vėjo greitį, temperatūrą (nakties ir dienos
vidurkius), vidutinį jūros lygio slėgį, drėgmę, matomumą, debesuotumą,
mėnulio fazę bei kitus panašius stebėjimo duomenis. Šie duomenys pateikti
kaip kasdienės laiko eilutės, kuriose kiekvieną valandą fiksuoti agreguoti
orų pokyčiai. Atlikti permutacijų eksperimentai, keičiant požymių eiliškumą
tarpusavyje ir vertinant jų poveikį modelio tikslumui. Jie atskleidė, kad
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svarbiausi AIS požymiai laivų trajektorijų prognozei yra kursas, greitis, platuma
ir ilguma.

Laivų susidūrimo rizikos rodiklis vertinamas taikant intervalinius metodus:
EPR, CPR, PI ir CI. Šie metodai naudojami prognozuojamų sričių plotams
įvertinti ir aprėpties tikimybei apskaičiuoti, siekiant užtikrinti, kad tikroji laivo
trajektorija kiekvienu laiko momentu patektų į prognozuotą sritį. Šių metodų
veiksmingumas taip pat patvirtintas skaičiuojant susidūrimo tikimybę realių
jūrinių incidentų kontekste. Visi taikyti metodai atitiko 95 % pasikliovimo lygį,
užtikrinantį patikimas ir tvirtas prognozes.

Giliojo mokymosi modeliai sudarė pagrindą laivų trajektorijų prognozav-
imui, kurie vėliau naudojami susidūrimo rizikai vertinti (Žakardo indeksu).
Kiekvienas modelis generavo tikimybinę laivo būsimų padėčių prognozę,
įvertindamas su jūrine navigacija susijusį neapibrėžtumą. Prognozuotos
trajektorijos toliau analizuojamos pasitelkiant statistinius metodus, tokius kaip
prognozavimo intervalai, EPR ir CPR, siekiant nustatyti galimų susidūrimo zonų
ribas. Susidūrimo tikimybė vertinama lyginant prognozuotas ribas su faktinėmis
laivų padėtimis, kai sritys tam tikru momentu persidengia. Šis integruotas
požiūris užtikrina, kad susidūrimo rizikos vertinimas būtų glaudžiai susijęs su
trajektorijų prognozavimo tikslumu, suteikdamas dinamišką ir tikimybinį
galimų susidūrimo scenarijų įvertinimą.

V. Rezultatai

Šiame skyriuje pristatomi eksperimentų rezultatai, kuriais siekiama pasiūlyti
ir pagerinti laivų trajektorijų prognozę bei įvertinti susidūrimų rizikas. Iš
pradžių, naudojant Nyderlandų regiono duomenis, palyginti keli RNN modeliai
(LSTM AE, dvipusis LSTM, GRU) ir nustatytos optimalios LSTM ląstelių
konfigūracijos. Toliau šie modeliai testuoti tiek su Nyderlandų, tiek su
Baltijos jūros duomenimis, taikant koordinačių transformacijas ir rekursinį
prognozavimo modelį. Galiausiai LSTM AE modelis išplėstas integruojant
kategorinius laivo tipų ir meteorologinius duomenis, kurie panaudoti prognozių
riboms nustatyti ir galimai susidūrimo rizikai vertinti.
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3 lentelė: MSE paklaidų įverčiai su skirtingais ląstelių hiperparametrų rinkiniais.

Ląstelės
RNN
×10−4

LSTM
×10−4

LSTM Stack
×10−4

GRU
×10−4

AE
×10−4

BiLSTM
×10−4

25 6,910 5,181 4,434 5,563 4,581 6,582
50 5,334 4,381 4,361 4,620 3,944 3,939
75 4,904 4,211 4,146 4,290 4,010 4,177
100 4,819 3,947 4,150 4,021 4,031 3,697
125 4,702 4,039 4,075 3,914 3,688 3,721
150 4,739 3,875 4,240 3,916 3,996 3,683
175 4,635 3,920 4,067 3,914 3,789 3,822
200 4,628 3,999 4,564 3,826 3,706 3,900
225 4,679 4,024 4,482 3,819 3,987 3,636
250 4,630 4,085 4,133 3,742 3,946 3,736
275 4,660 3,998 4,099 3,827 3,724 3,645
300 4,681 4,086 3,956 3,710 3,782 3,618

Skirtingų RNN architektūrų vertinimas Nyderlandų regione

Modeliai Nyderlandų regione su krovininių laivų tipais įvertinti testavimo
imtimis po šešių giliųjų RNN architektūrų mokymosi. MSE nuostolių funkcija
apskaičiuota kaip visų eksperimentų vidurkis ir normalizuota pagal modelių
skaičių. Pateikta 3 lentelė atvaizduoja kiekvienos architektūros prognozių
tikslumą, kur mažesnė MSE reikšmė reiškia didesnį tikslumą. Lentelėje
paryškinti mažiausi klaidų lygiai (optimaliems ląstelių dydžiams): Nyderlandų
regione geriausiai pasirodė dvipusis LSTM, jam nedaug nusileido AE ir GRU
modeliai. AE ir dvipusis LSTM išlaikė stabiliausią klaidų pasiskirstymą, o
dvipusis LSTM rodė didžiausią skirtumą tarp minimalių ir maksimalių klaidų.
Visose architektūrose daugiau kaip 100 ląstelių nuosekliai mažino paklaidą,
rodydamos, kad tinklo talpa daro didelę įtaką tikslumui. Tačiau padidinus
ląstelių skaičių žymiai išauga skaičiavimo kaštai, ypač esant itin didelei ląstelių
apimčiai (pvz., 5000 ląstelių): mokymo laikas gerokai pailgėja be proporcingo
tikslumo pagerėjimo, todėl optimalių hiperparametrų parinkimas yra itin
svarbus.

Modeliai po 10 kartų apmokyti kiekviena architektūra, ląstelių skaičiumi ir
koordinačių transformacijos strategija, o pateikti rezultatai (žr. 3 pav.) – tai
vidutinės atstumo paklaidos (MAEH) rodikliai. Taigi pateikiami trijų atrinktų
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3 pav.: Mažiausi eksperimento atstumo paklaidos rezultatai.

modelių (LSTM AE, dvipusis LSTM ir GRU) vertinimai Nyderlandų regione,
taikant UTM, polinių koordinačių (atstumas ir kampas), išvestinių vektorių
skirtumo (δplatumos / δ ilgumos) bei įprastus AIS (WGS84 koordinačių)
požymius. UTM transformacija suteikė didžiausią naudą – AE minimalus
vidutinis paklaidos lygis buvo 1,141 km, tai beveik 30 % geriau nei prog-
nozuojant pagal įprastus AIS duomenis. Atkreiptinas dėmesys, kad UTM šiuo
atveju jau taikė rekursijos būdu perskaičiuojamus prognozių skirtumus. Polinių
koordinačių metodas irgi pagerino tikslumą, tačiau rekursinis vektorių skirtumų
perskaičiavimas, kai prognozuojamos delta vertės imamos iš paskutinio žinomo
taško, labiausiai prisidėjo prie paklaidų mažinimo. Rekursinis atnaujinimas
iš vektorių skirtumo davė tikslesnes prognozes nei absoliučių koordinačių
tiesioginis spėjimas, o LSTM AE architektūra šiuo atveju buvo tiksliausia.

Laivų prognozių tikslumo vertinimas Baltijos jūros regione

Pateiktas 4 paveikslas atvaizduoja skirtingų koordinačių transformavimo metodų
(WGS84 ir UTM) ir jų rekursinių prognozių, pagrįstų vektorių skirtumais,
rezultatus. MAEH reikšmės rodo, kad prognozuotas padėties rekursyvus
perskaičiavimas pagal delta koordinates reikšmingai pagerina prognozių
tikslumus abiejose koordinačių sistemose. Konkrečiai, rekursinis WGS84
metodas pasiekė mažiausią prognozės klaidą (0,3537 km), demonstruodamas
geresnį tikslumą, palyginti su standartiniais prognozavimo būdais be rekursinio
perskaičiavimo. Tai išryškina delta metodo pranašumą trajektorijų prognozėse
prieš absoliučių reikšmių naudojimą. Be to, meteorologinių duomenų (pvz.,
vėjo, bangų, temperatūros sąlygų) integravimas dar labiau sumažino MAEH iki
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0,3203 km, pabrėžiant aplinkos sąlygų pridėtinę prognozavimo vertę laivų
trajektorijų modeliavimo procese.

4 pav.: Mažiausi eksperimento atstumo (MAEH) paklaidos rezultatai.

Atsitiktinai parinkta seka panaudota galutiniam modelio įvertinimui, o
rezultatai pateikti 5 paveiksle. Vizualizacijoje pavaizduotas geriausiai veikiantis
modelis su optimaliu ląstelės dydžiu. Mėlyna linija atspindi įvesties seką (30
laiko žingsnių), žalioji linija žymi faktinę laivo trajektoriją (20 laiko žingsnių).
Geltona linija iliustruoja prognozuotą laivo judėjimą tame pačiame laikotarpyje,
o pilkos linijos žymi aplinkinį eismo intensyvumą iš kitų sekų. Rezultatai
rodo, kad trumpojo laikotarpio prognozė (apie 10 minučių) glaudžiai atitinka
faktinę trajektoriją. O ilgojo laikotarpio prognozei tikslumas šiek tiek sumažėja,
tačiau tai būdinga ilgalaikėms prognozėms. Be to, atstumo paklaida metrais
pateikiama raudona spalva.
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5 pav.: Faktinis ir prognozuojamas laivo judėjimas atsitiktinio eismo sąlygomis.

Kategorinių laivo tipų integracijos rezultatai

Eksperimento rezultatai, susiję su trajektorijų prognozavimo tikslumu, pavaiz-
duoti 6 paveiksle. Į duomenų rinkinį įtraukus skirtingus laivų tipus ir juos
užkodavus ordinaliu (etiketiniu), fiktyviu, įterptuoju sluoksniu bei rezultatus
palyginus nenaudojant laivo tipų kodavimo, prognozės tapo stabilesnės dėl
sumažėjusios klaidų dispersijos. Tiek fiktyvus kodavimas, tiek įterptasis
kodavimas padidino tikslumą. Įterptojo kodavimo sluoksnis su dvimate
struktūra pasižymėjo mažiausia dispersija. 7 lentelėje pateikti išsamūs šių
eksperimentų MAEH rezultatai. Vidutiniškai laivo tipų kodavimo įtraukimas
pagerino prognozavimo tikslumą maždaug 0,0027 km, palyginti su modeliu be
kategorinės laivo tipo informacijos. Šie duomenys atskleidžia, kad tinkamos
kodavimo metodikos yra svarbios gerinant modelio ir trajektorijų prognozių
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patikimumą. Kodavimo būdas leidžia sukurti generalizuotą modelį skirtingiems
laivo tipams.

6 pav.: MAEH metrikos pakartotinio
eksperimento rezultatai naudojant
skirtingus kategorinių duomenų ko-
davimo būdus.

3 lentelė: Daugiamačio
įterptojo kodavimo būdo
vidutinės paklaidos.

Metrika Vienmatis Dvimatis Trimatis
MAEH 0,26252 0,26162 0,26124
MSE 2,51E-05 2,49E-05 2,47E-05
RMSE 0,00488 0,00485 0,00483
MAE 0,002046 0,002039 0,002036
MAPE 0,000110 0,000110 0,000109

Susidūrimų vertinimo analizė

Vertinant modelio veikimą Baltijos jūros regione, LSTM AE apmokytas kelioms
modelių kopijoms, o testavimo prognozės atliktos su pasirinkta duomenų
pogrupio imtimi, į kurią įtrauktas ir realus „Scot Carrier“ ir „Karin Höj“
susidūrimo atvejis. Gautų prognozių neapibrėžtumui vertinti taikyti EPR,
CPR, PI ir CI metodai, kiekvienam prognozuotam laiko žingsniui nustatomos
galimos laivo vietos sritys. EPR zonos vaizduojamos elipsėmis, o CPR (bei PI,
CI) zonos, apskritimais, kai nurodomas tik spindulys (žr. 8 pav.). Šių zonų
persidengimai tarp skirtingų laivų leidžia kiekybiškai įvertinti susidūrimo
rizikos balą.



180

8 pav.: Skirtingų metodų ir jų ribų pločio palyginimas jūrų avarijos atveju.

Pavaizduotame 9 paveiksle kaip vienas iš pavyzdžių pateikiamas EPR
metodas. Pirmoje dalyje elipsės žymi EPR ribas keliems prognozuotiems
žingsniams – mėlyni ir raudoni taškai rodo faktines laivų padėtis, o elipsės –
prognozuotas zonas. Antroje dalyje („Pirmieji 5 žingsniai“) matyti elipsių
susikirtimai su didesne susidūrimo tikimybe. Trečioje ir ketvirtoje dalyse atskiri
EPR vaizdai konkrečiu laiko žingsniu parodo laivų prognozuojamas judėjimo
sritis. UTM projekcija leidžia apskaičiuoti elipsių plotus kvadratiniais metrais ir
paskaičiuoti regionų plotų persidengimus.
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9 pav.: EPR formos prognozavimo sritys. Prie raudonų kryželių esantys skaičiai
žymi atitinkamus prognozavimo laiko žingsnius.

„Scot Carrier“ ir „Karin Höj“ susidūrimo atvejis pagal CPR metodiką
prognozuotas su didžiausiu 39 % tikimybės įverčiu, parodant, kad tikimybiniai
sprendimai (skaičiuojant trajektorijų ribų persidengimus) pranašesni už CPA /
TCPA, kurie remiasi fiksuotomis slenkstinėmis vieno taško reikšmėmis. Siūlomi
metodai prognozuoja dinamiškas trajektorijų ribas ir vertina jų persidengimą, o
ne vieną tašką, leidžiant įtraukti kelių modelių prognozes. Pagrindinis prival-
umas – gebėjimas pereiti nuo statinių slenksčių prie tikimybinio įverčio, tačiau
kelių DL modelių naudojimas didina skaičiavimo kaštus, o veiksmingumas
priklauso nuo AIS duomenų kokybės (spragos, vėlavimai). Ateityje verta
tobulinti duomenų paruošimą, integruoti fizinius laivo parametrus ir nagrinėti
stiprinamojo mokymosi sprendimus.
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VI. Bendrosios išvados

Šiame darbe pasiūlytos ir ištirtos giliojo mokymosi metodikos, skirtos laivų
trajektorijoms prognozuoti ir susidūrimų tikimybės rizikai vertinti jūrų navigaci-
joje. Konkretūs indėliai apima: (a) esamų trajektorijų prognozavimo metodų
analizę, atkreipiant dėmesį į rekurentinių neuroninių tinklų (RNN) gebėjimą
atlikti ilgalaikes prognozes, o ne remtis tiesine ekstrapoliacija; (b) įvairių RNN
architektūrų projektavimą, mokymą ir derinimą, siekiant identifikuoti tas, kurios
lemia mažiausią prognozavimo klaidą modeliuojant laivų judėjimą; (c) įvesties
reprezentacijų, tokių kaip koordinačių transformacijos, rekursinį delta padėties
perskaičiavimą, laivų tipų įterptąjį kodavimą ir meteorologinių duomenų inte-
graciją, siekiant pagerinti prognozavimo tikslumą; (d) kiekybinio neapibrėžtumo
metodų (EPR, CPR, PI ir CI) realizavimą ir palyginimą susidūrimų rizikai
vertinti; (e) šių modelių pritaikymą anksčiau netirtam realiam susidūrimo
atvejui, siekiant parodyti praktinį pritaikomumą. Pagrindinės išvados yra:

1. Rekurentiniai neuroniniai tinklai (tokie kaip LSTM ar GRU) yra būtini
20–25 minučių laivų trajektorijų prognozėms. Klasterizavimas arba
tiesinė ekstrapoliacija negali sukurti nenutrūkstamų prognozių per 20–25
minučių intervalą, o tai yra būtina didelių laivų stabdymo laikui. Šiaurės
jūros tyrime palygintos šešios architektūros (paprastas RNN, standartinis
LSTM, sluoksniuotas LSTM, GRU, LSTM autoenkoderis, dvipusis
LSTM): dvipusis LSTM (300 ląstelių, MSE = 3,618×10−4) ir LSTM
autoenkoderis (125 ląstelių, MSE = 3,688×10−4) pasiekė mažiausias
paklaidas su tam tikra ląstelių (dar žinoma kaip celės) kombinacija.
Dvipusis LSTM išlaikė pastovų tikslumą skirtingose konfigūracijose, o
autoenkoderio modelio tikslumas pradėjo nebegerėti (arba labai nežymiai),
pasiekus atitinkamą LSTM ląstelių kiekį, taip parodant, kad architektūros
ir hiperparametrų derinimas turi lemiamą įtaką ilgalaikiam tikslumui.

2. Atitinkamas LSTM ląstelių skaičiaus parinkimas yra itin svarbus,
nes didesnis jų kiekis negarantuoja geresnio tikslumo. Baltijos jūros
eksperimente LSTM modeliai su 75–300 ląstelių pasiekė mažiausią
MAEH (apie 0,18–0,20 km). Viršijus 300 ląstelių, klaidos mažėjimas
stabilizavosi, o didinant ląstelių skaičių virš 1000, labai išaugo mokymo
laikas be reikšmingos naudos tikslumo atžvilgiu. Pasirinkus per mažą
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kiekį (pvz., iki 50), tikslumas nėra tenkinamas, dėl to būtina parinkti
optimalų ląstelių skaičių.

3. Patobulinti modelio įvesties atvaizdavimai: koordinačių transformacijos,
rekursinė delta ekstrapoliacija, laivų tipų ir meteorologinių duomenų
integracija, kurie padeda sumažinti prognozių paklaidas ir generalizuoti
modelį.

• Įdiegus rekursinį delta perskaičiavimą (kai kiekviena prognozuota padėtis
naudojama kitam žingsniui), MAEH sumažėjo nuo 0,6171 km (WGS84)
iki 0,3537 km (WGS84–delta) ir nuo 0,4903 km (UTM) iki 0,3839 km
(UTM–delta), ypač ankstyvuosiuose žingsniuose užkertant kelią klaidų
kaupimuisi.

• Šiaurės jūros bandymuose su pasiūlytu LSTM autoenkoderiu, transfor-
mavus pradinius WGS84 AIS duomenis į UTM koordinates, MAEH
sumažėjo iki 1,141 km (prieš tai WGS84: 1,427 km). Taikant atstumo ir
kampo transformacijas, MAEH buvo 1,266 km, o ∆platumos / ∆ilgumos
transformacija – 1,439 km.

• Baltijos jūros eksperimentuose su siūlomu LSTM autoenkoderiu inte-
gravus trimačio įterptinį kodavimo sluoksnį su skirtingais laivų tipais,
MAEH sumažėjo iki 0,2636 km (prieš tai – 0,2655 km su fiktyviu
kodavimu, 0,2681 km su etiketiniu kodavimu ir 0,2710 km be laivų tipo
duomenų).

• Integravus meteorologinius duomenis su AIS įvestimis ir siekiant
atspindėti aplinkos poveikį, MAEH sumažėjo nuo 0,3537 km iki 0,3203
km, patvirtinant, kad prognozėse tikslinga atsižvelgti ne tik į laivo
charakteristikas, bet ir į supančią aplinką, kuri leidžia išgauti tikslesnes
kelių žingsnių (ilgalaikes) prognozes.

4. Pasiūlytos tikimybinės intervalų technikos (CPR, EPR, PI, CI) pranoksta
standartinius CPA / TCPA metodus. Iš kelių skirtingų modelių prog-
nozuojamos trajektorijos ir vertinamas jų neapibrėžtumas, sudarant
trajektorijų ribas (angl. trajectory boundary) PI, CI, EPR ir CPR būdais.
Šios ribos vaizduoja galimą laivo padėties zoną ir suteikia prasmingesnės
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informacijos nei taškiniu pagrindu veikiantys CPA / TCPA metodai.
CPR apima 86,7 % (priešingai nei 71,4 % EPR, 51,0 % PI ir 4,9 % CI)
padengimą, lyginant prognozuojamų ribų patekimą į faktinius laivo
duomenis. CPR išvengia normaliojo pasiskirstymo prielaidų ir vertina
neapibrėžtumo klasterius per 20 minučių laikotarpį. Tokiu būdu regionų
ribos tampa dinamiškesnės, o jų persidengimas su kitų laivų ribomis gali
būti laikomas tikėtina susidūrimo rizika.

5. Realaus incidento atvejis („Scot Carrier“ ir „Karin Höj“ susidūrimas, 2021
m.) patvirtina tikimybinį aptikimą, tačiau pabrėžia AIS duomenų
trūkumus ir prognozių ribotumus. CPR metodas parodė 39,6 %
susidūrimo riziką (95 % pasikliovimo lygiu), atitinkančią faktinį įvykį.
Tačiau norint pritaikyti šį metodą, būtina pakankamai tiksli laivų
trajektorijų prognozė, o AIS duomenų spragos gali riboti modelio
tikslumą. Be to, metodai neatsižvelgia į laivų fizinius parametrus (pvz.,
posūkio spindulį, inerciją, laivo išmatavimus), kurie gali pagerinti saugios
zonos vertinimą – tai galėtų būti tolesnių tyrimų kryptis.
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Notes
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