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ABSTRACT

Autonomous vehicles (AVs) promise transformative changes in trans-
portation, with SLAM-based methods enabling map-based navigation
and learning-based approaches leveraging neural networks for data-
driven decisions. While SLAM provides map-based navigation, learning-
based methods leverage neural networks for data-driven decisions. This
study centres on imitation learning within the learning-based paradigm,
specifically addressing its limitation of covariate shifts. The aim is to
develop autonomous navigation systems using deep learning and im-
itation learning, emphasising pre-training techniques. This research
starts with reviewing state-of-the-art imitation learning methods and
pointing out how pre-training in autonomous driving is under-explored.
Most of the approaches in this area of research choose visual encoders
pre-trained on the task of ImageNet classification, rather than searching
for better alternative approaches. Therefore, the study proposes applica-
tion of pre-training methods new to the task of end-to-end autonomous
driving. It then evaluates these methods against baseline approaches
to demonstrate enhanced performance. The first proposed method is
termed Visual Place Recognition (VPR) pre-training. It uses VPR as a pre-
training task to improve the robustness of autonomous driving agents
under varying weather and lighting conditions. It integrates a ResNet-
based encoder trained with triplet loss and semantic segmentation for
better scene understanding. The empirical evaluations of this method
demonstrate a 60.25% route completion surpassing the baseline which
achieves 53.20%, in unseen environments and settings. The evaluations
result in showing enhanced robustness to covariate shifts and reducing
errors in unseen settings, in comparison to baseline approaches. The
second proposed method uses the DINO (self-distillation with no labels)
method for pre-training. Adopting a self-supervised learning approach,
this method trains encoders on ImageNet without labels, allowing for
richer feature extraction and better generalisation. The empirical evalua-
tions of this method demonstrate a 62.18% route completion surpassing
the baseline which achieves 53.20% in unseen environments and settings,
while also surpassing the VPR pre-training method. This research un-
derscores the potential of advanced pre-training methods in overcoming
the limitations of traditional ImageNet classification-based pre-training
in autonomous driving.
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GLOSSARY

An entity that perceives its environment and takes
actions to maximise a goal.

The capability of a vehicle to navigate and oper-
ate without human intervention using sensors and
decision-making algorithms.

A distribution shift where the input distribution
changes between training and deployment while the
target function remains unchanged.

Dataset Aggregation, an imitation learning algorithm
that iteratively collects expert demonstrations to cor-
rect mistakes and improve policy performance.

A feature vector or signature representing key charac-
teristics of an image, object, or data point.
Self-Distillation with No Labels, a self-supervised
learning method for training vision transformers with-
out labelled data.

A model or human providing high-quality demonstra-
tions or decisions, often used in imitation learning.

A large-scale image dataset used for training deep
learning models, particularly in computer vision.

A transformed version of raw data that preserves rele-
vant features for learning and decision-making.

The process of training a model on a large dataset
before fine-tuning it on a specific task, improving per-
formance and generalisation.

A neural network component that processes images
into feature representations for tasks like classification,
detection, or scene understanding.

Visual Place Recognition, a technique for recognising
previously visited locations using visual data.
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INTRODUCTION

RESEARCH AREA

Autonomous driving technology represents a transformative shift in
transportation, promising to redefine automation, road safety, traffic
efficiency, and accessibility. The need for research in this field is driven
by the complexity and potential impact of self-driving vehicles. Central
to this research is the challenge of developing reliable systems that
can perceive, understand, and navigate in diverse and unpredictable
environments. Advances in cutting-edge algorithms, particularly in
the areas of computer science and robotics, form the backbone of how
autonomous vehicles interpret sensor data to make real-time decisions.
Safety remains a major concern, navigating research to explore robust
algorithmic developments that can handle scenarios ranging from dense
traffic to severe weather conditions, ensuring that autonomous vehicles
can operate safer than human drivers in all conditions.

Automating the ability to navigate has been approached through var-
ious conceptual paradigms in autonomous driving and robotics research.
The two most influential paradigms have been SLAM (Simultaneous
Localisation and Mapping) based and learning-based methods. SLAM-
based algorithms help vehicles build and update a map of an unknown
environment while simultaneously keeping track of their location within
it, crucial for real-time navigation in complex and dynamic settings. On
the other hand, the rise in artificial intelligence capabilities has led to an
increased reliance on learning-based approaches, particularly through
use of neural network-based systems. These methods leverage massive
datasets to teach systems how to perceive, decide, and act in diverse
driving scenarios, enhancing their ability to make split-second deci-
sions. Together these methodologies underpin the significant strides in
autonomous driving research.

Building on the advancements previously discussed, this thesis seeks
to extend the research by introducing new perspectives and approaches.
This research starts with reviewing state-of-the-art imitation learning
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methods and pointing out how pre-training in autonomous driving
is under-explored. The majority of approaches in this area of research
choose visual encoders pre-trained on the task of ImageNet classification,
rather than searching for better alternative approaches. Therefore, the
study proposes application of pre-training methods novel to the task
of end-to-end autonomous driving. It then evaluates these methods
against baseline approaches to demonstrate enhanced performance.

RESEARCH OBJECT

The research object is imitation learning-based autonomous driving
techniques with focus on exploration of pre-training methods and their
effect over a driving agent’s ability to navigate in unseen environment
settings.

RESEARCH AIM AND OBJECTIVES

The research aim is to implement and research autonomous driving
algorithms based on imitation learning and deep neural networks for
autonomously navigating in environment that simulate real world con-
ditions, in-order to explore pre-training techniques and enhance gener-
alisation over seen and unseen environmental settings.

To accomplish the research aim, the following objectives were carried
out:

1. Pursue a study of the state-of-the-art methods in imitation learning
based end-to-end autonomous driving and identify the current
state of pre-training of the visual encoders of autonomous driving
agents.

2. Identify and propose a task for pre-training the visual encoder of
the driving agent that is better related to the task of driving than
the traditionally used ImageNet classification.

3. Identify and propose a self-supervised pre-training task for the au-
tonomous driving agent’s visual encoder aimed to generalise bet-
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ter than the traditionally used ImageNet classification pre-training
approach.

4. Test empirically the proposed methods against appropriate base-
line autonomous driving agents and evaluate the results.

RESEARCH METHODS

The research in this thesis was performed based upon these scientific
methods:

1. Aliterature review is conducted outlining imitation learning based
autonomous driving methods.

2. Qualitative and quantitative data collection is carried out, adher-
ing to multiple metrics.

3. Proposed methods are evaluated by carrying out multiple experi-
ment reruns with varying random seeds.

4. Constructive research is used to propose enhancements and im-
provements on the real world problems and new methods to im-
prove the theory are proposed.

5. Software development methods are used to implement the pro-
posed method and the experimental part of this thesis, imple-
menting pre-training and driving algorithms, and, additionally,
evaluation systems.

SCIENTIFIC NOVELTY

The thesis contributes to the development of imitation learning-based
end-to-end trained autonomous driving methods. The main contribu-
tions of the thesis can be outlined as follows:

1. Extending the under-explored research on pre-training methods
for end-to-end autonomous driving by proposing to discard the
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reliance on supervised image classification pre-training of the
visual encoder.

2. This thesis proposes visual place recognition as a pre-training task
for autonomous driving. It also empirically shows how such pre-
training out performs the commonly used pre-training technique.

3. Another pre-training method for autonomous driving, self-distillation
with no labels (DINO) pre-training is proposed and shown to be
effective with the support of experiments.

PRACTICAL SIGNIFICANCE

This thesis enhances the performance of autonomous driving meth-
ods, additionally makes, training more efficient. The most important
practical contributions are the following:

1. The experiments performed using pre-training methods, namely
visual place recognition and DINO show higher resistance to
changes in the environment when deployed in simulation environ-
ments. This means that such practices can lead the way to reliable
driving in environments that are not exposed to learner and hence
minimising training data requirements.

2. The experiments also show faster convergence to higher perfor-
mance whenever the proposed methods are trained. This shows
reduced expensive GPU compute hours and hence contributes to
producing lower carbon footprint.

3. The thesis also makes training code for training autonomous driv-
ing methods publicly available, and mentions other important
repositories.

4. This thesis provides evidence supporting the hypothesis using
industry and research standard tools such as the simulator, ma-
chine learning frameworks, etc. which makes the findings easily
transferable to on-going research works in industry and academia.
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STATEMENTS TO BE DEFENDED

The following claims are defended in this thesis:

1. Pre-training the visual encoder over the task of visual place recog-
nition using triplet loss instead of the commonly used classification
task on the ResNet architecture enhances the driving performance
of imitation learning-based autonomous driving system on route
completion and distance completion metrics.

2. Pre-training the visual encoder on the ImageNet dataset using
the self-distillation with no labels (DINO) method instead of the
commonly used supervised image classification task on the ResNet
architecture produces richer features for imitation learning-based
autonomous driving which enables better driving performance as
per route completion and distance completion metrics.

3. On comparison of the visual place recognition pre-training against
DINO pre-training, the DINO pre-training method reports higher
performance while proving to be superior in unseen environments,
by completing more routes and causing lesser collisions with static
elements, pedestrians and vehicles, and also by causing fewer red
light infractions.

APPROBATION AND PUBLICATIONS OF THE RESEARCH

The results obtained in this thesis were published in four papers: two
in peer-reviewed periodic scientific journals and two at scientific con-
ference proceedings. The following list presents the publications and
presentations at conferences:

Papers in periodic scientific journals:

[A.1] Juneja, S., Daniusis, P., & Marcinkevicius, V. (2023). Visual
place recognition pre-training for end-to-end trained autonomous
driving agent. IEEE access, 11, 128421-128428.
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[A.2] Juneja, S., Daniusis, P., & Marcinkevicius, V. (2024). DINO
Pre-training for Vision-based End-to-end Autonomous Driving.
Baltic Journal of Modern Computing, Vol. 12 (2024), No. 4, pp.
374-386.

Papers (and work presented) in peer-reviewed scientific conference
proceedings:

[B.1] Juneja, S., Marcinkevicius, V., & Daniusis, P. Combining Mul-
tiple Modalities with Perceiver in Imitation-based Urban Driving.
All Sensors 2021. 18" July, 2021. Nice, France.

[B.2] Juneja, S., Daniusis, P., & Marcinkevicius, V. (2024). Monoc-
ular Depth Estimation Pre-training for Autonomous Driving. Al
Sys 2024. 30" September, 2024. Venice, Italy.

Additional work published during the studies but not included:

[C.1] Daniusis, P, Juneja, Valatka, L., & Petkevicius, L. Topological
Navigation Graph framework. Autonomous Robots, vol. 45, no. 5,
pp- 633-646.

[C.2] Daniusis, P, Juneja, S., Kuzma, L., & Marcinkevicius, V. (2022).
Measuring Statistical Dependencies via Maximum Norm and Char-
acteristic Functions. arXiv preprint arXiv:2208.07934.

OUTLINE OF THE DISSERTATION

This dissertation consists of an introduction, 3 chapters, conclusions,
and a summary in the Lithuanian language. The introduction section
provides an introduction to the research and an overview of the disser-
tation. The first chapter presents a literature review covering imitation
learning-based autonomous driving methods and related foundational
topics, such as autonomous driving, imitation learning, and pre-training
approaches. The second chapter describes the proposed methods and
the experiments conducted. The third chapter presents and analyses the
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results obtained from the experiments. Finally, the conclusions drawn
from the presented research are listed in the general conclusions section.
The bibliographic references are included at the end of the dissertation.
The dissertation consist of 156 pages, 24 figures and 12 tables.
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1. END-TO-END AUTONOMOUS DRIVING: LITERATURE
REVIEW

This chapter reports a study on the current state of imitation learning
and end-to-end autonomous driving. It covers topics starting from
the idea of autonomous vehicles and their associated implications on
the various branches of research within the field of autonomous driv-
ing. It later presents the state-of-the-art methods used in end-to-end
autonomous driving and the concept of pre-training. Additionally, this
chapter also captures the trends in current state-of-the-art research to
justify the direction of our research. This review of literature presents
the background of the research published in [A.1], [A.2], [B.1] & [B.2].

1.1. INTRODUCTION TO AUTONOMOUS VEHICLES

Automation has become a pivotal force driving innovation and effi-
ciency across various industries. The integration of automated systems
enhances productivity, minimises human error, and enables the execu-
tion of complex tasks beyond human capabilities. In the manufacturing
sector, the adoption of robotics and automation technologies has revo-
lutionised production processes, leading to significant cost reductions
and improved product quality. According to Company [35], the “Fac-
tory of the Future” leverages advanced robotics to increase efficiency
and flexibility in manufacturing operations. In the financial industry,
algorithmic trading has transformed market dynamics by increasing
the speed and volume of trades, enhancing market liquidity and effi-
ciency. Hendershott et al. [55] discuss how algorithmic trading improves
liquidity and reduces transaction costs in financial markets. The health-
care sector has also benefited from automation through robotic-assisted
surgeries, which enhance precision and patient outcomes. Herron [56]
highlights the advancements in surgical robotic systems and their impact
on modern medicine. These examples underscore the indispensable role
of automation in modern society, driving advancements that improve
efficiency, safety, and quality across various sectors.

Among the domains benefiting from automation, autonomous vehi-
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cles (AVs) stand out as a particularly impactful and rapidly evolving
area of research. The development of AVs involves a multidisciplinary
approach, integrating artificial intelligence, control technologies, com-
puter vision, and sensor technologies [101]. AVs have the potential to
revolutionise transportation by improving road safety, reducing traf-
fic congestion, and providing mobility solutions for those unable to
drive [79]. Human error is a significant factor in traffic accidents. The
National Highway Traffic Safety Administration (NHTSA) reports that
approximately 94% of serious crashes are due to human error [3, 8]. By
eliminating the human factor, AVs could significantly reduce the number
of traffic accidents. Fagnant and Kockelman [44] discuss the potential
benefits of AVs, including reductions in crashes, energy consumption,
and parking needs, along with an improved traffic flow.

1.1.1. What are Autonomous Vehicles?

According to Du [43], an autonomous vehicle—also known as a self-
piloting auto-mobile, driverless car, computer-driven car, or wheeled
mobile robot—is a type of intelligent vehicle controlled by an onboard
computer system [42]. Essentially, it is a fast, wheeled autonomous
mobile robot that relies on a variety of sensors to perceive its surround-
ings. These sensors gather information about the vehicle’s environment,
including road conditions, vehicle position, and nearby obstacles. Based
on this data, the computer system autonomously manages the vehicle’s
movements, enabling it to navigate safely, reliably, and without human
intervention. While the term "autonomous vehicle" can encompass a
wide range of vehicles, including cars, trucks, buses, and even drones,
our research work primarily focuses on autonomous passenger cars due
to the significant industry focus on their development and potential
impact on personal transportation [43, 97]. With the focus remaining on
passenger cars, the majority of this AV technology can be applied on a
wider scope and holds potential applications in various domains. For ex-
ample, autonomous trucks are being developed to improve logistics and
long-haul transportation, while autonomous buses could revolutionise
public transit systems.
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1.1.2. Implications of Autonomous Vehicles

The widespread adoption of AVs promises to fundamentally transform
transportation systems and urban environments. Othman [97] com-
prehensively explores several critical implications of AV deployment,
ranging from vehicle ownership patterns and fleet utilisation to urban
infrastructure and city planning. These implications suggest potentially
profound societal benefits, including enhanced mobility, reduced envi-
ronmental impact, and more efficient use of urban space, underlining
the significance of continued research and development in autonomous
driving technologies. The following sections examine the most impor-
tant of these implications in detail, highlighting both opportunities and
challenges that emerge from existing literature.

1.1.2.1.  Vehicle ownership and vehicle utilisation

The adoption of autonomous vehicles (AVs) promises significant changes,
including a reduction in vehicle ownership and an increase in vehicle
utilisation. Studies indicate that vehicle utilisation could increase from
around 5% in conventional vehicles [47] up to 75% [19], leading to
shorter vehicle lifespans and a faster adoption of newer, cleaner tech-
nologies [45]. Simulations have suggested that a single AV could replace
more than 10 conventional vehicles when used as a shared mode [97].

1.1.2.2. Optimising passenger wait time

Although shared AVs can reduce fleet size and increase vehicle utilisa-
tion, they also provide higher-quality service through lower passenger
waiting times. Studies have found that passengers perceive waiting
times for current modes of transports as significantly longer than the
actual duration, i.e. one min of in-vehicle time could range from 1.4
to 2.5 minutes as per the perception of the passenger [2, 46, 57, 122].
Currently, average transit waiting times in the US and Canada are 40
and 20 minutes respectively [82]. In contrast, shared AVs are projected
to offer average waiting times of only 5 minutes, along with lower trip
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costs. This suggests that shared AVs could be highly competitive with
traditional public transit, potentially attracting many users away from
those services. Transit agencies should be aware of this disruptive threat
and prepare accordingly as AVs become more widely available.

1.1.2.3. Impact on public behaviour

One of the key advantages of AVs is that passengers will be able to
engage in other activities during travel, rather than viewing trip time
as an economic loss [97]. However, AVs may also motivate longer
trips, increased travel, and additional trips, leading to higher vehicle-
kilometres travelled (VKT) [86, 97]. This increased VKT could in turn
increase emissions and fuel consumption [32, 88]. Additionally, the low
waiting times and costs of AVs could attract new travel demand, further
increasing VKT and potentially worsening traffic [86].

1.1.2.4. Road capacities and intersections

AVs have the potential to increase road and intersection capacities by en-
abling shorter following distances between vehicles and narrower lane
widths, due to the high level of vehicle-to-vehicle communication and
the elimination of human factors [48]. However, this increased capacity
may not be fully realised until AVs achieve high market penetration
[86].

1.1.2.5. Land use

AVs have the potential to significantly reduce parking demand and
the required number of parking spaces [86, 88, 112]. Studies show
AVs could enable up to 2.5x higher parking space utilisation through
techniques like vehicle blocking and coordination [112]. This would
free up valuable land currently dedicated to parking, allowing it to be
repurposed for other uses that can increase property values [32].
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1.2. AUTONOMOUS DRIVING

The promising benefits highlighted by the implications of AVs justify
the extensive research investment in the development of the technology
behind autonomous driving. Meanwhile, enabling vehicles to drive
autonomously has been the subject of intensive investigation spanning
multiple decades. Autonomous driving, which is often defined as the
capacity of a vehicle to navigate and maneuver without direct human
control, has had two prominent emerging approaches. These approaches
are the modular approach and the end-to-end approach [26, 98, 113].
This section examines the modular and end-to-end approaches to au-
tonomous driving, followed by a comparative assessment of their rela-
tive strengths and limitations.

1.2.1. Modular Approach

The modular approach to autonomous driving, also known as the me-
diated approach [23], decomposes the driving task into a series of spe-
cialised components that process information sequentially from sensors
to actuators [84]. This architecture comprises several core functional
modules: localisation and mapping, perception, assessment, planning
and decision-making, vehicle control, and human-machine interface
[130]. In a typical implementation [5, 17, 77, 118, 123, 138], sensor data
flows through localisation and object detection components, then may
proceed to planning and decision-making modules, before finally gen-
erating motor commands via the control module [12, 84]. We portray a
generic form of the modular approach that accepts data through input
sensors, processes it through a pipeline of modules (such as perception
module, localisation module, etc.) and produces actuator commands
in Figure 1.1 as according to Tampuu et al. [113]. This modular decom-
position offers a key advantage: it breaks down the complex challenge
of autonomous driving into more manageable sub-problems [30]. Fur-
thermore, these individual components align with established research
tields such as robotics, computer vision, and vehicle dynamics, enabling
direct application of existing expertise and methodologies from these
domains.
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Figure 1.1: Modular pipeline for autonomous driving [113].

1.2.2.  End-to-End Approach

The end-to-end approach to autonomous driving employs deep neural
networks to learn a direct mapping between sensory inputs and con-
trol outputs, treating the entire driving task as a single optimisation
problem [24, 98]. The sensory inputs in autonomous driving are usually
camera inputs while the control outputs are often driving commands
to adjust the steering and acceleration actuators [113]. We portray a
generic example of the end-to-end approach in Figure 1.2, where sensor
input is processed through a neural network architecture and actuator
commands are predicted. This approach heavily relies upon learning
from demonstrations based on the experience of a driver or another
agent. The end-to-end outlook to driving has gained significant traction
with recent advances in deep learning and has formed the primary focus
of this research. The training of end-to-end models generally follows
one of two distinct learning paradigms [113]: Reinforcement Learning
(RL), which develops driving policies through environmental interac-
tion and trial-and-error exploration [111] or imitation learning, which
learns driving behaviour by mimicking expert demonstrations through
supervised learning [10].
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Figure 1.2: End-to-End pipeline for autonomous driving [113].

1.2.3. Comparison of Modular and End-to-End Approaches

The modular approach to autonomous driving offers notable advan-
tages, primarily its interpretability and the ability to develop compo-
nents independently [113]. This structure allows researchers and engi-
neers to easily trace the source of errors or unexpected behaviours and
enables specialised teams to focus on improving specific modules with-
out disrupting the entire system [126, 132]. However, these benefits are
counterbalanced by significant challenges. The predefined inputs and
outputs of each module can result in sub-optimal performance across di-
verse driving scenarios, as the rigid architectural design may not adapt
seamlessly to complex or unpredictable situations [132]. Moreover, the
engineering complexity of designing and maintaining these intercon-
nected modules demands substantial effort and expertise [41, 113]. A
critical limitation emerges from the data processing within these mod-
ules, where compression techniques like 3D bounding boxes can lead
to substantial information loss, potentially compromising the system'’s
ability to make nuanced and effective driving decisions [41, 132].

The end-to-end approach to autonomous driving presents consider-
able advantages, particularly in its ability to learn task-specific feature
representations that can potentially outperform traditional methods (e.g.
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module and heuristic-based) [113]. These systems offer a simplified
architectural design with fewer components compared to modular ap-
proaches, and their success in complex domains like gaming suggests
significant potential for autonomous driving [13, 90, 121]. However,
these benefits are accompanied by critical challenges. The neural net-
work’s black-box nature renders its decision-making process nearly
opaque, making it difficult to interpret or diagnose the sources of errors
or unexpected behaviours [73, 126, 132]. Moreover, the approach is vul-
nerable to covariate shift, where the model may struggle to generalise
beyond its training scenarios, as its actions continuously reshape the
observed environment [10, 34, 104, 107]. An additional significant con-
cern is the model’s susceptibility to adversarial attacks, where carefully
crafted inputs could potentially manipulate the system’s perception and
decision-making, raising substantial safety concerns for a technology
responsible for human transportation [113].

The end-to-end approach offers a promising research direction due
to its potential to overcome the limitations of rigid, compartmentalised
modular systems [26, 113]. By learning holistic representations directly
from data, end-to-end models can capture complex, nuanced driving
interactions that traditional modular architectures might miss. The abil-
ity of the end-to-end approach to optimise entire driving tasks through
advanced machine learning techniques—particularly deep neural net-
works—suggests a more adaptive and potentially more intelligent so-
lution to autonomous driving challenges. While currently facing in-
terpretability and generalisation challenges, the end-to-end approach
represents a fundamental shift towards more flexible, data-driven au-
tonomous driving systems that could ultimately provide superior perfor-
mance by learning from comprehensive driving experiences. Motivated
by these advantages, our research focuses on end-to-end approaches to
further explore their potential in autonomous driving.

1.3. END-TO-END LEARNING METHODS

Further exploration of end-to-end methods is central to this research.
In this section, we review the two prominent end-to-end methods of
autonomous driving introduced in Section 1.2.2.
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1.3.1. Imitation Learning for Autonomous Driving

End-to-End autonomous driving systems commonly rely on imitation
learning, also known as behaviour cloning [113]. This approach uses an
extended version of supervised learning techniques where a machine
learning model learns to replicate expert actions. For autonomous vehi-
cles, the system observes and learns from human drivers, attempting
to reproduce their driving decisions such as steering angles, acceler-
ation, and braking patterns based on sensory inputs. The appeal of
imitation learning lies in its straightforward data collection process i.e.
recording human driving behaviours, which provides abundant training
data. This has proven effective for basic driving tasks, particularly lane
following [16, 103]. However, the method faces significant challenges
when encountering complex or uncommon traffic situations, as these
scenarios are often under-represented in training data [34].

According to Chen et al. [26], Chitta et al. [31], Codevilla et al. [34],
Ozaibi et al. [98], Zhang and Cho [133], the objective can be mathemati-
cally formulated as:

arg meiné| Z L(mp(s),a) (1.1)

where

* 7p(s) is the policy parametrised by 6, representing the action pre-
dicted by the agent given state s,

* ais the ground-truth action taken by the expert in state s,

* D is the dataset consisting of state-action pairs (s, a) sampled from
the expert’s demonstrations,

¢ [ is the loss function, which measures the discrepancy between
the actions predicted by the policy my(s) and the actual actions a
taken by the expert.

The dataset D can be generated by collecting demonstrations per-
formed by an expert human [16], heuristic-based method [41] or an
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another trained policy [24, 137]. The method that generates such a
dataset is often referred to as expert policy 7. Therefore, the objective
of imitation learning is to train the agent’s policy 7y to closely approxi-
mate the expert policy 7. In modern methods, the choice of learning
method to estimate 7y is often a neural network algorithm [26, 113]. We
show the schematics of imitation learning in the form of a diagram in

e
A

Figure 1.3.

Demonstrations Dataset Learning

Figure 1.3: Imitation learning transfers behaviours by extracting datasets
from demonstrations and training machine learning methods.

1.3.1.1. Challenges

Despite of the fact that imitation learning is a straight forward approach
in terms of training models, it faces multiple challenges when it comes
to scaling and improving. Here we list out the major challenges:

¢ Covariate shift: While the model effectively learns to replicate
expert responses to situations created by human drivers, it faces
challenges when dealing with scenarios resulting from its own
decisions. This creates a recursive challenge: the model’s driving
choices influence subsequent observations, requiring it to navigate
situations that emerge from its own actions rather than expert
demonstration. We show this divergence in Figure 1.4. This phe-
nomenon, known as the covariate shift problem (or distribution
shift) [42], [43], occurs when the autonomous system encounters
scenarios that deviate from its training examples. The alternate
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name distribution shift represents the literal change in data distri-
bution as shown in Figure 1.5. The discrepancy between real-world
driving conditions and the training data can lead to significant
challenges. For instance, if the training data predominantly fea-
tures optimal driving positions - such as maintaining perfect lane
centring - the model may lack the necessary experience to exe-
cute corrective manoeuvrers when it deviates from these ideal
conditions.

Figure 1.4: Divergence of an imitation learning trained agent from the
path exposed at train time (red) to a new path (blue) due to erroneous
decisions.

¢ Inability to improve beyond expert demonstrations: By defini-
tion, imitation learning models can only learn to perform as well
as the expert demonstrations they are trained on [137]. They can-
not discover novel or more efficient strategies that might surpass
human capabilities.

¢ Dataset bias: Imitation learning for self-driving is susceptible to
dataset bias because datasets are often dominated by common
behaviours like driving straight at a constant speed [113]. This can
lead to the model over-fitting to common cases and struggling to
generalise to rare, more complex scenarios [34, 37, 117].

* Domain shift: Imitation-learned driving policies often suffer sig-
nificant performance drops when deployed in environments that
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Figure 1.5: A representation of covariate shift across training and testing
set distributions.

differ from their training domain (e.g., transferring from simula-
tion to real-world). Even minor discrepancies between the expert
demonstration domain and the learner’s deployment domain can
mislead the model and result in unstable control behaviour [93].

1.3.2. Reinforcement Learning for Autonomous Driving

RL [98, 111] represents a machine learning approach where an intelligent
agent develops strategies through iterative environmental interaction.
The method is formalised using the Markov Decision Process (MDP)
framework, which characterises learning through a structured set of
components, which are [98]:

¢ S: the set of states that can be taken by an agent,
* A: as the set of actions that an agent can perform,

* P(s'|s,a): as a transition probability function which gives out the
probability of reaching state s’ from state s by performing action a,
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* R(s,a): as a reward function that produces reward values based
on the state of the agent and the last action performed.

In this framework, an agent navigates through a series of states,
selecting actions that maximise cumulative rewards. The policy 7(s)
serves as the agent’s decision-making strategy, mapping observed states
to chosen actions. These policies can be deterministic, selecting specific
actions for each state, or stochastic, probabilistically determining action
selection. Central to RL is the concept of return (G;), representing the
cumulative discounted rewards from a given time step. The introduc-
tion of a discount factor v (where 0 < v < 1) ensures that immediate
rewards are prioritised while preventing the return from diverging to
infinity, thus maintaining mathematical stability and convergence. The
transition function P(s’ | s, a) and reward function R (s, a) provide the
mathematical scaffolding, enabling the agent to learn optimal decision-
making strategies through systematic exploration and exploitation of
the environment. The total return is given by the following equation:

[e.o]

G =Rus1 +TRi2 + 7V Resz + ... = Z’Yth+k+1 (1.2)
k=0

The goal of RL is to find an optimal policy 7* that maximises the
expected return for each state s and action a. By iterating over different
policies and updating them based on observed returns, the agent learns
to choose actions that maximise the expected cumulative reward over
time. While we present the core formulation of the reinforcement learn-
ing algorithm, recent works have preferably used the evolved versions
such as deep Q-learning [134] and policy gradient methods [40, 85].

Reinforcement learning driving policies can utilise identical input
structures as those employed in imitation learning systems. The output
architecture can remain consistent with imitation learning models, elim-
inating the need for structural modifications to the neural network. The
key distinction lies in the learning mechanism - RL systems derive their
learning signals from computed rewards at each time step, rather than
relying on human demonstrations. This removes the requirement for
collecting and labelling expert driving data.
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1.3.2.1. Challenges

RL based methods face multiple challenges in being a viable option
for extending the research related to autonomous driving [113]. We list
them as follows:

* Learning in the real world is difficult and can be dangerous:
A crucial challenge in training RL policies for driving is ensur-
ing sufficient exploration without damaging the vehicle or other
objects.

e Simulations are not perfect representations of reality: While
training and testing models in simulated environments like CARLA
[41] and GTA V is common practice, transferring these models to
the real world presents challenges. Input discrepancies between
simulations and reality can lead to poor generalisation, requiring
adaptation techniques.

* Defining appropriate rewards can be complex: In RL, the model
aims to maximise rewards, making the selection of positive and
negative rewards crucial for shaping desired behaviours.

* RL can be less data-efficient than imitation learning: RL typi-
cally requires more data and longer training times compared to
imitation learning.

1.4. FOUNDATIONS OF IMITATION LEARNING-BASED
AUTONOMOUS DRIVING

The state-of-the-art advancements in end-to-end learning for autonomous
driving build upon numerous landmark studies that have established
a foundation. In this section, we highlight the key works that have
significantly influenced the progression of research leading to this study.
While we highlight the studies, we do not compare their performance

metrics, as evaluation methods vary widely and continue to evolve.
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1.4.1. Earliest Application of a Neural Network for Autonomous
Driving

One of the earliest and most influential works in end-to-end learning
for autonomous driving is ALVINN (Autonomous Land Vehicle In a
Neural Network), developed by Pomerleau [103] in the late 1980s. This
system used a three-layer back-propagation neural network to learn
the task of road following. ALVINN took input from a video camera
and a laser range finder, processing the visual and range data to output
the desired steering direction for the vehicle. The network was trained
primarily on simulated road images, due to the logistical challenges of
collecting a large and diverse real-world dataset. However, successful
tests were conducted on the Carnegie Mellon NAVLAB, an autonomous
navigation test vehicle, demonstrating ALVINN's capability to navigate
real-world roads under certain conditions. Significantly, ALVINN exhib-
ited the ability to adapt its internal representation based on the training
data, developing distinct features for roads of fixed width versus those
with varying widths, highlighting the flexibility of the neural network
approach.

While the system’s performance was limited by the computational
capabilities of the time, ALVINN laid critical groundwork for future
end-to-end autonomous driving research. The significance of ALVINN
extends beyond its immediate technical achievements. It provided
a conceptual breakthrough by showing that machine learning could
potentially replace hand-coded driving rules, a radical idea at the time
that would become increasingly influential in subsequent decades of
autonomous driving research.

1.4.2. Introducing CNNs to Driving

Building on the foundational ideas introduced by ALVINN, Muller et al.
[92] proposed taking end-to-end learning a step further by address-
ing the unique challenges of navigating off-road environments. While
ALVINN focused on road-following tasks using a three-layer neural
network, this work employed a more advanced 6-layer convolutional
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neural network (CNN) to handle the complexities of obstacle avoidance
in diverse and unstructured terrains. Instead of a land vehicle, this work
demonstrated the abilities of the proposed method on a 50 cm-long
robot truck.

Another key distinction from ALVINN is the use of stereo cameras
as input, which allows the system to gather richer spatial information
about the environment. CNN enabled processing of raw YUV images
from two forward-facing cameras mounted on a small robot truck. The
use of CNN instead of a fully connected neural network leveraged the
localised feature extraction capabilities of CNNs, enabling it to handle
higher-resolution images efficiently. This architectural shift significantly
enhanced the ability to detect obstacles and predict steering angles in
real time, even under challenging conditions.

The training process built on ALVINN's supervised learning ap-
proach, using human drivers to demonstrate obstacle avoidance, but
expanded it to more diverse off-road scenarios with varying lighting,
weather, and terrains. By mapping raw stereo camera inputs directly to
steering commands, the system enabled bypassing traditional feature en-
gineering and depth map calculations, showcasing a design philosophy
aimed at adaptability and robustness. Despite a 35.8% classification er-
ror rate on the test set, the system effectively showed navigation through
obstacles in real-world scenarios, demonstrating strong generalisation
capabilities. This work significantly extended ALVINN’s foundational
ideas, proving the viability of end-to-end learning for off-road naviga-
tion in the case of a robot truck. The use of CNNs as a learner for such
tasks has since become a standard in this area of research.

1.4.3. Adoption of Modern CNN

CNNss revolutionised this area of research by automating feature ex-
traction from raw data, enabling the detection of complex patterns and
relationships directly from training examples. This transformation was
driven by two key advancements. The first was the availability of
large, labelled datasets, particularly the Large Scale Visual Recognition
Challenge (ILSVRC), commonly known as the ImageNet dataset [74].
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The second was the emergence of massively parallel GPUs, which sub-
stantially improved the efficiency of deep network training. A pivotal
demonstration of these advancements came from Krizhevsky et al. [75],
who achieved remarkable image classification accuracy on the ILSVRC
challenge using the ImageNet dataset.

AlexNet [75] introduced and popularised several key concepts, such
as ReLU activation, dropout regularisation, overlapping max pooling,
and a deep network architecture. These contributions not only enabled
AlexNet’s success but also laid the groundwork for subsequent ad-
vancements in application convolutional neural networks such as object
detection [62], semantic segmentation [52], and others. By significantly
enhancing the capability and efficiency of CNNs, AlexNet accelerated
progress in computer vision and related fields. In contrast, the "Off-road
Obstacle Avoidance through End-to-End Learning" research [92], con-
ducted nearly half a decade earlier, predated these advancements and
thus lacked many of the concepts that later improved the effectiveness
and flexibility of CNNs.

The work of Bojarski et al. [16] has exemplified this leap, applying a
deep CNN with the new advancements to steer a car in varied conditions
using raw video input from a single camera. This system effectively
eliminated intermediate steps like explicit lane detection or semantic ab-
straction performed in the alternate methods at the time, by optimising
all stages simultaneously for better performance.

The network architecture included five convolutional layers followed
by three fully connected layers. The system achieved this with minimal
explicit supervision, using only steering angles as training signals while
autonomously learning internal representations of road features. Before
deployment, the model’s performance was tested in a simulation envi-
ronment that used pre-recorded videos to evaluate how the network
responded to various driving scenarios. Once validated, the model was
deployed on the NVIDIA Drive PX platform and tested on real roads
under diverse conditions, including highways, residential streets, and
unmarked or unpaved roads. This research has led to the use of deep
architectures in most of the following works that work on autonomous
driving.
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1.4.4. Dataset Aggregation

Early end-to-end autonomous driving methods, such as ALVINN [103],
employed supervised learning to learn the driving task. According
to Bagnell [10] and Ross et al. [107], the classical supervised learning
approach does not meet the requirements of imitation learning. The dis-
tinction between supervised learning and imitation learning lies in their
objectives and operational contexts. Supervised learning is typically
used in static settings where the goal is to minimise prediction errors
in independent and identically distributed (i.i.d.) data, and the model’s
outputs do not influence the data distribution. In contrast, imitation
learning aims to mimic a teacher’s decisions in dynamic environments
where the learner’s actions can affect future observations, creating a
feedback loop. This fundamental difference means that errors in imita-
tion learning can cascade, leading to compounding mistakes, unlike in
supervised learning where errors remain isolated. This corresponds to
the concept shown in Figure 1.4.

The Dataset Aggregation (DAgger) [107] algorithm is a prominent so-
lution to the cascading error problem. Unlike naive supervised learning
approaches that train only on the expert’s demonstrations, DAgger iter-
atively refines the policy by interleaving execution and learning. During
each iteration, the current policy is executed in the environment, and the
expert provides corrective actions whenever the policy diverges from
optimal behaviour. These corrections are aggregated into a growing
dataset, which is then used to retrain the policy. We represent the process
in algorithm form in Algorithm 1. By allowing the policy to encounter
states it would encounter under its own control rather than solely under
the expert’s guidance, DAgger ensures that the training data reflects the
distribution of states the policy will actually encounter. This is aimed
at avoiding errors that lead to continually exiting the appropriate tra-
jectory, commonly known as error compounding. Therefore, DAgger
helps trains the policy to recover from its mistakes, ultimately leading
to more robust behaviour that favours generalisability.
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Algorithm 1 Dataset Aggregation (DAgger) Algorithm

Initialize policy 7o, dataset D <« ()

Set expert policy 7* and number of iterations N

fori =1to N do
Execute current policy 7;_ in the environment to generate states
{st}ioy
Query expert policy 7* to obtain actions {a}}_, for each state
{st}ioy
Aggregate data: D <+ D U {(s¢,af)}1,
Train a new policy 7; on the aggregated dataset D

end for

Return: Final policy 7y

DAgger and its improved variants [104, 133] have been widely adopted
as an approach in the applications of imitation learning due to their abil-
ity to address the challenges posed by error compounding and covariate
shift. By ensuring the learner encounters and learns from states induced
by its own actions, DAgger enables policies to generalise more effectively
to real-world scenarios where deviations from expert demonstrations
are inevitable. We portray the classical form of DAgger in Figure 1.6.

Train Rollout
— 1. Dataset —— 2. Policy ———» 3. Environment
Aggregate
4. On-Policy
Data M

Figure 1.6: Steps taken in the DAgger method starting with an initial
dataset [107].

1.5.  ADVANCES IN END-TO-END AUTONOMOUS DRIVING

The work by Bojarski et al. [16] showed strong potential in the field of
autonomous driving and robotics, concerning the advancements in deep
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learning. Therefore, this work served as an invitation for many deep
learning researchers to extend the aforementioned areas of research. In
this section we highlight the recent advancements that form the current
state of research on autonomous driving and partly robot navigation.
As these methods rapidly come close to over-saturating their chosen
metrics and benchmarks, the benchmark settings for evaluation evolve
constantly. Therefore, making it difficult to compare one method to
another as the experimentation and evaluation settings change in al-
most every research work published. We segment these works by the
concepts they attempt to improve, such as architectural and data-centric
advancements.

1.5.1. Architectural Advancements

One significant advancement in end-to-end learned autonomous driving
is the introduction of conditional imitation learning by Codevilla et al.
[33]. In their work, the authors propose a model that learns driving
behaviours by imitating expert demonstrations while conditioning on
high-level navigational commands, such as turning left or right at inter-
sections. This approach allows the vehicle to make decisions based on
both visual inputs and intended routes, effectively bridging perception
and planning. Their experiments demonstrated that conditional imi-
tation learning enhances the model’s ability to handle complex urban
driving scenarios, reducing errors associated with ambiguous situations
and improving overall driving performance.

Codevilla et al. [33] introduce a conditional imitation learning archi-
tecture for end-to-end autonomous driving that employs a multi-branch
neural network. This network processes raw sensory inputs, such as
camera images, and produces control commands like steering and ac-
celeration. Each branch of the network is conditioned on high-level
navigational commands such as turning left, turning right, or going
straight which allows the model to learn different behaviours corre-
sponding to each possible route instruction. By integrating perception
and decision-making in a unified framework, this architecture enables
the model to be trained end-to-end and also navigate complex driv-
ing scenarios by following high-level directions while reacting to en-
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vironmental cues. A simplified version of the proposed architecture
is presented in Figure 1.7, where outputs of an image encoder and a
measurement encoder are fused and transformed, then converted to
speed and action commands on multiple branches. The further refined
version of this architecture by another study [34], using a ResNet [51]
for perception (altogether termed CILRS) became a standard in many
following studies [24, 104, 126, 127, 137]. The improved work in Codev-
illa et al. [34] reports a jump from 66% success rate in completing routes
(also known as route completion) to 90% with empty traffic conditions
in the NoCrash benchmark [34]. Whereas when exposed to dense traffic
conditions, the score only improved from 13% to 24%.
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Figure 1.7: Conditional Imitation Learning [33] divides the decision-
making into multiple branches.

Extending the work on conditional imitation learning, Xiao et al.
[126] introduced an architecture that effectively fuses multiple sensor
modalities to enhance driving performance. By integrating data from
RGB and depth cameras, their model learns a richer representation of
the environment, capturing both visual and spatial information crucial
to safe navigation. This multimodal fusion addresses the limitations
of handling complex scenarios where reliance on a single modality
might fail due to sensor noise or occlusions. The experimental results
demonstrate that the multimodal approach significantly outperforms
unimodal baselines, exhibiting improved robustness and generalisation.
Xiao et al. [126] perform experimentation in a altered setting that test
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with respect to modalities and report a 50% improvement in completing
routes over the CILRS [34] method.

Extending the exploration of multi-modality for end-to-end trained
driving models, Chitta et al. [31] introduced the TransFuser architec-
ture. This model addresses limitations concerning the integration of
multi-modal sensor data, along with generalising to unseen environ-
ments. The TransFuser employs transformer networks to fuse high-
dimensional inputs from cameras and LiDAR sensors, effectively cap-
turing both spatial and temporal dependencies in the data. This sensor
fusion allows the model to generate more context-aware and robust
driving policies within an imitation learning framework. By leveraging
transformer-based architectures, the TransFuser demonstrates improved
performance as such architectures are designed to be attention-oriented
[120]. Chitta et al. [31] propose a benchmark standard of their own,
i.e.,, Longest6 Benchmark and report a route completion score of 93.38%
which surpasses their expert performance by 4.71%.

Hu et al. [60] propose another architectural advancement called ST-
P3, an interpretable end-to-end vision-based framework for autonomous
driving tasks that improves feature learning for perception, prediction,
and planning. Given a sequence of surrounding camera video, ST-P3
first extracts features and lifts them to 3D space using depth predic-
tion. Features in both spatial and temporal domains are fused by an
egocentric-aligned accumulation scheme. For perception, this scheme
aligns and aggregates features (past and present) in 3D space to preserve
geometric information before Bird’s Eye View (BEV) transformation. For
prediction, a dual pathway scheme is introduced to account for past
motion variations, thereby enhancing future prediction. This dual path-
way modelling produces a more robust representation of the scene. For
planning, ST-P3 incorporates prior knowledge from features in the early
stage of the network and devises a refinement module to generate a
final trajectory using high-level commands in the absence of HD maps.
Hu et al. [60] evaluate over self-proposed benchmark, i.e., the Town05
Long benchmark which tests completion of routes in the Town05 map of
the CARLA simulator [41]. ST-P3 reaches a route completion of 83.15%,
tested against CILRS and Transfuser which are able to complete 56.36%
and 7.19% of the routes respectively.
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A very recent method, called ThinkTwice proposed by Jia et al. [66]
introduces enhancing the decoder module of the neural network. It
emphasises a coarse-to-fine refinement strategy where the decoder pre-
dicts a trajectory and action and subsequently refines this prediction
using spatial-temporal priors and dense supervision. The architecture
integrates three primary modules: the Look Module, which retrieves
features from safety-critical areas; the Prediction Module, which an-
ticipates future scenarios based on the ego vehicle’s actions; and the
Refinement Module, which adjusts the initial predictions using offset
calculations. ThinkTwice employs a BEV representation derived from
multi-sensor inputs, fusing camera and LiDAR data via a geometric
transformation pipeline. The method demonstrates state-of-the-art per-
formance on autonomous driving benchmarks, outperforming prior
methods by leveraging a scalable decoder architecture and dense feature
supervision. Jia et al. [66] evaluate on the Town05 Longest benchmark
and they report route completion score of 77.2%, surpassing many other
methods.

1.5.2. Data-Centric Advancements

As end-to-end learning primarily focuses on learning from data, research
has consistently highlighted the critical role of high-quality data in
improving the performance of learned methods [34, 104, 107]. In this sub-
section we highlight the research that explores data-centric approaches
to improve the learning capabilities.

Since the introduction of the DAgger method and its wide-spread
adoption across many methods in the field of automation and robotics
there have been improved version of DAgger proposed. One of which
that focuses specifically on end-to-end autonomous driving is called
SafeDAgger [133]. The proposal of this novel extension to the DAgger
algorithm aims to reduce the number of queries to a reference policy (or
expert policy) during imitation learning. SafeDAgger introduces a safety
policy that predicts when the primary policy is likely to deviate from the
reference policy and switches control to the reference only in such cases.
This significantly improves query efficiency by limiting interactions
with the reference policy to critical moments, making the approach more
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practical for applications where querying a human or expert system is
costly. The method is evaluated in a racing simulator and demonstrates
improved training efficiency and policy performance, highlighting its
potential for safer and more effective end-to-end autonomous driving
systems.

While SafeDAgger’s proposal introduces reliance on prediction of
errors, a method proposed by Prakash et al. [104] introduces having
a replay buffer in the DAgger process. Their work called DARB [104]
proposes an enhanced data aggregation framework for training end-
to-end driving policies. Building on the DAgger algorithm, this work
introduces two key modifications: a critical state sampling mechanism
that prioritises scenarios with high utility for learning safe driving be-
haviours, such as near failures, and a replay buffer that balances expert
data with on-policy data to mitigate bias and improve generalisation.
Figure 1.8 shows how the modifications fit into the pipeline of DAgger.
These innovations address limitations in standard DAgger, such as poor
generalisation and over-fitting to training conditions.

Train Rollout
1. Dataset ——— 2. Policy —— 3. Environment
. Sample .
6. Replay 5. Critical ‘ 4. On-Policy
Buffer States Data

Figure 1.8: DARB [104] starts with an initial dataset, then extends the
existing DAgger method by introducing critical states sampling and a
replay buffer pipeline.

Other than improving how corrective data is aggregated, some works
attempt to upgrade the quality of demonstrations. Research by Chen
et al. [24] called Learning by Cheating (LBC), presents a two-stage train-
ing approach. The authors simplify the challenging task of training
such systems by initially creating a "privileged agent" that has access
to comprehensive environmental data, such as ground-truth layouts
and the positions of all traffic participants. This agent is trained using
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expert trajectories and acts as a teacher in the second stage, where a
"sensorimotor agent" learns to operate using only visual input from a
forward-facing camera. This decomposition of learning tasks allows the
privileged agent to focus solely on action and later provide robust, adap-
tive supervision to the sensorimotor agent, which learns to interpret
visual data. Experimental results show that this methodology achieves
improved success rates on the benchmarks and also significantly re-
duces traffic violations and collisions compared to prior state-of-the-art
models. Based on experiments conducted and reproduced by Chen
et al. [24] LBC reaches a route completion score of 85% on the NoCrash
benchmark, while CILRS reaches 67% in the dense traffic setting.

Heading in a similar direction as LBC [24], a method proposed by
Zhang et al. [137] extends the idea of improving demonstrations. Instead
of relying solely on privileged agents or human experts, this paper intro-
duces Roach, a reinforcement learning (RL) expert designed to map BEV
images to continuous driving actions. Unlike traditional approaches
reliant on rule-based systems or expert demonstrations, Roach provides
well-informed supervision signals. This agent enables to collect better
demonstrations to further train imitation learning agents. Roach elimi-
nates the need for human intervention by probing in not only demon-
stration generation phase but also while carrying out DAgger iterations.
Without such dependence on human interventions, the Roach expert
shows better scores than the state-of-the-art works publish around this
time, highlighting the importance of quality in demonstrations. Zhang
et al. [137] method establish and evaluated over the offline version of
the Leaderboard benchmark and report a 78% route completion where
their baseline only reaches 35%.

1.6. PRE-TRAINING

Pre-training refers to the process of training a model (e.g. neural-
network) on a related task (or a source task) or dataset prior to fine-
tuning it on the target task [53, 89, 139]. It is often used to initialise the
model with weights that are already tailored to capture general patterns
or features, which can then be adapted to the specific problem during
the fine-tuning phase. Pre-training may be supervised, e.g., a CNN
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trained on ImageNet can be fine-tuned on medical image classification
[76] or self-supervised, e.g., a transformer being trained on a text corpus
to predict the next token [89]. Figure 1.9 portrays the core concept of
pre-training where weights learned from one task are transferred to
another neural network to learn another task.

Source Task Target Task

red
> - » @
— @
Weight Transfer

Figure 1.9: A learning method (e.g. neural network) can be pre-trained
on a source task (left) and later it can be fine-tuned on a target task
(right).

The practice of pre-training has become the cornerstone in the de-
velopment of neural networks, particularly in domains like natural
language processing (NLP), computer vision, and speech recognition.
Advances in pre-training methodologies and the availability of large-
scale datasets have significantly enhanced the performance of models
across a variety of tasks. We give an overview of how pre-training has
been adopted in the aforementioned domains:

1. NLP: Models such as BERT [39], GPT [120], T5 [106] and their
variants have set new benchmarks by leveraging self-supervised
pre-training on massive text corpora [89]. These models are fine-
tuned for specific downstream tasks such as translation, sum-
marisation, and sentiment analysis, demonstrating state-of-the-art
performance.

2. Computer Vision: Pre-trained models such as ResNet [51], Ef-
ficientNet [114], and Vision Transformers (ViT) [40] trained on
datasets like ImageNet are widely used for tasks ranging from ob-
ject detection to medical imaging. Recent efforts in self-supervised
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learning (e.g., SIMCLR [27], BYOL [50]) are gaining traction en-
abling effective pre-training without labelled data [22].

3. Speech Recognition: Models like Wav2Vec [9] and Whisper [105]
use self-supervised pre-training on raw audio data, significantly
reducing the need for transcribed datasets and enabling robust
performance on tasks like speech-to-text and speaker identification

[115].

Research shows that scaling up the model size and pre-training data
leads to significant performance improvements, as observed with GPT-3,
PaLM, and similar large language models (LLMs) [89]. These advance-
ments underline the importance of massive datasets and computational
resources, with many leading developments being driven by large-scale
Al research labs. The use of the existing or specially crafted pre-trained
models as a base for fine-tuning has become standard. Fine-tuning al-
lows these general-purpose models to adapt to domain-specific tasks
with relatively small labelled datasets. Few-shot and zero-shot learn-
ing capabilities, enabled by large pre-trained models, are also gaining
prominence, reducing the need for extensive task-specific data.

1.6.1. Pre-training in Autonomous Driving

While some may argue that pre-trained representations may not be sam-
ple efficient against learning a skill from scratch [110], ImageNet-based
pre-training remains the most prevalent approach for initialising visual
encoders in imitation learning-based for autonomous driving. The use
of such approach leverages the extensive dataset and task diversity of
ImageNet [38], enabling models to develop robust feature representa-
tions that are transferable across various domains. According to our
survey, we observe that the trend of using ImageNet-based pre-training
has remained consistent over recent years. We present this trend in the
form of a table with the year of publication in Table 1.1. While the use
of ImageNet pre-trained models could be beneficial, it may not be an
appropriate fit for the task of driving as the target task highly differs
from the source task.
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Table 1.1: Research over the years solely relying on ImageNet-based
pre-training.

Publication title Year of publication

Exploring the Limitations of Behaviour | 2019
Cloning for Autonomous Driving [34]

Learning by Cheating [24] 2020
Exploring data aggregation in policy | 2020
learning for vision-based wurban au-
tonomous driving [104]

Learning Situational Driving [95] 2020
Multimodal End-to-End Autonomous | 2020
Driving [126]
End-to-End Urban Driving by Imitating a | 2021
Reinforcement Learning Coach [137]

ST-P3: End-to-End Vision-based 2022
Autonomous Driving via
Spatial-Temporal Feature Learning [60]

TransFuser: Imitation with Transformer- | 2022
Based Sensor Fusion for Autonomous
Driving [31]

Scaling Vision-based End-to-End Driving | 2023
with Multi-View Attention Learning [127]

Think Twice before Driving: Towards | 2023
Scalable Decoders for End-to-End Au-
tonomous Driving [66]

Exploring the Causality of End-to-End Au- | 2024
tonomous Driving [78]

Despite significant advancements in pre-training, the application
of pre-training techniques remains relatively under-explored when it
comes to end-to-end autonomous driving. This gap presents an opportu-
nity to explore how pre-training can enhance imitation learning models.
In this subsection, we highlight the handful of efforts that have been
made using pre-training in and around our area of interest.

The recent work by Baker et al. [11] named Video Pre-Training (VPT)
proposes a semi-supervised imitation learning approach that leverages
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large-scale, unlabelled video datasets for pre-training in sequential
decision-making domains. VPT demonstrates how a small amount
of labelled data can train an inverse dynamics model (IDM), which gen-
erates pseudo-labels for vast amounts of unlabelled video. The labelled
data and IDM predictions are used for behavioural cloning, allowing
the model to learn a general behavioural prior without requiring exten-
sive labelled datasets. The proposed method is trained for and tested
in the Minecraft video game environment. The method bridges gaps
in pre-training for imitation learning by making effective use of noisy,
internet-scale datasets, offering a scalable and adaptable framework that
could generalise to other domains with rich, unlabelled video data.

VPT [11] uses pre-training and imitation learning in the Minecraft
environment, with some methods focus solely on the task of driving.
One of which is proposed by Zhang et al. [135]. They label their method
as Action-Conditioned Contrastive Policy Pre-training (ACO). The pro-
posed method leverages a large corpus of unsaturated YouTube driving
videos to learn action-relevant visual features. Similar to VPT [11], this
method carries out training of an IDM with a small labelled dataset to
generate pseudo-action labels for the video frames. These labels enable
the creation of contrastive pairs conditioned on action similarity, allow-
ing the model to focus on learning features critical for driving decisions
rather than general visual representations. ACO demonstrates signif-
icant improvements in downstream tasks such as imitation learning
within the CARLA simulator [41], outperforming traditional methods
like ImageNet-based classification pre-training by approximately 30%.
Incorporating real-world driving diversity into the pre-training process,
ACO enhances the sample efficiency and generalisability of policies.

The second work that also leverages pre-training for the task of
autonomous driving is called "Policy Pre-training for Autonomous Driv-
ing via Self-Supervised Geometric Modelling" (PPGeo) [125]. PPGeo
introduces a novel self-supervised framework designed to address the
challenges of pre-training in autonomous driving. Unlike conventional
pre-training methods in vision tasks, which often focus on achieving
view and translation invariance, PPGeo is tailored to learn driving policy
representations by leveraging the unique requirements of driving scenar-
ios. The framework operates in two stages: first, a geometric modelling
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phase generates depth and ego-motion predictions from unlabelled driv-
ing videos; second, the visual encoder is trained to predict ego-motion
from a single frame while optimizing photometric reconstruction errors.
This approach enables the encoder to focus on driving policy-relevant
information, such as traffic signals and immediate obstacles, rather than
irrelevant scene details. Extensive evaluations across diverse driving
tasks in the CARLA simulator demonstrate the superiority of PPGeo
over baseline methods like ImageNet pre-training. Wu et al. [125] report
that PPGeo completes 96.7% of the routes while using an ImageNet clas-
sification pre-trained model only completes 87.3% of the routes, which
improves over the baseline by 10%. This framework not only enhances
policy learning but also contributes to depth and odometry estimation
tasks, showcasing its effectiveness in autonomous driving applications.

1.6.2. Potential Pre-training Paradigms

We propose the task of Visual Place Recognition (VPR) as one of two
potential pre-training paradigms. As per Masone and Caputo [83], VPR
is a task that enables systems to recognise previously visited locations
using visual data. It involves extracting features from images to match
scenes under varying conditions like lighting, weather, or viewpoints.
VPR is widely used in autonomous vehicles for navigation and localisa-
tion, allowing them to recognise roads and landmarks for safe driving
[128]. In robotics, it helps in mapping environments and enabling ef-
ficient path planning in dynamic settings [83]. It is also employed in
geotagging photos and enhancing location-based services by recogniz-
ing and associating images with specific places [14]. These systems
leverage cameras and computational models to process visual data, of-
ten using deep learning techniques to ensure robust performance across
different conditions [83]. VPR has traditionally been integrated into
robotics navigation through SLAM methods, aiding in map building
and localisation. To our knowledge, VPR has not yet been combined
with end-to-end trained autonomous driving methods. We hypothesise
that bridging this gap could enhance navigation systems by leveraging
VPR'’s robustness in dynamic environments and end-to-end methods’
adaptability to complex scenarios. As per Masone and Caputo [83],
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VPR has been approached in many ways from scale invariant feature
extraction to using representation learning with neural networks. Most
modern approaches have remained CNN centric forming descriptors
to represent visual cues from images. Domain Adaptation for Semantic
and Geometric-aware Image-based Localisation (DASGIL) [59], a recent
approach follows this trend by forming global descriptors. While this
approach brings in improvements over previously proposed approaches,
it gets outperformed by down scaled descriptor size. SegVPR [99] shows
improvement over DASGIL by 16.5% with a compact descriptor and
certain other nuances. SegVPR states that a smaller and aggregated
descriptor size retains much more useful information in a descriptor.

Self-supervised learning has emerged as a powerful paradigm for
pre-training models without requiring labelled data, making it highly
scalable and cost-effective. Methods such as self-distillation with no
labels (DINO) [22], MoCo [29], BYOL [50], SimSiam [28], and SwAV [21]
all leverage different strategies to learn meaningful representations from
unlabelled data. DINO, for instance, uses a teacher-student framework
enabling it to capture rich visual features and achieves an improved
performance on downstream tasks. Similarly, MoCo adapts the con-
trastive learning framework, emphasising stable training dynamics. In
contrast, BYOL and SimSiam eliminate the need for negative samples
with BYOL using a momentum encoder and SimSiam relying solely on a
Siamese network. SwWAYV, on the other hand, introduces clustering-based
contrastive learning, which reduces computational overhead while main-
taining strong performance. The key benefit of self-supervised learning
lies in its ability to pre-train models on vast amounts of unlabelled data,
which is particularly advantageous in domains where labelled data is
scarce or expensive to obtain. By learning generalizable features during
pre-training, self-supervised methods enable models to perform well
on downstream tasks with minimal fine-tuning. For example, DINO
demonstrates that it can uncover interpretable features, such as object
boundaries and semantic parts, which are crucial for tasks like image
classification and segmentation. Therefore, we propose self-supervised
pre-training as another potential paradigm in this research, particularly,
using the methodology of DINO [22] as pre-training in autonomous
driving.
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1.7.  AUTONOMOUS DRIVING RESEARCH IN LITHUANIA

In recent years, Lithuanian researchers has been actively engaged in
autonomous driving research with a focus on reinforcement learning,
sensor technologies, and vehicular communication systems. Petryshyn
et al. [102] use the AWS DeepRacer platform to train self-driving mod-
els, exploring various reward functions and sensor configurations to
improve obstacle avoidance and track completion. These efforts have
demonstrated that a continuous reward function, which provides more
fine-grained feedback to the agent, significantly enhances the learning
process. Additionally, incorporating LiDAR sensors alongside cameras
has proven crucial for improving an agent’s environmental awareness
and navigation capabilities, leading to a 95.8% reduction in collision
rates and a 79% decrease in trial circuit completion time in one study.
Another study from Lithuania [109] explores the use of the Unity ML-
Agents toolkit to train kart agents to navigate a racing track in a sim-
ulated environment using RL algorithms. The research compares the
performance of several different RL algorithms and configurations on
the task of training kart agents to successfully traverse a racing track,
identifying the most effective approach for navigating the track and
avoiding obstacles. The study utilises the Unity game engine as the
simulation environment, with 24 agents (karts) being trained indepen-
dently to speed up the learning process. Whereas another research
form Lithuania focuses on Vehicles-to-Everything communication [119],
which involves integrating various sensors, communication standards,
and machine learning methods to enable communication between ve-
hicles, infrastructure, pedestrians, and other traffic elements. This in-
cludes vehicle-to-vehicle communication for real-time data exchange,
vehicle-to-infrastructure communication for interaction with road in-
frastructure, vehicle-to-pedestrian communication to enhance safety,
vehicle-to-device communication, vehicle-to-network communication,
and vehicle-to-cloud communication. This work provides a compre-
hensive overview of the technologies and data involved in Vehicles-to-
Everything communication, highlighting the importance of this field
for the development of autonomous driving. The work also points out
the gaps, challenges, and future research directions, emphasising the
need for reliable, efficient, and secure communication in autonomous
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vehicle networks. It is noteworthy that in the private sector, Neurotech-
nology! conducted research and development of various vision-guided
robotic systems since the early 2000s. Taking inspiration from neural
networks, perception-action loop, and work of Gaussier and Zrehen
[49] and others, Neurotechnology’s researchers developed various in-
carnations of vision-guided mobile manipulators, which mostly are not
documented in scientific literature. These research efforts are closely re-
lated to autonomous driving since they include autonomous navigation
behaviours. In this line of research, Daniusis et al. [36] [C.1] proposed a
topological navigation graph framework as a way to create goal-directed
navigation systems from non-goal-directed, imitation-learning compo-
nents for robust trajectory imitation. The TNG framework represents
the environment as a directed graph composed of deep neural networks.
This work also provides an empirical evaluation of the TNG framework
in both simulated and real-world environments such as a shopping area
space and an office environment space.

1.8. CONCLUSIONS OF CHAPTER 1

This section reviews the literature that forms the background of end-
to-end driving research and pre-training for end-to-end autonomous
driving. We draw the following conclusions from the presented litera-
ture review:

¢ Autonomous driving may take one of two approaches, modular or
end-to-end. While the modular approach assigns singular tasks to
each module of a system and is heavy on the engineering side, the
end-to-end approach learns to drive in a holistic and data-driven
way through demonstrations. Based on the advantages of the
end-to-end approach, this research deviates towards them.

* The end-to-end approach to autonomous driving could be learned
using imitation learning or RL. Imitation learning is the simplistic
approach that stems from supervised learning whereas RL learns
the policy through interaction with the environment which makes
it slower and resource heavy.

'http:/ /www.neurotechnology.com
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¢ Imitation learning suffers from the problem of covariate shift,
where the difference in data distribution at train time and test time
causes cascading errors.

* Early methods show the use of neural networks and DAgger them
forms the basis of current state of autonomous driving that relies
on imitation learning. Later methods work on various aspects,
such as using a conditional architecture, introducing and improv-
ing multi-modality, enhancing demonstration quality, and more.
These directions directly or indirectly aim to solve covariate shift
and other related issues.

* Pre-training has become a standard in many areas of deep learn-
ing research and applications. There is a strong trend in relying
on ImageNet-based pre-training for autonomous driving, as per
research that has been proposed in recent years.

¢ While the ImageNet-based pre-training is useful it may also be
suboptimal. Only a handful of methods have explored variabil-
ity in pre-training methods for the case of autonomous driving.
Therefore we point out that there seems to be a gap in research
in this upcoming area. Following that, we mention potential pre-
training paradigms that can append the value when applied to
autonomous driving agents.
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2. RESEARCH METHODOLOGY

This chapter describes the following proposed methods:

1. Visual Place Recognition Pre-training for Autonomous Driving
[A.1][68]

2. DINO Pre-training for Autonomous Driving [A.2][69]

These methods are implemented and evaluated, and compared against
baseline methods, which are also established in this chapter. Addition-
ally, this chapter also reveals the experiment design for the evaluation
of the proposed methods against baseline methods.

2.1. VISUAL PLACE RECOGNITION PRE-TRAINING

This method is proposed to address the issue of covariate shift in imita-
tion learning for autonomous driving, specifically focusing on weather
and lighting variations. We hypothesise that autonomous driving relies
heavily on specific visual features that might not be effectively captured
by ImageNet pre-training, which is based on image classification, a task
distant from driving. Therefore, we propose pre-training the visual
encoder of an agent on VPR because VPR datasets [83] inherently incor-
porate weather and lighting variations to achieve place retrieval under
changing conditions. By transferring an encoder that is pre-trained in
such a way to the driving agent, the method aims to improve the agent’s
ability to adapt to unseen weather and lighting conditions and miti-
gate the effects of covariate shift. As covariate shift is one of the major
problems in imitation learning-based methods (see Section 1.3.1.1).

Generally, an imitation learning-based autonomous driving method
is portrayed as an agent, that consists of a neural network architecture
(e.g. Figure 1.7). We term the method proposed in this section as the
VPR pre-training method and the outcome of the method is termed as
the VPR pre-trained agent. The formation of the VPR pre-trained agent
is described in two parts. At first, the proposed pre-training of the visual
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encoder is described, in Section 2.1.1. Following pre-training, incorpora-
tion of the pre-trained visual encoder into an agent and training over
the task of autonomous driving is described, in Section 2.1.2.

2.1.1. Pre-training of the Visual Encoder using VPR

VPR is a fundamental computer vision task that aims to identify and
recognise previously visited locations using only visual information
from images or video sequences. The primary objective of VPR is to
determine whether a given query image corresponds to a location that
exists within a reference database of images, effectively answering the
question "Have I been here before?". VPR based systems are trained
against challenging real-world conditions such as variations in lighting
conditions (day vs. night), seasonal changes (summer vs. winter),
different weather conditions, varying viewpoints, and dynamic objects
in the scene. Through exposure to these variations during training,
neural networks learn to develop feature representations that remain
robust across environmental changes.

The VPR pre-training method that is proposed extends upon a recent
VPR method, SegVPR [99], for pre-training the visual encoder of the
autonomous driving agent. SegVPR performs training using a single Im-
ageNet pre-trained ResNet50-based [51] visual encoder. During training,
this encoder is shared over two tasks:

1. Visual place recognition (VPR) task: this task serves the main
purpose;

2. Semantic segmentation (SemSeg) task: this task serves an auxiliary
purpose.

By sharing the visual encoder, the two tasks enable learning features
that combine place-specific information and semantic information from
the scene. The combination of the two tasks helps in guiding the overall
neural network towards which area of the scene to look at. This is further
assisted by the use of multi-scale attention and pooling mechanisms in
the decoder that is visualised in Figure 2.1.
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Figure 2.1: The figure illustrates the SegVPR decoder structure consisting
of a segmentation decoder, multi-scale attention module and pooling
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Figure 2.2: The figure illustrates the multi-scale attention module used
in SegVPR that employs multiple spatial scales to capture objects of
different sizes, and produces an attention map.

A multi-scale attention module is used to focus on the salient regions
of the input image, and additionally to guide the semantic segmentation
during training. In general, a multi-scale attention module assesses
features at different resolutions, assigns weights as per their importance
then fuses features to a single representation. This module takes the
output of the encoder from the fourth convolutional layer as input,
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and passes through a filter of kernel sizes 3, 5, and 7, shown in Figure
2.2. After upsampling and channel-wise concatenation of the outputs
of the module, an attention map is formed. The scores held in the
attention map indicate where the focus is allotted. SegVPR uses multi-
scale pooling to extract semantic and appearance information at different
semantic information levels. This mechanism uses information from the
fourth and fifth convolution layers of the encoder. These features are
weighted with the attention map scores to produce a global descriptor
(synonymous with representation).

For training to learn extraction of descriptors for the VPR task, a
weakly supervised triplet margin loss is used [7]. Therefore, given an
input image to the SegVPR architecture, its multi-scale pooling module
produces a descriptor (as in Figure 2.1), which we represent as F. As
per the classic triplet training method query, positive and negative
descriptors samples are drawn from a gallery of samples. The positive
and query samples belong to nearby GPS coordinates while negative
samples are sampled from a distant location. For every sample triplet,
the VPR loss is given by

£VPR = h(d(Fquery7 Fpos) +m — d(FqueTy7 Fneg))7 (21)

where £ is the Hinge loss h(z) = maz(z, 0), d is the Euclidean distance,
m > 0 is a fixed margin, and Fguery, Fpos, and Fy., represent query,
positive, and negative triplet samples respectively.

The semantic segmentation loss Lsemseq is given by the formula,

1 i i
»CSemSeg = _m Z Yi - Ingi L(M : fd)v (22)
1€

which is equal to a cross-entropy loss that is computed for each class y;
at pixel 7 from the image Z, where M; is an attention map related to the
feature f! and p; denotes the probability of class y;. Both f; and p; are
outputs of the segmentation decoder module, while A; is the output of
the multi-scale attention module.

The overall loss function is a sum of VPR loss and semantic segmen-
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tation loss [99]:

EVPR—SemSeg = EVPR +a- £Sem.5’egy (23)

where a > 0 is a scalar weight for semantic segmentation loss.

SegVPR uses a specially built dataset captured in the CARLA 0.9.10
simulator. The dataset includes GPS information and pixel-wise seman-
tic annotation with 25 semantic classes. It captures more than 40, 000
images (10091 per scenario), collected across Town03 and Town10 maps
with varying weather from Clear Noon and Hard Rain Sunset.

2.1.2. VPR Pre-trained Agent Training

To exploit the robust visual representations learned across changing
weather conditions presented during pre-training, we integrate the
visual encoder from the SegVPR architecture into our agent’s neural
network framework. In this subsection we elaborate on the training and
architecture of the VPR pre-trained agent that embeds the pre-trained
visual encoder. The architecture can be seen in Figure 2.3.

Our agent’s architecture builds on CILRS [34], where the neural net-
work is conditioned on high-level navigational commands. These com-
mands, generated by a route planner (provided by simulation software)
based on target destinations, guide the agent’s decision-making process.
For collecting initial driving demonstrations, we utilise the automated
framework based on a RL expert proposed in Roach [137], which form
the training and validation datasets. This methodology not only elimi-
nates the need for human operators but also ensures the collection of
consistent and high-quality data. Following the pre-training phase, we
train our proposed agent. We then implement the DAgger process [107],
where our initially trained agent actively generates driving behaviours
while being supervised by the Roach agent. When discrepancies arise
between the actions proposed by our agent and those of the Roach agent,
these instances are recorded and aggregated into the training dataset.
This aggregation of corrective demonstrations follows the methodology
established in the original DAgger algorithm [107], enabling our agent
to learn from the expert’s corrective actions.
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The proposed VPR pre-trained agent’s architecture (Figure 2.3) com-
prises two parallel encoding streams: a measurements encoder that
processes the current speed and one-hot encoded high-level commands,
and the SegVPR encoder that processes visual input. The outputs of
both encoders are concatenated and processed through a joint module
consisting of fully connected layers, which reduces the dimensionality
of the combined features. This joint representation is then fed into spe-
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cialised action branches, where each branch corresponds to a specific
high-level command, following the branched architecture established in
CILRS and Roach. During execution the branch corresponding to the
current high-level command generates the low-level driving commands
while during training non-active branches are masked to zero.

Let X € R?24x2243 be an input image from the front camera sensor.
The agent maps X onto an action in R? vector that consists of a throttle
and steering value for the vehicle. Therefore, the agent is represented by
the following equation:

n

a(XaU|9,§, dMﬁ) = Zci¢i(X7u|97£7¢a ¢)7 (24)

i=0
where ¢;(X, u|0, ¢, ¢,1) corresponds to the output of i** action branch
of fa(f7(fe(X|0), far(u|€)|®)|1) out of all n action branches. Where,
* X is the input image,

* fg is the image encoder with parameters 6 pre-trained on the VPR
task (i.e., SegVPR encoder),

* fu is the measurements encoder network with parameters £, while
u is a vector holding measurements (current speed and high-level
command),

* f;7is another neural network module with parameters ¢ that con-
catenates the image and measurements encodings and downsizes
it,

* fa is the actions branches module with parameters ¢ which calcu-
lates a low-level command for each high-level command,

* ¢; represents a vector that keeps one of n action branches that
is intended for the input image X and nullifies all other action
branches.

Based on previous works [33, 34, 137], we zero-index the action branches.

To simplify the comparison with a baseline and following the ap-
proach taken by other works [137], we use the loss function as the sum
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of action loss and a speed prediction regularisation,

EAgent<97 57 ¢7 ’(/}) = [’A(ev 57 ¢7 w) + )‘S : [’57 (25)

where the action loss £ 4 is equal to L1 loss between expert action & and
predicted action a, given by

£A = ||a_a(X>u|07£a¢7¢)H1> (26)

and the speed prediction regularisation £g between measured speed 3
and predicted speed s is given by

Ls=1|5—s| (2.7)

The regularisation effect is regulated with a scalar value \s taken as
le-5.

We reveal neural network hyper-parameter choices with the rest of
the implementation details in Section 2.3.6. We also formulate the entire
process of training the proposed VPR pre-trained agent for driving in
the form of an algorithm in Algorithm 2.

Algorithm 2 The VPR pre-trained driving agent

Input: Initial dataset D collected using the Roach agent, trained SegVPR
encoder fg.
Output: trained agent
1: for DAggeriterationi = 0 to 5do
Initialise agent architecture agent;.
Initialise agent;’s image encoder with fg.
Train agent; on D.
Collect dataset D; = (X, u, 7*(X, u)), where X and u are input
image and measurements (speed and high-level command), cor-
respondingly, and 7* is the supervising Roach agent’s output,
measured in situations when there is a disagreement between the
predictions of Roach and agent,;.
6: Aggregate dataset: D < D U D;.
7: end for
8: Return best agent;. as per performance on the Leaderboard bench-
mark.
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2.2. DINO PRE-TRAINING

The majority of the methods [24, 31, 34, 60, 66, 95, 126, 127, 137] [A.1]
rely upon supervised learning for pre-training. Supervised learning
relies heavily on labelled data, where each data point is associated with
a specific label or category. This approach can be expensive to scale due
to the need for manual annotation. In contrast, self-supervised learning
leverages unlabelled data and generates artificial supervision signals
from the data itself. We propose the use of self-distillation with no
labels (DINO) method as a pre-training method to improve an agent’s
ability to adapt to new, unseen situations when encountering covariate
shift. Similarly to the VPR pre-trained agent, we propose pre-training
of an agent’s visual encoder using DINO as a pre-training method. We
hypothesise that the heavy use of labels in supervised pre-training, like
ImageNet classification, limits the model’s ability to learn a wide array of
features and thus generalise to new situations. DINO, a self-supervised
learning method was recently proposed, which has shown the ability
to learn richer and more diverse features without relying on specific
labels. DINO employs multi-crop training and a contrastive loss to
learn inherent semantic information from images without explicit labels,
demonstrating the effectiveness of self-supervised learning in capturing
a broader understanding of data. DINO has also shown an inherent
understanding of the semantic information within an image, which is
useful for various computer vision tasks, including autonomous driving.

Following the VPR pre-trained agent’s [A.1] structure as proposed
in Section 2.1, we structure the current proposal’s architecture similarly.
We term the method proposed in this section as the DINO pre-training
method and the outcome of the method is termed as the DINO pre-
trained agent. The formation of the DINO pre-trained agent is described
in the following two parts. At first, the proposed pre-training of a visual
encoder, i.e., DINO pre-training in the context of our use, is described
in Section 3.4. Following pre-training, the method of incorporating the
pre-trained visual encoder into an agent and training over the task of
autonomous driving is described in Section 2.2.2. The whole of DINO
pre-training along with training of the agent process is illustrated in
Figure 2.4.
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Figure 2.4: The figure illustrates the overall block diagram of the DINO
pre-training method (top), using a teacher-student architecture and ex-
ponential moving average (EMA) to update the teacher network weights
from student network. Teacher and student are trained on crops of the
original full size image. Later illustrating weight transfer to train for the
task of end-to-end driving (bottom).
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2.2.1. Pre-training Visual Encoder using DINO

Self-supervised training maximises the utility of existing data through
innovative training paradigms. While traditional supervised learning
focuses on direct task-specific training, self-supervised approaches may
instead optimise for auxiliary tasks that indirectly benefit the target
objective [125]. The effectiveness of this approach scales with dataset
size, i.e., larger pre-training datasets when combined with appropriate
self-supervised paradigms, generally tend to perform better. Following
this principle, we employ DINO as a pre-training method. DINO fol-
lows a self-supervised learning framework that trains on the ImageNet
[38] dataset containing approximately 1 million images. Rather than
using conventional supervised classification, DINO leverages two key
techniques: multi-crop training and self-distillation.

Like other knowledge distillation methods [25], DINO employs twin
networks i.e., student and teacher networks, with identical parame-
ter counts. The student network gy, with parameters 6, is trained to
emulate the outputs of its teacher counterpart gy, with parameters 6;.
When presented with an input x, both networks generate K-dimensional
probability distributions, denoted as P, and P, respectively. These distri-
butions are then processed through a modified softmax function, where
a temperature parameter controls the distribution sharpness. For the
student network, the probability P; is calculated using temperature
parameter 7, as shown in equation 2.8:

_ exp (993 (x)(l) /Ts) '
Sy exp (go, (2)®) /1)

Similarly for the teacher network, the probability F; is calculated using

}%(x)@)

(2.8)

temperature parameter 7; as shown in equation 2.9:

exp (go, (2) /7¢) |
Siey exp (g, (2)®) /77)

The temperature control parameters are conditioned 7, > 0, 7, > 0, and

Py(z) = (2.9)

initially set to 0.1 and 0.04, respectively.

The teacher network is co-trained along with the student network, but
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is frozen during an epoch. Instead, the exponential moving average of
the weights is copied from the student network to the teacher network,
using the momentum encoder technique [54]. The update rule used
during training is:

O < N0y + (1 — N\)bs, (2.10)

where ) follows a cosine schedule from 0.996 to 1 during training. With
the use of a fixed teacher network within an epoch, the learning takes
place by minimising cross-entropy w.r.t. the student network parameters
0, as in the following equation:

I%inH(Pt(x)aPs(x))v (211)

where H(P,, Ps) = —P, log Ps.

To leverage the self-supervision, DINO uses multi-crop augmentation
training [20]. At first, a set of multiple views or crops V' of an image
are formed in two settings. The first setting creates two views called
global views z{ and z3, which are crops at a resolution of 224 x 224 that
cover more than 50% of the image. The second setting creates several
views called local views which are of a resolution 96 x 96 that cover less
than 50% of the image. Once the views are created, the global views
are passed through the teacher network, and all views including global
and local views are passed through the student network. Thereafter, a
modified version of the loss function mentioned in eq. 2.11 is used to
adapt to a self-supervised setting in the following way:

min > > H(Pi(x), Pu(a")). (2.12)

s ace{x'(lll ,acgz} x' eV #x
We additionally formulate this pre-training procedure in Algorithm 3.

The work presented in the DINO research demonstrates the effec-
tiveness of the approach on both convolutional neural networks and
transformer architectures [22]. For our implementation and experi-
ments, instead of training a DINO model from scratch, we use their
convolutional neural network variant based on ResNet50. Choosing this
architecture facilitates direct comparisons with our previous work, VPR
pre-trained agent [A.1], and the many other methods that we base our
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baseline agents upon.

Algorithm 3 DINO Pre-training Procedure for each Epoch

Input: Student network gy,, teacher network gy,
Output: Trained student and teacher networks
1: Initialize teacher parameters: 6; < 6,
2: for each mini-batch = from the data loader do
3:  Generate random views using multi-crop augmentation: =1, zo <
augment(z), augment(z)
Compute student outputs: s1, s2 < go, (21), g, (z2)
Compute teacher outputs: t1,t2 < go, (1), g0, (z2)
Compute loss: loss < & (H (t1, s2) + H(ta, 51))
Update student network gy, via Stochastic Gradient Descent
8:  Update teacher parameters: 6; <— A\, + (1 — \)0
9: end for
10: return Trained networks

2.2.2. DINO Agent Training

The DINO driving agent proposed by us follows the framework es-
tablished in the previously proposed method [A.1], as detailed in Sec-
tion 2.1.2. Like the VPR pre-trained agent, our architecture employs a
CILRS-based decoder [34]—a widely adopted approach in autonomous
driving literature [137] [A.1] where the navigation system’s high-level
commands activate specific decoder branches. We begin by collecting
initial demonstration data using Roach [137]. This initial dataset is
used to train our agent, which incorporates a pre-trained encoder. The
trained agent is then deployed in a simulated environment under train-
ing conditions, with the Roach agent providing supervision. When our
agent’s decisions deviate from the Roach agent’s optimal actions, the
Roach agent intervenes with corrections, and these corrective demon-
strations are preserved for subsequent DAgger iterations. Each iteration
combines the original dataset with these corrected demonstrations for
retraining. Following established benchmarks [58, 137], we perform this
data aggregation and retraining cycle five times.

The agent’s architecture follows the same design as our VPR pre-
trained agent (detailed in Section 2.1.2). Briefly, it comprises a pre-
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trained vision encoder for front-view RGB images, a measurements
encoder for vehicle speed and one-hot encoded high-level commands
[34, 137] [A.1], and command-specific action branches that output low-
level driving commands through a fully-connected join module.

Mathematically representing the agent similar to the VPR pre-training
method, let X € R?24X224X3 pe the front-view image from the vehicle.
Similarly to the VPR pre-training method in section 2.1.2, we formulate
the network representation as f4 (f;(fz(X10), far (u|§)|¢)|1). The distinc-
tion made for the DINO pre-trained agent is that fz is an image encoder
with parameters ¢ pre-trained using the DINO method. The command
selection mechanism remains identical, yielding the action prediction
using the equation 2.4.

We maintain the training equations for the driving agent by using the
same loss function defined in equation 2.5. The loss function sums action
loss (equation 2.6) with speed loss (equation 2.7) that is regulated by a
scalar value ;. We reveal neural network hyper-parameter choices with
rest of the implementation details in Section 2.3.6. We also formulate
this method in the form of an algorithm in Algorithm 4.

Algorithm 4 The DINO pre-trained driving agent

Input: Initial dataset D collected using the Roach agent, trained DINO
encoder fg.
Output: trained agent
1: for DAggeriterationi = 0 to 5do
Initialise agent architecture agent;.
Initialise agent,’s image encoder with fg.
Train agent; on D.
Collect dataset D; = (X, u, 7*(X, u)), where X and u are input
image and measurements (speed and high-level command), cor-
respondingly, and 7* is the supervising Roach agent’s output,
measured in situations when there is a disagreement between the
predictions of Roach and agent;.
6: Aggregate dataset: D <~ DU D;.
7: end for
8: Return best agent;. as per performance on the Leaderboard bench-
mark.
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2.3. EXPERIMENTAL SETUP

The development and validation of autonomous driving systems present
unprecedented challenges in terms of safety demonstration. Research
by Kalra and Paddock [70] highlights a critical issue: to prove their reli-
ability in preventing fatalities and injuries, autonomous vehicles would
need to be driven for hundreds of millions, and in some cases, billions of
miles. This presents an insurmountable obstacle for traditional testing
methods. Even under aggressive testing scenarios, it would take existing
fleets tens to hundreds of years to accumulate the necessary mileage
— a time frame that is entirely impractical if the goal is to verify their
safety before public release. The aforementioned research underlines a
fundamental problem: conventional road testing alone cannot provide
sufficient evidence to demonstrate the safety of autonomous vehicles.

Given these limitations, research [70] emphasises the strong need for
innovative approaches to safety validation. Developers and researchers
must explore novel methods to demonstrate the reliability and safety
of autonomous systems. However, the analysis also acknowledges that
even with advanced testing methodologies, it may be impossible to
establish the absolute safety of autonomous vehicles with complete
certainty. Some degree of uncertainty will persist. Therefore, as tradi-
tional testing methods prove insufficient, research and development
have turned to alternative approaches, including sophisticated driving
simulators and standardised benchmarks, to supplement real-world
testing and accelerate the safety validation process.

2.3.1. Simulation Environment

For the simulation environment we choose the CARLA simulator, ver-
sion 0.9.11. CARLA [41] is a comprehensive open-source simulator
that excels in various aspects of autonomous driving research. One
of its strengths is the ability to synthesise high-fidelity sensory data
from multiple sensors, including RGB cameras, depth cameras, LiDAR,
and radar. This allows for the efficient collection of data, especially in
adverse weather conditions that are difficult and costly to replicate in
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Figure 2.5: The image shows the CARLA simulator’s capability of simu-
lating a real-world environment with traffic, pedestrians, environmental
elements, and weather conditions.

real-world testing. As an open-source platform, CARLA fosters col-
laboration and reduces entry barriers for individual researchers and
institutions, unlike commercial simulators that often require substantial
financial investment.

According to an exhaustive comparison research [80], CARLA is
particularly well-suited for end-to-end driving policy design due to its
ability to simulate the entire autonomous driving pipeline. Its com-
prehensive nature integrates functionalities found in other simulator
types, encompassing traffic flow simulation, sensory data generation,
driving policy evaluation, and vehicle dynamics simulation, making it
ideal for testing and validating complete autonomous driving systems.
Researchers can evaluate the performance of driving policies in a safe
and controlled environment, enabling the exploration of complex scenar-
ios and edge cases without real-world consequences. While CARLA’s
vehicle dynamics fidelity may be less accurate compared to specialised
commercial simulators, its ability to simulate a complete driving envi-
ronment, coupled with its open-source accessibility, makes it a powerful
choice for end-to-end driving policy design and research. This is also
confirmed with majority of the published research [33, 34, 127, 137] re-
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lated to end-to-end autonomous driving to be using the CARLA simula-
tor. Figure 2.5 shows an example landscape from the CARLA simulator.

2.3.2. Benchmark Standard

The CARLA autonomous driving Leaderboard benchmark is a challenge
designed to assess the performance of autonomous driving agents in
realistic simulated driving scenarios. The primary objective of this
challenge is to evaluate how well autonomous agents can navigate a
series of pre-defined routes within the CARLA simulator. These routes
are designed to test various aspects of autonomous driving, including
navigating freeways, urban environments, residential areas, and rural
settings. The challenge also incorporates different weather conditions,
such as daylight, sunset, rain, clear sky, and more. Participating agents
are tasked with driving from a designated starting point to a destination
point on each route. They receive route information in the form of GPS
coordinates, map coordinates, or high-level instructions. The challenge
is designed to be fair and reproducible, allowing for a standardised
evaluation of different autonomous driving approaches and facilitating
direct comparisons between them.

2.3.3. Experimentation Design

The core task of an agent being evaluated is to complete a set of pre-
defined routes. At each time step, the agent receives observations from
the front camera and commands from a high-level planner to guide
it toward its destination. Based on these inputs, the agent generates
throttle and steering angle commands to navigate the vehicle. Each
route is defined by a starting point and an ending point, represented
by GPS coordinates. Between these points lies a sequence of waypoints
that define the path. The route terminates if the agent falls out of the
path suggested by the route planned and also when an agent gets stuck
for more than 30 seconds. The high-level planner generates commands
based on the agent’s current position and the GPS coordinates of the
nearest waypoint. The planner’s commands can take one of six possible
values: left, right, straight, lane to follow, change lane left, and change

76



Table 2.1: Distribution of towns for training, evaluation and testing,
following the benchmark standard [137].

Training towns | Evaluation towns | Testing towns
Town 1 Town 1 Town 2

Town 3 Town 3 Town 5

Town 4 - train | Town 4 - train Town - 4 test
routes routes routes

Town 6 Town 6

lane right. These commands are updated whenever the agent reaches a
new waypoint.

The benchmark utilises CARLA’s town environments and weather
settings in its evaluation protocol. Both environments and weather
conditions are divided into distinct training and testing sets. The towns
follow a geographical split, ensuring that models must generalise to
entirely new urban layouts and road networks not encountered during
training. For weather conditions, the benchmark incorporates diverse
training scenarios including clear noon, wet noon, clear sunset, and hard
rain noon, while reserving wet sunset and soft rain sunset exclusively
for testing. Examples of these weather conditions are illustrated in
Figure 2.6. The benchmark evaluation is conducted using two sets:
an evaluation set comprising conditions from the training set, and a
testing set featuring previously unexposed conditions. The distribution
of towns and weather conditions across these sets is detailed in Table 2.1
and Table 2.2, respectively. To evaluate the agent’s capability to navigate
through traffic, the benchmark standard operates under a busy traffic
density mode. The evaluation is carried out three times by changing
random seed values and the average of the scores are calculated.

2.3.4. Data Collection

During the data collection phase, we follow the methodology estab-
lished by Roach [137], which provides a robust approach to gathering
high-quality driving data in the CARLA simulator. This method em-
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(c) Soft rain sunset

(d) Wet sunset

Figure 2.6: The figure shows two weather conditions for evaluation
(a) and (b), that are used as a part of evaluation set to test in known
conditions, followed by weather conditions (c) and (d), that are unseen
by the agent and used in testing.
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Table 2.2: Distribution of weather conditions for training, evaluation
and testing, following the benchmark standard [137].

Training weather | Evaluation weather | Testing weather

Wet noon Wet noon Wet sunset
Clear sunset Clear sunset Soft rain sunset
Clear noon

Hard rain noon

ploys a reinforcement learning coach that has been trained to exhibit
expert-level driving behaviour, serving as an optimal demonstrator for
imitation learning models. The data collection process involves the
coach autonomously navigating through various scenarios while record-
ing observations, actions, and relevant driving metrics. To execute data
collection we use the already available Roach models! and repository
which also consist of the settings set by the Leaderboard benchmark.
This approach is particularly valuable as it ensures consistent, expert-
level demonstrations across diverse driving conditions, eliminating the
variability and potential inconsistencies often associated with human
demonstrations. The collected dataset encompasses driving scenarios
that follow the Leaderboard benchmark guideline for training. The
protocol followed by Roach and defined by the Leaderboard benchmark
states collection of 160 episodes where each episode is a route, which
accounts for 12 hours of driving data. These episodes are collected on
train towns and train weather conditions as previously mentioned in
Table 2.1 and Table 2.2. To maintain uniformity and comparability, we
perform training with the same collected dataset across all compared
agents.

2.3.5. Baseline Methods

To evaluate our proposed methods, we establish baseline methods for
comparison. Similar to the proposed methods, the baselines are reim-
plementations of CILRS [34] approach, drawing inspiration from recent
research [137] to provide robust benchmarks for performance evalua-

'Roach code and model: https:/ /github.com/zhejz/ carla-roach
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Figure 2.7: General architecture of ResNet34 and ResNet50 configura-
tions [51], mentioning the arrangements of the residual blocks, filter
sizes and depth at each convolution layer.
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tion. Since our proposed methods focus on the pre-training of visual
encoders, our baseline methods utilise already available visual encoders
pre-trained on the ImageNet dataset. The rest of the architecture (i.e., de-
coder) remains identical to the architectures used in the proposed agents
in sections 2.1 and 2.2. Recent works have predominantly employed
two variants of pre-trained visual encoders: ResNet34 and ResNet50
(See Figure 2.7). Accordingly, we implement two baseline agents:

* Baseline Agent with ResNet34 encoder trained on ImageNet Clas-
sification (BAR34IC)

* Baseline Agent with ResNet50 encoder trained on ImageNet Clas-
sification (BARS50IC)

These baseline agents are trained upon the same loss function as the
proposed methods, mentioned in equation 2.5. Whereas the pre-trained
visual encoders utilised in the baselines, are pre-trained on the task of
image classification over the ImageNet dataset [38].

2.3.6. Implementation Details of Proposed & Baseline Methods

We implement all the highlighted methods using the PyTorch [100]
framework. The architecture is kept uniform across both proposed meth-
ods, where the encoder is formed by a ResNet50 and the decoder follows
a conditional architecture as mentioned in Section 2.1.2 and Section 2.2.2.
For the baseline methods, we maintain the same uniformity in architec-
tures for the BAR50IC method. While giving the BAR34IC method a
minute distinction of following the ResNet34 architecture in the encoder.
Visual encoders used in both baseline methods are pre-trained on the Im-
ageNet dataset over the task of image classification. Whereas, the visual
encoders used in the proposed methods are initialised with the weights
obtained by the appropriate proposed pre-training methods. Rather
than performing pre-training of each proposed method from scratch,
we use the already available pre-trained weights from the repository of
SegVPR? and DINO?®. This helps us in cutting down the requirement of

2SegVPR code and models: https:/ /github.com/valeriopaolicelli/SegVPR
3DINO code and models: https:/ /github.com/facebookresearch/dino
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high amounts of resources and in saving train time.

Once pre-trained weights are transferred to the visual encoder , the
proposed agents are trained over the same dataset of collected demon-
strations. The initial demonstrations used to train remain the same
across all methods, collected according to the technique specified in Sec-
tion 2.3.4. Every trained agent is deployed as per the DAgger procedure
[107] to collect and aggregate additional data where the agent fails to
follow the supervising method (i.e. the Roach agent). Then a new agent
is trained using the aggregated data and initial data to improve on the
recorded failures. Basing our work on cited literature and following the
Leaderboard benchmark standard, the aggregation is performed for 5
DAgger iterations.

Apart from the visual encoder fys for every agent (proposed agents
and baseline agents), we initialise rest of the agent with randomly ini-
tialised weights. We structure rest of the agent in the following way:

¢ The measurement encoder fj is a stack of 2 fully-connected layers
with the output dimension set to 128 at each layer.

* The join module f; consists of 3 fully-connected layers with the
output dimension set to 512, 512 and 256.

* Each of the action branches f4 holds 3 fully connected layers with
the output dimensions set to 256, 256 and 2, respectively.

All modules consisting of fully connected layers use a rectified linear
unit activation, except the last layers in action branches.

2.3.6.1. Implementation Challenges

We base most of the implementation decisions on the state-of-the-art
methods [137]. Our implementations differ only in the input resolutions
of images used for training the agent. Due to lack of heavy computing
resources, we train our agents on images with a resolution down-scaled

to 224 x 224 pixels instead of a roughly 230X%09 ~ 4.6 times higher

resolution [137]. This step allows us to train faster with the limited
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amount of computational resources available, as our resolution of choice
operates with ~ 4.6 times less memory. Another challenge that arises
due to opting for a smaller resolution for our experiments is that we
become restricted from comparing our results with published results by
other methods. To overcome this we form baselines based on state-of-
the-art methods [137] and position our proposed methods as incremental
changes to the baselines. With this approach, the experiments performed
are able to show if the contributions of the proposed methods really
improve performances or not. The final challenge we face and which
remains is a long compute time. To run the experiments of training the
agents and later evaluating them, it takes time spans of over a month
for each agent. This limits us from reimplementing other published
methods (other than our baselines, as the baselines are based on other
methods) with our chosen settings. Therefore, to train the 4 methods we
present later in the results, a compute time of over 5 month timespan
was utilised.

Given the right number of required resources to train under with
true resolutions used by other methods, the baseline can achieve a
substantially higher score as per Zhang et al. [137]. Additionally, it may
also enable comparison with state-of-the-art methods and perhaps those
works. Due to lack of resources, we focus our implementation with
downscaled settings on demonstrating the outcomes of our proposed
methods rather than producing deployable agents.

2.3.7. Training Details

For every DAgger iteration of training for all methods, the entire neural
network architectures with all the parameters are tuned against the
loss function in equation 2.5. We carry out training for 20 epochs with
a learning rate of le — 4 and weight decay of le — 5. The learning
rate is stepped down to 1/10"" from epoch 15. We train in batches of
256 samples per batch. The training is run on an RTX 3090 with the
data stored on Gen4 NVME solid state drives for faster reading of data.
Training a single iteration takes around 20 to 35 hours. The variability
in time is mostly caused by the increments in the size of the full dataset
with every DAgger iteration as previously mentioned in section 2.3.6.
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2.3.8. Metrics

To quantify and compare performance across methods, we employ two

primary metrics. They are listed and defined as follows:

* Route completion: This metric quantifies the percentage of routes
successfully completed by the agent under a given combination
of settings. The mathematical representation of this metric is as
follows:

f 1
number of completed routes) « 100.

route completion =
P < total number of routes

(2.13)

This metric accounts for every route that reaches the destination
as per route planner’s recommended path.

Distance completion: This metric quantifies the average percent-
age of distance completed over all routes travelled under a given
combination of settings. Mathematical representation of this met-
ric is as follows:

SN | completed distance,

distance completion = ( x 100,

SN | total route distance;
(2.14)

where,

- N: total number of routes.
- Completed Distance;: distance successfully completed for
the i-th route.

— Total Route Distance;: total distance of the i-th route.

This metric terminates accounting distances when the agent exits
the planned path which is guided by the route planner. Therefore
distance is only accounted for as long as the agent follows the path
to reach destination.

The route completion metric indicates the agent’s overall success rate

in completing routes, while the distance completion metric reveals the
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average point of failure when routes are not completed successfully.
Together, these metrics provide complementary insights into the agent’s
performance: route completion captures the frequency of successful
navigation, while distance completion quantifies the extent of progress
in unsuccessful attempts.

To extend the comparison beyond understanding if the agent com-
pletes routes and travels longer distances, we enlist fine-grained metrics.
These metrics question the quality of performance over the behaviour
of the agents. The fine-grained metrics are as follows:

e Collision static: Number of collisions with static elements that
form the scene layout (such as traffic signal poles, trees, railings,
pillars, etc.), normalised per kilometre travelled. The formula is
given by:

static collisions;
istance travelled;’

N
1
1lisi ic = — E 2.1
collision static N 2 q (2.15)

where N = total number of evaluation routes.

* Collision pedestrian: Number of collisions with pedestrians en-
countered on the route, normalised per kilometre travelled. The
formula is given by:

edestrian collisionsi

. (2.16)

N
1 p

11isi destrian = —
cotlision pedestrian N ; distance travelled;

where N = total number of evaluation routes.

¢ Collision vehicle: Number of collisions with vehicles encountered
on the route, normalised per kilometre travelled. The formula is
given by:

vehicle collisions;

N
- . 1
collision vehicle = N Zl (2.17)

distance travelled;’

where N = total number of evaluation routes.
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* Red light infraction: Number of red light traffic signals crossed,
normalised per kilometre travelled. The formula is given by:

N .

1 red lights crossed,
d light infraction = — ! 2.18
red dghtmnttaction =y pt distance travelled;’ (2.18)

where N = total number of evaluation routes.

The above listed metrics only account for the distance travelled and
events occurred that take place while the agent is on the path recom-
mended by the route planner. As soon as the agent leaves the path
recommended by the route planner, the experiment terminates and
accounting stops.

2.4. CONCLUSIONS OF CHAPTER 2

The chapter establishes research methodology of this study about pre-
training for end-to-end autonomous driving. Based on the literature
mentioned in Chapter 1, two methods are proposed to further ex-
plore the under-explored application of pre-training for navigating au-
tonomous vehicles that learn from experience. We formally list out the
contributions of this chapter in the following list:

¢ The visual encoder of autonomous driving agents is often pre-
trained on a task that may not be directly linked to the task of
driving. This makes it difficult for the agent to adapt to the task
of driving and resist a fall of performance when facing covariate
shift.

* VPR pre-training is proposed for the task of autonomous driving,
to address how pre-training the visual encoder of an agent can
help in holding up performance when encountering the covariate
shift problem in imitation learning.

* Visual encoders used in autonomous driving are also heavily
guided by labels when pre-trained on an image classification task.
This limits the agent that uses this visual encoder from learning
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a wide array of features as the pre-training is strongly limited to
only classifying images.

The use of the DINO pre-training method is proposed for the task
of autonomous driving, based on how self-supervised pre-training
can be beneficial in forming initialised weights over weights formed
with supervised pre-training. To form better learned feature repre-
sentations that help better resisting covariate shift.

To evaluate the proposed methods, this chapter also defines the
experimentation plan that establishes the benchmark standard
and simulation environment. Additionally, it also formulates the
specifications of the baseline methods that would contribute to
relative comparisons.

87



3. EMPIRICAL INVESTIGATION

The experimental plans detailed in the previous chapter layout how
the proposed methods that are to be evaluated against baseline meth-
ods. Extending that, this chapter presents and discusses the empirical
findings and evaluations. The plan of the experiments is as follows:

1. We evaluate the VPR pre-trained agent against the BAR34IC and
BARSOIC baseline agents using the route completion and distance
completion metrics, which account for reachability and distance
travelled.

2. Similarly we also evaluate the DINO pre-trained agent against
BAR34IC and BARS0IC baseline agents over the route completion
and distance completion metrics accounting for reachability and
distance travelled.

3. Extending the research, we compare the proposed methods and
the baseline methods over fine-grained metrics, which are colli-
sions static, collisions pedestrian, collisions vehicle and red light
infractions in order to evaluate the behaviours of agents while they
drive.

The performed experiments are aimed to systematically evaluate the
benefits of pre-training approaches over the defined performance met-
rics, examining whether exploring such a paradigm for autonomous
driving can be a valuable endeavour for the current state of research in
this research area.

3.1. VISUAL PLACE RECOGNITION PRE-TRAINING
EXPERIMENTS

To weigh the benefits of the proposed method i.e., the VPR pre-trained
agent, we compare the performance against our baselines. We track
the performance over our primary metrics, i.e. route completion and
distance completion. On observing the highest performing DAgger
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iterations of every method in comparison, VPR pre-trained agent leads in
completing routes against our baselines. When driving in environments
that are already exposed to the policy (train environment settings), the
VPR pre-trained agent completes a higher number of routes — 4% and
16.66% more than the BAR50IC and BARB34IC baselines, respectively.
When driving in environments that are not present in the training data
(new environment settings), the VPR pre-trained agent completes a
higher number of routes — 7.05% and 10.90% more than the BAR50IC
and BAR34IC baselines, respectively. The described results can be seen
in Table 3.1 which compares the route completion scores of the VPR
pre-trained agent against baseline agents.

Table 3.1: Highest route completion (%) scores of driving agents under
training and new (testing) conditions, across all DAgger iterations re-
ported.

Pre-training Train town | New town
method & weather | & weather
BAR34IC 64.67 +2 ]49.35+9
BARS50IC 77.33+4 [53.20+1
VPR Pre-trained (ours) [81.33 =4 | 60.25 + 2

To evaluate while focusing on the second primary metric, i.e. distance
completion, we also look at the same DAgger iteration observed previ-
ously. Under the train environment settings, the VPR pre-trained agent
reaches farther by 2.61% and 12.95%, whereas for new environment
settings VPR pre-trained agent reaches farther by 13.78% and 10.26%
on average, compared to the BAR50IC and BAR34IC baselines, respec-
tively. These results can be seen in Table 3.2 which compares the distance
completion scores of VPR pre-trained agent against baseline agents.

Additionally, we reveal the performances of the compared methods
at every DAgger iteration and of every random seed. For both train
and new environments, the VPR pre-trained agent steadily converges
to its highest performance, already in the fourth iteration as compared
to the baseline methods. This can be observed in the Figure 3.1. The
same trend is also valid for the distance completion metric as well, as
reported in Figure 3.2. We also reveal the route completion and distance
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Table 3.2: Highest distance completion (%) scores of driving agents
under training and new (testing) conditions across all DAgger iterations
reported.

Pre-training Train town | New town
method & weather | & weather
BAR34IC 79.02+2 |75.75+7
BARS50IC 89.36 £2 |72.23 L6
VPR Pre-trained (ours) |91.97 +3 [86.01 +0

completion scores of DAgger iterations for each method in Tables 3.3,
3.4,3.5 and 3.6.

Calculating results from experiments conducted in both train and
new environments allows for the assessment of covariate shift. Our re-
ported findings indicate that the VPR pre-trained agent not only achieves
higher scores in completing routes and covering longer distances but
also demonstrates enhanced resilience in comparison to baseline meth-
ods, especially in unseen conditions. This suggests enhanced generalisa-
tion capabilities, particularly when the visual encoder is trained beyond
the conventional task of image classification on the ImageNet dataset.
Hence, this approach enables a stronger resistance to covariate shift.

One of the notable differences between the VPR pre-trained and the
baseline methods that influence the results is the task of training. The
VPR pre-training method employs triplet loss for visual place recog-
nition with the incorporation of semantic segmentation as the task of
training, as opposed to baselines that rely on a classification loss. Such
a setting prioritises understanding places in changing weather and
lighting conditions, over forming unique encodings of object classes.
According to the results, this choice enables creation of a visual encoder
with superior weight initialisation to transfer to the task of autonomous
driving.

Another distinction between the VPR pre-trained method and the
baselines that influences the reported results is the dataset. The VPR pre-
trained method’s dataset is formed out of images that are relevant to the
task of driving, whereas the baselines rely on the ImageNet dataset that
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Figure 3.1: Route completion (%) of agents on the Leaderboard bench-
mark under training conditions (top) and testing conditions (bottom),
evaluated three times over different seeds and plotted along with the
average of performance.
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consists of irrelevant image classes such as cats, dogs, various objects,
etc. We regard this distinction as a key factor, given that exposure
to relevant data distributions is fundamental to the effectiveness of
machine learning.

Table 3.3: Route completion (%) of every DAgger iteration under train
town & weather conditions.

Pre-training method DAgger iterations

0 1 2
BAR34IC 19.33+£0 31.33+2 40.33+4
BAR50IC 21.67£5 61670 56.33+£0
VPR Pre-trained 11.67+£2 4449+2 61.0+4
DINO Pre-trained 31.0£4 56.33£2 T72.0+£2
Pre-training method DAgger iterations

3 4 5
BAR34IC 44.33£2 55.0£2 64.67=£2
BAR50IC 470+2 7333+4 T7.33+4
VPR Pre-trained 65.0+5 81.33+4 70.67+3
DINO Pre-trained 6733+0 67.33£0 7267+3

Table 3.4: Distance completion (%) of every DAgger iteration under train
town & weather conditions.

Pre-training method DAgger iterations

0 1 2
BARB34IC 4752+3 54.39+1 62.61+£3
BARS50IC 50.67+2 7533£0 T73.67+1
VPR Pre-trained 43.28+1 66.25+1 79.82+4
DINO Pre-trained 59.33+4 72672 86.04£1
Pre-training method DAgger iterations

3 4 5
BAR34IC 64.27+1 69.38+1 79.02+2
BARS50IC 64.33+0 85.33+3 89.36+2
VPR Pre-trained 82.15+2 9197+3 88.22+3
DINO Pre-trained 820£0 84.0+1 86.0+£1
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Table 3.5: Route completion (%) of every DAgger iteration under new
town & weather conditions.

Pre-training method DAgger iterations

0 1 2
BAR34IC 5.13+1 1346£2 12.18+2
BARS50IC 1233+£2 29.67+2 36.67+3
VPR Pre-trained 1346 £3 359+£5 36.54+4
DINO Pre-trained 11.33+1 40.0+1 4333+3
Pre-training method DAgger iterations

3 4 5
BAR34IC 31.414+1 32.06+£2 4936+9
BARS0IC 21.0£2 5320£1 50.0£2
VPR Pre-trained 4744+1 60252 B57.69=£5
DINO Pre-trained 53.33+2 61.0£5 6218=£7

3.2.  DINO PRE-TRAINING FOR AUTONOMOUS DRIVING
EXPERIMENTS

To assess the effectiveness of the proposed DINO pre-training agent,
we conduct a comparative analysis against two baseline methods and
the previously introduced VPR pre-training agent. We perform this
analysis by observing the performances of the denoted methods over
our primary metrics, route completion and distance completion.

DINO pre-training outshines all methods in new environments for
the metric of completing most routes. We compare the highest perform-
ing DAgger iterations of every method, and the results show DINO
pre-training agent completes 1.93% higher number of routes on average
than the previously proposed VPR pre-trained agent. Compared to the
BARB34IC and BARS0IC baselines, pre-training using the DINO method
benefits in completing 12.83% and 8.98% higher number of routes on
average, respectively. Meanwhile, the DINO pre-trained agent falls
behind the VPR pre-trained agent’s route completion ability by 8.66%
when exposed to train environments, and comes close the BAR50IC
baseline in performance. The results are reported in Table 3.7 which
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Table 3.6: Distance completion (%) of every DAgger iteration under new
town & weather conditions.

Pre-training method DAgger iterations

0 1 2
BAR34IC 29.07£2 3557+1 30.51+1
BARS0IC 32332 51.0£1 51.33+£1
VPR Pre-trained 37.12+4 53.56+£5 70.18+4
DINO Pre-trained 3733+1 69671 73.0+4
Pre-training method DAgger iterations

3 4 5
BAR34IC 50.67+£1 52.084+1 T75.75+7
BARS50IC 42.67+2 6833+£5 7T7223+6
VPR Pre-trained 68.75+4 86.01+0 83.74+3
DINO Pre-trained 76.33£5 82.67x5 80.33£4

compares the route completion scores of DINO pre-trained agent against
baseline agents and the VPR pre-trained agent. Following the distance
completion metric scores, the DINO pre-training agent outperforms the
BAR34IC and BAR50IC baseline agents by 6.92% and 10.44% on average
respectively, in new environment settings. Meanwhile in train environ-
ment settings, DINO pre-training falls behind by 3.32% in comparison
to the better performing baseline method, i.e. BAR50IC. In comparison
to the VPR pre-trained agent, DINO pre-trained agent tends to cover
shorter distances when not completing routes. This is reported in Table
3.8 which compares the distance completion scores of DINO pre-trained
agent against baseline agents and the VPR pre-trained agent.

We also reveal the results over both the primary metrics of all DAgger
iterations in Figures 3.3 and 3.4. Additionally, we reveal the route
completion and distance completion scores of DAgger iterations for
each method in Tables 3.3, 3.4, 3.5 and 3.6. The results indicate that the
DINO pre-trained method converges to higher scores earlier than other
methods and holds the lead for the case of route completion in new
environment settings. In comparison to the baseline methods, DINO
pre-training provides substantially better results.
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Figure 3.3: Route completion (%) of agents on the Leaderboard bench-
mark under training conditions (top) and testing conditions (bottom),
evaluated three times over different seeds and plotted along with the
average of performance.
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Table 3.7: Highest route completion (%) of driving agents under training
and new (testing) conditions, across all DAgger iterations reported.

Pre-training Train town | New town
method & weather | & weather
BAR34IC 64.67+2 [49.35+9
BARSO0IC 77.33+£4 [53.20+1
VPR pre-trained 81.33+4 [60.25£2
DINO pre-trained (ours) | 72.67 =3 6218+ 7

Table 3.8: Highest distance completion (%) of driving agents under train-
ing and new (testing) conditions, across all DAgger iterations reported.

Pre-training Train town | New town
method & weather | & weather
BAR34IC 79.02+£2 |75.75+7
BARS0IC 89.36 £2 72236
VPR pre-trained 91.97+3 [86.01+0
DINO pre-trained (ours) |86.04 =1 |82.67+6

The DINO pre-trained encoder and the compared baseline pre-trained
encoders hold a notable commonality, that is the pre-training dataset
being ImageNet. Yet, the results show substantial improvement on the
route completion and distance completion metrics. As per the empirical
evaluation, this improvement can be credited to the training method
and loss functions that are employed during pre-training with the DINO
method. This distinction allows improved learning and consequently
encoding of better visual features that benefit the task of autonomous
driving, hence proving image classification as a pre-training method to
be outdated.

Another issue that the results of DINO pre-training address is of over-
titting. The baseline methods show a much larger gap in performance
going from train environment settings to new environment settings,
in comparison to the results of the DINO pre-training method. This
gap could be present due to a strong over-fit, as the DINO pre-training
method shows higher generalisation under new environment settings,
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while scoring lesser route completion in train environment settings than
the BARS50IC baseline.

Concluding this study, we point out that better pre-training leads to
improved learning of the task of driving, especially over the conven-
tional pre-training approaches.

3.3.  EXTENDED ANALYSIS

In this section, we extend the analysis of the pre-training methods be-
yond the primary metrics. As the primary metrics validate the perfor-
mances of the compared agents against the primary capabilities, i.e.,
reachability and driving without stopping, here we look at much more
fine-grained behaviours. Therefore to quantify and analyse such be-
haviours of the agents while driving, we evaluate 4 additional metrics
(described in Section 2.3.8). The fine-grained metrics we evaluate are
collision static, collision pedestrian, collision vehicle and red light in-
fractions. To bring the focus on how the compared methods are able to
generalise, we calculate the aforementioned metrics based on how the
agents drive in the new environment settings and not in train environ-
ment settings.

The DINO pre-trained agent shows consistent results across all four
metrics, i.e., making the least collisions with static elements, pedestrians,
vehicles and making the least red light infractions. This is reported in
Figures 3.5, 3.6, 3.7 and 3.8. We also reveal the digit values of this evalu-
ation in Table 3.9. The VPR pre-trained agent proves to be successful on
the primary metrics by completing most routes and reaching farther dis-
tances. However, the VPR pre-trained agent fails to show consistency in
showing lower error rates on metrics evaluating fine-grain behaviours,
in contrast to the DINO pre-trained agent and the BAR5S0IC baseline
agent. We suspect that this may be due to the previously identified
over-fitting in the behaviour of the VPR pre-trained agent. Meanwhile,
these results again affirm the improved generalisability of the DINO
pre-trained agent when let to drive into new environments.
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Table 3.9: Number of collisions and infractions across the compared
pre-training methods normalised by per distance travelled per kilometre
(lower is better).

Pre-training Collision | Collision | Collision | Red light
method static vehicle | pedestrian | infraction
() () () ()
BAR34IC 0.22 0.87 0.08 1.13
BARS50IC 0.15 0.73 0.05 0.95
VPR Pre-trained 0.24 0.82 0.06 1.03
DINO Pre-trained 0.13 0.49 0.02 0.66

3.3.1. Comparison of the Proposed Methods

With references to the reported results in Sections 3.1, 3.4 and 3.3, we
discuss the distinctions of the proposed methods, i.e., the VPR pre-
trained and DINO pre-trained agents. We attribute the DINO pre-trained
agent’s superiority over VPR pre-trained agent, to the following points:

¢ Pre-training dataset size: Carrying out DINO pre-training lever-
ages the ImageNet dataset with the size of 1 million images while
VPR pre-trained agent’s on-domain dataset of size 40,000 falls
short. Due to a smaller dataset size, the context to be learned may
not be well-delivered in the pre-training phase.

* Ability to reduce over-fitting: In reference to other methods re-
ported in Table 3.7, DINO pre-training shows better ability to
complete routes in new environment settings. While this indicates
improved generalisation, DINO pre-training also shows lower
scores in completing seen routes in the seen weather conditions,
additionally indicating over-fitting in the VPR pre-trained agent.
This over-fit is also evident in the behaviour portrayed by the VPR
pre-trained agent in the extended analysis as reported in Figures
3.5,3.6,3.7 and 3.8.

* Open-ended learning capability: The self-supervised learning
ability to learn without image labels or annotations in the DINO
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pre-training method enables generating features that can to outper-
form models trained with supervised learning. This is valid and
evident especially in the fine-grained metrics that we evaluate on,
as reported in Table 3.9. Such capability is quite a notable distinc-
tion since the provided images are of a very low resolution and yet
only the DINO pre-trained agent shows substantial improvement.

3.4. CONCLUSIONS OF CHAPTER 3

This chapter presents the results of the experiments designed in Chapter
2 where the proposed VPR pre-trained agent and DINO pre-trained
agents are compared against baselines. We formally list the overall
conclusions of this chapter as follows:

* When the VPR pre-trained agent is deployed under new environ-
ment settings (i.e., unseen weather and towns) for the assessment
of generalisability of the agents, it completes 7.05% and 10.90%
higher number of routes than the BAR50IC and BAR34IC baselines
respectively.

* This research empirically also shows that the VPR pre-trained
agent achieves 13.78% and 10.26% higher distance completion
than the BAR50IC and BARB34IC baselines respectively, in un-
seen environments. Therefore, pre-training the agent’s visual en-
coder over the task of VPR improves the route completion and
distance completion of the agent, in comparison to the pre-training
of the same encoder on the ImageNet classification task. This is
attributed to the distant relation of the task of the ImageNet classifi-
cation to the task of autonomously driving in urban environments.
The VPR task is centred around places which helps in understand-
ing environments more than the ImageNet classification task.

* The VPR pre-trained agent achieves shows faster convergence to
higher performance than both compared baseline agents, shown
in Figure 3.1 and Figure 3.2.

¢ Whereas when the DINO pre-trained agent and the baseline agents
are deployed in unseen conditions, the DINO pre-trained agent
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completes 12.83% and 8.98% higher number of routes than the
BARB34IC and BARS50IC baselines, respectively.

e The DINO pre-trained agent scores 6.92% and 10.44% higher on
the distance completion metric compared to the BAR34IC and
BARSBOIC baselines respectively. The DINO pre-trained agent out-
shines against the baseline agents and shows how pre-training
over the ImageNet dataset with another task instead of the over-
simplified image classification task can generate better feature
representations that help in improving the generalisation for the
task of driving.

* On comparing the VPR pre-trained agent with the DINO pre-
trained agent, the DINO pre-trained agent proves to be generalis-
ing better when deployed into unseen environments with a 1.92%
higher number of completed routes as per the route completion
metric.

* The DINO pre-trained agent also outperforms the VPR pre-trained
agent on the behavioural metrics, i.e., by reporting 0.11 lower on
the collision static metric, 0.33 lower on the collision vehicle metric,
0.04 less on the collision pedestrian metric and 0.37 less on the red
light infraction metric, per distance travelled per kilometre. This
shows that features generated by a visual encoder that is trained
on self-supervision are better suited for the task of autonomous
driving than features generated by a pre-trained process heavily
guided by labels.
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GENERAL CONCLUSIONS

1. Our study demonstrates that pre-training the visual encoder on
the VPR task using triplet loss improves autonomous driving per-
formance compared to conventional ImageNet-based pre-training.
Specifically, utilising triplet loss-based pre-training yields enhance-
ments over the evaluated baselines, resulting in improvements
of 7.05% in route completion and 13.78% in distance completion
relative to the BAR50IC baseline, and improvements of 10.90%
in route completion and 10.26% in distance completion over the
BARB34IC baseline. These findings underline the effectiveness
of task-specific pre-training in enhancing imitation learning out-
comes for autonomous driving.

2. Our empirical findings demonstrate that pre-training with the
DINO method enhances the agent’s ability to generalise to pre-
viously unseen environments compared to baseline approaches.
Specifically, the DINO pre-trained visual encoder achieves im-
provements of 8.98% in route completion and 10.44% in distance
completion over the BAR50IC baseline, and improvements of
12.83% in route completion and 6.92% in distance completion com-
pared to the BAR34IC baseline. These results highlight DINO’s
potential for significantly boosting robustness in imitation-based

autonomous driving.

3. When comparing agents pre-trained with VPR and DINO meth-
ods, we conclude that the DINO-based agent exhibits superior
generalisation performance. In particular, the DINO pre-trained
agent achieves 1.93% higher route completion and demonstrates
notably better performance in collision avoidance and adherence
to traffic regulations. Specifically, per kilometre travelled, the
DINO pre-trained agent records 0.11 fewer static collisions, 0.33
fewer vehicle collisions, 0.04 fewer pedestrian collisions, and 0.37
fewer red-light infractions compared to the VPR pre-trained agent.
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SUMMARY IN LITHUANIAN

TYRIMU SRITIS

Autonominio vairavimo technologija yra transformuojantis pokytis
transporto srityje, kuris turi potencialo reformuoti automatizavimo,
keliy eismo saugumo, eismo efektyvumo ir prieinamumo uztikrinimo
sritis. Sios technologijos srities moksliniy tyrimu poreiki lemia savaeigiu
transporto priemoniy sudétingumas ir galimas ju poveikis. Svarbiausias
$iy moksliniy tyrimu uzdavinys — sukurti patikimas sistemas, galin¢ias
pazinti ir suprasti jvairias ir nenuspéjamas aplinkas ir jose naviguoti.
PaZangiausiuy algoritmuy progresas, ypa¢ kompiuteriu mokslo ir robo-
tikos srityse, sudaro pagrinda tam, kaip autonominés transporto prie-
monés interpretuoja jutikliu duomenis, kad galéty priimti sprendimus
realiuoju laiku. Saugumas islieka svarbiausiu rtapesciu, todél moksli-
niai tyrimai yra nukreipti i patikimuy algoritmy, galin¢iu susidoroti su
ivairiais scenarijais — nuo intensyvaus eismo iki sudétingu oro salygu —ir
galin¢iy uZtikrinti, kad autonominés transporto priemonés bet kokiomis
salygomis veiktu saugiau nei vairuotojai (Zmonés), paieska.

Navigacijos gebéjimo automatizavimas autonominio vairavimo ir
robotikos moksliniuose tyrimuose buvo sprendziamas taikant jvairias
koncepcines paradigmas — dvi jtakingiausios paradigmos buvo SLAM
(vienalaiké lokalizacija ir kartografavimas; angl. Simultaneous Locali-
sation and Mapping) ir masininiu mokymusi pagristi metodai. SLAM
pagristi algoritmai padeda transporto priemonéms sudaryti ir atnaujinti
nezinomos aplinkos Zemélapi ir tuo pat metu sekti savo buvimo vieta
joje — tai labai svarbu realaus laiko navigacijai sudétingoje ir dinamiskoje
aplinkoje. Kita vertus, dirbtinio intelekto galimybiu proverZis paskatino
daZnesnj rémimasi mokymusi pagristais metodais — ypac¢ neuroniniais
tinklais grindZiamy sistemu naudojima. Taikant $iuos metodus yra nau-
dojami dideli duomenu rinkiniai, siekiant iSmokyti sistemas suvokti,
priimti sprendimus ir veikti jvairiais vairavimo scenarijais, taip pageri-
nant ju gebéjima priimti sprendimus per labai trumpa laika. Kartu Sie
metodai yra reikSmingos paZangos autonominio vairavimo moksliniy

tyrimuy srityje pagrindas.
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Remiantis anks¢iau aptartais pasiekimais, Sioje disertacijoje yra sie-
kiama praplesti tyrimus, pateikiant naujas perspektyvas ir biidus. Sis
tyrimas pradedamas nuo naujausiu ir pazangiausiy imitacinio mokymo
(angl. imitation learning) metodu apZvalgos, atkreipiant démesj i tai,
kad paruosiamasis mokymas (angl. pre-training) autonominio vairavi-
mo srityje yra nepakankamai istirtas. Daugumoje $ios srities tyrimuy yra
pasirenkami vaizdo enkoderiai (angl. visual encoders), paruosiamojo
mokymo btidu apmokyti ImageNet klasifikavimo uzduo¢iai atlikti, vie-
toje to, kad bity ieSkoma geresniu alternatyviu metodu. Todél Ssiame
tyrime yra sitiloma naujoveé — istisinio (angl. end-to-end) autonominio
vairavimo uzduodiai atlikti taikyti sitilomus paruosiamojo mokymo me-
todus. Véliau tyrime Sie pasitilyti metodai yra palyginami su jprastiniais
metodais, siekiant pademonstruoti $iu nauju metodu geresnj efektyvu-
ma.

TYRIMO OBJEKTAS

Tyrimo objektas — imitaciniu mokymu pagristi autonominio vairavimo
metodai, daugiausia démesio skiriant paruosiamojo mokymo metody ir
ju poveikio vairavimo agento gebéjimui naviguoti nematytos aplinkos
salygomis tyrimui.

TYRIMO TIKSLAS IR UZDAVINIAI

Tyrimo tikslas — idiegti ir iStirti imitaciniu mokymu ir giliaisiais neuroni-
niais tinklais pagristus autonominio vairavimo algoritmus, skirtus auto-
nominei navigacijai aplinkoje, imituojancioje realaus pasaulio salygas,
siekiant iStirti paruo$iamojo mokymo metodus ir pagerinti generalizaci-
ja matytos ir nematytos aplinkos salygomis.

Tyrimo tikslui pasiekti buvo igyvendinti Sie uZdaviniai:
1. Atlikti naujausiy ir paZangiausiy imitacinio mokymo metody,
taikomu autonominio vairavimo procese, tyrima ir nustatyti da-

bartine autonominio vairavimo agentu vaizdo enkoderiu paruosia-
majame mokyme biikle.
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2. Nustatyti ir pasitlyti uZduoti, skirta vairavimo agento vaizdo
enkoderio paruoSiamajam apmokymui, kuri btity labiau susiju-
si su vairavimo uZduotimi nei tradiciSskai naudojama ImageNet
klasifikacija.

3. Nustatyti ir pasitilyti savarankiskos prieziiros (angl. self-supervi-
sed) autonominio vairavimo agento vaizdo enkoderio paruosia-
mojo mokymo uzduotij, kurios tikslas — generalizuoti geriau nei tai
atlieka tradiciS8kai naudojamas ImageNet klasifikacijos paruosia-
mojo mokymo metodas.

4. Empiriskai istirti sitilomus metodus su atitinkamais baziniais au-
tonominio vairavimo agentais ir jvertinti gautus rezultatus.

TYRIMO METODALI

Sioje disertacijoje atskleistas tyrimas buvo atliktas remiantis Siais moks-
liniais metodais:

1. Atlikta literattiros apzvalga, atskleidZianti imitaciniu mokymu
pagristus autonominio vairavimo metodus.

2. Naudojant kiekybinius ir kokybinius metodus buvo surinkti duo-
menys, atsizvelgiant i ivairius parametrus.

3. Pasitlyti metodai yra jvertinti atliekant kelis pakartotinius eks-
perimentus (angl. experiment reruns) su skirtingais atsitiktinés
inicializacijos parametrais (angl. seeds).

4. Konstruktyvaus tyrimo metu yra pasitlyti pagerinimai ir patobu-
linimai, susije su realaus pasaulio problemomis, taip pat pasitlyti
nauji teoriniai patobulinimo metodai.

5. Pritaikyti programinés jrangos kiirimo metodai, siekiant jgyve-
ndinti pasitilytus metodus ir eksperimentine Sios disertacijos dalj,
igyvendinant paruosiamojo mokymo ir autonominio vairavimo
algoritmus bei papildomas vertinimo sistemas.
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MOKSLINIS DARBO NAUJUMAS

Si disertacija prisideda prie imitaciniu mokymu pagristu mokymosi
metoduy, skirty iStisiniam autonominiam vairavimui, vystymo. Pagrin-

dinis disertacijos mokslinis indélis:

1. I8plésti nepakankamai iStirtu paruosiamojo mokymo metodu, ski-
rty iStisiniam autonominiam vairavimui, tyrimus, pasitilant biidus,
leidZiancius atsisakyti priklausomybés nuo priZitirimo paruosia-
muojo mokymo, paremto vaizdo enkoderiais, skirtais vaizdy kla-
sifikavimui.

2. Siame darbe pasitilytas vizualinio vietos atpaZinimo panaudojimo
paruo$iamajame mokyme btidas, skirtas autonominiam vairavi-

mui. Empiriskai parodyta, kad toks paruoSiamasis mokymas
pranoksta jprastai naudojamus paruosiamojo mokymo metodus.

3. Siame darbe pasiiilytas ir kitas paruogiamojo mokymo metodas
— DINO (savidistiliacijos be Zymiu, angl. self-distillation with no
labels) paruo$iamasis mokymas, kuris, remiantis eksperimentais,
pasirode esas efektyvus.

PRAKTINE DARBO VERTE

Si disertacija pagerina autonominio vairavimo metody ir mokymo efek-
tyvuma. Svarbiausias disertacijos praktinis indélis:

1. Eksperimentai, atlikti simuliacinése aplinkose, panaudojant pa-
ruosiamojo mokymo metodus, t. y. vizualinj vietos atpaZinima ir
DINO, parodé didesni atsparuma aplinkos poky¢iams. Tai reiskia,
kad tokie metodai gali leisti pasiekti patikima vairavima nematy-
tose aplinkose, todél sumazéja mokymo duomenuy poreikis.

2. Eksperimentai parodé greitesni ir efektyvesnj konvergavima, kai
naudojami sitilomi metodai mokymo metu. Tai leidZia sumazinti
grafiniy procesoriy skai¢iavimo valanduy kiekj, todél sumazinamas
anglies dioksido pédsakas.
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3. Disertacijoje sukurtas autonominio vairavimo metodu mokymo
programinis kodas yra viesai skelbiamas, bei nurodomos kitos
svarbios saugyklos (angl. repositories).

4. Sioje disertacijoje pateikiami ginamamuosius teiginius pagrin-
dziantys irodymai naudojant industrijos ir moksliniy tyrimy stan-
dartines priemones, tokias kaip simuliatorius (angl. simulator),
masininio mokymo sistemos ir kt., kas leidZia tyrimo rezultatus ir
iSvadas lengvai perkelti j industrijos ir akademinés bendruomenés
atliekamus mokslinius tyrimus.

GINAMIE]JI TEIGINIAI
éioje disertacijoje yra ginami Sie teiginiai:

1. ParuoSiamasis vaizdo enkoderio apmokymas atlikti vizualinio
vietos atpazinimo uzduoti naudojant trejeto nuostolius (angl. tri-
plet loss), o ne jprastai naudojama klasifikavimo uzduoti ResNet
architektiiroje, pagerina imitaciniu mokymu pagristos autonomi-
nio vairavimo sistemos vairavimo efektyvuma vertinant marsruto
iveikimo (angl. route completion) ir atstumo jveikimo (angl. dis-
tance completion) metrikas.

2. Paruo$iamasis vaizdo enkoderio apmokymas naudojant Image-
Net duomenu rinkinj ir DINO metoda, o ne jprastai naudojama
prizitrima vaizduy klasifikavimo uZduoti ResNet architekttiroje,
generuoja geresnius poZymius imitaciniu mokymu pagristam au-
tonominiam vairavimui, kas leidZia pasiekti geresni vairavimo
efektyvuma vertinant marsruto jveikimo ir atstumo jveikimo met-
rikas.

3. Lyginant vizualinio vietos atpaZinimo paruo$iamaji mokyma su
DINO paruosiamuoju mokymu, DINO paruo$iamojo mokymo
metodas rodo geresnius rezultatus ir didesni efektyvuma nema-
tytose aplinkose, nes jveikia daugiau marsruty ir sukelia maZiau
susidiirimuy su statiniais elementais, pésciaisiais ir transporto prie-
moneémis, taip pat atlieka maZiau raudono $viesoforo signalo
pazeidimu.
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TYRIMO APROBAVIMAS IR PUBLIKAVIMAS

Disertacijoje gauti rezultatai buvo paskelbti keturiuose moksliniuose
darbuose: du moksliniai straipsniai paskelbti recenzuojamuose periodi-
niuose mokslo Zurnaluose, du moksliniai darbai paskelbti ir pristatyti
mokslinése konferencijose. Toliau pateikiamas publikaciju ir pranesimu
konferencijose sarasas.

Straipsniai periodiniuose mokslo Zurnaluose:

* Juneja, S., Daniusis, P., & Marcinkevicius, V. (2023). Visual place re-
cognition pre-training for end-to-end trained autonomous driving
agent. IEEE access, 11, 128421-128428.

* Juneja, S., Daniusis, P., & Marcinkevicius, V. (2024). DINO Pre-
training for Vision-based End-to-end Autonomous Driving. Baltic
Journal of Modern Computing, Vol. 12 (2024), No. 4, pp. 374-386.

Straipsniai (ir pristatyti darbai) recenzuojamose mokslinése konfe-
rencijose:

* Juneja, S., Marcinkevicius, V., & Daniusis, P. Combining Multiple
Modalities with Perceiver in Imitation-based Urban Driving. All
Sensors 2021. 18" July, 2021. Nice, France.

* Juneja, S., Daniusis, P., & Marcinkevicius, V. (2024). Monocular
Depth Estimation Pre-training for Autonomous Driving. Al Sys
2024. 30" September, 2024. Venice, Italy.

DISERTACIJOS STRUKURA

Sia disertacija sudaro jvadas, trys skyriai, iSvados ir santrauka lietuviu
kalba. Ivado dalyje yra pateikiamas jvadas i tyrima ir disertacijos apzval-
ga. Pirmajame skyriuje yra pateikiama literattiros apZvalga, apimanti
imitaciniu mokymu grindZiamus autonominio vairavimo metodus ir

127



susijusias pamatines temas, tokias kaip autonominis vairavimas, imita-
cinis mokymas ir iSankstinio mokymo metodai. Antrajame skyriuje yra
aprasomi sitilomi metodai ir atlikti eksperimentai. Treciajame skyriu-
je yra pristatomi ir analizuojami rezultatai, gauti eksperimentuy metu.
Galiausiai bendruju iSvadu skyriuje pateikiamos i§vados, suformuotos
remiantis pristatytu tyrimu. Disertacijos pabaigoje yra pateikiamas li-
terattiros sarasas. Disertacija sudaro 156 puslapiu, 24 paveiksléliy ir 12
lenteliy.

MOKSLINIU TYRIMU APZVALGA

Autonominés transporto priemoneés (AV) — tai savaeigés iSmaniosios
transporto priemoneés, valdomos vidinémis (angl. onboard) kompiu-
terinémis sistemomis ir skirtos automatizuotam transportavimui. AV
zada transformuoti pasauli ir atskleidZia daugybe potencialiu aspekty,
kurie gali biiti naudingi Zmoniy gyvenimui ir bendrai visai visuome-
nei. Autonominis vairavimas gali biiti organizuojamas dviem metodais:
moduliniu (angl. modular) arba istisiniu (angl. end-to-end). Pagal
modulinj metoda kiekvienam sistemos moduliui yra priskiriamos at-
skiros uzduotys ir daug démesio reikia skirti inZinerinei daliai, o pagal
iStisini metoda vairuoti mokomasi holistiniu ir duomenimis paremtu ke-
liu, naudojant demonstracijas. Atsizvelgiant i iStisinio metodo pranasu-
mus, Siame tyrime yra koncentruojamasi i pastaraji metoda. Istisinis
autonominio vairavimo metodas gali biiti mokomas naudojant imitacini
mokyma arba sustiprinta mokyma (angl. reinforcement learning, RL).
Imitacinis mokymas yra supaprastintas metodas, kuris yra kildinamas i$
prizitirimo mokymosi (angl. supervised learning), o RL mokosi taisykliu
saveikaudamas su aplinka, todél yra létesnis ir reikalauja daug istekliu.
Imitacinis mokymas susiduria su kovariacinio poslinkio (angl. covaria-
te shift) problema, kai dél duomenu pasiskirstymo skirtumu mokymo
metu ir bandymo metu atsiranda grandininiuy klaidu (angl. cascading
errors). Ankstyvieji metodai rodo neuroniniy tinkly ir DAgger naudoji-
ma, kas sudaro dabartinés btiklés autonominio vairavimo, kuris remiasi
imitaciniu mokymu, pagrinda. Vélesnieji metodai naudoja ivairius
aspektus, pavyzdziui, salygine architektiira, daugiamodalumo (angl.
multi-modality) ivedima ir tobulinima, demonstraciju kokybés gerinima
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ir kt. Sios kryptys tiesiogiai ar netiesiogiai siekia i8spresti kovariacinio
poslinkio ir kitas susijusias problemas. Paruo$iamasis mokymas tapo
standartu daugelyje gilaus mokymosi tyrimuy ir taikymo sriciy. Pastarai-
siais metais paskelbtuose tyrimuose pastebima ryski tendencija remtis
ImageNet grindZiamu paruoSiamuoju mokymu autonominio vairavi-
mo srityje. Nors ImageNet grindZiamas paruoSiamasis mokymas yra
naudingas, taciau jis taip pat gali btiti neoptimalus. Tik keli tyrimai
nagrinéjo alternatyvius paruo$iamojo mokymo metodus autonominio
vairavimo srityje. Todél yra pastebétina, kad Sioje srityje yra susidariusi
moksliniy tyrimu spraga. AtsiZzvelgiant | tai, jvardijame potencialias
paruosiamojo mokymo paradigmas, kurios gali bati vertingos jas tai-
kant autonominio vairavimo agentams. Atitinkamai yra sitilomi Sie du
metodai:

1. Vizualinio vietos atpaZinimo paruosiamasis mokymas, skirtas au-
tonominiam vairavimui.

2. DINO paruosiamasis mokymas, skirtas autonominiam vairavimui.

VIZUALINIO VIETOS ATPAZINIMO PARUOSIAMASIS
MOKYMAS

Sis metodas yra sitilomas siekiant i$spresti kovariacinio poslinkio prob-
lema autonominio vairavimo imitaciniame mokyme, specifiskai kon-
centruojantis i oro ir aps$vietimo salygu variacijas. Keliame hipoteze,
kad autonominis vairavimas labai priklauso nuo specifiniy vaizdiniu
pozymiu, kuriu gali nepavykti efektyviai uZfiksuoti taikant Image-
Net paruosiamaji mokyma, kuris grindziamas vaizdu klasifikavimu
— uzduotimi, tolima vairavimui. Todél sitilome agento vaizdo enkoderio
paruos$iamaji apmokyma VPR biidu, nes VPR duomenu rinkiniai savyje
apima oruy ir ap$vietimo salygu variacijas, leidZiancias surasti (atpaZzinti)
vieta (angl. achieve place retrieval) kintan¢iomis salygomis. Perduo-
dant taip paruoSiamojo mokymo bidu apmokyta enkoderj vairavimo
agentui, $iuo metodu siekiama pagerinti agento gebéjima prisitaikyti
prie nematytu oro ir apSvietimo salygu ir susvelninti kovariacinio pos-
linkio poveiki (kadangi kovariacinis poslinkis yra viena i$ pagrindiniu
problemuy taikant imitaciniu mokymu pagristus metodus).
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Iprastai imitaciniu mokymu pagristas autonominio vairavimo meto-
das yra laikomas agentu, kurj sudaro specialios architekttiros neuroninis
tinklas. Siame skyriuje pasitilyta metoda vadiname VPR paruosiamojo
mokymo metodu, o §io metodo rezultata — VPR paruosiamojo moky-
mo metodu apmokytu agentu. VPR paruoSiamojo mokymo metodu
apmokyto agento sukiirimas yra pristatomas dviem dalimis. Pirmiausia
aprasomas sitilomas vaizdo enkoderio paruosiamasis mokymas. Po
paruo$iamojo mokymo aprasomas paruosiamojo mokymo metodu ap-
mokyto vaizdo enkoderio integravimas i agenta ir mokymas atlikti
autonominio vairavimo uZzduotj.

Vaizdo enkoderio paruosiamasis mokymas naudojant VPR

VPR yra fundamentali kompiuterinés regos uzduotis, kuria siekiama
nustatyti ir atpaZinti anks¢iau aplankytas vietas naudojant tik vaizdine
informacija i$ vaizduy ar vaizdo irasu seku. Pagrindinis VPR tikslas —
nustatyti, ar pateiktas uzklausos vaizdas (angl. query image) atitinka
vieta, esanlia referuojamoje vaizdu duomenu bazéje, ir taip atsakyti i
klausimaq ,,Ar a$ ¢ia jau buvau?”. VPR pagristos sistemos yra mokomos
dirbti sudétingomis realaus pasaulio salygomis, tokiomis kaip apsvie-
timo salygu variacijos (diena ir naktis), sezoniniai poky¢iai (vasara ir
Ziema), skirtingos oro salygos, varijuojantys zitiros taskai ir dinaminiai
objektai veiksmo vietoje (angl. scene). Mokymo metu veikiami Siu
variacijy, neuroniniai tinklai iSmoksta i$skirti poZymius (angl. feature
representations), kurie islieka atspartis aplinkos pokyciams.

Sitilomas VPR paruosiamojo mokymo metodas iSplec¢ia naujausio
VPR metodo — SegVPR - taikyma autonominio vairavimo agento vaizdo
enkoderio paruosiamajam mokymui. SegVPR atlieka mokyma naudoda-
mas ImageNet i§ anksto apmokyta ResNet50 pagrista vaizdo enkoder;.
Mokymo metu $is enkoderis paskirstomas dviem uzduotims:

1. Vizualinio vietos atpaZinimo (VPR) uzduotis: §i uzduotis yra pag-
rindiné.

2. Semantinio segmentavimo (angl. semantic segmentation) (Sem-
Seg) uzduotis: 8i uZduotis yra pagalbiné.
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Sios dvi uzduotys leidZia mokytis poZymiuy, kurie sujungia konk-
recios vietos informacija (angl. place-specific information) ir semantine
veiksmo vietos informacija (angl. semantic information from the sce-
ne). Abieju uzduociu derinys padeda orientuoti visa neuroninj tinkla, i
kuria veiksmo vietos (aplinkos) sritj reikia zitiréti. Tai padaryti papil-
domai padeda ir dekoderyje (angl. decoder), kuris pavaizduotas S.1
paveikslélyje, esan¢iuy daugiamacio démesio (angl. multi-scale attention)
ir daugiamacio sutelkimo (angl. pooling) mechanizmuy naudojimas.

Daugiamatis
sutelkimas

L B
PH % i o
W ﬁ . 'n‘

Pozymiai N eeae B
Daugiamacio

démesio modulis {

SemSeg
dekoderis

L semSeg

S.1 pav.: Paveikslélyje pavaizduota SegVPR dekoderio struktiira, su-
daryta i§ segmentavimo dekoderio, daugiamacio démesio modulio ir
daugiamacio sutelkimo modulio.

Daugiamacio démesio modulis yra naudojamas siekiant sutelkti
démesj i svarbiausius jvesties vaizdo regionus ir papildomai tinkama
kryptimi nukreipti semantinj segmentavima mokymo metu. Bendrai,
daugiamacio démesio modulis jvertina poZymius, naudodamas skir-
tinga skiriamaja geba, priskiria svorius (angl. weights) pagal ju svarba
ir sujungia poZymius i viena reprezentacija . Sis modulis kaip ivesti
priima enkoderio iSvestj i8 ketvirtojo konvoliucinio sluoksnio ir pralei-
dzia per 3, 5 ir 7 dydZio branduoliu filtra, atvaizduota S.2 paveikslélyje.
Atlikus modulio iSvesciu padidinima (angl. upsampling) ir sujungima
pagal kanalus (angl. channel-wise concatenation), sudaromas démesio
Zemelapis. Démesio Zemélapyje esantys démesio parametrai rodo, kur
yra sutelkiamas démesys. SegVPR naudoja daugiamatj sutelkima, kad
iSgauty semantine ir vaizdo informacija skirtingais semantinés informa-
cijos lygiais. Sis mechanizmas naudoja enkoderio ketvirtojo ir penktojo
konvoliciniy sluoksniu informacija. Siems pozymiams yra priskiriami
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S.2 pav.: Paveiksleélyje pavaizduotas SegVPR architektiiroje naudojamas
daugiamacio démesio modulis, kuris naudoja kelis erdvinius mastelius,
kad bty uZzfiksuoti skirtingo dydzio objektai, ir bitu sudarytas démesio
Zemélapis.

parametrai pagal démesio Zemeélapj ir yra gaunamas globalus deskrip-
torius (angl. global descriptor) (sinonimas reprezentacijai).

Ribiné trejeto nuostoliu funkcija (angl. triplet margin loss) naudoja-
ma atliekant deskriptoriu VPR mokyma. Todél i SegVPR architektiira
pateikiant jvesties vaizda, jos daugiamacio sutelkimo modulis i§gauna
deskriptoriu (kaip pavaizduota S.1 pav.), kuriam priskiriame reiksme F'.
Pagal klasikinio trejeto mokymo metoda uzklausos (angl. query) arba
pririSimo (angl. anchor), teigiamu (angl. positive) ir neigiamu (angl.
negative) deskriptoriu pavyzdZiai yra imami i$ pavyzdZiy archyvo. Tei-
giami ir uzklausos pavyzdziai priklauso artimoms GPS koordinatémes,
o neigiami pavyzdZziai yra imami i$ tolimos vietos. Kiekvieno trejeto
pavyzdzio VPR nuostoliai yra nustatomi pagal formule:

£VPR = h(d(Fquerya Fpos) +m — d(Fquerya Fneg)), (Sl)

kurioje h yra Hinge nuostoliai h(z) = maz(z, 0), d yra Euklido atstumas,
m > 0 yra fiksuota reiksmeé (angl. fixed margin), ir Fyyery, Fpos it Freg
atitinkamai reiskia uzklausos, teigiamu ir neigiamu trejeto pavyzdziu
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reikSmes.

Semantinio segmentavimo nuostoliai (angl. semantic segmentation
loss) Lsemseq yra nustatomi pagal formule:

1 v C
ESemSeg = 77 Z Yi - logpil(Ml fa%)v (82)

=

kurie yra lygtis kryZminés entropijos nuostoliams (angl. cross-entropy
loss), apskaic¢iuojamiems kiekvienai klasei y;, pikselio 7 i§ vaizdo Z, kur
M; yra demesio zemelapis, susijes su poZzymiu f}, o fi Zymi klases y;
tikimybe. Tiek f}, tiek p; yra segmentavimo dekoderio modulio i§vestys,
o M; yra daugiamacio démesio modulio i$vestis.

Suminiy nuostoliy funkcija (angl. overall loss function) yra VPR
nuostoliy ir semantinio segmentavimo nuostoliu funkcijy suma:

EVPR—SemSeg = EVPR +a- ACSemSega (83)

kur oo > 0 yra skaliarinis semantinio segmentavimo nuostoliu dydis
(angl. scalar weight for semantic segmentation loss).

SegVPR naudoja specialiai sukurta duomenu rinkinj, uzfiksuota
CARLA 0.9.10 simuliatoriuje. Duomenuy rinkinys apima GPS informaci-
ja ir 25 semantiniy klasiu pikseliu semantine anotacija. Jame uZzfiksuo-
ta daugiau kaip 40000 vaizdy (10091 kiekvienam scenarijui), surinktu
Town03 ir Town10 Zemélapiuose esant skirtingam orui — nuo giedro
vidurdienio (angl. Clear Noon) iki smarkaus lietaus saulélydZio (angl.
Hard Rain Sunset).

VPR paruoSiamojo mokymo metodu apmokyto agento mokymas

Siekdami iSnaudoti patikimas vaizdines reprezentacijas, iSmoktas kinta-
n¢iomis oro salygomis, kurios buvo pateiktos paruosiamojo mokymo
metu, i savo agento neuroninio tinklo sistema integruojame vaizdo
enkoderj i§ SegVPR architektiiros. Siame poskyryje igsamiau aprasome
VPR paruosiamojo mokymo metodu apmokyto agento mokyma ir ar-
chitektiira, i kuria yra jterptas paruosiamojo mokymo biidu apmokytas
vaizdo enkoderis. Architektiira pavaizduota S.3 paveikslélyje.
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S.3 pav.: Paveikslélyje pavaizduota bendra sitilomo vizualinio vietos
atpaZinimo paruosiamojo mokymo metodo blokiné schema, kurioje i§
pradziy vaizdo enkoderis yra paruosiamojo mokymo biidu apmokomas
VPR uzduoties (virSuje), po kurio yra atliekamas parametry perkeélimas,
kad biity galima mokyti iStisinio vairavimo uzduociai (apacioje).

Miisy agento architektiira yra grindziama CILRS, kur neuroninis tink-
las yra salygotas auksto lygio (angl. high-level) navigaciniy komandu.
Siomis komandomis, kurias generuoja marsruto planuotojas (pateikia-
mas modeliavimo programinés jrangos) pagal kelionés tiksla, yra orien-
tuojamas agento sprendimuy priémimo procesas. Pradinéms vairavimo
demonstracijoms surinkti naudojame automatizuota sistema, pagrista
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RL ekspertu, pasitilytu Roach metodo, kuri suformuoja mokymo ir vali-
davimo duomenu rinkinius. Si metodika ne tik panaikina operatoriy-
Zmoniy poreikij, bet ir uztikrina nuosekliu ir kokybisku duomenuy su-
rinkima. Po paruosiamojo apmokymo etapo, atliekame savo pasitilyto
agento mokyma. Tada jgyvendiname DAgger procesa, kurio metu miisu
paruosiamojo mokymo btidu apmokytas agentas aktyviai generuoja vai-
ravimo elgsenos iprocius, o ja tuo paciu metu prizitari Roach agentas.
Kai atsiranda neatitikimy tarp miisy agento sitilomu veiksmuy ir Ro-
ach agento pasitilytu veiksmuy, $ie atvejai yra registruojami ir kaupiami
mokymo duomenu rinkinyje. Sis koreguojan¢iuju demonstracijy ag-
regavimas vykdomas pagal originalaus DAgger algoritmo nustatyta
metodika, todél miisy agentas gali mokytis i$ eksperto koreguojanciuju
veiksmu.

Sitiloma VPR paruo$iamojo mokymo btidu apmokyto agento archi-
tekttira (5.3 pav.) sudaro du lygiagreciai veikiantys kodavimo srautai:
matavimy enkoderis, kuris apdoroja esama greiti ir one-hot btidu koduo-
tas auksto lygio komandas, ir SegVPR enkoderis, kuris apdoroja vaizdo
ivesti. Abieju enkoderiy iSvestys yra sujungiamos (angl. concatenated)
ir apdorojamos jungtiniame modulyje, sudarytame i$ visiskai sujungtu
sluoksniuy, kuris sumazina kombinuoty poZymiu dimensiskuma (ang].
dimensionality). Po to $i jungtiné reprezentacija yra perduodama i
specializuotas veiksmu Sakas, kur kiekviena Saka atitinka konkrecia
auksto lygio komanda pagal i8siS8akojusia architektiira, nustatyta CILRS
ir Roach metoduose. Vairavimo metu (angl. during execution) Saka,
atitinkanti dabartine auksto lygio komanda, generuoja Zemesnio lygio
vairavimo komandas, o mokymo metu neaktyvios Sakos uzmaskuoja-
mos ir prilyginamos nulinei reikSmei.

Tegul X € R?24x224xX3 yra jvesties vaizdas i$ priekinés kameros ju-
tiklio. Agentas konvertuoja vaizdo jvesties X i R2 vektoriy, kurij su-
daro transporto priemonés akseleravimo verté (angl. throttle value) ir
postikio kampo verté (angl. steering value). Atitinkamai agentas yra
reprezentuojamas toliau nurodyta lygtimi:

n

aA(X,ul0,&,0,0) = cidi(X, ul0,&,,9), (S4)

1=0
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kur fa (£ (fe(X10), far (u[§)[@)[2) turi n veiksmo Saku ir ¢; (X, ul0, &, ¢, )
atitinka i*" veiksmo Sakos i§vesti. Kur,

* X yra jvesties vaizdas,

fe yra vaizdo enkoderis su parametrais ¢ , paruo$iamojo mokymo
btidu apmokytas atlikti VPR uzduoti (t. y. SegVPR enkoderis),

* fu yra matavimu enkoderio tinklas su parametrais §, o v yra
matavimuy vektorius (dabartinis greitis ir auksto lygio komanda),

* f; yra kitas neuroninio tinklo modulis su parametrais ¢, kuris
sujungia vaizdo ir matavimuy reprezentacijas ir sumazina ju dydj,

* fa yra veiksmu Saku modulis su parametrais 9, kuris kiekvienai
auksto lygio komandai apskaiciuoja Zemo lygio komanda,

* ¢; yra vektorius, kuris iSlaiko viena i$ n, veiksmu Saku, skirty
ivesties vaizdui X ir panaikina visas kitas veiksmu Sakas.

Siekdami supaprastinti palyginima su kitu agentu ir vadovaudamiesi
kituose darbuose taikytu metodu, nuostoliu funkcija naudojame kaip
veiksmo nuostoliy ir grei¢io prognozavimo reguliarizacijos suma (angl.
sum of action loss and a speed prediction regularisation),

EAgent<97 57 (bv 1/}) = EA(ev 57 ¢7 w) + )\S : ES? (85)

kur veiksmo nuostoliai £4 yra lygiis L1 nuostoliams tarp eksperto
veiksmo & ir prognozuojamo veiksmo a, kuris yra apskai¢iuojamas
pagal toliau nurodyta formule:

[:A - ”a_a<X7u‘67€7¢7w)Hl ) (86)

o greicio prognozavimo reguliarizacija Lg tarp uZfiksuoto greicio 3 ir
prognozuojamo grei¢io s yra apskaitiuojama pagal toliau nurodyta
formule:

Ls=|5—s]| (5.7)

Reguliarizacijos poveikis reguliuojamas skaliarine verte A, kuri yra
le-5.
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DINO PARUOSIAMASIS MOKYMAS

Dauguma metoduy yra pagristi prizitirimu mokymu paremtu paruosia-
muoju mokymu. PriZitirimas mokymas daugiausia remiasi suZymeétais
duomenimis (angl. labelled data), kai kiekvienam duomenuy taskui
yra priskiriama konkreti Zymé (angl. label) arba kategorija. Sio me-
todo taikymas didesniu mastu gali baiti brangus, nes anotacija reikia
atlikti rankiniu btidu. O savarankiskos prieZitiros mokymas (angl. self-
supervised learning) naudoja nezymétus duomenis ir generuoja dirbti-
nius priezitiros signalus i$ pac¢iu duomenu. Sitilome naudoti savidisti-
liacijos be Zymiu (angl. self-distillation with no labels, DINO) metoda
kaip paruosiamojo mokymo metoda, kad biity pagerinamas agento
gebéjimas prisitaikyti prie nauju, nematyty situaciju (kai susiduriama
su kovariaciniu poslinkiu). Panasiai kaip ir VPR paruo$iamojo mo-
kymo metodu apmokyto agento atveju, sitilome atlikti agento vaizdo
enkoderio paruosiamaji mokyma naudojant DINO kaip paruoSiamojo
apmokymo metoda. Keliame hipoteze, kad gausus Zymiu naudojimas
fikacija, riboja modelio gebéjima iSmokti platu poZymiu spektra, taigi
ir generalizuoti naujose situacijose. Neseniai pristatytas DINO, sava-
rankiSkos priezitiros mokymo metodas, rodo gebéjima mokytis plates-
nio spektro ir jvairesniy poZymiu nesiremiant konkre¢iomis Zymémis.
DINO taiko daugelio iSkarpu (angl. multi-crop) mokymo metoda ir
kontrastiniy nuostoliy funkcija (angl. contrastive loss), kad i vaizdu
be aiskiy Zymiu iSmoktu biidinga semantine informacija, ir taip paro-
do savarankiskos prieZitiros mokymo efektyvuma uzfiksuoti platesni
duomenu supratima. DINO taip pat parodé, kad jai yra buidingas se-
mantinés informacijos vaizde supratimas, kas yra naudinga jvairioms
kompiuterinés regos uzduotims, jskaitant autonominj vairavima.

Remdamiesi VPR paruosiamojo mokymo biidu apmokyto agento
struktiira, panasiai struktiiruojame ir dabartinio pasitilymo architektdira.
Siame skyriuje pasiiilyta metoda vadiname DINO paruosiamojo moky-
mo metodu, o metodo rezultata — DINO paruo$iamojo mokymo metodu
apmokytu agentu. DINO paruoSiamojo mokymo metodu apmokyto
agento kiirimas yra apraSomas toliau pateiktose dviejose dalyse. Pir-
miausia apraSomas sitilomas vaizdo enkoderio paruoSiamasis mokymas
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S.4 pav.: Paveikslélyje pavaizduota bendra DINO paruoSiamojo moky-
mo metodo blokiné schema (virsuje), kurioje naudojama mokanciojo
tinklo-mokomojo tinklo architektiira ir eksponentinis slenkantis vidur-
kis (angl. exponential moving average, EMA) mokanciojo tinklo para-
metrams atnaujinti i mokomojo tinklo. Mokantysis tinklas ir moko-
masis tinklas yra mokomi naudojant originalaus viso dydzio vaizdo
iSkarpas. Véliau iliustruojamas parametru perkélimas, kad bity galima

mokyti atlikti iStisinio vairavimo uzduoti (apacioje).
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DINO metodu. Po paruo$iamojo mokymo apraSomas paruosiamojo
mokymo biidu apmokyto vaizdo enkoderio integravimo i agenta me-
todas ir mokymas atlikti autonominio vairavimo uzduotj. Visas DINO
paruoSiamojo mokymo ir agento mokymo procesas yra pavaizduotas
S.4 paveiksle.

Vaizdo enkoderio paruosiamasis mokymas naudojant DINO

Taikant inovatyvias mokymo paradigmas, savarankiskos priezitiros
mokymas maksimaliai padidina turimy duomeny naudinguma. Tradi-
niam konkrecios siekiamos atlikti uZduoties mokymui, o savarankiskos
priezitiros mokymo metodai yra optimizuoti atlikti pagalbines uzduo-
tis, kurios netiesiogiai padeda atlikti uzsibrézta uzduoti. Sio metodo
efektyvumas priklauso nuo duomenu rinkinio dydzio, t. y. didesni
paruoSiamojo mokymo duomeny rinkiniai, derinami su tinkamomis
savarankiskos priezitiros mokymosi paradigmomis, paprastai btina efek-
tyvesni. Laikydamiesi $io principo, kaip paruosiamojo mokymo metoda
taikome DINO. DINO taiko savarankiskos prieZitiros mokymo sistema,
kuri mokosi i8§ ImageNet duomeny rinkinio, kuriame yra apie 1 mili-
jonas vaizduy. Vietoje to, jog naudotuy iprasta prizitirima klasifikavima,
DINO taiko du pagrindinius metodus: daugelio iSkarpu mokyma (angl.
multi-crop training) ir savidistiliavima (angl. self-distillation).

Kaip ir kiti Ziniu distiliavimo metodai, DINO naudoja tinklus-dvynius
(angl. twin networks), t. y. mokantijji ir mokomaji tinklus su vienodais
parametry kiekiais. Mokomasis tinklas gy, su parametrais ¢, yra apmo-
kytas imituoti jo mokan¢iojo tinklo analogo gy, su parametrais 6; iSvestis.
Gave jvesti z, abu tinklai sugeneruoja K — dimensinius tikimybiu pasi-
skirstymus (angl. dimensional probability distributions), atitinkamai
Zymimus gy, ir 6;. Tada $ie pasiskirstymai yra apdorojami modifikuota
softmax funkcija, kur temperatiiros parametras kontroliuoja pasiskirs-
tymo rySkuma. Mokomajame tinkle tikimybé P, yra apskai¢iuojama
naudojant temperatiiros parametra 7,, kaip parodyta S.8 lygtyje:

Py(x) = exp (g, (a:)(i)/TS)

a : S.8
S exp (go, (2)®)/7,) (58)
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Panasiai ir mokanciajame tinkle tikimybeé P, yra apskai¢iuojama naudo-
jant temperattiros parametra 73, kaip parodyta S.9 lygtyje:

Pi(z)? = — 2P (90, ()@ /1) .
( ) Zszl exp (9915 (f)(k)/Tt)

Temperatiiros valdymo parametrai yra salyginiai: 74, > 0, 75 > 0, ir i$

(S.9)

pradZiu yra nustatyti atitinkamai 0, 1 ir 0, 04.

Mokantysis tinklas yra mokomas kartu su mokomuoju tinklu, tac¢iau
epochos (angl. epoch) metu jis yra sustabdomas. Vietoje to, naudojant
pagreic¢io kodavimo metoda (angl. momentum encoder technique),
eksponentinis slenkantis vidurkis yra kopijuojamas i§ mokomojo tinklo
i mokantiji tinkla. Mokymo metu yra taikoma tokia atnaujinimo taisyklé:

0, < Ny + (1 — N6, (S.10)

kurioje A mokymo metu seka kosinuso grafika nuo 0, 996 iki 1. Naudo-
jant per epocha fiksuota mokantijji tinkla, mokymasis jvyksta minimi-
zuojant kryZmine entropija pagal mokomojo tinklo parametrus 6, kaip
nurodyta toliau pateiktoje lygtyje:

r%inH(Pt(‘T)aPs(x))v (811)

kur H(P;, P;) = —P,log Ps.

Pasinaudodamas savarankiskos prieZitiros privalumais, DINO nau-
doja daugelio iSkarpy augmentacijos mokyma. I$ pradziy yra suda-
romas keliy iskarpu V rinkinys, naudojant du nustatymus. Pirmuoju
nustatymu sukuriamios dvi iSkarpos, vadinamos visuotinémis iskar-
pomis (angl. global views), pazymetos z{ ir 29, kurios yra 224 x 224
skiriamosios gebos, ir kurios apima daugiau kaip 50% vaizdo. Antruoju
nustatymu sukuriamos kelios iSkarpos, vadinamos lokaliomis iSkarpo-
mis, kurios yra 96 x 96 skiriamosios gebos ir kurios apima maziau nei
50% vaizdo. Sukiirus iSkarpas, visuotinés iSkarpos yra perduodamos
per mokantijji tinkla, ir visos iSkarpos, iskaitant visuotines ir lokalias
iSkarpas, yra perduodamos per mokomaji tinkla. Atitinkamai yra nau-
dojamas S.11 lygtyje minétos nuostoliu funkcijos modifikuotas variantas,
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siekiant ja pritaikyti savarankiskos priezitiros aplinkoje tokiu badu:

min > > H(Pi(z), Pu(a')). (S.12)

0s
re(all a2} o/€Vl fa

DINO moksliniuose tyrimuose pateikti darbai rodo ju metodu efek-
tyvuma naudojant tiek konvoliucinius neuroninius tinklus, tiek transfor-
meriy architekttiras. Miisu igyvendinimui ir eksperimentams, uZuot
moke DINO modeli nuo nulio, naudojame ju konvoliucinio neuroninio
tinklo varianta, pagrista ResNet50.

Duomenu rinkimas

Vadovaudamiesi Roach metodu, CARLA simuliatoriuje surinkome vai-
ravimo duomenis, naudodami eksperta demonstratoriy, apmokyta su-
stiprinto mokymo (angl. reinforcement learning) btidu. Duomenu
rinkinj sudaro 160 epizoduy (12 valandu vairavimo duomenu) mokymo
miestuose (angl. train towns) ir mokymo oro salygomis, laikantis Le-
aderboard lyginamojo standarto (angl. benchmark). Visi agentai buvo
apmokyti pagal §j ir ta pati duomeny rinkinj.

Atskaitos metodai

Kadangi daugiausia démesio skiriame vaizdo enkoderio paruo$iamajam
mokymui, atskaitos agentai naudoja ResNet34 ir ResNet50 enkoderius,
apmokytus paruosiamojo mokymo biidu naudojant ImageNet klasifika-
cija. Dekoderis islieka identiskas pasitilytuose metoduose naudojamam
dekoderiui. Sukiireme du atskaitos agentus: BAR34IC (ResNet34) ir
BARSO0IC (ResNet50).

Metrikos

Norint kiekybiskai jvertinti ir palyginti skirtingu metodu efektyvuma,
naudojame dvi pagrindines metrikas. Jos yra iSvardytos ir apibréZtos
toliau:
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¢ Marsruto jveikimas: Si metrika parodo, kiek procenty marsruty
agentas sékmingai jveike, esant pasirinktam salygu deriniui.

e Atstumo jveikimas: Si metrika parodo, kiek vidutiniskai procentu
atstumo buvo jveikta per visus marsrutus, esant pasirinktam
salygu deriniui.

Siekiant iSplésti palyginima (kad jis apimtu ne tik supratima, ar agen-
tas jveikia marsrutus ir nuvaziuoja ilgesnius atstumus), mes jtraukiame
papildomas smulkesnes metrikas. Sios metrikos kvestionuoja agentu
elgsenos kokybe. Sios smulkesnés metrikos yra i§vardytos toliau:

* Susiduirimai su statiniais objektais (angl. Collision static): su-
sidiirimuy su statiniais objektais, esanciais veiksmo vietoje (marsru-
te) (pvz., Sviesofory stulpeliais, medZiais, atitvarais, stulpais ir
pan.), skaicius, normalizuotas vienam nuvaZiuotam kilometrui.

......

rSrute jvykusiu susidirimuy su pésciaisiais skai¢ius, normalizuotas
vienam nuvaziuotam kilometrui.

* Susidirimai su transporto priemonémis (angl. Collision vehic-
le): susidiirimy su transporto priemonémis, kurios buvo sutiktos
marsrute, skaic¢ius, normalizuotas vienam nuvaziuotam kilomet-
rui.

* Raudono $viesoforo signalo paZeidimai (angl. Red light infrac-
tion): atvejy, kai buvo pravaziuota per raudona $viesoforo signala,
skaifius, normalizuotas vienam nuvaziuotam kilometrui.

EKSPERIMENTU REZULTATAI

Naudodami marsruto jveikimo ir atstumo jveikimo metrikas, atlieka-
me VPR paruo$iamojo mokymo metodu ir DINO paruos$iamojo moky-
mo metodu apmokyty agenty vertinima juos lyginant su BAR34IC ir
BARSOIC atskaitos agentais. Papildomai atliekame pasitilytu ir baziniu
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atskaitos metodu palyginima, naudodami smulkesnes metrikas — su-
sidirimus su statiniais objektais, susidirimus su pés¢iaisiais, susidiirim-
us su transporto priemonémis ir raudono Sviesoforo signalo paZeidimus
— siekdami jvertinti agenty vairavimo elgsena.

VIZUALINIO VIETOS ATPAZINIMO PARUOSIAMOJO
MOKYMO EKSPERIMENTAI

Siekdami jvertinti siilomo metodo, t. y. VPR paruoSiamojo moky-
mo metodu apmokyto agento, privalumus, vertiname jo efektyvuma
lyginant su miisy baziniais atskaitos agentais. Nustatome kiekvieno
agento pasiektus miisy pagrindiniuy metriky, t. y. marsruto jveikimo ir
atstumo jveikimo, rezultatus. Stebint kiekvieno lyginamo metodo ge-
riausias DAgger iteracijas, VPR paruosiamojo mokymo btidu apmokytas
agentas pirmauja pagal marsrutuy jiveikima lyginant su miisu baziniais
atskaitos agentais. VaZiuodamas mokymo aplinkos salygomis, VPR
paruosiamojo mokymo biidu apmokytas agentas jveikia atitinkamai
4% ir 16, 66% didesni kieki marsruty, palyginti su BAR50IC ir BAR34IC
atskaitos agentais. VaZziuodamas aplinkose, kuriy néra mokymo duo-
menyse (t. y. naujos aplinkos salygomis), VPR paruos$iamojo mokymo
metodu apmokytas agentas iveikia atitinkamai 7, 05% ir 10, 90% didesni
kieki marsrutuy nei BAR50IC ir BAR34IC atskaitos agentai. Aprasytus
rezultatus galima pamatyti S.1 lenteléje.

S.1 lentelé: Vairavimo agentu geriausi marsruto jveikimo rezultatai (%)
mokymo ir naujomis (testavimo) salygomis visose DAgger iteracijose.

ParuoSiamojo Mokymo miestas | Naujas miestas
mokymo metodas |ir oras ir oras
BARB34IC 64.67 £+ 2 49.35+9
BARS50IC 77.33 4 53.20£1

VPR paruoSiamasis | 81.33 &= 4 60.25 4- 2
mokymas (miisu)

Norédami jvertinti pasiektus rezultatus pagal antraja pagrindine met-
rika, t. y. atstumo jveikima, taip pat vertiname ta pacia anksciau stebéta
DAgger iteracija. Mokymo aplinkos salygomis, VPR paruosiamojo mo-
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S.2 lentelé: Vairavimo agentu geriausi atstumu jveikimo rezultatai (%)
mokymo ir naujomis (testavimo) salygomis visose DAgger iteracijose.

ParuoSiamojo Mokymo miestas | Naujas miestas
mokymo metodas |ir oras ir oras
BAR34IC 79.02 + 2 75.75 £ 7
BAR50IC 89.36 + 2 72.23+6

VPR paruoSiamasis | 91.97 &+ 3 86.01 &= 0
mokymas (miisu)

kymo metodu apmokytas agentas nuvaziuoja atitinkamai vidutiniskai
2,61% ir 12,95% toliau, o naujos aplinkos salygomis VPR paruosiamojo
mokymo btidu apmokytas agentas nuvaziuoja atitinkamai vidutiniskai
13,78% ir 10,26% toliau, lyginant su BAR50IC ir BAR34IC atskaitos
agentais. Sie rezultatai pateikti S.2 lenteléje.

Papildomai atskleidZiame lyginamu metodu ir kiekvienos atsitiktinés
inicializacijos efektyvuma kiekvienoje DAgger iteracijoje. Tiek moky-
mo, tiek nauju aplinkuy salygomis VPR paruos$iamojo mokymo badu
apmokytas agentas stabiliai konverguoja i auksc¢iausia efektyvuma jau
ketvirtosios iteracijos metu, palyginti su atskaitos metodais. Tai gali-
ma pastebéti S.5 paveikslélyje. Ta pati tendencija taip pat pastebétina
ir atstumo jiveikimo metrikos atzvilgiu, kaip yra atskleidZiama S.6 pa-
veikslélyje.

Apskaiciavus eksperimenty, atlikty tiek mokymo aplinkoje, tiek nau-
joje aplinkoje, rezultatus, galima jvertinti kovariacinj poslinki. Miisu
pateikti duomenys rodo, kad VPR paruosiamojo mokymo biidu apmo-
kytas agentas ne tik pasiekia geresnius rezultatus marsrutuy jveikimo
ir ilgesniuy atstumuy jveikimo srityse, bet demonstruoja didesnij atspa-
ruma, lyginant su atskaitos metodais, ypa¢ nematytose salygose. Tai
rodo geresnes generalizacijos galimybes, ypac kai vaizdo enkoderis yra
apmokomas uZ jprastos uZduoties (vaizdu klasifikavimas ImageNet
duomenu rinkinyje) ribu. Taigi, 8is metodas leidZia uztikrinti didesnj
atsparuma kovariaciniui poslinkiui.

Vienas i§ pastebimuy VPR paruosiamojo mokymo metodo ir atskaitos
metoduy skirtumy, daranciy jtaka rezultatams, yra mokymo uzduotis.
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S.5 pav.. Agentu marsruto jveikimas (%) naudojant Leaderboard
lyginamaji standarta mokymo salygomis (virSuje) ir testavimo salygomis
(apacioje), ivertintas tris kartus su skirtingais atsitiktinés inicializacijos
parametrais ir pavaizduotas kartu su efektyvumo vidurkiu.
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S.6 pav.: Agenty atstumo jveikimas (%) naudojant Leaderboard
lyginamaji standarta mokymo salygomis (virSuje) ir testavimo salygomis
(apacioje), ivertintas tris kartus su skirtingais atsitiktinés inicializacijos
parametrais ir pavaizduotas kartu su efektyvumo vidurkiu.
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VPR paruosiamojo mokymo metodas pasitelkia trejeto nuostoliu funk-
cija regimajam vietos atpazinimui, kaip mokymo uzduoti jtraukiant
semantinj segmentavima, prieSingai nei atskaitos metodai, kurie remia-
si klasifikavimo nuostoliu funkcija. Toks nustatymas teikia pirmenybe
viety supratimui kintan¢iomis oro ir apSvietimo salygomis, o ne unikaliu
objektu klasiu kodu formavimui. Remiantis rezultatais, toks pasirinki-
mas leidZia sukurti vaizdo enkoderj su pranaSesne parametry inicializa-
cija (angl. weight initialisation), kuriuos galima perkelti i autonominio
vairavimo uZduotj.

Kitas VPR paruosiamojo mokymo metodo ir atskaitos metodu skir-
tumas, turintis jtakos pateiktiems rezultatams, yra duomenu rinkinys.
VPR paruosiamojo mokymo metodo duomeny rinkinys yra sudaromas
i§ vaizduy, kurie yra susije su vairavimo uzduotimi. O atskaitos meto-
dai remiasi ImageNet duomenu rinkiniu, kuri sudaro nereiksmingos
vaizdu klases, pavyzdZiui, katés, Sunys, ivairtis objektai ir t. t. Sj skirtu-
ma priskiriame prie vieno i$ jtakingiausiy, nes susidiirimas su susijusiu
duomeny pasiskirstymu yra esminis masininio mokymo efektyvumui.

DINO PARUOSIAMOJO MOKYMO AUTONOMINIAM
VAIRAVIMUI EKSPERIMENTAI

Siekdami jvertinti siilomo DINO paruosiamojo mokymo metodu ap-
mokyto agento efektyvuma, atliekame lyginamaja analize su dviem
atskaitos metodais ir anks¢iau pristatytu VPR paruosiamojo mokymo
metodu apmokytu agentu. Sia analize atliekame stebédami ivardytu
metodu efektyvuma pagal miisu pagrindinius rodiklius — marsruto
iveikima ir atstumo jveikima.

DINO paruosiamasis mokymas pranoksta visus metodus naujose
aplinkose pagal didZiausio kiekio marsruty jveikimo metrika. Mes paly-
giname kiekvieno metodo geriausias DAgger iteracijas ir rezultatai rodo,
kad DINO paruos$iamojo mokymo biidu apmokytas agentas jveikia vi-
dutiniskai 1, 93% didesni skai¢iy marsruty nei anks¢iau pasitlytas VPR
paruosiamojo mokymo btidu apmokytas agentas. Lyginant su BAR34IC
ir BARSOIC atskaitos agentais, paruosiamasis mokymas naudojant DI-
NO metoda pasiekia atitinkamai vidutinigkai 12, 83% ir 8,98% didesni
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skaiciy jveikty marsruty. Tac¢iau mokymo aplinkose pagal gebéjima
iveikti marsruta DINO paruoSiamojo mokymo biidu apmokytas agen-
tas atsilieka 8, 66% nuo VPR paruosiamojo mokymo biidu apmokyto
agento, o pagal efektyvuma priartéja prie BAR50IC atskaitos agento.
Rezultatai pateikiami S.3 lenteléje. Pagal atstumo iveikimo metrikos re-
zultatus naujos aplinkos salygomis DINO paruosiamojo mokymo btidu
apmokytas agentas efektyvumu lenkia BAR34IC ir BAR50IC atskaitos
agentus atitinkamai vidutiniskai 6, 92% ir 10, 44%. O mokymo aplinkos
salygomis DINO paruo$iamasis mokymas atsilieka 3, 32% lyginant ji
su geresnj efektyvuma pasiekianéiu atskaitos metodu —t. y. BARS0IC.
Lyginant su VPR paruosiamojo mokymo biidu apmokytu agentu, DINO
paruosiamojo mokymo btidu apmokytas agentas jveikia trumpesnius
atstumus. Rezultatai pateikiami S.4 lenteléje.

S.3 lentelé: Vairavimo agentuy geriausi marsruto iveikimo rezultatai (%)
mokymo ir naujomis (testavimo) salygomis visose DAgger iteracijose.

ParuoSiamojo mokymo | Mokymo miestas | Naujas miestas
metodas ir oras ir oras
BARB34IC 64.67 + 2 49.35+9
BARS0IC 7733 +4 53.20 + 1

VPR paruoSiamasis 81.33 £ 4 60.25 £ 2
mokymas

DINO paruoSiamasis | 72.67 £ 3 6218 £ 7
mokymas (miisu)

S.7 ir S.8 paveiksléliuose taip pat pateikiame visy DAgger iteraciju
abieju pagrindiniu metriky rezultatus. Kaip matyti i maisu rezultaty,
pazymeétina, kad DINO paruos$iamojo mokymo metodas konverguoja
i geresnius rezultatus anks¢iau nei kiti metodai ir pirmauja marsruto
iveikimo metrikoje naujos aplinkos salygomis. Palyginti su atskaitos
metodais, DINO paruo$iamojo mokymo metodas generuoja reikSmingai
geresnius rezultatus.

DINO paruosiamojo mokymo bidu apmokytas vaizdo enkoderis ir
lyginti atskaitos paruosiamojo mokymo btidu apmokyti enkoderiai turi
reik$minga bendra bruoza — paruo$iamojo mokymo duomeny rinkinys
yra ImageNet. Nepaisant to, rezultatai rodo reikSminga pageréjima
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S.7 pav.. Agentu marsruto jveikimas (%) naudojant Leaderboard
lyginamaji standarta mokymo salygomis (virSuje) ir testavimo salygomis
(apacioje), ivertintas tris kartus su skirtingais atsitiktinés inicializacijos
parametrais ir pavaizduotas kartu su efektyvumo vidurkiu.
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S.8 pav.: Agenty atstumo jveikimas (%) naudojant Leaderboard
lyginamaji standarta mokymo salygomis (virSuje) ir testavimo salygomis
(apacioje), ivertintas tris kartus su skirtingais atsitiktinés inicializacijos
parametrais ir pavaizduotas kartu su efektyvumo vidurkiu.
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S.4 lentelé: Vairavimo agentuy geriausi atstumu jveikimo rezultatai (%)
mokymo ir naujomis (testavimo) salygomis visose DAgger iteracijose.

ParuoSiamojo mokymo | Mokymo miestas | Naujas miestas
metodas ir oras ir oras
BARB34IC 79.02 £2 75.75 £ 7
BARS50IC 89.36 £ 2 72.23£6

VPR paruosSiamasis 91.97 + 3 86.01 =0
mokymas

DINO paruosiamasis  |[86.04 + 1 82.67£6
mokymas (miisu)

pagal marsruto jveikimo ir atstumo jveikimo metrikas. Remiantis em-
piriniu vertinimu, 8j pageréjima galima priskirti pasirinktam mokymo
metodui ir nuostoliy funkcijoms, kurios yra naudojamos paruosiamojo
mokymo naudojant DINO metoda metu. Sis skirtumas leidzia patobu-
linti mokymo procesa ir pasiekti geresniy vaizdiniu poZymiu kodavima,
kurie yra naudingi autonominio vairavimo uzduociai, taigi irodo, kad
vaizduy klasifikavimas (kaip paruoSiamojo mokymo metodas) yra prara-
des aktualuma.

Kita problema, kuria, kaip matyti i$ rezultaty, sprendzia DINO pa-
ruosiamojo mokymo metodas — persimokymas (angl. over-fitting). Pag-
rindiniai metodai rodo daug didesnj efektyvumo atotriiki pereinant
nuo mokymo aplinkos salygu i naujos aplinkos salygas, lyginant su
DINO paruo$iamojo mokymo metodu ir jo rezultatais. Sis atotriikis gali
biiti susidares dél stipraus persimokymo (angl. over-fit), nes DINO pa-
ruosiamojo mokymo metodas rodo didesne generalizacija esant naujos
aplinkos salygoms, bet tuo paciu pasiekia prastesnus marsruto jveikimo
rezultatus mokymo aplinkos salygose nei BAR50IC atskaitos metodas.

Apibendrinant §j metoda, pabréziame, kad geresnis paruoSiamasis
mokymas lemia geresnj vairavimo uzZduoties mokyma, ypac lyginant
su jprastais paruoSiamojo mokymo metodais.
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ISPLESTINE ANALIZE

Siekdami atkreipti démesij i tai, kaip lyginami metodai geba generali-
zuoti, minétas metrikas apskaic¢iuojame remdamiesi tuo, kaip agentai
vaZziuoja naujos aplinkos salygomis, o ne mokymo aplinkos salygomis.
DINO paruosiamojo mokymo bidu apmokytas agentas pasiekia nuo-
seklius rezultatus pagal visas keturias metrikas — t. y. jis maZiausiai
atlieka maZiausiai raudono Sviesoforo signalo paZeidimu. S.5 lenteléje
atskleidZiame $io vertinimo skaitmenines reikSmes. VPR paruosiamo-
jo mokymo metodu apmokytas agentas jrodo esas sékmingas pagal
pagrindinius rodiklius, nes jveikia daugiausia marsruty ir pasiekia to-
limesnius atstumus. Taciau VPR paruosiamojo mokymo metodu ap-
mokytam agentui nepavyksta pasiekti nuoseklumo atliekant maZesni
kiekj klaidu pagal smulkesnes metrikas, vertinancias agento elgesio
kokybe, priesingai nei DINO paruosiamojo mokymo biidu apmokytas
agentas ir BARS0IC atskaitos agentas. Manytina, kad tai gali bati su-
sije su vertinant VPR paruosiamojo mokymo biidu apmokyto agento
elgsena anks¢iau nustatytu persimokymu. Sie rezultatai dar karta pa-
tvirtina DINO paruo$iamojo mokymo bidu apmokyto agento geresni
generalizacijos gebéjima, kai yra vairuojama naujose aplinkose.

S.5 lentelé: Lyginamu paruosiamojo mokymo metoduy susidarimy ir
pazeidimu daZnis, normalizuotas pagal nuvaZziuota atstuma vienam
kilometrui.

ParuoSiamojo Susidii- | Susidiirim- | Susidiir- | Raudono
mokymo rimai su | aisutrans- | imaisu | Sviesoforo
metodas statiniais | porto prie- | pésciai- signalo
objektais | monémis siais pazZeidimai
BAR34IC 0.22 0.87 0.08 1.13
BAR50IC 0.15 0.73 0.05 0.95
VPR paruoSiam- 0.24 0.82 0.06 1.03
-asis mokymas
DINO paruosia- 0.13 0.49 0.02 0.66
-masis mokymas
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BENDROSIOS ISVADOS

1. Misu tyrimas rodo, kad vaizdo enkoderio paruosiamasis moky-
mas atlikti VPR uzduoti naudojant trejeto nuostoliy funkcija page-
rina autonominio vairavimo efektyvuma, lyginant su jiprastiniu
ImageNet grindZziamu paruosiamuoju mokymu. Konkreciai, pasi-
telkiant trejeto nuostoliu funkcija pagrista paruosiamaji mokyma
yra pasiekiama geresniy rezultaty, palyginti su vertintais atskai-
tos agentais: lyginant su BARS0IC atskaitos agentu, marsruto
iveikimas pageréjo 7,05%, atstumo iveikimas — 13,78%, o lygi-
nant su BAR34IC atskaitos agentu, marsruto jveikimas pageréjo
10,90%, atstumo iveikimas — 10, 26%. Sie rezultatai rodo, kad
konkreciai uzduociai skirtas paruosiamasis mokymas yra efekty-
vus siekiant pagerinti imitacinio mokymo rezultatus autonominio
vairavimo srityje.

2. Misuy eksperimentiniai rezultatai rodo, kad paruoSiamasis moky-
mas taikant DINO metoda pagerina agento gebéjima generalizuoti
anksc¢iau nematytose aplinkose, palyginti su atskaitos metodais.
Konkreciai, DINO paruosiamojo mokymo metodu apmokytas
vaizdo enkoderis, palyginti su BARS0IC atskaitos agentu, pasiekia
8,98% geresnius marsruto jveikimo ir 10, 44% geresnius atstumo
iveikimo rezultatus, o palyginti su BAR34IC atskaitos agentu, pa-
siekia 12,83% geresnius marsruto jveikimo ir 6,92% geresnius
atstumo iveikimo rezultatus. Sie rezultatai i$rykina DINO poten-
ciala gerokai padidinti imitaciniu mokymu pagristo autonominio
vairavimo patikimuma.

3. Lygindami agentus, apmokytus paruo$iamojo mokymo btidu tai-
kant VPR ir DINO metodus, formuojame iSvada, kad DINO me-
todu apmokytas agentas pasiZymi geresnémis generalizacijos sa-
vybémis. DINO paruosiamojo mokymo metodu apmokytas agen-
tas pasiekia 1, 93% geresnius marsruto jveikimo rezultatus ir de-
monstruoja pastebimai geresnius susidirimy iSvengimo ir eismo
taisykliy laikymosi rezultatus. Konkreciai, vienam nuvaZiuotam
kilometrui DINO metodu apmokytas agentas atlieka 0, 11 maZiau
susidirimy su statiniais objektais, 0,33 maZiau susidiirimu su
transporto priemonémis, 0,04 maZiau susidiirimy su pésciaisiais
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ir 0, 37 maziau raudono Sviesoforo signalo paZeidimuy, palyginti
su VPR paruosiamojo mokymo metodu apmokytu agentu.
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