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Dr. Jolita Bernatavičienė (Vilnius University, Natural Sciences, Informatics
– N 009),
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ABSTRACT

Explainable AI (XAI) has become increasingly important in computer
vision applications. While substantial progress has been made in ex-
plainable image classification, XAI in semantic segmentation remains
underexplored despite its critical role in healthcare, autonomous sys-
tems, and other high-stakes domains. Given the widespread use of
image segmentation, a systematic investigation of its explainability is
needed.

This dissertation bridges this gap by focusing on post-hoc inter-
pretability in semantic segmentation and adversarial attack scenarios.
It proposes and investigates three explainability method extensions:
occlusion-based, activation perturbation-based, and gradient-based ap-
proaches, all specifically designed for segmentation tasks. These meth-
ods are assessed for their trade-offs between explanation noisiness and
computational efficiency. The applications of post-hoc techniques are
further evaluated in adversarial attack scenarios, demonstrating that
semantic segmentation explainability techniques can be successfully
attacked to generate arbitrary explanations. Key contributions also in-
clude a first survey of explainability techniques, not limiting itself to
a particular type of explainability method or its application domain, a
comprehensive taxonomy of XAI methods in segmentation, and insights
into the broader implications of explainability in high-stakes applica-
tions.
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NOTATION

gc,A(x) A sum of logits for c in segmentation,
gc,A(x) =

∑
i,j∈A gc(xij).

A A set of pixel indices of interest.
G(x, c) A saliency map of class c for classification,

G(x, c) = ∂gc(x)
∂x .

GA(x, c) A saliency map of class c for segmentation,
GA(x, c) =

∂gc,A(x)
∂x .

c A class of interest.
gc(x) A prediction score before the Softmax

function for class c with respect to x,
g(x) = (g1(x), ..., gC(x)) ∈ RC .

lc(xij) The logit value for a single pixel xij for class c.
xadv A perturbed image.
xij A single pixel of x, where i and j are the row

and column indices, respectively.
x An RGB image, where x ∈ RN×M×3, with N and

M as spatial dimensions, and 3 RGB channels.
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Praktinė darbo vertė . . . . . . . . . . . . . . . . . . . . . . . . 136

Ginamieji teiginiai . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Tyrimo aprobavimas ir publikavimas . . . . . . . . . . . . . . . 137
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INTRODUCTION

In the past decade, Artificial Intelligence (AI) systems have achieved
impressive results, most notably in natural language processing and
computer vision. The performance of such systems is typically measured
by evaluation metrics that vary depending on the task but aim to assess
the system’s outputs. Today’s leading AI systems largely rely on deep
learning (DL) models, multi-layered neural networks that tend to exhibit
increasingly complicated structures in terms of model parameters. The
growing complexity of such systems resulted in them being labeled
as “black boxes.” This indicates that the evaluation metric does not
show the full picture: even if its measurement is correct, it does not give
insights into the inner workings of the model.

The field of explainable AI (XAI) encompasses different branches of
methods that attempt to give insights into a model’s inner workings, ex-
plain outputs, or make the entire system more interpretable to end users,
such as human decision-makers. There is ongoing debate regarding XAI
terminology. Concepts like interpretability, explainability, understand-
ing, reasoning, and trustworthiness are challenging to formalize. While
some authors use “interpretable” and “explainable” interchangeably
[156], others distinguish between the two [175, 176]. When the distinc-
tion is made, it is usually to demarcate post-hoc explanations, a type of
XAI techniques applied after the model has been trained, and inherently
interpretable models [176]. Post-hoc can be understood as referring to
the fact that XAI techniques are applied after training and interpret the
results of the model, rather than its internal structure. In contrast, inher-
ently interpretable models are designed in such a way that their inner
workings can be understood directly without additional explanation
techniques. This way interpretability becomes associated with the trans-
parency of the model itself and depends on the ease with which one can
interpret the model. For instance, a simple decision tree-based model
might be considered more interpretable than a DL model composed of
millions of parameters, provided that the former is not too deep. Ex-
plainability, in contrast, is often limited to understanding the model’s
results rather than the model as a whole. In this thesis, “interpretable”
and “explainable” will be used interchangeably, while more specific
“architecture-based” and “inherently interpretable” terms will be used
when discussing model-specific XAI modifications. This is because not
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many of the surveyed papers use the term interpretability in a second
sense. Since most papers in explainable segmentation do not make this
distinction, this might avoid unnecessary confusion when discussing
their contents. It should also be noted that interpretability and ease of
understanding vary according to the specific audience, whether it be the
general public or a more specialized group with specific training, such
as radiologists.

Explainable segmentation requires pixel-level explanations, making
it a more complex and challenging task than explainable classification.
Compared to explainable image classification, the number of explain-
ability techniques available for image segmentation is limited. Many
explainability methods developed for classification have yet to be ex-
tended to segmentation tasks, and even among the existing approaches,
several lack comprehensive investigation. This gap is particularly notice-
able given the widespread applications of image segmentation, ranging
from medical to industrial domains. New explainability techniques for
image segmentation are still being developed, and there is a lack of
studies at the intersection of explainable segmentation and AI safety,
particularly in evaluating their robustness against adversarial attacks.
This dissertation seeks to expand the limited number of XAI techniques
in image segmentation. It also investigates adversarial attacks targeting
explainable segmentation. Furthermore, it provides a comprehensive
survey of XAI in image segmentation and discusses how the proposed
explainability techniques could contribute to XAI-driven model im-
provements.

Research Focus

The research focus is on post-hoc explainability methods for interpret-
ing DL models, particularly convolutional neural networks (CNN), in
semantic image segmentation.

Research Aim and Objectives

The research aim is to develop novel methods for explainable segmen-
tation suitable for convolutional neural networks, and evaluate their
susceptibility to adversarial attacks. To achieve this aim, the following
objectives are set:
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• Investigate existing interpretability methods for image classifica-
tion and segmentation, identifying the most suitable solutions for
convolutional neural networks. Based on this investigation, to
prepare a comprehensive survey and taxonomy of XAI methods
in image segmentation.

• Extend and implement new XAI techniques in segmentation based
on XAI methods in classification, such as occlusion-based, activa-
tion perturbation-based, and gradient-based approaches, evaluat-
ing them both qualitatively and quantitatively.

• Investigate the potential deployment of interpretable semantic seg-
mentation techniques in adversarial settings, evaluating both their
defensive capabilities and susceptibility to adversarial attacks.

Scientific Novelty

1. This work proposes a comprehensive survey of explainability tech-
niques in image segmentation, not limiting itself to a particular
type of explainability method or its application domain, and in-
cludes a comprehensive taxonomy of explainable segmentation
techniques.

2. This work presents an extension of Ablation-CAM [62], a widely
used explainability technique, adapted for semantic image seg-
mentation models.

3. This work provides a systematic investigation of input perturbation-
based XAI techniques, evaluating the impact of varying input im-
age occlusion sizes and colors on model outputs, with a focus on
both qualitative and quantitative metrics.

4. This work demonstrates that it is possible to construct a successful
adversarial attack against post-hoc explanation techniques in se-
mantic segmentation, extending the original work [65] in image
classification.
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Practical Significance

XAI in image segmentation is a relatively new field, with the first articles
on the subject appearing in the late 2010s [107, 212, 219]. Since then,
the topic has gained more attention. Semantic image segmentation is
an essential task in computer vision, with applications ranging from
autonomous driving [76] to medical image analysis [17]. Its study is
further motivated by the rapidly growing remote sensing and video
data. Increasing deployments in medical AI are also contributing to the
need for explainable segmentation. Both radiologists and surgeons need
to know accurate boundaries for the anatomical structures of interest.
Precise and reliable segmentation is required when working with most
pathologies in different imaging modalities, ranging from magnetic
resonance imaging (MRI) to computed tomography (CT).

Advances in XAI methods for image segmentation can address the
growing demand for trustworthy AI in high-stakes domains. Improved
post-hoc explainability can enhance user trust and facilitate regulatory
compliance, particularly in medical and sensitive industrial applications.
A thorough analysis of the use of XAI techniques in adversarial scenarios
can aid in identifying and mitigating adversarial risks associated with
explainable segmentation methods, contributing to the development
of secure AI solutions. The taxonomy and methods proposed in this
research can provide practitioners with tools to systematically evalu-
ate and deploy explainability techniques, bridging the gap between
theoretical advancements and real-world applications.

Statements to be Defended

• Perturbation-based post-hoc explainability methods, applied to
both input and activation spaces, are suitable for interpreting the
outputs of CNN-based semantic segmentation models.

• Post-hoc interpretable segmentation techniques are applicable in
adversarial contexts, both in detecting and enabling adversarial
attacks.
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Outline of the Thesis

This doctoral thesis consists of an introduction, four chapters, conclu-
sions, and a summary in Lithuanian. The introduction provides an
overview of XAI, emphasizing its importance in semantic image seg-
mentation, and presents the research object, aim, objectives, scientific
novelty, practical significance, and statements to be defended. Chap-
ter 1 reviews the literature on XAI, discussing its development in com-
puter vision, proposing a taxonomy for explainable semantic segmen-
tation methods, and highlighting the limitations of existing techniques.
Chapter 2 introduces the methods developed in this thesis, including
perturbation-based, gradient-based, and adversarial approaches for ex-
plainable semantic segmentation, detailing their theoretical foundations
and practical implementations. Chapter 3 presents the experimental
evaluation of the proposed methods, focusing on their performance in
interpretability, computational efficiency, and robustness under adver-
sarial scenarios. Chapter 4 discusses the open challenges in XAI for
semantic segmentation, evaluates trade-offs between interpretability
and robustness, and suggests directions for future research, including
hybrid and self-supervised methods. The dissertation concludes with a
summary of key findings and contributions, implications for practical de-
ployment, and recommendations for advancing the field. Bibliographic
references are included at the end. The dissertation consists of 153 pages,
40 figures, and four tables.
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1. SURVEY OF XAI IN IMAGE SEGMENTATION

This chapter provides an in-depth survey of XAI techniques in semantic
image segmentation. It introduces the foundational concepts of XAI,
examines the development of explainability methods in computer vision,
and discusses their applications. A detailed taxonomy of XAI methods
for segmentation is proposed. The chapter also highlights limitations in
existing methods and underscores the need for advancements to address
challenges in interpretability, particularly in high-stakes applications
like healthcare and autonomous systems. The main results presented in
this chapter have been published in [A.2].

XAI is not a new development, particularly in rule-based expert sys-
tems [190, 202] and machine learning (ML) [79], but it has experienced
unprecedented growth since the revived interest in neural networks in
2012 [131]. This growth correlates with the increasing interest in DL
and is further driven by: (1) the need for trustworthy models due to
widely expanding industrial deployments [B.5]; (2) bureaucratic and
top-down political emphasis on AI regulation [B.4]; and (3) concerns
within the ML safety community [11] about the general trajectory of AI
development in the short and long run. AI deployment is increasing
across different sectors, and is significant both in terms of its size and
impact. According to the AI Index Report 2023 [152], the proportion of
companies adopting AI more than doubled from 2017 to 2022. In 2022,
the medical and healthcare sectors attracted the most investment, with a
total of 6.1 billion dollars [152]. The IBM Global AI Adoption Index 2023
[160], conducted by Morning Consult on behalf of IBM, indicates that
about 42% of their surveyed (> 1, 000 employees) enterprise-scale com-
panies reported actively deploying AI, and an additional 40% exploring
and experimenting with AI, out of which 59% reported an acceleration
in their rollout or investments. Even with rapid deployment, critical
high-impact sectors tend to move at a slower pace. One could expect
even more healthcare-related applications and clinical deployments if
AI methods were more interpretable. To a large extent, this applies to
other industries as well. According to the same IBM report, most of the
surveyed IT professionals (83% among companies already exploring
or deploying AI) stated that it is important that their business explain
how its AI reached a decision. Another accelerating trend is that of AI
regulation (Fig. 1.1). The recent survey [56] indicates that 81% of re-
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spondents (N > 6,000) expect some form of external AI regulation, with
57-66% of respondents reporting that they would be more willing to use
AI systems if trustworthiness-assuring mechanisms were in place. AI
trustworthiness and transparency are further emphasized in regulatory
discussions, ranging from the EU’s AI Act [52] to AI executive order
[205] in the United States.
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Figure 1.1: Publications with “explainable AI,” “interpretable AI,”
and “AI regulation” as keywords. Publication data gathered from
app.dimensions.ai, part of the Dimensions research analytics platform
by Digital Science. The publication number is based on full-text data,
not limited to titles and abstracts, and includes preprints from arXiv and
SSRN.

Segmentation is commonly viewed as a dense prediction task where
classification is performed on a pixel level. However, most XAI literature
so far has focused on image classification tasks. Nonetheless, a growing
number of works address the issue of interpreting semantic segmen-
tation results by either extending classification-based methods or by
proposing their own modifications. Two Ph.D. dissertations [162, 211]
on XAI in image segmentation were written in 2023, but neither pro-
vided a comprehensive survey of the field, as they primarily focused
on directly related works. Image segmentation methods have been re-
viewed in the medical domain [97], however, the focus has been just on
the post-hoc techniques.
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1.1. Background

1.1.1. Development of the Field of XAI in Computer Vision

There is a great variety of XAI methods in classification, with new tech-
niques being proposed weekly. Typically, these methods employ some
form of feature attribution, indicating the model’s sensitivity or insen-
sitivity to various features, such as certain pixel configurations in the
input space. The most popular explainable classification methods, still
influential in today’s DL models, fall into gradient-based or perturbation-
based categories. This subsection highlights key developments, with
a particular focus on the methods that have influenced interpretable
image segmentation. For an accessible introduction to and treatment of
explainable classification, readers may refer to [158]. A more detailed
survey on these topics can be found in [234].

The first gradient-based explainability techniques for classification
in CNNs are proposed in [192]. The initial method generates artificial
images that maximize the score for the selected class of interest. The
second method, also referred to as vanilla gradient, produces a saliency
map1 that highlights important regions in the input space. This is based
on the gradient for the class of interest with respect to the input. The
authors also observe that this method can be used for weakly supervised
segmentation. This marks the possibility of using XAI tools instrumen-
tally, not just for the sake of explainability. In [188], the influential
Grad-CAM technique is introduced. Its calculation is based on the gradi-
ent flow into the last convolutional layer. Since Grad-CAM is calculated
for intermediate model activations, the resulting explanation needs to
be upsampled. This upsampling process might negatively impact the
quality of pixel-level explanations [129]. Similar to [192], the Grad-CAM
technique also demonstrates the potential for instrumental use in weakly
supervised localization.

Another area of explainable classification methods encompasses
occlusion or perturbation-based techniques, which assess a model’s
decision-making by systematically occluding (or perturbing) the input
and observing the impact on the output. This type of method was first

1Even though saliency maps are sometimes considered a specific type of heatmap,
for the purposes of this dissertation, unless stated otherwise, the term “heatmap” will
be used synonymously with “saliency map.”
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introduced in [227] under the name of occlusion sensitivity. It proposes
systematically occluding the input image with a smaller grey filter and
measuring the effect on the model’s output. The likelihood of the model
classifying the image as belonging to the actual class should decrease
when the object of that class is occluded in the input space. Other
perturbation-based techniques include LIME [173], SHAP [147], and
RISE [169] which extend this idea in different ways.

Other noteworthy methods in explainable classification have fo-
cused on optimization. Activation maximization, previously proposed
in [71], initially focused on restricted Boltzmann machines, a type of
unsupervised models. In [192], it has been specifically implemented
in supervised classification models. In [166], this technique was fur-
ther popularized by demonstrating the results across different network
layers. Unlike the previously discussed XAI techniques, this type of
explanation method can be described as global because the generated
image does not depend on a particular input image but rather on the
model’s internal weights.

XAI Research in Lithuania

At the national level, the XAI use has been primarily investigated
in the financial sector [33, 34]. In [33], XAI is discussed in the context
of multi-criteria decision-making methods, including their review and
classification. In [34], another review covers the XAI applications in
finance from 2005 to 2022, identifying LIME and SHAP as the most
commonly used explainability methods. However, these studies do
not directly engage with computer vision or image segmentation in
particular. Medical applications of XAI have also been investigated for
classification tasks [163, 204]. In [163], a soft attention mechanism is
presented for CNNs, and its dermatological applications are investigated
for the classification of skin cancer images. In [204], a spatial attention-
based module is presented for the classification of brain MRI scans. In
both cases, the proposed methods are not post hoc, and are based on
architectural modifications. To the best of our knowledge, there has
been no research at the intersection of XAI, image segmentation, and
adversarial robustness.
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1.1.2. Specifics of Semantic Segmentation

Most of the literature on interpretable computer vision focuses on classi-
fication. However, DL-based semantic segmentation techniques have
achieved significant results. Classical encoder-decoder models such
as U-Net [174] or SegNet [21] as well as their modifications, have been
deployed in various fields. Vision transformer-based segmentation archi-
tectures have also been proposed [199]. There have even been attempts
to combine these two approaches [37]. During semantic segmentation,
class labels are assigned to each pixel, and the output is typically the
same resolution as the input image. Modern segmentation models can
be composed of millions of parameters, making their interpretation
difficult and often resulting in their description as “black boxes.”

Interpretability in semantic image segmentation is a challenging
area of study. On one hand, it can be viewed as an extension of a
relatively intuitive interpretable classification. However, it requires com-
bining the relative influence of each classified pixel of interest. On the
other hand, interpreting its own explanations is not so straightforward
or intuitive. One problem with interpretability methods, not limited to
semantic segmentation, is the lack of ground truths for explanations.
Furthermore, it is uncertain what the ideal explanation should look like
or whether one interpretable instance can be limited to a single expla-
nation. In classification, at least some candidates for good explanations
exist, allowing for qualitative human-based studies [126]. Conducting a
similar study for semantic segmentation is more complex, as it is less
clear what constitutes good explanation candidates: should the inter-
pretability saliency map focus on the entire area of the class of interest
or just its boundaries? Can there be instances where the most salient fea-
tures are outside the class area? What if the segmentation area is correct,
but the attributed class is not? Moreover, semantic image segmentation
is notorious for inter-observer variability, especially in manual delin-
eations in medical images. One way to demonstrate the usefulness of
explainable segmentation is to detect instances where the segmentation
of one semantic class appears heavily dependent on the presence of
different class pixels, whether nearby or otherwise. In [212], such a case
is demonstrated when the U-Net detects the sky primarily due to the
nearby trees, which belong to the Nature class. Interpretable semantic
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segmentation techniques prove most useful when the segmentation is
incorrect.

(a) Pixel of interest (top leftmost) (b) Explanation for a pixel in (a)

(c) Pixel of interest (centermost) (d) Explanation for a pixel in (c)

Figure 1.2: Explanation for single pixels: the selected pixels are shown
on the left, with their corresponding gradient-based explanations on the
right.

Since the segmentation task can be framed in terms of classification,
applying explainable classification methods to it is relatively straightfor-
ward when focusing on a single pixel, as seen in Figure 1.2. For instance,
a gradient for the selected output pixel of a chosen class can be calculated
with respect to the entire input image. However, an explanation map
for the classification of a single pixel is not particularly useful. It is less
accessible to the human interpreter, as evaluating thousands of different
explanations for just a single class in a single image would be required.
Therefore, considering the effects of a larger number of pixels becomes
necessary. Most popular explainable segmentation techniques operate
under the underlying assumption of pixel importance. This assump-
tion is particularly relevant to perturbation-based methods (Fig. 1.3)2,
where introducing noise to important pixels would degrade a model’s
performance more significantly than adding it to less critical pixels. To

2Here, and in Figures 1.5–1.10, only high-level frameworks are presented. Concrete
implementation details might differ depending on the use case and the specific subtype
of XAI method within each group in the provided taxonomy (Fig. 1.4).
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explain the whole image (i.e., all pixels) instead of just a single pixel,
most explainable segmentation techniques must visualize the relative
contributions of all pixels simultaneously. Otherwise, the analysis of
separate single-pixel-based explanation maps would be too tedious. The
most popular way to do it involves using logit values, unnormalized
probabilities before the Softmax layer, typically used in classification.
This could be achieved, for instance, by summing up the logits of the
class of interest for the pixels of interest. This new scalar value can then
be used when generating a single explanation for the entire image, just
like in the case of a single pixel.

Figure 1.3: Explanation for multiple pixels: the application of a
perturbation-based method to the COCO [141] dataset using summed
up logit values.

1.1.3. Limitations

Feature attribution and saliency-based XAI methods in particular have
faced criticism [5, 127, 182]. Although these criticisms have solely fo-
cused on explainable classification, they deserve a thorough examination
as they could also extend to segmentation. Some of the XAI methods act
as regular edge detectors, independently from the underlying model and
training dataset. This independence is troubling because a local post-hoc
XAI method should explain a specific model’s prediction for a particu-
lar data point. In [29], limitations of feature attribution methods such
as SHAP and integrated gradients are emphasized both theoretically
and empirically, showing that they cannot reliably infer counterfactual
model behavior. The authors observe that the analyzed attribution
methods resemble random guessing in tasks like algorithmic recourse
and spurious feature identification. Similar experimental results are
observed with gradients, SmoothGrad [196], and LIME [173].
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Attribution methods have also been criticized for confirmation
bias [12]. An appealing but incorrect explanation might be judged
more favorably than a more realistic one. A better understanding of
the goals of an idealized attribution method is needed to develop im-
proved quantitative tools for XAI evaluation [12]. In [6], the limitations
of post-hoc explanations are investigated. The authors question their
effectiveness in detecting unknown (to the user at test time) spurious
correlations. These inefficiencies are detected in three types of post-hoc
explanations: feature attribution, concept activation, and training point
ranking. However, the authors acknowledge that these three classes do
not fully cover all post-hoc explanation methods. Other methods have
been criticized for their weak or untrustworthy causal relationships. In
[19], saliency maps are criticized for their frequent unfalsifiability and
high subjectivity. The study also highlights their causal unreliability
in reflecting semantic concepts and agent behavior in reinforcement
learning environments. In [164], it is argued that feature attribution tech-
niques are not more effective than showing the nearest training-set data
point when tested on humans. The limitations of attribution methods in
cases of non-visible artifacts [239] have also been investigated.

Despite the critical studies on explainable classification and their
potential extensions to segmentation, the widespread prevalence of im-
age segmentation requires investigating different explainability tools
and their working mechanisms. Although some studies point out the
limitations of these techniques, better alternatives have yet to be devel-
oped. As observed in [85], the development of interpretability methods
is dialectical: a new method is introduced, its failure modes are iden-
tified, and as a result, a new method is proposed, with the ongoing
aim of making them more reliable. Current methods have much room
for improvement, especially considering that the entire field is in the
early stages of development. The above criticisms can serve as sanity
checks for XAI methods. Despite the limitations, some techniques, such
as gradients and Grad-CAM in the case of [5], do pass certain sanity
checks. Even some critical literature [85] agrees that certain explainabil-
ity techniques can be useful for exploratory use cases. No studies have
yet explored the specifics of XAI limitations in image segmentation.
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1.2. Taxonomy

Different XAI taxonomies have been introduced in classification, both
with respect to specific subgroups of interpretability methods [16, 73]
and more abstract conceptual terms [93]. Even meta-reviews of various
existing taxonomies have been proposed [185, 197]. Since image seg-
mentation can be seen as an extension of classification, many taxonomy-
related aspects can be validly transferred from research in explainable
classification. In most taxonomies, a particularly important role is played
by three dichotomies: post-hoc vs ad-hoc (sometimes also referred to as
inherent interpretability), model-specific vs model-agnostic, and local
vs global explanations. This section provides a brief overview of these
high-level dichotomies before introducing a low-level taxonomy based
on the surveyed papers, categorizing various interpretability techniques
into five subgroups based on how the explanation is generated.

Scope: Local vs. Global

The first prevalent dichotomy distinguishes between local and global
explanations. Here, locality refers to the use of a single input image with
respect to which the explanation is given. A global explanation, on the
other hand, would aim to explain the model’s behavior across a range
of different images, not limiting itself to just one. According to meta-
surveys [185, 197], the local-global dichotomy is prevalent in numerous
XAI taxonomies. This distinction is essential in explainable segmentation
as well, with most methods falling under local explanations.

Method and Its Timing: Post-Hoc vs. Ad-Hoc

The distinction between post-hoc and ad-hoc explanations highlights
that one can either apply XAI techniques to an already-trained model
without any interference or apply them during and as part of the training
process. Sometimes, these explanations are also described as passive
and active approaches [234]. Under this definition, active approaches
require modifications to the network or the training process. Such
changes influence both the model’s performance in terms of evaluative
metrics and its interpretability. Therefore, an accuracy-interpretability
trade-off cannot be avoided in ad-hoc XAI methods, but it is avoided in
the case of post-hoc applications.
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This widely accepted dichotomy can nonetheless be slightly mis-
leading, as both terms can be meant to emphasize different distinctive
criteria. Post-hoc can be understood as referring to the fact that XAI
techniques are applied after the training, hence “post”. Naturally, it
would seem that ad-hoc should be understood as referring to XAI tech-
niques that are applied during training. However, sometimes, as a direct
opposition to “post-hoc”, terms like “inherent interpretability” [176]
or “self-explainability” [178] are used, pointing to an entirely different
aspect: the architecture or type of XAI method. In some cases, such
interpretation could allow for XAI methods that are both inherently
interpretable and post-hoc [158], which might cause confusion.

Range: Model-Specific vs. Model-Agnostic

The third distinction evaluates the flexibility of a given XAI technique
in its application to different model architectures. Model-specific XAI
methods heavily depend on the underlying model architecture, whereas
model-agnostic methods are more universal in their compatibility with
various models, and can be applied to different architectures without
further modifications. The interpretation of inherently interpretable
models is always model-specific [158].

XAI Taxonomy for Image Segmentation

Multiple compatible taxonomies are possible depending on the level
of abstraction of interest. In [16], XAI methods in ML are divided into
transparent models and post-hoc explainability methods, with post-hoc
methods further categorized as model-specific or model-agnostic. In
[73], interpretation methods are divided into post-hoc interpretability
analysis and ad-hoc interpretable modeling. In [189], a higher-level
taxonomy distinguishes between structural analysis, behavioral anal-
ysis, and explainability by design. In [45], a preliminary taxonomy of
human subject evaluation in XAI is introduced, which might be par-
ticularly useful when using qualitative evaluations of XAI. Analysis
of XAI taxonomies in classification suggests that they could also be
applied to image segmentation. However, no specific framework has
been introduced to address the ever-growing field of interpretable seg-
mentation. A more detailed demarcation may be useful in navigating
across different types of techniques.
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Representative samples or their parts from the dataset are analyzed

Additional architectural changes before or during the training to
make the model more interpretable.

investigated.
Minimum input changes needed for the output to change are

and compared with the image of interest.
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Figure 1.4: Method-centered taxonomy for explainable image segmenta-
tion.

This survey [A.2] proposes a taxonomy (Fig. 1.4) that is based on the
reviewed literature in explainable image segmentation. The proposed
method-centered taxonomy includes five method families: prototype-
based, gradient-based, perturbation-based, counterfactual methods, and
architecture-based techniques. Based on the previously discussed high-
level taxonomies commonly presented in other surveys, most of the
techniques fall under the local and post-hoc explainability categories.
Exceptions are primarily found in the architecture-based category, which
includes examples of ad-hoc, global, and model-agnostic explanations.
Prototype-based methods employ representative samples or their parts
from the dataset to analyze and compare with the input image. Gradient-
based methods involve calculating the gradient of the output of a se-
lected layer or the class of interest with respect to selected inputs or
feature maps. Perturbation-based methods can be divided into two
groups based on the perturbed space. Input space perturbations are
iterative occlusions of the input image. Typically, they are based on a
sliding filter, but different types of noise can also be introduced. Expla-
nations are based on their effect on the model’s outcome. Activation
space perturbations involve partial or full deactivations of the model’s
feature maps from the selected layer. Once again, explanations are based
on their effect on the model’s outcome. Counterfactual methods employ
the minimum input changes needed for the output to change. Finally,
architecture-based techniques involve making additional architectural
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changes either before or during training to enhance interpretability.
Section 1.3 presents a more detailed analysis of each method group.

1.3. XAI for Image Segmentation

This section reviews the main methods representative of each subgroup
in the taxonomy, as well as the metrics for explainable image segmenta-
tion.

1.3.1. Methods

Prototype-Based Methods

Prototype-based models [27] utilize typical representatives from the
dataset, usually selected from the training set. These methods empha-
size the intuitiveness of the provided explanations, presenting them
in an easily understandable form of naturally occurring objects. Such
features can be easily distinguished and discriminated by end users.
Meanwhile, prototypical parts refer to specific regions within represen-
tative prototypes, also known as exemplars. In contrast to a prototype,
a criticism is a data instance that is not well represented by the proto-
types [158]. In terms of architecture, typical prototype-based methods
require the insertion of a prototype layer into the segmentation model.
Therefore, depending on the taxonomy, prototype-based methods could
also be viewed as self-explainable and part of the architecture-based
methods. However, due to their frequent mentions in the related classi-
fication literature under the same subgroup label, they are treated here
as a separate group.

Figure 1.5: A framework for prototype-based methods.
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Although prototypical methods are prevalent in classification [36,
66, 177], their extensions for segmentation are few. Typically, the pro-
totype layer (Fig. 1.5) is a key component in prototype-based methods
for both classification [36, 66, 177] and segmentation [178, 235]. Within
a prototypical layer, different classes are represented by predefined or
learned prototypes. In [178], a ProtoSeg model is proposed. The authors
introduce a diversity loss function based on Jeffrey’s divergence [112]
to increase the prototype variability for each class. Better results are
observed when the diversity loss component is introduced. The authors
attribute this to the higher informativeness of a more diverse set of
prototypes that leads to a better generalization. This could be related
to the diversity hypothesis [104], first introduced in the context of re-
inforcement learning, and could be explored further. The experiments
are performed using the Pascal VOC 2012 [72], Cityscapes [53], and EM
Segmentation Challenge [1] datasets. The DeepLab [39] model is used
as the backbone. In [235], a prototype-based method is used in com-
bination with if-then rules for the interpretable segmentation of Earth
observation data. The proposed approach is the extension of xDNN [13]
and uses mini-batch K-mean [186] clustering. For the feature extraction
part, the U-Net architecture is used. The experiments are performed
using the Worldfloods [153] dataset.

Counterfactual Explanations

Counterfactual or contrastive explanations investigate the minimum
input changes needed for the output to change. Unconditional counter-
factual explanations were first introduced in [213]. This explainability
subfield is related to adversarial attacks. Counterfactual images are sim-
ilar to the original but can change the model’s output. Counterfactual
explanations can also be viewed as closely linked to perturbation-based
explanations, which will be discussed in the next subsection. Counterfac-
tual XAI techniques frequently fall into the local post-hoc category [95].
After the initial segmentation model, counterfactual-based interpretabil-
ity methods typically employ additional networks for counterfactual
generation. In the proposed pipeline (Fig. 1.6), this is depicted by addi-
tional encoder and decoder networks.

Generator-based counterfactual explanations are investigated in
[229]. OCTET, a generative approach, produces object-aware counter-
factual explanations for complex scenes. Counterfactual changes to the
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image focus on road markings, such as changing the solid line into a
dashed one, or the positions of cars by cropping and extending the rele-
vant regions of the input image. The models are trained on the BDD100k
[225] and BDD-OIA [223] datasets. Additional information can be found
in the supplementary material [230]. In [194], segmentation results are
qualitatively compared using counterfactual images. The experiments
are performed on Kvasir-seg [113] and Kvasir-instrument [114] datasets.
Counterfactual explanations are generated using the segmented area
of interest, which is then replaced with the average pixel value of the
rest of the image. In [109], counterfactual explanations are generated
for complex scenes while preserving the semantic structure. The pro-
posed method uses semantic-to-real image synthesis. Here, a noticeable
contrast can be drawn between this approach and perturbation-based
methods. In the latter, perturbations applied to the input space fail to
produce semantically meaningful image regions. While perturbation-
based techniques are related to counterfactual explanations, they form a
distinct class, even though counterfactual explanations may also include
perturbations.

Figure 1.6: A framework for counterfactual methods.

Perturbation-Based Methods

Perturbation-based methods typically employ occlusions in the input
(Fig. 1.7) or activation (Fig. 1.8) space, and then measure their influence
on the model’s output for a selected class. Here occlusions or pertur-
bations could be understood as uninformative regions, transforming
the input or its internal feature maps. Pixels in the occlusion filter can
be set to 0 (representing black), as seen in Figure 1.7, or any other arbi-
trary value. Such sliding filter would occlude different regions of the
input space. Its size and stride parameters are specified beforehand.
Gaussian or any other random noise can also be used for these pur-
poses. Multiple perturbative iterations are required for the generation
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of an explanation map. During each inference, the score is calculated,
measuring the perturbation’s effect on the model’s performance. This
can be done by taking the difference between the score for the original
image and that of its perturbed version. Such a score can be based on
an evaluative metric or pre-Softmax prediction values. Since the same
input image has to undergo multiple transformations, each requiring
a separate forward pass through the model, perturbation-based XAI
methods are considered computationally expensive. Another limitation
is that perturbation-based input modifications can sometimes produce
images that lie outside the original training distribution. These modified
images may not resemble any data the model has previously encoun-
tered, which can lead to explanations that are not representative of the
model’s typical decision-making process. This, in turn, may generate
misleading or irrelevant insights into how the model operates on actual,
in-distribution data.

Figure 1.7: A framework for perturbation-based methods for the input
space.

Figure 1.8: A framework for perturbation-based methods for the activa-
tion space.
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The authors of [107] propose the first XAI solution for extending
saliency techniques beyond classification. Their perturbation-based
method is introduced for the detection of contextual biases. The exper-
iments are performed using a synthetic toy dataset based on MNIST
[137] as well as the Cityscapes [53] dataset. In [214], a hybrid SegNBDT
approach is introduced, combining both decision trees and neural net-
works. This method falls under both the perturbation-based and self-
explainable model categories. For the experimental part, the Pascal
Context [161], Cityscapes [53], and Look Into Person [90] datasets are
used. In [59], SHAP and RISE techniques are applied to image segmen-
tation. SHAP is a popular post-hoc interpretability method, and the
proposed approach is based on Kernel SHAP [147]. The experiments
are performed on synthetic-aperture radar images from the unspecified
dataset for oil slick detection at the sea surface and the Cityscapes [53]
dataset. In [129], a perturbation-based occlusion sensitivity approach is
used to measure the performance of the proposed interpretable semantic
segmentation approach. Compared to occlusion sensitivity and Grad-
CAM, their method achieves orders of magnitude lower inference time.
However, it requires training an additional interpretability model. In
[B.1], following [227], different types of input occlusions are investigated
for applications in semantic segmentation. The paper discusses how
occlusion filter sizes and colors can affect the generated explanations.
It is observed that compared to image classification, input occlusions
in segmentation models do not generate as much variance in evalua-
tion metric scores. For the experimental investigation, the COCO [141]
dataset is used. The proposed method is evaluated qualitatively, with
select images also compared quantitatively using deletion curves.

Perturbations are not limited to the input space. For instance,
Ablation-CAM [62] is a gradient-free method that systematically de-
activates feature maps in a selected layer. In [B.2], Ablation-CAM is
extended to semantic segmentation. It is a gradient-free interpretability
technique based on ablating or perturbing activation maps. The exper-
iments are performed on a private industrial dataset for fruit-cutting
machines as well as on the COCO [141] dataset.

Gradient-Based Methods

Gradient-based methods (Fig. 1.9) typically use gradients of the outputs
from later layers with respect to the input features. These techniques are
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less computationally expensive compared to perturbation-based tech-
niques because only a single backward pass is required. Perturbation
techniques, on the other hand, require a separate forward pass for each
perturbed image, increasing computational costs with each inference.
However, gradient-based saliency maps can generate more noise.

Figure 1.9: A framework for gradient-based methods.

In [212], Seg-Grad-CAM is proposed as the extension of Grad-CAM
[188]. It is one of the best known explainability techniques in image
segmentation. Just like in the case of regular Grad-CAM, the generated
saliency is based on the weighted sum of the selected feature maps. Its
application is demonstrated on a U-Net model, trained on the Cityscapes
[53] dataset. In [42], the same method is applied for automatic rock joint
trace mapping. The original Grad-CAM technique for classification,
together with simple gradients, passes the previously discussed sanity
checks, evaluating the reliability of XAI techniques. In [96], Seg-XRes-
CAM is introduced. The authors criticize Seg-Grad-CAM [212] for not
utilizing spatial information when generating saliency maps for a region
of the segmentation map. The proposed approach draws inspiration
from HiResCAM [69], a modification of the original Grad-CAM [188].
Subsequently, [88] adapts five CAM-based XAI methods from classifi-
cation to the segmentation of high-resolution satellite images. Among
the proposed extensions are Seg-Grad-CAM++, Seg-XGrad-CAM, Seg-
Score-CAM, and Seg-Eigen-CAM. Just like in [B.2], Ablation-CAM, a
gradient-free method, is also extended for segmentation. Besides using
the drop in segmentation score to measure their methods’ performance,
the authors of [88] also propose an entropy-based XAI evaluation metric.
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The implemented methods are tested on a WHU [115] building dataset.
In [183], an interpretability and visualization toolbox is proposed for
classification and segmentation networks. It includes several XAI ex-
tensions specifically for image segmentation. Among them are Guided
Grad-CAM and segmented score mapping, extended from [118].

Architecture-Based Methods

This subgroup of methods introduces additional architectural changes
(Fig. 1.10) that aim to make the models more interpretable. Instead of
relying on post-hoc techniques that are added on top of the already
trained models, these methods are typically employed as part of the
training process. This class of XAI methods is sometimes described as
interpretable by design, inherently interpretable, or interpretability as
part of the architecture. In this case, interpretability is inherently linked
to the specific model architecture or design, and is not easily transferable
to other architectures.

Figure 1.10: A framework for architecture-based methods.

One such example is the chimeric U-Net with an invertible decoder
[184]. This approach introduces architectural constraints for the sake of
explainability. The authors claim that it can achieve both local and global
explainability. In [146], both supervised and unsupervised techniques
of Semantic Bottlenecks (SB) are introduced for better inspectability
of intermediate layers. This approach is proposed as an addition to
the pre-trained networks. Unsupervised SBs are identified as offering
greater inspectability compared to their supervised counterparts. The
experiments are primarily performed on street scene segmentation im-
ages from the Cityscapes dataset. The results are also compared using
two other datasets: Broden [24] and Cityscapes-Parts, a derivative of
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Cityscapes. In [181], a framework for symbolic semantic segmentation
is proposed. This work is at the intersection of image segmentation and
emergent language models. The authors apply their research to medical
images, specifically brain tumor scans. An Emergent Language model
with a Sender and a Receiver is used for interpretable segmentation.
The Sender is an agent responsible for generating a symbolic sentence
based on information from the higher model layer, while the Receiver
cogenerates the segmentation mask after receiving symbolic sentences.
The Symbolic U-Net is trained on the Cancer Imaging Archive (TCGA)
dataset3 and used for providing inputs to the Sender network.

1.3.2. Metrics

XAI techniques are used in addition to standard evaluation metrics due
to their limitations. However, to evaluate the performance of these tech-
niques, they also need to be measured. Evaluations can be categorized
into qualitative and quantitative assessments. Qualitative evaluation
commonly refers to user-based evaluation and, based on the surveyed
papers (Table 1.1 and Table 1.2), is the more prevalent of the two. To
quantify subjective user results, various questionnaires have been pro-
posed [105], such as the explanation goodness checklist, explanation
satisfaction scale, trust scales, and ease of understanding when compar-
ing different explainability techniques [92]. These methods still require
polling multiple subjects, although, when surveying experts, in practice
their number is limited to 2-5 [92]. This way, quantification still takes
place, but it is based on subject-dependent evaluation. Since question-
naire studies require additional resources, most of the papers using
qualitative evaluation only provide visual comparisons between dif-
ferent XAI techniques, leaving qualitative evaluation to the reader’s
eye.

Quantitative evaluation does not involve human subjects and can
be more easily applied when comparing different interpretability meth-
ods. Infidelity and sensitivity [224] are the only two metrics that, as
of 2024, are implemented in the Captum [130] interpretability library
for PyTorch. Deletion and insertion metrics [169] are another type of
quantitative evaluation, based on measuring the area under the curve

3https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=5309188
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(AUC), generated after gradually deleting or inserting the most impor-
tant pixels in the input space. A wider use of quantitative metrics could
allow for a more standardized comparison across different models and
explainability techniques, eliminating the element of human subjectivity.
They could also be valuable when human studies are impractical due to
resource constraints. This scalability is particularly relevant in industrial
and research settings where numerous models need to be evaluated
quickly and consistently. However, for some XAI methods, such as
counterfactual explanations, it might be difficult to evaluate the use-
fulness of the explanation quantitatively. In the case of counterfactual
explanations, it is possible to measure whether the generated images
are realistic and how closely they resemble the query images, but for a
more thorough evaluation of the explanation itself, user studies [229]
might be required.

In [50], a psychophysics study (N = 1,150) is conducted to evaluate
the performance of six explainable attribution methods on different
neural network architectures. Shortcomings in the methods are detected
when using them to explain failure cases. Comparative quantitative
rankings of different saliency techniques can also be inaccurate. In [206],
inspired by [5], sanity checks for saliency maps are investigated. The
authors perform checks for inter-rater reliability, inter-method reliability,
and internal consistency, and determine that the current saliency metrics
are unreliable. It is observed that these metrics exhibit high variance
and are sensitive to implementation details.

1.3.3. Applications

This subsection presents concrete XAI applications in medical and in-
dustrial domains, along with other use cases, primarily focusing on
industry-related monitoring domains, such as remote sensing, environ-
mental observation, and biometrics. Additionally, the potential uses of
XAI for self-supervised image segmentation are reviewed.

Medical Applications

Most applications in explainable image segmentation have been inves-
tigated in the medical domain, using datasets from various medical
fields (Table 1.1), ranging from cardiology to oncology. Proposed XAI
solutions and applications are employed for diagnosing, monitoring,
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and other clinical tasks. In some cases, there might be unavoidable
overlaps between medical fields. For instance, overlaps occur at the
intersection of oncology and histopathology when discussing micro-
scopic tumor images, or between oncology and dermatology when
considering melanoma [201]. Such overlaps can also arise from using
multiple datasets, each associated with a different medical field. In these
instances, the relevant details are specified in the method description.

Dermatology

Dermatology-centered XAI applications [201, 217] focus on skin lesions.
Specifically, [201] discusses applications for interpreting melanoma di-
agnosis results. The proposed pipeline utilizes both classification and
segmentation networks. Grad-CAM is employed to generate explainable
heatmaps for the classifier, which are then used as inputs in the U-Net
network. These heatmaps assist in generating indicator biomarker lo-
calization maps. The proposed approach can be used in self-supervised
learning. Experiments are performed on the ISIC 2018 [48] and ISIC
2019 [49, 51, 208] datasets. In [217], a CAM-based explainability metric
is proposed and incorporated into the loss function. This metric quan-
tifies the difference between the CAM output and the segmentation
ground truth for the targeted class. Both segmentation and explanation
losses are considered during the model’s training phase. The use of
CAM with learnable weights enables a balance between segmentation
performance and explainability. The proposed method belongs to the
self-explainable XAI category. Similar to [201], the U-Net network is
used. The experiments are conducted on the ISIC2018 [48] dataset. In
[94], a comprehensive attention-based CNN is proposed for better inter-
pretability in dermoscopic and fetal MRI images. This approach uses
multiple attentions, combining the information about spatial regions,
feature channels, and scales. The experiments are performed on ISIC
2018 [48] and a private fetal MRI dataset.

Forensic Medicine

The applications of explainable segmentation in forensic medicine are
limited to iris segmentation. This can be more narrowly referred to as
forensic ophthalmology. In [132], the investigation focuses on forensic
postmortem iris segmentation. The authors apply a classical technique of
Class Activation Mapping (CAM) [237]. The experiments are performed
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on a private test dataset and publicly available post-mortem iris datasets
collected by [207].

Table 1.1: Explainable image segmentation in medicine

Field Imaging
modality

Objects of interest Datasets Metric Year Ref.

G IMG* Colorectal polyps EndoScene [210] ▷ 2018 [219]
O CT Liver tumors LiTS [28] ▶ 2019 [55]
C CMRI Ventricular volumes SUN09 [172], AC17 [26] ▷ 2020 [200]
O MRI Brain tumors TCGA ▷ 2020 [181]
D MRI/IMG Skin lesions, multi-organ (incl.

the fetal brain and the placenta)
ISIC2018 [48] and a private fetal
MRI dataset

▷ 2020 [94]

P CT Pancreatic region Medical segmentation decathlon ▶ 2021 [129]
C CMRI Ventricles, myocardium Cardiac MRI dataset [26] ▷ 2021 [111]
G IMG Polyps, med. instruments Kvasir-SEG [113], Kvasir-

Instrument [114]
▷ 2021 [8]

O MRI Brain tumors BraTS2018 [155] ▶ 2021 [180]
FM NIR Iris Private test dataset, post-mortem

iris datasets, collected by [207]
▷ 2022 [132]

V CT/MRI/IMG Skin lesions, abdomen multi-
organ, brain tumors

HAM10000 [208], CHAOS 2019
[123], BraTS 2020 [155]

▷ 2022 [121]

V MRI Brain tumors, human knees BraTS 2017 [155], OAI ZIB [10] ▷ 2022 [184]
O MRI Brain tumors BraTS 2019 [155], BraTS 2021

[155]
▷ 2022 [228]

N MRA Brain vessels Private ▶ 2022 [35]
H IMG Liver Simulated dataset (Test Set 4)

[22]
▷ 2022 [23]

O US/MG Breast tumors Private LE/DES datasets, and
BUSI [9]

▷ 2023 [216]

G CT/IMG Colorectal polyps, lung cancer EndoScene [210], LIDC-IDRI [15] ▶ 2023 [41]
O CT/MRI Prostate cancer 3D pelvis dataset [68] ▷ 2023 [58]
G CT Abdominal organs Synapse multi-organ CT dataset

[136]
▷ 2023 [96]

O BUS Breast tumors BUSI [9], BUSIS [221], HMSS [84] ▷ 2023 [120]
O CT/PET Non-small cell lung cancer,

whole-body
NSCLC, AutoPET [83] ▶ 2023 [117]

D IMG Skin lesions ISIC2018 [48] ▷ 2023 [217]
D IMG Melanoma ISIC 2018 [48], ISIC 2019 [208] ▷ 2023 [201]
O MRI/IMG Prostate tumors, optic disc and

cup
Prostate** and fundus*** datasets ▷ 2023 [231]

O X-ray Breast tumors INbreast [159] ▶ 2023 [74]
O WSI Head and neck tumors Private ▷ 2023 [67]
A IR Feet ThermalFeet ▷ 2023 [7]
V CT/MRI/IMG Brain tumors BraTS 2018 [155], BraTS 2019

[155], BraTS 2020 [155], ISIC 2017
▷ 2023 [99]

P CT Pancreas Pancreas segmentation dataset
[14]

▷ 2023 [165]

Op OCT Retinal layers, glaucoma, dia-
betic macular edema

NR206, glaucoma dataset [140],
DME dataset [43]

▷ 2023 [100]

V CT/MRI Prostate, left ventricle, right ven-
tricle, myocardium

NCI-ISBI 2013 [30], I2CVB [139],
PROMISE12 [142]; MSCMR
[240], EMIDEC [133], ACDC
[26], MMWHS [241], CASDC
2013 [128]

▷ 2023 [82]

Op OCT Retinal layers, glaucoma, dia-
betic macular edema

Vis-105H, glaucoma dataset
[140], DME dataset [43]

▷ 2024 [101]

V CMRI/CT Left atrium, thoracic organs Atrium dataset [14], SegTHOR
[135]

▷ 2024 [134]

A: Anesthesiology, C: Cardiology, D: Dermatology, FM: Forensic Medicine, G: Gastroenterology, N: Neurology,
O: Oncology, Op: Ophthalmology, P: Pancreatology, and V: Various
* IMG: general-purpose digital image formats, such as JPEG
** Prostate datasets: RUNMC [30], BMC [30], HCRUDB [139], UCL [142], BIDMC [142], and HK [142]
*** Fundus datasets: DRISHTI-GS [195], RIM-ONE-r3 [81], and REFUGE [167]
▷: Qualitative XAI evaluation
▶: Quantitative XAI evaluation
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Gastroenterology

XAI applications for endoscopic image segmentation primarily focus
on polyps. In [219], the guided backpropagation [198] technique is ex-
tended to the semantic segmentation of colorectal polyps. Uncertainty in
input feature importance is estimated, with higher uncertainty observed
in inaccurate predictions. Uncertainty maps are generated using the
Monte Carlo dropout method. The proposed solution is evaluated on
the EndoScene [210] dataset. In [8], Layer-wise Relevance Propagation
(LRP), a propagation-based explainability method, is applied to the en-
doscopic image segmentation of gastrointestinal polyps and medical
instruments. LRP is specifically applied to the generator component
within a generative adversarial network. The generated relevance maps
are then qualitatively evaluated. The segmentation models are trained
on the Kvasir-SEG [113] and Kvasir-Instrument [114] datasets.

Hepatology

In [23], two gradient-based post-hoc explanations, Grad-CAM and Grad-
CAM++, are investigated for cross explanation of two DL models, U-
Net and the Siamese/Stereo matching network, based on [22]. The
experiments are performed on laparoscopic simulated stereo images
[22], with a focus on liver segmentation.

Oncology

Most of the explainable medical AI applications in image segmentation
are in oncology.

Liver:

A DeepDream-inspired method is proposed in [55] for the segmentation
of liver tumors in CT scans, specifically focusing on binary segmentation.
The study seeks to understand how human-understandable features
influence the segmentation output and defines the network’s sensitivity
and robustness to these high-level features. High sensitivity indicates
the importance of such features, while high network robustness shows
its indifference to them. Radiomic features are also analyzed. The
experiments are performed on the Liver Tumor Segmentation (LiTS)
challenge4 dataset [28]. Semantic segmentation in liver CT images is
further investigated in [157], where the segmentation output is corrected

4https://competitions.codalab.org/competitions/17094
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based on XAI. This approach is categorized as a global surrogate and
is model-agnostic. However, its primary purpose is not interpretabil-
ity but rather the improvement in the initial segmentation by using
additional boundary validation and patch segmentation models. The
authors of [64] investigate the segmentation of malignant melanoma le-
sions in 18-fluorodeoxyglucose (18F-FDG) PET/CT modalities, focusing
on metastasized tumors. The claim to interpretability is based on the
visualization of the model’s intermediate outcomes. The overall pipeline
involves both segmentation and detection. Volumes of interest (VOI)
are visualized for the liver as well as PET-positive regions classified as
physiological uptake. This additional information is provided together
with the final segmentation masks.

Brain:

An interpretable SUNet [181] architecture is proposed for the segmen-
tation of brain tumors using the TCGA dataset. Experimental results
and statistical analysis indicate that symbolic sentences can be associ-
ated with clinically relevant information, including tissue type, object
localization, morphology, tumor histology and genomics data. In [180],
3D visual explanations are investigated for brain tumor segmentation
models, using the quantitative deletion curve metric to compare the re-
sults with Grad-CAM and Guided Backpropagation [198] techniques. In
[121], a region-guided attention mechanism is used for the explainability
of dermoscopic, multi-organ abdomen CT, and brain tumor MRI images.
The experiments are performed on HAM10000 [208], CHAOS 2019 [123],
and BraTS 2020 [155] datasets. Another architecture-based solution is
proposed in [184], where the U-Net architecture is modified and applied
to two MRI datasets: BraTS 2017 [155] and OAI ZIB [10], respectively
focusing on brain tumors and human knees. In [60], Grad-CAM re-
sults are compared to brain tumor segmentation results. The overall
pipeline includes both classification and segmentation networks, where
DenseNet is used for classification and Grad-CAM-based heatmaps are
generated for different layers. However, Grad-CAM is not specifically
tailored for segmentation but rather used as an explainable classification
tool to evaluate segmentation results. In [228], a NeuroXAI framework
is introduced, combining seven backpropagation-based explainability
techniques, each suitable for both explainable classification and segmen-
tation. Gliomas and their subregions are investigated using 2D and 3D
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explainable sensitivity maps. A ProtoSeg method is proposed in [99]
for interpreting the features of U-Net, presenting a segmentation ability
score based on the Dice coefficient between the feature segmentation
map and the ground truth. Experiments are performed on five medical
datasets, including BraTS for brain tumors, each focusing on different
medical fields or affected organs.

Pelvis:

In [58], a Generative Adversarial Segmentation Evolution (GASE) model
is proposed for a multiclass 3D pelvis dataset [68]. The approach is
based on adversarial training. Style-CAM is used to learn an explorable
manifold. The interpretability part allows visualizing the manifold of
learned features, which could be used to explain the training process
(i.e. what features are seen by the discriminator during training).

Breast Cancer:

Oncological XAI applications for the segmentation of breast tumors are
investigated in [74, 120, 216]. In [216], a multitask network is proposed
for both breast cancer classification and segmentation. Its interpreta-
tions are based on contribution score maps, which are generated by the
information bottleneck. Three datasets are used, each focusing on a
different imaging modality. In [120], the SHAP explainability method
is applied to the task of breast cancer detection and segmentation. The
experiments are performed on the BUSI [9], BUSIS [221], and HMSS
[84] datasets. In [74], explainability for mammogram tumor segmenta-
tion is investigated with the application of Grad-CAM and occlusion
sensitivity, in both cases using Matlab implementations, and activation
visualization. Their quantitative evaluation is based on image entropy,
which gives additional information about the XAI method’s complexity.
Pixel-flipping techniques, which are directly related to deletion curves,
are also employed. The experiments are performed on INbreast [159]
dataset of X-ray images.

Other:

In [231], Importance Activation Mapping (IAM) is employed as an ex-
plainable visualization technique in continual learning. The generated
heatmap shows which regions in the input space are activated by model
parameters with high-importance weights, associated with the model’s
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memory. This approach is evaluated for the segmentation of prostate
cancer. It also has applications in ophthalmology, specifically for seg-
menting the optic cup and disc. In [67], two CAM-based XAI techniques,
Seg-Grad-CAM and High-Resolution CAM (HR-CAM), are applied to
histopathological images of head and neck cancer. The explanations
generated by both techniques appear to rely on the same features identi-
fied by professional pathologists. In [54], a solution based on Cartesian
Genetic Programming is used to generate transparent and interpretable
image processing pipelines. This method is applied to biomedical im-
age processing, ranging from tissue histopathology to high-resolution
microscopy images, and can be characterized as a few-shot learning ap-
proach. In [122], a classification-based version of Grad-CAM is used to
enhance a U-Net-based segmentation network. The experiments are per-
formed on the 3D-IRCADb-01 [44] dataset, comprised of 3D CT scans of
venous phase CT patients. An Xception network generates 2D saliency
maps for classification, which are then passed to the U-Net network
together with the corresponding input images. This prior information
enables more accurate segmentation. In [170], a framework for explain-
able classification and segmentation is presented. For segmentation, it
relies on a feature hierarchy. The experiments are performed on the
skin cancer dataset. The Factorizer architecture, introduced in [18], is
based on nonnegative matrix factorization (NMF) components, which
are argued to be more semantically meaningful compared to CNNs and
Transformers. The proposed approach is categorized under architecture-
based interpretability methods. The models are implemented for brain
tumor and ischemic stroke lesion segmentation datasets. In [35], a
framework for explainable semantic segmentation is presented, extend-
ing several classification techniques to segmentation. These methods are
also applied to 3D models. Infidelity and sensitivity metrics are used,
and the experiments are performed on vessel segmentation in human
brain images using Time-of-Flight Magnetic Resonance Angiogram. The
experimental data [154] is not publicly available. In [117], a new inter-
pretation method is proposed for multi-modal segmentation of tumors
in PET and CT scans. It introduces a novel loss function to facilitate the
feature fusion process. The experiments are performed on two datasets:
a private non-small cell lung cancer (NSCLC) dataset and AutoPET [83],
a whole-body PET/CT dataset from the MICCAI 2022 challenge.
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Ophthalmology

XAI is also employed in the segmentation of ophthalmological images.
Optic disc and cup segmentation is explored in the setting of continual
learning [231], where it is investigated in multi-site fundus datasets.
Importance Activation Mapping is used to visualize the memorized
content, facilitating an explanation of the model’s memory. The focus is
on reducing the model’s forgetting. In [100], Seg-Grad-CAM is applied
to ophthalmology for segmenting retinal layer boundaries. The study
provides an entropy-based uncertainty visualization of segmentation
probabilities. This offers more information about which retinal layers
and regions exhibit higher uncertainty and allows for focusing on prob-
lematic areas. It is observed that higher uncertainty is associated with
segmentation errors once it reaches a certain threshold. The experiments
are performed on the NR2065 dataset.

Pancreatology

In [129], an interpretable image segmentation approach is proposed for
pancreas segmentation in CT scans. The method is also compared to
Grad-CAM and occlusion sensitivity, demonstrating its superior infer-
ence time. This method identifies regions in the input images where
noise can be applied without significantly affecting the model’s per-
formance. It relies on noisy image occlusion and can be classified as a
perturbation-based technique. To directly parameterize the noise mask
for each pixel without harming the model’s performance, an additional
small interpretability model is trained. Both interpretability and utility
models are based on U-Net. Pixels that can be significantly perturbed
without changing the model’s performance are considered less impor-
tant. Essentially, the proposed method involves training noise distribu-
tions. This approach allows training dynamic noise maps for individual
images, differing from the typical static systematic occlusion. Experi-
ments are performed on a pancreas dataset [193]. In [165], a smoothing
loss is introduced to guide interpretability learning. The authors observe
that the explanations produced by U-Noise are less continuous. Assum-
ing that important pixels are likely to be spatially close, the proposed
smoothing objective considers the correlation between pixels during op-
timization. The resulting explanations are compared to those generated

5https://github.com/Medical-Image-Analysis/Retinal-layer-segmentation
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by Grad-CAM and U-Noise. Experiments are performed on a pancreas
segmentation dataset [14] from the medical segmentation decathlon.

Urology

In [82], a Bayesian approach is proposed to address the problem of inter-
preting domain-invariant features. The experiments are performed for
prostate and cardiac segmentation tasks. The experiments are performed
on T2 prostate MRI images from NCI-ISBI 2013 [30], I2CVB [139], and
PROMISE12 [142]. For cardiac segmentation, MSCMR [240], EMIDEC
[133], ACDC [26], MMWHS [241], and CASDC 2013 [128] datasets are
used.

Anesthesiology

In [7], an interpretable approach is investigated for regional neuraxial
analgesia monitoring. The experiments focus on thermal foot images for
patients who have received epidural anesthesia. The proposed method
is based on Convolutional Random Fourier Features (CRFF) and layer-
wise weighted CAM. CRFF and CAM-based techniques are investigated
in three segmentation models: U-Net, FCN, and Res-U-Net. CRRF
gradient layers are added at skip connections. The initial results indicate
that the integration of CRRF gradient layers allows better differentiation
between background and foreground classes. The experiments are
performed on the ThermalFeet6 dataset of infrared images.

Industry-Related Applications

Various industrial and industry-related activities require precise seg-
mentation. These activities might range from precise manufacturing
and processing [A.1] to structural health monitoring in infrastructure,
particularly in evaluating damage [78]. Industrial applications of XAI
are also related to risk management. For example, the AI TriSM (Trust,
Risk and Security Management) framework [3, 89], has been adopted
by several industrial organizations to enhance their risk management
practices. This high-level framework includes both explainability and
model monitoring as key components. Risk management is of particular
importance in sensitive dynamic operational environments, where AI
models need to be continuously assessed for performance and reliability.

6https://gcpds-image-segmentation.readthedocs.io/en/latest/notebooks/02-
datasets.html
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This subsection discusses both industrial processes and indirectly
related tasks, such as environmental monitoring and remote sensing,
which can have potential in industrial applications in a more narrow
sense. Industry-related explainable segmentation solutions are divided
into four categories: remote sensing, monitoring, scene understanding,
and other more general applications.

Table 1.2: Explainable image segmentation in industry

Category Domain Datasets Metric Year Ref.
Remote sensing Building detection IAIL [149] ▷ 2019 [110]
Scene understanding Autonomous driving SYNTHIA [242], A2D2 [86] ▷ 2021 [2]
Scene understanding Pedestrian environments PASCAL VOC 2012 [72],

ADE20K [238], Cityscapes
[53]

NA* 2021 [233]

Scene understanding Autonomous driving KITTI [80] ▷ 2022 [150]
Environmental monitoring Flood detection Worldfloods [153] ▷ 2022 [235]
Scene
understanding/Biometrics

Driving scenes/Face
recognition

BDD100k [225],
CelebAMask-HQ [138],
CelebA [144]

▷ 2022 [109]

Monitoring/Scene
understanding

Drones/Food processing ICG drone dataset, private
dataset

▷ 2023 [A.1]

Monitoring/General
applications

Food processing COCO [141], private dataset ▷ 2023 [B.2]

Biometrics Facial emotions Face recognition dataset [209] ▷ 2023 [215]
Monitoring Cracks in infrastructure CrackInfra [143] ▷ 2023 [143]
General applications Common objects COCO [141] ▶ 2023 [B.1]
Scene
understanding/General
applications

Street scenes/Common
objects

Pascal VOC 2012 [72],
Cityscapes [53]

▷ 2023 [178]

Scene understanding Driving scenes BDD100k [225], BDD-OIA
[223]

▷ 2023 [229]

Scene
understanding/General
applications

Street scenes/Common
objects

Cityscapes [53], Pascal VOC
[72], COCO [141]

▶ 2023 [70]

General applications Common objects COCO [141] ▷ 2023 [96]
General applications Common objects Pascal VOC [72] ▶ 2023 [41]
Scene
understanding/Remote
sensing

Street scenes/Building
detection

Cityscapes [53], WHU [115] ▶ 2023 [191]

*The application focuses on introducing explainability to segmentation evaluation, rather than evaluating explainability techniques.
▷: Qualitative XAI evaluation
▶: Quantitative XAI evaluation

Remote Sensing

One of the first applications of interpretable image segmentation is in re-
mote sensing. In [110], the U-Net model is applied for building detection.
The proposed method operates at the intersection of interpretability, rep-
resentation learning, and interactive visualization, and is designed to
explain U-Net’s functionality. It employs Principal Component Analysis
(PCA) on the activations in the bottleneck layer. PCA is the preferred
method because it preserves the largest variance in the data. In the
case of 3D visualizations, the first three components could be used. Fol-
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lowing PCA, the new representations are clustered using k-means and
the DBSCAN algorithm. This approach allows for the visualization of
learned latent representations for all samples through an Intersection
over Union (IoU)-based heatmap, enabling users to identify qualitatively
different regions. The experiments are performed on the Inria Aerial
Image Labeling (IAIL) [149] dataset. This technique can be applied to
detect and evaluate damages in industrial disasters or humanitarian
crises, extending beyond mere infrastructure and product monitoring in
industry. Another remote sensing application [191], specifically focus-
ing on high-resolution satellite images, employs a gradient-free Sobol
method [75] and a U-Noise model [129]. The proposed method is also
compared to the Seg-Grad-CAM++ classification extension.

Monitoring

This subsection reviews relevant papers that apply explainable segmen-
tation-based monitoring in proximate environments. In [A.1], simple
gradient [192] saliency maps and SmoothGrad-based [196] saliencies are
implemented for semantic segmentation models to investigate the ad-
versarial attack setting. The experiments are performed on two industry-
related cyber-physical system datasets. A private dataset from CTI
FoodTech, a manufacturer of fruit-pitting machines, is used. In [B.2], the
same private dataset is used for experiments with a gradient-free XAI
technique based on perturbations of intermediate activation maps.

In [143], the focus is on crack segmentation in critical infrastruc-
tures, such as tunnels and pavements. The U-Net model is used together
with Grad-CAM, which is applied at the bottleneck, as in [212]. They
investigate both simple and complex crack patterns as well as different
backgrounds. Two other papers [78, 187] also investigate the segmen-
tation of different crack types. However, the proposed XAI techniques
are implemented in classification models, and used for weakly super-
vised segmentation. These techniques are discussed in the subsequent
section. In [215], an interpretable Bayesian network is used for facial
micro-expression recognition. The authors prefer these networks for seg-
mentation over DL models, primarily because of their superior causal
interpretability when dealing with uncertain information. This can make
them better interpretability candidates when uncertain causal inference
is involved. The experiments are performed on the database [209] of
face images.
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The trade-off between the noisiness of the explanation and its com-
putation time is particularly important in monitoring. Gradient-based
methods are suitable for monitoring environments that require low
latency and rapid decision-making. However, if the monitoring task al-
lows for more time, slower non-gradient methods, such as perturbation-
based explanations, might be a better choice.

Scene Understanding

Scene understanding is an important area in applications for autonomous
vehicles, monitoring of pedestrians and ambient objects, and surveil-
lance. Precise real-time segmentation of road signs and obstructions
is of particular importance. Explainable segmentation can be seen as
part of explainable autonomous driving systems [2], which investigate
events, environments, and engine operations. An explainable varia-
tional autoencoder (VAE) model is proposed in [2], focusing on neuron
activations with the use of attention mapping. For the experiments,
the SYNTHIA [242] and A2D2 [86] datasets are used. The results are
analyzed both qualitatively and quantitatively, using the average area
under the receiver operating characteristic curve (AUC-ROC) index.
In [150], XAI techniques are employed to investigate pixel-wise road
detection for autonomous vehicles. The experiments are performed on
different segmentation models, using the KITTI [80] road dataset. The
problem is formulated as a binary segmentation task, where the classes
are limited to the road and its surroundings. Grad-CAM and saliency
maps are used to generate explanations. Unmanned aerial vehicles can
also fall under the category of autonomous driving systems. In [A.1],
gradient-based XAI techniques are applied to semantic drone dataset7

from Graz University of Technology.
Automated semantic understanding of pedestrian environments is

investigated in [233]. Here the focus is not on a particular XAI technique,
but on introducing some level of explainability to segmentation evalua-
tion. The paper argues that popular pixel-wise segmentation metrics,
such as IoU or Dice coefficient, do not sufficiently take into account
region-based over- and under-segmentation. Here over-segmentation
refers to those cases where the relevant ground-truth region is seg-
mented into a lower number of regions than the predicted mask. For

7http://dronedataset.icg.tugraz.at/
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instance, where there is only one bus in the segmented ground-truth,
but the model segments it into three disjoint segments. In the case of
under-segmentation, the opposite is true. Pixel-wise metrics do not
accurately represent these differences in disjoint and joint regions as
long as a large enough number of similar pixels is segmented in both
the ground-truth image, and the corresponding prediction. The use of
region-wise measures is proposed as a better way to explain the source
of error in segmentation. The experiments are performed on PASCAL
VOC 2012 [72], ADE20K [238], and Cityscapes [53]. In [63], the focus
is on automatic semantic segmentation for sediment core analysis. To
interpret the results, higher segmentation error regions and model pre-
diction confidence are visualized. Here, the model confidence is defined
as prediction probability, and the model error calculation is based on
the normalized categorical cross-entropy.

The authors of [70] propose the Concept Relevance Propagation-
based approach L-CRP as an extension of CRP [4]. By utilizing concept-
based explanations, the study seeks to gain insights into both global
and local aspects of explainability. The proposed approach seeks to
understand the contribution of latent concepts to particular detections
by identifying them, finding them in the input space, and evaluating
their effect on relevance. Context scores are computed for different
concepts. The experiments are performed on Cityscapes [53], Pascal
VOC [72], and COCO [141] datasets.

General Applications

Some of the XAI-related experiments focus on more general datasets,
which are typically used for evaluating the performance of segmentation
models and do not fall into remote sensing, monitoring, or scene under-
standing categories. This includes [B.1] and [B.2], which will be briefly
covered here, with concrete implementation details provided in Chap-
ters 2 and 3. The COCO [141] dataset has been used as a benchmark
in [B.1] and [B.2]. The dataset is composed of 21 classes of everyday
objects, including several types of vehicles. Both [B.1] and [B.2] apply
perturbation-based gradient-free methods. Input perturbations are used
in [B.1], while feature map perturbations in pre-selected intermediate
layers are used in [B.2].

The Tendency-and-Assignment Explainer (TAX) framework is in-
troduced in [41]. It aims to explain what contributes to the segmenta-
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tion output and the reasoning behind it (i.e. the why question). For
this, a multi-annotator scenario is considered. The learned annotator-
dependent prototype bank indicates the segmentation tendency, with a
particular focus on uncertain regions. The experimental results on the
Pascal VOC [72] dataset demonstrate that TAX predicts oversegmenta-
tion consistent with the annotator tendencies.

XAI Applications in Self-Supervised and Weakly Supervised Segmen-
tation

Manual image labeling is an expensive operation, especially when pixel-
wise labeling is involved. It requires significant time and financial
resources, and depending on the dataset being annotated, may also
require particularly narrow expertise. With this in mind, it has been sug-
gested that XAI techniques could be employed for automated labeling,
which could also help reduce some forms of annotation bias.

In [226], a new explainable transformer architecture is proposed
for model-inherent interpretability and is investigated for weakly su-
pervised segmentation. An explainable vision transformer is used
as a Siamese network, where two branches process input images for
the self-supervised learning of interpretable attention maps. For en-
hanced interpretability, model representations are regularized using an
attribute-guided loss function. Higher-layer attention maps are fused
and used alongside attribute features. Qualitative segmentation results
are compared with Self-supervised Image-specific Prototype Exploration
(SIPE) [40] for weakly supervised semantic segmentation. However, the
model’s limitation is its inability to incorporate attribute-level ground
truth labels. Another application for weakly supervised segmentation
employs LRP-based classification explanations [187]. These explana-
tions are used to generate pixel-wise binary segmentations, which are
then thresholded. The experiments are conducted on two datasets: one
for cracks in sewer pipes and another for cracks in magnetic tiles [108].

In [78], surface crack detection and growth monitoring are investi-
gated as part of structural health evaluation in infrastructure. Although
no specific technique for explainable segmentation is proposed, explain-
able classification is used for weakly supervised segmentation, allowing
for the quantification of crack severity. Six post-hoc techniques are
implemented: InputXGradient, LRP, Integrated Gradients, DeepLift,
DeepLiftShap, and GradientShap. Additionally, B-cos networks and the
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Neural Network Explainer are employed. In [25], GradCAM is used
for semantic segmentation. An additional classification model is used
with masked inputs, based on the given class. The classifier is trained
on all the masked images across all classes. Explainable classification
can also be used to enhance the data efficiency of segmentation models.
For instance, in [220], Grad-CAM is employed to extract data-efficient
features from the classification model, which are then used for segmenta-
tion. The results indicate that this approach generalizes across different
segmentation methods.

1.4. Adversarial Attacks

XAI techniques are used in addition to standard evaluation metrics to
improve models’ reliability and trustworthiness. However, with their
increasing adoption, it is also important to evaluate the explainability
techniques and their outputs themselves, in order to better understand
their limitations and the extent to which they can be trusted. Especially
in scenarios where potential XAI weaknesses could be exploited by
adversaries through deliberate, targeted manipulation. This section
discusses these concerns. First, it provides a brief overview of adver-
sarial attacks, followed by a discussion of literature relevant to both
interpretability and adversarial attacks in semantic segmentation. The
main results presented in this section have been previously published
in [A.1].

DL models are vulnerable to adversarial attacks where subtle modi-
fications to input images that are imperceptible to the human eye can
lead to confidently incorrect predictions. Since their introduction in
2013 [203], adversarial perturbations or adversarial noise have been
extensively studied in both theoretical and practical contexts.

Models deployed in publicly accessible cyber environments are
particularly vulnerable to adversarial techniques, including model ex-
ploratory and data poisoning attacks [171]. These attacks can pose
significant safety hazards, compromising safety-critical cyber-physical
systems (CPS) [168]. The most targeted industrial sectors currently in-
clude manufacturing and the supply of electricity, gas, steam, and air
conditioning [124]. Mitigating these risks requires a deeper understand-
ing of adversarial attacks, their scope, and their limitations.
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For AI systems to be trustworthy and reliable in real-world applica-
tions, robustness is needed not only in the model’s output but also in its
interpretability. In recent years, it has been shown [87] that fragility to
perturbations is not just limited to the model’s predictions, but that it
also extends to their explanations. Consequently, fragile interpretations
could be measured in terms of their robustness to perturbations in the
input image.

A prevalent branch of interpretability methods concerns itself with
instance-based model-agnostic post-hoc explanations, where, within the
context of computer vision, the explanation is limited to one image on
the already trained model, irrespective of its underlying architecture,
and without retraining it again. Some of the best-known examples of
this type of approach come from gradient-based methods, where pixel
importance maps, also known as saliency maps, are generated using the
gradient of the prediction score with respect to the input image.

This dissertation investigates the effects of adversarial attacks on
gradient-based saliency map techniques in semantic segmentation. The
focus is on targeted attacks where the segmentation output of the origi-
nal image is moved to a different place, without changing its area. Such
attacks are particularly concerning because they are more difficult for
human operators, even experts, to detect. Even though the adversar-
ial attack literature tends to focus on vivid examples, such as turning
the model’s classification of a panda into that of a gibbon [91], simi-
lar scenarios would be more easily detectable in an industrial setting.
However, the shift of the original segmentation output by a few pixels
could frequently go unnoticed while, in practice, still causing substantial
damage. The intersection of interpretability and adversarial robustness
remains an underexplored area in semantic segmentation.

1.4.1. Interpretability and Adversarial Attacks in Semantic
Segmentation

Both [107] and [212] introduced interpretable semantic segmentation
methods and tested them on the Cityscapes [53] dataset. In [212], Seg-
GradCam was proposed as an extension of Grad-CAM [188], an in-
terpretability method for classification, to semantic segmentation. In
[107], grid saliency was introduced to explain contextual information
in semantic segmentation. Its main objective is to detect context biases.
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Vanilla Gradient [192], as well as its SmoothGrad [196] extension, was
also applied to a synthetic semantic segmentation dataset [107]. There
is no research, however, on how these or similar interpretable semantic
segmentation methods would work under adversarial attacks.

Similar to interpretability methods, most adversarial approaches
focus on classification tasks. This can be explained by their higher
prevalence compared to segmentation tasks as well as the lower compu-
tational resources needed to arrive at a satisfactory solution. In the field
of CPS, [116] proposed an adversarial attack against anomaly detector,
but the attack targeted a classification-based system. Nonetheless, sev-
eral important methods [77, 222] have been proposed for implementing
adversarial attacks in dense predictions. In [222], a Dense Adversary
Generation (DAG) algorithm was proposed for generating adversarial
examples in semantic segmentation and object detection tasks. However,
the study does not explore interpretability-related areas. [65] presented
a method for attacking different explanation techniques while mini-
mizing changes to the model’s output. However, its implications for
semantic segmentation have not been investigated, and no attack on
interpretability in this domain has been conducted.

When it comes to the intersection of adversarial attacks and inter-
pretability, some of the recent works [65, 103, 232] have shifted the focus
from adversarial attacks on a model’s output to adversarial attacks on
its saliency. In [65], a loss function optimization approach was proposed
to manipulate the explanations generated by different XAI methods
while keeping the output of the model relatively unchanged. In [103],
passive and active attacks targeting an input image’s saliency were intro-
duced, demonstrating the transferability of such attacks across different
interpretability methods, such as between LRP [20] and Grad-CAM or
Vanilla Gradient. In contrast, [232] demonstrated a low transferability
of such attacks against interpretability techniques. However, in all cases,
the proposed approaches focused on classification tasks.

1.5. Chapter Conclusions

In this chapter, the first comprehensive survey of XAI methods for
semantic image segmentation was presented, along with a taxonomy
categorizing existing techniques into prototype-based, gradient-based,
perturbation-based, counterfactual methods, and architecture-based
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methods. The limitations of current methods were critically evaluated,
demonstrating the need for more robust and effective solutions. This
survey establishes the groundwork for developing new explainability
approaches and integrating them with adversarial robustness, which
will be explored in subsequent chapters.

Based on the literature review, it can be observed that most of the
XAI methods in image segmentation fall into post-hoc and local expla-
nation categories, with most of the conducted experiments only using
qualitative evaluation. Furthermore, the review highlighted a clear gap
at the intersection of explainable segmentation and adversarial attacks.
Perturbation-based and gradient-based approaches appear particularly
promising due to their transferability across different model architec-
tures. These methods are also of interest because in certain contexts,
such as real-time industrial applications, they might present a trade-
off between computational cost and the robustness or noisiness of the
generated explanations. For these reasons, they have been identified as
suitable candidates for explaining the outputs of semantic segmentation
models.
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2. XAI METHODS IN IMAGE SEGMENTATION

This chapter outlines the methods developed to advance post-hoc ex-
plainability in semantic segmentation. It introduces and provides theo-
retical foundations for three primary techniques: perturbation-based
methods in input and activation spaces, and gradient-based approaches.
The chapter also discusses XAI-driven model improvements in neural
architecture search (NAS) and continual learning (CL). The main results
presented in this chapter have been previously published in [A.1], [B.1],
[B.2], and [B.3].

2.1. Perturbations in the Input Space

Input perturbation XAI techniques are based on the systematic occlusion
of parts of an input image, generating explanations by measuring how
these occlusions affect the model’s output. For more details and a high-
level framework for perturbation-based methods for the input space
(Fig. 1.7), refer to Subsection 1.3.1. The images presented in this section
are from the COCO dataset [141], which is further described in Section
3.1 when discussing experimental results.

Figure 2.1: Three 30×30 occlusions in the upper-left corner correspond
to gray, black, and Gaussian filters.

Following [227], the proposed approach measures the effect of oc-
clusions in terms of either the Dice coefficient or Intersection over Union
(IoU) metric. The Dice coefficient, defined as

Dice =
2|A ∩B|
|A|+ |B|
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quantifies the overlap between the predicted segmentation A and the
ground truth B. Similarly, the IoU, also known as the Jaccard index, is
given by

IoU =
|A ∩B|
|A ∪B|

,

which measures the ratio of intersection to the union of the predicted
and actual segmentations. Just like in the case of classification, the input
image is occluded by sliding the equilateral (although the implemen-
tation with different occlusion dimensions is possible) uninformative
patch over it and measuring its effect on the Dice coefficient for the seg-
mentation class of our choice. Suitable candidates for occlusion patches
include but are not limited to gray, black, and Gaussian filters (Fig. 2.1).
In the case of blurring the image with Gaussian filters, the standard
deviation value was set to 7.

Figure 2.2: The workflow of an occlusion-based approach for inter-
pretable semantic segmentation.

The occlusion process (Fig. 2.2) starts with a regular image pre-
processing step that includes normalization and, in the case of limited
computational resources, resizing. Then the selected type of occlusion
filter is gradually slid along the whole image. A smaller slide size can
be used as well but then filters would overlap. The inference is made
for each newly occluded image by passing it through a trained neural
network. Each time a new segmentation output (Fig. 2.3) is generated
and is then used to calculate the evaluation metric’s (typically the Dice
coefficient or IoU, but a sum of logits for a class of interest can also
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be used) score. The score is saved, and the process is repeated until
the sliding occlusion filter has fully covered each corresponding image
region.

Figure 2.3: Occluded images and their corresponding segmentation
output, generated by DeepLabV3.

The collected scores of all occlusions are used in creating a saliency
map that shows the importance of each region for the successful seg-
mentation of the class of interest. In the Dice score-based visualizations
(Fig. 2.4), the image background was chosen as such class. To generate
more color intensities, min-max normalization is employed.

Figure 2.4: DeepLabV3 (first row) and FCN (second row) results, using
294 30×30 occlusions. Min-max normalized maps are in the second
column while z-score standardized maps are in the third. Either one of
these techniques can be used to generate more color intensities in the
final explanation.

A threshold can then be selected for the normalized scores to be
visualized. Different thresholds will generate different maps, which
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might be useful for the end-user in drawing attention to different regions
in the image. Also, focusing on just the most salient regions will help to
reduce the noisiness of the initial saliency map. Related experimental
results are discussed in Section 3.2.

2.2. Perturbations in the Activation Space

Ablation-CAM was introduced in [62] for image classification tasks. It
uses a full deactivation of feature maps within a particular layer to mea-
sure its impact on the model’s performance with respect to a particular
class. Based on that, the importance scores are calculated for each of the
feature maps and they are then used as weights in a linear combination
of activation maps. In this section, the application of Ablation-CAM is
extended for dense predictions (Figs. 2.5 and 2.6). For more details and a
high-level framework for perturbation-based methods for the activation
space (Fig. 1.8), refer to Subsection 1.3.1. The images presented in this
section are from a private industrial dataset from a manufacturer of fruit
processing machinery and the COCO dataset [141], both of which are
further described in Section 3.1 when discussing experimental results.

To extend ablation-based interpretability to segmentation, the ab-
lation impact on a class of interest is computed in terms of its effect on
cumulative logits, obtained by summing up the majority class (argmax)
logits for each pixel. In the proposed extension, only the logits of c for
pixels that were classified as c are accumulated.

Given the RGB image x ∈ RN×M×3, the logit value for a single pixel
xij for a class of interest c is defined as lc(xij). Then the sum of logits
for c, conditioned on xij being classified as c, is:

Lc(x) =
∑
i,j

[ĉij = c]lc(xij), (2.1)

where ĉij in the Iverson brackets is the predicted class for the xij pixel.
These accumulated class logit values are used to compute the impor-

tance score for each activation map, like in the original implementation.
Following [62], the importance weight wc

k for each activation unit k is
defined as:

wc
k =

Lc(x)− Lc
k(x)

Lc(x)
, (2.2)

63



where Lc
k(x) is the sum of logits for c after the ablation of activation map

Ak.

(a) (b) (c)

(d) (e) (f)

Figure 2.5: Ablation-CAM for semantic segmentation. (a) and (b) show
the original input image and its corresponding ground truth (for a more
detailed description of the dataset, see Section 3.1); (c) shows the U-Net’s
predicted segmentation output; (d) shows the output of Ablation-CAM
for semantic segmentation, when applied on the last encoder layer; (e)
shows resized and smoothed Ablation-CAM output; (f) is the Ablation-
CAM output (e) overlayed on the original input image (a).

Then the calculated weights can be used in a linear combination
of feature maps. Before the ablation, an encoder layer of interest has
to be selected (Fig. 2.7). Within the U-Net architecture, the second
convolutional layer of the last encoder block was selected1. Then each of
its 256 feature maps was separately deactivated by setting its values to
0. The Ablation-CAM extension was also investigated in a more general
multi-class setting (Fig. 2.6) with different-sized objects. In this case,
the third encoder layer of FCN-ResNet-101 was ablated by separately

1Different layers can be selected but the preliminary experiments showed the most
promising results with layers close to the U-Net bottleneck.
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deactivating 1024 feature maps. Ablation-CAM was also implemented
using the Dice score for a class of interest as an importance score instead
of a sum of pre-normalized probabilities, but the visual results were
better when using the latter.

(a) Input image (b) Segmentation output

(c) The boat class (d) The dog class

Figure 2.6: Ablation-CAM for the multi-class dataset.

Warmer colors indicate greater importance of those regions in seg-
menting a class of interest. The generated heatmaps (Fig. 2.5 and Fig.
2.8) show that areas with warmer colors tend to correspond to the fruit’s
cutting line. The 24×24 image was resized to the original pre-processed
input size of 192×192 for overlaying onto the input image, as seen in
Fig. 2.5 (f). Related experimental results are discussed in Section 3.3.
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Figure 2.7: Randomly selected feature maps with their corresponding
spatial dimensions from the four encoder blocks (one per each row).
Feature map occlusions for the background class with a t value of 0.5
can be seen in the last row, corresponding to the last convolutional layer
before the U-Net bottleneck.

(a) Input (b) Ground Truth (c) Output (d) Ablation-CAM (e) Simple Gradients

(f) Input (g) Ground Truth (h) Output (i) Ablation-CAM (j) Simple Gradients

Figure 2.8: Comparison of Ablation-CAM and gradient-based saliency
maps for two input images. The first row presents an instance with
a worse segmentation performance (c). This can be explained by the
corresponding Ablation-CAM map (d), where one can see the network’s
failure to detect the fruit’s suture line.
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2.3. Gradient-Based Explanations in Adversarial Contexts

To investigate model outputs, two gradient-based interpretability tech-
niques are extended to semantic segmentation: a simple gradient saliency
map, also referred to as Vanilla Gradient, and the same saliency map
enhanced with SmoothGrad, which can be applied to any gradient-
based interpretability method to reduce noise. For more details and a
high-level framework for gradient-based methods (Fig. 1.9), refer to
Subsection 1.3.1. The images presented in this section are from a private
industrial dataset from a manufacturer of fruit processing machinery
and a public semantic drone dataset2 from Graz University of Technol-
ogy, both of which are further described in Section 3.1 when discussing
experimental results.

2.3.1. Gradient-Based Saliency Maps

Saliency maps in classification

In classification, a simple gradient-based saliency map is calculated
by taking the gradient of the predicted score with respect to the input
image. Formally, given a set of classes {1, 2, ..., C}, where C is the
number of classes, and given the RGB image x ∈ RN×M×3, g(x) =

(g1(x), ..., gC(x)) ∈ RC is defined, where gc(x) is the prediction score
before the Softmax function for class c = 1, 2, ..., C with respect to x.
Then the saliency map of class c is G(x, c) = ∂gc(x)

∂x .

Saliency maps in semantic segmentation

When calculating saliency map values with Vanilla Gradient for seman-
tic segmentation, the logits (not-normalized probability scores before
the Softmax function) of the class of interest are summed up to obtain a
scalar value. The gradient of that value is then calculated with respect
to all input pixels. This way, saliency maps can be generated for each
segmentation class of interest. It is possible to calculate the absolute
value of each pixel’s score if we are indifferent between its positive or
negative contribution to the segmentation score of the class of interest.

Formally, given a set of classes {1, 2, ..., C}, where C is the num-
ber of classes, and given the RGB image x ∈ RN×M×3, the function

2http://dronedataset.icg.tugraz.at/
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g(x) = (g1(xij), ..., gC(xij)) ∈ RN×M×C is defined, where gc(xij) is the
prediction score before the Softmax function for class c = 1, 2, ..., C with
respect to the pixel xij of x. The notation g(x) is used for the prediction
score after applying the Softmax function. The sum of logits for c is then
defined as: gc,A(x) =

∑
i,j∈A gc(xij), where A is a set of pixel indices of

interest. Then the saliency map of class c is GA(x, c) =
∂gc,A(x)

∂x .
The sensitivity of the saliency map can be controlled by setting a

threshold t to the gradient values of each pixel.

Figure 2.9: The input image and U-Net’s segmentation output in the first
column. Vanilla Gradient saliencies without any threshold (top) and
with t set to 100 (bottom) in the second column. SmoothGrad saliencies
without any threshold (top) and with t set to 100 (bottom) in the third
column.

To illustrate this, saliency maps for the cutting line in Figure 2.9 were
calculated using the threshold of 100. In this way, the corresponding
map values are simplified into two values based on the thresholding con-
dition. SmoothGrad saliency was calculated using 50 noise sampling3

iterations. This value worked well with respect to the computational
resources, as larger value would usually not provide clearer visualiza-
tions, but would take longer to compute. In all cases, the absolute values
were used and saliency map values were calculated with respect to the
suture line class.

3SmoothGrad reduces the noise in gradient-based saliency maps by adding ran-
dom noise to the input image during each iteration, calculating the gradient-based
explanation for each noisy image, and then averaging these explanations.
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(a) Input image (b) Segmentation output

(c) Saliency (d) Thresholded saliency

Figure 2.10: The input image and U-Net’s segmentation output in the
first row. Vanilla Gradient saliencies for the car class without any thresh-
old (left) and with t set to 100 (right) in the second row.

As can be seen in Figure 2.9 and Figure 2.10, salient values tend to
correlate with the direction of the classes of interest which, in this case,
are the cutting line and the car. Due to the higher computational cost of
SmoothGrad, its application can be omitted when the generated saliency
maps are sufficiently clear and not overly noisy (Fig. 2.10).

2.3.2. Adversarial Attacks in Semantic Segmentation

Gradient-based XAI techniques were systematically evaluated in adver-
sarial scenarios to determine their susceptibility to attacks. To better
control the perturbation process and prevent excessive distortion in the
adversarial examples, an additional loss term was introduced. This
term ensures that the applied adversarial noise remains constrained,
preserving both the segmentation output and the perceptual similarity
of the perturbed image to the original. The formal definition of the loss
function is presented below.

Given two images x, y ∈ RN×M×3 and two classes of interest c1, c2 ∈
{1, 2, ..., C}, the goal is to attack the saliency map of x, GA1(x, c1), to
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get the target saliency map of y, GA2(y, c2), where Ai is the area of the
image classified as ci, ∀i = 1, 2. At the same time, the segmentation
output g(xadv) of the perturbed image xadv should remain similar to the
segmentation output g(x), and the perturbed image should not change
too much from x. The following loss function is proposed [A.1] and
defined as:

L = γ1Lexp + γ2Lout + γ3Lim, (2.3)

where
Lexp = ||GA2(y, c2)−GA1(xadv, c1)||2,
Lout = ||g(x)− g(xadv)||2,
Lim = ||x− xadv||2,

and where γ1, γ2, γ3 are fixed parameters that control the relative impor-
tance of each loss term during optimization. Lexp measures the distance
between the generated explanation and its adversarial target (i.e., the
explanation that we want the attacked model to generate), Lout mea-
sures the distance between the model’s original output and the attacked
model’s output, and Lim measures the distance between the original
input image and the attacked input image.

Section 3.4 presents related experimental results, focusing on two
types of adversarial attacks on semantic segmentation networks us-
ing industry-related datasets. First, the Dense Adversary Generation
(DAG) [222] attack is applied to input images and its impact is evaluated
on the corresponding saliency maps. Second, adversarial attacks are
extended to saliency maps in semantic segmentation. Gradient-based
interpretability extensions are also explored. To date, there is no research
on interpretable semantic segmentation under adversarial attacks.

2.4. XAI-Driven Model Improvements

Little attention has been paid to the use of XAI in non-explainability-
related scenarios, where XAI methods are applied not for interpretability
per se, but rather for other instrumental reasons, such as improving a
model’s performance. Such use cases can potentially extend to AI safety,
specifically in the case of adversarial attacks, self-supervised learning,
NAS, and CL. Most of these areas have never been investigated in the
context of interpretable segmentation. This section considers concrete
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frameworks for potential uses of interpretable image segmentation for
model compression in the case of NAS, and instance-based memory
compression in the case of CL.

Based on the literature review, there are no XAI-driven model im-
provements specifically for NAS or CL in segmentation. In classification,
[236] proposes a NAS model based on class activation mapping (CAM).
The teacher and student models are incorporated into the evolutionary
search. The less complex student model has to generate an explanation
map that closely approximates the one generated by the teacher model,
as measured by the inverse of the Euclidean distance. In [106], an input
saliency-based NAS is introduced as a way of reweighing different data
points. However, the proposed solution only focuses on the features in
the input space, leaving investigation of the activation space features for
further research. This approach is suitable for differentiable NAS meth-
ods, but further investigation is needed for non-differentiable methods,
such as evolutionary-algorithm-based NAS. Additional modifications
or selecting a non-gradient based optimization algorithm would be
required.

The underlying assumption is that efficient explainable segmenta-
tion techniques can identify those regions in the input space or those
feature maps in the activation space that are most important for the
decision-making of a model and, by extension, its accuracy. Since XAI
techniques primarily focus on these areas, their results could be used for
model compression in NAS, or memory compression in CL. To better in-
vestigate XAI-driven segmentation model enhancements, the following
objectives can be defined:

• Identify the most suitable XAI techniques in segmentation based
on computational requirements and quantitative XAI metrics.

• Investigate whether the CAM-NAS application in classification
can be successfully extended to segmentation.

• Evaluate the performance of various explainable segmentation
techniques, focusing on their potential uses in NAS.

• Explore the use of explainable segmentation techniques for mem-
ory compression in experience replay by storing only the image
areas centered around the most important input features, as iden-
tified by selected XAI techniques.
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2.4.1. Neural Architecture Search

Firstly, suitable XAI techniques have to be selected for the experiments.
Based on previous research [A.1], [B.1], [B.2], gradient-based methods
are preferable for the proposed use cases due to their lower computa-
tional costs. Processing time is an important factor when extracting
saliency maps, especially when multiple iterations are required. This
is further supported by the CAM-NAS [236] experiments in classifica-
tion, where gradient-based methods achieve the best results. A sim-
ple gradient-based saliency map technique can be used as a baseline.
Different implementations of Seg-Grad-CAM [212] can also be inves-
tigated. Since gradient-based techniques can generate a lot of noise,
noise-reduction techniques, such as thresholding a certain percentage of
pixels based on their importance, might also be considered. Especially
when manual human-in-the-loop supervision is involved.

Figure 2.11: The pipeline for CAM-NAS in segmentation, based on
the original implementation [236] for classification tasks. This is an
idealized scenario where the saliency maps generated by both models
are identical.

NAS focuses on automating the design of neural network architec-
tures. Following [236], the initial teacher-student model will be extended
to semantic segmentation models. The explanations will be generated
based on the summed-up pre-Softmax prediction scores for the selected
class of interest (Fig. 2.11). A well-trained segmentation model (the
teacher) will be paired up with a less complex model (the student).
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Then, explainable segmentation maps will be generated for the same
input images and compared in terms of a similarity score. If the teacher
model has truly learned the most important representations in an un-
biased way, and if the selected XAI technique can capture the most
important features for the model’s decision-making, then the student
model should ideally become sensitive to the same features. This could
be viewed as a knowledge transfer from the teacher model to the stu-
dent. The original CAM-NAS implementation [236] uses evolutionary
algorithms for the generation of search submodels, and it could serve as
an initial starting point for the experiments.

2.4.2. Continual Learning

It is less clear whether XAI-driven model enhancements can be im-
plemented in the case of CL, specifically for memory compression in
experience replay. CL focuses on how an already trained model can learn
new tasks without forgetting the previous ones. Experience replay is an
efficient CL strategy that allows storing the most important examples
from old tasks inside the memory so that the model can still be exposed
to them in the future. In classification, it is possible to reduce memory
utilization by storing just the most salient regions of the data samples
[179]. By cropping the image so that it is centered around the most im-
portant regions, memory can be utilized more efficiently. However, it is
unclear if the cropping strategy could work in the case of segmentation,
as it is a dense prediction task that, unlike image classification, could not
be completed if part of the image was missing. In this particular context,
compared to compression in classification, segmentation appears to be
more sensitive to partial data. Enough critical contextual information
would have to be stored for the segmentation to be successful. Perhaps
less salient regions could be downsampled, as described in [148] in the
case of classification. Then, enough contextual information could still be
preserved to complete segmentation, especially if the right contextual
information was identified by the explainable segmentation technique.
Following [148], once the most important image regions are identified,
they can be occluded by a bounding box. The resulting image with
unoccluded non-discriminative pixels is then downsampled. Then, the
previously occluded salient region is summed up to the downsampled
image. The final image occupies significantly less space in memory. To
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date, similar experiments have not yet been conducted for CL in image
segmentation.

2.5. Chapter Conclusions

This chapter introduced three novel extensions to XAI techniques tai-
lored for semantic segmentation: occlusion-based, activation perturbation-
based, and gradient-based methods. An adaptation of occlusion-based
methods, traditionally used in classification, to the pixel-dense domain
of semantic segmentation was proposed. This included designing cus-
tomized occlusion strategies and assessing their computational and
interpretive trade-offs. Additionally, activation perturbation techniques
were introduced, enabling the selective deactivation of feature maps to
evaluate their contributions to segmentation outputs. Gradient-based
methods were also extended for segmentation tasks, addressing com-
mon issues such as noise and instability in saliency maps to produce
more reliable explanations. A three-term loss function was introduced
to further investigate adversarial attacks against segmentation models
in an experimental setting. Furthermore, this chapter provided theo-
retical frameworks for extending explainable segmentation techniques
to XAI-driven model improvements, particularly in the case of neural
architecture search and continual learning.

The following conclusions can be drawn:

1. Perturbations in the input space can be used for explainable seg-
mentation if either min-max normalization or z-score standardiza-
tion is applied first to disperse the Dice or IoU scores and generate
more color intensities in the explanation. Alternatively, logit val-
ues can be used to generate explanations.

2. Ablation-CAM can be extended for segmentation tasks, and it
is possible to generate explanations using either full or partial
occlusions of their activation maps.

3. It is possible to attack explanations of segmentation models by
optimizing a three-part loss function that minimizes the similarity
between the generated explanation and its adversarial target (i.e.,
the explanation that we want the attacked model to generate), the
similarity between the model’s original output and the attacked

74



model’s output, and the similarity between the original input
image and the attacked input image.
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3. EXPERIMENTAL EVALUATION

This chapter presents a systematic evaluation of the proposed XAI meth-
ods, focusing on their interpretability and computational efficiency. Ex-
periments are conducted using state-of-the-art segmentation models and
datasets to assess the performance of perturbation-based and gradient-
based methods. The chapter also explores the impact of adversarial
attacks on explainability and proposes mitigation strategies. The main
results presented in this chapter have been published in [A.1], [B.1],
[B.2].

3.1. Datasets

Three datasets were used for the experiments: a private dataset obtained
from CTI FoodTech1, a leading manufacturer in industrial food process-
ing machinery, a public semantic drone dataset2 from Graz University
of Technology, which focuses on increasing the safety of autonomous
drones, and the COCO dataset [141] of common objects.

The private dataset is comprised of 752 peach images with the
corresponding masks, showing the pit and the suture line, as can be
seen in Figure 3.1. The ground-truths for the first dataset were manually
labeled by CTI FoodTech operators.

Figure 3.1: Representative input image and its corresponding mask.

During preprocessing, a mean image was generated, and the images
were cropped along its farthest contours while visually double-checking
that the fruit remained within the frame. Input images and their corre-
sponding masks were resized to 192×192. Extensive data augmentation
was used, applying a sequence of transformations: horizontal and ver-
tical flips, 90-degree rotations, the application of Gaussian noise, and

1https://ctifoodtech.com/en/
2http://dronedataset.icg.tugraz.at/
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random changes in image brightness and contrast. Also, since the pri-
mary objective was to identify the cutting line, the pit and suture classes
were merged into a single class, i.e., the masks were binarized, as seen
in Figure 3.2.

Figure 3.2: The pre-processed image with the corresponding mask.

The first dataset is limited by the size of its data points. Nonetheless,
the simplicity of its geometric structures in its primary label allows for
a methodic investigation of its response to adversarial attacks. When
working with the first dataset, the classical U-Net [174] architecture with
four encoder layers and 32 initial filters was trained, reaching a 0.778
mean Dice coefficient score on the test dataset.

Figure 3.3: Representative input images and their RGB masks.

The second dataset is comprised of 400 6000×4000 high-resolution
aerial segmentation images. It includes 20 semantic categories for the
segmentation task, encompassing, among others, such classes as people,
cars, and obstacles. The representative images can be seen in Figure 3.3.
Given computational limitations, the images were resized to 1008×672
during training, offering a reasonable trade-off between image quality
and memory efficiency. The augmentation techniques used on the peach
dataset were similarly implemented on the drone dataset. The same
four-encoder layer U-Net architecture was used, just like when working
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with the peach dataset. However, for better performance, the model’s
backbone was pre-trained on the Imagenet [61] dataset. This way the
model was able to achieve a 0.693 mean Dice coefficient score.

For the perturbation experiments, the COCO dataset [141] was also
used. For the segmentation task, it consists of 21 classes of everyday
objects, including different types of vehicles. Perturbation experiments
in the input space, discussed in Section 3.2, were performed using the
COCO dataset. Perturbation experiments in the activation space, dis-
cussed in Section 3.3, were conducted using both a private CTI FoodTech
dataset and the COCO dataset. The experiments involving gradient-
based saliency maps and their susceptibility to adversarial attacks, dis-
cussed in Section 3.4, were conducted using the CTI FoodTech dataset
and the semantic drone dataset.

3.2. Experiments with Perturbations in the Input Space

3.2.1. Occlusion Approach for Semantic Segmentation

For further investigation, two pre-trained segmentation networks were
used: FCN [145] with a ResNet-101 [98] backbone and DeepLabV3 [38].
COCO [141] dataset with 21 segmentation classes was chosen due to its
focus on everyday objects, making the visual qualitative evaluation part
easier by not requiring domain-specific knowledge. In most cases, the
segmentation results of both models do not differ significantly.

Usually, in the case of non-background classes, occlusions generate
the same segmentation output, just without the occluded region. Some
larger occlusions, however, cause segmentation output to encompass
areas that previously were not a part of it (Fig. 3.4).

Figure 3.4: The occluded airplane fuselage and the corresponding out-
put, generated by FCN.
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Different types of occlusion filters can generate different segmen-
tation outputs, even when applied to the same image region (Fig. 3.5).
Segmentations based on Gaussian filter occlusions seem to be less prone
to confuse the occlusion filter with the foreground object. They also
seem to be more resilient in terms of recovering the occluded part of
the image. Black filter occlusions can generate segmentation outputs
where the filter is treated as an extension of the object, especially when
the background is light. In such cases, those occlusion areas would also
appear as darker regions within the saliency map. The visualizations
(Fig. 3.5) have been generated using 100×100 occlusions in order to see
the pronounced effect. In most cases, such an occlusion size will be too
large for a useful saliency map.

Figure 3.5: The effect of Gaussian (top two rows) and black (bottom two
rows) occlusion filters on the segmentation output (FCN).

Just like in the classification task, it is noticeable that a small oc-
clusion size usually does not have a significant effect on the model’s
output. Probably because it is easy for the network to recreate the image
from the contextual information that is not occluded. However, a more
detailed saliency map can be obtained by using a smaller occlusion size.
Unlike in the classification task, most images show only a minimal differ-
ence between various Dice scores after occlusions, often just in the third
decimal place. If these scores are used to generate saliency maps directly,
different regions within such maps will be almost indistinguishable to
the human eye (Fig. 3.6).
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Figure 3.6: The original image, its segmentation output, and the saliency
map based on non-normalized scores.

In such cases, min-max normalization was used to ensure that val-
ues were more dispersed within the interval [0, 1] rather than centered
around a particular Dice coefficient value. In the experiments, the nor-
malization step helped to increase the standard deviation of collected
scores by 2-3 orders of magnitude. As a result, a greater range of color
intensities was achieved when visualizing saliency maps (Fig. 3.7).

Figure 3.7: Each row shows an input image, its predicted mask, normal-
ized saliency map, and standardized saliency map (DeepLabV3).
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Z-score standardization with clipped negative values was also
tested before visualizing the image. Based on the results, z-score-based
saliency maps have starker contrasts between light and dark regions due
to the less gradual color transitions. However, in most cases the results
are clearer and less noisy when using normalization. Normalization
was not required when visualizing occlusion scores for the classification
task.

Visualizing the saliency map on top of the original image (Fig. 3.8)
can be useful in detecting important features. However, some of the
generated maps can be noisy. Color intensity thresholds can be selected
to make the generated saliency maps clearer. For example, in the case of
an airplane image (Fig. 3.8), the threshold for normalized scores was set
to 0.3, so that only the most important features would be represented.

Figure 3.8: Overlayed saliency maps with (bottom image) and without
(top image) thresholding.

The importance scores used for generating heatmaps were also
calculated using pre-normalized probability scores before the Softmax
layer, computed with respect to a class of interest. All logit values for
a class of interest were summed up for each pixel classified as belong-
ing to that class, and the resulting scalar value was used to measure
the impact of occlusion. Their corresponding visualizations (Fig. 3.9)
appeared more sensitive compared to those generated using the Dice
score (Fig. 3.7).
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Figure 3.9: Heatmaps, generated using 2752 10×10 filters. Explanations
correspond to the airplane (left) and the background (right) classes.

Figure 3.10: Deletion curves for the airplane image. 30×30 (top image)
and 50×50 (bottom image) occlusion filters were used.
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Furthermore, the results were evaluated quantitatively using dele-
tion curves [169]. The impact of different occlusions was investigated
on two input images where the foreground class of interest varied sig-
nificantly in terms of occupied area (Fig. 3.8). The most important input
features were gradually occluded, starting from the 99th percentile based
on the previously calculated importance scores, and the impact on the
model’s prediction was measured. A lower AUC value, corresponding
to a sharper decrease in the deletion curve, indicates a more discrimina-
tive interpretability technique capable of distinguishing more important
input features.

Figure 3.11: Deletion curves for the dog image. 30×30 (top image) and
50×50 (bottom image) occlusion filters were used.

The influence of occlusion color on overall segmentation was also
investigated. As seen in Figure 3.10 and Figure 3.11, gray occlusion
filters produced better results compared to white or black occlusions
when larger 50×50 occlusions were used. Here, better results refer to a
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sharper decline in the deletion curves, indicating that the explanation
method effectively identifies the most important regions of the input
and that the model’s predictions are highly sensitive to occlusions in
these areas. Specifically, a lower area under the deletion curve reflects
greater sensitivity to important features, and provides evidence that
the model relies appropriately on meaningful input regions. In most
cases, black occlusions resulted in the worst results, consistent with
previous qualitative observations (Fig. 3.5). For different input images,
the corresponding AUC tends to decrease as the size of the occlusion
filter decreases. The segmentation logits for the airplane class drop to
zero after occluding 20-30% of input pixels when using 10×10 black
occlusions (Fig. 3.12). A sharper decline in the deletion curves can be
observed for the dog image (Fig. 3.11), which could be explained by its
smaller relative area compared to the background.

Figure 3.12: Deletion curve for the airplane class. 10×10 black filters
were used.

However, the quantitative evaluation of interpretability methods
is still an ongoing research area because of the previously discussed
difficulty of interpretability-related concept formalization. The reliability
of such evaluation might be questioned due to the generation of out-of-
distribution samples when masking the input image [21].

3.3. Experiments with Perturbations in the Activation Space

In the perturbation-based experiments in the activation space, a U-Net
[174] architecture with four encoder layers was employed, along with
an FCN [145] model with a ResNet-101 [98] backbone for additional
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experiments on the COCO [141] dataset. This section describes the im-
plementation of the Ablation-CAM extension for semantic segmentation
and provides a qualitative evaluation of its results.

The results of Ablation-CAM segmentation interpretability were
compared with those of gradient-based saliency maps [192] extended
for segmentation. Gradient-based saliency maps generated significantly
more noise. Even though the main areas of interest were highlighted
correctly, a wide additional region was salient as well. Gradient-free
method, on the other hand, provided a clearer visualization of the im-
portant regions. The most influential areas were centered around fruit
pits. For an image with lower segmentation accuracy (Fig. 2.8 (c)), the
heatmap primarily captured the oval pit shape. The fruit’s suture line,
which posed challenges in segmentation, lacked visible activations. The
gradient-based saliencies for this image were more scattered compared
to those of the more accurately segmented images.

Partial Deactivation of Feature Maps

Partial deactivations of feature map regions were also performed based
on their belonging either to the background or the foreground class.

Prior research [125] suggests that the feature map occlusion inside
the background area has a lesser influence on the network’s classification
when compared to the occlusion inside the foreground area (i.e. the
class of interest). To investigate these results in the context of semantic
segmentation, both the background and the cutting line were separately
occluded for each of the four hidden layers (Fig. 2.7) inside the encoder
block and the effect of such occlusions on the network’s segmentation
output was measured in terms of Dice score and min-max normalized
logits for a class of interest. The results were calculated using different
occlusion threshold values t, ranging from 0.0 to 1.0 in increments of 0.1.
Results also indicate a more drastic change in the network’s performance
in the case of the cutting line occlusion (Fig. 3.13) for different encoder
layers.

Experiments were also conducted with the partial deactivation of
feature maps in order to explore other possible visualization strategies.
The activation foreground was completely occluded while keeping the
background intact, and vice versa. First, the importance score of each
feature map was evaluated with its foreground region deactivated. The
same evaluation was then performed for its background region. How-
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ever, the resulting interpretability visualization did not have significant
qualitative differences in either case. It is important to note that the
results of interpretability experiments can vary depending on the spe-
cific task, the model architecture, and the data used. Therefore, it is
always a good idea to experiment with different methods and compare
the results to determine the best approach for a given task. In any case,
partial deactivation of feature maps can still provide valuable informa-
tion about the model’s behavior and can help improve the transparency
and accountability of AI models in various industrial applications.

(a) Background occlusions.

(b) Foreground occlusions.

Figure 3.13: The effect of feature map occlusions on the background and
the foreground class. 50 random occlusion iterations were used on the
image from Fig. 3.2.
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To further analyze the impact of partial occlusion, the resulting
importance scores were subtracted from the initial scores, which were
generated as described in Section 2.2. The motivation behind this was to
visualize which regions were affected the most by partial deactivations.
If sensitivity to occlusions alone is of interest, rather than their direction,
the absolute value of the initial difference can be taken. At the same time,
this also allows visualizing which regions are the most resilient to partial
ablations. In Figure 3.14, such regions correlate with colder colors. The
visualization also shows that a larger region is affected in the case of
background occlusion. In Figure 3.14 (d)-(f) activation maps indicate the
highest sensitivity to background occlusion around the outer regions.
While the fruit is also considered part of the background in areas where
there are no cutting lines, the peach body does not seem to be affected as
much. By visualizing the differences in the importance scores, a deeper
understanding of how the model is using different input regions for
prediction can be gained. This information can be useful for fine-tuning
the model, improving its robustness, and enhancing its interpretability.

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Occlusion difference maps. (a)-(c) refer to the foreground
occlusion; (d)-(f) refer to the background occlusion. In each row, the
occlusion difference map is shown together with its resized version and
the input image overlay.
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3.4. Experiments with Gradient-Based Explanations in
Adversarial Contexts

3.4.1. Attack Against Segmentation Outputs

In this experiment, different transformations of the segmentation output
are created by shifting it in four directions (vertically up, vertically down,
horizontally left, and horizontally right) one pixel at a time, until the
first pixel belonging to the mask reaches the edge of the image. If the
segmentation output is already adjacent to the edge in a given direction,
no new images are generated. The area of the segmented output remains
invariant throughout.

Then, all generated images serve as adversarial dense prediction
targets in the DAG algorithm [222] to produce the corresponding adver-
sarial inputs. DAG allows finding the noise that, when applied to the
input image, results in the model’s output being close to the adversarial
target. For the experiments, the number of iterations was set to 20, 30, or
50, while γ, which controls the change in the input image, was set to 0.1.

For the next step, saliency maps – both with and without a threshold
– were calculated for each DAG-perturbed image. They were then
compared to the saliency maps generated for the original unperturbed
image using the structural similarity index measure (SSIM) [218] and
mean squared error (MSE) metrics. Following [218], the SSIM is defined
as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3.1)

where

• µx and µy are the mean intensities of images x and y.

• σ2
x and σ2

y are the variances of x and y.

• σxy is the covariance between x and y.

• C1 and C2 are small constants to avoid instability, defined as:

C1 = (K1L)
2, C2 = (K2L)

2 (3.2)

where L is the dynamic range of pixel values, and K1 = 0.01,
K2 = 0.03.
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This experiment was conducted on 25 images from the peaches
test set. The simple geometric shapes of the cutting lines allow for a
systematic study of the impact of adversarial attacks on saliency maps
in each of the selected spatial directions. The investigation focused on
shifts along one axis at a time, although targeted attacks based on other
transformations, such as rotations, would also work using this approach.
When working with limited computational resources or larger images,
transformations for adversarial targets can be created by moving the
segmentation output by more than one pixel at a time.

In Figure 3.15, the SSIM dependency on shift magnitude in pixels
in four directions is represented. The number of data points in each
direction depends on the previous one pixel transformations up to the
edge. Each subsequent transformation moves spatially further away
from the original input image and that affects the corresponding salien-
cies. Therefore, as could be expected, the SSIM score for saliencies tends
to decline with each shift. However, the decline of the curve is not as
steep in each direction, and the AUC up to a selected value on a shift
magnitude axis differs as well.

Figure 3.15: SSIM dependency on shift magnitude in four directions.
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Similarity score distributions are visualized using box plots (Fig. 3.16).
For the test images, most not-thresholded SSIM values fall within the 0.1-
0.3 range. SSIM values for thresholded (t = 100) images are significantly
higher, which can be explained by binarized saliencies. Based on scores
from all four directions, a corresponding heatmap (Fig. 3.17) illustrates
changes in similarity between attacked saliency maps and the original
with respect to the targeted attack’s spatial direction. Lighter colors cor-
respond to higher SSIM values. The opposite is true for the normalized
MSE values. In areas where the vertical and horizontal transformations
intersect, pixel values are calculated as the average of intersecting values
for that particular pixel. Most inspected cases exhibit a thin light buffer
area around the segmentation output, where the similarity score does
not change too drastically.

Figure 3.16: SSIM score distributions for all transformation directions
for 25 test images from the peaches dataset.

The saliency similarity visualization approach was also implemented
for the aerial segmentation dataset (Fig. 3.18). In this case, segmentation
outputs are more complex in terms of their geometry and overlapping
sections. When shifting the mask of a selected class, its previous location,
which is not currently covered by the newly shifted mask, is filled with
the dominant class of that image. In Figure 3.18 such class corresponds
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to the paved area. However, after 50 DAG iterations, the selected image
did not change too much even under the significant transformation,
when it was moved right to the edge of the image. This indicates that,
despite providing the DAG with the correct targets, the attack might
fail due to an insufficient number of iterations or image-related condi-
tions. In such cases, the target will not be reached, and saliency will
be calculated for the output that was changed too little. The relative
homogeneity of the generated heatmap (Fig. 3.18) would indicate an
attack failure under the current settings. Another observation is that
throughout the DAG attack, thresholded (t = 100) saliencies tend to be-
come more visible compared to the saliency of the original unperturbed
image.

Figure 3.17: Saliency sensitivity heatmaps, generated using SSIM scores
calculated for saliencies with (right) and without (left) a threshold.

These visualizations can be used to investigate how similar the
saliency map of an attacked image will be to the original saliency map
with respect to the targeted attack’s direction. This approach is not
limited to the DAG and the same visualization technique can be applied
to other types of adversarial attacks. Further studies are needed to deter-
mine the extent to which the similarity scores depend on the underlying
data and model as opposed to the failures of the attack itself. However,
the visualizations can be useful in either case.
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(a) Input image (b) Segmentation

(c) Shifting down (d) Shifting up

(e) Sensitivity heatmap (f) Thresholded heatmap

Figure 3.18: Saliency similarities after 50 DAG iterations.

3.4.2. Attack Against Segmentation Saliencies

In most cases, adversarial attacks seek to change the model’s output.
However, it is possible to further extend the reach of such attacks by
focusing on manipulations in saliency while keeping the model’s output
close to the original. So far, the research on such attacks has been limited
to classification. This subsection investigates its extension to semantic
segmentation.

Compared to attacks on classification saliencies, it takes more time
for segmentation saliency attacks to achieve the desired result. And
even when this part of the attack manipulates the model’s saliency
successfully without changing its output drastically, the added noise
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might render the input distortion perceptible to the human eye, thus
invalidating the whole attack, as seen in Figure 3.19.

Figure 3.19: Perceptible distortions near the corners.

Based on [65], the saliency attack was implemented with the goal of
changing the original image’s explanation map while also trying to keep
any changes in the model’s output to a minimum. This can be achieved
by constructing a loss function that controls changes in segmentation
outputs and corresponding saliencies. This type of attack becomes easier
if significant changes in the input image are allowed.

Unlike [65], where specific control of noise was not necessary to
achieve a successful attack (possibly due to the relative ease of such
attacks in classification tasks), experiments showed that the lack of con-
trol on perturbation often led to distorted images. To address this issue,
a third loss term was introduced (see Subsection 2.3.2) to control the
application of adversarial noise to the input image. This term constrains
the adversarial noise, preserving the similarity between the original
input image and the perturbed image.

Similar to [65], this study encountered the vanishing second deriva-
tive problem for ReLU non-linearities. To address this, the network’s
activation functions were changed from ReLU to Softplus during opti-
mization. High beta values allow Softplus to approximate ReLU. The
Adam optimizer was used to minimize the loss function. In practice, this
type of attack could be more easily implemented on smaller images with
a lower number of classes. For the aerial segmentation dataset, input
images were resized to 432×288 to accommodate computational con-
straints. This resolution was chosen as it provided a reasonable trade-off
between image quality and memory efficiency. As a result, the quality
of the segmentation output decreased in terms of the mean Dice score,
but the optimizing step for finding the adversarial noise became less
computationally expensive. Based on experimental results, this image
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size provided a good trade-off between the segmentation output and
the time it takes to perform the attack.

(a) Original image (b) Target image (c) Attacked image

(d) Original output (e) Target output (f) Attacked output

(g) Original saliency (h) Target saliency (i) Attacked saliency

(j) Original threshold (k) Target threshold (l) Attacked threshold

Figure 3.20: A successful saliency attack on the drone dataset. The input
image was perturbed to generate the saliency of the class person from
the saliency of the class vegetation.

For the aerial segmentation dataset, the saliency of a vegetation class
was successfully changed into the saliency of a person (Fig. 3.20). Both
original and target saliencies were selected from the same input image.
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The proposed attack allowed to change the saliency maps significantly
while limiting perturbations of the input image. In the process, the
segmentation output changed by a small amount. However, as can be
seen in Figure 3.20, the segmentation output for both the person and
vegetation classes does not look too different.

For the peaches dataset, two different images were selected and
the attack changed the saliency of a cutting line of one peach into that
of another (Fig. 3.21). The selected adversarial saliency targets were
not similar to the original image saliencies. This made the attack more
difficult. A larger number of iterations typically leads to a better MSE
value between the target and attacked saliency maps, resulting in a
higher degree of similarity. However, the experiments revealed that in
certain cases, a relatively effective attack could be achieved with just 100
iterations. A quantitative analysis of 30 randomly selected images was
performed to investigate the mutual influence of each term in the loss
function on MSE results (Table 3.1).

Figure 3.21: A successful saliency attack on the peaches dataset.
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Table 3.1: Ablation study for the peach and drone datasets.

This table presents the mean MSE values along with their standard
deviations.
For the peach dataset:
iterations = 500, learning rate = 10−5, γ1 = 1011, γ2 = 105, γ3 = 5 ·106;
For the drone dataset:
iterations = 500, learning rate = 10−4, γ1 = 1011, γ2 = 5 ·104, γ3 = 106.

Peach Dataset Drone Dataset

I
L = γ1Lexp

Lexp = (3.73± 1.27) · 10−9

Lout = (6.91± 8.25) · 10−3

Lim = (6.28± 1.24) · 10−6

Lexp = (3.15± 1.10) · 10−10

Lout = (3.58± 1.33) · 10−3

Lim = (5.70± 2.81) · 10−4

I+II
L = γ1Lexp + γ2Lout

Lexp = (3.74± 1.16) · 10−9

Lout = (1.03± 1.17) · 10−4

Lim = (6.79± 1.33) · 10−6

Lexp = (4.82± 1.12) · 10−10

Lout = (2.51± 1.20) · 10−5

Lim = (7.01± 1.57) · 10−5

I+III
L = γ1Lexp + γ3Lim

Lexp = (3.69± 1.11) · 10−9

Lout = (6.29± 7.45) · 10−3

Lim = (2.03± 0.51) · 10−6

Lexp = (4.05± 1.58) · 10−10

Lout = (5.05± 1.54) · 10−5

Lim = (1.90± 1.88) · 10−5

I+II+III
L = γ1Lexp + γ2Lout + γ3Lim

Lexp = (3.79± 1.16) · 10−9

Lout = (1.07± 1.22) · 10−4

Lim = (1.98± 0.45) · 10−6

Lexp = (5.59± 1.38) · 10−10

Lout = (1.15± 1.20) · 10−5

Lim = (6.22± 2.35) · 10−6

The MSE values for the peaches dataset are less dispersed than
the MSE values for the drone dataset, and, based on the experimental
results, the good adversarial attack loss parameters for one image in the
peaches dataset are not that different from the other one. This could be
explained by the fact that all the inputs, the outputs, and the saliency
maps are relatively similar to each other compared to their correspond-
ing counterparts in the drone dataset. Another contributing factor could
be the significantly lower number of segmentation classes in the case
of the peaches dataset. Ablation results showed that for the peaches
dataset, the addition of each new term to optimize the loss function dras-
tically lowered the value of the corresponding term without affecting
the others significantly. For example, in the second row, Lout decreased
by more than 50 times, in the third row, Lim decreased by more than 3
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times, and in the fourth row, the benefits of the previous two methods
were obtained without significant increases in Lexp. This indicates that
the proposed three-term loss function performs better than the two-term
loss function in [65]. In the drone dataset, the loss terms were more
interconnected, and modifying each loss term had a substantial impact
on the others. Therefore, a three-term loss function could be advanta-
geous because of a greater number of possible combinations with more
parameters.

3.5. Chapter Conclusions

The experimental results demonstrate the effectiveness of the proposed
XAI methods but also highlight the trade-offs inherent in various ex-
plainability methods for semantic segmentation. While gradient-based
techniques proved computationally efficient and well-suited for real-
time or resource-constrained tasks, they exhibited limitations in robust-
ness and stability. On the other hand, gradient-free perturbation-based
methods offered more detailed and interpretable explanations but at
the cost of significantly higher computational overhead, making them
less practical for time-sensitive applications. The findings also revealed
vulnerabilities to adversarial manipulation, underscoring the need for
robust evaluation frameworks. These observations validate the poten-
tial of the methods while highlighting areas for further improvement,
particularly in adversarial contexts.
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4. DISCUSSION

This chapter discusses the broader implications of the findings from
the experimental evaluation, focusing on the trade-offs between inter-
pretability, robustness, and computational efficiency. It identifies open
challenges in XAI for semantic segmentation and outlines future re-
search directions. The main results presented in this chapter have been
published in [A.2].

4.1. Open Issues

Plenty of unresolved challenges remain in explainable semantic segmen-
tation, most of which are also applicable to image classification tasks.
Below is a non-exhaustive list of these challenges:

• Evaluation metrics for XAI
Most of the literature on XAI in image classification focuses on
introducing new explainability techniques and their modifications,
rather than proposing new evaluative frameworks or benchmark
datasets. This tendency is even more visible in explainable seman-
tic segmentation. Currently, there are no papers dedicated solely
to evaluating XAI results in image segmentation. The investiga-
tion of XAI metrics remains limited to the experimental results
sections, and only in those few cases where quantitative evaluation
is used. There is no consensus on which evaluation metrics are
most crucial for capturing the key aspects of explainability, largely
due to the difficulty in formalizing explainability-related concepts.
A better theoretical understanding of the problem should inform
the creation of evaluative XAI metrics and benchmarks. Such
foundations would likely result in more efficient explainable seg-
mentation methods that are better adapted to the problem at hand.

• Safety and robustness of XAI methods
With the rapid deployment of DL models in medical, military, and
industrial settings, XAI techniques are set to play an even more
important role. Their primary use is driven by the need to deter-
mine if the model is reliable and trustworthy. However, similar
questions can also be raised about the XAI techniques themselves.
It is important to investigate their vulnerabilities and loopholes.
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Both deployers and end-users need to know whether they are
secure against intentional attacks directed at XAI techniques or
the model. Even if there is no direct threat, the robustness of each
specific XAI method needs to be investigated on a case-by-case
basis.

Just like classification models, semantic segmentation models are
susceptible to adversarial attacks. Different attack methods have
been proposed [47, 77, 222]. When discussing adversarial attacks,
it is common to focus on the model’s output as the primary tar-
get. However, it is also possible to attack the output’s explanation
saliency while leaving both the input and the output perceptibly
unchanged. Such attacks have been introduced and investigated
in the context of image classification [65]. It has also been demon-
strated that these second-level attacks can be extended to image
segmentation [A.1]. More research is needed to find the best ways
to combat them, especially since new adversarial attacks are con-
stantly being developed, and comprehensive safety guarantees
are challenging to ensure. Systematic investigations need to be un-
dertaken for both white-box attacks, where the attacked model is
known to the attacker, and black-box attacks, where it is unknown.
Similar investigations into the robustness of interpretable segmen-
tation could contribute to the overall security of AI systems.

Adversarial examples are typically not part of the training and
testing datasets. This omission can lead to vulnerabilities in de-
ployed models. Another critical issue is the presence of biases.
When the most salient regions of the explanation map fall outside
the boundaries of the object of interest, this might signal not just a
misguided prediction but also the potential presence of adversar-
ial influences [107]. Natural adversarial examples [102] and their
influence on XAI in segmentation could be investigated as well.

• XAI for video segmentation
As semantic scene segmentation is not limited to 2D images, new
interpretability techniques could be investigated for video data,
where temporal semantic segmentation is carried out. Video object
segmentation requires significantly more computational resources.
To date, no studies have specifically investigated explainable im-
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age segmentation in a dynamic setting. The nature of dynamic
scenes could introduce novel challenges not previously encoun-
tered in 2D segmentation contexts. For instance, one would need
to add a temporal explanation axis to account for differences in
interpretability maps across video frames. This task could be fur-
ther extended to real-time semantic segmentation by focusing on
how to reduce the latency of the generated explanations.

• Computational complexity
Different XAI techniques require different computational resources,
which may not be readily available in certain environments. De-
ployment constraints may include issues related to both software
and hardware, where real-time services have to be ensured for
edge devices and online service platforms [46]. Further experi-
mental studies are needed to investigate methods for reducing the
computational complexity involved in generating explanations.
This includes evaluating and optimizing the trade-offs between
explanation quality and generation latency, particularly within
diverse industrial contexts. Post-hoc methods, with perturbation-
based techniques in particular, are rather inefficient in terms of
explanation generation time. The total cost of generating local
explanations increases with each new input image that requires
interpretation, making it crucial to understand your use case and
carefully assess available resources when selecting an XAI tech-
nique. Further research can help develop more efficient and scal-
able XAI methods, ensuring that high-quality explanations are
provided within the resource constraints of specific applications.

4.2. Future Directions

• XAI benchmarking and evaluations
Given that most literature primarily focuses on qualitative metrics,
the need for a well-defined benchmark and evaluation strategy
for XAI methods in image segmentation should be emphasized.
To date, no studies have specifically addressed evaluations or
benchmarks for XAI methods in this area. Moreover, research
focusing on the formal aspects of quantitative metrics in XAI is
limited.
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• Mechanistic interpretability and other XAI approaches
Mechanistic interpretability [31] is a promising research area. This
approach seeks to reverse engineer how models function. Fur-
thermore, there have been no significant contributions in formal
explainability [151] or argumentative XAI [57] within the context
of image segmentation.

• XAI for transformers
Additionally, there has not been much research [119] into the inter-
pretability of transformers for segmentation, especially compared
to convolutional networks. This is of particular interest given
the growing popularity of transformer architectures in various
applications. Conducting more comparative studies between XAI
techniques for different architectures or different convolutional
operations, such as atrous convolutions, could also be explored.

• Failure Modes
This area is related to evaluation metrics. However, it covers
problematic areas that could not be identified by the commonly
used metrics. Specifically, XAI could be used to identify and
mitigate bias in segmentation models. A systematic analysis of
failure cases and potential failure modes could better determine
the scope of applicability for XAI methods. Several studies [5] have
critically evaluated different groups of explainability techniques
in classification. However, a similar investigation has not yet been
conducted in image segmentation.

• Neural architecture search
NAS explores automating neural architecture designs. XAI tech-
niques can be applied in NAS in at least two distinct ways. First,
existing XAI methods can be incorporated into NAS algorithms to
improve their performance. For example, in [236], an explainable
CAM technique is integrated with the NAS algorithm to avoid
fully training submodels. Second, NAS algorithms can include
interpretability aspects as one of the metrics to be optimized in
multi-objective optimization. In [32], a surrogate interpretability
metric has been used for multi-objective optimization in image
classification. However, currently, no similar approaches exist for
semantic segmentation tasks.
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• Continual Learning
CL refers to the research area that investigates techniques allow-
ing models to learn new tasks without forgetting the previously
learned ones. This strong tendency for DL models to forget pre-
viously learned information upon acquiring new knowledge is
commonly described as catastrophic forgetting. More efficient
solutions to CL problems would allow the models to be used more
resourcefully, without retraining them from scratch when new
data arrives. The intersection of XAI and CL presents an interest-
ing area for investigation. XAI methods can be employed in CL
to: (1) improve the model’s performance; (2) better understand
and explain the model’s predictions; and (3) investigate the phe-
nomenon of catastrophic forgetting. The exploration of XAI and
CL could also lead to improved model understanding when either
a shift in data distribution or concept drift occurs.
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GENERAL CONCLUSIONS

This dissertation presents a comprehensive view of XAI in image seg-
mentation. It provides an up-to-date literature survey of various types
of interpretability methods applied in semantic segmentation, and clar-
ifies conceptual misunderstandings by proposing a taxonomy for ex-
plainable segmentation and general frameworks for different types of
interpretability techniques. XAI methods in segmentation were cate-
gorized into five major subgroups: prototype-based, gradient-based,
perturbation-based, counterfactual methods, and architecture-based
techniques. Based on the surveyed literature on explainable image
segmentation, it is evident that most of the methods focus on local
explanations and rely on qualitative evaluation.

Occlusion sensitivity techniques were investigated for interpretable
semantic segmentation. Contrary to their application for image classifi-
cation, the occlusion-based methods in semantic segmentation do not
seem to generate that much variance in the evaluation metric scores.
Therefore, min-max normalization can be employed to generate cleaner
saliency maps with more color intensities. Based on the qualitative re-
sults, the logits-based approach appears to be more sensitive compared
to the Dice score-based approach and might be a better choice for gen-
erating saliency maps. The quantitative evaluation demonstrates that
occlusions with colors that are more similar to the ones found in the im-
age of interest are more suitable for generating interpretable heatmaps.
Further research could systematically investigate input occlusions in
multi-class segmentation scenarios as well as experiment with different
occlusion slide sizes.

Qualitative results show a successful extension of Ablation-CAM
to dense prediction tasks. A recreation of Foreground vs Background
occlusion for different encoder layer activation maps supports the obser-
vations of [125], showing that the foreground occlusions have a greater
impact on the network’s output compared to the background occlusions.
Partial occlusion sensitivities can be useful in showing regions that are
the most and the least resilient to foreground or background occlusions.

Compared to simple gradients, the Ablation-CAM is less noisy, but
more computationally demanding. Ablation-CAM-based approaches
might not be as suitable for real-time or time-sensitive large-scale ap-
plications as those methods that only require a single inference and
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backpropagation. The most suitable XAI method will depend on the
specific requirements of the application and the trade-off between com-
putational efficiency and the explanation noisiness. In some instances, it
might be beneficial to use a combination of methods. Future work could
investigate multi-class segmentation scenarios in the industrial setting.

This study represents the first investigation into the impact of adver-
sarial attacks on the interpretability of semantic segmentation models.
The proposed approach allows for visual analysis of adversarial attack
effects on model explanations, particularly in scenarios with simpler
segmentation shapes and fewer target classes. This dissertation also
draws attention to the possibility of adversarial attacks on interpretable
semantic segmentation when saliencies are targeted directly. Further
research could explore physical adversarial attacks that take place under
real-life conditions, as well as their transferability to black-box models.

The key conclusions from this dissertation are as follows:

1. Five distinct categories of XAI methods in segmentation have been
identified (prototype- based, gradient-based, perturbation-based,
counterfactual methods, and architecture-based techniques), with
most of the field relying on qualitative XAI evaluations and local,
and post-hoc, explanations.

2. The extension of Ablation-CAM to dense prediction tasks demon-
strates that foreground occlusions have a greater impact than
background occlusions.

3. Occlusion sensitivity techniques are applicable to semantic seg-
mentation, with min-max normalization improving saliency maps
and logits-based approaches proving more sensitive than Dice
score-based methods.

4. Semantic segmentation models are susceptible to adversarial at-
tacks that manipulate explanations. This highlights the need for
research into attack transferability and defenses in black-box set-
tings.
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D. D. Pham, S. Chatterjee, P. Ernst, S. Özkan, et al. CHAOS
challenge-combined (CT-MR) healthy abdominal organ segmenta-
tion. Medical Image Analysis, 69:101950, 2021.

[124] H. Kayan, M. Nunes, O. Rana, P. Burnap, and C. Perera. Cyber-
security of industrial cyber-physical systems: a review. ACM
Computing Surveys (CSUR), 54(11s):1–35, 2022.

[125] B. Kim, J. Seo, S. Jeon, J. Koo, J. Choe, and T. Jeon. Why are saliency
maps noisy? cause of and solution to noisy saliency maps. In 2019
IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), pages 4149–4157. IEEE, 2019.

[126] S. S. Kim, N. Meister, V. V. Ramaswamy, R. Fong, and O. Rus-
sakovsky. Hive: evaluating the human interpretability of visual
explanations. In Proceedings of the European Conference on Computer
Vision, pages 280–298, 2022.

[127] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt,
S. Dähne, D. Erhan, and B. Kim. The (un) reliability of saliency
methods. Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning, pages 267–280, 2019.
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Dasam: Disease and spatial attention module-based explainable
model for brain tumor detection. Big Data and Cognitive Computing,
8(9):97, 2024.

[205] The White House. Executive order on the safe, secure, and
trustworthy development and use of artificial intelligence, 2023.
Available online at: https://www.whitehouse.gov/briefing-
room/presidential-actions/2023/10/30/executive-order-on-the-
safe-secure-and-trustworthy-development-and-use-of-artificial-
intelligence/. Last accessed: April 22, 2024.

[206] R. Tomsett, D. Harborne, S. Chakraborty, P. Gurram, and A. Preece.
Sanity checks for saliency metrics. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 6021–6029,
2020.

[207] M. Trokielewicz, A. Czajka, and P. Maciejewicz. Post-mortem
iris recognition resistant to biological eye decay processes. In
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2307–2315, 2020.

[208] P. Tschandl, C. Rosendahl, and H. Kittler. The HAM10000 dataset,
a large collection of multi-source dermatoscopic images of com-
mon pigmented skin lesions. Scientific Data, 5(1):1–9, 2018.

125



[209] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of
Cognitive Neuroscience, 3(1):71–86, 1991.

[210] D. Vázquez, J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, A. M.
López, A. Romero, M. Drozdzal, A. Courville, et al. A bench-
mark for endoluminal scene segmentation of colonoscopy images.
Journal of Healthcare Engineering, pages 1–9, 2017.

[211] K. Vinogradova. Explainable Artificial Intelligence for Image Segmen-
tation and for Estimation of Optical Aberrations. PhD thesis, Dresden
University of Technology, Germany, 2023.

[212] K. Vinogradova, A. Dibrov, and G. Myers. Towards interpretable
semantic segmentation via gradient-weighted class activation
mapping (student abstract). In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages 13943–13944, 2020.

[213] S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explana-
tions without opening the black box: Automated decisions and
the GDPR. Harvard Journal of Law & Technology, 31:841, 2017.

[214] A. Wan, D. Ho, Y. Song, H. Tillman, S. A. Bargal, and J. E. Gonzalez.
SegNBDT: Visual decision rules for segmentation. arXiv preprint
arXiv:2006.06868, pages 1–15, 2020.

[215] C. Wang, X. Gao, and X. Li. An interpretable deep Bayesian model
for facial micro-expression recognition. In Proceedings of the IEEE
International Conference on Control and Robotics Engineering, pages
91–94, 2023.

[216] J. Wang, Y. Zheng, J. Ma, X. Li, C. Wang, J. Gee, H. Wang, and
W. Huang. Information bottleneck-based interpretable multitask
network for breast cancer classification and segmentation. Medical
Image Analysis, 83:102687, 2023.

[217] K. Wang, S. Yin, Y. Wang, and S. Li. Explainable deep learning for
medical image segmentation with learnable class activation map-
ping. In Proceedings of the 2023 2nd Asia Conference on Algorithms,
Computing and Machine Learning, pages 210–215, 2023.

[218] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing, 13(4):600–612, 2004.

[219] K. Wickstrøm, M. Kampffmeyer, and R. Jenssen. Uncertainty and
interpretability in convolutional neural networks for semantic
segmentation of colorectal polyps. Medical Image Analysis, 60:

126



101619, 2020.
[220] X. Wu, Z. Li, C. Tao, X. Han, Y.-W. Chen, J. Yao, J. Zhang, Q. Sun,

W. Li, Y. Liu, et al. DEA: Data-efficient augmentation for inter-
pretable medical image segmentation. Biomedical Signal Processing
and Control, 89:105748, 2024.

[221] M. Xian, Y. Zhang, H.-D. Cheng, F. Xu, K. Huang, B. Zhang, J. Ding,
C. Ning, and Y. Wang. A benchmark for breast ultrasound image
segmentation (BUSIS). Infinite Study, 2018.

[222] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille. Adversar-
ial examples for semantic segmentation and object detection. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 1369–1378, 2017.

[223] Y. Xu, X. Yang, L. Gong, H.-C. Lin, T.-Y. Wu, Y. Li, and N. Vascon-
celos. Explainable object-induced action decision for autonomous
vehicles. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9523–9532, 2020.

[224] C.-K. Yeh, C.-Y. Hsieh, A. Suggala, D. I. Inouye, and P. K. Raviku-
mar. On the (in)fidelity and sensitivity of explanations. In Pro-
ceedings of the Advances in Neural Information Processing Systems,
volume 32, pages 1–12, 2019.

[225] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell. BDD100K: A diverse driving dataset for heteroge-
neous multitask learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2636–2645, 2020.

[226] L. Yu, W. Xiang, J. Fang, Y.-P. P. Chen, and L. Chi. eX-ViT: A novel
explainable vision transformer for weakly supervised semantic
segmentation. Pattern Recognition, 142:109666, 2023.

[227] M. D. Zeiler and R. Fergus. Visualizing and understanding con-
volutional networks. In Proceedings of the European Conference on
Computer Vision, pages 818–833, 2014.

[228] R. A. Zeineldin, M. E. Karar, Z. Elshaer, ·. J. Coburger, C. R. Wirtz,
O. Burgert, and F. Mathis-Ullrich. Explainability of deep neural
networks for MRI analysis of brain tumors. International Journal of
Computer Assisted Radiology and Surgery, 17(9):1673–1683, 2022.

[229] M. Zemni, M. Chen, É. Zablocki, H. Ben-Younes, P. Pérez, and
M. Cord. OCTET: Object-aware counterfactual explanations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

127



tern Recognition, pages 15062–15071, 2023.
[230] M. Zemni, M. Chen, E. Zablocki, H. Ben-Younes, P. Pérez, and

M. Cord. OCTET: Object-aware counterfactual explanations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15062–15071, 2023.

[231] J. Zhang, R. Gu, P. Xue, M. Liu, H. Zheng, Y. Zheng, L. Ma,
G. Wang, and L. Gu. S3R: Shape and semantics-based selective reg-
ularization for explainable continual segmentation across multiple
sites. IEEE Transactions on Medical Imaging, pages 1–13, 2023.

[232] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Inter-
pretable deep learning under fire. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020.

[233] Y. Zhang, S. Mehta, and A. Caspi. Rethinking semantic segmen-
tation evaluation for explainability and model selection. arXiv
preprint arXiv:2101.08418, pages 1–14, 2021.
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ĮVADAS

Per pastarąjį dešimtmetį dirbtinio intelekto (DI) sistemos pasiekė reikš-
mingų rezultatų, ypač natūralios kalbos apdorojimo ir kompiuterinės
regos srityse. Šių sistemų veikimas įprastai matuojamas įverčio metriko-
mis, kurios skiriasi priklausomai nuo sprendžiamo uždavinio. Šiuo me-
tu pažangiausios DI sistemos daugiausia remiasi giliojo mokymosi mo-
deliais – daugiasluoksniais neuroniniais tinklais, sudarytais iš vis dides-
nio modelio parametrų skaičiaus. Dėl didėjančio savo sudėtingumo ne-
retai šios sistemos įvardijamos kaip „juodosios dėžės“. Tuo pabrėžiama,
kad įverčio metrikos neatskleidžia visumos: net jei išvesties duomenys
yra teisingi, jie nesuteikia informacijos apie vidinį modelio veikimą.

Paaiškinamojo DI sritis apima įvairius metodus, kuriais siekiama
paaiškinti modelio vidinį veikimą, jo rezultatus arba padaryti visą siste-
mą suprantamesnę galutiniams vartotojams ir sprendimų priėmėjams.
Šiuo metu tebevyksta diskusijos dėl paaiškinamojo DI srities terminolo-
gijos. Tokios sąvokos kaip „interpretuojamumas“, „paaiškinamumas“,
„supratimas“ ir „patikimumas“ yra sunkiai apibrėžiamos. Kai kurie auto-
riai vartoja „interpretuojamas“ ir „paaiškinamas“ sinonimiškai [156], o
kiti – skirtingai [175, 176]. Kai šie terminai nėra vartojami sinonimiškai,
įprastai daroma skirtis tarp post-hoc paaiškinimų, taikomų jau apmoky-
tam modeliui, ir architektūriškai interpretuojamų modelių [176]. Tokiu
būdu interpretuojamumas siejamas su paties modelio skaidrumu (angl.
transparency) ir priklauso nuo to, kaip lengvai galima suprasti jo veiki-
mą. Pavyzdžiui, nesudėtingas sprendimų medžiu paremtas modelis
gali būti lengviau interpretuojamas nei giliojo mokymosi modelis, suda-
rytas iš milijonų parametrų. O štai paaiškinamumas dažnai apsiriboja
modelio rezultatų, o ne viso modelio paaiškinimu.

Šioje disertacijoje terminai „interpretuojamas“ ir „paaiškinamas“
vartojami kaip sinonimai, o konkretesni terminai „architektūra pagrįsti“
ir „architektūriškai interpretuojami“ vartojami aptariant konkretaus mo-
delio paaiškinamumo modifikacijas. Taip yra todėl, kad tik nedidelėje
apžvelgtos literatūros dalyje paaiškinamumo terminas vartojamas ant-
rąja prasme. Kadangi dauguma paaiškinamo segmentavimo darbų ne-
akcentuoja šio skirtumo, tai gali padėti išvengti nereikalingos painiavos
apžvelgiant jų turinį.

Vaizdų klasifikavimo srityje jau yra pasiūlyta įvairių paaiškinamu-
mo metodų, o semantinio segmentavimo srityje pastebimas jų trūkumas.

134



Nauji vaizdų segmentavimo paaiškinamumo metodai vis dar kuriami,
ir trūksta tyrimų, kuriuose būtų nagrinėjama paaiškinamojo segmen-
tavimo ir DI saugumo (angl. AI safety) sankirta, ypač įvertinant tokių
metodų atsparumą priešiškoms atakoms. Šioje disertacijoje siekiama
išplėsti šiuo metu ribotą paaiškinamojo DI metodų skaičių vaizdų seg-
mentavimo srityje. Disertacijoje taip pat tiriamos priešiškos atakos,
nukreiptos prieš paaiškinamąjį segmentavimą. Taip pat pateikiama išsa-
mi paaiškinamojo DI literatūros apžvalga vaizdų segmentavimo srityje,
siūloma metodų taksonomija ir aptariama, kaip siūlomi paaiškinamu-
mo metodai galėtų prisidėti prie paaiškinamuoju DI paremtų modelių
tobulinimo.

Tyrimo objektas

Tyrimo objektas – giliojo mokymosi modelių post hoc paaiškinamumo
metodai semantinio vaizdų segmentavimo uždaviniui.

Tyrimo tikslas ir uždaviniai

Tyrimo tikslas – sukurti naujus paaiškinamojo segmentavimo metodus,
tinkamus konvoliuciniams neuroniniams tinklams, ir įvertinti jų pa-
žeidžiamumą priešiškoms atakoms. Šiam tikslui pasiekti keliami šie
uždaviniai:

• Ištirti esamus vaizdų interpretuojamumo metodus klasifikavimo
ir segmentavimo uždaviniuose, nustatant tinkamiausius spren-
dimus konvoliuciniams neuroniniams tinklams. Remiantis šiuo
tyrimu parengti išsamią paaiškinamojo DI metodų apžvalgą ir
taksonomiją vaizdų segmentavimo srityje.

• Pasiūlyti ir pritaikyti naujus paaiškinamojo DI metodus (pavyz-
džiui, įvesties vaizdo uždengimais, aktyvacijų perturbacijomis ir
gradientais paremtus metodus), tinkamus segmentavimo uždavi-
niui, juos įvertinant kokybiškai ir kiekybiškai.

• Ištirti interpretuojamuosius semantinio segmentavimo metodus
priešiškų atakų kontekste, įvertinant jų gynybines galimybes ir
atsparumą priešiškoms atakoms.
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Mokslinis darbo naujumas

1. Šioje disertacijoje pateikiama išsami vaizdų segmentavimo paaiški-
namumo metodų apžvalga, neapsiribojanti viena paaiškinamumo
metodų rūšimi ar taikymo sritimi, ir pristatoma išsami paaiškina-
mojo segmentavimo metodų taksonomija.

2. Pasiūlomas Ablation-CAM [62], plačiai klasifikavime naudojamo
paaiškinamumo metodo, pritaikymas semantinio vaizdų segmen-
tavimo uždaviniui.

3. Pateikiamas sisteminis perturbacijų įvesties erdvėje tyrimas, įverti-
nantis skirtingų įvesties vaizdo uždengimų filtrų dydžių ir spalvų
poveikį modelių išvestims, atsižvelgiant į kokybines ir kiekybines
metrikas.

4. Parodoma, kad galima sėkmingai sukonstruoti priešišką ataką,
nukreiptą prieš post-hoc paaiškinamumo metodus semantiniame
segmentavime, išplečiant pirmąjį šios srities tyrimą [65] vaizdų
klasifikavime.

Praktinė darbo vertė

Paaiškinamasis vaizdų segmentavimas yra palyginti nauja sritis – pir-
mieji straipsniai šia tema pasirodė 2019–2020 metais [107, 212, 219]. Ši
tyrimo sritis sulaukia vis daugiau dėmesio, o pats semantinis segmen-
tavimas yra kertinis kompiuterinės regos uždavinys, kurio taikymas
apima įvairias sritis: nuo autonominių automobilių [76] iki medicininių
vaizdų analizės [17]. Dėmesys vaizdų segmentavimo paaiškinamumo
metodams yra susijęs ir su augančiu patikimo DI (angl. trustworthy
AI) poreikiu ypatingos svarbos taikymo srityse. Patobulintas post-hoc
paaiškinamumas gali pagerinti naudotojų pasitikėjimą ir palengvinti
teisės aktų laikymąsi, ypač medicinoje ar svarbiose pramonės šakose.
Išsami paaiškinamumo metodų naudojimo priešiškų atakų scenarijuose
analizė gali padėti geriau įvertinti ir suvaldyti su priešiškomis atakomis
susijusią riziką, taip prisidedant prie saugių DI sprendimų kūrimo. Šio-
je disertacijoje pasiūlyta taksonomija ir metodai gali suteikti tyrėjams
įrankių sistemingai įvertinti ir diegti paaiškinamumo metodus, maži-
nant atotrūkį tarp teorinės pažangos ir realaus taikymo.
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Ginamieji teiginiai

• Perturbacijomis paremti post-hoc paaiškinamumo metodai, taiko-
mi tiek įvesties, tiek aktyvacijos erdvėse, yra tinkami semantinio
segmentavimo modelių rezultatams aiškinti.

• Post-hoc paaiškinamieji segmentavimo metodai yra pritaikomi
priešiškų atakų kontekste tiek identifikuojant, tiek įgalinant priešiš-
kas atakas.

Tyrimo rezultatų aprobavimas

Straipsniai tarptautiniuose moksliniuose žurnaluose su cituojamumo
indeksu Clarivate Analytics Web of Science (CA WoS) duomenų bazėje:

1. Gipiškis, R., Chiaro, D., Preziosi, M., Prezioso, E. and Piccialli, F.,
2023. The impact of adversarial attacks on interpretable seman-
tic segmentation in cyber–physical systems. IEEE Systems Jour-
nal, 17(4), pp. 5327-5334. https://doi.org/10.1109/JSYST.
2023.3281079

2. Gipiškis, R., Tsai, C.W. and Kurasova, O., 2024. Explainable AI
(XAI) in image segmentation in medicine, industry, and beyond:
A survey. ICT Express., 10(6), pp. 1331-1354. https://doi.org/
10.1016/j.icte.2024.09.008

Pranešimai tarptautinėse konferencijose:

1. Gipiškis, R. and Kurasova, O., Occlusion-based approach for in-
terpretable semantic segmentation. 18th Iberian Conference on Infor-
mation Systems and Technologies (CISTI), June 20–23, 2023, Aveiro,
Portugal.

2. Gipiškis, R., XAI-driven Model Improvements in Interpretable
Image Segmentation. 2nd World Conference on eXplainable Artificial
Intelligence, July 17–19, 2024, Valletta, Malta.

Pranešimai nacionalinėse konferencijose:

1. Gipiškis, R. and Kurasova, O., Application of CNNs for brain MRI
image segmentation. 12th Conference on Data Analysis Methods for
Software Systems, December 2–4, 2021, Druskininkai, Lithuania.

137

https://doi.org/10.1109/JSYST.2023.3281079
https://doi.org/10.1109/JSYST.2023.3281079
https://doi.org/10.1016/j.icte.2024.09.008
https://doi.org/10.1016/j.icte.2024.09.008


2. Gipiškis, R. and Kurasova, O., Investigating post-hoc explainabi-
lity techniques for image segmentation. 15th Conference on Data
Analysis Methods for Software Systems, November 28-30, 2024, Dru-
skininkai, Lithuania.

Disertacijos struktūra

Disertaciją sudaro įvadas, keturi skyriai, išvados ir santrauka lietuvių
kalba. Įvade apžvelgiamas paaiškinamasis DI, pabrėžiant jo svarbą se-
mantiniam vaizdų segmentavimui, pristatomas tyrimo objektas, tikslas,
uždaviniai, mokslinis naujumas, praktinė reikšmė ir ginamieji teiginiai.
Pirmajame skyriuje apžvelgiama paaiškinamojo DI srities mokslinė lite-
ratūra, raida kompiuterinėje regoje, pristatoma paaiškinamojo semanti-
nio segmentavimo metodų taksonomija ir pabrėžiami esamų metodų
trūkumai. Antrajame skyriuje pristatomi rengiant šią disertaciją sukurti
metodai, įskaitant perturbacijomis ir gradientais paremtus bei priešiškų
atakų generavimo semantinio segmentavimo kontekste metodus, išsa-
miai aprašomi jų teoriniai pagrindai ir praktinis įgyvendinimas. Trečiaja-
me skyriuje pateikiamas eksperimentinis pasiūlytų metodų vertinimas,
daugiausia dėmesio skiriant paaiškinamumo, skaičiavimo efektyvu-
mo ir atsparumo priešiškiems scenarijams rezultatams. Ketvirtajame
skyriuje aptariami paaiškinamojo DI semantinio segmentavimo srityje
uždaviniai, vertinami paaiškinamumo ir patikimumo kompromisai ir
siūlomos būsimų mokslinių tyrimų kryptys, įskaitant hibridinius meto-
dus. Disertacijos pabaigoje pateikiamos pagrindinės išvados, praktinio
taikymo prielaidos ir rekomendacijos tolesniems tyrimams šioje srityje.
Disertaciją sudaro 153 puslapiai, 40 paveikslėlių ir keturios lentelės.
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S.1. Paaiškinamojo DI vaizdų segmentavimo srityje literatūros
apžvalga

S.1.1. Taksonomija

Paaiškinamumas mašininio mokymosi kontekste įprastai yra skirstomas
į skaidrius modelius ir post-hoc paaiškinamumo metodus, kurie savo
ruožtu skirstomi į konkrečiam modeliui būdingas ir nuo modelio nepri-
klausomas kategorijas [16]. Priklausomai nuo norimo abstrakcijos lygio,
galima naudoti kelias viena su kita suderinamas taksonomijas. Paaiški-
namieji metodai gali būti skirstomi į post-hoc ir ad-hoc paaiškinamumo
metodus [73]. Bendresnėje taksonomijoje [189] išskiriama struktūrinė
analizė, elgsenos analizė ir nuo dizaino priklausomas paaiškinamu-
mas. Paaiškinamojo DI taksonomijų analizė klasifikavimo srityje rodo,
kad jos taip pat galėtų būti pritaikytos vaizdų segmentavimo srityje.
Visgi iki šiol nebuvo pristatyta jokia taksonomija, skirta vis augančiai
interpretuojamojo segmentavimo sričiai.

S.1 pav.: Paaiškinamojo DI metodai semantiniame segmentavime.

Šioje disertacijoje siūloma taksonomija (S.1 pav.) remiasi apžvelg-
ta paaiškinamojo vaizdo segmentavimo literatūra. Siūloma taksono-
mija apima penkias metodų grupes: prototipais, gradientais ir per-
turbacijomis paremtus metodus, kontrafaktinius metodus ir nuo ar-
chitektūros priklausančius metodus. Remiantis anksčiau aptartomis

139



bendresnėmis taksonomijomis, įprastai siūlomose kitose apžvalgose,
dauguma metodų patenka į lokalaus ir post-hoc paaiškinamumo kate-
gorijas. Prototipais besiremiantys metodai naudoja reprezentatyvius
pavyzdžius ar jų dalis iš duomenų rinkinio, kuriuos analizuoja ir lygi-
na su įvesties vaizdu. Gradientais paremti metodai apima pasirinkto
tinklo sluoksnio arba dominančios klasės išvesties gradiento skaičia-
vimą pasirinktų įvesties duomenų arba požymių žemėlapių atžvilgiu.
Perturbacijomis paremtus metodus galima suskirstyti į dvi grupes, pri-
klausomai nuo perturbacijų erdvės. Perturbacijos įvesties erdvėje – tai
iteraciniai įvesties vaizdo uždengimai. Dažniausiai šioms vaizdo trans-
formacijoms naudojamas slankusis filtras, tačiau taip pat gali būti nau-
dojami ir įvairių tipų triukšmai. Perturbacijos metodų generuojami
paaiškinimai remiasi perturbacijų poveikiu modelio rezultatams. Pertur-
bacijoms aktyvacijos erdvėje naudojamas dalinis arba visiškas pasirinkto
modelio sluoksnio aktyvacijos žemėlapių (angl. activation maps) deak-
tyvavimas. Kaip ir perturbacijų įvesties erdvėje atveju, paaiškinimai
remiasi perturbacijų poveikiu modelio rezultatams. Kontrafaktiniai me-
todai siekia identifikuoti mažiausius įvesties pokyčius, kurių reikia, kad
pasikeistų modelio išvestis. Nuo architektūros priklausantys metodai
apima papildomas architektūrines modifikacijas, atliekamas dar prieš
modelio apmokymą arba jo metu, siekiant pagerinti paaiškinamumą.

S.2. Paaiškinamojo DI metodai vaizdų segmentavime

S.2.1. Perturbacijos įvesties erdvėje

Perturbaciniai paaiškinamojo DI metodai įvesties erdvėje remiasi siste-
mingu įvesties vaizdo dalių uždengimu, o paaiškinimai generuojami
išmatavus, kaip šie uždengimai veikia modelio išvestį. Remiantis [227],
pasiūlytas metodas matuoja uždengimų poveikį Dice koeficientui ar-
ba Intersection over Union (IoU) metrikai. Kaip ir klasifikavimo atveju,
įvesties vaizdas dalinai uždengiamas juo sistematiškai praslenkant filtrą
ir matuojant šio uždengimo poveikį Dice koeficientui iš anksto pasirink-
tai segmentavimo klasei. Atliekant eksperimentus tiriami filtrų dydžiai
ir spalvos gali skirtis. Pavyzdžiui, gali būti naudojami pilki, juodi arba
Gauso uždengimo filtrai.

Uždengimo procesas prasideda nuo įprasto vaizdo apdorojimo eta-
po, apimančio normalizavimą ir, esant ribotiems skaičiavimo ištekliams,
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vaizdo dydžio keitimą. Tada pasirinktas filtro tipas palaipsniui slenka-
mas išilgai viso vaizdo. Galima naudoti ir mažesnio dydžio poslinkio
reikšmę, tačiau tada filtrai persidengtų. Kiekvienas naujai uždengtas
įvesties vaizdas yra leidžiamas pro pasirinktą konvoliucinį neuroninį
tinklą. Gauta segmentavimo išvestis naudojama modelio įverčio rei-
kšmei apskaičiuoti. Rezultatas išsaugomas ir procesas kartojamas tol,
kol uždengimo filtras yra visiškai praslenkamas pro visą įvesties vaizdo
sritį.

S.2.2. Perturbacijos aktyvacijos erdvėje

Siekiant pritaikyti perturbacijomis aktyvacijos erdvėje (dar žinomomis
kaip abliacijomis) paremtus metodus paaiškinamajam segmentavimui,
perturbacijos poveikis dominančiai klasei apskaičiuojamas pagal jos
poveikį logits reikšmėms, gautoms sudėjus kiekvieno pikselio daugumos
klasės (argmax) logits reikšmes. Siūlomoje modifikacijoje kaupiami tik
tų pikselių, kurie buvo klasifikuoti kaip priklausantys c klasei, c klasės
logits reikšmės.

Turint RGB vaizdą x ∈ RN×M×3, vieno pikselio xij logits reikšmė
dominančiai klasei c apibrėžiama kaip lc(xij). Tada logits suma c, pri-
klausanti nuo to, ar xij klasifikuojamas kaip c, yra:

Lc(x) =
∑
i,j

[ĉij = c]lc(xij), (S.1)

kur ĉij yra modelio prognozuojama xij pikselio klasė.
Šios sukauptos klasių logits reikšmės naudojamos kiekvieno akty-

vacijos žemėlapio svarbos koeficientui arba svoriui apskaičiuoti. Re-
miantis [62], kiekvieno aktyvacijos vieneto wc

k svarbos koeficientas wc
k

apibrėžiamas kaip:

wc
k =

Lc(x)− Lc
k(x)

Lc(x)
, (S.2)

kur Lc
k(x) yra klasės c logits suma po aktyvacijos žemėlapio Ak abliacijos.

Apskaičiuotus aktyvacijos žemėlapių svarbos svorius galima nau-
doti tiesiškoje požymių žemėlapių kombinacijoje. Prieš pradedant ak-
tyvacijos žemėlapių perturbaciją, reikia pasirinkti dominantį modelio
sluoksnį.
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S.2.3. Gradientiniai metodai priešiškose atakose

Gradientais paremti paaiškinamojo DI metodai buvo tiriami priešiškų
atakų sąlygomis, siekiant nustatyti jų atsparumą. Norint geriau kontro-
liuoti vaizdo perturbacijos procesą ir išvengti pernelyg didelių iškrai-
pymų priešiškuose įvesties vaizdo pavyzdžiuose, pasiūlyta nuostolio
funkcija su papildoma komponente. Ši komponentė užtikrina, kad
įvesties vaizdui taikomas priešiškas triukšmas būtų apribotas, išsau-
gant modelio segmentavimo rezultatus ir užpulto vaizdo panašumą į
originalą. Toliau pateikiamas formalus pasiūlytos nuostolių funkcijos
apibrėžimas.

Turint du vaizdus x, y ∈ RN×M×3 ir dvi dominančias klases c1, c2 ∈
{1, 2, ..., C}, siekiama užpulti vaizdo x paaiškinamąjį žemėlapį GA1(x, c1),
kad vietoje jo gautume vaizdo y paaiškinamąjį žemėlapį GA2(y, c2), kur
Ai yra vaizdo sritis klasifikuojama kaip ci, ∀i = 1, 2. Sykiu užpulto
vaizdo xadv segmentavimo išvestis g(xadv) turėtų išlikti panaši į segmen-
tavimo išvestį g(x), o užpultas vaizdas neturėtų ženkliai skirtis nuo x.
Pasiūlyta [A.1] nuostolio funkcija apibrėžiama kaip:

L = γ1Lexp + γ2Lout + γ3Lim, (S.3)

kur:
Lexp = ||GA2(y, c2)−GA1(xadv, c1)||2,
Lout = ||g(x)− g(xadv)||2,
Lim = ||x− xadv||2,

ir kur γ1, γ2, γ3 yra parametrai, kontroliuojantys santykinę kiekvie-
nos nuostolio funkcijos komponentės svarbą optimizavimo metu. Lexp

matuoja atstumą tarp gauto užpulto vaizdo paaiškinimo ir siektino
paaiškinimo (t. y. paaiškinimo, kurį norėtume gauti iš užpulto mode-
lio), Lout matuoja atstumą tarp neužpulto ir užpulto modelio išvesties
tam pačiam vaizdui, o Lim matuoja atstumą tarp neužpulto ir užpulto
įvesties vaizdo.

S.3. Eksperimentiniai rezultatai

S.3.1. Eksperimentai įvesties erdvėje

Šiame poskyryje aprašomi eksperimentiniai tyrimai atlikti naudojant
visiškai konvoliucinį neuroninį tinklą [145] su ResNet-101 [98] pagrin-
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dine dalimi (angl. backbone) ir DeepLabV3 [38] modelį bei COCO [141]
duomenų rinkinį.

Kaip ir klasifikavimo atveju, pastebėta, kad mažas uždengimo filtro
dydis įprastai neturi didesnio poveikio modelio išvesčiai. Taip tikriau-
siai yra todėl, kad modelis geba atkurti vaizdą remdamasis kontekstine
informacija iš likusios neuždengtos vaizdo dalies. Tačiau naudojant
mažesnį uždengimo filtro dydį galima sugeneruoti detalesnį paaiškini-
mą. Kitaip nei klasifikavimo užduotyje, segmentavimas po uždengimų
pasižymi nežymiu Dice koeficiento skirtumu, dažniausiai apsiribojančiu
tik trečia vieta po kablelio. Jei koeficientai būtų naudojami paaiškini-
mams generuoti, skirtingos jų vaizdo sritys būtų beveik neatskiriamos
viena nuo kitos.

Siekiant, kad reikšmės būtų labiau išsiskirsčiusios intervalo [0, 1]
ribose, o ne susitelkusios aplink konkrečią Dice koeficiento reikšmę,
pritaikytas min-max normalizavimas. Normalizavimas leido padidinti
surinktų koeficientų standartinį nuokrypį 2–3 dydžio eilėmis (angl. or-
ders of magnitude). Todėl vizualizuojant paaiškinimus, pasiektas didesnis
spalvų intensyvumo diapazonas. Taip pat išbandytas ir Z reikšmių stan-
dartizavimas atmetant neigiamas reikšmes prieš vaizdo vizualizavimą,
tačiau daugeliu atveju aiškesni ir mažiau triukšmingi rezultatai gaunami
pritaikius normalizavimą.

Paaiškinimams generuoti naudoti koeficientai taip pat apskaičiuo-
ti naudojant logits reikšmes. Visos pasirinktai klasei priklausančios
logits reikšmės susumuotos kiekvienam pikseliui, kuris klasifikuotas
kaip priklausantis tai klasei. Gauta skaliarinė reikšmė buvo naudoja-
ma uždengimo poveikiui įvertinti. Gautos paaiškinimų vizualizacijos
(S.2 pav.) buvo jautresnės lyginant su Dice koeficientu paremtomis
vizualizacijomis.

Rezultatai kiekybiškai įvertinti naudojant ištrynimo kreives. Buvo
tiriamas skirtingų uždengimo filtrų poveikis dviem įvesties vaizdams,
kuriuose pagrindinio plano klasė ženkliai skyrėsi savo užimamu plo-
tu. Svarbiausi įvesties vaizdo pikseliai buvo palaipsniui uždengiami,
pradedant nuo 99-ojo procentilio pagal pirmiau apskaičiuotus svarbos
koeficientus, o tada buvo matuojamas šių uždengimų poveikis išvesčiai.
Mažesnė ploto po kreive (angl. area under the curve, AUC) reikšmė, atitin-
kanti staigesnį ištrynimo kreivės kritimą, yra siejama su paaiškinamumo
metodo gebėjimu atskirti svarbiausius įvesties vaizdo požymius.
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S.2 pav.: Paaiškinimai sugeneruoti naudojant 2752 10×10 dydžio užden-
gimo filtrus. Paaiškinimai lėktuvo klasei yra kairėje, o fono klasei –
dešinėje.

Taip pat buvo tiriamas uždengimo filtro spalvos poveikis segmen-
tavimo rezultatui. Pilki uždengimo filtrai davė geresnių rezultatų nei
balti ar juodi, kai buvo naudojami didesni (50×50 dydžio) uždengi-
mai. Daugeliu atvejų juodi uždengimo filtrai lemdavo prasčiausius
rezultatus.

S.3.2. Eksperimentai aktyvacijų erdvėje

Šiame poskyryje aprašomi eksperimentiniai tyrimai atlikti naudojant U-
Net [174] modelį su keturiais enkoderio sluoksniais ir visiškai konvoliucinį
neuroninį tinklą [145] su ResNet-101 [98] pagrindine dalimi. Naudo-
tas COCO [141] duomenų rinkinys ir privatus duomenų rinkinys iš
pramoninius maisto apdorojimo aparatus gaminančios įmonės.

Ablation-CAM paaiškinamumo metodo rezultatai palyginti su seg-
mentavimui pritaikytu gradientais paremtu metodu [192]. Gradientais
paremtuose paaiškinimuose buvo pastebimai daugiau triukšmo. Nors
svarbiausios įvesties vaizdo sritys buvo teisingai paryškintos, papil-
domai išryškėjo ir platesnė vaizdo sritis. O štai segmentavimui pritai-
kyto Ablation-CAM metodo sugeneruoti paaiškinimai buvo aiškesni
ir mažiau išsisklaidę. Didžiausią įtaką modelio sprendimui turinčios
sritys susitelkė ties vaisiaus kauliuku. Pavyzdžiui, išvesties su mažesniu
segmentavimo tikslumu (S.3 (c) pav.) paaiškinimas daugiausia buvo su-
telktas į ovalo formos kauliuką. O štai segmentavimo modelio prasčiau
aptinkama vaisiaus pjovimo linija neturėjo matomų aktyvacijų.
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(a) Įvestis (b) Teisingas žymėjimas (c) Išvestis (d) Ablation-CAM (e) Gradientinis metodas

(f) Įvestis (g) Teisingas žymėjimas (h) Išvestis (i) Ablation-CAM (j) Gradientinis metodas

S.3 pav.: Ablation-CAM ir gradientais paremto metodo palyginimas
dviems įvesties vaizdams. Viršutinėje eilutėje pasirinktas vaizdas su
prastesniu segmentavimo rezultatu (c). Sugeneravus paaiškinimą (d)
su Ablation-CAM pastebima, kad segmentuojant šį vaizdą modeliui
sunkiau aptikti vaisiaus pjovimo liniją.

Eksperimentiniai tyrimai atlikti ir su daliniais aktyvacijos žemėlapių
sričių uždengimais, priklausomai nuo to, ar jos priklauso fono, ar pag-
rindinio plano klasei. Ankstesni tyrimai [125] klasifikavime parodė,
kad fono klasės aktyvacijos žemėlapių sričių uždengimas turi mažesnį
poveikį tinklo klasifikavimui lyginant su pagrindinio plano srities (t. y.
mus dominančios klasės) uždengimais. Siekiant ištirti šiuos rezultatus
semantinio segmentavimo kontekste, kiekviename iš keturių enkoderio
bloko sluoksnių buvo atskirai uždengiami tiek fonas, tiek pjūvio linija,
ir šių uždengimų poveikis modelio išvesčiai buvo vertinamas naudojant
Dice koeficientą ir min-max normalizuotas logits reikšmes pasirinktai
dominančiai klasei. Rezultatai apskaičiuoti naudojant skirtingas užden-
gimo slenksčio reikšmes t, kurios svyravo nuo 0,0 iki 1,0 pritaikant 0,1
žingsnį. Gauti rezultatai taip pat parodė ryškesnių pokyčių pagrindinio
plano (t. y. pjūvio linijos) uždengimo atveju.

S.3.3. Eksperimentai su priešiškomis atakomis

Įprastai priešiškomis atakomis siekiama pakeisti modelio išvestį. Tačiau
jų taikymą galima išplėsti paaiškinamajam DI siekiant užpulti paaiški-
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namumo metodo generuojamą atsakymą konkrečiam modeliui taip, kad
jo įvestis ir išvestis išliktų nepastebimai panašios į neužpulto modelio
įvestį ir išvestį. Tokio tipo atakų tyrimas iki šiol apsiribojo vien kla-
sifikavimo užduotimis. Šiame poskyryje nagrinėjamas jų išplėtimas
semantiniam segmentavimui.

Lyginant su priešiškomis atakomis klasifikavime, norimam seg-
mentavimo atakos rezultatui gauti reikia daugiau laiko. Pastebėta, kad
net jei priešiška semantinio segmentavimo ataka sėkmingai užpuola
modelio paaiškinimą ir išlaiko panašią modelio išvestį, dažnai yra paste-
bimai iškraipomos įvesties vaizdo sritys. Tokiu atveju priešiškos atakos
nebūtų galima laikyti sėkminga.

Remiantis [65], įgyvendinta į paaiškinimus nukreipta priešiška
ataka, stengiantis užtikrinti, kad modelio išvesties pokyčiai būtų kuo
mažesni. Šiuo tikslu pasitelkta nuostolių funkcija, kontroliuojanti seg-
mentavimo išvesties ir jos paaiškinimų pokyčius. Tokio tipo ataka tampa
lengvesnė, jei leidžiami dideli įvesties vaizdo pokyčiai.

Kitaip nei [65], kur sėkmingai atakai pasiekti nebuvo būtina įvesties
vaizdo triukšmo kontrolė (galbūt dėl santykinai lengvesnio tokių atakų
taikymo klasifikavimo užduotyse), eksperimentai parodė, kad nekontro-
liuojamos įvesties vaizdo perturbacijos dažnai sugeneruoja pastebimai
iškraipytus vaizdus. Šiai problemai spręsti įvesta trečioji nuostolių funk-
cijos komponentė (žr. poskyrį S.2.3), kuria kontroliuojamas priešiško
triukšmo taikymas įvesties vaizdui.

Panašiai kaip ir [65], šiame tyrime susidurta su nykstančios antro-
sios išvestinės problema ReLU netiesiškumams. Siekiant išspręsti šią
problemą, optimizavimo metu tinklo aktyvavimo funkcijos pakeistos
iš ReLU į Softplus. Nuostolių funkcijai minimizuoti naudotas Adam
optimizatorius. Praktiškai tokio tipo ataką būtų lengviau įgyvendinti
mažesniuose vaizduose su mažesniu klasių skaičiumi. Dėl skaičiavimo
apribojimų dronų segmentavimo duomenų rinkinio įvesties vaizdų dy-
dis sumažintas iki 432×288. Remiantis eksperimentų rezultatais, toks
vaizdo dydis leido pasiekti gerą kompromisą tarp segmentavimo išves-
ties ir atakos atlikimo laiko. Segmentuojant dronų duomenų rinkinį,
augmenijos klasės paaiškinimas sėkmingai pakeistas į žmogaus klasės
paaiškinimą (S.4 pav.).
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(a) Pradinė įvestis (b) Siekiama įvestis (c) Užpulta įvestis

(d) Pradinė išvestis (e) Siekiama išvestis (f) Užpulta išvestis

(g) Pradinis
paaiškinimas

(h) Siekiamas
paaiškinimas

(i) Užpultas
paaiškinimas

S.4 pav.: Sėkmingos priešiškos atakos nukreiptos prieš dronų rinkinio
vaizdus pavyzdys.

Eksperimentams su persikų duomenų rinkiniu pasirinkti du skir-
tingi vaizdai, o ataka pakeitė vieno persiko pjovimo linijos paaiškinimą
į kito persiko pjovimo linijos paaiškinimą. Pasirinkti priešiški paaiški-
nimo taikiniai nebuvo panašūs į originalių vaizdų paaiškinimus, o tai
apsunkino ataką. Didesnis iteracijų skaičius įprastai lemia mažesnę MSE
vertę tarp siekiamo užpuolimo taikinio ir užpulto paaiškinimo, roda-
nčią didesnį vaizdų panašumą. Eksperimentai parodė, kad tam tikrais
atvejais gana veiksmingą ataką galima įvykdyti atlikus vos 100 iteracijų.
Siekiant ištirti kiekvienos nuostolių funkcijos komponentės tarpusavio
įtaką MSE rezultatams, atlikta kiekybinė 30 atsitiktinai parinktų vaizdų
analizė (žr. S.1 lentelę).
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S.1 lentelė: Abliacijos tyrimas persikų ir dronų duomenų rinkiniams.

Lentelėje pateikiamos vidutinės MSE reikšmės ir jų standartiniai nuo-
krypiai.
Persikų rinkiniui:
iteracijos = 500, mokymo greitis = 10−5, γ1 = 1011, γ2 = 105,
γ3 = 5 · 106;
Dronų rinkiniui:
iteracijos = 500, mokymo greitis = 10−4, γ1 = 1011, γ2 = 5 · 104,
γ3 = 106.

Persikų rinkinys Dronų rinkinys

I
L = γ1Lexp

Lexp = (3,73± 1,27) · 10−9

Lout = (6,91± 8,25) · 10−3

Lim = (6,28± 1,24) · 10−6

Lexp = (3,15± 1,10) · 10−10

Lout = (3,58± 1,33) · 10−3

Lim = (5,70± 2,81) · 10−4

I+II
L = γ1Lexp + γ2Lout

Lexp = (3,74± 1,16) · 10−9

Lout = (1,03± 1,17) · 10−4

Lim = (6,79± 1,33) · 10−6

Lexp = (4,82± 1,12) · 10−10

Lout = (2,51± 1,20) · 10−5

Lim = (7,01± 1,57) · 10−5

I+III
L = γ1Lexp + γ3Lim

Lexp = (3,69± 1,11) · 10−9

Lout = (6,29± 7,45) · 10−3

Lim = (2,03± 0,51) · 10−6

Lexp = (4,05± 1,58) · 10−10

Lout = (5,05± 1,54) · 10−5

Lim = (1,90± 1,88) · 10−5

I+II+III
L = γ1Lexp + γ2Lout + γ3Lim

Lexp = (3,79± 1,16) · 10−9

Lout = (1,07± 1,22) · 10−4

Lim = (1,98± 0,45) · 10−6

Lexp = (5,59± 1,38) · 10−10

Lout = (1,15± 1,20) · 10−5

Lim = (6,22± 2,35) · 10−6

Persikų duomenų rinkinio MSE reikšmės yra mažiau išsklaidytos
nei dronų duomenų rinkinio MSE reikšmės, o remiantis eksperimentų
rezultatais, geri priešiškos atakos nuostolių parametrai vienam persikų
duomenų rinkinio vaizdui nelabai skiriasi nuo kito. Tai galima pa-
aiškinti tuo, kad visos modelio įvestys, išvestys ir paaiškinimai yra gana
panašūs vieni į kitus, ypač lyginant su dronų duomenų rinkinio atitik-
menimis. Kitas įtaką darantis veiksnys galėtų būti gerokai mažesnis
segmentavimo klasių skaičius persikų duomenų rinkinyje.
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S.4. Tolesni tyrimai

Paaiškinamojo semantinio segmentavimo srityje lieka daug neišspręstų
uždavinių, kurių dauguma taip pat taikytini ir vaizdų klasifikavimo
užduotims. Toliau pateikiamas nebaigtinis šių uždavinių sąrašas:

• Paaiškinamojo DI įverčio metrikos
Paaiškinamojo DI vaizdų klasifikavimo srityje literatūroje daugiau-
sia dėmesio skiriama naujiems paaiškinamumo metodams ir jų mo-
difikacijoms pristatyti, o ne naujų įverčio metrikų ar paaiškinimų
palyginimams siūlyti. Ši tendencija dar labiau išryškėja paaiškina-
mojo semantinio segmentavimo srityje. Šiuo metu nėra straipsnių,
skirtų vien tik paaiškinamojo DI rezultatams vertinti segmenta-
vimo kontekste. Nėra vieningos nuomonės dėl to, kurios įverčio
metrikos yra svarbiausios pagrindiniams paaiškinamumo aspek-
tams tirti. Iš dalies tai galima paaiškinti sunkumu apibrėžiant su
paaiškinamumu susijusias sąvokas. Geresnis teorinis problemos
supratimas galėtų padėti kurti paaiškinamojo DI įverčio metrikas.

• Paaiškinamojo DI metodų saugumas ir atsparumas atakoms
Sparčiai diegiant giliojo mokymosi modelius medicinos, karinėje
ir pramonės srityse, paaiškinamojo DI metodams tenka vis svar-
besnis vaidmuo. Siekiama išsiaiškinti, ar naudojamas modelis
yra patikimas. Tačiau panašų klausimą galima kelti ir dėl pačių
paaiškinamojo DI metodų. Svarbu ištirti jų pažeidžiamumą ir
esamas spragas. Tiek modelių tiekėjai, tiek galutiniai naudotojai
turi žinoti, ar jie yra apsaugoti nuo tyčinių atakų, nukreiptų prieš
paaiškinamojo DI metodus.

Kaip ir klasifikavimo modeliai, semantinio segmentavimo mode-
liai gali būti pažeidžiami priešiškomis atakomis. Literatūroje jau
yra pasiūlyta įvairių atakų metodų [47, 77, 222]. Aptariant priešiš-
kas atakas, įprasta sutelkti dėmesį į modelio išvestį kaip pagrindinį
taikinį. Tačiau taip pat galima užpulti išvesties paaiškinimą, įvestį
ir išvestį paliekant nepakitusias. Tokios atakos jau ištirtos vaizdų
klasifikavimo kontekste [65]. Taip pat parodyta, kad šias antrojo
lygio atakas galima taikyti ir vaizdų segmentavimui [A.1]. No-
rint rasti geriausius kovos su jomis būdus, reikia atlikti daugiau
tyrimų, ypač dėl to, kad nuolat kuriamos naujos priešiškos atakos,
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o užtikrinti išsamias saugumo garantijas yra sudėtinga. Reikia
sistemingai tirti tiek „baltosios dėžės“ atakas, kai užpuolikas žino
atakuojamą modelį, tiek „juodosios dėžės“ atakas, kai modelis
nežinomas. Panašūs interpretuojamo segmentavimo patikimumo
tyrimai galėtų prisidėti prie bendro DI sistemų saugumo.

Priešiški pavyzdžiai paprastai nėra mokymo ir testavimo duomenų
rinkinių dalis. Taigi į rinką paleistuose modeliuose gali atsirasti
pažeidžiamumų. Kita svarbi problema – šališkumas. Kai svarbiau-
sios paaiškinimų sritys patenka už dominančio objekto ribų, tai
gali parodyti ne tik klaidingą prognozę, bet ir galimą priešiškos
atakos atvejį [107]. Taip pat būtų galima ištirti natūralius priešiš-
kus pavyzdžius [102] ir jų įtaką paaiškinamojo DI segmentavimui.

• Paaiškinamasis DI vaizdo įrašams segmentuoti
Kadangi semantinis scenos segmentavimas neapsiriboja vien 2D
vaizdais, būtų galima ištirti naujus interpretavimo metodus vaiz-
do duomenims, kai atliekamas laikinis semantinis segmentavimas.
Vaizdo objektams segmentuoti reikia gerokai daugiau skaičiavimo
išteklių. Iki šiol nė viename tyrime nebuvo nagrinėtas paaiškina-
masis vaizdo segmentavimas dinaminėje aplinkoje. Dinaminių
scenų pobūdis gali kelti naujų iššūkių, su kuriais anksčiau ne-
buvo susidurta 2D segmentavimo kontekste. Pavyzdžiui, norint
atsižvelgti į paaiškinamumo žemėlapių skirtumus skirtinguose
vaizdo kadruose, reikėtų pridėti papildomą laiko paaiškinimo ašį.
Šią užduotį būtų galima dar labiau išplėsti iki realiuoju laiku atlie-
kamo semantinio segmentavimo, sutelkiant dėmesį į būdus, kaip
sumažinti generuojamų paaiškinimų vėlavimą.

• Skaičiavimo kompleksiškumas
Skirtingiems paaiškinamojo DI metodams reikia skirtingų skaičia-
vimo išteklių, kurie tam tikrose aplinkose gali būti sunkiai pri-
einami. Diegimo apribojimai gali apimti klausimus, susijusius
tiek su programine, tiek su technine įranga, kai reikia užtikrinti
realiojo laiko paslaugas mobiliesiems įrenginiams ir internetinių
paslaugų platformoms [46]. Tolesniuose eksperimentiniuose ty-
rimuose turėtų būti nagrinėjami metodai, kaip sumažinti skaičia-
vimo kompleksiškumą, susijusį su paaiškinimų generavimu. Tai
apima kompromisų tarp paaiškinimų kokybės ir generavimo vėla-
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vimo vertinimą ir optimizavimą, ypač įvairiose pramonės srity-
se. Post-hoc metodai, ypač perturbacijomis grindžiami metodai,
yra gana neefektyvūs paaiškinimų generavimo laiko požiūriu.
Lokalių paaiškinimų generavimo sąnaudos didėja su kiekvienu
nauju įvesties vaizdu, kurį reikia aiškinti, todėl renkantis paaiški-
namojo DI metodą labai svarbu suprasti jo naudojimo sritis ir
atidžiai įvertinti turimus išteklius.
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BENDROSIOS IŠVADOS

Disertacijoje pristatomas išsamus paaiškinamojo DI vaizdų segmenta-
vimo srityje tyrimas. Taip pat pristatoma išsami literatūros apžvalga,
išskirianti skirtingų tipų paaiškinamumo metodus, taikomus seman-
tiniame segmentavime, ir siūloma paaiškinamojo segmentavimo tak-
sonomija. Paaiškinamojo segmentavimo metodai suskirstyti į penkis
pagrindinius pogrupius: prototipinius, gradientinius, perturbacinius,
kontrafaktinius ir architektūrinius metodus. Dauguma paaiškinamo-
jo segmentavimo metodų remiasi lokaliais paaiškinimais ir kokybiniu
rezultatų palyginimu.

Paaiškinamajam semantiniam segmentavimui ištirti perturbaciniai
paaiškinamieji metodai. Priešingai nei vaizdų klasifikavimo atveju, vaiz-
do uždengimu paremtiems metodams semantiniame segmentavime
būdinga didelė įverčio metrikų rezultatų variacija. Todėl norint sugene-
ruoti mažiau triukšmingus paaiškinimo žemėlapius su didesniu spalvų
intensyvumu, siūloma pritaikyti min-max normalizavimą. Kokybiniai
rezultatai rodo, kad logits reikšmėmis paremtas metodas yra jautres-
nis lyginant su Dice koeficientu paremtu metodu ir gali būti geresnis
pasirinkimas generuojant paaiškinimus. Kiekybinis įvertinimas rodo,
kad vaizdo uždengimai, kurių filtrų spalvos yra panašesnės į įvesties
vaizdo, yra tinkamesnės paaiškinimams generuoti. Tolesniuose tyri-
muose būtų galima sistemingai ištirti įvesties uždengimus keleto klasių
segmentavimo uždaviniuose, taip pat eksperimentuojant su skirtingų
dydžių uždengimo filtrais.

Kokybiniai rezultatai rodo sėkmingą Ablation-CAM pritaikymą
segmentavimo užduotyse. Pirmojo plano ir fono uždengimų atkūrimas
skirtingų sluoksnių aktyvacijų žemėlapiuose patvirtina ankstesnių tyri-
mų [125] klasifikavime rezultatus, rodančius, kad pirmojo plano užden-
gimai turi didesnį poveikį modelio išvesties rezultatams nei fono užden-
gimai. Dalinių uždengimų jautrumas gali būti naudingas parodant
vaizdo sritis, kurios yra labiausiai arba mažiausiai atsparios pirmojo
plano ar fono uždengimams.

Taip pat disertacijoje pristatytas pirmasis tyrimas priešiškų atakų
poveikiui segmentavimo modelių paaiškinimams. Pasiūlytas metodas
leidžia vizualiai analizuoti priešiškų atakų poveikį modelio rezultatų
paaiškinimams, ypač scenarijuose su paprastesnėmis segmentavimo for-
momis ir mažesniu klasių skaičiumi. Disertacijos tyrimai taip pat parodo
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prieš paaiškinamąjį semantinį segmentavimą nukreiptų priešiškų atakų
galimybę. Tolesniuose tyrimuose būtų galima ištirti fizines priešiškas
atakas realiomis sąlygomis, taip pat jų pritaikomumą juodosios dėžės
modeliams.

Pagrindinės disertacijos išvados:

1. Identifikuotos penkios pagrindinės paaiškinamojo DI metodų se-
mantinio segmentavimo kontekste kategorijos ir nustatyta, kad
daugiausia šiuo metu literatūroje siūlomų metodų remiasi ko-
kybiniu paaiškinamumo įverčiu ir generuoja lokalius post-hoc
paaiškinimus.

2. Taikant darbe pasiūlytą Ablation-CAM išplėtimą segmentavimo
uždaviniui, nustatyta, kad pirmojo plano uždengimai turi didesnę
įtaką nei fono uždengimai.

3. Perturbaciniai vaizdo įvesties metodai pritaikyti semantiniam seg-
mentavimui, min-max normalizavimas pagerina ryškumo žemėla-
pius, o logits reikšmėmis paremti metodai yra jautresni lyginant
su Dice įverčiu paremtais metodais.

4. Prieš paaiškinimus nukreiptos ir jais manipuliuojančios priešiš-
kos atakos gali paveikti semantinio segmentavimo modelius. Šis
pažeidžiamumas pabrėžia tolesnių tyrimų svarbą eksperimentuo-
jant su tokio tipų atakų perkėlimu kitiems modeliams ir jų tyrimu
juodosios dėžės aplinkoje.
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9 Saulėtekio Ave., Building III, LT-10222 Vilnius
Email: info@leidykla.vu.lt, www.leidykla.vu.lt

bookshop.vu.lt, journals.vu.lt
Print run of 20 copies


	ACKNOWLEDGEMENTS
	ABSTRACT
	INTRODUCTION
	Research Focus
	Research Aim and Objectives
	Scientific Novelty
	Practical Significance
	Statements to be Defended
	Peer-Reviewed Publications and Conference Contributions
	Outline of the Thesis

	1 SURVEY OF XAI IN IMAGE SEGMENTATION
	1.1 Background
	1.1.1 Development of the Field of XAI in Computer Vision
	1.1.2 Specifics of Semantic Segmentation
	1.1.3 Limitations

	1.2 Taxonomy
	1.3 XAI for Image Segmentation
	1.3.1 Methods
	1.3.2 Metrics
	1.3.3 Applications

	1.4 Adversarial Attacks
	1.4.1 Interpretability and Adversarial Attacks in Semantic Segmentation

	1.5 Chapter Conclusions

	2 XAI METHODS IN IMAGE SEGMENTATION
	2.1 Perturbations in the Input Space
	2.2 Perturbations in the Activation Space
	2.3 Gradient-Based Explanations in Adversarial Contexts
	2.3.1 Gradient-Based Saliency Maps
	2.3.2 Adversarial Attacks in Semantic Segmentation

	2.4 XAI-Driven Model Improvements
	2.4.1 Neural Architecture Search
	2.4.2 Continual Learning

	2.5 Chapter Conclusions

	3 EXPERIMENTAL EVALUATION
	3.1 Datasets
	3.2 Experiments with Perturbations in the Input Space
	3.2.1 Occlusion Approach for Semantic Segmentation

	3.3 Experiments with Perturbations in the Activation Space
	3.4 Experiments with Gradient-Based Explanations in Adversarial Contexts
	3.4.1 Attack Against Segmentation Outputs
	3.4.2 Attack Against Segmentation Saliencies

	3.5 Chapter Conclusions

	4 DISCUSSION
	4.1 Open Issues
	4.2 Future Directions
	GENERAL CONCLUSIONS
	BIBLIOGRAPHY
	LIST OF AUTHOR PUBLICATIONS


	CURRICULUM VITAE

	SUMMARY IN LITHUANIAN
	ĮVADAS
	Tyrimo objektas
	Tyrimo tikslas ir uždaviniai
	Mokslinis naujumas
	Praktinė darbo vertė
	Ginamieji teiginiai
	Tyrimo aprobavimas ir publikavimas
	Disertacijos struktūra
	S.1 Paaiškinamojo DI vaizdų segmentavimo srityje literatūros apžvalga
	S.1.1 Taksonomija

	S.2 Paaiškinamojo DI metodai vaizdų segmentavime
	S.2.1 Perturbacijos įvesties erdvėje
	S.2.2 Perturbacijos aktyvacijos erdvėje
	S.2.3 Gradientiniai metodai priešiškose atakose

	S.3 Eksperimentiniai rezultatai
	S.3.1 Eksperimentai įvesties erdvėje
	S.3.2 Eksperimentai aktyvacijų erdvėje
	S.3.3 Eksperimentai su priešiškomis atakomis

	S.4 Tolesni tyrimai

	BENDROSIOS IŠVADOS

