
https://doi.org/10.15388/vu.thesis.377

https://orcid.org/0000-0002-6178-5492

VILNIUS UNIVERSITY

Vaidas Jusevičius

Research and development of an
open-source algebraic modeling and
mathematical optimization system

DOCTORAL DISSERTATION

Natural Sciences,

Informatics (N 009)

Vilnius 2022

This dissertation was written between 2017 and 2021 at Vilnius University.

Academic supervisor:

Prof. Dr. Remigijus Paulavičius (Vilnius University, Natural Sciences,

Informatics – N 009).

Defence Panel:

Chairwoman – Prof. Dr. Olga Kurasova (Vilnius University, Natural

Sciences, Informatics – N 009).

Members:

Prof. Dr. Leocadio González Casado (University of Almeria, Spain,

Natural Sciences, Informatics – N 009),

Assoc. Prof. Dr. Algirdas Lančinskas (Vilnius University, Natural

Sciences, Informatics – N 009),

Dr. Viktor Medvedev (Vilnius University, Natural Sciences, Informatics –

N 009),

Prof. Dr. Dmitrij Šešok (Vilnius Gediminas Technical University,

Technological Sciences, Informatics Engineering – T 007).

The dissertation shall be defended at a public meeting of the Dissertation

Defence Panel at 12 p.m. on the 28th of September, 2022 in Room 203 of the

Institute of Data Science and Digital Technologies of Vilnius University.

Address: Akademijos street 4, LT-08412, Vilnius, Lithuania, Tel.

+37052109300 ; e-mail: info@mii.vu.lt.

The text of this dissertation can be accessed at the library of Vilnius University,

as well as on the website of Vilnius University:

www.vu.lt/lt/naujienos/ivykiu-kalendorius

https://doi.org/10.15388/vu.thesis.377

https://orcid.org/0000-0002-6178-5492

VILNIAUS UNIVERSITETAS

Vaidas Jusevičius

Atvirojo kodo algebrinio modeliavimo ir
matematinio optimizavimo sistemos
kūrimas ir tyrimas

DAKTARO DISERTACIJA

Gamtos mokslai,

Informatika (N 009)

Vilnius 2022

Disertacija rengta 2017 – 2021 metais Vilniaus universitete.

Mokslinis vadovas:

prof. dr. Remigijus Paulavičius (Vilniaus universitetas, gamtos mokslai,

informatika – N 009).

Gynimo taryba:

Pirmininkė – prof. dr. Olga Kurasova (Vilniaus universitetas, gamtos

mokslai, informatika – N 009).

Nariai:

prof. dr. Leocadio González Casad (Almerijos universitetas, Ispanija,

gamtos mokslai, informatika – N 009),

doc. dr. Algirdas Lančinskas (Vilniaus universitetas, gamtos mokslai,

informatika – N 009),

dr. Viktor Medvedev (Vilniaus Universitetas, gamtos mokslai, informatika

– N 009),

prof. dr. Dmitrij Šešok (Vilniaus Gedimino technikos universitetas,

technologijos mokslai, informatikos inžinerija – T 007).

Disertacija ginama viešame Gynimo tarybos posėdyje 2022 m. rugsėjo mėn.

28 d. 12 val. Vilniaus universiteto Duomenų mokslo ir skaitmeninių

technologijų instituto 203 auditorijoje. Adresas: Akademijos g. 4, LT-08412,

Vilnius, Lietuva, tel. +37052109300 ; el. paštas info@mii.vu.lt.

Disertaciją galima peržiūrėti Vilniaus univeristeto bibliotekoje ir VU interneto

svetainėje adresu:

www.vu.lt/lt/naujienos/ivykiu-kalendorius

ABSTRACT

In this dissertation, the concept of a universal mathematical optimization

system consisting of an algebraic modeling language and an open source tool

capable of building an optimization model and solving it with potentially

multiple underlying optimization solvers is presented.

First, the main principles of algebraic modeling are presented, the essential

characteristics of modern algebraic modeling languages (AMLs) are reviewed,

and the most prominent AMLs are identified. Later, a bibliometric analysis of

the research field is conducted by analyzing publications from the year 2000 to

the present day. Such bibliometric analysis allows to confirm the importance

of the research topic and validates the correctness of the choice for the most

prominent AMLs.

Next, an extensive theoretical and experimental analysis of the

characteristics of four of the most prominent algebraic modeling languages

(AMPL, GAMS, JuMP, and Pyomo) and the modeling systems supporting them is

performed. In the theoretical comparison, it is evaluated how the reviewed

modern AMLs match the requirements for modern AMLs identified earlier.

A purpose-built test model library is used to perform extensive benchmarks

in experimental analysis. Then the best performing algebraic modeling

languages are determined by comparing the time needed to create model

instances for a specific optimization problem and analyze the impact that the

presolve procedures performed by various algebraic modeling languages

have on the actual problem-solving times. Insights on which algebraic

modeling languages perform the best and the features that we consider

essential in the current mathematical optimization landscape are provided.

Afterwards, the main gaps within the existing algebraic modeling

languages and tools are distilled. Such gaps include varying performance,

limited cross-compatibility, complex syntax, and different support for

solvers, advanced features, and problem types.

Later, a concept of a state-of-the-art universal optimization system for

algebraic modeling languages and mathematical optimization is proposed.

Using the system does not require specific algebraic language knowledge,

allows for solving problems using different solvers, and utilizes the best

5

characteristics of existing algebraic modeling languages.

To assess the feasibility of the proposal, a prototype of such a web-based

tool using React.js and Java technological stack is implemented. Later, the

prototype is used to compare its characteristics with other AMLs and provide

an overview of how it addresses the gaps identified earlier.

Lastly, clear extension points and ideas on how such a tool could be further

improved are provided. This includes increasing the expression power of the

modeling language, improving the user interface, and including new features,

such as presolving or parallel model creation.

6

SANTRAUKA

Šioje disertacijoje yra pristatoma universalios matematinio optimizavimo

sistemos koncepcija, sudaryta iš algebrinės modeliavimo kalbos ir atvirojo

kodo įrankio gebančio sukonstruoti sprendžiamos problemos modelį bei

vėliau jį išspręsti pasinaudojant kitomis algebrinio modeliavimo sistemomis

ir jų palaikomais optimizavimo įrankiais (sprendėjais).

Visų pirma, pristatomi pagrindiniai algebrinio modeliavimo principai,

apžvelgiamos svarbiausios algebrinių modeliavimo kalbų savybės bei

identifikuojamos svarbiausios algebrinės modeliavimo kalbos. Toliau yra

pateikiama bibliometrinė tematikos literatūros apžvalga apimanti publikacijas

nuo 2000-ųjų metų. Bibliometrinė analizė leidžia patvirtinti temos aktualumą

ir svarbiausių algebrinių modeliavimo kalbų parinkimo korektiškumą.

Tiriamoji darbo dalis pradedama išsamia teorine ir praktine identifikuotų

svarbiausių algebrinio modeliavimo kalbų (AMPL, GAMS, JuMP ir Pyomo) ir jas

palaikančių sistemų analize. Teorinėje analizėje įvertinama kaip

apžvelgiamos kalbos atitinka modernioms algebrinio modeliavimo kalboms

keliamus reikalavimus. Eksperimentinėje dalyje yra sukonstruojama testinė

optimizavimo uždavinių biblioteka, kurios pagalba yra atliekami išsamūs

nagrinėjamų sistemų našumo tyrimai. Tai leidžia identifikuoti našiausias

algebrines modeliavimo kalbas vertinant pagal modelio egzemplioriaus

kūrimo laiką konkrečioms uždavinių grupėms. Taip pat, nustatomas

potencialus uždavinio sprendimo pagreitėjimas naudojant išankstinio

sprendimo algoritmus pateikiamus kai kurių algebrinio modeliavimo sistemų.

Apibendrinant tyrimus yra pateikiamos įžvalgos, nurodant kurios iš

algebrinių kalbų bei sistemų pasirodė pranašiausios ir patvirtinamos kertinės

šiuolaikinės algebrinio modeliavimo kalbos savybės.

Toliau darbe yra identifikuojami pagrindiniai trūkumai, kuriais

pasižymėti nagrinėtos algebrinio modeliavimo kalbos ir įrankiai. Iš kurių

galima išskirti tokius, kaip varijuojantis našumas, ribotas tarpusavio

suderinamumas, sudėtinga sintaksė, skirtingas optimizavimo sprendėjų,

uždavinių tipų, bei papildomų funkcijų palaikymas.

Atsižvelgiant į identifikuotus trūkumus yra pasiūlomas universalios

optimizavimo sistemos konceptas, apimantis algebrines modeliavimo kalbas

7

ir matematinį optimizavimą. Siūloma sistema nereikalauja specifinių

algebrinių modeliavimo kalbų žinių, leidžia spręsti optimizavimo uždavinius

skirtingų sprendėjų pagalba ir stengiasi išnaudoti geriausias egzistuojančių

algebrinių modeliavimo kalbų ir sistemų savybes.

Siekiant įsitikinti šio koncepto įgyvendinamumu, yra realizuojamas

pasiūlytos koncepcijos prototipas žiniatinklio aplinkoje. Prototipui realizuoti

pasirenkamos React.js bei Java technologijos. Vėliau, pasinaudojant

prototipu, yra atliekamas universalios optimizavimo sistemos ir

egzistuojančių algebrinių modeliavimo sistemų savybių palyginimas.

Galiausiai, yra nurodomi prototipo plėtimo taškai ir idėjos, kaip pastarasis

gali būti vystomas ateityje. Tai algebrinio modeliavimo kalbos išraiškos

galios plėtimas, vartotojo sąsajos patobulinimai, savybių, tokių kaip

išankstinis sprendimas ar lygiagretus modelio užkrovimas įgyvendinimas.

8

CONTENTS

INTRODUCTION 12

Research Context And Motivation 12

The object of the Thesis . 13

Aims and Tasks of the Research 14

Research Methodology . 14

Scientific Novelty of the Work . 15

Defended Statements . 17

Approbation of the Research . 17

Structure of the Dissertation . 18

1 MATHEMATICAL OPTIMIZATION AND ALGEBRAIC

MODELING LANGUAGES 19

1.1 Types of mathematical optimization problems 20

1.2 Examples of mathematical optimization problems 22

1.3 Algebraic modeling languages 25

1.3.1 An instance of a concrete problem 26

1.3.2 Formulation of a concrete problem using AML 27

1.4 Essential characteristics of AMLs 29

1.5 Most prominent AMLs . 30

1.6 Related literature review . 31

1.6.1 Methodology . 32

1.6.2 Findings of literature review 35

1.7 Conclusions . 45

2 COMPARATIVE ANALYSIS OF ALGEBRAIC MODELING

LANGUAGES 47

2.1 Overview of existing AML software 47

2.2 Comparative analysis of the features 50

2.2.1 Support for general features 50

2.2.2 Support for parallelism 53

2.3 Conclusions . 58

9

3 EXPERIMENTAL ANALYSIS OF ALGEBRAIC MODELING

LANGUAGES 60

3.1 Practical comparison of AMLs 60

3.2 Library of practical optimization problems 63

3.2.1 Content of the library 64

3.2.2 Building the library 66

3.2.3 Findings . 67

3.3 Benchmarks . 68

3.3.1 Model instance creation time 69

3.3.2 JuMP benchmark . 71

3.3.3 Presolving benchmark 74

3.3.4 Presolve impact on solving 75

3.4 Summary of findings . 78

3.5 Conclusions . 78

4 DIFFERENCES AND SHORTCOMINGS OF ALGEBRAIC

MODELING LANGUAGES 82

4.1 Reproducibility of results . 82

4.2 Features and compatibility 84

4.3 Solvers . 86

4.4 Performance . 88

4.5 Summary of findings . 90

4.6 Conclusions . 91

5 UNIVERSAL OPTIMIZATION SYSTEM 92

5.1 Key concepts of the universal optimization system 92

5.2 WebAML language . 93

5.3 Prototype of the universal optimization system 95

5.4 Extending the prototype . 99

5.5 Comparison with AMLs . 101

5.6 Conclusions . 104

GENERAL CONCLUSIONS 106

REFERENCES 109

10

APPENDIX A Models of the transportation problem 119

APPENDIX B Component diagram of the prototype 121

SUMMARY IN LITHUANIAN 122

ACKNOWLEDGMENTS 139

PUBLICATIONS BY THE AUTHOR 140

11

INTRODUCTION

Research Context And Motivation

Many real-world problems are routinely solved using modern optimization

tools [e.g., 1, 27, 34, 65, 62, 64]. Internally, these tools use the combination

of a mathematical model with an appropriate solution algorithm [e.g.,

14, 21, 35, 49, 65, 63, 62, 70, 71] to solve the problem at hand. Thus, the way

mathematical models are formulated is critical to the impact of optimization

in real life. Examples of real-life problems include production and shipment

by firms, investment planning, macroeconomics stabilization, water

distribution networks, oil refineries, petrochemical plants, applied general

equilibrium, international trade of aluminum and copper, and many more

(see, e.g., [29]).

Mathematical modeling is the process of translating real-world business

problems into mathematical formulations whose theoretical and numerical

analysis can provide insight, answers, and guidance beneficial for the

originating application [44], including the current Covid-19 pandemic [68].

Algebraic modeling languages (AMLs) are declarative optimization

modeling languages, which bridge the gap between model formulation and

the proper solution technique [27]. They enable the formulation of a

mathematical model as a human-readable set of equations without requiring

to specify how the described model should be solved or what specific solver

should be used.

Models written in an AML are known for a high degree of similarity to

the mathematical formulation. This aspect distinguishes AMLs from other

types of modeling languages, like object-oriented (e.g., OptimJ [5]), solver

specific (e.g., LINGO [50]), or general-purpose (e.g., TOMLAB [73]) modeling

languages. Such an algebraic design approach allows practitioners without

specific programming or modeling knowledge to be efficient in describing the

problems to be solved. It is also important to note that AML is then responsible

for creating a problem instance that a solution algorithm can tackle [44]. Since

many AMLs are integral parts of a specific modeling system, it is essential

to isolate the responsibilities of a modeling language from the overall system.

12

In general, AMLs are sophisticated software packages that provide a crucial

link between an optimization model’s mathematical concept and the complex

algorithmic routines that compute optimal solutions. Typically, AML software

automatically reads a model and data, generates an instance, and conveys it to

a solver in the required form [25].

From the late 1970s, many AMLs were created (e.g., GAMS [55],

AMPL [24]) and are still actively developed and used today. Lately, new

open-source competitors to traditional AMLs have started to emerge (e.g.,

Pyomo [37, 38], JuMP [18, 54]). Therefore, a review and comparison of the

traditional and emerging AMLs are needed to examine how the current

landscape of AMLs looks.

Until now, some comparisons of AMLs were made based on questionnaires

sent out by the vendors [26]. However, there is a lack of extensive theoretical

and experimental analysis around the characteristics of the most prominent

AMLs (AMPL, GAMS, JuMP, and Pyomo) and the modeling systems supporting

them.

Thus, there is a need to continue research by further distilling the main

gaps within the existing AMLs and the optimization systems supporting

them. This enabling to identify the requirements for the concept of more

universal optimization systems combining the best characteristics of existing

AMLs. Work in this direction has already been started with suggestions such

as using LATEX as a foundation for the AML tool by Triantafyllidis and

Papageorgiou [74], or CasADi [3] an open-source tool for nonlinear

optimization and algorithmic differentiation. However, another, more

extensible, and user-friendly alternative can be provided, which would

benefit not only practitioners with a mathematical background but also those

just starting their path of learning mathematical optimization.

The object of the Thesis

The object of the thesis is software systems supporting algebraic modeling

languages for solving real-world optimization problems. Both commercial and

open-source algebraic modeling software packages are in scope.

13

Aims and Tasks of the Research

The aim of the thesis is to propose a concept for the universal optimization

system including algebraic modeling language and modeling system

combining the best characteristics of the most prominent AMLs.

In order to achieve the aim of the thesis, the following research tasks must

be accomplished:

1. Identify the main features of modern algebraic modeling languages and

choose the most prominent AML currently existing on the market and

matching the criteria.

2. Theoretically review chosen algebraic modeling systems, compare their

differences, and identify each of their shortcomings.

3. Create a library of optimization problems for conducting performance

tests of the chosen AMLs.

4. Perform an experimental analysis of chosen AMLs by running

performance tests of the created testing library.

5. Ensure reproducibility of the experimental analysis.

6. Based on theoretical and experimental analysis decide and define areas

where existing algebraic modeling systems can be improved.

7. Propose the concept of a universal optimization system that includes a

generic algebraic modeling language and an open-source system

supporting it.

8. Provide the prototype of the proposed universal optimization system

proving its viability and providing a foundation for future development

of a fully-featured universal optimization system.

Research Methodology

To analyze the scientific results received in the fields of algebraic modeling

and mathematical optimization, information retrieval, organization, analysis,

14

comparative analysis, and generalization methods have been used. For the

interpretation of the experimental investigation, statistical analysis was applied

to evaluate the efficiency of algebraic modeling languages.

Scientific Novelty of the Work

This dissertation was written in a field of the doctoral study program of

Informatics. However, some of the research required to support defended

statements places the work within an intersection of doctoral study programs

of Informatics and Informatics Engineering. While within the field of

Informatics, an in-depth comparison of algebraic modeling languages was

made, it was required to create testing library and tooling to support it so

entering the field of Informatics Engineering. Also, while within the field of

Informatics a proposal for universal optimization system was made, it was

required to assess the viability of the proposal by implementing the prototype

system thus once more crossing to the field of Informatics Engineering.

The main novelties of this dissertation are the following:

1. A comprehensive comparative analysis of similarities and differences

between the most prominent algebraic modeling languages (AMPL,

GAMS, JuMP, and Pyomo) and the supporting modeling systems has been

carried out. Until now, comparisons of AMLs were limited either in

the depth of the characteristics assessed or in the way they were

conducted (e.g., focusing on the answers provided by the vendors via

questionnaires). Here, in one place, not only was the conformance to

the main requirements of modern AML assessed, but also the

comparison of basic and advanced features, usability, portability, and

pricing was made.

2. An open library of test and practical optimization problems (algebraic

models) defined in various AMLs and consumable by modern

state-of-the-art solvers has been created. The essential uniqueness of

this library is not even its size or the variety of model formats, but the

openness, decentralization, and tooling support. Open-source and

15

GitHub based repository1 provides everyone the opportunity to

contribute to the growth of this library, while the scripts and tools

provided by the author allow an easy way to convert between different

AMLs.

3. Efficient model instance creation and model simplification have been

assessed from the prism of operations research [42]. An experimental

benchmark of the model instance creation time was conducted against

a testing model library consisting of almost three hundred models

covering different problem types and sizes. This is the largest model

instance creation time benchmark to this day. It highlights significant

variation in efficiency between different AMLs and challenges some of

the previous benchmarks performed by the creators of AMLs. Another

experimental benchmark against the testing library by using AMPL

presolver to simplify the model assessed the presolve impact on

solving and identified that the positive impact of presolving is always

more significant than the negative one.

4. On the basis of comparative and experimental analysis, differences and

shortcomings among the most prominent AMLs were identified. This

led to the proposal for a concept of an open-source universal

optimization system. It combines the best characteristics of existing

algebraic modeling languages while also providing an intuitive and

user-friendly optimization problem formulation (i.e. model definition)

process. Two main building blocks have been defined, the WebAML

language to capture problem semantics, and an optimization system

acting as an orchestrator between the WebAML language and the

underlying AMLs.

5. A concept of a universal optimization system having no analogs in the

world was defined and a prototype of such a system was developed [43].

It does not require any specific algebraic language knowledge and allows

for solving problems using different mathematical optimization solvers.

It can be used by both researchers and practitioners in various sectors

1https://github.com/vaidasj/alg-mod-rev/tree/master/gamslib

16

https://github.com/vaidasj/alg-mod-rev/tree/master/gamslib

of the economy, and the tool itself can enable faster and more efficient

model development for decision-makers.

Defended Statements

1. There are quite a few powerful modeling environments and algebraic

modeling languages, however, neither of them provide a complete

feature set required for efficient and intuitive modeling and solving of

optimization problems.

2. A proposal for the universal optimization system, combining the best

characteristics of multiple prominent AMLs helps to address the

shortcomings identified within the prominent AMLs.

3. Architectural decisions made in designing the prototype of a universal

optimization system make it the foundation for a universal optimization

toolkit. The toolkit could be extended with other state-of-the-art features

such as presolving, distributed solving, or the best solver selection based

on the type of model.

Approbation of the Research

The results of this research were published in the following reviewed scientific

periodical publications:

1. Jusevičius, V. and Paulavičius, R. ”Web-Based Tool for Algebraic

Modeling and Mathematical Optimization”. Mathematics, 2021, 9

(21), 2751. DOI: 10.3390/math9212751.

2. Jusevičius, V., Oberdieck, R. and Paulavičius, R. ”Experimental

Analysis of Algebraic Modelling Languages for Mathematical

Optimization”. Informatica, 2021, 32 (2), 283–304. DOI:

10.15388/21-INFOR447.

The results of this research were presented at the following international

conferences:

17

1. Jusevičius, V. and Paulavičius, R. “Experimental Analysis of

Algebraic Modeling Languages For Social Behavior Modeling”, The

International EURO mini Conference Modelling and Simulation of

Social-Behavioural Phenomena in Creative Societies, September

18–20, 2019. Vilnius, Lithuania.

2. Jusevičius, V. and Paulavičius, R. ”Web-based tool for algebraic

modeling languages”, EURO 2021: 31st European Conference on

Operational Research, July 11-13, 2021. Athens, Greece.

Structure of the Dissertation

The dissertation consists of an introduction, 5 chapters, general conclusions,

bibliography, summary in Lithuanian, and a list of publications. The total

scope of the dissertation is 144 pages, including 12 figures, 26 tables, 5

equations, and 12 listings. The dissertation was based on 81 literature

sources.

The introduction describes the research context, presents the problem

statement, discusses the motivation, aims, objectives of the research states,

research questions, describes the research methods, and approbation of the

research. Chapter 1 gives theoretical background of mathematical

optimization, algebraic modeling languages and modeling systems. Chapter

2 provides a comparative analysis on how the reviewed modern AMLs match

the current needs of practitioners. Chapter 3 introduces the testing library of

optimization problems used for the experimental analysis of AMLs and

conducts an experimental analysis of the performance for chosen AMLs.

Chapter 4 summarizes the theoretical and practical differences identified

within AMLs. Chapter 5 discusses and proposes a concept of a universal

optimization system consisting of the WebAML language and tools capable

of building WebAML models and solve them using underlying AMLs.

Additionally, in this chapter, a prototype of universal optimization is

developed and its extensibility is discussed. And finally, at the end of the

dissertation, the main results and conclusions of this thesis are summarized.

18

1 MATHEMATICAL OPTIMIZATION AND

ALGEBRAIC MODELING LANGUAGES

When solving a mathematical optimization problem, one tries to minimize or

maximize a quantity involved in the decision process, such as elapsed time or

cost, with the given freedom within a set of restrictions. Optimization

problems arise in almost every industry sector, for example in product and

process design, manufacturing, logistics, and even strategic planning.

Therefore, optimization involves finding the best solution to a given problem

globally, or at least in a local neighborhood. Except for very simple cases,

optimization problems cannot be solved by simulation (simulate the studied

processes, evaluate the objective function and compare the results). Indeed,

testing a finite number of points or scenarios can never produce sufficient

knowledge proving that a solution is optimal. However, because experts in

simulation engineering have developed the intuition and experience to select

appropriate scenarios for evaluation, simulation software is available to

perform their assessment. Simulation can lead to reasonable results, but there

is no guarantee that the optimal solution or even one closest to the optimal

will be found. This is especially troublesome for complex issues or those that

require decisions with high financial impact [44].

To solve a real-world problem by mathematical optimization, the problem

must be represented by a mathematical model, that is, a set of mathematical

relations (e.g. equalities, inequalities, logical conditions) which represent an

abstraction from the real-world problem. This translation is part of the

modeling phase, and is by no means trivial. Mathematical models for

optimization usually lead to structured problems such as linear programming

(LP) [67] problems, mixed integer linear programming (MILP) problems,

nonlinear programming (NLP) problems, and mixed integer nonlinear

programming (MINLP) [23] problems. During the modeling phase,

real-world optimization problems are structured according to the base

objects, variables, objective functions, and their constraints. Then it is needed

to put such a model into the machine to solve the problem [44].

Algebraic modeling languages are by far the best approach to do this.

19

They make it possible to define an optimization problem close to its

mathematical formula, they are flexible and open to be quickly changed and

adjusted. Once the model is defined, a solver, software package with an

implemented algorithm capable of solving the problem, is required. In the

ideal case, the optimal solution is returned. In practice, when trying to solve

real-world problems, it is common to find that a problem returned with the

problem statement is not feasible. Therefore, a modeling system must also

support the identification of such cases [44].

In the the sub-sections below mathematical optimization problems and

algebraic modeling languages are described and analyzed in more details.

1.1 Types of mathematical optimization problems

As noted earlier, an important step in the optimization process is classifying

optimization model, since algorithms for solving optimization problems are

tailored to a particular type of problem.

Kallrath et al. states that looking only to algebraic optimization (not

allowing differential or integral relationships), the largest class of problems

are mixed integer nonlinear optimization problems and formally describes

them in a following way. For vectors xT = (x1, . . . , xnc
) and

yT = (y1, . . . , ynd
) of nc continuous and nd discrete variables, the augmented

vector xT⊕ = xT ⊕ yT, an objective function f(x, y), ne equality constraints

h(x, y) and ni inequalities constraints g(x, y), an optimization problem is

called Mixed Integer Nonlinear Programming (MINLP) problem, if at least

one of the functions f (x, y), g(x, y) or h(x, y) is nonlinear [44]

min

{
f(x, y)

∣∣∣∣ h(x, y) = 0 h : X × U → Rne x ∈ X ⊆ Rnc
}

g(x, y) ≥ 0, g : X × U → Rni , y ∈ U ⊆ Znd .

(1)

The vector inequality, g(x, y) ≥ 0, is to be read component-wise. Any

vector xT⊕ satisfying the constraints of Equation (1) is called a feasible point

of Equation (1). Any feasible point, whose objective function value is less or

equal than that of all other feasible points is called an optimal solution. From

this definition it follows that the problem might not have a unique optimal

20

solution.

The continuous variables in Equation (1) could for instance describe the

states (temperature, pressure, etc.), flow rates or design parameters of plants or

chemical reactors. The discrete variables, often binary variables, may be used

to describe the topology of a process network or to represent the existence or

non-existence of plants.

Table 1: Major types of optimization problems [44]

Type of problem f(x, y) h(x, y) g(x, y) nd

Linear Programming cTx Ax − b x 0

Mixed Integer LP cTx⊕ Ax⊕ − b x⊕ ≥ 1

Mixed Integer NLP ≥ 1

Mixed Integer QP xT⊕Q⊕ + cTx⊕ Ax⊕ − b x⊕ ≥ 1

Nonlinear Programming 0

Global Optimization ≥ 0

Depending on the functions f (x, y), g(x, y), and h(x, y) in Equation (1)

and matrix A of m rows and n columns, i.e., A ∈ M(m × n,R),b ∈ Rm,

c ∈ Rn, and n = nc + nd structured problem types can be defined as seen

in Table 1. Real world problems lead to LP and MILP problems much more

often than NLP or MINLP problems. QP deals with quadratic programming

problems. They have a quadratic objective function but only linear

constraints. QP and MIQP issues often arise in applications in the financial

services industries. Since some problems arise as subproblems of others, it is

very important that algorithms for solving subproblems are well understood

and operated efficiently. While LP problems can be solved relatively easy

(the number of iterations, and thus the effort to solve real-world LP problems

with m constraints grows approximately linearly in m), the computational

complexity of MILP and MINLP grows exponentially with nd [44].

Numerical methods to solve NLP problems work iteratively and the

computational problems are related to questions of convergence, getting

stuck in bad local optima and availability of good initial solutions. Global

optimization [65, 39, 51] applies to both NLP and MINLP problems and its

complexity increases exponentially in the number of all variables entering

21

nonlinearly into the model [44].

Other notable cases of optimization problems are constraint satisfaction

problems and multi-objective optimization. Strictly speaking, the constraint

satisfaction problem is not an optimization problem. They lack an objective

function. However, there are various goals associated with these issues. Find

a solution, find all the solutions, find the outer and inner coverings for the

solution, find N solutions that are different enough to be presented to the end

user who chooses one of them, prove that no solution exists. All of these

goals can be achieved partially or fully, even in the presence of rounding

errors.

Multi-objective optimization [56], also known as multi-criteria

optimization, handles problems involving multiple objective functions. A

simple approach to solving a multi-criteria problem is to represent all goals

on a common scale of goodness, but it’s almost impossible. The problem is

actually comparing different goals on a common scale. Basically, it can be

distinguished between the two cases, either to find the Pareto optimal

solution, or solve the problem individually for each objective function [44].

1.2 Examples of mathematical optimization problems

In order to better understand differences between different types of

optimization problems few examples of the specific problems are provided.

First, an example of linear programming problem by Dantzig, G. B. [15]

is given as seen in Equation (2). This classical transportation problem has the

objective function to minimize the cost of transportation subject to demand

and supply constraints. The transportation problem applies to situations where

a single commodity is transported from various sources of supply (origins) to

different demands (destinations).

Let there bem sources of supply s1, s2, . . . , sm having ai (i = 1, 2, . . . ,m)

units of supplies, respectively, to be transported among n destinations

d1, d2, . . . , dn with bj (j = 1, 2, . . . , n) units of requirements, respectively.

Let cij be the cost for shipping one unit of the commodity from source i

to destination j for each route. Suppose xij represents the units shipped per

route from source i to destination j. In that case, the problem is determining the

22

transportation schedule that minimizes the total cost of satisfying the supply

and demand conditions.

minimize

m∑
i=1

n∑
j=1

cijxij

subject to

n∑
j=1

xij ≤ ai, for i = 1, 2, . . . ,m (supply constraints),

m∑
i=1

xij ≥ bj , for j = 1, 2, . . . , n (demand constraints),

xij ≥ 0, for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n

(2)

MAGIC Power Scheduling Problem [16] seen in Equation (3) is an

example of MIP problem where a number of power stations are committed to

meet demand for a particular day. Different types of generators having

different operating characteristics are available. Generating units can be shut

down or operate between minimum and maximum output levels. Units can

be started up or closed down in every demand block. Attempt is made to

minimize the cost (amount of fuel) for power production.

minimize cost =
∑
g,t

(durt · cming · ng,t + stg · sg,t

+ 1000 · durt · cincg · (xg,t −minpg · ng,t))

subject to
∑
g

xg,t ≥ demt, ∀t,

∑
g

(maxpg · ng,t) ≥ 1.15 · demt, ∀t,

sg,t ≥ ng,t − ng,t−1, ∀g, t,

xg,t ≥ minpg · ng,t, ∀g, t,

xg,t ≤ maxpg · ng,t, ∀g, t,

ng,t ∈ Z+, ∀g, t,

sg,t ≥ 0, ∀g, t

(3)

In Equation (3) t represents demand blocks and g generators. Parameter

demt defines demand in 1000mW blocks, durt defines duration of demand.

23

Next, parameters minpg and maxpg define minimal and maximal power of

generator. Parameters cming and cincg define minimal cost per hour and cost

increase per mW. stg defines starting fuel capacity and numg defines number

of units in generator. Variable xg,t calculates generator output, ng,t number of

generators in use, and sg,t number of generators started up. Lastly, cost is a

total operating cost which is attempted to minimize.

Fuel Scheduling and Unit Commitment Problem [78] seen in Equation (4)

is a MINLP problem which addresses the problem of fuel supply to plants

and determining on/off status of units simultaneously to minimize total

operating cost. There are two generating units to meet a total load over a

6-hour period. One of the unit is oil-based and has to simultaneously meet the

storage requirements, flow rates etc. There are limits on the generation levels

for both the units.

minimize cost =
∑
t

(300 + 6 · otherst + 0.0025 · (otherst)2)

subject to poilt ≥ 100 · statust, ∀t,

poilt ≤ 500 · statust, ∀t,

volumet = volumet−1 + 500− oilt + initlevt, ∀t,

oilt = 50 · statust + poilt + 0.005 · (poilt)2, ∀t,

loadt ≤ poilt + otherst, ∀t,

statust ∈ {0, 1}, ∀t,

statust ≥ 0, ∀t,

oilt ≥ 0, ∀t

(4)

In Equation (4) t represents scheduling periods. Parameters loadt and

initlevt define load level and initial level of the oil storage tank. Next, statust

represents on or off status of the oil based generating unit, poilt is generation

level of oil based unit, while otherst is generation level of other generation

units. oilt defines oil consumption and volumet the volume of oil in the

storage tank. Lastly, cost is a total operating cost which is attempted to

minimize.

Social Accounting Matrix Balancing Problem [17] seen in Equation (5) is

an example of QCP problem which captures all the circular flows in an

24

economy and is called balanced if the row totals equal the column totals. A

sample problem illustrates attempt to balance such matrices.

minimize dev =
∑

i,j|xwi,j

(
xwi,j · ((xbi,j − xi,j))

2

xbi,j
) +

∑
i|twi

(
twi · ((tbi − ti))

2

tbi
)

subject to ti =
∑
j|xbi,j

xi,j , ∀i,

tj =
∑
i|xbi,j

xi,j , ∀j

(5)

In Equation (5) i and j represent accounts. Parameter xbi,j defines original

estimates, xwi,j weights for cells, tbi original totals, and twi weights for totals.

Next, variable xi,j represents estimated cells and ti estimated totals. Lastly,

dev is a deviation between the two accounts which is attempted to minimize.

In the following sections, research is focused on algebraic modeling

languages, the way they enable modeling optimization problems, and help

solving them using specific solver algorithms.

1.3 Algebraic modeling languages

Algebraic modeling languages (AMLs) are sophisticated software packages

that provide a key link between an analyst’s mathematical conception of an

optimization model and the complex algorithmic routines that seek optimal

solutions. By allowing models to be described in the high-level, symbolic

way that people think of them while automating the translation to and from

the different low-level forms required by the algorithms, algebraic modeling

languages significantly reduce the effort and increase the reliability of

formulation and analysis [25].

The first algebraic modeling languages, developed in the late 1970s, were

game-changers. They allowed separating the model formulation from the

implementation details [44] while keeping the notation close to the problem’s

mathematical formulation [27]. Since the data appears to be more volatile

than the problem structure, most modeling language designers insist on the

data and model structure being separated [41]. Therefore, the central idea in

25

modern AMLs is the differentiation between abstract models and concrete

problem instances [37]. A specific model instance is generated from an

abstract model using data. This way, the model and data together specify a

particular instance of an optimization problem for which a solution can be

sought. This is realized by replicating every entity of an abstract model over

the different elements of the data set. Such a feature often is referred to as a

set-indexing capability of the AML [27].

To provide a better understanding of what aspects of mathematical

modeling are being addressed by the algebraic modeling language, it was

chosen to use an example of the classical linear programming transportation

problem provided in Equation (2).

First, a concrete instance of the problem is taken and it is shown what

knowledge has to be captured to create an algebraic model of such an

instance. Later, it is shown how this would be modeled in two widely used

algebraic modeling languages AMPL and JuMP.

1.3.1 An instance of a concrete problem

A general problem statement was defined in the Equation (2), however, to

understand what has to be modeled, it is needed to look into a concrete instance

of the problem. In this case, an example where the goal is to minimize the

cost of shipping goods from two plants to three markets, subject to supply and

demand constraints is used. Listing 1 provides the characteristics of such a

model instance in a mathematical format.

First, it is needed to define the sets and indices describing plants and

markets. Then, the parameters that will hold the data about the capacity of

each plant, the demand at each market, and the distance between them have to

be defined. Later, is has to be described how the transportation cost per case

should be calculated. Having the data initiated, two variables excepted to be

calculated by the solver have to be defined: the shipment quantity between

the plants and markets, and the total transportation cost. Lastly, it is needed

to describe the demand and supply constraints and the objective function.

26

Sets: Plants {Seattle, San Diego} (m = 2 plants)

Markets {New-York, Chicago, Topeka} (n = 3 markets)

Indices: i On plants

j On markets

Parameters: Ai Capacity of plant i

Bj Demand at market j

F Freight in dollars per case per thousand miles

Dij Distance in thousands of miles

Cij Transport cost in thousands per cases (F ∗Dij/1000)

Variables: Xij Shipment quantities in cases

Z Total transportation costs in thousands of dollars

Constraints:
∑n

j=1 Xij ≤ Ai ; for i = 1, 2, . . . ,m ; observe supply limit at plant i∑m
i=1 Xij ≥ Bj ; for j = 1, 2, . . . , n ; satisfy demand at market j

Xij ≥ 0 ; for i = 1, 2, . . . ,m and j = 1, 2, . . . , n

Objective: Minimize transportation cost subject to supply and demand constraints

Min Z =
∑m

i=1

∑n
j=1 CijXij

Listing 1: Concrete model instance of the classical transportation problem by

Dantzig, G. B. [15] with the goal of minimizing the shipping cost of goods

from two plants to three markets.

1.3.2 Formulation of a concrete problem using AML

Once it is known how the concrete model instance of an optimization problem

should look like (see Listing 1), it is needed to transfer such mathematical

concepts to the concepts of a specific algebraic modeling language. Listing 2

demonstrates how such an instance of a problem is expressed in AMPL algebraic

modeling language. If it would be needed to define the model in a different

algebraic modeling language than AMPL, it would require to start from scratch

and take the mathematical concepts to yet another textual notation of another

algebraic modeling language. An example of how the same model would be

described in JuMP format can be seen in Listing 3.

27

set I;
set J;
param a{i in I};
param b{j in J};
param d{i in I, j in J};
param f;
param c{i in I, j in J} := f * d[i,j] / 1000;
var x{i in I, j in J} >= 0;
minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];
s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i];
s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j];

data;
set I := Seattle San-Diego;
set J := NNew-YorkChicago Topeka;
param a := Seattle 350
San-Diego 600;
param b := New-York 325
Chicago 300
Topeka 275;
param d : New-York Chicago Topeka :=
Seattle 2.5 1.7 1.8
San-Diego 2.5 1.8 1.4 ;
param f := 90;
end;

Listing 2: The Classical Transportation Problem by Dantzig, G. B. defined in

AMPL format.

Even not going to the deeper analysis, it can be observed that the syntax

of algebraic modeling languages differs. In the two given examples AMPL

seems to be the one targeted towards practitioners with a mathematical

background, while JuMP is more catering for other practitioners who are more

familiar with common programming languages. The differences between

AMLs will be explored in more detail in the comparative analysis section.

Examples of how this problem is modeled using GAMS and Pyomo can be

found in Appendix A.

28

using JuMP
ORIG = ["Seattle", "San-Diego"]
DEST = ["New-York", "Chicago", "Topeka"]
supply = [350, 600]
demand = [325, 300, 275]
cost = [

2.5 1.7 1.8;
2.5 1.8 1.4

]
F = 90
cost_f = [F * cost[i,j] / 1000

for i in 1:length(ORIG), j in 1:length(DEST)]

model = Model()

@variable(model, trans[1:length(ORIG), 1:length(DEST)] >= 0)
@objective(model, Min, sum(cost_f[i, j] * trans[i, j]

for i in 1:length(ORIG), j in 1:length(DEST)))
@constraint(model, [i in 1:length(ORIG)],

sum(trans[i, j] for j in 1:length(DEST)) <= supply[i])
@constraint(model, [j in 1:length(DEST)],

sum(trans[i, j] for i in 1:length(ORIG)) >= demand[j])

Listing 3: The Classical Transportation Problem by Dantzig, G. B. defined in

JuMP format.

1.4 Essential characteristics of AMLs

In order to identify the most prominent algebraic modeling languages for

mathematical optimization, and evaluate how modern AMLs match the

current needs of practitioners, it is needed to understand what essential

features and characteristics they should provide. Kallrath, J. defines the

essential characteristics of a modern AML in the following way [44]:

1. Problems are represented in a declarative way, i.e. specifying the

problem’s properties: space, set of constraints, and optimality

requirements.

2. There is a clear separation between problem definition and the solution

process.

3. There is a clear separation between the problem structure and its data.

Besides that, the support for mathematical expressions and operations needed

29

for describing nonlinear models is often considered an important feature of

an AML [44]. Moreover, it is worth observing that most interpreters included

in today’s AMLs are based on automatic differentiation [27], a process in

which the modeling language can compute the derivatives of problems from

the model description without the assistance of the user [44]. This motivates

to include automatic differentiation as an additional, important feature of a

modern AML.

The algebraic expressions are useful in describing individual models and

describing the manipulation of models and transformation of data. Thus,

almost as soon as AML became available, users started finding ways to adapt

model notations to implement sophisticated solution strategies and iterative

schemes. These efforts stimulated the evolution within AMLs of scripting

features, including statements for looping, testing, and assignment [25].

Therefore, scripting capabilities are an integral part of AMLs.

1.5 Most prominent AMLs

Based on the identified essential characteristics of modern AMLs and criteria

defined below four most prominent AMLs have been chosen to be analyzed

futher: AMPL, GAMS, JuMP, and Pyomo. The selection of AMLs was based on

the following criteria:

• AMLswhich won the 2012 INFORMS Impact Prize award2 dedicated to

the originators of the five most important algebraic modeling languages:

AIMMS, AMPL, GAMS, LINDO/LINGO, and MPL;

• the popularity of AMLs based on NEOS Server model input statistics

for the year 20203;

• open-source options that are attractive for the academic society or in

situations where budgets are tight.

It was chosen to include GAMS and AMPL based on NEOS Server

popularity, respectively, with a 75% and 18% share of jobs executed via the

2https://www.informs.org/About-INFORMS/News-Room/Press-Releases/
INFORMS-Impact-Prize-2012

3NEOS Server. Solver Statistics: https://neos-server.org/neos/report.html

30

https://www.informs.org/About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-2012
https://www.informs.org/About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-2012
https://neos-server.org/neos/report.html

NEOS platform between January and September of 2021. More details

in Table 2.

Table 2: Number of jobs by AML type submitted to NEOS platform between

January and September of 2021

AML # jobs % share

AMPL 732756 75.49%

GAMS 180740 18.62%

LP 15857 1.63%

TSP 11012 1.13%

MPS 10265 1.06%

...

Total 970657

JuMP and Pyomo were included as the most prominent open-source AMLs.

AIMMS was excluded since all of attempts to acquire a trial or academic

license were unsuccessful. It was decided to exclude MPL since it has not

been updated for the last five years. LINGO was excluded as a solver-specific

modeling language.

1.6 Related literature review

There has not been any recent bibliometric analysis of state of the art in

algebraic modeling languages. Therefore, it was decided that analyzing the

current body of knowledge in algebraic modeling language research through

a bibliometric study is needed. Bibliometric studies can help us understand

the extent of a topic, emergent trends, and its evolution through time.

This section aims to analyze the metadata of papers and articles published

between the year 2000 and the year 2021 related to the four algebraic modeling

languages chosen for the research.

31

1.6.1 Methodology

In order to identify the key publications on algebraic modeling languages, the

adopted version of PRISMA (Preferred Reporting Items for Systematic

Reviews and Meta-Analyses) methodology [60] for a literature search in

scientific databases was followed. For the analysis, it was chosen to use two

well-known databases, Web of Science (WoS) administered by Clarivate

Analytics and Scopus administered by Elsevier. The search was performed in

titles, abstracts, author keywords, and keywords extracted by indexing

services (e.g., KeyWords Plus in WoS). Only papers published in

conferences, workshops, books, and journals related to the research topic

were considered.

To find relevant publications for the research, the following search string

was used:

((GAMS OR AMPL OR Pyomo OR (JuMP AND Julia)) AND

("algebraic model*ing" OR "optimi*ation"))

The search string was designed to find all publications where either of the

four chosen AMLs are mentioned, while references to algebraic modeling or

optimization are also made. It was required to fine-tune the search string to

accommodate for the differences between American and British English in the

spelling of words modeling, and optimization. It was also required to narrow

down the occurrence of the word JuMP to always include the word Julia (the

programming language JuMP uses) in the match since using the general word

jump resulted in tens of thousands of irrelevant matches.

Searches in Web of Science produced 1568 potentially relevant

publications, while Scopus resulted in 2125 potentially relevant records.

However, both databases included the same retracted paper and had

duplicates in the results. That was especially visible in Scopus, having 53

duplicates out of which 45 were the same papers published in the same

sources and for some reason indexed multiple times. In 8 instances, Scopus

had duplicates of the same papers published in different sources.

32

Records identified from:
Web of Science (n = 1568)
Scopus (n = 2125)

Records removed before
screening:

• Duplicate records removed
by automation tools:
Web of Science (n = 2)
Scopus (n = 53)

• Retracted records removed
(n = 2)

Records screened
(n = 3636)

Duplicate records removed after
manual screening for duplicates
(n = 1011)

Abstracts sought for retrieval
(n = 2625)

Abstracts not retrieved
(n = 0)

Reports assessed for eligibility
(n = 2625)

Reports excluded:
• Different meaning of AMPL,

GAMS, Pyomo or JuMP
than intended (n = 19)

• Not specifically addressing
optimization or algebraic
modeling (n = 56)

Studies included in quantitative
synthesis (meta-analysis)
(n = 2550)

Identification of studies via databases and registers

Id
en

tif
ic

at
io

n
Sc

re
en

in
g

In

cl
ud

ed

Figure 1: PRISMA 2020 flow diagram [60] for bibliometric analysis of

scientific literature about AMPL, GAMS, JuMP and Pyomo algebraic modeling

languages.

After merging the Web of Science and Scopus data sets, a total of 3636

records were manually screened for potential duplicates, finding 1011 and

leaving us with 2625 relevant sources. The manual screening was required

since automation tools produced too many false positives once merging two

data sets. Later, the abstracts of records were analyzed and assessed for

eligibility based on relevance in the field of algebraic modeling and specific

33

application of AMPL, GAMS, JuMP, and Pyomo in the research. This part of the

screening removed 19 reports where terms AMPL, GAMS, JuMP, and Pyomo

were used in a different context than expected, and 56 reports were

optimization or algebraic modeling was not a primary focus area.

Once the screening process was completed, a data set of 2550 documents

available for quantitative synthesis to systematically review meta-data using

statistical methods was present. A PRISMA 2020 Flow Diagram of the

literature search and selection process is presented in Figure 1.

After retrieving and selecting the papers, there was a need to clean up and

unify the meta-data originating from different citation databases. WoS and

Scopus databases use a very different approach to codify the bibliographic

metadata. Thus, it was chosen to use a style-independent text-based file

format, BibTeX, for merging the lists of bibliographies. A reference

management software Zotero was chosen to help in this task, but also it was

required to create some shell scripts using regular expressions to manipulate

the content of the list. Mostly, it was needed to merge indexed keywords

from WoS, called KeyWords Plus, with indexed keywords available in

Scopus and unify how the number of times a paper has been cited was

encoded. Moreover, it was required to unify the way correspondence address

is presented to be able to extract country information. Attempt of unifying

the way citations present in the paper are encoded wasn’t successful. WoS

applies a preprocessing analysis on reference lists, rewriting references as

first author, year, journal, issue, DOI, while Scopus stores the full APA

record as the author included it in his manuscript. Lack of unification means

that, at the moment, it is not possible to do citation and co-citation analyses

on the merged databases.

To help in the statistical analysis of the data set, it was chosen to use R

(programming language) package created by Massimo Aria and Corrado

Cuccurullo called Bibliometrix [4]. It is an open-source tool for quantitative

research in scientometrics and bibliometrics that includes all main

bibliometric methods of analysis. This package supports bibliographic

database files from Web of Science, Scopus, Dimensions, The Lens,

PubMed, and Cochrane Library. It also allows performing bibliometric

analysis and building data matrices for co-citation, coupling, scientific

34

collaboration analysis, and co-word analysis.

In addition to bibliometric analysis, a graphical analysis of the

bibliographic material using VOSviewer software [76] was added. This

software collects data and generates maps based on bibliographic coupling,

co-authorship, citation, co-citation, and co-occurrence of keywords. Density

visualization can provide a quick overview of the main areas in a bibliometric

network. Overlay visualization can be used to show development over time.

1.6.2 Findings of literature review

A total of 2550 documents, published in 927 sources (journals, books, etc.)

was analyzed. These documents were (co-)authored by 4761 people. The

vast majority of the documents are multi-authored, only 133 documents being

single-authored. The average number of authors per document is 1.87.

Table 3 describes the distribution of publications based on document types.

It can be observed that themajority of publications (56%) are articles published

in journals while proceeding and conference papers follow next. Books and

book chapters account for only 4.5% of publications.

Table 3: Distribution of publications by document type.

Document type # documents

1 Article 1441

2 Proceedings paper 500

3 Conference paper 494

4 Book chapter 108

5 Book 7

According to Figure 2 the number of publications related to the four

chosen AMLs and algebraic modeling has been growing continuously from

the year 2000 to the year 2019, having an annual percentage growth rate of

12.3%. However, in recent years, 2020 and the first 9 months of 2021, a

change in publication trends, where numbers are decreasing (from 284

publications in 2019 to 234 in 2020) can be seen. The decreasing growth rate

could indicate that research in this field is consolidating. However, to

35

confirm the hypothesis, it is needed to analyze in more detail which main

research areas the publications are covering.

0

100

200

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Year

Articles

Annual Scientific Production

Figure 2: Annual scientific production as publications per year in the field of

algebraic modeling languages.

Since Web of Science and Scopus data sources were merged, it was not

possible to use the research areas WoS assigned to each paper, since its only

available in the WoS database. However, an alternative approach was chosen

to use data about the sources (journals, books, etc.) where papers have been

published, thus allowing to identify a research area based on the scope of the

source.

Table 4 provides an overview of the most relevant publication sources

indicating how many of the publications were published in particular sources.

Out of the top ten sources, 8 are journals and 2 are book series. Elsevier is a

publishing company for 6 out of the top 10 sources. The majority of journals

and book series are concentrated around two main research areas: chemical

engineering and energy engineering. Thus it can be concluded that in most of

the cases AMPL, GAMS, JuMP, and Pyomo algebraic modeling languages are

used as the basis for computer science applications for solving chemical or

energy engineering problems. Another emerging field of research is focusing

36

on renewable energy, sustainability, and the environment. This can confirm

the hypothesis that the decrease of publications within the last 2 years can be

the result of research in chemical and energy engineering consolidating while

a shift towards renewable energy research still being on the verge.

Table 4: Top ten most relevant publication sources. The number of articles in

each source.

Sources # articles

1 Computer Aided Chemical Engineering 78

2 Computers & Chemical Engineering 42

3 Energy 40

4 Industrial & Engineering Chemistry Research 35

5 Journal of Cleaner Production 30

6 Chemical Engineering Transactions 29

7 International Journal of Electrical Power & Energy Systems 29

8 Energies 24

9 Springer Optimization And It’s Applications 19

10 Applied Energy 18

Figure 3 shows that Iran is the country whose authors have published

most documents, followed by China and USA. The ten first countries

accumulate 58% of the articles published related to the chosen field of

research. Iran, China, and the USA are the top contributors correlating well

with the nation-state strategies set to ensure independent and efficient

production of energy, thus requiring to develop and apply optimization

models in the fields of chemical and energy engineering.

The international collaboration among the top 10 countries is the lowest

in India and China, with a multiple country publications rate of 8% and 10%,

respectively. The international collaboration reaches a maximum in the United

Kingdom, where 40% of the papers are of this kind.

37

https://www.sciencedirect.com/bookseries/computer-aided-chemical-engineering
https://www.journals.elsevier.com/computers-and-chemical-engineering
https://www.journals.elsevier.com/energy
https://pubs.acs.org/journal/iecred
https://www.journals.elsevier.com/journal-of-cleaner-production
https://www.aidic.it/cet/index.htm
https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems
https://www.mdpi.com/journal/energies
https://www.springer.com/series/7393
https://www.journals.elsevier.com/applied-energy

UNITED KINGDOM

PORTUGAL

GERMANY

COLOMBIA

ARGENTINA

BRAZIL

INDIA

USA

CHINA

IRAN

0 100 200 300 400
N. of Documents

C
ou

nt
rie

s Collaboration

SCP

MCP

Most Productive Countries

SCP: Single Country Publications, MCP: Multiple Country Publications

Figure 3: Top ten countries by annual scientific production. Single and

multiple country publications split.

Table 5: Top ten countries by citations of scientific production. Total citations

and average citations per article.

Country Total citations Average citations

1 Iran 4745 10.053

2 USA 3283 14.151

3 China 1695 6.186

4 Canada 868 15.500

5 Turkey 855 15.268

6 Argentina 783 9.787

7 Germany 771 13.293

8 Spain 744 14.880

9 Portugal 734 12.877

10 Brazil 594 7.157

Table 5 displays the main countries, ordered by total citations. The overall

average number of citations per article is 8.5. Iran and USA, the two

countries with the most published articles, also have the most total citations

38

and are above the average in the number of citations figures, with 10.053 and

14.151, respectively. Even though China is the second country in terms of

published articles and the third in total citations, it still has the lowest average

citations per article among the leading countries in total citations (6.186).

This can indicate the difference in scientific importance or quality of the

articles.

Table 6 lists the ten most cited papers indexed by WoS and Scopus. The

table also shows what is the average number of citations per year and identifies

which of the AML keywords it contains.

Paper titled “JuMP:AModeling Language forMathematical Optimization”

written by Dunning et al. [18] has been identified as the most cited paper with

400 total and an average of 80 citations per year. The popularity of the paper

validates the decision to include JuMP as one of four AMLs in the scope of the

research.

The most cited paper based on average citations per year is ”CasADi: a

software framework for nonlinear optimization and optimal control”

published by Andersson et al. [3] having 103 yearly citations. The paper

proposes a self-contained symbolic framework that can be used to model and

solve optimization problems constrained by differential equations, i.e.,

optimal control problems. In essence, it allows the user to construct symbolic

expressions using a MATLAB inspired everything-is-a-matrix syntax as an

alternative to the approaches adopted by AMLs. The popularity of such a

paper also motivates the need to explore alternative options in modeling

language landscape.

Seven out of the ten most cited papers were mentioning GAMS as one of the

keywords. However, in the majority of the cases GAMS was used as the tool to

solve an optimization problem, while the paper focused on a general problem

in the chemical or energy engineering field. AMPL and JuMP were mentioned

as keywords twice, while Pyomo was not mentioned at all amongst the top ten

cited papers. Thus it can be concluded GAMS being the most adopted AML

among the top-cited papers in the field of research.

39

Table 6: Top ten most cited papers. Ordered by total citations.

Source Title Keywords Total

Citations

Citations

per Year

Dunning et al. (2017) JuMP: A Modeling Language for Mathematical Optimization JuMP 400 80.00

Yetilmezsoy et al. (2009) Response surface modeling of Pb(II) removal from aqueous

solution by Pistacia vera L.: Box–Behnken experimental design

AMPL 397 30.54

Ugray et al. (2007) Scatter Search and Local NLP Solvers: A Multistart Framework

for Global Optimization

GAMS 385 25.67

Morais et al. (2010) Optimal scheduling of a renewable micro-grid in an isolated load

area using mixed-integer linear programming

GAMS 334 27.83

Andersson et al. (2019) CasADi: a software framework for nonlinear optimization and

optimal control

AMPL,GAMS,

JuMP,Pyomo

309 103.00

Kannan et al. (2010) A genetic algorithm approach for solving a closed loop supply

chain model: A case of battery recycling

GAMS 229 19.08

Saeedi et al. (2019) Robust optimization based optimal chiller loading under cooling

demand uncertainty

GAMS 193 64.33

Zeineldin et al. (2006) Optimal coordination of overcurrent relays using a modified

particle swarm optimization

GAMS 185 11.56

Khodaei et al. (2018) Fuzzy-based heat and power hub models for cost-emission

operation of an industrial consumer using compromise

programming

GAMS 184 46.00

Ferris and Munson (2000) Complementarity Problems in GAMS and the Path Solver GAMS 184 8.36

4
0

Table 7 shows the ten most used author keywords in the data set of the

bibliometric analysis. Web of Science and Scopus provide two types of

keywords: author keywords, which are those provided by the original

authors, and extracted keywords like Keywords-Plus (WoS) or Indexed

Keywords (Scopus), which are those generated from the titles and abstracts

of the papers by the citation database algorithms. Table 8 shows the top ten

extracted keywords (Keywords Plus and Indexed Keywords) in the data set.

Table 7: Top ten most used author keywords. The number of articles

containing a keyword is provided.

Author keywords # articles

1 Optimization 505

2 GAMS 247

3 Mathematical Programming 91

4 MINLP 83

5 Uncertainty 82

6 Microgrid 73

7 Multi-objective Optimization 72

8 Demand Response 69

9 Nonlinear Programming 66

10 Stochastic Programming 60

The most frequent keyword in both cases is Optimization, which is not

surprising. However, if looking into the following keywords, remarkably,

keyword GAMS is the second most frequent in author keywords, but it does

not appear as the extracted keyword at all. First of all, it shows the

importance and popularity of GAMS which makes it stand out amongst other

AMLs. Secondly, it points towards GAMS being an important tool used by

scientists to solve optimization problems but shows limitations of the

algorithms used to extract keywords, where they do not discriminate such a

detailed keyword. On the contrary, keyword extraction algorithms are precise

at identifying general keywords such as Model, Design, or System, as many

engineering papers are focused on these aspects of the application of AMLs.

41

It is also relevant to notice that Microgrid is a popular keyword used by the

authors, once more arguing for the importance of AMLs in the energy

engineering field of research.

Table 8: Top ten most used extracted keywords: Keywords Plus in WoS and

Indexed Keywords in Scopus. The number of articles containing a keyword is

provided.

Extracted keywords # articles

1 Optimization 614

2 Integer Programming 197

3 Model 158

4 Design 154

5 Management 132

6 Algorithm 126

7 System 116

8 Nonlinear Programming 102

9 Systems 100

10 Costs 90

Figures 4 and 5 were generated using VOSviewer software [76], which

allows performing keyword co-occurrence analysis, i.e., counting the number

of documents in which particular keywords appear together and visualizing the

links between them in cloud maps.

It was chosen to use fractional counting for the strength of co-occurrence

where the weight of the links between keywords is fractionalized. The idea of

fractional counting is to reduce the influence of documents with many

keywords. When fractional counting is used, the strength of a co-occurrence

link between two keywords is determined not only by the number of

documents they appear in together but also by the total number of keywords

in each of the co-occurring documents.

42

synthesis

sustainability

facts

wind power

reverse logistics

optimization model

wind energy

modelling

reactive power

planning

multiobjective optimization

hydrogen

generalized disjunctive progra

electric vehicle

optimal control

heat integration

general algebraic modeling sys

distribution system

multi-objective

simulated annealing

dynamic optimization

particle swarm optimization

energy storage system

design

modeling

distribution systems

mathematical modeling

electricity market

supply chain

mathematical model

smart grid

renewable energy sources

ampl

energy storage

optimal power flow

energy hub
optimisation

genetic algorithm

distributed generation

renewable energy

stochastic programming

milp

nonlinear programmingdemand response

uncertainty

minlp

microgrid

mathematical programming

gams
optimization

VOSviewer

Figure 4: Cloud map of author keywords co-occurrence using fractional

counting. Keywords with a minimum of 10 occurrences included.

There was a total of 5721 keywords appearing in 2550 papers in the

bibliometric data set. Using VOSviewer, the minimum required number of

occurrences for the keyword to be included in the cloud map was set to be 10.

This resulted in 102 keywords being organized into clusters and visualized.

Figure 4 represents the cloud map with co-occurrence of keywords,

showing how many times the keywords appear in the articles and how related

they are to each other. The main finding is that the cloud could be divided

into two parts. The right side is more related to optimization, mathematical

programming, and modeling (purple, green, and yellow) and the left side is

more related to energy and power engineering (red and blue). This allows to

state that two primary types of papers exist: one focusing on solving energy

engineering problems using algebraic modeling languages, and the other one

investigating the algebraic modeling languages in the field of general

mathematical modeling and optimization. A strong link between optimization

and GAMS keywords appearing together was also observed, confirming

previous statements of GAMS being the most prominent AML in the scientific

43

production analyzed.

synthesis

sustainability

facts

wind power

reverse logistics

optimization model

wind energy

modelling

reactive power

planning

multiobjective optimization

hydrogen

generalized disjunctive progra

electric vehicle

optimal control

heat integration

general algebraic modeling sys

distribution system

multi-objective

simulated annealing

dynamic optimization

particle swarm optimization

energy storage system

design

modeling

distribution systems

mathematical modeling

electricity market

supply chain

mathematical model

smart grid

renewable energy sources

ampl

energy storage

optimal power flow

energy hub
optimisation

genetic algorithm

distributed generation

renewable energy

stochastic programming

milp

nonlinear programmingdemand response

uncertainty

minlp

microgrid

mathematical programming

gams
optimization

VOSviewer

Figure 5: Cloud map of author keywords co-occurrence using fractional

counting and yearly overlay. Keywords with a minimum of 10 occurrences

included.

Figure 5 represents the cloud map for the keywords co-occurrence in the

same data set, additionally using overlay visualization, which shows the

development of keyword co-occurrence over time. Some of the emerging

trends can be identified from this. First of all, clusters on the left-hand side

indicating the number of publications focusing on renewable energy are

growing over the time. This fits well with increasing interest in sustainability

all over the world. On the right-hand side, a cluster of publications related to

optimization, mathematical programming, GAMS, AMPL where the most

contributions were done between 2013 and 2016 can be seen. This correlates

well with the earlier statement of research in this field is consolidating. Thus,

it is possible to state that the engineering of sustainable energy will be the

driving force behind the near-future developments in the research field of

mathematical optimization and algebraic modeling languages.

44

1.7 Conclusions

This chapter described mathematical optimization and algebraic modeling

languages and identified the main characteristics of AMLs that will be

considered in further chapters.

First, concept of mathematical optimization was introduce and types of

optimization problems were discussed. Following, the significance of

algebraic modeling languages was highlighted. Next, a concrete instance of

the classical transportation problem by Dantzig [15] was described in logical

concepts and how they are translated to the notations of two algebraic

modeling languages AMPL and JuMP. Afterward, the key characteristics of

modern AMLs were outlined, and the most prominent algebraic languages

were identified and chosen for further theoretical and experimental research.

Finally, to understand the extent of a topic, the emergent trends, and its

evolution through time, a bibliometric analysis on the chosen AMLs was

conducted. Papers and articles published between the year 2000 and the year

2021 were analyzed using the adopted version of PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-Analyses)

methodology [60] for a literature search in scientific databases. A total of

2550 documents, published in 927 sources (journals, books, etc.) was

analyzed.

The following conclusions have been made:

1. AMLs allow separating the model formulation from the

implementation details while keeping the notation close to the

problem’s mathematical formulation. It differentiates between abstract

models and concrete problem instances, where a specific model

instance is generated from an abstract model using data. This allows

constructing reusable models and makes mathematical optimization

more acceptable for practitioners without a deep mathematical

background.

2. It can observed that the syntax of algebraic modeling languages differs.

In the two given examples AMPL seems to be the one targeted towards

practitioners with a mathematical background, while JuMP is more

45

catering for other practitioners who are more familiar with common

programming languages.

3. Three key characteristics of AMLs are having problems represented in

a declarative way, having a clear separation between the problem

definition and the solution process, and having a clear separation

between the problem structure and its data. The need for other features

such as automatic differentiation or scripting is also evident, but not

essential. Based on the identified requirements, academic recognition,

and usage popularity, the four most prominent AMLs have been

identified: AMPL, GAMS, JuMP, and Pyomo.

4. A constantly growing publication rate in the research field between the

years 2000 and 2019 has been observed. However, in recent years, the

numbers are decreasing, which together with the author keywords

co-occurrence analysis indicates that research in this field is

consolidating. Seven out of the ten most cited papers were mentioning

GAMS as one of the keywords. GAMS was also between the top overall

keywords which shows the importance and popularity of GAMS. In

general, judging by the trends of the keywords, it can be predicted that

the engineering of sustainable energy will be the driving force behind

the near-future developments in the research field of mathematical

optimization and algebraic modeling languages.

46

2 COMPARATIVE ANALYSIS OF ALGEBRAIC

MODELING LANGUAGES

In the following section, investigation on how each of the chosen languages

meets the requirements for a modern AML defined in the previous section is

conducted. The websites of the AMLs and vendor documentation were used

for this comparison. Any support of the identified features and capabilities

were validated against the documentation the suppliers of the AMLs provide.

Besides, an in-depth survey concluded by Robert Fourer in Linear

Programming Software Survey [26] was also used as a reference. Later on, a

more practical comparison of AML characteristics is conducted to identify

the potential ease of use of AML in daily work.

2.1 Overview of existing AML software

Existing AML software for optimization modeling systems consist of the

algebraic modeling language (AML) and environment (tools/interfaces)

supporting it.

Modeling environments mediate between human modelers and solvers,

providing general and intuitive ways to express symbolic models while

offering features for importing data, generating problem instances, invoking

solvers, analyzing results, scripting extended algorithmic schemes, and

interfacing to broader applications. Software of this latter kind are typically

built around a computer modeling language, either designed specifically for

describing optimization models or adapted from the features of an already

popular programming language. Solver software takes an instance of a model

as input, applies a combination of algorithmic methods designed to find

solutions that are optimal (or reasonably close to optimal), and returns the

results.

Commercial and practical aspects of using the most popular modeling

environments were assessed based on the following criteria:

• supported modeling languages;

• inter-language compatibility capabilities;

47

• support for parallelism;

• licensing and pricing;

• supported operating systems;

• UI technology.

A theoretical comparison of the before-mentioned aspects across four

AMLs providing modeling environments: AMPL, GAMS, JuMP and Pyomo is

described next.

In Table 9 the general features as provided in the website of the vendors are

reviewed. It can be observed that all except one AML provide GUI for writing

a textual model code and running some of the standard commands. Pyomo does

not have any graphical interface at all.

It is also useful to observe that all of them support all three major

operating systems, so the usage should be relatively smooth independent of

what operating system or hardware modeler is using.

Table 9: Comparison of the basic features provided by AML software.

Software Vendor Released Operating

System

UI

AMPL AMPL

Optimization

Inc.

1985 Windows

Linux

MacOS

GUI (Textual)

GAMS GAMS

Development

Corp.

1978 Windows

Linux

MacOS

GUI (Textual)

JuMP NumFOCUS 2017 Windows

Linux

MacOS

GUI (Textual)

Pyomo COIN-OR 2008 Windows

Linux

MacOS

Command line

In Table 10 a review of which algebraic modeling languages each

environment supports is provided. Here only languages that are supported

without any additional plugins or extensions to the environment were

48

included. There are special tools like GAMS Convert that allow converting

from one language to another, but only in scalar format. It was also found

that a tool like GAMS Convert is the only way to support inter-language

compatibility in most of the modeling environments.

Table 10: Comparison of supported algebraic modeling languages. Check

mark (X) states that AML software in the given column supports AML

language in the given line.

AMPL GAMS JuMP Pyomo

.mod (AMPL) X X

.gms (GAMS) X X

.jl (Julia) X

.py (Pyomo) X

Table 11: Pricing of the reviewed AML software. Commercial, trial, and

academic licensing compared.

AMPL GAMS JuMP Pyomo

Commercial Base: 4.000 USD

Solvers: 2.000 -

10.000 USD

Base: 3.200 USD

Solvers: 1.600 -

12.800 USD

Free Free

Trial Free for 30 days

with unlimited

features

Free, but restricted

on model size and

free solvers only

Free Free

Academic Base: 400 USD

Solvers: 200 - 600

USD

Base: 640 USD

Solvers: 320 -

1.920 USD

Free Free

In Table 11 the pricing of the reviewed AML software is compared split

into commercial, academic, and trial use scenarios. It can be seen that for

commercial software even the bare minimum (base) version is costly while

adding the cost of solvers can make the price rise significantly higher. Trial

versions are quite limited for all of them and even the academic licensing does

49

not come for free.

2.2 Comparative analysis of the features

First, analysis on how the selected AMLs satisfy the three essential

characteristics defined in [44] was done. The following AML characteristics

were reviewed:

• Are the problems represented in a declarative way, by specifying the

problem’s properties: space, set of constraints, and optimality

requirements?

• Does a clear separation between problem definition and the solution

process exist?

• Does a clear separation between the problem structure and its data exist?

In all reviewed AMLs, the optimization problems are represented in a

declarative way. Furthermore, since all of them are part of a specific

modeling system, a clear separation between problem definition and the

solution process in the context of the modeling system exists. The separation

between the problem structure and its data is supported in all reviewed

languages. It should be noted that GAMS, JuMP, and Pyomo also allow

initiating data structures during their declaration, while AMPL only support it

as a separate step in the model instance building process. However, while it

might be convenient for building a simple model, the lack of direct data

structure initiation should not be considered as an advantage, since in

real-world cases it is rarely needed. Therefore, it can be concluded that all

reviewed languages fulfill the essential characteristics of modern AMLs.

2.2.1 Support for general features

Table 12, provides an overview of the key features each AML supports. For

creating such a summary, the information provided by the AML vendors on

their websites was used. All reviewed AMLs allow modeling problems in a

solver-independent manner. Additionally, JuMP, and Pyomo provide a more

powerful way to define advanced algorithms using Julia, or Python

50

Table 12: An in-depth overview of features provided by algebraic modeling

languages.

Feature AMPL GAMS JuMP Pyomo

Modeling Independent Yes Yes Yes Yes

Scripting Limited Limited Yes Yes

Data Input Limited Limited Yes Yes

Manipulation No No Yes Yes

Solvers Total 47 35 14 25

Global 4 9 2 1

LP 17 21 9 10

MCP 1 5 1 1

MINLP 6 15 3 6

MIP 14 16 6 8

MIQCP 5 20 3 4

NLP 19 17 7 10

QCP 9 21 6 6

Presolving Yes No No No

Visualization No No No No

License
General Paid Paid Free Free

Academic Free Free Free Free

programming languages. The ease of data input for the model differs among

AMLs. While all of them support input from a flat file, some more advanced

scenarios such as reading data from relational databases are more

straightforward in JuMP, or Pyomo. AMPL and GAMS require a complicated

setup instead (e.g., using ODBC drivers) to access the database. Wherein

JuMP or Pyomo, a standard Julia or Python driver could be used to get data

from relational and any other type of database supported by Python or Julia.

Manipulation (e.g., transformation) of data is only supported by JuMP, and

Pyomo.

When comparing solver support not only a total number of solvers

supported by AML was provided, but also a more granular split based

optimization problems types was made. Problem types include: Global

optimization, Linear Programming (LP), Mixed Complementarity Problem

51

(MCP), Mixed Integer Nonlinear Programming (MINLP), Mixed Integer

Programming (MIP), Mixed Integer Quadratically Constrained Programming

(MIQCP), Nonlinear Programming (NLP), Quadratically Constrained

Programming (QCP). Out of all the reviewed AMLs AMPL is the one

supporting the most of the solvers in total. However, it should be noticed that

the categorization of solvers by supported problem types is different among

vendors. Thus, in this comparison, information available from vendors was

used and harmonized across all of them. Solvers supported by JuMP and

Pyomo require additional explanation. First, both AMLs support solvers

compatible with AMPL (via AmplNLWriter package or ASL interface).

Therefore, any solver that is equipped with an AMPL interface can be used by

JuMP or Pyomo. This could allow to state that JuMP and Pyomo support all

AMPL solvers. However, solvers supported via the AMPL interface were

excluded from the list. First of all, for some commercial solvers, it might be

needed to request a particular version from the solver’s vendor that comes

with the AMPL interface. So it’s not the support out-of-the-box. Second, since

JuMP and Pyomo are open-source, there potentially could be multiple

unknown third-party packages adding support for specific solvers for each of

the AMLs. So in Table 12 only the solvers mentioned on the official JuMP

and Pyomo websites were counted.

Presolving capabilities are only available in AMPL. JuMP and Pyomo have

programming interfaces for creating custom presolvers, however, none of them

are provided out of the box. Using Python or Julia libraries, it is possible to

visualize the results produced by Pyomo and JuMP. However, it requires custom

development, and none of the standard JuMP or Pyomo libraries are supporting

that.

It is important to conclude that JuMP and Pyomo are open-source AMLs

built on top of general-purpose programming languages, making them

fundamentally different from the competitors. This allows researchers

familiar with Julia or Python to learn, improve, and use JuMP or Pyomo much

more comfortably. At the same time, it is practically impossible to introduce

improvements to commercial counterparts.

52

2.2.2 Support for parallelism

Parallelism-related features are relatively new in AMLs, and once wisely

applied might contribute towards a significant performance increase in

solving real-life mathematical optimization problems. Three main use cases

of parallelism within algebraic modeling languages can be identified.

First, it is the parallelism in a problem-solving phase implemented by the

solver algorithms. There is the opportunity to use parallel computations to

aid in the search for global solutions, typically in a non-convex (or discrete)

setting. Optimization algorithms also have utilized building blocks, most

prominently decomposition and parallel linear algebra techniques, to exploit

the computational power of high-performance machines [9].

Secondly, in some applications, optimization of a collection of problems

is required, where each problem is structurally the same, but in which some

or all data defining the instance is updated [10]. Solving such collections of

problems could benefit from a single initiation of the base model instance,

updating the base model instance with specific scenario information, and

solving the scenarios in parallel.

Lastly, truly large-scale problems may require parallel processing not only

for the solution of the problem but also during the model generation phase [13].

For this, an AML that facilitates the modeling of the problem structure and

is capable to utilize the problem structure in the parallel model generation is

needed.

In this research, focus was placed on the last two types of parallelismwithin

AMLs since the first one is implemented by the solvers and not by the AMLs

themselves. In the following sections, a comparison on how prominent AMLs

are supporting such types of parallelism is provided.

2.2.2.1 AMPL

AMPL itself does not support defining tasks to be executed in parallel [59].

However, there are attempts to extend AMPL and provide some features of

parallelism. Two most notable examples are Parampl [59]. and SML [13].

Parampl is a Python-based tool for parallel and distributed execution of

AMPL programs. Parampl introduces a mechanism for explicit parallel

53

execution of subproblems from within the AMPL program code. The

mechanism allows dispatching subproblems to separate threads of execution,

synchronization of the threads, and coordination of the results in the AMPL

program flow, allowing the modeler to define algorithms solving

optimization problems with parallel subtasks.

Parampl is a good option if it is needed to solve the same problem with a

different set of parameters multiple times. It also allows the practitioner to

define complex optimization tasks in a decomposed way. Therefore, the

modeler can take advantage of the problem structure and formulate

algorithms to solve optimization problems as subtasks. However, the

definition of the problem structure is not formalized and problem

decomposition is done imperatively.

Parampl is also capable to execute solvers for subproblems on remote

machines, thus utilizing shared computing power.

In the benchmark of Parampl [59] authors state that results of the

experiments verified that by using distributed Parampl, it was possible to

overcome the memory limitation while dispatching subproblems to multiple

physical machines. The values were slightly higher for the local execution,

since in the distributed mode, a greater portion of time is spent on

transferring the problem and solution files to/from the remote machines. In

general while solving a Griewank function optimization problem (n = 4000)

on a cluster with eight dual core machines a speed-up of a factor between 1.9

(using 2 cores) to 7.8 (using 16 cores) was experienced. Speed-up started to

degrade once limit of cores was reached.

Structured Modelling Language (SML) is an extension to AMPL that allows

the modeler to express the structure inherent to the problem in a natural way.

AMPL language is extended by the block keyword that groups together model

entities and allows them to be repeated over indexing sets [13]. Since then,

models can be constructed from submodels allowing the problem generation

phase to be parallelizable too [19].

An SML parser for linear, quadratic, and stochastic programming problems

is available. SML also supports integration with OOPS solver

(Object-Orientated Parallel Solver) which exploits the model’s block

structure and can solve subproblems in parallel.

54

Implementation of the parallel submodel generation process is provided

by the authors of PSMG (Parallel Problem Generator for Structure Conveying

Modelling Language) [33].

The latest version of SML was released in February 2011, and at the time of

writing, the download section on the author’s website is not working.

2.2.2.2 GAMS

GAMS has Grid and Multi-Threading Solve Facility [31] which combined with

Gather-Update-Solve-Scatter [31] manager can solve multiple scenarios of the

same problem in parallel. An example of such a problem definition can be seen

in the GUSS Grid model [30] available in the GAMS model library.

The purpose of this new Gather-Update-Solve-Scatter (GUSS) manager is to

provide syntax at the GAMSmodeling level that makes an instance of a problem

that provides limited access to treat that instance as an object, and allows the

modeler to update portions of it iteratively [30].

GUSS gathers data from different sources/symbols to define the collection

of models (called scenarios), updates a base model instance with this scenario

data, solves the updated model instance, and scatters the scenario results to

symbols in the GAMS database [10].

Another GAMS tool called GAMS Grid facility allows to take advantage of

High-Performance Computing Grids and systems with multiple CPUs. This

language feature facilitates the management of asynchronous submission and

collection of model solution tasks in a platform-independent fashion [31].

GAMS Multi-Threading Solve Facility allows the asynchronous

submission and collection of model solution tasks on a single, multi-threaded

machine while using efficient in-memory communication between GAMS and

the solver [31].

The multi-Threading feature is in beta status and works in the same way as

the GAMS Grid facility. The solve statement generates the model and passes it

to the solver in a separate thread, then a handle of the model instance may be

stored in the model attribute called handle, and the grid handle function may

be used to collect the solution and deal with the model instance.

It is limited to shared memory and is supported only by a limited set of

55

solvers varying between different platforms.

In 2017, Bussieck,M.and Fiand, F. presented an approach [12] how to reach

parallel model generation using existing GAMS tools.

The idea is the following:

1. Use .stage attribute as a model annotation to identify specific blocks

of the model.

2. Simultaneously using mpirun create n+1 annotated model blocks as

GAMS Data eXchange files by using GAMS Convert tool.

3. Use GAMS/PIPS-IPM solver link to solve each of the

blocks/sub-problems.

This seems to be a viable option not requiring any new tools to be

developed. However, an orchestration-like tool would be a good addition to

the proposal, allowing practitioners to easier adopt the method.

Later in 2019, Bussieck, M presented a benchmark of solving large-scale

GAMS models on HPC platforms (MPI) [11] using the approach described

above. It proved that parallel model generation was able to significantly

speed-up process of solving model with tens of millions of variables and

constraints. Comparing with other solvers running on multiple threads, the

MPI based distributed solver using parallel model generation came at par

once starting to use 16 threads (MPI tasks). Speed-up became evident (factor

of 2) once running on 16 threads and only steadily increased until 512 threads

were used.

Using such MPI based approach also proves that parallel model generation

using distributed HPC platforms would help to address Big Data challenges

where input/output operations might become a bottleneck.

2.2.2.3 JuMP

As stated by one of the authors [53] of JuMP - parallel model generation is

not supported in JuMP out of the box. However, an extension of JuMP called

StructJuMP is available [72].

The StructJuMP package provides a parallel algebraic modeling

framework for block-structured optimization models in Julia. StructJuMP ,

56

originally known as StochJuMP, is tailored to two-stage stochastic

optimization problems and uses MPI to enable a parallel, distributed memory

instantiation of the problem [72]. It is implemented as a front-end for the

PIPS-IPM solver.

It can be used to develop models that support both parallel scenario solving

and parallel model generation.

2.2.2.4 Pyomo

Pyomo supports distributed computing via the Python Pyro package. However,

one of the authors of Pyomo acknowledges that it does not support parallel

model generation [36] as such.

The Python package called Pyro provides capabilities that are used to

enable progressive hedging (PH) to make use of multiple solver processes for

subproblems. This can be utilized to solve multiple scenarios of the same

model in parallel.

2.2.2.5 Summary of support for parallelism in AMLs

Summary of tools supporting the parallel model generation and parallel solving

of different scenarios of the same model is provided in Table 13.

Type of parallelism AMPL GAMS JuMP Pyomo

Scenario solving Preampl GUSS/GRID StructJuMP Pyro/PH

Model generation PSMG .stage/GDX StructJuMP -

Table 13: Support for parallel scenario solving and parallel model generation

by the AMLs.

As it can be seen in Table 13 reviewed AML software has limited support

for parallelism and all of it comes from nonstandard extensions or composition

of existing tools. It is also seen that parallel model generation is in the very

early stages of maturity and some authors doubt the benefit of parallel model

generation capability as such.

57

2.3 Conclusions

This chapter described the main differences between the four most prominent

algebraic modeling languages: AMPL, GAMS, JuMP and Pyomo.

First, AML software were compared considering aspects such as

operating system support, licensing, and type of user interface. Next, a

comparative analysis of features was conducted, identifying how well AMLs

fulfill the requirements for modern AMLs. Furthermore, a deep dive into the

promising features supporting parallelism in AMLs was made. Three main

use cases of parallelism within algebraic modeling languages were identified,

but focus was placed only on the two provided by AMLs and not by solver

algorithms. One use case is the optimization of a collection of problems,

where each problem is structurally the same, but in which some or all data

defining the instance is updated. The second one is large-scale problems

requiring parallel processing not only for the solution of the problem but also

during the model generation phase.

The following conclusions have been made:

1. All of them support three major operating systems (Windows, Unix,

Mac OS), so the usage should be relatively smooth independent of

what operating system or hardware modeler is using. Also, all except

Pyomo provide GUI for writing a textual model code and running some

of the standard commands. AMPL and GAMS being commercial software,

has a high minimum (base) cost of 3000 to 4000 USD, once adding the

cost of solvers it makes the price rise significantly higher. Trial

versions are quite limited (time or model size-wise) and even the

academic licensing does not come for free (starting from 400 USD).

Pyomo and JuMP are open source and distributed without a fee,

although commercial solvers have to be procured separately.

2. In all reviewed AMLs, the optimization problems are represented in a

declarative way. Furthermore, since all of them are part of a specific

modeling system, a clear separation between problem definition and

the solution process in the context of the modeling system exists. The

separation between the problem structure and its data is supported in all

58

reviewed languages.

3. All reviewed AMLs allow modeling problems in a solver-independent

manner. The way of providing data for the model differs among

AMLs. While all of them support input from a flat file, some more

advanced scenarios such as reading data from relational databases are

more straightforward in JuMP, or Pyomo.

4. When it comes to solver support, AMPL is the one supporting the most.

Presolving capabilities are only available in AMPL. JuMP and Pyomo

only have programming interfaces for creating custom presolvers.

Using Python or Julia libraries, it is possible to visualize the results

produced by Pyomo and JuMP. However, it requires custom

development, and none of the standard JuMP or Pyomo libraries are

supporting that.

5. Reviewed AMLs have limited support for parallelism and most of it

comes from nonstandard extensions or custom orchestration of existing

capabilities. Parallel model generation is in the very early stages of

maturity and some authors doubt the benefit of parallel model

generation capability as such. However, once applied wisely

parallelism might contribute towards a significant performance

increase in solving real-life mathematical optimization problems.

59

3 EXPERIMENTAL ANALYSIS OF ALGEBRAIC

MODELING LANGUAGES

3.1 Practical comparison of AMLs

For the practical comparison of the selected AMLs, the same classical

transportation problem by Dantzig, G. B. [15] introduced in Section 1.3 was

chosen.

In this problem, we are given the factories’ supplies and the markets’

demand for a single commodity. We are also given the unit cost of shipping

the product from each factory to each market. The goal is to find the least

cost shipping schedule that meets the requirements of all markets and

supplies at factories.

The transportation problem formulated as a model in all four considered

AML was compared based on the following criteria:

• model size in bytes;

• model size in the number of code lines;

• model size in the number of language primitives used;

• model instance creation time.

Since the transportation problem is a linear programming (LP) type of

problem, it was chosen to measure the model instance creation time as the

time needed to export a concrete model instance to MPS4 format supported by

most LP solvers. The following sources provided sample implementations of

the transportation problem for the AMLs under consideration:

• AMPL model in GNU Linear Programming Kit5

• GAMS Model Library6

• JuMP Examples7

4http://lpsolve.sourceforge.net/5.5/mps-format.htm
5https://github.com/cran/glpk/blob/master/inst/doc/transport.mod
6https://www.gams.com/latest/gamslib_ml/libhtml/index.html
7https://github.com/jump-dev/JuMP.jl/tree/master/examples

60

http://lpsolve.sourceforge.net/5.5/mps-format.htm
https://github.com/cran/glpk/blob/master/inst/doc/transport.mod
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://github.com/jump-dev/JuMP.jl/tree/master/examples

• Pyomo Gallery8

Transportation problem models in all different AMLs can be seen either

in Listing 2 and Listing 3 or in Appendix A. It is worth noting that for the

sake of simplicity, the problem model samples were concrete models, i.e.,

data of the model instance was described alongside the model structure.

In order to compare models in a uniform way a simplification of the model

implementations provided in the literature sources was made in the following

way:

• all optional comments, explanatory texts, and documentation were

removed;

• all empty lines were excluded;

• parts of the code responsible for calling the solver and displaying results

were omitted;

• while counting AML primitives generic functions (sum, for), data

loading directives (data), arithmetical and logical operators were

excluded.

A comparison of the simplified sample transportation problem model’s

characteristics in all reviewed AMLs is given in Table 14. The comparison

characteristics were chosen due to the following reasons:

• input/output computing operations are the most expensive ones so a

dynamic in the size of the model can indicate potential challenges in

processing large scale models;

• number of lines of code and numbers of primitives indicate complexity

of learning and using AML.

It can be seen from Table 14 that models implemented in AMPL, GAMS, and

JuMP are the most compact ones, while the model written in Pyomo is more

verbose.

While comparing the number of language primitives required to create a

model, JuMP and AMPL showed the best results, which indicates that these

8https://github.com/Pyomo/PyomoGallery

61

https://github.com/Pyomo/PyomoGallery

Table 14: Comparison of the basic characteristics of simpliefied transportation

problem model instances in different AMLs.

Criteria AMPL GAMS JuMP Pyomo

size in bytes 683 652 632 1235

lines of code 24 31 18 29

primitives used 5 8 4 6

modeling languages might have a more gentle learning curve. Therefore, it

can be concluded that in the context of the reviewed algebraic modeling

languages, JuMP and AMPL allow formulating an optimization problem most

concisely.

The creation time of the transportation problem model instance defined in

each AMLs was used to measure a model loading. The process was done in

the following steps:

1. loading model instance from a problem definition written in the native

AML;

2. exporting model instance to MPS format;

3. measuring total execution time;

4. investigating characteristics of an instance model.

Generated model instances in MPS format can be found in GitHub

repository’s models directory [42].

Table 15: Characteristics of the created transportation model instances.

Characteristic AMPL GAMS JuMP Pyomo

Constraints 6 6 6 6

Non zero elements 13 19 13 13

Variables 7 7 7 7

The characteristics of the created model instances can be seen in Table 15.

It can be concluded that all modeling languages have created a model instance

62

using the same amount of variables and constraints. However, the definition

of nonzero elements is different between GAMS and other modeling systems.

Table 16: Total time taken for consecutive transportation model instance

creation runs.

No. of runs AMPL GAMS JuMP Pyomo

1 run 30 ms9 170 ms 28341 ms 720 ms

10 runs 220 ms 1730 ms 32199 ms 7280 ms

100 runs 2130 ms 16490 ms 58151 ms 79600 ms

In Table 16, the benchmark results of model instance creation time are

provided. It was attempted to run multiple consecutive model instance

creations (10 runs, 100 runs) to identify if the modeling system uses any

caching. It was exhibited that AMPL showed significantly better results

compared to others. This allows concluding that AMPL is the most optimized

from a performance point of view. On the other hand, the poor JuMP

performance confirms Dunning et al. [18] statement that JuMP has a

noticeable start-up cost 10 of a few seconds even for the smallest instances. In

this case, only the initialization of the JuMP package took around 7 seconds.

A significant speed-up in multiple consecutive model instances creation can

be seen, which also confirms Dunning et al. [18] results. When a family of

models is solved multiple times within a single session, this compilation cost

is only paid for the first time that an instance is solved.

3.2 Library of practical optimization problems

GAMS Model Library11 was chosen as a reference for creating a sample

optimization problem suite used for experimental analysis. Automated shell

script gamslib-convert.sh was created to build such a library. It can be

found in the tools directory of GitHub repository [42]. A detailed

9Single AMPL run takes very little time thus is difficult to measure precisely. Based on 10

and 100 consecutive runs it should be closer to 22 milliseconds.
10Start-up cost consists of the precompilation and caching time required to prepare JuMP

environment.
11https://www.gams.com/latest/gamslib_ml/libhtml/index.html

63

https://www.gams.com/latest/gamslib_ml/libhtml/index.html

explanation of how the tool for creating a test library works and issues

identified in the GAMS Model Library are provided in the sections below.

3.2.1 Content of the library

Test model library consists of 296 sample problems in AMPL, GAMS, JuMP, and

Pyomo scalar model format. It has been built using sample models available in

the GAMS Model Library which consists of 423 models some of which had

to be excluded due compatibility issues explained in the subsection 3.2.3. An

example of the transportation problem in GAMS Model Library converted to

GAMS scalar format is shown in Listing 4.

Variables x1,x2,x3,x4,x5,x6,x7;
Positive Variables x1,x2,x3,x4,x5,x6;
Equations e1,e2,e3,e4,e5,e6;
e1.. -0.225*x1 - 0.153*x2 - 0.162*x3 - 0.225*x4

- 0.162*x5 - 0.126*x6 + x7 =E= 0;
e2.. x1 + x2 + x3 =L= 350;
e3.. x4 + x5 + x6 =L= 600;
e4.. x1 + x4 =G= 325;
e5.. x2 + x5 =G= 300;
e6.. x3 + x6 =G= 275;
Model m / all /;
m.limrow=0; m.limcol=0;
Solve m using LP minimizing x7;

Listing 4: Transportation problem converted to GAMS scalar model

Library was built by using GAMS CONVERT12 utility to convert GAMS native

models to scalar models for AMPL, GAMS, JuMP and Pyomo algebraic modeling

languages.

A full list of available sample models and their characteristics is available

in README.md file in the target model library directory.

The list includes links for specific AML models:

• .mod; AMPL scalar model;

• .gms; GAMS scalar model;
12https://www.gams.com/latest/docs/S_CONVERT.html

64

https://www.gams.com/latest/docs/S_CONVERT.html

• .jl; JuMP scalar model;

• .py; Pyomo scalar model,

and main characteristics of a model:

• number of equations;

• number of variables;

• number of discrete variables;

• number of nonzero elements;

• number of nonlinear nonzero elements.

Each model is placed under a separate directory following the structure:

LIBRARY_LOCATION/MODEL_NAME

where LIBRARY_LOCATION is the directory path provided at generation time

and MODEL_NAME is the name given to the model in the GAMSModel Library.

Apart from the four scalar models for AMPL, GAMS, JuMP, and Pyomo, in each

model’s directory, the following items exist:

• original GAMS model:

MODEL_NAME.gms

• statistics gathered during model conversion:

MODEL_NAME-stats.log

• verbose output of GAMS CONVERT tool:

MODEL_NAME-scalar.AML_NAME.lst

• standard output of GAMS CONVERT tool:

65

AML_NAME-convert.log

where AML_NAME is AMPL, GAMS, JuMP, Pyomo, and MODEL_NAME is the name of

the model.

Table 17 provides a fragment of README.md file where it can be seen how

eachmodel available in the testing library is documented alongside its essential

characteristics and direct links to concrete models for the given AMLs.

Table 17: Fragment of README.md file provided in the generated models

library directory.

ID Model Type Description Files Eq Vars Vars

Disc

Non

zero

Non

zero

NL

1 trnsport LP A

Transportation

Problem

mod

gms py

jl

6 7 0 19 0

2 blend LP Blending

Problem I

mod

gms py

jl

4 10 0 37 0

3 prodmix LP A

Production

Mix

Problem

mod

gms py

jl

3 5 0 13 0

4 whouse LP Simple

Warehouse

Problem

mod

gms py

jl

5 13 0 28 0

3.2.2 Building the library

The automated shell script gamslib-convert.sh is available in the tools

directory of GitHub repository [42]. The script was developed to generate the

AMLs testing library. The script uses GAMS CONVERT tool to convert the

GAMS proprietary format model to a scalar model in AMPL, GAMS, JuMP, and

Pyomo formats. Characteristics of the sample problem models (number of

equations, variables, discrete variables, nonzero elements, and nonzero

nonlinear elements) are automatically extracted and noted. Sample problems

are also grouped based on optimization problem types.

66

Prerequisites to use the script require GAMS Modeling System to be

installed on the machine and gams and gamslib executables to be available

in the operating system’s PATH.

The script provides two execution modes. The first mode is for converting

a single model and the second one is for converting all GAMS Library models.

Building a single model:

1. Run gamslib-convert.sh:

sh gamslib-convert.sh MODEL_NAME MODEL_TYPE

where MODE_NAME is GAMS model name and MODEL_TYPE is type of a

particular problem (e.g. LP, MIP, RMIP, QCP, MIQCP, RMIQCP,

NLP, DNLP, CNS, MINLP, or MCP).

2. Created model will be placed in gamslib directory

Building full library:

1. Create an input CSV file describing models to be converted. Use

semicolon as a CSV column separator:

MODEL_ID;MODEL_NAME;MODEL_DESCRIPTION;MODEL_TYPE;MODEL_AUTHOR

2. Run gamslib-convert.sh:

sh gamslib-convert.sh CSV_FILE

where CSV_FILE is a file created in step 1), e.g., gamslib.csv;

3. Generated scalar models for all models provided in the CSV file will

be placed under gamslib directory. Errors will be documented in

error.log file in the gamslib directory.

3.2.3 Findings

At the time of writing, there were 423 models in the GAMS Model Library

which was used as a base to create test model library used in the experimental

analysis. Out of them, it was required to eliminate 66 models using GAMS

67

proprietary modeling techniques (e.g., MPSGE, BCH Facility), 20 using

general-purpose programming language features (e.g., cycles), four models

tightly coupled to CPLEX and DECIS solvers. It is important to note that 35

models failed to be loaded by a fully licensed GAMS CONVERT tool due to

execution or compilation errors. In this meaning, some models in the GAMS

Library are not compatible with the GAMS modeling system itself. Thus the

resulting test model library resulted having 296 valid models in four different

AMLs.

Additionally, while performing the model instance creation benchmark, it

was identified that 12 AMPL, 11 JuMP, and 29 Pyomo models generated by the

GAMS CONVERT tool had errors in them. Most of the Pyomo errors were

caused by an incorrect GAMS CONVERT tool behavior where the definition of

the Suffix primitive uses AMPL but not Pyomo semantics. Similar issues

were observed in some of the JuMP models. An example of an invalid Suffix

primitive generated by GAMS CONVERT and the correct Pyomo syntax for

Suffix definition can be seen in Listing 5.

GAMS CONVERT generated Pyomo suffix syntax
suffix ref integer IN;
Correct Pyomo suffix syntax
ref = Suffix(direction=Suffix.EXPORT, datatype=Suffix.INT)

Listing 5: Example of GAMS CONVERT generating an invalid model definition

in Pyomo language.

3.3 Benchmarks

All examined AMLs support all types of traditional optimization problems.

However, it is unclear how efficiently each AML can handle large model

loading and what optimizations are applied during model instance creation. It

would also be of great value to analyze how each of the modeling languages

performs within an area of a specific type of optimization problem (e.g.,

linear, quadratic, nonlinear, mixed-integer). To give such a comparison and

thoroughly examine the characteristics of AMLs, a more extensive

benchmark involving much larger optimization problem models is needed.

68

Therefore, an extensive library of sample optimization problems for the

analyzed AMLs described in previous section has to be used.

3.3.1 Model instance creation time

The generated library was used to determine the amount of time each

modeling system requires to create a model instance of a particular problem.

A shell script load-benchmark.sh was created and is available in the tools

directory of the GitHub repository [42], which loads each model into a

particular modeling system and then exports it to the format understandable

by the solvers. It was chosen to use the .nl [32] format as the target format

acceptable by the solvers, as .nl supports a wide range of optimization

problem types. The benchmark measures the time the modeling system takes

to perform both model instance creation and export operations.

It was chosen to exclude sample problems with conversion errors from the

benchmark. More information about errors experienced while generating the

testing library is provided in Section 3.2. Thus, only the models that were

successfully processed by all modeling systems were compared.This reduced

the scope of the benchmark to 268 models.

Benchmark methodology, hardware, and software specifications can be

found in the GitHub repository [42]. Detailed results are available in the

model-loading-times.xlsx workbook in the benchmark section of

GitHub repository [42]. A summary of the average model instance creation

time split by the problem type is provided in Figure 6.

It can be seen that the trend exhibited in the transportation problem model

benchmark persists. AMPL is still a definite top performer, while JuMP and

Pyomo perform the worst. There are no significant variations between

different optimization problem types except for JuMP, where the model

instance creation time tends to vary significantly while working with

different types of problems. Moreover, as confidence intervals show, the

variation between different models of the same type is also more significant

once using JuMP. Most likely this is caused by Julia’s (general purpose

programming language used by JuMP) dynamic nature and the mix of run

time compilation and caching of similar JuMP models.

69

15 10 19 14 11 22 11 10 20
51

234 227 240 234
242 259 238 236 262

364

838

719

841

764
745

936 852

669

826

1344

450,3

42,2

897,5

256,9

160,3

1498,7

72,3
19,0

604,3

1380,0

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

CNS DNLP LP MCP MINLP MIP MIQCP MPEC NLP QCP

M
illi
se
co
nd
s

AMPL GAMS Pyomo JuMP

Figure 6: Average model instance creation time in milliseconds. Grouped by optimization problem type.

7
0

24 17 30 21

273
254 292 270

926

886

1014

880

1879,7

1185,0

2477,7

861,0

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

LP MINLP MIP NLP

M
illi
se
co
nd
s

AMPL GAMS Pyomo JuMP

Figure 7: Average large model instance creation time in milliseconds.

Grouped by optimization problem type.

It was observed that the average difference between AMPL and other

contenders increases when the models become larger. Comparing instance

creation times of large models (models having more than 500 equations, 8

such models in the testing library) reveals 11 times the difference between

AMPL and GAMS, 38 times the difference between AMPL and Pyomo, and close

to 100 times the difference between AMPL and JuMP. The difference between

GAMS and Pyomo stayed roughly the same - around 3.5 times. The summary

of the large model instance creation time can be seen in Figure 7.

Thus, it can be concluded that out of the reviewed AMLs, AMPL is a clear

top-performing AML in regard to the model instance creation time.

3.3.2 JuMP benchmark

A similar time benchmark of model instance creation has already been

conducted by Dunning et al. [18], where a smaller set of large models is

used. While some of the trends exhibited in the benchmark persist (AMPL is

the fastest, GAMS comes second), JuMP performance in this and Dunning et al.

benchmarks differs significantly. This leads to compare the benchmark

methodology and results by conducting the benchmark described by Dunning

et al.

71

First of all, time benchmark methodologies of this research and Dunning

et al. differ. In comparison, here it is attempted to be solver independent and

instruct AML to export the generated model instance to NL file, Dunning et

al. attempt to solve the model using Gurobi solver and measure the time until

Gurobi reports the model characteristics. While approach in this research can

be impacted by the system’s input/output performance, using a specific solver

heavily depends on how the solver interface is implemented for a particular

AML.

To understand more, two benchmarks have been conducted - one as

described in the original article and the second one using method of exporting

to an NL file. Results of the benchmarks can be seen in Tables 18 and 19.

Table 18: JuMP benchmark using Dunning et al. [18] method. Results

provided in milliseconds.

Model AMPL GAMS Pyomo JuMP (Direct) JuMP (Cache)

lqcp-500 2093 2271 17000 17388 37317

lqcp-1000 8075 11995 139201 24590 44575

lqcp-1500 18222 38813 322604 39370 66566

lqcp-2000 32615 93586 575406 57597 88833

fac-25 407 480 7442 17517 39245

fac-50 2732 2884 43106 21331 47735

fac-75 9052 12422 150550 31582 57432

fac-100 20998 29144 393200 61326 93129

Before running the benchmarks, it was required to rewrite some parts of

the sample lqcp and facility JuMP models since syntax changes were

introduced between JuMP v0.12 (used by Dunning et al.) and JuMP v0.21.5

(used in this research, the latest version at the time of writing). This

research’s benchmark was also conducted using newer versions of other

AMLs - AMPL Version 20190207, GAMS v.32, Pyomo 5.7 (Python 3.8.3), and

solver Gurobi 9.0.

Additionally, it was intended to test performance of JuMP's new

abstraction layer for working with solvers called MathOptInterface.jl

72

(MOI). Therefore, it was attempted to try both CachingOptimizer and

DIRECT modes. As seen in Table 18, the DIRECT mode performed much

better than the CachingOptimizer mode for both lqcp and facility

models. An average difference of close to two times in the instance creation

time leads us to suggest modelers evaluate MOI type choice based on specific

use cases carefully.

Table 19: JuMP benchmark using export to NL method (in milliseconds)

Model AMPL GAMS Pyomo JuMP

lqcp-500 2716 3265 39988 20424

lqcp-1000 10503 14394 161404 80578

lqcp-1500 25402 49822 307121 483268

lqcp-2000 42780 125564 >10 min >10 min

fac-25 409 502 9420 8163

fac-50 2837 2993 43087 31799

fac-75 10879 13457 143286 219548

fac-100 23474 32128 328170 >10 min

Overall, both benchmarks confirmed observation that JuMP suffers from

the long warm-up time required to pre-compile JuMP libraries. Results were

also consistent with the patterns exhibited during the full gamslib benchmark

performed earlier. It was not possible to reproduce JuMP performance metrics

reported by Dunning et al, where JuMP always outperforms Pyomo. Using the

original benchmark method, JuMP outperformed Pyomo only once the model

size increased. However, while using export to NL file method, JuMP, on the

contrary, started to fall behind Pyomo once model size increased.

The reported differences between this research and the original

benchmark [18] might be caused by multiple factors such as different JuMP

versions used, improved Pyomo performance, or different Gurobi versions. It

is important to stress that JuMP is a very actively developed AML that

underwent significant changes during the last years. It would be valuable to

explore why the performance could have degraded and the reasons for such

slow I/O operation performance revealed during writing to an NL file

73

benchmark.

3.3.3 Presolving benchmark

Another performance-related feature of AMLs is the ability to presolve a

problem before providing it to the solver. The presolver can preprocess

problems and simplify, i.e., reduce the problem size or determine the

unfeasible problem. Only one of the reviewed algebraic modeling languages,

AMPL provides presolving capabilities [24].

To assess AMPL’s presolving performance, presolving characteristics were

gathered while performing the model instance creation time benchmark. For

this 286 out of 296 models available in test library were used removing 10 that

were converted from GAMS original model to the AMPL scalar model, but had

errors and failed to be loaded by AMPL environment.

Table 20: Benchmark of AMPL model presolving. Percentage of an average

number of constraints and variables reduced in each model. Grouped by

different problem types.

Type # models # infeasible % presolved % constraints % variables

CNS 4 0 100.00% 14.63% 31.39%

DNLP 5 0 20.00% 0.00% 7.41%

LP 57 0 36.84% 17.81% 9.66%

MCP 19 0 89.47% 47.00% 8.56%

MINLP 21 1 61.90% 16.32% 9.30%

MIP 61 0 60.66% 19.06% 11.50%

MIQCP 5 2 60.00% 0.00% 2.38%

MPEC 1 0 100.00% 50.00% 0.00%

NLP 101 2 47.52% 9.71% 11.55%

QCP 10 0 60.00% 7.10% 2.55%

RMIQCP 2 0 0.00% 0.00% 0.00%

Total 286 5 52.80% 18.42% 10.73%

A detailed report of the presolving applied to the specific model can be

seen in the benchmark section of the GitHub repository [42], while the

summary of it can be found in Table 20. It was observed that AMPL presolver

managed to simplify the models in 52.8% of the cases, out of which 5 times it

74

could determine that the problem solution is not feasible, thus not even

requiring to call the solver. In total test model library had 7 infeasible

models, so AMPL managed to find 70% of them. On average, once applied,

the AMPL presolver managed to reduce the model size by removing 18.42% of

constraints and 10.73% of variables.

It can be concluded that AMPL presolver is an efficient way to simplify

larger problems, leading to improved solution finding performance once

invoking a solver with an already reduced problem model instance.

Moreover, determining not feasible models can help modelers debug the

problem definition process and find errors in the model definition. This

allows to argue that presolving is an important capability of any modern

AML.

3.3.4 Presolve impact on solving

To evaluate if AMPL presolving has a positive impact on problem-solving, an

additional benchmark was conducted. The benchmark included 146 out of

151 models to which AMPL has applied presolve in the model instance creation

benchmark. Five models that AMPL presolve determined to be not feasible were

excluded from the benchmark. Shell script solve-benchmark.sh provided

in the tools directory of the GitHub repository [42] was created for executing

such a benchmark. The script solves each model using one of the solvers and

gathers the output statistics to a report file.

It was chosen to solve themodels using Gurobi and BARON solvers. Gurobi

Optimizer (v.8.1.0) was chosen for solving LP, MIP, QCP, and MIQCP

type of problems. At the same time, BARON (v.18.11.12) global solver was

chosen for solving NLP, MINLP, MCP, MPEC, CNS, and DNLP problems. The

solvers’ choice was motivated by the support for particular problem types13

and the popularity of solvers based on NEOS Server statistics14. Two attempts

to solve each model were made. One with AMPL presolver turned on (default

setting), and the second one with AMPL presolver turned off. After each run,

the solver statistics, including iteration count, solve time (pure solve phase

13Gurobi Optimizer Reference Manual: http://www.gurobi.com; BARON User Manual:

http://www.minlp.com/downloads/docs/baron%20manual.pdf
14https://neos-server.org/neos/report.html

75

http://www.gurobi.com
http://www.minlp.com/downloads/docs/baron%20manual.pdf
https://neos-server.org/neos/report.html

execution time), and objective, were gathered.

It is important to note that both BARON and Gurobi solvers have their

presolve mechanisms [66, 2]. Thus, the provided model is simplified by the

solver too. This might result in very similar models being solved by the

solver despite the AMPL presolve being turned on or off. However, the focus

was on estimating AMPL presolve impact in real-life situations; therefore, a

full benchmark was executed without changing the default solver behavior.

Later on, an additional benchmark was made to estimate the impact of AMPL

presolve when solver presolve functionality is turned off.

Detailed AMPL presolve impact on solving report can be found in the

GitHub repository’s [42] file ampl-solving-times.xlsx sheet Benchmark

1. Table 21 summarizes the positive and negative impact AMPL presolve had

on solving the problem iteration and time-wise. Positive impact means fewer

iterations or time were needed to solve the problem once the presolve was

turned on. A negative impact means the opposite that more iterations or time

was required. The impact is considered neutral if the number of iterations did

not change or the required time was within the one-second tolerance level.

Table 21: Summary of AMPL presolve impact on solving. Effect iteration and

time wise provided.

Iteration-wise Time-wise Iteration-wise (%) Time-wise (%)

Positive 37 67 26.43% 47.86%

Neutral 74 40 52.86% 28.57%

Negative 29 33 20.71% 23.57%

During this benchmark, 6 models failed to be solved due to solver

limitations. Two models were deemed to be not feasible, and two were

solved during the AMPL presolve phase. Solvers were capable of solving 41

models during the solver’s presolve phase. Moreover, for the six models, the

mismatching objective was found with AMPL presolve turned on and off.

Overall, AMPL presolve positively impacted 26.43% of the cases

iteration-wise and 47.86% time-wise. However, it produced a negative

impact in 20.71% of cases iteration-wise and 23.57% time-wise.

76

As mentioned earlier, both BARON and Gurobi solvers have their presolve

mechanisms. An additional benchmark was made to test the impact of AMPL

presolve with disabled solver presolving. Since only Gurobi allows the user

to disable presolve functionality, a subset of models previously solved with

Gurobi was chosen. Detailed benchmark results can be seen in the GitHub

repository’s [42] file ampl-solving-times.xlsx sheet Benchmark 2. The

summary of the benchmark is provided in Tables 22 and 23. Gurobi could not

solve two MIP problems (clad and mws) in a reasonable time once Gurobi’s

presolve functionality was turned off. Those models were excluded from the

benchmark.

Table 22: AMPL presolve impact with Gurobi presolve on

Iteration-wise Time-wise Iteration-wise (%) Time-wise (%)

Positive 18 39 28.57% 61.90%

Neutral 34 0 53.97% 0.00%

Negative 11 24 17.46% 38.10%

Table 23: AMPL presolve impact with Gurobi presolve off

Iteration-wise Time-wise Iteration-wise (%) Time-wise (%)

Positive 33 44 54.10% 72.13%

Neutral 10 0 16.39% 0.00%

Negative 18 17 29.51% 27.87%

As seen once comparing these results in Table 22 and Table 23, the AMPL

presolve had a greater positive effect both iteration-wise (+25.5%) and time-

wise (+10.2%) once Gurobi presolve was turned off. AMPL presolve also had

a less neutral impact once the solver presolving was off, thus leading to the

conclusion that during the first benchmark, some models were simplified to

very similar ones before actually solving them.

As it can be seen from the benchmarks, the presolving done by AML has

inconclusive effects on the actual problem solving both iterations and

time-wise. However, a positive impact is always more significant than the

77

negative one, and it especially becomes evident once the solver does not have

or use its problem presolving mechanisms. This allows to conclude that the

presolving capability of AML is an important feature of a modern algebraic

modeling language. It can also advised to choose AML having presolving

capabilities in case the solver used to solve the problem does not have its

presolving mechanism.

3.4 Summary of findings

From the research, it can be concluded that AMPL allows us to formulate an

optimization problem in the shortest and potentially easiest way while also

providing the best performance in model instance loading times. It also

leverages the power of model presolving, which helps the modelers in both

problem definition and efficient solution finding processes. GAMS is a

powerful runner-up providing very similar to AMPL problem formulation

capabilities although running behind in the model instance creation time.

Open-source alternatives JuMP and Pyomo are on par with commercial

competitors in the problem definition process. However, the performance of

model instance creation is a bit behind compared to its competitors. JuMP

suffers from noticeable environment start-up costs, while Pyomo performance

tends to downgrade once the model’s size increases.

3.5 Conclusions

In this chapter, multiple different experimental analyses of the chosen AMLs

and their findings were presented. Also content of the testing library for

practical optimization problems developed during the research was presented.

First, the classical transportation problem modeled with different AMLs

was examined. The comparison based on the following criteria was made:

model size in bytes, model size in the number of code lines, model size in the

number of language primitives used, model instance creation time.

Next, the characteristics and metrics of the models existing in the testing

library provided were presented. The library consists of 296 sample problems

in AMPL, GAMS, JuMP, and Pyomo scalar model format. The library has been

built using sample models available in the GAMS Model Library. Near each

78

model, the type of optimization problem, number of equations, variables,

discrete variables, nonzero elements, and nonlinear nonzero elements were

described.

Following, the tools and processes for building the testing model library

from scratch were explained. The most important tool developed is an

automated shell script gamslib-convert.sh able to (re)generate the AMLs

testing library. The tool is freely available on the GitHub repository. It not

only converts given GAMS models to other AMLs, but also extracts and

documents all model characteristics identified during the conversion process.

It also supports two different execution modes - bulk generation of all model

library and generating a single model, which might come in handy for

debugging purposes

Next, the results of a large-scale model instance creation benchmark were

presented. It measured the time the modeling system takes to perform both

model instance creation and export operations. This time a benchmark

against all models available in the testing library was made. Also,

load-benchmark.sh shell script, which loads each model into a particular

modeling system, then exports it to the format understandable by the solvers,

captures execution statistics, and generates a benchmark report, was

developed and was made available on the GitHub repository. The tool is

freely available for other researchers to use in any benchmark of model

instance creation times.

Following, a comparison between JuMP benchmark made during this

research and the one conducted by Dunning et al. was made.

And finally, a benchmark assessing presolving in AMPL was performed

trying to identify what benefits for solving the problem it brings.

The following conclusions have been made:

1. Models implemented in AMPL, GAMS, and JuMP are the most compact

ones, while the models written in Pyomo are more verbose. Comparing

the number of language primitives required to create a model, JuMP

and AMPL showed the best results. This could indicate that these

modeling languages might have a more gentle learning curve, also

allowing to conclude that in the context of the reviewed algebraic

79

modeling languages, JuMP and AMPL enable practitioners to formulate

an optimization problem most concisely.

2. Based on transportation model instance creation time it was

experienced that AMPL is standing out from other AMLs and is the most

optimized from a performance point of view. Also poor performance

of JuMP confirmed Dunning et al. statements that JuMP has a noticeable

start-up cost.

3. Building test model library revealed that 35 models failed to be loaded

by a fully licensed GAMS CONVERT tool due to execution or compilation

errors. Meaning that some models in the GAMS Library are not

compatible with the GAMS modeling system itself. Later while

performing the model instance creation benchmark, it was identified

that 12 AMPL, 11 JuMP, and 29 Pyomo models generated by the GAMS

CONVERT tool had errors in them. Most of the Pyomo and JuMP errors

were caused by an incorrect GAMS CONVERT tool behavior once

creating the definition of the Suffix primitive.

4. The same trend as in the transportation problem model benchmark was

exhibited during full benchmark of testing library. AMPL was still a

definite top performer, while JuMP and Pyomo performed the worst. It

was also observed that the average difference between AMPL and other

contenders increase when the models become larger. There are no

significant variations between different optimization problem types

except for JuMP, where the model instance creation time tends to vary

significantly while working with different types of problems.

Moreover, the variation between different models of the same type is

also more significant once using JuMP. This might be caused by Julia’s

dynamic nature, resulting in the mix of run time compilation and

caching of similar JuMP models. It can be concluded that out of the

reviewed AMLs, AMPL is a clear top-performing AML on the model

instance creation time.

5. Conducted JuMP benchmark confirmed the observation that JuMP

suffers from the long warm-up time required to pre-compile JuMP

80

libraries. It was not possible to reproduce the JuMP performance

metrics reported by Dunning et al., where JuMP always outperforms

Pyomo. The reported differences between benchmark in this research

and the original benchmark might be caused by different JuMP versions

used, improved Pyomo performance, or different Gurobi solver

versions.

6. AMPL presolver managed to simplify the models in 52.8% of the cases,

out of which 5 times it could determine that the problem solution is not

feasible, thus not even requiring to call the solver. In total there were 7

infeasible models in the test library. On average, once applied, the

AMPL presolver managed to reduce the model size by removing 18.42%

of constraints and 10.73% of variables. Overall, AMPL presolve

positively impacted 26.43% of the cases iteration-wise and 47.86%

time-wise. However, it produced a negative impact in 20.71% of cases

iteration-wise and 23.57% time-wise. It can still be concluded that

positive impact is always more significant than negative one, and it

becomes evident once the solver does not have or use its problem

presolving mechanisms.

81

4 DIFFERENCES AND SHORTCOMINGS OF

ALGEBRAIC MODELING LANGUAGES

In the previous sections, the essential characteristics of modern algebraic

modeling languages were explored and it was compared how each of the

most prominent AMLs matches those characteristics in theory and practice.

In this section, reproducibility of research results is discussed and results

are examined to explore AMPL, GAMS, JuMP, and Pyomo, in order to identify

differences, which makes the most prominent AMLs difficult for practitioners

to learn and use. Each of the highlight characteristics are taken one by one and

differences and shortcomings are described.

4.1 Reproducibility of results

Reproducibility is a cornerstone of science [52], and most research fields are

affected by reproducibility crisis [20]. Criticism to the current scientific

publication process include concerns about fairness, quality, performance,

cost, and accuracy of the evaluation processes [40]. Recently, surprising

results have been published in the prestigious Nature and Science journals

where it was revealed that as many as 77% of biologists and 87% of chemists

failed to reproduce experiments published by other scientists [6]. Even more

worrying more than half of scientists failed to replicate their own

experiments. This leads to new suggestions for improving the reproducibility

of studies by adjusting research methods and publication protocols [48].

Within the field of Operations Research difficulties of reproducing many key

results also exist [7]. It can happen due to the disconnection between

publications and used codes/models, underlying data, parameter settings, etc.,

as they lack critical details. Moreover, re-execution of computational

experiments often requires extensive computing resources, specialized

hardware, and/or massive data utilization, which contradicts the sustainable

development paradigm.

In this research variety of measures have been carried out to ensure that

results can be reproduced. This includes setting up the environment to run

benchmarks, tooling to run benchmarks and measure results, and the way of

82

storing gathered results.

First, it was chosen to use GitHub as a repository for storing and

versioning all research related artifacts. All AML benchmark related

information is stored in a single repository15 which includes: a) results of the

benchmarks b) library of models the benchmarks were run against c) tooling

for running the benchmarks and generating the model library. Each of the

sections in the repository have own documentation where key characteristics

and knowledge is captured.

Within benchmark section the setup of benchmark environment is clearly

defined including hardware and software specifications. Also, a brief

description of benchmark methodology and findings is provided. This not

only includes results, but also issues faced and reasoning why those

happened. Benchmark results are provided not only in textual format but also

as plots using confidence intervals. This also allows reproducing results

within a given certainty.

In the tooling section automated shell scripts are made available for running

the benchmarks or generating models’ library. Scripts can be used by anyone

with minimal understanding of what they do to reproduce the benchmark using

the original methodology. Additionally, the behaviour and logic of the scripts

is described, allowing adjusting the scripts in case interfaces of given AMLs

or other tools change.

Lastly, library of sample models used for the benchmark is provided, this

way ensuring that identical models could be taken and used for reproducing

original results of the benchmark. Also, characteristics of each model is

described in details, thus allowing to compare it with newer versions if such

would be made available.

All the described measures allows to believe that this research should not

suffer from the reproducibility crisis and results could be reproduced by both

author of the research, but also any other researcher having access to the code

repository of the research.

15https://github.com/vaidasj/alg-mod-rev

83

https://github.com/vaidasj/alg-mod-rev

4.2 Features and compatibility

Observing the basic features of AMLs provided in Table 9 it can be noticed

that none of them have a full-fledged graphical user interface (GUI) to do the

modeling.

AMPL and GAMS provide a simple GUI for writing a textual model code and

running standard commands. JuMP and Pyomo do not have any graphical

interface at all.

They all support three major operating systems (Windows, Unix, andMac).

Therefore, the usage is relatively the same independent of what the operating

system or hardware modeler is using. However, it requires local installation,

and thus access to the same physical machine is needed.

AMPL and GAMS are commercial tools with academic licenses starting at

USD 500 and the basic commercial license from USD 4000. However,

adding more solvers might easily double the price. JuMP and Pyomo are open

source and distributed for free, although the solvers have to be procured

separately.

The syntax to describe the problems for different AMLs is a noticeable

difference to explore. Fragniere and Gondzio [27] state that the algebraic

design approach used in AMLs should allow practitioners without specific

programming or modeling knowledge to be efficient in describing the

problems to be solved.

However, observing constraints of the same problem defined in Listing 6,

it can be concluded that it does require some programming knowledge to use

AMLs such as JuMP and Pyomo, and it is also not a straightforward process to

switch between different AMLs. Exploring more complex language

structures (e.g., calculated parameters, suffixes) showcases even more

differences between the syntax of AMLs and complexity for practitioners to

learn multiple of them.

84

AMPL
minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];
s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i];
s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j];

GAMS
cost.. z =e= sum((i,j), c(i,j)*x(i,j));
supply(i).. sum(j, x(i,j)) =l= a(i);
demand(j).. sum(i, x(i,j)) =g= b(j);

Pyomo
def objective_rule(model):

return sum(model.c[i,j]*model.x[i,j] for i in model.i for j in model.j)
model.objective = Objective(rule=objective_rule, sense=minimize)
def supply_rule(model, i):

return sum(model.x[i,j] for j in model.j) <= model.a[i]
model.supply = Constraint(model.i, rule=supply_rule)
def demand_rule(model, j):

return sum(model.x[i,j] for i in model.i) >= model.b[j]
model.demand = Constraint(model.j, rule=demand_rule)

JuMP
@objective(model, Min, sum(cost_f[i, j] * trans[i, j]

for i in 1:length(ORIG), j in 1:length(DEST)))
@constraint(model, [i in 1:length(ORIG)],

sum(trans[i, j] for j in 1:length(DEST)) <= supply[i])
@constraint(model, [j in 1:length(DEST)],

sum(trans[i, j] for i in 1:length(ORIG)) >= demand[j])

Listing 6: The objective function and constraints of transportation

problem [15] expressed in AMPL, GAMS, Pyomo, and JuMP syntax.

The compatibility between AMLs from a tooling perspective is also scarce.

GAMS CONVERT [28] is the only tool (also commercial) capable of converting

between different AMLs. However, the conversion results in a scalar model

being produced where the original model structure is lost. An example of a

GAMS CONVERT generated scalar model in JuMP format can be seen in Listing 7.

Once compared to the model in an original JuMP format, as seen in Listing 3,

the scalar model becomes more difficult to read, understand, and extend.

85

using JuMP, MathOptInterface
model = m = Model()

@variable(m, 0 <= x1, start=0)
@variable(m, 0 <= x2, start=0)
@variable(m, 0 <= x3, start=0)
@variable(m, 0 <= x4, start=0)
@variable(m, 0 <= x5, start=0)
@variable(m, 0 <= x6, start=0)

@objective(m, Min, 0.225*x1 + 0.153*x2 + 0.162*x3 + 0.225*x4
+ 0.162*x5 + 0.126*x6)

@constraint(m, x1 + x2 + x3 <= 350)
@constraint(m, x4 + x5 + x6 <= 600)
@constraint(m, x1 + x4 >= 325)
@constraint(m, x2 + x5 >= 300)
@constraint(m, x3 + x6 >= 275)

Listing 7: The classical transportation problem [15] expressed in a JuMP scalar

format.

Furthermore, during the benchmarks, a few flaws of the GAMS COVERT

tool were identified. Around 3% of models available in the GAMS library

were converted to AMPL, JuMP, and Pyomo with syntax errors, making them

unsolvable. Most of the Pyomo errors were caused by incorrect GAMS COVERT

tool behavior where the definition of the Suffix primitive uses AMPL but not

Pyomo semantics. Similar issues were observed in some of the JuMP models.

4.3 Solvers

Solvers are an essential part of what a modern AML offers. They implement

appropriate solution algorithms to solve the problem at hand. Some solvers

are distributed together with AMLs, while others can be purchased separately.

Since the “No Free Lunch Theorems for Optimization” [77] states that for

certain types of mathematical problems, the computational cost of finding a

solution, averaged over all problems in the class, is the same for any solution

method. Thus, no single universal solver for all problem types can exist. This

is why in Table 24, an overview of the solvers supported by different AMLs

86

grouped by problem types is provided. As solvers usually support several

types of optimization problems, the last row reflects the total number of

unique solvers.

Table 24: Number of solvers supported by AMLs grouped by problem type.

Type AMPL GAMS JuMP Pyomo

Global 4 9 2 1

LP 17 21 9 10

MCP 1 5 1 1

MINLP 6 15 3 6

MIP 14 16 6 8

MIQCP 5 20 3 4

NLP 19 17 7 10

QCP 9 21 6 6

Total 47 35 14 25

The quality of the algorithms implemented by the solvers is also

important. In this research, AMPL and GAMS were identified as the ones

providing the most extensive set of state-of-the-art solvers for various types

of mathematical optimization problems. The list of supported AMPL16 and

GAMS17 solvers is continuously updated and growing . Some solvers might be

more significant since having support for multiple problem types makes it

appealing for practitioners. However, being universal does not guarantee the

best performance. Thus, practitioners might prefer more specialized but also

more efficient solvers.

It can be observed that AMPL is the one supporting most solvers. AMPL

also comes with most solvers bundled in a standard package. However, it

should not be confused that the solvers supported by AMPL are the same solvers

supported by other AMLs. It is possible to get into a situation where a specific

problem needs a solver, which is only available through one and only AML.

16AMPL Solvers: https://ampl.com/products/solvers/all-solvers-for-ampl
17GAMS Solvers: https://www.gams.com/latest/docs/S_MAIN.html#SOLVERS_

MODEL_TYPES

87

https://ampl.com/products/solvers/all-solvers-for-ampl
https://www.gams.com/latest/docs/S_MAIN.html#SOLVERS_MODEL_TYPES
https://www.gams.com/latest/docs/S_MAIN.html#SOLVERS_MODEL_TYPES

This would require the modeler to define the model in a given AML, and it

must be known upfront. This is not always the case in real-life situations where

the nature of the problem is not fully understood until it has been defined in a

specific AML and attempted to be solved.

4.4 Performance

Performance becomes essential once in the need to solve complex real-life

problems. Models tend to grow in size and input data amount. Thus, there is

a need to focus on the solvers’ performances, i.e., solution time, and consider

the potential savings in a model instance generation phase. Benchmark results

in Figures 6 and 7 show significant model instance generation time variation

between different AMLs. It is important to note that while AMPL is a clear

top performer, open-source counterparts have varying results within different

problem types. Thus, choosing the right AML for a concrete problem type

would impact performance.

Presolving feature supported by very few AMLs attempts to reduce the

problem size or determine the problem to be unfeasible even before sending

it to the solver. Out of the benchmarked AMLs, only AMPL supports

presolving. In this research it was observed that an AMPL presolver managed

to simplify models in 52.8% of the cases, out of which five times it

determined that the problem solution is not feasible, thus not requiring to call

the solver. On average, once applied, the AMPL presolver managed to reduce

the model size by removing 18.42% of constraints and 10.73% of variables.

The benchmark seen in Table 21 was made to test the impact of the AMPL

presolve to solution time. The results were positive, allowing us to conclude

that the presolver is an efficient way to simplify larger problems leading to

improved solution finding performance once invoking a solver on an already

reduced problemmodel instance. Moreover, the ability to determine infeasible

models can help modelers in the problem definition process debug and find

errors in the model definition.

Parallelism is a significant feature for solving real-life mathematical

optimization problems. Three prominent use cases of parallelism within

AMLs can be identified.

88

First, it is the parallelism in a problem-solving phase implemented by the

solver algorithms. There is the opportunity to use parallel computations to

aid in the search for (global) solutions, typically in a nonconvex (or discrete)

setting. Mathematical optimization algorithms have also utilized building

blocks, most prominently decomposition and parallel linear algebra

techniques, to exploit the computational power of high-performance

machines [9].

Secondly, in some applications, optimization of a collection of problems is

required where each problem is structurally the same. Still, some or all data

defining the instance is updated [10]. Solving such collections of problems

could benefit from the single initiation of the base model instance, updating

the base model instance with specific scenario information, and solving the

scenarios in parallel.

Lastly, truly large-scale problems may require parallel processing for the

solution of the problem and during the model generation phase [13]. For this, it

is needed to have an AML that facilitates the modeling of the problem structure

and can utilize the problem structure in the parallel model generation.

This research focuses on the last two types of parallelism within AMLs

since the first one is implemented by the solvers and not by the AMLs

themselves.

Table 13 provides a brief overview of how specific AMLs can implement

the two types of parallelism within the interest of this research.

It is worth noting that in none of the AMLs, parallel scenario solving or

parallel model generation is implemented by default. The tools or techniques

cited in Table 13 are provided by the scientific society, not the vendors

themselves.

It can be concluded that AMLs have limited support for parallelism and

all of it comes from nonstandard extensions or composition of existing tools.

Thus, parallelism is an important feature of AML and the efforts by the

scientific society to address the lack of it serve as proof.

89

4.5 Summary of findings

Summarizing all observations about differences within AMLs described so far,

finding are the following:

• Practitioners must learn the specific syntax of a given AML, which is

coupled to a specific modeling environment. Practitioners are not

flexible to reuse the knowledge and simplify work;

• Very limited cross-compatibility between different AMLs makes it

practically impossible to transfer the model from one AML to another

automatically. This might result in the vendor lock-in choosing to stay

with a specific AML due to the increased cost of switching;

• Different AMLs support different solvers, so, in some scenarios,

practitioners might have a solver available in another AML than the

model is written and will not be able to utilize it;

• Different AMLs have different levels of support for various model

types. Since in the beginning, it is not always clear what type of

problem is being dealt with, it is risky to choose AML, which might

not be supported;

• As identified in the practical benchmark, AML performance differs

significantly between modeling environments and model types. It is

beneficial to be flexible in choosing the best one for large models;

• Varying support for additional capabilities such as presolving or parallel

solving.

This leads to believe that while there are a few powerful modeling

environments and AMLs, neither provide a complete feature set required for

the efficient and intuitive modeling of mathematical optimization problems.

Difficulty to switch between AMLs and the need to learn the specific syntax

can become a challenge in teaching mathematical optimization in schools and

universities.

90

4.6 Conclusions

In this chapter the main differences and shortcomings among the most

prominent AMLs were identified during the research work.

First, general features, syntax, and compatibility challenges were

showcased. Next, performance differences and more sophisticated features

such as parallelism were presented. Finally, a summary of them findings is

provided.

The following conclusions have been made:

1. It was noted that it is rather complicated to reuse the knowledge and

simplify work when switching between AMLs, leading to potential

vendor lock-in, i.e., the need to stay with a specific AML due to the

increased cost of switching. Moreover, since in the beginning, it is not

always clear what type of problem one is dealing with, practitioners

might choose a wrong AML not supporting a given problem type or

end up having a solver available only in another AML than the model

is written and not being able to utilize it.

2. AML performance differs significantly betweenmodeling environments

and model types. It is beneficial to be flexible in choosing the best one

for large models or in those cases when differently supported features

such as presolving or parallelism are required.

3. While there are only few powerful modeling environments and AMLs,

neither provide a complete feature set which is required for the

efficient and intuitive modeling of mathematical optimization

problems. The difficulty to switch between AMLs and the need to

learn the specific syntax can become a challenge in teaching

mathematical optimization in schools and universities.

91

5 UNIVERSAL OPTIMIZATION SYSTEM

In this research, the major differences and shortcomings among four

prominent algebraic modeling languages were identified. To address the

identified gaps, a concept of a “universal” optimization system is proposed. It

should be a user-friendly environment supporting most of the prominent

AMLs and suitable for both an experienced practitioner, but also a student

starting to learn mathematical optimization.

5.1 Key concepts of the universal optimization system

First of all, it is suggested to take an open-source and web-based approach to

make it much more accessible for a wider audience of users. The web-based

approach does not require local installation, thus also opens up for scaling

opportunities and utilization of cloud computing power.

Next, the following requirements are set for such a system:

1. It should not require any previous syntax knowledge of any specific

AML.

2. Every user action should be done via a guided graphical user interface.

3. System should internally combine and utilize the best characteristics of

different AMLs.

4. System should be capable of converting models between different

AMLs.

5. It should support all of the solvers available in the underlying AMLs,

thus providing the widest range of free and commercial solvers.

6. It should enable presolving and parallel solving features.

7. System should provide a framework for other contributors to extend it.

E.g., allowing to add a feature for choosing the best suitable solver for a

given model type automatically.

Such a universal optimization system requires two main building blocks

to be defined and developed. First, it is a formal language capable of

92

capturing problem characteristics (called WebAML). The second one is a

software system allowing to construct the model using WebAML language

and solve it using the underlying AMLs. In the following sections, both

concepts are presented in more details.

5.2 WebAML language

First, a proposal for a new formalized algebraic modeling language called

WebAML is made.

Once deciding on how to design and define WebAML language for

structuring, validating, and capturing the mathematical optimization model

logic, the following criteria has been taken into account:

• Models will be built using a graphical user interface. Thus, there is no

need to have a short and straightforward syntax;

• Model has to be strictly typed and well structured to allow converting it

to the syntax of other AMLs;

• Model will be used on the Web utilizing web browser and HTTP

protocol. Thus, the data interchange format should be lightweight,

open, standardized, and well adopted on the Web.

Based on the criteria above, it was decided to choose JSON [8] as a

lightweight data-interchange format and JSON Schema [79] as a metadata

format to describe and validate WebAML data format. Most programming

languages widely support JSON, which is human-readable, and have a small

metadata footprint compared to other formalized formats such as, e.g., XML.

Using JSON Schema creates additional value since tooling to generate

OpenAPI18 based services from JSON Schema can simplify the development

of a prototype while also supporting easier improvements once the WebAML

language format evolves.

There was also a need to choose how to capture the mathematical

equations needed to define constraints in the model. It was chosen to use a

18The OpenAPI: language-agnostic interface to RESTful APIs; https://swagger.io/
specification

93

https://swagger.io/specification
https://swagger.io/specification

well-known language as LATEX instead of less adopted counterparts such as

ASCII Math19. This was dictated by both widespread knowledge of LATEX in

academic society, and the existence of libraries capable of tokenizing LATEX

formulas20 and displaying them nicely on the Web using W3C MathML [57]

standard.

A detailed structure of a WebAML model is defined in JSON Schema file

called webaml.schema.json, available on theGitHub repository. At the same

time, a summary of the basic components is provided in Table 25.

Table 25: Basic components of WebAML language.

Component Type Comment

Set Single-dimensional String and number data types supported

Table Two-dimensional Number data type supported

Parameter Scalar Fixed value

Indexed Can be calculated

Variable Continuous Upper/lower bound supported

Binary -

Integer Upper/lower bound supported

Constraint Simple For a single variable

Indexed Defined over a set

Objective Minimize Single objective only

Maximize Single objective only

As seen in Table 25, at this moment WebAML language supports only the

basic features. Thus, no syntactic sugar is maintained (e.g., aliases), and only

single-dimensional sets and two-dimensional arrays are supported. Features

such as indexing over partial sets are also not supported. However, WebAML

JSON Schema is defined flexibly. If the tooling working with the WebAML

language would support more features, it would be easy to extend the

WebAML language by introducing new enumerated type values to the

schema definition.

19AsciiMath: an easy-to-write markup language for mathematics; http://asciimath.org
20LATEX.js: JavaScript LATEX to HTML5 translator; https://latex.js.org

94

http://asciimath.org
https://latex.js.org

Listing 8 demonstrates how the same constraints of the transportation

problem provided in Listing 6 look in WebAML syntax. While being more

verbose, it can be noticed that it is also much more structured, thus making it

easier to write code capable of interpreting and converting it to different

formats.

"constraints": [
{

"name": "supply",
"type": "INDEXED",
"indexes": ["i"],
"value": "\\sum_j x_{ij} \\leq a_i",
"description": "Observe supply limit at plant"

},
{

"name": "demand",
"type": "INDEXED",
"indexes": ["j"],
"value": "\\sum_i x_{ij} \\geq b_j",
"description": "Satisfy demand at market"

}
],
"objectives": [

{
"name": "cost",
"type": "MINIMIZE",
"value": "\\sum_i \\sum_j c_{ij} * x_{ij}",
"description": "MINIMIZE transportation cost"

}
]

Listing 8: Constraints of transportation problem [15] expressed in WebAML

syntax.

5.3 Prototype of the universal optimization system

The second building block supporting the vision of the universal optimization

system is a tool allowing to construct the model using WebAML language and

solve it using the underlying AMLs.

95

In the scope of this research, it was decided to build a prototype of such a

tool limiting its features to three key operations: 1) load the model from a file

2) solve the model, and 3) export the model to a file. More advanced features

such as presolving or parallel model generation, were consciously scoped out,

focusing on proving the viability of such a universal optimization system.

However, in the prototype clear extension points were designed, allowing for

future improvements and adding new features.

All results and code base are available in the WebAML GitHub

repository [43], which is structured as follows:

• webaml-schema directory contains WebAML language definitions and

transportation problem example;

• webaml-c4model directory contains an architecture model for a

reference implementation of the universal optimization system;

• webaml-backend directory contains Java-based back-end services of

the prototype;

• webaml-frontend directory contains a prototype of a single page front-

end application for building and manipulating WebAML models.

As identified in earlier findings, the aim was to build an extendable,

open-source, web-based prototype combining the best characteristics of the

underlying AMLs. Figure 8, provides the system architecture landscape

viewpoint for this prototype of the universal WebAML Optimization System

using C4 architecture model21 notation. A more detailed system component

diagram can be seen in Appendix B Figure 12. All of the code is provided on

the WebAML GitHub repository [43].

It can be observed that the WebAML modeling and mathematical

optimization tool acts as an orchestrator that allows the AML modeler to

build the model, convert it to a specific AML format, and send it for solving

via local solvers or remote solving in the NEOS Server platform. This way,

no new solving capabilities are built, but instead it is building on top of the

best features provided by the most prominent AMLs.

21The C4 model for visualizing the software architecture; https://c4model.com

96

https://c4model.com

It also was proposed to utilize the GAMS CONVERT tool to support an even

wider variety of AMLs. Adding the support for a new AML that GAMS

CONVERT already supports is as easy as converting WebAML to GAMS (which

already has native support in the prototype) and then using GAMS CONVERT to

convert to any other target AML.

WebAML Optimization System
[Enterprise]

AMLs
[Software System]

AMLs (GAMS, AMPL, Pyomo)
installed locally on the node.

Solvers
[Software System]

Solvers installed locally on
the node.

Calls local solvers to
solve the model

NEOS Server
[Software System]

Remote solvers available via
NEOS platform.

Calls NEOS Server to solve
the model

GAMS Convert
[Software System]

GAMS tool to transpile GAMS
model to other AMLs.

Web AML System
[Software System]

Allows modelers to create and
solve optimization models.

Uses to solve created AML
model

Uses to convert generated
GAMS model to other AML

AML Modeler
[Person]

A person developing AML
models.

Uses UI to build and solve
Web AML models

Figure 8: C4 architectural model of a system landscape for the prototype

of WebAML tool. Grey boxes indicate external elements provided by other

systems.

Herein it was shown how such an approach can work in the AMPL and Pyomo

converters provided in the prototype. A detailed description of how such a

solutionworkswhile using AMPL as an underlyingAML is provided in Figure 9.

97

API Application
[Container: Java and Spring Boot]

Solver Controller
[Component: Spring Boot Rest Controller]

Converts WebAML model to
target AML and sends it for

solving.

GAMS Converter
[Component: Spring Bean]

Converts GAMS model to
specific AMLs.

2. Build GAMS model from
Web AML

GAMS Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

GAMS CLI

4. Convert GAMS model to
AMPL

AMPL Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

AMPL CLIs.

6. Invoke AMPL solve

Single-Page
Application

[Container: JavaScript]

Provides all of the Web AML
functionality to modelers via

web browser.

12. Send back solution to
UI

[REST]
3. Return GAMS model

5. Returns AMPL scalar
model

11. Return solution

AMLs
[Software System]

AMLs (GAMS, AMPL, Pyomo)
installed locally on the node.

7. Execute RPC call to
AMPL

10. Return AMPL solution

Solvers
[Software System]

Solvers installed locally on
the node.

8. Call specific solver 9. Return solver results

1. Submits Web AML model
for solving

[REST]

Figure 9: End-to-end flow to solve WebAML model using AMPL. This showcases the usage of GAMS Convert if a native WebAML

to AMPL converter is not available.

9
8

When implementing the prototype, it was chosen to split the front-end and

back-end parts of the prototype into:

• Client-side single page, React.js22, the base application responsible for

guiding the user while building a WebAML model;

• Back-end application implemented using Spring Boot23 capable of

parsing and converting WebAML language to other AMLs and

communicating with underlying AMLs for solving the model.

This approach allows to leverage the strength of modern browser support

for JSON and JSON Schema standards and offload the building of aWebAML

model to the client-side, thus reducing the load on the back-end services.

The back-end also benefits from the fact that WebAML is a JSON-based

language and can quickly validate incoming requests based on the standard

JSON Schema while generating OpenAPI-based service contracts using it.

The prototype provides a simple yet straightforward and guided graphical

user interface for constructing a WebAML model.

Since it was decided to use LATEX for storing mathematical equations, an

on-the-fly MathML-based visualizer of LATEX equations was included in the

prototype. It helps validate the mathematical expressions and guides not savvy

LATEX practitioners in the modeling process.

Examples of how the user interface looks are provided in Section 5.5 where

the similarities and differences between the universal optimization system and

AMLs are discussed.

5.4 Extending the prototype

Architectural decisions made in the design of the WebAML Optimization

System make it the foundation for a universal mathematical optimization

toolkit.

One possible future research direction could be extending the proposed

WebAML language to simplify the model definition process. This can be

22React: A JavaScript library for building user interfaces; https://reactjs.org
23Spring Boot: a framework for building stand-alone, production-grade Spring-based

applications; https://spring.io/projects/spring-boot

99

https://reactjs.org
https://spring.io/projects/spring-boot

done by improving the user interface (e.g., adding textual guidance) and

simplifying the syntax of the language (e.g., support for the implicit

definition of sets).

Another research avenue could be the development of extensions to the

universal optimization system. As an example, previous analysis revealed a

need for parallel model generation and presolving capabilities.

Further research could be implementing automated solver algorithm

selection in the WebAML Optimization System, which would significantly

simplify the work for practitioners. Research in automatic algorithm

selection is already ongoing and advanced [46].

Finally, testing in real-life situations and improving the existing prototype

are needed to make the tool be adopted in mathematics classrooms and by

enterprise users.

"sets": {
...

"items": {
...
"properties": {

...
"valueType": {

"type": "string",
"title": "Data type of values in a set",
// Add new boolean type to list below
"enum": ["STRING", "NUMBER", "BOOLEAN"]

},
...

}
}

}

Listing 9: WebAML JSON Schema extended with a new data type for the set

component.

Practically extending the prototype with the required features could be

done in multiple ways. Firstly, one can easily extend WebAML language

based on JSON Schema by introducing new types for the already defined

100

essential components. Listing 9 shows how one could add a new data type

called boolean to the set component.

Secondly, one can easily extend back-end services to support new AMLs

by writing a converter from WebAML to the new AML, thus implementing

the WebAMLConverter interface and implementing AmlFacade interface for

integration with the underlying AML binaries. It does not require to do any

changes in the controller or user interface. After fully implementing the

AmlFacade interface provided in Listing 10, everything is registered

automatically and works out of the box. There is even an option not to write a

special WebAML converter, but to use the GAMS CONVERT tool as

demonstrated in the AmplConverter class.

public interface AmlFacade {
boolean isAmlAvailable();
String getAmlName();
List<String> getAvailableSolvers();
AmlResult solveModel(String model, String solver);
String convertModel(String model, String targetAml);

}

Listing 10: Structure of AmlFacade interface.

Finally, one can quickly introduce new features such as presolving or

parallel solving by extending the existing ModelController class and

adding additional features as an intermediate step between convert and solve

operations.

5.5 Comparison with AMLs

To verify that in this research, it was succeeded to propose a universal

web-based optimization system that does not require any prior knowledge of

a specific AML syntax and provides a guided user interface for defining the

model, the classical transportation problem by Dantzig, G. B. [15] was taken

for a comparison once more.

In Section 1.3 a concrete instance of a transportation problem is described

101

highlighting what is needed to be modeled (Listing 1) and how it is modeled

using AMPL and JuMP algebraic modeling languages (Listings 2 and 3).

In WebAML proposal, an approach contrary to the one used by AMLs for

capturing optimization problems in a textual format is chosen. Instead, a

graphical user interface is provided where the practitioner is guided through

the problem definition process and given clear guidance on which

information has to be supplied for a specific construct of the model.

A basic example of such an interface implemented in the prototype of a

universal optimization system can be seen in Figure 10. Here it can be seen

how the supply constraint and objective function of a given transportation

model instance are captured using the user interface. The user is asked the

basic information, such as the type of constraint, the indices used in the

constraints, and the mathematical expression of the constraint itself.

Figure 10: Screenshot of the user interface for WebAML modeling and

optimization tool. Supply constraint and objective function of transportation

problem are presented.

The constraints are entered using the LATEX mathematical syntax displayed

in a visual form to help the user and ensure that valid syntax is used. The

objective function is entered similarly. In essence, each type of model

component (sets, parameters, constraints, etc.) has its visual representation so

102

that the user experience can be custom-tailored to specific kinds of model

components.

An example of how the solution to the problem and the solver output are

displayed can be seen in Figure 11. This screen is used after the model has

been defined. Here the user first has to choose which underlying AML to use

for solving the model (AMPL in the example). Next, the user is presented with

a list of solvers installed on the system compatible with a given AML. Lastly,

after clicking Solve solution and the verbose output of AML and solver are

provided to the user.

Figure 11: Screenshot of the user interface for WebAML modeling and

mathematical optimization tool. Solution results of the transportation problem

are presented.

It is important to note that this is only the prototype version of the user

interface. If needed, it can be easily extended, thus making the process even

smoother by providing guiding text and introducing questionnaire-like

behavior and similar user experience improvements.

A full comparison of the characteristics exhibited by the proposed universal

103

optimization system and the AMLs are provided in Table 26.

Table 26: Comparison of characteristics in AMLs and universal modeling

system (WebAML). Italic indicates features not implemented in the prototype.

AMPL GAMS JuMP Pyomo WebAML

Graphical UI No No No No Yes

Bespoke syntax Yes Yes Yes Yes No

Compatibility No Yes No No Yes

of solvers 47 35 14 25 All

Presolving Yes No No No Yes

Parallelism No No No No Yes

A universal optimization system supporting all solvers means it is capable

to utilize all solvers supported by the underlying AMLs.

Compatibility describes the capability of converting a model from one

AML to another. GAMS can do this using GAMS CONVERT tool, while

prototype is capable of both use GAMS CONVERT, but also constructing a

model from WebAML language to target AML on its own.

Presolving and support for parallel scenario solving or parallel model

generation are not implemented in the prototype. However, clear extension

points are allowing other researchers to add those features.

5.6 Conclusions

This chapter set the requirements and described a proposal for the universal

optimization system which consists of WebAML language and a prototype of

the optimization system.

First, a formal JSON based language capable of capturing problem

characteristics called WebAML was proposed. It was demonstrated how such

language could be extended to support more features.

Next, an open-source and web-based prototype acting as an orchestrator

that allows the AML modeler to build the model, convert it to a specific AML

format, and send it for solving via local solvers or remote solving in the NEOS

Server platform was presented.

104

Lastly, comparison between WebAML and other AMLs was done.

The following conclusions have been made:

1. The proposed formal language is capable of capturing problem

characteristics in JSON format while the prototype allows to construct

the model using WebAML language and solve it using the underlying

AMLs. For now, WebAML language supports only basic features,

however, being based on JSON Schema it is flexibly extendable.

2. Universal optimization system is not building any new solving

capabilities, instead of relying and building on top of the best features

provided by the most prominent AMLs. The tool also supports all

solvers available in the underlying AMLs, thus providing a wide range

of free and commercial solvers.

3. Universal optimization system does not require any specific algebraic

language knowledge and allows for solving problems using different

mathematical optimization solvers. Thus, it simplifies the process of

algebraic modeling and mathematical optimization, making it available

for individuals without detailed technical knowledge. This makes it

appealing not only for enterprise users but also for teachers, lecturers,

and students trying to understand the basics of mathematical

optimization. Worldwide research on the usage of information and

communication technology (ICT) to support, enhance, and optimize

information delivery has shown that ICT can lead to improved student

learning and better teaching methods (e.g., [61]).

4. Architectural decisions made in the design of the prototype make it the

foundation for a universal mathematical optimization toolkit.

5. Since the tool can easily be installed on a server and accessed via a web

interface, an institution can acquire a full academic or commercial

license and allow easy access for every member to solve large-scale

optimization problems.

105

GENERAL CONCLUSIONS

1. In this research, a concept of a universal optimization system that

consists of a formalized algebraic modeling language (WebAML) and

an open-source tool (WebAML Optimization System) for algebraic

modeling and mathematical optimization was proposed.

(a) Such system is aimed to provide a user-friendly environment

simplifying mathematical modeling and optimization, but

keeping the best features of the underlying AMLs.

(b) System supports all solvers provided by underlying AMLs

allowing practitioners to choose between the widest possible

range of solvers. This allows practitioners to easily experiment

with solving problems of different types and find the best solver

to do it.

(c) System is capable to convert a model from one AML to another,

either by constructing a model from WebAML language to target

AML using internal converters or by using GAMS CONVERT tool. In

such a way allowing practitioners to easily move between different

AMLs and use the one providing most features or being the best

performing one.

(d) The tool does not require any specific algebraic language

knowledge and allows solving problems using different AMLs

and optimization solvers. Thus, making it easier to learn and be

taught in a mathematics classroom and still making it suitable for

a usual practitioner once faced with a need for solving real-life

mathematical optimization problems.

2. To prove the viability of such concept the prototype of the universal

optimization system was developed, implementing the key features of

the proposed concept and also providing clear extension points and ideas

on how such a tool could be further developed.

(a) The proposed WebAML language can be extended to simplify the

model definition process. This can be done by improving the user

106

interface (e.g., adding textual guidance) and simplifying the syntax

of the language (e.g., support for the implicit definition of sets).

(b) Prototype can be extended to support additional features as

parallel model generation or presolving, or include more AMLs

by writing converters from WebAML to the target AML. All this

can be achieved by implementing already defined module

interfaces and incorporating in into the prototype by

configuration using dependency injection.

(c) Further research could also be made attempting to implement

automated solver algorithm selection in the WebAML

Optimization System, which would significantly simplify the

work for practitioners.

3. While analyzing requirements for a universal optimization system an

experimental analysis and multiples benchmarks of existing AMLs

were conducted in order to evaluate different characteristics of AMLs:

model size and verbosity, model instance creation time, presolving,

and its impact on solving.

(a) Models implemented in AMPL, GAMS, and JuMP are the most

compact ones, while the model written in Pyomo is more verbose.

Comparing the number of language primitives required to create a

model, JuMP and AMPL showed the best results. This could

indicate that these modeling languages might have a more gentle

learning curve, also allowing to conclude that in the context of the

reviewed algebraic modeling languages, JuMP and AMPL enable

practitioners to formulate an optimization problem most

concisely.

(b) Model instance creation performance benchmark identified AMPL

being a top performer, while JuMP and Pyomo performing the

worst. There are no significant variations between different

optimization problem types except for JuMP, where the model

instance creation time tends to vary significantly while working

with different types of problems.

107

(c) Performance difference between AMPL and other contenders

increases when the models become larger. Comparing instance

creation times of large models (models having more than 500

equations, 8 such models in the testing library) reveals 11 times

the difference between AMPL and GAMS, 38 times the difference

between AMPL and Pyomo, and close to 100 times the difference

between AMPL and JuMP. The difference between GAMS and Pyomo

stayed roughly the same - around 3.5 times.

(d) JuMP performance benchmark results confirm Dunning et al.

statement that JuMP has a noticeable start-up cost of a few

seconds even for the smallest instances. In this research, only the

initialization of the JuMP package took around 7 seconds. A

significant speed-up in multiple consecutive model instances

creation was also observed. So potentially this could be mitigated

when a family of models is solved multiple times within a single

session, and compilation cost is only paid for the first time that an

instance is solved.

(e) AMPL being the only AML supporting presolving out-of-the-box

managed to simplify the models in 52.8% of the cases, out of

which 5 times out of 7 it could determine that the problem

solution is not feasible, thus not even requiring to call the solver.

On average, once applied, the AMPL presolver managed to reduce

the model size by removing 18.42% of constraints and 10.73% of

variables. Overall, AMPL presolve positively impacted 26.43% of

the cases iteration-wise and 47.86% time-wise. However, it

produced a negative impact in 20.71% of cases iteration-wise and

23.57% time-wise. Still, the positive impact is greater than the

negative one, especially in situations where the solver does not

have problem presolving algorithms.

108

REFERENCES

[1] Kumar Abhishek, Sven Leyffer, and Jeff Linderoth. FilMINT: An

outer approximation-based solver for convex mixed-integer nonlinear

programs. INFORMS Journal on computing, 22(4):555–567, 2010. doi:

10.1287/ijoc.1090.0373.

[2] Tobias Achterberg, Robert E Bixby, Zonghao Gu, Edward Rothberg, and

Dieter Weninger. Presolve reductions in mixed integer programming.

INFORMS Journal on Computing, 2019. doi: 10.1287/ijoc.2018.0857.

[3] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and

Moritz Diehl. CasADi: a software framework for nonlinear optimization

and optimal control. Mathematical Programming Computation, 11(1):

1–36, March 2019. ISSN 1867-2949, 1867-2957. doi: 10.1007/s12532-

018-0139-4. URL http://link.springer.com/10.1007/s12532-

018-0139-4.

[4] Massimo Aria and Corrado Cuccurullo. Bibliometrix: An R-tool for

comprehensive science mapping analysis. Journal of Informetrics, 11

(4):959–975, 2017. ISSN 1751-1577. doi: 10.1016/j.joi.2017.08.007.

[5] Ateji. OptimJ, 2006. URL https://swmath.org/software/4917.

[6] Monya Baker. Reproducibility crisis. Nature, 533(26):353–66, 2016.

[7] Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob

Bossek, Sowmya Chandrasekaran, Tome Eftimov, Andreas Fischbach,

Pascal Kerschke, William La Cava, Manuel Lopez-Ibanez, et al.

Benchmarking in optimization: Best practice and open issues. arXiv

preprint arXiv:2007.03488, 2020.

[8] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange

Format, December 2017. URL https://rfc-editor.org/rfc/

rfc8259.txt.

[9] Michael R. Bussieck, Michael C. Ferris, and Alexander Meeraus. Grid-

Enabled Optimization with GAMS. INFORMS Journal on Computing,

109

http://link.springer.com/10.1007/s12532-018-0139-4
http://link.springer.com/10.1007/s12532-018-0139-4
https://swmath.org/software/4917
https://rfc-editor.org/rfc/rfc8259.txt
https://rfc-editor.org/rfc/rfc8259.txt

21(3):349–362, 2009. doi: 10.1287/ijoc.1090.0340. URL https://

doi.org/10.1287/ijoc.1090.0340.

[10] Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann. GUSS:

Solving Collections of Data Related Models Within GAMS. In Josef

Kallrath, editor, Algebraic Modeling Systems: Modeling and Solving

Real World Optimization Problems, pages 35–56. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-642-23592-

4_3. URL https://doi.org/10.1007/978-3-642-23592-4_3.

[11] Bussieck, Michael. Solving large-scale gams models on hpc platforms,

2019. URL https://www.gams.com/archives/presentations/

GAMS_HPC_INFORMS2019.pdf.

[12] Bussieck, Michael and Fiand, Fred. High Performance Computing

with GAMS, October 2017. URL https://www.gams.com/archives/

presentations/informs2017_HPC_with_GAMS.pdf.

[13] Marco Colombo, Andreas Grothey, Jonathan Hogg, Kristian Woodsend,

and Jacek Gondzio. A structure-conveying modelling language for

mathematical and stochastic programming. Mathematical Programming

Computation, 1(4):223–247, December 2009. ISSN 1867-2957. doi: 10.

1007/s12532-009-0008-2. URL https://doi.org/10.1007/s12532-

009-0008-2.

[14] Ovidiu Cosma, Petrică C. Pop, and Daniela Dănciulescu. A Parallel

Algorithm for Solving a Two-Stage Fixed-Charge Transportation

Problem. Informatica, 31(4):681–706, 2020. doi: 10.15388/20-

INFOR432.

[15] George B Dantzig. The Classical Transportation Problem. In Linear

Programming and Extensions, pages 299–315. Princeton University

Press, 1963. ISBN 978-1-4008-8417-9. doi: 10.1515/9781400884179-

015.

[16] RE Day and H Paul Williams. Magic: The design and use of an

interactive modelling language for mathematical programming. IMA

Journal of Management Mathematics, 1(1):53–65, 1986.

110

https://doi.org/10.1287/ijoc.1090.0340
https://doi.org/10.1287/ijoc.1090.0340
https://doi.org/10.1007/978-3-642-23592-4_3
https://www.gams.com/archives/presentations/GAMS_HPC_INFORMS2019.pdf
https://www.gams.com/archives/presentations/GAMS_HPC_INFORMS2019.pdf
https://www.gams.com/archives/presentations/informs2017_HPC_with_GAMS.pdf
https://www.gams.com/archives/presentations/informs2017_HPC_with_GAMS.pdf
https://doi.org/10.1007/s12532-009-0008-2
https://doi.org/10.1007/s12532-009-0008-2

[17] Arne Drud, Stavros Zenios, and John Mulvey. Balancing large social

accounting matrices with nonlinear network programming. The World

Bank, 1986.

[18] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A Modeling

Language forMathematical Optimization. SIAMReview, 59(2):295–320,

2017. doi: 10.1137/15m1020575. URL https://doi.org/10.1137/

15m1020575.

[19] Edinburgh Research Group in Optimization. SML: StructuredModelling

Language, 2019. URL https://www.maths.ed.ac.uk/ERGO/sml.

[20] Daniele Fanelli. Is science really facing a reproducibility crisis, and do

we need it to? Proceedings of the National Academy of Sciences, 115

(11):2628–2631, 2018.

[21] Pascual Fernández, Algirdas Lančinskas, Blas Pelegrín, and Julius

Žilinskas. A Discrete Competitive Facility Location Model with

Minimal Market Share Constraints and Equity-Based Ties Breaking

Rule. Informatica, 31(2):205–224, 2020. doi: 10.15388/20-INFOR410.

[22] Michael C. Ferris and Todd S. Munson. Complementarity problems

in GAMS and the PATH solver. Journal of Economic Dynamics and

Control, 24(2):165–188, February 2000. ISSN 01651889. doi: 10.1016/

S0165-1889(98)00092-X. URL https://linkinghub.elsevier.

com/retrieve/pii/S016518899800092X.

[23] Christodoulos A Floudas. Nonlinear and mixed-integer optimization:

fundamentals and applications. Oxford University Press, 1995.

[24] Robert Fourer. AMPL : a modeling language for mathematical

programming. Thomson/Brooks/Cole, Pacific Grove, CA, 2003.

[25] Robert Fourer. Algebraic Modeling Languages for Optimization. In

Encyclopedia of Operations Research and Management Science, pages

43–51. Springer, US, 2013. doi: 10.1007/978-1-4419-1153-7.

[26] Robert Fourer. Linear Programming: Software Survey. OR/MS

Today, 44(3), June 2017. URL https://www.informs.org/ORMS-

111

https://doi.org/10.1137/15m1020575
https://doi.org/10.1137/15m1020575
https://www.maths.ed.ac.uk/ERGO/sml
https://linkinghub.elsevier.com/retrieve/pii/S016518899800092X
https://linkinghub.elsevier.com/retrieve/pii/S016518899800092X
https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-44-Number-3/Linear-Programming-Software-Survey
https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-44-Number-3/Linear-Programming-Software-Survey

Today/Public-Articles/June-Volume-44-Number-3/Linear-

Programming-Software-Survey.

[27] Emmanuel Fragniere and Jacek Gondzio. Optimization Modeling

Languages. Handbook of Applied Optimization, pages 993–1007, 2002.

[28] GAMS Development Corporation. GAMS Convert, 2019. URL https:

//www.gams.com/latest/docs/S_CONVERT.html.

[29] GAMS Development Corporation. GAMS Model Library, 2019. URL

https://www.gams.com/latest/gamslib_ml/libhtml/index.

html.

[30] GAMS Development Corporation. The Gather-Update-Solve-Scatter,

2020. URL https://www.gams.com/latest/docs/S_GUSS.html.

[31] GAMS Development Corporation. The Grid and Multi-Threading Solve

Facility, 2020. URL https://www.gams.com/latest/docs/S_GUSS.

html.

[32] David M Gay. Writing .nl files. Optimization and Uncertainty

Estimation, 2005.

[33] Andreas Grothey and Feng Qiang. PSMG: A parallel problem

generator for structure conveying modelling language for mathematical

programming. presentation at IC-COPT 2013, 2009.

[34] Chris Groër, Bruce Golden, and Edward Wasil. A parallel algorithm for

the vehicle routing problem. INFORMS Journal on Computing, 23(2):

315–330, 2011. doi: 10.1287/ijoc.1100.0402.

[35] Francisco José Orts Gómez, Gloria Ortega López, Ernestas Filatovas,

Olga Kurasova, and Gracia Ester Martın Garzón. Hyperspectral Image

Classification Using Isomap with SMACOF. Informatica, 30(2):

349–365, 2019. doi: 10.15388/Informatica.2019.209.

[36] Gabriel Hackebeil. Parallel formulation of constraints and memory

usage, April 2016. URL https://groups.google.com/d/msg/

pyomo-forum/2ayvSKw-PKw/e4wuIdjpDQAJ.

112

https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-44-Number-3/Linear-Programming-Software-Survey
https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-44-Number-3/Linear-Programming-Software-Survey
https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-44-Number-3/Linear-Programming-Software-Survey
https://www.gams.com/latest/docs/S_CONVERT.html
https://www.gams.com/latest/docs/S_CONVERT.html
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://www.gams.com/latest/docs/S_GUSS.html
https://www.gams.com/latest/docs/S_GUSS.html
https://www.gams.com/latest/docs/S_GUSS.html
https://groups.google.com/d/msg/pyomo-forum/2ayvSKw-PKw/e4wuIdjpDQAJ
https://groups.google.com/d/msg/pyomo-forum/2ayvSKw-PKw/e4wuIdjpDQAJ

[37] William E. Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo:

Modeling and Solving Mathematical Programs in Python. Mathematical

Programming Computation, 3(3):219–260, September 2011. ISSN

1867-2949, 1867-2957. doi: 10.1007/s12532-011-0026-8.

[38] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff,

Gabriel A. Hackebeil, Bethany L. Nicholson, and John D. Siirola.

Pyomo–optimization modeling in python, volume 67. Springer Science

& Business Media, US, second edition, 2017.

[39] Eligius MT Hendrix, G Boglárka, et al. Introduction to nonlinear and

global optimization, volume 37. Springer, 2010.

[40] Janine Huisman and Jeroen Smits. Duration and quality of the peer

review process: the author’s perspective. Scientometrics, 113(1):

633–650, 2017.

[41] Tony Hürlimann. Mathematical Modeling and Optimization, volume 31

of Applied Optimization. Springer US, Boston, MA, 1999. ISBN 978-1-

4419-4814-4 978-1-4757-5793-4. doi: 10.1007/978-1-4757-5793-4.

[42] Vaidas Jusevičius and Remigijus Paulavičius. vaidasj/alg-mod-rev:

Algebraic Modeling Language Benchmark, October 2020. URL https:

//zenodo.org/record/4106728.

[43] Vaidas Jusevičius and Remigijus Paulavičius. vaidasj/webaml:

WebAML Tool for Algebraic Modeling Languages, September 2021.

URL https://zenodo.org/record/5500339.

[44] Josef Kallrath, Panos M. Pardalos, and Donald W. Hearn, editors.

Modeling Languages in Mathematical Optimization, volume 88 of

Applied Optimization. Springer US, Boston, MA, 2004. ISBN 978-1-

4613-7945-4 978-1-4613-0215-5. doi: 10.1007/978-1-4613-0215-5.

[45] G. Kannan, P. Sasikumar, and K. Devika. A genetic algorithm approach

for solving a closed loop supply chain model: A case of battery recycling.

Applied Mathematical Modelling, 34(3):655–670, March 2010. ISSN

113

https://zenodo.org/record/4106728
https://zenodo.org/record/4106728
https://zenodo.org/record/5500339

0307904X. doi: 10.1016/j.apm.2009.06.021. URL https://

linkinghub.elsevier.com/retrieve/pii/S0307904X0900170X.

[46] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike

Trautmann. Automated Algorithm Selection: Survey and Perspectives.

Evolutionary Computation, 27(1):3–45, 3 2019. ISSN 1063-6560, 1530-

9304. doi: 10.1162/evco_a_00242. URL https://direct.mit.edu/

evco/article/27/1/3-45/1083.

[47] Hossein Khodaei, Mahdi Hajiali, Ayda Darvishan, Mohammad Sepehr,

and Noradin Ghadimi. Fuzzy-based heat and power hub models for

cost-emission operation of an industrial consumer using compromise

programming. Applied Thermal Engineering, 137:395–405, June

2018. ISSN 13594311. doi: 10.1016/j.applthermaleng.2018.04.

008. URL https://linkinghub.elsevier.com/retrieve/pii/

S1359431117379164.

[48] Sean Laraway, Susan Snycerski, Sean Pradhan, and Bradley E Huitema.

An overview of scientific reproducibility: Consideration of relevant

issues for behavior science/analysis. Perspectives on Behavior Science,

42(1):33–57, 2019.

[49] Kun-Young Lee, Ji-Soo Lim, and Sung-Seok Ko. Endosymbiotic

Evolutionary Algorithm for an Integrated Model of the Vehicle

Routing and Truck Scheduling Problem with a Cross-Docking System.

Informatica, 30(3):481–502, 2019. doi: 10.15388/Informatica.2019.215.

[50] LINDO Systems, Inc. OptimJ, 2022. URL https://www.lindo.com/

index.php/products/lingo-and-optimization-modeling.

[51] Marco Locatelli and Fabio Schoen. Global optimization: theory,

algorithms, and applications. SIAM, 2013.

[52] Manuel López-Ibáñez, Juergen Branke, and Luís Paquete.

Reproducibility in evolutionary computation. ACM Transactions

on Evolutionary Learning and Optimization, 1(4):1–21, 2021.

114

https://linkinghub.elsevier.com/retrieve/pii/S0307904X0900170X
https://linkinghub.elsevier.com/retrieve/pii/S0307904X0900170X
https://direct.mit.edu/evco/article/27/1/3-45/1083
https://direct.mit.edu/evco/article/27/1/3-45/1083
https://linkinghub.elsevier.com/retrieve/pii/S1359431117379164
https://linkinghub.elsevier.com/retrieve/pii/S1359431117379164
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling

[53] Miles Lubin. JuMP.jl, February 2017. URL https://github.com/

JuliaOpt/JuMP.jl/issues/958#issuecomment-277267129.

[54] Miles Lubin and Iain Dunning. Computing in Operations Research Using

Julia. INFORMS Journal on Computing, 27(2):238–248, 2015. doi: 10.

1287/ijoc.2014.0623.

[55] Bruce A McCarl, Alex Meeraus, Paul van der Eijk, Michael Bussieck,

Steven Dirkse, and Franz Nelissen. McCarl Expanded GAMS user guide.

Citeseer, US, 2016.

[56] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12.

Springer Science & Business Media, 2012.

[57] Robert R. Miner, David Carlisle, and Patrick D. F. Ion. Mathematical

Markup Language (MathML) Version 3.0 2nd Edition. W3C

Recommendation, W3C, April 2014.

[58] Hugo Morais, Péter Kádár, Pedro Faria, Zita A. Vale, and H.M. Khodr.

Optimal scheduling of a renewable micro-grid in an isolated load area

using mixed-integer linear programming. Renewable Energy, 35(1):

151–156, January 2010. ISSN 09601481. doi: 10.1016/j.renene.2009.

02.031. URL https://linkinghub.elsevier.com/retrieve/pii/

S0960148109001001.

[59] Artur Olszak and Andrzej Karbowski. Parampl: A Simple Tool for

Parallel and Distributed Execution of AMPL Programs. IEEE Access, 6:

49282–49291, September 2018. doi: 10.1109/ACCESS.2018.2868222.

[60] Matthew J Page, Joanne E McKenzie, Patrick M Bossuyt, Isabelle

Boutron, Tammy C Hoffmann, Cynthia D Mulrow, Larissa Shamseer,

Jennifer M Tetzlaff, Elie A Akl, Sue E Brennan, Roger Chou, Julie

Glanville, Jeremy M Grimshaw, Asbjørn Hróbjartsson, Manoj M Lalu,

Tianjing Li, Elizabeth W Loder, Evan Mayo-Wilson, Steve McDonald,

Luke A McGuinness, Lesley A Stewart, James Thomas, Andrea C

Tricco, Vivian A Welch, Penny Whiting, and David Moher. The

PRISMA 2020 statement: an updated guideline for reporting systematic

115

https://github.com/JuliaOpt/JuMP.jl/issues/958#issuecomment-277267129
https://github.com/JuliaOpt/JuMP.jl/issues/958#issuecomment-277267129
https://linkinghub.elsevier.com/retrieve/pii/S0960148109001001
https://linkinghub.elsevier.com/retrieve/pii/S0960148109001001

reviews. BMJ, 372:n71, 2021. doi: 10.1136/bmj.n71. URL https:

//www.bmj.com/content/372/bmj.n71.

[61] Valeria Pandolfini. Exploring the Impact of ICTs in Education:

Controversies and Challenges. Italian Journal of Sociology of Education,

8(06/2016):28–53, 2016. ISSN 2035-4983. doi: 10.14658/pupj-ijse-

2016-2-3. URL https://doi.org/10.14658/pupj-ijse-2016-2-3.

[62] R Paulavičius, J Gao, P-M Kleniati, and C. S Adjiman. BASBL: Branch-

And-Sandwich BiLevel solver: Implementation and computational study

with the BASBLib test set. Computers & Chemical Engineering, 132:

106609, 2020. doi: 10.1016/j.compchemeng.2019.106609.

[63] Remigijus Paulavičius, Ya. D. Sergeyev, Dmitri E. Kvasov, and Julius

Žilinskas. Globally-biased DISIMPL algorithm for expensive global

optimization. Journal of Global Optimization, 59(2-3):545–567, 2014.

doi: 10.1007/s10898-014-0180-4.

[64] Remigijus Paulavičius, Yaroslav D. Sergeyev, Dmitri E. Kvasov,

and Julius Žilinskas. Globally-biased BIRECT algorithm with local

accelerators for expensive global optimization. Expert Systems with

Applications, 144:113052, 2020. doi: 10.1016/j.eswa.2019.113052.

[65] Remigijus Paulavičius and Julius Žilinskas. Simplicial Global

Optimization. SpringerBriefs in Optimization. Springer, New York,

2014. ISBN 978-1-4614-9092-0. doi: 10.1007/978-1-4614-9093-7.

[66] Yash Puranik and Nikolaos V. Sahinidis. Domain reduction techniques

for global NLP and MINLP optimization. Constraints, 22(3):338–376,

2017. doi: 10.1007/s10601-016-9267-5.

[67] J VANDERBEI ROBERT. Linear programming: Foundations and

extensions. Springer, 2021.

[68] Edward Rothberg. How A Mathematical Optimization Model Can

Help Your Business Deal With Disruption, 2020. URL https:

//forbes.com/sites/forbestechcouncil/2020/08/24/how-a-

116

https://www.bmj.com/content/372/bmj.n71
https://www.bmj.com/content/372/bmj.n71
https://doi.org/10.14658/pupj-ijse-2016-2-3
https://forbes.com/sites/forbestechcouncil/2020/08/24/how-a-mathematical-optimization-model-can-help-your-business-deal-with-disruption
https://forbes.com/sites/forbestechcouncil/2020/08/24/how-a-mathematical-optimization-model-can-help-your-business-deal-with-disruption
https://forbes.com/sites/forbestechcouncil/2020/08/24/how-a-mathematical-optimization-model-can-help-your-business-deal-with-disruption

mathematical-optimization-model-can-help-your-business-

deal-with-disruption.

[69] Mohammadhossein Saeedi, Mahdi Moradi, Meysam Hosseini, Armin

Emamifar, and Noradin Ghadimi. Robust optimization based optimal

chiller loading under cooling demand uncertainty. Applied Thermal

Engineering, 148:1081–1091, February 2019. ISSN 13594311. doi:

10.1016/j.applthermaleng.2018.11.122. URL https://linkinghub.

elsevier.com/retrieve/pii/S1359431118353547.

[70] Linas Stripinis, Remigijus Paulavičius, and Julius Žilinskas. Penalty

functions and two-step selection procedure based DIRECT-type

algorithm for constrained global optimization. Structural and

Multidisciplinary Optimization, 59(6):2155–2175, 2019. doi: 10.1007/

s00158-018-2181-2.

[71] Linas Stripinis, Julius Žilinskas, Leocadio G Casado, and Remigijus

Paulavičius. On MATLAB experience in accelerating DIRECT-GLce

algorithm for constrained global optimization through dynamic data

structures and parallelization. Applied Mathematics and Computation,

390:125596, 2021. doi: 10.1016/j.amc.2020.125596.

[72] StructJuMP. StructJuMP, 2020. URL https://github.com/

StructJuMP/StructJuMP.jl.

[73] Tomlab. OptimJ, 2020. URL https://tomopt.com/.

[74] Charalampos P. Triantafyllidis and Lazaros G. Papageorgiou. An

integrated platform for intuitive mathematical programming modeling

using LaTeX. PeerJ Computer Science, 4:e161, September 2018. ISSN

2376-5992. doi: 10.7717/peerj-cs.161. URL https://peerj.com/

articles/cs-161.

[75] Zsolt Ugray, Leon Lasdon, John Plummer, Fred Glover, James Kelly,

and Rafael Martí. Scatter Search and Local NLP Solvers: A Multistart

Framework for Global Optimization. INFORMS Journal on Computing,

19(3):328–340, August 2007. ISSN 1091-9856, 1526-5528. doi: 10.

117

https://forbes.com/sites/forbestechcouncil/2020/08/24/how-a-mathematical-optimization-model-can-help-your-business-deal-with-disruption
https://forbes.com/sites/forbestechcouncil/2020/08/24/how-a-mathematical-optimization-model-can-help-your-business-deal-with-disruption
https://forbes.com/sites/forbestechcouncil/2020/08/24/how-a-mathematical-optimization-model-can-help-your-business-deal-with-disruption
https://linkinghub.elsevier.com/retrieve/pii/S1359431118353547
https://linkinghub.elsevier.com/retrieve/pii/S1359431118353547
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/StructJuMP/StructJuMP.jl
https://tomopt.com/
https://peerj.com/articles/cs-161
https://peerj.com/articles/cs-161

1287/ijoc.1060.0175. URL http://pubsonline.informs.org/doi/

10.1287/ijoc.1060.0175.

[76] Nees Jan van Eck and Ludo Waltman. Software survey: VOSviewer,

a computer program for bibliometric mapping. Scientometrics, 84(2):

523–538, 8 2010. ISSN 1588-2861. doi: 10.1007/s11192-009-0146-3.

[77] D.H. Wolpert and W.G. Macready. No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1(1):

67–82, 4 1997. ISSN 1089778X. doi: 10.1109/4235.585893. URL

http://ieeexplore.ieee.org/document/585893/.

[78] AJWood and BFWollenberg. Power generation, operation, and control.

John Wiley and Sons Inc., New York, NY, 1984.

[79] Austin Wright, Henry Andrews, Ben Hutton, and Greg Dennis. JSON

Schema: A Media Type for Describing JSON Documents. Internet-

Draft draft-bhutton-json-schema-00, Internet Engineering Task Force,

December 2020. URL https://datatracker.ietf.org/doc/html/

draft-bhutton-json-schema-00.

[80] Kaan Yetilmezsoy, Sevgi Demirel, and Robert J. Vanderbei. Response

surface modeling of Pb(II) removal from aqueous solution by Pistacia

vera L.: Box–Behnken experimental design. Journal of Hazardous

Materials, 171(1-3):551–562, November 2009. ISSN 03043894. doi: 10.

1016/j.jhazmat.2009.06.035. URL https://linkinghub.elsevier.

com/retrieve/pii/S0304389409009480.

[81] H.H. Zeineldin, E.F. El-Saadany, and M.M.A. Salama. Optimal

coordination of overcurrent relays using a modified particle swarm

optimization. Electric Power Systems Research, 76(11):988–995, July

2006. ISSN 03787796. doi: 10.1016/j.epsr.2005.12.001. URL https://

linkinghub.elsevier.com/retrieve/pii/S0378779605002701.

118

http://pubsonline.informs.org/doi/10.1287/ijoc.1060.0175
http://pubsonline.informs.org/doi/10.1287/ijoc.1060.0175
http://ieeexplore.ieee.org/document/585893/
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-00
https://linkinghub.elsevier.com/retrieve/pii/S0304389409009480
https://linkinghub.elsevier.com/retrieve/pii/S0304389409009480
https://linkinghub.elsevier.com/retrieve/pii/S0378779605002701
https://linkinghub.elsevier.com/retrieve/pii/S0378779605002701

APPENDIX A

Models of the transportation problem

Set
i 'canning plants' / seattle, san-diego /
j 'markets' / new-york, chicago, topeka /;

Parameter
a(i) 'capacity of plant i in cases'

/ seattle 350
san-diego 600 /

b(j) 'demand at market j in cases'
/ new-york 325

chicago 300
topeka 275 /;

Table d(i,j) 'distance in thousands of miles'
new-york chicago topeka

seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4;

Scalar f 'freight in dollars per case per thousand miles' / 90 /;

Parameter c(i,j) 'transport cost in thousands of dollars per case';
c(i,j) = f*d(i,j)/1000;

Variable
x(i,j) 'shipment quantities in cases'
z 'total transportation costs in thousands of dollars';

Positive Variable x;

Equation
cost 'define objective function'
supply(i) 'observe supply limit at plant i'
demand(j) 'satisfy demand at market j';

cost.. z =e= sum((i,j), c(i,j)*x(i,j));
supply(i).. sum(j, x(i,j)) =l= a(i);
demand(j).. sum(i, x(i,j)) =g= b(j);
Model transport / all /;
solve transport using lp minimizing z;

Listing 11: Transportation problem defined in GAMS format

119

from pyomo.environ import *

model = ConcreteModel()

model.i = Set(initialize=['seattle','san-diego'])
model.j = Set(initialize=['new-york','chicago', 'topeka'])

model.a = Param(model.i, initialize={'seattle':350,'san-diego':600})
model.b = Param(model.j, initialize={'new-york':325,'chicago':300,

'topeka':275})

dtab = {
('seattle', 'new-york') : 2.5,
('seattle', 'chicago') : 1.7,
('seattle', 'topeka') : 1.8,
('san-diego','new-york') : 2.5,
('san-diego','chicago') : 1.8,
('san-diego','topeka') : 1.4,
}

model.d = Param(model.i, model.j, initialize=dtab)
model.f = Param(initialize=90)
def c_init(model, i, j):

return model.f * model.d[i,j] / 1000
model.c = Param(model.i, model.j, initialize=c_init)

model.x = Var(model.i, model.j, bounds=(0.0,None))

def supply_rule(model, i):
return sum(model.x[i,j] for j in model.j) <= model.a[i]

model.supply = Constraint(model.i, rule=supply_rule)
def demand_rule(model, j):

return sum(model.x[i,j] for i in model.i) >= model.b[j]
model.demand = Constraint(model.j, rule=demand_rule)

def objective_rule(model):
return sum(model.c[i,j]*model.x[i,j] for i in model.i for j in model.j)

model.objective = Objective(rule=objective_rule, sense=minimize)

Listing 12: Transportation problem defined in Pyomo format

120

APPENDIX B

Component diagram of the prototype

API Application
[Container: Java and Spring Boot]

AMLs
[Software System]

AMLs (GAMS, AMPL, Pyomo)
installed locally on the node.

Single-Page
Application

[Container: JavaScript]

Provides all of the Web AML
functionality to modelers via

web browser.

AMLController
[Component: Spring Boot Rest Controller]

Provides meta information
about supported AMLs and

solvers.

Makes API calls to
[REST]

Solver Controller
[Component: Spring Boot Rest Controller]

Converts WebAML model to
target AML and sends it for

solving.

Makes API calls to
[REST]

AML Facade
[Component: Interface]

An interface for implementing
translation of requests and

responses to/from specific AML
CLIs.

Uses

Web AML Converter
[Component: Interface]

Interface for Web AML to
specific AMLs converter

Uses

Uses

GAMS Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

GAMS CLI

Uses

GAMS Converter
[Component: Spring Bean]

Converts GAMS model to
specific AMLs.

Implements

AMPL Converter
[Component: Spring Bean]

Converts AMPL model to
specific AMLs.

Implements

Pyomo Converter
[Component: Spring Bean]

Converts Pyomo model to
specific AMLs.

Implements

Makes RPC callsImplements

AMPL Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

AMPL CLIs.

Makes RPC callsImplements

Pyomo Facade
[Component: Spring Bean]

A bridge for translation of
requests and responses to/from

Pyomo CLIs.

Makes RPC callsImplements

Figure 12: Components of the universal optimization system in C4 architectural model notation. WebAML Converter and AML

Facade interfaces support additional new AMLs.

1
2
1

SUMMARY IN LITHUANIAN

Tyrimo sritis ir problemos aktualumas

Daugelis realaus pasaulio problemų yra reguliariai sprendžiamos naudojant

šiuolaikinius optimizavimo įrankius [pvz., 1, 27, 34, 65, 62, 64]. Sprendžiant

pateiktą problemą šiomis priemonėmis naudojamas matematinio modelio ir

atitinkamo sprendimo algoritmo derinys [pvz.,

14, 21, 35, 49, 65, 63, 62, 70, 71]. Todėl matematinių modelių formulavimo

būdas yra labai svarbus optimizavimo poveikiui realiame gyvenime. Galimi

realių problemų pavyzdžiai yra įmonių vykdoma gamyba ir prekių siuntimas,

investicijų planavimas, makroekonomikos stabilizavimas, vandentiekio

tinklai, naftos perdirbimo gamyklos, chemijos gamyklos, tarptautinė prekyba

aliuminiu ir variu bei daugelis kitų [29].

Matematinis modeliavimas – tai realių verslo problemų pavertimo

matematinėmis formuluotėmis procesas, kurio teorinė ir skaitinė analizė gali

suteikti įžvalgų, atsakymų ir gairių, naudingų taikymui praktikoje [44], netgi

ir analizuojant dabartinę COVID-19 pandemiją [68]. Algebrinio

modeliavimo kalbos (AMK) yra deklaratyvios optimizavimo modeliavimo

kalbos, kurios užpildo atotrūkį tarp modelio formulavimo ir uždavinio

sprendinio radimo technikos [27]. Jos leidžia suformuluoti matematinį

modelį kaip žmogaus skaitomą lygčių rinkinį, tačiau autoriui nereikia

nurodyti, kaip aprašytas modelis turi būti išspręstas ar koks konkretus

sprendėjas turi būti panaudotas.

AMK aprašyti modeliai yra žinomi dėl didelio panašumo į matematinę

formuluotę. Šis aspektas išskiria AMK iš kitų modeliavimo kalbų tipų, tokių

kaip objektiškai orientuotų (pvz., OptimJ), sprendėjui specifinių (pvz.,

LINGO) ar bendrosios paskirties (pvz., TOMLAB) modeliavimo kalbų. Toks

algebrinio projektavimo metodas leidžia specialistams, neturintiems

specifinių programavimo ar modeliavimo žinių, efektyviai aprašyti

sprendžiamas problemas. Taip pat svarbu pažymėti, kad AMK yra atsakinga

už problemos modelio egzemplioriaus, kurį gali išspręsti sprendimo

algoritmas, sukūrimą [44]. Kadangi daugelis AMK yra neatskiriama

konkrečios modeliavimo sistemos dalis, būtina modeliavimo kalbos

122

atsakomybę atskirti nuo visos sistemos. Apibendrinant, AMK yra sudėtingi

programinės įrangos paketai, kurie palaiko esminį ryšį tarp optimizavimo

modelio matematinės koncepcijos ir sudėtingų algoritminių veiksmų,

apskaičiuojančių optimalius sprendimus. Paprastai AMK programinė įranga

automatiškai nuskaito modelį ir duomenis, sugeneruoja egzempliorių ir

perduoda jį sprendėjui jam suprantama forma [25].

Nuo 1970-ųjų buvo sukurta nemažai algebrinių modeliavimo kalbų (pvz.,

GAMS [55], AMPL [24]) ir vis dar yra aktyviai kuriamos naujos algebrinės

modeliavimo kalbos. Pastaruoju metu pristatytos kelios naujos atvirojo kodo

pagrindu sukurtos algebrinio modeliavimo kalbos (pvz., Pyomo [37, 38],

JuMP [18, 54]), kurios sudaro konkurenciją tradicinėms komercinėms AMK.

Todėl norint ištirti dabartinį algebrinių modeliavimo kalbų išsivystymo lygį

reikia apžvelgti ir palyginti tradicines ir atsirandančias naujas AMK.

Iki šiol didžioji dalis AMK palyginimų buvo atlikti remiantis

klausimynais, pateiktais AMK kūrėjams [26]. Tačiau autorius mano, jog

trūksta išsamios teorinės ir eksperimentinės analizės, susijusios su ryškiausių

AMK (AMPL, GAMS, JuMP ir Pyomo) ir jas palaikančių modeliavimo sistemų

charakteristikomis.

Taip pat autorius mano, kad tikslinga tęsti tyrimus toliau šalinant

pagrindines esamų AMK ir jas palaikančių optimizavimo sistemų spragas.

Tai leistų nustatyti reikalavimus universalesnių optimizavimo sistemų

koncepcijai, apjungiančiai geriausias esamų AMK savybes. Darbas šia

kryptimi jau buvo pradėtas teikiant pasiūlymus naudoti LATEX kaip AMK

įrankio pagrindą, kurį pateikė Triantafyllidis ir Papageorgiou [74], arba

CasADi [3], siūlantis atvirojo kodo įrankį netiesiniam optimizavimui ir

algoritminiam diferencijavimui. Tačiau, autoriaus nuomone, galima pasiūlyti

kitą – labiau praplečiamą ir patogesnę vartotojui alternatyvą, kuri būtų

naudinga ne tik matematinį išsilavinimą turintiems specialistams, bet ir tiems,

kurie tik pradeda mokytis matematinio optimizavimo.

Tyrimo objektas

Šios disertacijos tyrimo objektas yra programų sistemos, įgalinančios

algebrinėmis modeliavimo kalbomis spręsti matematinio optimizavimo

123

uždavinius. Darbe nagrinėjama tiek komercinė, tiek ir atvirojo kodo

algebrinio modeliavimo ir optimizavimo programinė įranga.

Darbo tikslai ir uždaviniai

Disertacijos darbo tikslas – pasiūlyti universalios optimizavimo sistemos

koncepciją, apimančią algebrinio modeliavimo kalbą ir modeliavimo sistemą,

jungiančią geriausias populiariausių AMK charakteristikas.

Siekiant įgyvendinti iškeltą tikslą numatyti šie uždaviniai:

1. Identifikuoti pagrindines šiuolaikinių algebrinio modeliavimo kalbų

ypatybes ir parinkti žinomiausias šiuo metu rinkoje naudojamas ir

kriterijus atitinkančias algebrinio modeliavimo kalbas.

2. Teoriškai apžvelgti pasirinktas algebrinio modeliavimo kalbas ir

sistemas, palyginti jų skirtumus ir nustatyti kiekvienos trūkumus.

3. Sukurti optimizavimo uždavinių biblioteką, kuria remiantis būtų galima

atlikti pasirinktų AMK našumo testus.

4. Atlikti eksperimentinę pasirinktų AMK analizę naudojantis našumo

testų rezultatais.

5. Užtikrinti eksperimentinės analizės rezultatų atkuriamumą.

6. Remiantis teorine ir eksperimentine analize nustatyti ir aprašyti galimas

esamų algebrinio modeliavimo sistemų tobulinimo gaires.

7. Pasiūlyti universalios optimizavimo sistemos koncepciją, apimančią

bendrąją algebrinio modeliavimo kalbą ir ją palaikančią atvirojo kodo

sistemą.

8. Sukurti siūlomos universalios optimizavimo sistemos prototipą, įrodantį

jos įgyvendinamumą ir tinkamumą tolesniam visapusiškos universalios

optimizavimo sistemos kūrimui.

124

Tyrimo metodai

Algebrinio modeliavimo ir matematinio optimizavimo sritims analizuoti

taikyti informacijos paieškos, organizavimo, analizės, lyginamosios analizės,

apibendrinimo metodai. Eksperimentinio tyrimo interpretavimui, siekiant

įvertinti algebrinio modeliavimo kalbų efektyvumą, taikyta statistinė analizė.

Mokslinis darbo naujumas

Pagrindiniai mokslinio darbo naujumai yra šie:

1. Buvo atlikta išsami lyginamoji svarbiausių algebrinio modeliavimo

kalbų bei jas palaikančių modeliavimo sistemų (AMPL, GAMS, JuMP ir

Pyomo) panašumų ir skirtumų analizė. Iki šiol AMK palyginimai buvo

riboti pagal vertinamų charakteristikų kiekį arba pagal tai, kaip jie

buvo atlikti (pvz., sutelkiant dėmesį į kūrėjų atsakymus klausimynų

pagrindu). Čia vienoje vietoje buvo įvertinta ne tik atitiktis

pagrindiniams šiuolaikinės AMK reikalavimams, bet ir palygintos jų

pagrindinės ir papildomos funkcijos, patogumas, perkeliamumas,

kainodara.

2. Remiantis eksperimentiniu modelio egzempliorių kūrimo laiko tyrimu

buvo sukurta atvira testavimo ir praktinio optimizavimo uždavinių

(algebrinių modelių) biblioteka. Modeliai pateikiami keliais skirtingais

formatais, kuriuos palaiko šiuolaikinių optimizavimo uždavinių

sprendėjai. Esminis šios bibliotekos išskirtinumas yra net ne jos dydis

ar modelių formatų įvairovė, o atvirumas, decentralizacija ir įrankių

palaikymas. Atvirojo kodo ir GitHub pagrindu sukurta saugykla

suteikia galimybę kiekvienam prisidėti prie šios bibliotekos augimo, o

autorių pateikti aprašai ir įrankiai leidžia lengvai ją vystyti ir plėsti.

Jusevičius, V.; Paulavičius, R. Vaidasj/Alg-Mod-Rev: Algebraic

Modeling Language Benchmark, 2020. 10.5281/ZENODO.4106728;

URL: https://github.com/vaidasj/alg-mod-rev

3. Iš operacijų tyrimo prizmės įvertintas modelio egzemplioriaus kūrimo

efektyvumas ir modelio supaprastinimas. Eksperimentinis modelio

125

https://github.com/vaidasj/alg-mod-rev

egzemplioriaus sukūrimo laiko tyrimas buvo atliktas su modelių

biblioteka, kurią sudaro beveik trys šimtai modelių, apimančių

skirtingus problemų tipus ir dydžius. Tai iki šiol didžiausias modelio

egzemplioriaus sukūrimo laiko tyrimas. Jame akcentuojami reikšmingi

AMK efektyvumo skirtumai ir identifikuojamos neatitiktys su AMK

kūrėjų atliktais tyrimais. Kitu eksperimentiniu tyrimu siekta įverti

AMPL išankstinio sprendėjo naudą modeliui supaprastinti. Nustatyta,

kad teigiamas išankstinio sprendimo poveikis visada yra

reikšmingesnis nei neigiamas.

Jusevičius, V.; Paulavičius, R. Vaidasj/Alg-Mod-Rev: Algebraic

Modeling Language Benchmark, 2020. 10.5281/ZENODO.4106728;

URL: https://github.com/vaidasj/alg-mod-rev

4. Remiantis lyginamąja ir eksperimentine analize buvo nustatyti

ryškiausių AMK skirtumai ir trūkumai. Atsižvelgiant į gautus

rezultatus pasiūlyta atvirojo kodo universalios optimizavimo sistemos

koncepcija. Ji sujungia geriausias esamų algebrinio modeliavimo kalbų

charakteristikas, taip pat suteikia intuityvų ir patogų optimizavimo

problemų formulavimo (t. y. modelio apibrėžimo) procesą. Buvo

apibrėžti du pagrindiniai koncepcijos elementai: WebAML kalba,

skirta aprašyti problemos semantiką, ir optimizavimo sistema, veikianti

kaip tarpininkas tarp WebAML kalbos ir kitų AMK.

5. Sukurtas analogų pasaulyje neturinčios universalios optimizavimo

sistemos prototipas. Norint naudotis prototipu nereikia jokių specifinių

algebrinės kalbos žinių. Taip pat prototipas įgalina spręsti problemas

naudojant skirtingus matematinius optimizavimo sprendėjus. Jį gali

naudoti tiek mokslininkai, tiek praktikai įvairiuose ūkio sektoriuose.

Šis įrankis įgalina greitesnį ir efektyvesnį modelio kūrimą sprendimų

priėmėjams.

Jusevičius, V.; Paulavičius, R. Vaidasj/WebAML: WebAML Tool for

Algebraic Modeling Languages, 2021. 10.5281/ZENODO.5500339;

URL: https://github.com/vaidasj/WebAML

126

https://github.com/vaidasj/alg-mod-rev
https://github.com/vaidasj/WebAML

Ginamieji teiginiai

1. Yra nemažai galingų modeliavimo aplinkų ir algebrinio modeliavimo

kalbų, tačiau nė viena iš jų nesuteikia viso funkcijų rinkinio, reikalingo

efektyviam ir intuityviam optimizavimo problemų modeliavimui.

2. Universali optimizavimo sistema, sujungianti geriausias kelių žinomų

AMK charakteristikas, padeda pašalinti populiariausių AMK trūkumus.

3. Architektūriniai sprendimai, priimti kuriant WebAML prototipą,

leidžia jį naudoti kaip universalaus optimizavimo įrankių rinkinio

pagrindą. Įrankių rinkinys gali būti papildytas kitomis pažangiausiomis

funkcijomis, kaip, pavyzdžiui, išankstinis sprendimas, paskirstytas

sprendimas arba geriausio sprendėjo pasirinkimas pagal optimizavimo

uždavinio tipą.

Darbo rezultatų aprobavimas

Pagrindiniai tyrimo rezultatai publikuoti dvejuose recenzuojamuose

periodiniuose leidiniuose:

1. Jusevičius, V. ir Paulavičius, R. „Web-Based Tool for Algebraic

Modeling and Mathematical Optimization“. Mathematics, 2021, 9

(21), 2751. DOI: 10.3390/math9212751.

2. Jusevičius, V., Oberdieck, R. ir Paulavičius, R. „Experimental

Analysis of Algebraic Modelling Languages for Mathematical

Optimization“. Informatica, 2021, 32 (2), 283–304. DOI:

10.15388/21-INFOR447.

Pagrindiniai tyrimo rezultatai pristatyti dvejose tarptautinėse

konferencijose:

1. Jusevičius, V. ir Paulavičius, R. „Experimental Analysis of Algebraic

Modeling Languages For Social Behavior Modeling“, The

International EURO mini Conference Modelling and Simulation of

Social-Behavioural Phenomena in Creative Societies, rugsėjo 18–20,

2019. Vilnius, Lietuva.

127

2. Jusevičius, V. ir Paulavičius, R. „Web-based tool for algebraic

modeling languages“, EURO 2021: 31st European Conference on

Operational Research, liepos 11-13, 2021. Atėnai, Graikija.

Algebrinės modeliavimo kalbos

Šiame skyriuje analizuojamos algebrinio modeliavimo kalbos ir nustatomos

pagrindinės AMK charakteristikos, kurios bus aptariamos ir analizuojamos

kituose skyriuose.

Pirma, pabrėžiama algebrinio modeliavimo kalbų reikšmė. Svarbiausia,

kad jos leidžia atskirti modelio formuluotę nuo įgyvendinimo detalių,

išlaikant žymėjimą, artimą problemos matematinei formuluotei. AMK

išskiria abstrakčius modelius ir konkrečius problemų atvejus, kai konkretus

modelio egzempliorius generuojamas iš abstraktaus modelio naudojant

duomenis. Tai leidžia sukurti daugkartinio naudojimo modelius, o

matematinis optimizavimas yra priimtinesnis specialistams, neturintiems

gilaus matematinio pagrindo.

Vėliau pateikiamas Dantzig klasikinės transportavimo problemos

pavyzdys, aprašytas matematine sintakse. Tai yra tiesinio programavimo

problema, kurios tikslas yra sumažinti transportavimo išlaidas, atsižvelgiant į

paklausos ir pasiūlos ribojimus. Toliau konkretaus modelio egzemplioriaus

pavyzdys aprašomas loginėmis sąvokomis ir paverčiamas į dviejų algebrinio

modeliavimo kalbų AMPL ir JuMP žymėjimus. Pastebėta, kad gana stipriai

skiriasi algebrinio modeliavimo kalbų sintaksė. Dviejuose pateiktuose

pavyzdžiuose AMPL, atrodo, skirtas specialistams, turintiems matematinį

išsilavinimą, o JuMP labiau tinka specialistams, kurie yra geriau susipažinę su

įprastomis programavimo kalbomis.

Toliau apibūdinamos pagrindinės šiuolaikinių AMK charakteristikos,

identifikuojamos ir pasirenkamos tolesniems teoriniams ir eksperimentiniams

tyrimams svarbiausios algebrinės kalbos. Trys pagrindinės savybės yra tai,

kad problemos aprašomos deklaratyviai; yra aiški atskirtis tarp problemos

apibrėžimo ir sprendimo proceso bei egzistuoja aiškus problemos struktūros

ir jos duomenų atskyrimas. Kitų funkcijų, pvz., automatinio diferencijavimo,

poreikis taip pat akivaizdus, bet ne esminis. Remiantis nustatytais

128

reikalavimais, akademiniu pripažinimu ir naudojimo populiarumu buvo

nustatytos keturios svarbiausios AMK: AMPL, GAMS, JuMP ir Pyomo.

Galiausiai, siekiant suprasti temos mastą, atsirandančias tendencijas ir

raidą bėgant laikui, buvo atlikta pasirinktų AMK bibliometrinė analizė.

Naudota adaptuota PRISMA (Preferred Reporting Items for Systematic

Reviews and Meta-Analysis) [60] metodologijos versija, skirta literatūros

paieškai mokslinėse duomenų bazėse. Buvo analizuojami straipsniai,

publikuoti nuo 2000 iki 2021 metų. Iš viso išnagrinėta 2550 dokumentų,

publikuotų 927 šaltiniuose (žurnaluose, knygose ir kt.). Nuo 2000 iki 2019

metų stebimas nuolat augantis publikacijų skaičius tyrimų srityje, tačiau

pastaraisiais metais skaičiai mažėja, o tai kartu su autoriaus raktažodžių

analize rodo, kad šios srities tyrimai konsoliduojami. Septyniuose iš

dešimties dažniausiai cituojamų straipsnių GAMS buvo paminėtas kaip vienas

iš raktinių žodžių. GAMS taip pat buvo tarp populiariausių raktinių žodžių,

rodančių GAMS svarbą ir populiarumą. Atsižvelgiant į raktinių žodžių

tendencijas matoma, kad artimiausioje ateityje tvarios energijos inžinerija bus

pagrindinė matematinio optimizavimo ir algebrinio modeliavimo kalbų

tyrimų kryptis.

Algebrinių modeliavimo kalbų lyginamoji analizė

Šiame skyriuje aptariami pagrindiniai keturių svarbiausių algebrinio

modeliavimo kalbų (AMPL, GAMS, JuMP ir Pyomo) skirtumai.

Visų pirma, programinės įrangos paketai buvo lyginami atsižvelgiant į

tokius aspektus kaip operacinės sistemos palaikymas, licencijavimas ir

vartotojo sąsajos tipas. Visi jie palaiko tris pagrindines operacines sistemas

(Windows, Unix, Mac OS), todėl naudojimas turėtų būti gana sklandus

nepriklausomai nuo to, kokią operacinę sistemą ar techninę įrangą naudoja

vartotojas. Be to, visi, išskyrus Pyomo, pateikia grafinę vartotojo sąsają

tekstiniam modelio kodui rašyti ir kai kurioms standartinėms komandoms

vykdyti. AMPL ir GAMS yra komercinės programinės įrangos, kurių minimali

(bazinė) kaina yra nuo 3000 iki 4000 JAV dolerių, o pridėjus sprendėjų įkainį

ji žymiai išauga. Bandomosios versijos yra ribotos naudojimo laiku arba

modelio dydžiu. Net ir akademinis licencijavimas nėra nemokamas (jo kaina

129

– nuo 400 JAV dolerių). Pyomo ir JuMP yra atvirojo kodo ir platinamos be

mokesčio, tačiau už komercinius sprendėjus reikia mokėti atskirai.

Toliau siekiant nustatyti, kaip nagrinėjamos AMK atitinka šiuolaikinėms

AMK keliamus reikalavimus, buvo atlikta lyginamoji savybių analizė.

Visose apžvelgtose AMK optimizavimo problemos pateikiamos

deklaratyviai. Kadangi visos jos yra konkrečios modeliavimo sistemos dalis,

šios sistemos kontekste problemos apibrėžimo ir sprendimo procesai aiškiai

atskiriami. Problemos struktūra ir jos duomenys atskirti visose apžvelgtose

kalbose. Visos nagrinėtos AMK taip pat leidžia modeliuoti problemas

nepriklausomai nuo sprendėjų. Duomenų pateikimo modeliui būdai tarp

AMK skiriasi. Nors visos jos palaiko įvestį iš failo, kai kurie sudėtingesni

scenarijai, pvz., duomenų nuskaitymas iš reliacinių duomenų bazių, yra

lengviau realizuojami JuMP arba Pyomo kalbose. Kalbant apie sprendėjų

palaikymą, AMPL turi daugiausia palaikomų sprendėjų. Išankstinio sprendimo

galimybės pasiekiamos tik AMPL. JuMP ir Pyomo turi programavimo sąsajas,

leidžiančias realizuoti išankstinio sprendimo galimybes, bet šiuo metu tokių

įrankių nėra sukurta. Naudojant Python arba Julia bibliotekas galima

vizualizuoti JuMP ir Pyomo rezultatus, tačiau tą reikia realizuoti patiems, nes

nei JuMP, nei Pyomo to standartiškai nepateikia. Galima daryti išvadą, kad

visos nagrinėtos kalbos atitinka esmines šiuolaikinių AMK savybes.

Galiausiai buvo įvertintos daug žadančios lygiagretaus AMK veikimo

savybės. Nustatyti trys pagrindiniai lygiagretinimo algebrinio modeliavimo

panaudojimo atvejai kalbose, tačiau dėmesys sutelktas tik į du, kuriuos

palaiko pačios AMK, o ne sprendėjai. Vienas panaudojimo atvejis yra

problemų rinkinio optimizavimas, kai kiekviena problema yra struktūriškai ta

pati, bet kai kurie arba visi duomenys, apibrėžiantys egzempliorių, yra

atnaujinami. Antra – didelio masto problemos, kurioms reikia lygiagretaus

apdorojimo ne tik problemos sprendimui, bet ir modelio kūrimo fazėje.

Apžvelgti AMK turi ribotą palaikymą tokiam lygiagretinimui ir didžioji dalis

to pasiekiama pasitelkus nestandartinių plėtinių arba esamų AMK savybių

kompoziciją. Lygiagretus modelio kūrimas yra labai ankstyvoje brandos

stadijoje ir kai kurie autoriai abejoja lygiagrečiojo modelio generavimo

teikiama nauda. Tačiau atsižvelgiant į egzistuojančius našumo tyrimus

galima teigti, kad tinkamai pritaikius lygiagretinimą našumas sprendžiant

130

realias matematines optimizavimo problemas gali padidėti.

Algebrinių modeliavimo kalbų eksperimentinė analizė

Šiame skyriuje pateikiamas testavimo uždavinių rinkinys, skirtas praktinių

optimizavimo problemų sprendimo našumo analizei atlikti, ir pristatomi

pasirinktų AMK eksperimentai ir jų išvados.

Pirmiausia pateikiamos autorių GitHub puslapyje publikuotos bibliotekos

modelių charakteristikos ir metrikos. Biblioteką sudaro 296 uždaviniai AMPL,

GAMS, JuMP ir Pyomo skaliarinio modelio formatu. Biblioteka buvo sukurta

naudojant pavyzdinius modelius, esančius GAMS modelių bibliotekoje. Prie

kiekvieno modelio pateikiamas optimizavimo problemos tipas, lygčių,

kintamųjų, diskrečiųjų kintamųjų, nulinių elementų ir netiesinių nulinių

elementų skaičius. Be to, vartotojas gali rasti visą modelio konvertavimo

metu surinktą statistiką, išsamią ir standartinę GAMS CONVERT įrankio išvestį.

Toliau paaiškinami įrankiai ir procesai, skirti sukurti biblioteką nuo nulio.

Pateikiamas autoriaus sukurtas automatinis įrankis gamslib-convert.sh,

kuris geba sugeneruoti AMK testavimo biblioteką. Įrankis yra laisvai

prieinamas GitHub saugykloje ir geba ne tik konvertuoti pateiktus GAMS

modelius į kitus AMK, bet ir surinkti bei dokumentuoti visas modelio

charakteristikas, nustatytas konvertavimo proceso metu. Įrankis palaiko du

skirtingus vykdymo režimus: masinį visų modelių bibliotekos generavimą ir

vieno modelio generavimą.

Vėliau pristatomos išvados apie įrankių, naudotų kuriant biblioteką,

kokybę. 35 modelių nepavyko konvertuoti pilnai licencijuotu GAMS CONVERT

įrankiu dėl vykdymo arba kompiliavimo klaidų. Tai reiškia, kad kai kurie

GAMS bibliotekos modeliai nesuderinami su pačia GAMS modeliavimo sistema.

Vėliau, atliekant modelio egzempliorių kūrimo testą, nustatyta, kad 12 AMPL,

11 JuMP ir 29 Pyomo modelių, sugeneruotų GAMS CONVERT įrankiu, buvo

klaidų. Daugumą Pyomo ir JuMP klaidų sukėlė neteisingas GAMS CONVERT

įrankio veikimas, kai buvo sukurtas klaidingas Suffix primityvumo

apibrėžimas.

Vėliau pristatomos išvados apie įrankių, naudotų kuriant biblioteką,

kokybę. 35 modelių nepavyko konvertuoti licencijuotu GAMS CONVERT

131

įrankiu dėl vykdymo arba kompiliavimo klaidų. Tai reiškia, kad kai kurie

GAMS bibliotekos modeliai nesuderinami su pačia GAMS modeliavimo sistema.

Vėliau, testuojant modelio egzempliorių kūrimą, nustatyta, kad 12 AMPL, 11

JuMP ir 29 Pyomo modeliuose, sugeneruotuose GAMS CONVERT įrankiu, buvo

klaidų. Daugumą Pyomo ir JuMP klaidų lėmė netinkamai veikiantis GAMS

CONVERT įrankis, kai buvo sukurtas klaidingas Suffix primityvumo

apibrėžimas.

Toliau buvo išnagrinėta klasikinė transportavimo problema,

modeliuojama skirtingomis AMK. Palyginimas atliktas remiantis šiais

kriterijais: modelio dydis baitais, modelio dydis pagal kodo eilučių skaičių,

modelio dydis pagal naudojamų kalbos primityvų skaičių, modelio

egzemplioriaus sukūrimo laikas. Nustatyta, kad modeliai, parengti AMPL,

GAMS ir JuMP, yra kompaktiškiausi, o modelis, parengtas Pyomo, yra

didžiausias. Palyginus modeliui sukurti reikalingų kalbos primityvų skaičių,

JuMP ir AMPL parodė geriausius rezultatus. Tai gali reikšti, kad šios

modeliavimo kalbos gali turėti švelnesnę mokymosi kreivę, o tai taip pat

leidžia daryti išvadą, kad nagrinėjamų algebrinio modeliavimo kalbų

kontekste JuMP ir AMPL leidžia praktikams suformuluoti optimizavimo

problemą glausčiausiai. Išnagrinėjus transporto modelio egzemplioriaus

kūrimo laiką pastebėta, kad AMPL išsiskiria iš kitų AMK ir yra labiausiai

optimizuota našumo požiūriu. Menki JuMP našumo rezultatai patvirtino

Dunning et al. teiginius, kad JuMP sistemos pirminis paleidimo laikas yra

pastebimai ilgas.

Vėliau buvo pristatyti didelio masto modelio egzempliorių kūrimo tyrimo

rezultatai. Tyrime buvo matuojamas laikas, per kurį modeliavimo sistema

atlieka modelio egzempliorių kūrimo ir eksportavimo operacijas. Buvo

panaudoti visi modeliai, esantys anksčiau sukurtoje testavimo bibliotekoje.

Taip pat pateikiamas load-benchmark.sh įrankis, pasiekiamas autorių

GitHub saugykloje. Jis įkelia kiekvieną modelį į tam tikrą modeliavimo

sistemą, tuomet eksportuoja jį į sprendėjams suprantamą formatą, fiksuoja

vykdymo statistiką ir generuoja palyginimo ataskaitą. Šis įrankis yra laisvai

prieinamas ir kitiems tyrėjams. Nustatyta ta pati tendencija, kaip ir transporto

problemos modelio testuose. AMPL buvo neabejotinai geriausias, o JuMP ir

Pyomo pasirodė prasčiausiai. Taip pat pastebėta, kad vidutinis skirtumas tarp

132

AMPL ir kitų varžovų didėja, kai modeliai tampa didesni. Nebuvo rasta

reikšmingų skirtumų tarp skirtingų optimizavimo problemų tipų, išskyrus

JuMP, kur modelio egzemplioriaus sukūrimo laikas skiriasi dirbant su

skirtingų tipų problemomis. Be to, skirtumai tarp skirtingų to paties tipo

modelių taip pat yra reikšmingesni naudojant JuMP kalbą. Galima manyti,

kad tai lemia dinamiška Julia programavimo kalbos, kuria sukurtas JuMP,

prigimtis bei JuMP savybė saugoti sukurtus modelius laikinojoje talpykloje.

Galima daryti išvadą, kad iš nagrinėtų AMK AMPL yra akivaizdžiai našiausia

AMK modelio egzemplioriaus kūrimo metu.

Po to JuMP tyrimas, kurį atliko JuMP autoriai [18], lygintas su šio darbo

našumo tyrimais. Nustatyta, kad kai kurios tendencijos išlieka, tačiau šio

darbo JuMP testų ir Dunning et al. testų rezultatai labai skiriasi. Taigi buvo

nuspręsta palyginti testų metodiką ir rezultatus atliekant identišką testą, kuris

pateikiamas Dunning et al. tyrime. Šio darbo JuMP testas patvirtino

pastebėjimą, kad JuMP kenkia ilgas darbo pradžios laikas, reikalingas iš

anksto kompiliuoti JuMP bibliotekas. Autoriui nepavyko pasiekti JuMP

našumo metrikos, apie kurią pranešė Dunning et al., kai JuMP visada

pranoksta Pyomo. Rastus skirtumus gali lemti skirtingos naudojamos JuMP

versijos, patobulintas Pyomo našumas arba skirtingos Gurobi sprendėjo

versijos.

Galiausiai, siekiant nustatyti, kokią praktinę naudą sukuria AMPL

išankstinis sprendimas sprendžiant optimizavimo uždavinius, buvo atliktas

testas, įvertinantis AMPL išankstinį sprendimą. Atlikus testavimą su 286

modeliais, esančiais testavimo bibliotekoje, pastebėta, kad AMPL išankstinis

sprendėjas sugebėjo supaprastinti modelius 52,8 % atvejų, iš kurių 5 kartus iš

7 galėjo nustatyti, kad problemos sprendimas neegzistuoja, taip net

nereikalaujant iškviesti tikrojo sprendėjo. Vidutiniškai pritaikius AMPL

išankstinį sprendimą pavyko sumažinti modelio dydį pašalinant 18,42 %

apribojimų ir 10,73 % kintamųjų. Siekiant įvertinti, ar AMPL išankstinis

sprendimas iš tikrųjų daro teigiamą įtaką problemų sprendimui, buvo atliktas

papildomas testas. AMPL presolve darė teigiamą įtaką 26,43 % atvejų iteracijų

ir 47,86 % laiko atžvilgiu. Tačiau tai pat padarė neigiamą poveikį 20,71 %

atvejų iteracijų ir 23,57 % atvejų laiko atžvilgiu. Vis tik galima daryti išvadą,

kad teigiamas poveikis visada yra reikšmingesnis už neigiamą ir jis išryškėja,

133

kai sprendėjas neturi arba nenaudoja vidinių problemų išankstinio sprendimo

mechanizmų.

Algebrinių modeliavimo kalbų skirtumai ir trūkumai

Šiame skyriuje pateikiami pagrindiniai tyrimo metu nustatyti populiariausių

AMK skirtumai ir trūkumai.

Pirmiausia buvo pristatytos bendrosios funkcijos, sintaksė ir jų

suderinamumo iššūkiai. Nustatyta, kad AMK vartotojai negali būti lankstūs,

kai reikia pereiti nuo vienos AMK prie kitos ir panaudoti anksčiau įgytas

žinias. Tai gali sąlygoti nepageidautiną prisirišimą prie vieno gamintojo

AMK. Be to, kadangi darbo pradžioje ne visada aišku, su kokio tipo

problema susiduriama, praktikai gali pasirinkti netinkamą AMK,

nepalaikančią tam tikro problemos tipo. Taip pat gali kilti situacijų, kai

turimas sprendėjas veikia tik kitoje AMK, nei yra aprašytas modelis, ir

vartotojas juo negali pasinaudoti.

Toliau buvo pristatyti našumo skirtumai ir sudėtingesnės savybės, kaip,

pavyzdžiui, lygiagretinimas. Eksperimentiniame tyrime buvo nustatyta, kad

skirtingų modeliavimo aplinkų našumas ženkliai skiriasi, todėl pravartu būti

lankstiems renkantis geriausią AMK dideliems uždaviniams spręsti arba tais

atvejais, kai reikalingos papildomos funkcijos, tokios kaip išankstinis

sprendimas ar lygiagretinimas.

Galiausiai, pateikiama įžvalgų santrauka, leidžianti daryti išvadą, kad nors

yra keletas pajėgių modeliavimo aplinkų ir AMK, nė viena iš jų nesuteikia

viso funkcijų rinkinio, reikalingo efektyviam ir intuityviam matematinio

optimizavimo problemų sprendimui. Sudėtingumas pereinant nuo vienos

AMK prie kitos ir poreikis išmokti konkrečios AMK sintaksę gali tapti

iššūkiu mokant matematinio optimizavimo mokyklose ir universitetuose.

Universali optimizavimo sistema

Šiame skyriuje nusakyti reikalavimai ir pateiktas pasiūlymas universaliai

optimizavimo sistemai, kurią sudaro WebAML kalba ir optimizavimo

sistemos prototipas.

134

Siūloma formali kalba įgalina aprašyti problemos charakteristikas JSON

formatu, o prototipas leidžia sukurti modelį naudojant WebAML kalbą ir jį

išspręsti naudojant jau egzistuojančias AMK. Šiuo metu WebAML kalba

palaiko tik pagrindines funkcijas, tačiau, remiantis JSON schema, ji yra

lanksčiai plečiama. Darbe yra pateikti pavyzdžiai, kaip tokie plėtiniai galėtų

būti realizuoti.

Atvirojo kodo žiniatinklyje veikiantis prototipas buvo sukurtas kaip

įrankis, leidžiantis naudotojui sukurti modelį, konvertuoti jį į konkretų AMK

formatą ir pateikti jį spręsti lokaliam ar nuotoliniam sprendėjui (pvz., NEOS

serveriui). Tokiu būdu ne kuriamas naujas uždavinio sprendimo

funkcionalumas, o remiamasi geriausiomis ypatybėmis, kurias teikia

populiariausios AMK. Architektūriniai sprendimai, priimti kuriant prototipą,

sudaro gerą pagrindą universaliam matematiniam optimizavimo įrankių

rinkiniui.

Autorius mano, kad pavyko pasiūlyti universalią optimizavimo sistemą,

kuri nereikalauja jokių specifinių algebrinės kalbos žinių ir leidžia spręsti

problemas naudojant skirtingus matematinius optimizavimo sprendėjus. Tai

supaprastina algebrinio modeliavimo ir matematinio optimizavimo procesą:

taip jis tampa prieinamas asmenims, neturintiems išsamių techninių žinių.

Dėl to jis patrauklus ne tik komerciniams vartotojams, bet ir mokytojams,

dėstytojams ir studentams, bandantiems suprasti matematinio optimizavimo

pagrindus. Visame pasaulyje atlikti informacinių ir ryšių technologijų (IRT)

tyrimai parodė, kad IKT gali padėti pagerinti mokinių mokymąsi ir padėti

parinkti geresnius mokymo metodus (pvz., [61]).

Įrankis taip pat palaiko visus pagrindiniuose AMK esančius sprendėjus,

taigi suteikia daug nemokamų ir komercinių sprendėjų. Kadangi įrankis gali

būti lengvai įdiegtas serveryje ir pasiekiamas per žiniatinklio sąsają, mokslo

įstaiga gali įsigyti akademinę ar komercinę sprendėjo licenciją ir sudaryti

sąlygas kiekvienam bendruomenės nariui lengvai spręsti didelės apimties

optimizavimo problemas.

135

Bendros išvados

1. Šiame tyrime pasiūlyta universalios optimizavimo sistemos

koncepcija, kurią sudaro formalizuota algebrinio modeliavimo kalba

(WebAML) ir atvirojo kodo įrankis (WebAML optimizavimo sistema),

skirtas algebriniam modeliavimui ir matematiniam optimizavimui.

(a) Šia sistema siekiama sukurti patogią aplinką, supaprastinančią

matematinį modeliavimą ir optimizavimą, tačiau išlaikančią

geriausias pagrindinių AMK savybes.

(b) Sistema palaiko visus sprendėjus, kuriuos palaiko ir pagrindinės

AMK, taigi praktikai gali pasirinkti iš plataus spektro sprendėjų.

Tai leidžia praktikams lengvai eksperimentuoti sprendžiant

įvairių tipų problemas ir rasti geriausią įrankį konkrečiam

uždaviniui spręsti.

(c) Sistema gali konvertuoti modelį iš vieno AMK į kitą. Tokiu būdu

praktikai gali lengvai migruoti tarp skirtingų AMK ir naudoti tą,

kuri teikia daugiausia funkcijų arba yra našiausia.

(d) Įrankis nereikalauja jokių specifinių algebrinės kalbos žinių ir

leidžia spręsti problemas naudojant skirtingus AMK ir

optimizavimo sprendėjus. Tokiu būdu sudaromos sąlygos ne tik

lengviau išmokti ir mokyti matematinio optimizavimo, bet leisti

pažengusiam specialistui spręsti realias matematines

optimizavimo problemas.

2. Siekiant įrodyti tokios koncepcijos įgyvendinamumą, sukurtas

universalios optimizavimo sistemos prototipas, realizuojantis

pagrindines siūlomos koncepcijos ypatybes. Tuo pačiu yra pateikiami

aiškūs plėtimo taškai ir idėjos, kaip tokį įrankį būtų galima tobulinti

toliau.

(a) Siūloma WebAML kalba gali būti išplėsta siekiant dar labiau

supaprastinti modelio apibrėžimo procesą. Tą galima pasiekti

patobulinus vartotojo sąsają (pvz., pridedant tekstinių nurodymų)

136

ir praplečiant kalbos sintaksę (pvz., palaikant neišreikštinį aibių

apibrėžimą).

(b) Prototipas gali būti išplėstas taip, kad būtų palaikomos

papildomos funkcijos, pavyzdžiui, lygiagretus modelio

generavimas ar išankstinis sprendimas. Galima įtraukti daugiau

AMK kuriant naujus konvertavimo modulius iš WebAML į

tikslinį AMK. Visa tai galima pasiekti panaudojant prototipe jau

apibrėžtas modulių sąsajas ir įtraukiant naujus modulius

pasitelkus priklausomybių įterpimo konfigūraciją.

(c) Tyrimus ir vystymą galima tęsti siekiant WebAML optimizavimo

sistemoje realizuoti automatizuoto sprendimo algoritmo

pasirinkimą, o tai leistų ženkliai supaprastinti specialistų darbą.

3. Analizuojant universalios optimizavimo sistemos reikalavimus buvo

atlikta esamų AMK eksperimentinė analizė ir tyrimai, kurių tikslas

buvo įvertinti šias AMK charakteristikas: modelio dydį ir

išraiškingumą, modelio egzemplioriaus sukūrimo laiką, išankstinį

sprendimą ir jo poveikį sprendimui.

(a) Modeliai, aprašyti AMPL, GAMS ir JuMP, yra kompaktiškiausi, o

Pyomo aprašytas modelis yra didžiausias. Palyginus modeliui

sukurti reikalingų kalbos primityvų skaičių, JuMP ir AMPL parodė

geriausius rezultatus. Tai gali reikšti, kad šios modeliavimo

kalbos gali turėti švelnesnę mokymosi kreivę, o tai taip pat leidžia

daryti išvadą, kad apžvelgtų algebrinio modeliavimo kalbų

kontekste JuMP ir AMPL leidžia glausčiausiai suformuluoti

optimizavimo problemą.

(b) Modelio egzempliorių kūrimo našumo testas nustatė, kad AMPL

yra greičiausias, o JuMP ir Pyomo – lėčiausi. Nėra reikšmingų

skirtumų tarp skirtingų optimizavimo problemų tipų, išskyrus

JuMP, kai modelio egzemplioriaus sukūrimo laikas ženkliai

skiriasi dirbant su skirtingų tipų problemomis.

(c) Našumo skirtumas tarp AMPL ir kitų varžovų didėja, kai modeliai

tampa didesni. Lyginant didelių modelių (modelių, turinčių

137

daugiau nei 500 lygčių, testavimo bibliotekoje yra 8 tokie

modeliai) egzempliorių kūrimo laiką nustatyta, kad skirtumas tarp

AMPL ir GAMS yra 11 kartų didesnis, o tarp AMPL ir Pyomo – 38

kartus didesnis. Skirtumas tarp AMPL ir JuMP yra beveik 100 kartų

didesnis, kai skirtumas tarp GAMS ir Pyomo išliko maždaug toks

pat – apie 3,5 karto.

(d) JuMP našumo tyrimo rezultatai patvirtina Dunning et al. teiginį,

kad JuMP paleisties sąnaudos yra pastebimos net ir mažiausiems

uždaviniams spręsti. Šio darbo autoriaus testuose vien tik paketo

JuMP inicijavimas užtruko apie 7 sekundes. Taip pat pastebėtas

reikšmingas pagreitėjimas kuriant kelis JuMP modelio

egzempliorius iš eilės. Taigi tai gali būti priimtina, kai modelių

šeima per vieną sesiją išsprendžiama kelis kartus, o kompiliavimo

išlaidos patiriamos tik pirmą kartą išsprendus egzempliorių.

(e) AMPL, būdama vienintelė AML, palaikanti išankstinį sprendimą,

52,8 % atvejų supaprastino modelius, iš kurių 5 kartus iš 7 galėjo

nustatyti, kad problema neturi sprendinio, taip net nereikalaujant

iškviesti sprendėjo. Vidutiniškai pritaikius AMPL išankstinį

sprendimą pavyko sumažinti modelio dydį pašalinant 18,42 %

apribojimų ir 10,73 % kintamųjų. AMPL išankstinis sprendimas

padarė teigiamą įtaką 26,43 % atvejų iteracijų ir 47,86 % atvejų

laiko atžvilgiu. Tačiau tai padarė neigiamą poveikį 20,71 %

atvejų iteracijų ir 23,57 % atvejų laiko atžvilgiu. Visgi teigiamas

poveikis yra didesnis nei neigiamas, ypač tais atvejais, kai

sprendėjas neturi problemų sprendimo algoritmų.

Trumpos žinios apie disertantą

Vaidas Jusevičius gimė 1986 m. gegužės 20 d. Vilniuje. 2005 m. baigė

Vilniaus Žemynos gimnaziją. Vilniaus Universiteto Matematikos ir

Informatikos fakultete įgijo informatikos bakalauro laipsnį (2009 m.) ir

informatikos magistro laipsnį (2011 m.). 2017 – 2021 m. buvo Vilniaus

Universiteto doktorantas. Nuo 2012 m. dėsto Vilniaus Universiteto

Matematikos ir Informatikos fakulteto Programų sistemų katedroje.

138

ACKNOWLEDGMENTS

I want to express my deepest appreciation to my scientific supervisor Prof. Dr.

Remigijus Paulavičius, as this work would not have been possible without his

guidance and support.

I am grateful to both dissertation reviewers, Doc. Dr. Algirdas Lančinskas

and Prof. Dr. Dmitrij Šešok, who carefully read the dissertation and provided

valuable advice and critical remarks, which helped improve the manuscript’s

final quality.

I sincerely thank my parents Rima and Vitalijus for their support, even in

the most challenging moments, and my colleagues Mónica and Sophia who

always motivated me to move forward.

139

PUBLICATIONS BY THE AUTHOR

Articles in the reviewed scientific periodical publications:

1. Vaidas Jusevičius and Remigijus Paulavičius. ”Web-Based Tool for

Algebraic Modeling and Mathematical Optimization”. Mathematics,

2021, 9 (21), 2751. DOI: 10.3390/math9212751.

2. Vaidas Jusevičius, Richard Oberdieck and Remigijus Paulavičius.

”Experimental Analysis of Algebraic Modelling Languages for

Mathematical Optimization”. Informatica, 2021, 32 (2), 283–304.

DOI: 10.15388/21-INFOR447.

140

NOTES

NOTES

Vaidas Jusevičius

ATVIROJO KODO ALGEBRINIO MODELIAVIMO IR MATEMATINIO

OPTIMIZAVIMO SISTEMOS KŪRIMAS IR TYRIMAS

Daktaro disertacijos santrauka

Gamtos mokslai

Informatika (N 009)

Redaktorė Rūta Anusevičienė

Vaidas Jusevičius

RESEARCH AND DEVELOPMENT OF AN OPEN-SOURCE

ALGEBRAIC MODELING AND MATHEMATICAL OPTIMIZATION

SYSTEM

Doctoral Dissertation

Natural Sciences

Informatics (N 009)

Editor Vydas Geidrichis

Vilniaus universiteto leidykla

Saulėtekio al. 9, III rūmai, LT-10222 Vilnius

El. p. info@leidykla.vu.lt, www.leidykla.vu.lt

bookshop.vu.lt, journals.vu.lt

Tiražas 20 egz.

	INTRODUCTION
	Research Context And Motivation
	The object of the Thesis
	Aims and Tasks of the Research
	Research Methodology
	Scientific Novelty of the Work
	Defended Statements
	Approbation of the Research
	Structure of the Dissertation

	MATHEMATICAL OPTIMIZATION AND ALGEBRAIC MODELING LANGUAGES
	Types of mathematical optimization problems
	Examples of mathematical optimization problems
	Algebraic modeling languages
	An instance of a concrete problem
	Formulation of a concrete problem using AML

	Essential characteristics of AMLs
	Most prominent AMLs
	Related literature review
	Methodology
	Findings of literature review

	Conclusions

	COMPARATIVE ANALYSIS OF ALGEBRAIC MODELING LANGUAGES
	Overview of existing AML software
	Comparative analysis of the features
	Support for general features
	Support for parallelism

	Conclusions

	EXPERIMENTAL ANALYSIS OF ALGEBRAIC MODELING LANGUAGES
	Practical comparison of AMLs
	Library of practical optimization problems
	Content of the library
	Building the library
	Findings

	Benchmarks
	Model instance creation time
	JuMP benchmark
	Presolving benchmark
	Presolve impact on solving

	Summary of findings
	Conclusions

	DIFFERENCES AND SHORTCOMINGS OF ALGEBRAIC MODELING LANGUAGES
	Reproducibility of results
	Features and compatibility
	Solvers
	Performance
	Summary of findings
	Conclusions

	UNIVERSAL OPTIMIZATION SYSTEM
	Key concepts of the universal optimization system
	WebAML language
	Prototype of the universal optimization system
	Extending the prototype
	Comparison with AMLs
	Conclusions

	GENERAL CONCLUSIONS
	REFERENCES
	APPENDIX Models of the transportation problem
	APPENDIX Component diagram of the prototype
	SUMMARY IN LITHUANIAN
	ACKNOWLEDGMENTS
	PUBLICATIONS BY THE AUTHOR

