
VILNIUS UNIVERSITY

Konstantinas

KOROVKINAS

Hybrid Method for Textual Data Sentiment
Analysis

DOCTORAL DISSERTATION

Natural Sciences
Informatics N 009

VILNIUS 2020

This dissertation was written between 2015–2020 at Vilnius University.

Scientific supervisor:
Prof. Dr. Gintautas Garšva (Vilnius University, Natural Sciences,
Informatics – N 009).

VILNIAUS UNIVERSITETAS

Konstantinas

KOROVKINAS

Hibridinis tekstiniu↪ duomenu↪ metodas
nuomoniu↪ analizei

DAKTARO DISERTACIJA

Gamtos mokslai
Informatika N 009

VILNIUS 2020

Disertacija rengta 2015–2020 metais Vilniaus universitete.

Mokslinis vadovas:
prof. dr. Gintautas Garšva (Vilniaus universitetas, gamtos mokslai,
informatika – N 009).

SUMMARY

Textual data sentiment analysis became very popular when people started
using the Internet. Nowadays if you want to get an opinion about surveys,
social, economic and others events, you can find all information you need on
the Internet. The main goal of research related to sentiment analysis is to
obtain authors’ feelings expressed in positive or negative comments. This
dissertation focuses on machine learning methods for textual data sentiment
analysis in large scale datasets. The goal of the research is to propose a hy-
brid sentiment analysis method with a recommended set of parameters for
large textual data with a better execution time and with a similar classi-
fication accuracy compared with classical methods. The proposed hybrid
method is a combination of four methods: classical machine learning algo-
rithm, k-Means clustering, particle swarm optimization metaheuristic and
ensemble, which are integrated into acceleration method – SpeedUP. The
SpeedUP method is the main method, which automatically performs all
parts of the proposed hybrid method, based on specified parameters, which
are recommended in this research and are set as default in the SpeedUP
method. The proposed hybrid method is tested with well-known classical
machine learning algorithms: multinomial näıve Bayes, logistic regression,
linear support vector machine, decision tree and random forest. The results
obtained are compared with a focus on evaluating classification accuracy
and their significance is tested with Welch’s t-test, which is used in statis-
tics to test the hypothesis. The hybrid method is employed and experimen-
tal research is conducted with Python programming language (v3.6.2) and
scikit-learn1 (v0.19.2) – library for machine learning.

The dissertation consists of four chapters, general conclusions, and
a list of references and appendices. The scope of the dissertation is 170
pages including 55 tables and 33 figures. The list of references contains 212
various sources, including books, scientific papers, patents, technical reports
and Internet sources.

The results of this research were presented at three international and
two national scientific conferences. Three papers have been published in
reviewed journals (one journal is included in ISI Web of Science database),
four in periodical conference proceedings and one abstract in conference
abstracts proceedings.

1https://scikit-learn.org/

5

https://scikit-learn.org/

SANTRAUKA

Nuomoniu↪ analizė tapo populiari tada, kai žmonės pradėjo naudotis inter-
netu. Šiais laikais, jei norima susidaryti nuomon ↪e apie apklausas, sociali-
nius, ekonominius ir kt. i↪vykius, jos ieškoma internete. Pagrindinis tyrimu↪,
susijusiu↪ su nuomoniu↪ analize, tikslas – gauti nuomon ↪e, ǐsreikšt ↪a teigia-
mais ar neigiamais komentarais. Disertacijoje nagrinėjami mašininio moky-
mosi metodai, skirti tekstiniu↪ duomenu↪ nuomoniu↪ analizei didelės apimties
duomenyse. Tyrimo tikslas – pasiūlyti hibridini↪ nuomoniu↪ analizės metod ↪a
su rekomenduojamu↪ parametru↪ rinkiniu dideliems tekstiniams duomenims,
kurio vykdymo greitis būtu↪ spartesnis, o klasifikavimo tikslumas – panašus,
lyginant su klasikiniais metodais. Pasiūlyt ↪a hibridini↪ metod ↪a sudaro ke-
turios dalys: klasikinis mašininio mokymosi algoritmas, k-Means klasteri-
zavimas, daleliu↪ spiec̆iaus optimizavimo metaeuristika ir ansamblis. Šios
dalys yra integruotos i↪ spartinimo metod ↪a SpeedUP, kuris automatǐskai
vykdo visas pasiūlyto hibridinio metodo dalis, priklausomai nuo nurodytu↪
parametru↪, kurie rekomenduojami šiame tyrime bei nustatyti kaip numaty-
tieji SpeedUP metode. Pasiūlytas hibridinis metodas yra testuojamas su
gerai žinomais klasikiniais mašininio mokymosi algoritmais: daugialypiu
naiviuoju Bajesu, logistine regresija, tiesine atraminiu↪ vektoriu↪ mašina, at-
sitiktiniu mǐsku ir sprendimu medžiu. Gauti rezultatai lyginami vertinant
tekstiniu↪ duomenu↪ klasifikavimo tikslum ↪a, o gauto tikslumo reikšmingu-
mas yra i↪vertinamas atliekant Welcho t-test ↪a, kuris statistikoje naudojamas
hipotezėms tikrinti. Hibridiniui metodui kurti ir eksperimentiniam tyrimui
naudojami Python programavimo kalba (v3.6.2) ir scikit-learn1 (v0.19.2):
mašininio mokymosi biblioteka.

Disertacij ↪a sudaro 4 skyriai, bendrosios ǐsvados, literatūros s ↪arašas
ir priedai. Disertacijos apimtis - 170 puslapiu↪, 55 lentelės ir 33 paveikslai.
Literatūros s ↪araš ↪a sudaro 212 i↪vairiu↪ šaltiniu↪, i↪skaitant knygas, mokslinius
straipsnius, patentus, technines ataskaitas ir interneto šaltinius.

Tyrimo rezultatai pristatyti trijose tarptautinėse konferencijose ir
dviejose konferencijose Lietuvoje. Disertacijos tema paskelbti trys straips-
niai recenzuojamuose žurnaluose (1 žurnalas yra i↪trauktas i↪ ISI Web of
Science duomenu↪ baz ↪e), keturi straipsniai – periodiniuose konferenciju↪ leidi-
niuose, 1 santrauka konferenciju↪ santrauku↪ leidinyje.

6

ACKNOWLEDGEMENTS

I would like to express my very great appreciation to my scientific supervi-
sor Prof. Dr. Gintautas Garšva for his patience, motivation and for the
guidance throughout the research and writing of this dissertation.

I would also like to thank the reviewers Prof. Dr. Gintautas
Dzemyda and Dr. Virginijus Marcinkevic̆ius for their valuable and con-
structive commentaries.

I wish to acknowledge the contributions to my papers’ co-author Dr.
Paulius Danėnas for advice and discussions which led to this research.

I would like to thank my family for their support, patience and un-
derstanding throughout my study.

And finally, I wish to thank all the people who were directly or indi-
rectly involved in the preparation of this dissertation.

Konstantinas Korovkinas

7

TABLE OF CONTENTS

LIST OF TABLES . 10
LIST OF FIGURES . 13
LIST OF ABBREVIATIONS . 15
1 INTRODUCTION . 17

1.1 Research context . 17
1.2 Research problem . 18
1.3 Object of the research . 18
1.4 Goal and objectives of the research 18
1.5 Research methodology and tools 19
1.6 Scientific novelty . 19
1.7 Practical significance . 20
1.8 Defended statements . 21
1.9 Presentation and approbation of the results 21
1.10 Structure of the dissertation 22

2 TEXTUAL DATA SENTIMENT ANALYSIS USING MACHINE
LEARNING . 23
2.1 Sentiment analysis . 23
2.2 Machine learning in sentiment analysis 24
2.3 Relevant methods and reviews 28

2.3.1 Multinomial näıve Bayes 28
2.3.2 Logistic regression . 30
2.3.3 Linear support vector machines 32
2.3.4 Random forest . 34
2.3.5 Training dataset reduction 36
2.3.6 Hyperparameter optimization 38
2.3.7 Ensemble methods . 42
2.3.8 Natural language processing 43

2.3.8.1 Features extraction 43
2.3.8.2 N-grams . 44
2.3.8.3 Part of speech tagging 44
2.3.8.4 Text preprocessing 45

2.4 Conclusions of Chapter 2 . 51
3 METHODOLOGY OF THE RESEARCH 53

3.1 Proposed hybrid method . 53
3.1.1 SpeedUP method . 56
3.1.2 k-Means clustering . 58
3.1.3 PSO tuning method 61
3.1.4 Ensemble method . 65

3.2 Datasets . 67

8

3.3 Performance evaluation . 69
3.3.1 Effectiveness . 69
3.3.2 Ranking . 70
3.3.3 Statistical significance 70

3.4 Conclusions of Chapter 3 . 72
4 EXPERIMENTS AND RESULTS 73

4.1 Experimental cycles . 73
4.1.1 Experiment cycle with classical machine learning al-

gorithms . 75
4.1.1.1 Experimental settings 75
4.1.1.2 Results . 77

4.1.2 Experiment cycle with SpeedUP 80
4.1.2.1 Experimental settings 80
4.1.2.2 Results . 83

4.1.3 Experiment cycle with k-Means clustering 93
4.1.3.1 Experimental settings 93
4.1.3.2 Results . 96

4.1.4 Experiment cycle with the full proposed hybrid method 99
4.1.4.1 Experimental settings 99
4.1.4.2 Results . 102

Hybrid method for textual data sentiment classification . . . 116
4.1.5 Experiment cycle of the comparison of the results . . . 117

4.1.5.1 Experimental settings 117
4.1.5.2 Results . 118

4.1.6 Experiment cycle with real-world data 120
4.1.6.1 Experimental settings 120
4.1.6.2 Results . 123

4.2 Conclusions of Chapter 4 . 126
GENERAL CONCLUSIONS . 129
REFERENCES . 131
Appendix A Default parameters of machine learning algorithms . . . 153
Appendix B Classification results . 158

9

LIST OF TABLES

2.1 Averaged accuracy of machine learning algorithms, based on
related work reviews . 28

2.2 TF-IDF values . 50
3.1 Description of datasets . 69
3.2 Meaning of the review . 69
4.1 Fold size of training and testing data in sentiment140 and

AmazonTest datasets . 76
4.2 Averaged effectiveness metrics and ranks of classical ML algo-

rithms in the experiment cycle with classical machine learning
algorithms . 77

4.3 Training and testing data sizes depending on Subsetsize for
SpeedUP . 82

4.4 Averaged effectiveness metrics and ranks of ML 30K SpeedUP
in the experiment cycle with SpeedUP 83

4.5 Averaged effectiveness metrics and ranks of ML 60K SpeedUP
in the experiment cycle with SpeedUP method 86

4.6 Averaged effectiveness metrics and ranks of ML 120K SpeedUP
in the experiment cycle with SpeedUP 88

4.7 Averaged effectiveness metrics and ranks of ML 180K SpeedUP
in the experiment cycle with SpeedUP 89

4.8 Averaged effectiveness metrics of ML s SpeedUP and classi-
cal ML algorithms on sentiment140 in the experiment cycle
with SpeedUP . 89

4.9 Averaged effectiveness metrics of ML s SpeedUP and classi-
cal ML algorithms on AmazonTest in the experiment cycle
with SpeedUP . 91

4.10 Training and testing data sizes for ML km 30K SpeedUP . . 95
4.11 Averaged effectiveness metrics of ML 30K SpeedUP and ML

km 30K SpeedUP in the experiment cycle with k-Means clus-
tering . 97

4.12 Accuracy comparison between ML 30K SpeedUP and ML km
30K SpeedUP in the experiment cycle with k-Means cluster-
ing using Welch’s t-test . 98

4.13 Averaged effectiveness metrics of ML km 30K SpeedUP, MLn

km 30K SpeedUP and classical ML algorithms in the exper-
iment cycle with the full proposed hybrid method on senti-
ment140 . 102

10

4.14 Averaged effectiveness metrics of ML km 30K SpeedUP, MLn

km 30K SpeedUP and classical ML algorithms in the exper-
iment cycle with the full proposed hybrid method on Ama-
zonTest . 103

4.15 Accuracy comparison between ML km 30K SpeedUP and ML3
km 30K SpeedUP in the experiment cycle with the full pro-
posed hybrid method using Welch’s t-test 105

4.16 Accuracy comparison between ML3 km 30K SpeedUP and
ML5 km 30K SpeedUP in the experiment cycle with the full
proposed hybrid method using Welch’s t-test 106

4.17 Accuracy comparison between classical ML and ML5 km 30K
SpeedUP in the experiment cycle with the full proposed hy-
brid method using Welch’s t-test 107

4.18 Accuracy comparison between LSVM5 km 30K SpeedUP and
LR5 km 30K SpeedUP in the experiment cycle with the full
proposed hybrid method using Welch’s t-test 107

4.19 Results of PSO tuning on sentiment140 dataset performed
for LSVM km 30K SpeedUP 109

4.20 Results of PSO tuning on the sentiment140 dataset performed
for LR km 30K SpeedUP . 110

4.21 Averaged effectiveness metrics of ML km 30K SpeedUP and
MLPSO km 30K SpeedUP on the sentiment140 in the exper-
iment cycle with the full proposed hybrid method 110

4.22 Accuracy comparison between MLPSO km 30K SpeedUP and
ML km 30K SpeedUP in the experiment cycle with the full
proposed hybrid method using Welch’s t-test 111

4.23 Results of PSO tuning on AmazonTest performed for LSVM
km 30K SpeedUP . 112

4.24 Averaged effectiveness metrics of LSVM km 30K SpeedUP
and LSVMPSO km 30K SpeedUP on the AmazonTest in the
experiment cycle with the full proposed hybrid method 113

4.25 Averaged effectiveness metrics of the proposed hybrid method 114
4.26 Accuracy comparison between the proposed hybrid method

with different parts enabled/disabled using Welch’s t-test . . 115
4.27 Advantage of proposed method compared to existing methods

for research problem . 117
4.28 Training and testing data sizes of the experiment cycle of the

comparison of the results . 118
4.29 Training and testing data sizes for the comparison when a

classical LSVM with PSO tuning is used 118
4.30 Comparison of the results with other authors’ research 119
4.31 The description of datasets 122
4.32 Training and testing data sizes 122

11

4.33 Averaged effectiveness metrics of LSVMPSO s SpeedUP, LSVMRS,
LSVMBopt and classical LSVM in the experiment cycle with
real-world data . 123

4.34 Accuracy comparison between LSVMPSO s SpeedUP, LSVMRS,
LSVMBopt and classical LSVM in the experiment cycle with
real-world data using Welch’s t-test 125

4.35 Result comparison between the original sources, manually la-
beled data and ML methods 125

B.1 ML km 30K SpeedUP ranking results of the experiment cy-
cle with k-Means clustering 158

B.2 Accuracy of ML 30K SpeedUP and ML km 30K SpeedUP
in each CV fold of the experiment cycle with k-Means clustering159

B.3 ML3 km 30K SpeedUP ranking results of the experiment cy-
cle with the full proposed hybrid method 159

B.4 ML5 km 30K SpeedUP ranking results of the experiment cy-
cle with the full proposed hybrid method 160

B.5 Accuracy of ML km 30K SpeedUP and ML3 km 30K SpeedUP
in each CV fold of the experiment cycle with the full proposed
hybrid method . 161

B.6 Accuracy of ML3 km 30K SpeedUP and ML5 km 30K SpeedUP
in each CV fold of the experiment cycle with the full proposed
hybrid method . 162

B.7 Accuracy of LSVM5 km 30K SpeedUP and LR5 km 30K SpeedUP
in each CV fold of the experiment cycle with the full proposed
hybrid method . 162

B.8 Accuracy of ML5 km 30K SpeedUP and classical ML algo-
rithm in each CV fold of the experiment cycle with the full
proposed hybrid method . 163

B.9 Accuracy of ML km 30K SpeedUP and MLPSO km 30K SpeedUP
in each CV fold of the experiment cycle with the full proposed
hybrid method . 163

B.10 Results of PSO tuning on sentiment140 dataset performed
with LSVM . 163

B.11 Results of PSO tuning on AmazonTest dataset performed
with LSVM . 165

B.12 Results of PSO tuning performed for classical LSVM 166
B.13 Accuracy of the proposed hybrid method in each CV fold of

the experiment cycle with the full proposed hybrid method . 167
B.14 C values obtained by PSO tuning, random search and Bayesian

optimization of the experiment cycle with real-world data . . 168
B.15 Accuracy of ML in each CV fold of the experiment cycle with

real-world data . 168
B.16 Normal distribution . 168

12

LIST OF FIGURES

3.1 Proposed hybrid method . 54
3.2 Diagram of the SpeedUP method 57
3.3 Diagram of the k-Means clustering method 59
3.4 Diagram of the PSO tuning method 62
3.5 Diagram of the ensemble method 66
4.1 Diagram of the experiment cycle with classical machine learn-

ing algorithms . 76
4.2 Effectiveness metrics of classical ML algorithms on senti-

ment140 dataset . 78
4.3 Effectiveness metrics of classical ML algorithms on Amazon-

Test dataset . 79
4.4 Execution time of classical ML algorithms on both datasets . 79
4.5 Diagram of the experiment cycle with SpeedUP 81
4.6 Diagram of the CV1 in the experiment cycle with SpeedUP . . 81
4.7 Accuracy of the ML 30K SpeedUP and classical ML algorithms 84
4.8 Execution time of ML 30K SpeedUP and classical ML algo-

rithms . 85
4.9 Accuracy of ML 30K SpeedUP, ML 60K SpeedUP and clas-

sical ML algorithms . 87
4.10 Execution time of ML 30K SpeedUP, ML 60K SpeedUP and

classical ML algorithms . 87
4.11 Effectiveness metrics of LSVM s SpeedUP and classical LSVM

on sentiment140 . 90
4.12 Effectiveness metrics of LR s SpeedUP and classical LR on

sentiment140 . 90
4.13 Effectiveness metrics of LSVM s SpeedUP and classical LSVM

on AmazonTest . 91
4.14 Effectiveness metrics of LR s SpeedUP and classical LR on

AmazonTest . 92
4.15 Execution time of ML s SpeedUP and classical ML algo-

rithms on both datasets . 92
4.16 Diagram of the CV1 in the experiment cycle with k-Means

clustering . 94
4.17 Number of cluster selection results 96
4.18 Accuracy of ML 30K SpeedUP and ML km 30K SpeedUP . 97
4.19 Diagram of the CV1 in the experiment cycle with the full

proposed hybrid method . 100
4.20 Diagram of the CV1 in the extended experiment cycle with

the full proposed hybrid method 101

13

4.21 Accuracy of the ML km 30K SpeedUP, MLn km 30K SpeedUP
and classical ML algorithms 104

4.22 Results of PSO tuning on the sentiment140 dataset performed
with LSVM . 108

4.23 Results of PSO tuning on the sentiment140 dataset performed
with LR . 109

4.24 Results of PSO tuning on the AmazonTest dataset performed
with LSVM . 112

4.25 Averaged effectiveness metrics of the full proposed hybrid
method . 114

4.26 Diagram of the experiment cycle with real-world data 121
4.27 Accuracy of LSVMPSO s SpeedUP, LSVMRS, LSVMBopt and

classical LSVM in the experiment cycle with real-world data 124
4.28 Percentage results of “positive” and “negative” opinions ob-

tained by the sources and ML methods in the experiment
cycle with real-world data . 126

14

LIST OF ABBREVIATIONS

ACC Accuracy
AmazonProduct Amazon product data dataset
AmazonTest Amazon customer reviews dataset
AUC Area under the receiver operating characteristics
Books Books dataset
Bopt Bayesian optimization
CFM Contextual factorization machine
CNN Convolutional neural network
CV Cross-validation
DNN Deep neural network
DT Decision tree
Electronics Electronics dataset
Event Event dataset
Expr Expression
F1score Harmonic mean of PPV and TPR
FM Factorization machine
GridSearchCV Cross-validated grid search
k-Means K-means clustering
KindleStore Kindle store dataset
LabeledData Manually selected and labeled data
LR Logistic regression
LR-BoW Logistic regression with bag-of-words
LR-WE Logistic regression with word embeddings
LSVM Linear support vector machine
MaxEnt Maximum entropy
ML Machine learning
MNB Multinomial näıve Bayes
NB Näıve Bayes
NLP Natural language processing
NN Neural network
NPV Precision. Negative predictive value
Person Public person dataset
PFM Position-aware factorization machine
Phones&Accessories Cell phones and accessories dataset
POS Part of speech tagging
PPV Precision. Positive predictive value
PSO Particle swarm optimization

15

RF Random forest
RS Random search
SA Sentiment analysis
sentiment140 Stanford Twitter sentiment corpus dataset
SGD Stochastic gradient descent
Source1 Vilmorus ltd
Source2 Baltic Surveys
SVM Support vector machine
SVM-BoW Support vector machine with bag-of-words
SVM-Poly Support vector machine with the poly kernel
SVM-WE Support vector machine with word embeddings
TF-IDF Term frequency-inverse document frequency
TNR Recall. True negative rate
TPR Recall. True positive rate

NOTATION

α Significance level (α = 0.05)
µ Mean
d Mean difference between two groups
C Penalty (cost) parameter of the error term
SE Estimated standard error of the mean
Splitratio Variable calculated dependently on training and

testing data split ratio expressed in percentage –
(Training data(%)/Testing data(%))

SQ Subsets quantity
Ss Subset size
S Standard deviation
ttable Value from the t-distribution table
TDs Testing data size

16

1. INTRODUCTION

1.1 Research context

Textual data sentiment analysis (SA) became very popular when people
started using the Internet, to be more concrete when e-shops and social
networks, blogs and other platforms appeared where people could write
their comments. Nowadays if you want to get an opinion about surveys,
social, economic and others events, you can find all information you need
on the Internet. The main goal of research related to sentiment analysis
is to obtain authors’ feelings expressed in positive or negative comments.
This analysis is performed at multiple levels: document, sentence, and as-
pect. According to Pang and Lee [1], the term “sentiment” appeared in
papers [2, 3] in 2001 and subsequently in papers [4, 5] in 2002. Opinion
mining is another term in certain respects parallel to sentiment analysis
that appeared in the 2003 paper by Dave et al. [6]. They described an
ideal opinion-mining tool that “would process set of search results for the
given item, generating a list of product attributes (quality, features, etc.)
and aggregating opinions about each of them (poor, mixed, good)” [6]. Liu
[7] gives a definition of sentiment analysis. He described it as “the field
of study that analyzes people’s opinions, sentiments, appraisals, attitudes,
and emotions toward entities and their attributes expressed in written text”.
According to him, this field represents a huge problem space due to “many
related names and slightly different tasks”. “Sentiment analysis, opinion
mining, opinion analysis, opinion extraction, sentiment mining, subjectivity
analysis, affect analysis, emotion analysis, and review mining”, according to
Liu, are “all under the umbrella of sentiment analysis”. Basically, sentiment
analysis is divided into lexicon-based methods and machine learning (ML)
methods [8]. The authors also mixed aforementioned methods to achieve
better results. The lexicon-based approach involves calculating orientation
for a document from the semantic orientation of words or phrases in the
document [4, 9]. At the present time the popularity of sentiment analysis
has greatly increased and is still growing, because of a huge amount of text
data, which is accessible on the Internet and could be very useful for com-
panies, users etc. The usage of lexicon-based methods for a huge amount
of data extracted from social media websites is not very effective, because
of their unstructured format and the data can contain textual peculiarities,
informal and dynamic nature of language, new slang, abbreviations, and
new expressions [10]. Also, it could significantly increase computational
costs. However, this dissertation investigates sentiment classification using
machine learning methods.

17

1.2 Research problem

Sentiment analysis of text is considered as a very challenging area: although
a lot of work has been done in this field, accuracy (ACC) is still rather av-
erage due to comments, slang, smiles etc. We need to understand the whole
context of the sentence, because even a single word can change the polarity
of a sentence, and this might have a significant impact especially in cur-
rently sensitive domains such as medicine, business etc. Another problem
which is faced in this area is a huge data amount. If a customer needs to
get an opinion about a product, hotel, flight etc. – it becomes a very hard
task. In the case of a large volume of data the performance of machine
learning algorithms decreases depending on the dataset size – the higher
the number of features is, the longer computation time it requires. In or-
der to solve this problem, researchers use various techniques: parallelism,
implementation on graphics processor unit (comparison between graphics
processor unit and central processing unit presented in [A6]), using cloud
computing technology, selecting only representative data for training etc.
This leads to another problem – the need for special hardware or a more
powerful computer, cloud provider with required software etc. This dis-
sertation investigates the problem of big computational costs achieved by
machine learning algorithms on large scale textual datasets. Therefore, the
main focus is on increasing execution speed without or with a slight loss of
accuracy and without the need of special software or hardware.

1.3 Object of the research

The main object of this research is the textual data classification meth-
ods, their execution speed and accuracy in large scale datasets, sentiment
analysis.

1.4 Goal and objectives of the research

The goal of the research is to propose a hybrid sentiment analysis method
with a recommended set of parameters for large textual data with a better
execution time and with a similar classification accuracy compared with
classical methods.

The objectives of the dissertation are:

1. To propose a hybrid method that increases the classification speed of
the selected classical machine learning algorithms, which are commonly
used for textual data sentiment analysis with a similar classification
accuracy.

18

2. To perform the experimental evaluation of the method proposed and
select the recommended set of parameters for it, as well as to improve
classification accuracy.

3. To perform a comparison of the proposed hybrid method with other
authors’ works on large scale textual datasets and evaluate obtained
results.

1.5 Research methodology and tools

The following methods were used:

1. Bibliographic research on the sentiment analysis field helped to formu-
late the research tasks and goals.

2. Analysis of related works helped to select machine learning algorithms
for the proposed hybrid method.

3. Proposed hybrid method for textual data sentiment analysis is de-
scribed in Chapter 3.

4. Experimental research methodology and experimental research for com-
parative analysis of the proposed method are described in Chapter 4.

5. Formulation of conclusions after each chapter and general conclusions
at the end of research.

For the proposed hybrid method development and performing exper-
imental research the following were used: Python programming language
and scikit-learn [11] – library for machine learning. For the dissertation
LaTeX2, a document preparation system was used; for the presentation of
graphical results and diagrams latex Tikz3 package was employed.

1.6 Scientific novelty

In this dissertation a hybrid method for textual data sentiment analysis
with a recommended set of parameters suitable for large scale datasets is
proposed. The method consists of the following:

1. SpeedUP method – this is the main part of the proposed hybrid method,
whose aim is to increase the classification speed of classical machine
learning algorithms.

2. k-Means clustering method – this method is responsible for training
data selection.

3. PSO tuning method – this method performs hyperparameters tuning
for linear support vector machine (LSVM).

2https://www.latex-project.org/
3https://www.overleaf.com/learn/latex/TikZ_package

19

https://www.latex-project.org/
https://www.overleaf.com/learn/latex/TikZ_package

4. Ensemble method – this is the last part of the proposed hybrid method,
which performs combination and voting of the machine learning algo-
rithms.

In this dissertation, machine learning algorithms for textual data
sentiment analysis were reviewed and five most common were selected. Ef-
fectiveness metrics, average ranking and statistical significance were per-
formed with selected machine learning algorithms.

Based on experimental results the recommended set of parameters
for the proposed hybrid method was selected and presented. The results
showed that the proposed method increased the classification speed of clas-
sical machine learning algorithms on large scale textual datasets with slight
loses in terms of accuracy; it is also competitive with state-of-the-art meth-
ods.

Unlike the techniques proposed previously, SpeedUP automatically
performs all parts of the proposed hybrid method, based on specified pa-
rameters, which are recommended in this research and are set as default
in the SpeedUP method. Depending on the determined size of a subset,
the size of training data is calculated; depending on it the k-Means method
automatically selects the appropriate amount of training data (in the case
of an ensemble method it selects as many training datasets as the selected
number of classifiers) and passes it to LSVM input; if the k-Means method is
switched off datasets will be selected randomly. PSO automatically selects
a C parameter for LSVM and its training is performed with this parameter;
in the case of ensemble the same number of C parameters and classifiers is
also selected. All calculations, training data selection, testing dataset di-
viding into subsets, tuning of the hyperparameters, joining ML algorithms
to ensembles, joining of results and voting are performed automatically by
the SpeedUP method.

The proposed method can be applied to classify textual data sen-
timents and is suitable to work with large scale datasets without using
supercomputers.

1.7 Practical significance

Since sentiment analysis of text is still a very challenging area and at the
same time it is very widely applicable in practice for product reviews, cus-
tomer churn prediction, fraud detection, election etc., the proposed hybrid
method could be:

1. Successfully applied in these areas for the development of new models
or for improving the existing ones.

2. Be suitable for work with large scale textual datasets and allows clas-
sifying sentiment without using high-performance computers.

20

3. Be useful with surveys, because opinions are taken from social net-
works, articles comments etc., which allows forming different opinions
on the current topic.

1.8 Defended statements

1. The proposed hybrid method for textual data sentiment analysis in
large scale datasets can increase the classification speed of classical
machine learning algorithms such as linear support vector machine,
logistic regression (LR), decision tree (DT) and random forest (RF),
whereas losses in terms of accuracy are not very great.

2. The best results are achieved when the proposed method with the rec-
ommended set of parameters is used with LSVM, compared with those
when it is employed with multinomial näıve Bayes (MNB), logistic re-
gression, decision tree and random forest.

3. The proposed hybrid method could be used as an alternative method
on large scale textual datasets for classical and state-of-the-art meth-
ods which are used by other authors. Moreover, PSO tuning method
could be competitive with such popular methods as random search
(RS) and Bayesian optimization (Bopt).

1.9 Presentation and approbation of the results

International conferences

1. The Symposium for Young Scientists in Technology, Engineering and
Mathematics (SYSTEM 2018), The 23th Conference for Master and
PhD students, Gliwice, Poland, 2018.

2. The 24th International Conference on Information and Software Tech-
nologies (ICIST 2018), Kaunas, Lithuania, 2018.

3. The Baltic DB&IS 2020 Doctoral Consortium, Tallinn, Estonia, 2020.

National conferences

1. Information Technologies (IT 2018), The 23th Conference for Master
and PhD students, Kaunas, Lithuania, 2018.

2. 10th International Workshop Data Analysis Methods for Software Sys-
tems (DAMSS 2018), Druskininkai, Lithuania, 2018.

Publications
Papers in periodic scientific journals:

[A1] Korovkinas, K., Danėnas, P., Garšva, G., 2017. SVM and Näıve Bayes
Classification Ensemble Method for Sentiment Analysis. Baltic Jour-
nal of Modern Computing, 5(4), pp. 398–409.

21

[A2] Korovkinas, K., Danėnas, P., Garšva, G., 2019. SVM and k-Means
Hybrid Method for Textual Data Sentiment Analysis. Baltic Journal
of Modern Computing, 7(1), pp. 47–60.

[A3] Korovkinas, K., Danėnas, P., Garšva, G., 2020. Support Vector Ma-
chine Parameter Tuning Based on Particle Swarm Optimization Meta-
heuristic. Nonlinear Analysis: Modelling and Control, 25(2), pp. 266–
281.

Papers in peer-reviewed scientific conference proceedings:

[A4] Korovkinas, K., Danėnas, P., Garšva, G., 2018. SVM Accuracy and
Training Speed Trade-Off in Sentiment Analysis Tasks. In Interna-
tional Conference on Information and Software Technologies, Springer,
Cham, pp. 227–239

[A5] Korovkinas, K., Garšva, G., 2018. Selection of Intelligent Algorithms
for Sentiment Classification Method Creation. Proceedings of the In-
ternational Conference on Information Technologies, Vol–2145, Kau-
nas, Lithuania, pp. 152–157, ISSN 1613-0073, CEUR. Available: http:
//ceur-ws.org/Vol-2145/p26.pdf

[A6] Vaitonis, M., Masteika, S., Korovkinas, K. 2018. Algorithmic Trading
and Machine Learning Based on GPU. Proceedings of the Sympo-
sium for Young Scientists in Technology, Engineering and Mathemat-
ics, Vol–2147, Gliwice, Poland, pp. 49–54, ISSN 1613-0073, CEUR.
Available: http://ceur-ws.org/Vol-2147/p09.pdf

[A7] Korovkinas, K. 2020. A Hybrid Method for Textual Data Classification
Based on Support Vector Machine with Particle Swarm Optimization
Metaheuristic and k-Means Clustering. Proceedings of Baltic DB&IS
2020 Doctoral Consortium, Vol–2620, Tallinn, Estonia, pp. 81–88,
ISSN 1613-0073, CEUR. Available: http://ceur-ws.org/Vol-2620/
paper11.pdf

Abstracts in conference proceedings:

1. Korovkinas, K., Garšva, G., 2018. Large Scale Sentiment Analysis
Using NLP Based Feature Extraction Technique and PSOLinearSVM.
Data analysis methods for software systems: 10th international work-
shop, Druskininkai, 2018. ISBN 978-609-07-0043-3. Available: https:
//www.journals.vu.lt/proceedings/article/view/12634/11171

1.10 Structure of the dissertation

The dissertation consists of four chapters, general conclusions, a list of ref-
erences and appendices. The scope of dissertation is 170 pages including 55
tables and 33 figures. The list of references contains 212 various sources,
including books, scientific papers, patents, technical reports and Internet
sources.

22

http://ceur-ws.org/Vol-2145/p26.pdf
http://ceur-ws.org/Vol-2145/p26.pdf
http://ceur-ws.org/Vol-2147/p09.pdf
http://ceur-ws.org/Vol-2620/paper11.pdf
http://ceur-ws.org/Vol-2620/paper11.pdf
https://www.journals.vu.lt/proceedings/article/view/12634/11171
https://www.journals.vu.lt/proceedings/article/view/12634/11171

2. TEXTUAL DATA SENTIMENT ANALYSIS USING
MACHINE LEARNING

In this chapter, machine learning algorithms, which are most commonly
used for textual data sentiment classification are reviewed. According to
reviews, five machine learning algorithms will be selected for experiments.
Later the problems related to the selected machine learning algorithms,
which other authors often attempt to solve will be defined, as well as train-
ing data reduction, hyperparameters optimization and ensemble methods.
Finally, natural language processing, which is also very important in textual
data sentiment analysis is presented. Parts of this chapter are published in
[A1],[A2],[A3],[A4],[A5],[A6],[A7].

2.1 Sentiment analysis

Traditionally, sentiment classification can be regarded as a binary-classifica-
tion task [5, 6]. According to Pang et al. [5], sentiment analysis is the extrac-
tion of positive or negative opinions from text. The main goal of sentiment
analysis is to extract sentiments from the text. Sentiment analysis is per-
formed at multiple levels: document, sentence, and aspect. The task at
document level is to classify whether a whole opinion document expresses
a positive or negative sentiment [4, 5]. At sentence level the task goes to
the sentences and determines whether each sentence expressed a positive,
negative, or neutral opinion. Neutral opinion usually means no opinion [7]
at all. Instead of looking at language constructs (documents, paragraphs,
sentences, clauses or phrases) aspect level examines the opinion itself. It
is based on the idea that an opinion consists of a sentiment (positive or
negative) and a target [7]. According to the survey performed by the au-
thors [12], the most popular is document level, then comes aspect level and
sentence level is the last. SA tasks mainly have two approaches: feature
extraction and sentiment classification.

Dave et al. [6] use structured reviews for testing and training,
identifying appropriate features and scoring methods from information re-
trieval for determining whether reviews are positive or negative. The re-
sults achieved are as good as those when traditional machine learning is
employed where the classifier identifies and classifies review sentences from
the web, but classification is more difficult [13]. The authors [1, 7] presented
an overview in sentiment analysis in which the strong points and the weak
points of sentiment analysis are examined and they gave many research ways
of sentiment analysis. They overview problems, challenges and tasks, like
sentiment extraction, classification, summarization and polarity determina-

23

tion. There are also many surveys which present challenges and difficulties
of SA [14, 15, 16]. Feldman [17] focused on five specific problems in SA
field: document-level sentiment analysis, sentence-level sentiment analysis,
aspect-based sentiment analysis, comparative sentiment analysis and senti-
ment lexicon acquisition. He presented problems related to SA and some of
the techniques used to solve them. Additionally, the author reviewed some
of the major application areas where sentiment analysis is being used and
open research problems. Qazi et al. [18] performed a systematic review
of literature on the practices and challenges of SA. The review shows that
various techniques have been developed for opinion summarization, drawing
their methods from the fields of artificial intelligence, statistics and linguis-
tics, where each technique possesses a certain focus as well as having its
particular strengths and weaknesses.

Lately interest in sentiment analysis has increased. The reason is
a huge amount of data available on the Internet, which grows dramatically
every day. According to the International Data Corporation forecast, about
175 ZB of data until 2025 will be generated, while in 2011 there was ap-
proximately 2 ZB of data. The reason is the increased usage of technology
devices. Dhaoui et al. [19] performed comparison of lexicon versus machine
learning social media sentiment analysis. They stated that in the case of big
data manual approaches to sentiment analysis are impractical and raise the
need to develop automated tools to analyze consumer sentiment expressed in
text format. They also established that the results of lexicon based and ma-
chine learning approaches are similar in accuracy, while their combination
significantly improved accuracy. This led to the conclusion that machine
learning is an inseparable part of sentiment analysis. The primary role of
machine learning in sentiment analysis is to improve and automate the low-
level text analytical functions that sentiment analysis relies on, including
part of speech tagging (POS).

2.2 Machine learning in sentiment analysis

Machine learning algorithms are one part of sentiment analysis. A lot of
work has been done and many classifiers have been compared for SA tasks.
Pang et al. [5] evaluated the performance of näıve Bayes (NB), maximum
entropy (MaxEnt), and support vector machines (SVM) in the specific do-
main of movie reviews, obtaining accuracy slightly above 80%. Go et al. [20]
later obtained similar results with unigrams by introducing a more novel ap-
proach to automatically classify the sentiment of Twitter messages as either
positive or negative with respect to a query term. The same techniques were
also used by Kharde and Sonawane [21] to perform sentiment analysis on
Twitter data, yet resulting in lower accuracy; again, SVM proved to per-
form best. Davidov et al. [22] also stated that SVM and NB are the best

24

techniques to classify the data and can be regarded as the baseline learning
methods by applying them for analysis based on the Twitter user defined
hashtag in tweets. Kapočiūtė-Dzikienė et al. [23] used knowledge-based and
machine learning approaches for sentiment classification into positive, nega-
tive and neutral on Lithuanian internet comments. Support vector machine
and multinomial näıve Bayes significantly outperform their knowledge-based
method. Le and Nguyen [24] proposed a sentiment analysis model based on
NB and SVM; for feature extraction they applied information gain, bigram
and the object-oriented extraction method in order to analyze sentiment
more effectively. Gautam and Yadav [25] applied näıve Bayes, maximum
entropy and support vector machine along with the semantic analysis to
classify the sentence and product reviews based on Twitter data into posi-
tive and negative. NB showed higher accuracy of 88.2% than SVM (85.5%)
and MaxEnt (83.8%). After semantic analysis was applied, they improved
accuracy from 88.2% to 89.9%. Kolchyna et al. [26] presented a new en-
semble method that uses a lexicon based sentiment score as input feature
for the machine learning approach and applied it on the benchmark Twit-
ter dataset using three machine learning algorithms: SVM, DT and NB.
The results showed that when only n-grams were used as the features, SVM
achieved 86.62%, NB – 81.5% and DT – 80.57% accuracy. After the new
method was applied the results increased as follows: SVM – to 91.17%, DT
– to 89.9% and NB – to 88.54%. Kanakaraj et al. [27] also presented the
semantics-based feature vector with ensemble classifier for Twitter data sen-
timent analysis. They reported that their method outperformed by 3%-5%
the traditional bag-of-words approach with single machine learning algo-
rithms like näıve Bayes, maximum entropy, support vector machine, de-
cision tree, random forest, extremely randomized trees and decision tree
regression with adaBoost. Wan and Gao [28] used näıve Bayes, support
vector machine, Bayesian network, C4.5 decision tree and random forest al-
gorithms to create an ensemble method based on the majority vote principle
of multiple classification methods and applied it for sentiment classification
on Twitter data for airline services. Amolik et al. [29] achieved 75% accu-
racy with SVM and 65% with NB on Twitter sentiment analysis of movie
reviews classifying tweets as positive, negative and neutral. Tripathy et
al. [30] applied näıve Bayes, maximum entropy, stochastic gradient de-
scent (SGD) and support vector machine on movie review dataset, using
n-gram approach and its various combinations for sentiment classification
into positive or negative. The best results were obtained when the following
were used: “unigram+bigram+trigram” with SVM 88.94% or NB 86.23%;
“unigram+bigram” with SVM 88.88% or MaxEnt 88.42%; “unigram” with
MaxEnt 88.48% or SVM 86.97%. The authors [31, 32, 33] reviewed machine
learning techniques for sentiment analysis. The well-known techniques like
MaxEnt, SailAil sentiment analyzer, multilayer perceptron, näıve Bayes,

25

multinomial näıve Bayes, support vector machine and random forest were
discussed and accuracy was compared on different datasets. Pranckevičius
and Marcinkevičius [34] investigated näıve Bayes, random forest, decision
tree, support vector machines, and logistic regression classifiers implemented
in Apache Spark and identified the optimal number of n-grams to get the
highest accuracy. The technique applied on Amazon customers’ product-
review data for Android apps. Rathor et al. [35] also applied support
vector machines, näıve Bayes and maximum entropy for classification Ama-
zon reviews into positive, neutral and negative. NB produced the bests
results with unigrams – 66.84%; however, SVM showed better results with
weighted unigrams – 81.20%. Manikandan and Sivakumar [36] reviewed
the principles, advantages and applications of document classification, doc-
ument clustering and text mining, focusing on the existing literature. Ac-
cording to approaches on machine learning, the common algorithms for text
classification are: näıve Bayes classifier, support vector machine, decision
tree, Rocchio algorithm, k-nearest neighbor, decision rules classification,
artificial neural network, fuzzy correlation and genetic algorithm. Manikan-
dan and Sivakumar concluded that support vector machine, näıve Bayes,
k-nearest neighbor and their hybrid system with the combination of differ-
ent other algorithms turned out the most appropriate. Ogutu et al. [37]
explored the use of a detailed pre-processing technique with the implemen-
tation of NB and SVM classifiers on product reviews. Finally, the results
were compared between both classifiers. According to them, NB (98.40%)
results were better with up to 2000 reviews compared with SVM (97.50%),
while SVM (97.60%) outperformed NB (93.80%) in the case of 3000 reviews.
Kandhro et al. [38] proposed a model implemented on multinomial näıve
Bayes, stochastic gradient decent, linear support vector machine, random
forest and multilayer perceptron classifier approaches for student feedback
sentiment analysis. They reported that the best choice for their research
is MNB (83%) and multilayer perceptron classifier (83%). The results of
others classifiers are as follows: stochastic gradient decent (79%), support
vector machine (80%) and random forest (72%). Kapočiūtė-Dzikienė et al.
[39] performed a comparative analysis of the traditional machine learning
(SVM and MNB) and deep learning methods (long short-term memory and
convolutional neural network (CNN)) to solve the sentiment analysis task
for the Lithuanian language. They reported the superiority of the tradi-
tional machine learning methods with MNB accuracy of 73.5% and SVM –
72.4%, compared to CNN – 70.6% and long short-term memory – 61.7%.
Shamantha et al. [40] performed sentiment analysis of the tweets or reviews
published in Twitter. Performance was evaluated with random forest, näıve
Bayes and support vector machine. SVM and NB resulted in higher accu-
racy, while NB – in the faster execution time. Gupta et al. [41] performed
sentiment analysis of Twitter posts by using DT, LR, SVM and neural net-

26

work (NN). They reported that the highest accuracy is achieved by neural
network – 79.6%. According to the results presented by the authors in [16],
the machine learning techniques for solving SA of scientific citation issues
are used more often than other techniques as lexicon based, deep learn-
ing and keyword based. The SVM and NB classifiers have been the most
frequently used methods for performing SA. Kumar et al. [42] applied max-
imum entropy, support vector machine, convolutional neural network, and
long short-term memory to study the impact of age and gender on user
reviews. They demonstrated that in comparison on the basis of age SVM
and CNN performed with higher accuracy of 78%, while in comparison on
the basis of gender the best accuracy was achieved by CNN – 80%. Dang et
al. [43] performed a comparative study in sentiment analysis based on deep
learning. After the analysis of 32 papers they concluded that deep neural
networks (DNN), CNN and hybrid approaches are most widely used. The
experiments were performed on eight textual datasets. Average accuracy of
the DNN model is 79.54% and of CNN – 78.88%. Kumar and Jaiswal [44]
performed a systematic literature review of sentiment analysis on Twitter.
Based on their approach the mostly used sentiment classification techniques
are: SVM, NB, LR, DT, k-nearest neighbor, NN, CNN, fuzzy logic etc.

Also, a numbers of inventions have been devised in the sentiment
analysis field. Huang et al. [45] presented a system, which applies both full
text and complex feature analyses to sentences of a product review. Each
analysis is weighted prior to linear combination into a final sentiment predic-
tion. A conditional random field framework is used to enhance sentiment
prediction. Xia [46] presented a method for classifying social media text
data by establishing a more accurate classifier by selecting it from eight ma-
chine learning methods: SVM, MaxEnt, tree, bagging tree, boosting tree,
RF, neural network and NB. Li et al. [47] invented a text sentiment classi-
fication method to improve text sentiment classification accuracy. A Bayes
classifier model is used to classify the text according to the probability of
each word appearing in the text of each polarity. Wang et al. [48] provided
a method for classifying text messages in accordance with sentiment and/or
emotion expressed by the text messages and a method for handling ambiva-
lence or hidden sarcasm in text messages. Chatterjee et al. [49] presented a
hybrid human machine learning system with tagging and scoring techniques
for sentiment magnitude scoring of textual passages. They concluded that
“the combination of machine learning systems with data from human pooled
language extraction techniques enable the present system to achieve high
accuracy of human sentiment measurement and textual categorization of
raw text, blog posts, and social media streams”.

Table 2.1 shows the summarized results of related work reviews.
The most common used machine learning algorithms are selected based on
aforementioned reviews and according to the authors [12, 16, 18, 44, 50].

27

The averaged accuracy presented in the table is calculated by the author
according to related work reviews.

Table 2.1. Averaged accuracy of machine learning algorithms, based on

related work reviews

Method SVM NB LR RF DT DNN CNN NN Fuzzy

(MaxEnt) logic

Accuracy (%) 86.94 82.22 86.46 86.24 87.96 79.54 78.60 79.60 64.28

Based on the accuracy results presented in Table 2.1, five machine
learning algorithms were selected: SVM, NB, LR, RF and DT for testing
with the proposed hybrid method.

2.3 Relevant methods and reviews

In this section multinomial näıve Bayes, logistic regression, linear support
vector machines, random forest (decision tree), term frequency-inverse docu-
ment frequency (TF-IDF), k-Means clustering (k-Means) and particle swarm
optimization (PSO) are briefly described. It was decided to use classical
methods with the intention of easier implementation of parameter tuning
and altering model designs because they are quite easy to interpret and un-
derstand. In the case of state-of-the-art methods, they are very often “black
box” and even researchers do not fully understand their “inside” due to the
lack of a theoretical foundation.

2.3.1 Multinomial näıve Bayes

Multinomial näıve Bayes is one of the widely used methods in text classi-
fication. Its popularity is based on easier implementation and high com-
putational speed. Authors, who work in this field, have proposed various
techniques. Rennie et al. [51] reported that NB has systematic errors as
well as problems that arise because text is not actually generated according
to a multinomial model. They proposed a fast and easy way to solve these
problems. Modified näıve Bayes contains corrected deficiencies in the ap-
plication, performance improvement, the problem of uneven training data
solution and handling of word occurrence dependencies. Kibriya et al. [52]
presented an empirical comparison of several MNBs on text categorization
problem, comparing them to LSVM. They found out that MNB can be
improved by applying TF-IDF transformation and normalization. Su et
al. [53] proposed a simple semi-supervised extension of MNB, called semi-
supervised frequency estimate for large scale text classification and showed

28

that their method improved MNB with additional data (labeled or unla-
beled) in terms of area under the receiver operating characteristics (AUC)
and accuracy. Jiang et al. [54] presented a novel method, which alleviates
the attribute independence assumption by averaging all of the weighted one-
dependence multinomial estimators and reported the superiority to MNB.
Mowafy et al. [55] presented the MNB method with TF-IDF and resulted in
better accuracy for text document classification. Abbas et al. [56] presented
a text classification framework based on MNB and TF-IDF. They succeeded
in improving NB performance with standardized categorization and man-
agement of the dependence of word occurrence. Chen et al. [57] improved
classical NB by adding a correlation factor to it that incorporates overall
correlation among the different classes and resulted in better accuracy com-
pared with the classical NB. Ruan et al. [58] proposed a new class-specific
deep feature weighting method for MNB. Their method, in addition to fea-
ture weighting, estimates the conditional probabilities of the text classifier
by deeply computing feature weighted frequencies from training data. Bal-
akrishnan and Kaur [59] used string-based MNB for emotion classification
among the Facebook diabetes community and reported that their method
outperformed Emolex, NB and MNB. Farisi et al. [60] provided a solu-
tion by classifying positive opinion reviews and negative opinions using the
MNB classifier method and comparing models using preprocessing, feature
extraction and feature selection.

Multinomial näıve Bayes classifier. Näıve Bayes classifier is a simple
probabilistic classifier based on Bayes’ theorem and is particularly suited
when the dimensionality of the inputs is high. The näıve Bayes classifier
uses the Bayes’ rule [61]

P(C|D) =
P(D|C)P(C)

P(D)
(2.1)

where P(C|D) is the posterior probability of class C given predictor D (a
document vector), P(C) is the prior probability of class C, P(D|C) is the
likelihood which is the probability of predictor given class, P(D) is the prior
probability of predictor.

Since in classification tasks might be not only binary classes, then
let’s denote a set of classes C = {c1, . . . ,cm}, where m is the total number of
classes. Let D = (d1, . . . ,dk) (k is the total number of documents) be a given
documents vector that belongs to class ci. Let’s assume that all attributes
are independent given the value of the class variable. By substituting for D

29

the equation 2.1 could be rewritten [61]:

P(ci|d1, . . . ,dk) =
P(d1|ci) . . .P(dk|ci)P(ci)

P(d1) . . .P(dk)
=

(
k

∏
j=1

P(d j|ci)

)
P(ci)

P(d1) . . .P(dk)
(2.2)

Since P(d1) . . .P(dk) is constant the equation 2.2 can be simplified:

P(ci|d1, . . . ,dk) =

(
k

∏
j=1

P(d j|ci)

)
P(ci) (2.3)

In this dissertation, the multinomial näıve Bayes, widely used for
document classification, is employed. A document is treated as a sequence of
words and it is assumed that each word position is generated independently
of every other. P(ci) can be estimated by dividing the number of documents
belonging to ci by the total number of documents.

The probability to obtain document d j in class ci:

P(d j|ci) = (∑
n

fni)!∏
n

P(wn|ci)
fni

fni!
(2.4)

where fni is the count of words n in document d j, P(wn|ci) is the probability
of word n given class ci. According to the authors in [52], (∑

n
fni)! and

∏
n

fni! could be deleted from equation 2.4 without any changes in the results,

because neither depends on the class ci:

P(d j|ci) = ∏
n

P(wn|ci)
fni (2.5)

Then equation 2.3 could be rewritten for multinomial näıve Bayes
as follows:

P(ci|d1, . . . ,dk) =

(
∏

n
P(wn|ci)

fni

)
P(ci) (2.6)

2.3.2 Logistic regression

The works on logistic regression mainly focused on increasing accuracy.
Hamdan et al. [62] used logistic regression in combination with conditional
random field and opinion target expression. Logistic regression was used for
sentiment polarity. They reported improved accuracy when their method
was used. Byrne and Schniter [63] proposed approximate message pass-
ing approaches to sparse multinomial logistic regression for the problem of
multi class linear classification and feature selection. They stated improved

30

error-rate and runtime performance on synthetic and real-world datasets.
Rafeek and Remya [64] proposed a method by combining syntactic rules
and LR and reported improved classification accuracy. Wang et al. [65]
proposed fast subsampling algorithms to efficiently approximate the max-
imum likelihood estimate in logistic regression. The results obtained on
synthetic and real datasets indicate that the algorithm is computationally
efficient and has a significant reduction in computing time compared to the
full data approach. Zhang et al. [66] proposed a method for logistic regres-
sion accuracy improvement on imbalanced datasets based on the probability
threshold and achieved an accuracy rate up to 95%. Zhu et al. [67] improved
LR by integrating principal component analysis for dimensionality reduc-
tion and k-Means for clustering, and showed that the method performed at
an improved level in predicting diabetes onset. Mai et al. [68] evaluated
the asymptotic distribution of the logistic regression classifier and conse-
quently, provided the associated classification performance. According to
them, “this brings new insights into the internal mechanism of logistic re-
gression classifier, including a possible bias in the separating hyperplane, as
well as on practical issues such as hyperparameter tuning”. Zhang et al. [69]
proposed a variational Bayesian method for identifying important variables
in high-dimensional logistic regression models and showed its effectiveness
on synthetic and some publicly available datasets. Okabe et al. [70] pro-
posed f-measure maximizing logistic regression using the relative density
ratio. They reported a better performance of the their method in the class
imbalanced real data example.

Logistic regression is a linear model. The logistic regression model uses
a logistic function to squeeze the output of a linear equation between 0 and
1. The probabilities describing the possible outcomes of a single trial are
modeled using a logistic function. A simple logistic function is defined by
the formula [71]:

sigm(y) =
ey

ey + 1
(2.7)

where sigm(y) refers to the sigmoid function, which output is between 0 and
1 (probability estimate), y input to the function, e base of natural log.

Let p be the probability that a value occurs, then 1− p is the prob-
ability that it does not occur. The odds is the ratio of these probabilities
[72]:

odds =
p

1− p
(2.8)

After taking the natural logarithm of the odds, a linear relation-
ship between the transformed variable and the explanatory variables can be

31

established, which is called logistic transformation [72]:

logit(p) = ln
(

p
1− p

)
(2.9)

The logistic model predicts the logit of class C from document D. With
logistic regression the mean of the response variable C in terms of an ex-
planatory variable D is modeled relating C and D through the equation
C = α +βD. With LR we model the natural log odds as a linear function of
the explanatory variable. The simple logistic model has the form [73]:

logit(C) = ln
(

p
1− p

)
= α + βD (2.10)

where α is the constant of the equation, β is a coefficient of predictor vari-
ables. Then extending the logic of the simple logistic regression to multiple
predictors could be written [73]:

logit(C) = ln
(

p
1− p

)
= α + β1D1 + · · ·+ βnDn (2.11)

Taking the antilog of equation 2.10 on both sides, one can derive an
equation for the prediction of the probability of the occurrence of interested
outcome as [73]:

p
1− p

= eα+βD => p = P(C|D) =
eα+βD

1 + eα+βD (2.12)

And for equation 2.11:

p = P(C|D) =
eα+β1D1+···+βnDn

1 + eα+β1D1+···+βnDn
(2.13)

where P(C|D) is the probability of class C given the documents D
(the posterior probability).

2.3.3 Linear support vector machines

Support vector machine was introduced in papers [74, 75] and later exten-
sively described in [76]. According to a number of authors, who worked
with SVM, this method proved its efficiency in solving difficult tasks in var-
ious domains for: recognition of regulatory DNA sequences (Damaševičius
[77]); EEG data classification (Martǐsius et al. [78]); classification of images
([79, 80]); credit risk evaluation (Danėnas and Garšva [81]); sensor mul-
tifault diagnosis (Deng et al. [82]); monitoring metal-oxide surge arrester
conditions (Hoang et al. [83]); multi-class parkinsonian disorders classifica-
tion (Morisi et al. [84]); forecasting stock market movement direction (Ren

32

et al. [85]); sentiment analysis (Liu and Lee [86], Chen and Zhang [87]) etc.
Support vector machine is one of the most frequently used machine learning
algorithms to solve a sentiment classification problem [33, 36]. Wang et al.
[88] reported that LSVM achieves the best results consistent with SVM with
different kernels including SVM-poly. The authors [89, 90, 91] also reported
LSVM efficiency in binary text classification. Unfortunately, manual hyper-
parameter selection still remains one of the practical application issues, while
literature has not provided any heuristic rules or rules of thumb for this task
[92]. Hence, it still requires training multiple classifiers with different sets of
hyperparameters to obtain satisfiable performance. Damaševičius [77] used
SVM for classification of DNA sequences and recognition of the regulatory
sequences. The results demonstrated that the selection of the kernel type
and its parameters have direct impact on the performance of the SVM and
accuracy of the results. Sunkad et al. [93] proposed the best set of features
and the SVM hyperparameters for obtaining the best results in human activ-
ity recognition. Osman et al. [94] tuned hyperparameters of two machine
learning algorithms to improve bug prediction accuracy. They concluded
that the k-nearest neighbors algorithm always significantly improved, and
the prediction accuracy of support vector machines either improved or was
at least retained. Liu and Zio [95] used one synthetic dataset and two real
time series data, related to the prediction of wind speed in a region and leak-
age from the reactor coolant pump in a nuclear power plant and proposed
the preferable choice for tuning SVM hyperparameters for recursive multi-
step-ahead prediction. Han et al. [96] presented an invention related to a
product sale prediction method based on a support vector machine model
with parameter optimization, which was performed by selecting a kernel
function of the support vector machine and adopting a grid search method
to optimize predetermined parameters in the kernel function. According to
the authors, “the invention overcomes the defects of poor precision and low
calculation efficiency in traditional sale prediction, can provide a relatively
accurate sale prediction reference for a decision-making level, and has good
application value”. Lu et al. [97] presented an invention for optimizing
two SVM parameters: C and g, by using an improved particle swarm op-
timization algorithm. The authors reported that the invention presented
“improves the classification accuracy of the SVM classification model, and
promotes wider applications of the SVM classification model in the fields of
model identification, system control, production scheduling, computer en-
gineering, and electronic communications”. Asif et al. [98] focused on the
sentiment analysis of social media multilingual textual data to discover the
intensity of the sentiments of extremism. They reported that in supervised
algorithms, linear support vector classifier resulted in the highest accuracy.
Meng et al. [99] reported that SVM is proven to be the more effective
classifier to distinguish phage virion protein and non-phage virion protein.

33

Linear support vector machines. Support vector machines attempt
to find the best possible surface to separate positive and negative training
samples in supervised manner. Here the focus is on LSVM [100] which is
optimized for large-scale learning and, therefore, is used in this dissertation.

Given a set of instance-label pairs (xi, yi), i = 1, . . . , l, xi ∈ Rn, yi ∈
{−1, +1}, a linear classifier generates a weight vector w as the model. The
decision function is sign(wT x). SVM solves the following unconstrained op-
timization problem [100]:

min
w
{1

2
wT w +C

l

∑
i=1

ξ (w; xi, yi)} (2.14)

where C > 0 is a penalty parameter, w is weight vector, ξ (w; xi, yi)
is loss function. SVM has two common loss functions max(1−wT xiyi, 0) and
max(1−wT xiyi, 0)2. The former is referred to L1-SVM and L2-SVM.

Then the primal form problem of L1-SVM, with the standard hinge
loss is [101]:

min
w
{1

2
wT w +C

l

∑
i=1

max(1−wT xiyi, 0)} (2.15)

Since L1-SVM is not differentiable, a popular variation is known as
the L2-SVM which minimizes the squared hinge loss[101]:

min
w
{1

2
wT w +C

l

∑
i=1

max(1−wT xiyi, 0)2} (2.16)

L2-SVM is differentiable and imposes a bigger (quadratic vs. linear)
loss for points which violate the margin.

2.3.4 Random forest

Decision tree classifier is very attractive because its simplicity. The main
focus related to research with decision tree is on classification accuracy and
tree size. Some authors have proposed a number of different techniques for
finding the best solution. Kim [102] presented a method of semi-supervised
decision tree that splits internal nodes by utilizing both labels and the struc-
tural characteristics of data for subspace partitioning. The classification
results showed that his method found better split points at internal nodes
compared to traditional DT. Wu et al. [103] proposed an algorithm for
decision tree simplifying by constraining the number of leaf nodes and the
number of branches from each splitting. The results demonstrated that the
method had generated simpler decision tree and a better accuracy. Tanha
et al. [104] concluded that improving the probability estimation of the tree
classifiers led to better selection metric for the self-training algorithm and

34

a better classification model. Better probability estimation was produced,
when Laplacian correction, no-pruning, grafting, and NB tree were used.
Ooi et al. [105] proposed an inductive temporal learner from two mod-
els, which, firstly, builds a temporal tree based on fuzzy cognitive maps
and then, secondly, revises the temporal rules and refines the information
gain ratio based on the output from first learning model. They achieved
low computation time, stable and higher classification accuracy, visibility
of temporal classification rules. Saremi et al. [106] presented an improved
evolutionary decision tree induction with multi-interval discretization. The
most important contribution is made by modification operators that im-
prove or correct tree structure and derive a correct order. Nor et al. [107]
achieved more reasonable predictive performance of DT, by using random
undersampling to correct the imbalanced data. Cai et al. [108] proposed a
fuzzy oblique decision tree method based on an axiomatic fuzzy set theory
and fuzzy information entropy. The aim of fuzzy rules is to construct leaf
nodes for each class in each layer of the tree; the samples that cannot be
covered by the fuzzy rules are then put into an additional node – the only
non-leaf node in this layer. The results demonstrated the superiority of the
method compared with traditional decision trees. Primartha et al. [109]
proposed a PSO based feature selection, combined with a decision tree al-
gorithm for sentiment analysis and reported that the method considerably
enhanced the performance of decision tree in comparison with the baseline.

Random forest is an ensemble method which contains the number
of decision trees. The most common problems, which researchers are try-
ing to solve are the following: classification accuracy and execution speed.
Kulkarni et al. [110] presented a method for increasing random forest ac-
curacy by generating individual decision tree using different split measures:
information gain, gain ratio and gini index selected randomly. The results
showed the increased accuracy of RF. Chaudhary et al. [111] improved
the classification performance of RF by combining random forest machine
learning algorithm, an attribute evaluator method and an instance filter
method. Alam et al. [112] proposed a feature ranking based methodology,
which applied only high ranked features to construct RF and reported the
effectiveness of the method on the classification of medical data. Fitri et al.
[113] used DT and RF for sentiment analysis of social media Twitter, where
they performed worse than NB. Khanvilkar and Vora [114] proposed senti-
ment analysis and the generation of recommendations according to polarity
obtained by SA system. They tested the method with MNB, LR, DT, SVM
and RF. The results showed the superiority of RF with 95.03% accuracy.
Ansari et al. [115] made an attempt to mine tweets, capture the political
sentiments from it and model it as a supervised learning problem. They re-
ported that promising results were achieved with a long short-term memory
and random forests. Kumar and Kaur [116] proposed a model for sarcastict

35

tweet classification based upon random forest, which was observed to be
the best among the text classification algorithms, where RF reached 84.7%
overall accuracy in comparison with other supervised classification models
SVM (78.6%), LR (80.5%), and KNN (73.1%).

Random forest is a collection of decision trees. Random forests were
introduced by Breiman in [117] who was inspired by earlier work by Amit
and Geman in [118]. A decision tree is built on an entire dataset, using all
the features/variables of interest, whereas random forest randomly selects
observations/rows and specific features/variables to build multiple decision
trees from and then averages results – each tree outputs a probability of
each class and then the multiple probability outputs are averaged.

Let’s denote D – a document vector and C – a class. Then P(C|D)
is the posterior probability of a document vector D to be a member of class
C. In the case of decision tree (denoted by θ) it could be written as follows
[119]:

P(C|D, θ) =
NC

N
(2.17)

where N is the number of examples at a leaf node classifying D and
NC is the number of examples among N with class C.

Let’s denote subset of decision trees Θ = {θ1, . . . ,θt}, where t is the
total number of trees. Then the posterior probability P(C|D) for random
forest could be written as [119]:

P(C|D, Θ) = ∑
θ∈Θ

P(C|D, θ) ·P(θ |T) =
1
|Θ| ∑

θ∈Θ

NC,θ

Nθ

(2.18)

where P(θ |T) is the probability of decision tree θ after observing training
data T . Since no preference is given to any tree, each of them receives
uniform posterior 1/|Θ|.

2.3.5 Training dataset reduction

Training data reduction is the technique that is used for large scale datasets
to increase the learning speed of machine learning algorithms. Lee and Man-
gasarian [120] proposed a reduced support vector machine algorithm which
uses a randomly selected subset of data that is typically 10% or less of the
original dataset to obtain a nonlinear separating surface. Reduced SVM
gets better test set results than those obtained by using the entire data. Lei
and Govindaraju [121] introduced reduction of the feature space using prin-
cipal component analysis and recursive feature elimination. These methods
can speed up the evaluation of SVM by an order of 10 while maintaining
comparable accuracy. Graf et al. [122] proposed cascade SVM where the

36

training set is first divided into a number of subsets and then these sub-
sets are optimized by multiple SVMs. The partial results were combined
and filtered again in the “cascade” of SVMs until the global optimum was
reached. Later, Meyer et al. [123] introduced a new stepwise bagging ap-
proach that exploits parallelization in a better way than cascade SVM and
contains an adaptive stopping-time to select the number of stages for im-
proving accuracy. Nandan et al. [124] used a linear time algorithm based
on convex hulls and extreme points to select subset, the so-called represen-
tative set of the training data for SVM optimization. Wang et al. [125]
reduced SVM training time using only the most informative samples, ob-
tained after removing most of the training data. Guo and Boukir [126]
proposed a new ensemble margin-based data selection approach based on
a simple and efficient heuristic to provide support vector candidates: they
selected the lowest margin instances that reduced SVM training task com-
plexity while maintaining the accuracy of the SVM classification. Mao et
al. [127] trained a number of kernel SVMs on the randomly selected small
subsets of training data and concluded that it is more efficient than training
a single kernel SVM on the whole training data especially for large datasets.
Mourad et al. [128] proposed a computationally efficient subset selection al-
gorithm for fast SVM training on large scale data. Liu et al. [95] proposed
training approximate SVM by using the anchors obtained from non-negative
matrix factorization in a divide-and-conquer framework. Instance selection
can also be achieved by using cluster sampling. The k-Means algorithm is
well known for its efficiency in clustering large data sets [129]. Huang [129]
presented two algorithms which extend k-Means to categorical domains and
domains with mixed numeric and categorical values. They demonstrated
the efficiency of their methods on two real world datasets. The authors
[130] proposed a fast prototype selection method for large datasets, based
on clustering. They reported that the method showed a competitive perfor-
mance against a decremental reduction optimization procedure, generalized
condensed nearest neighbor rule, pair opposite class-nearest neighbor and
cluster method for template selection. Zheng et al. [131] proposed a hybrid
k-Means and SVM for breast cancer diagnosis. The k-Means clustering al-
gorithm provides a highly effective and compact feature set for SVM. The
results demonstrated reduced computation time without losing diagnosis
accuracy. Tang et al. [132] presented a method based on k-Means clus-
tering and SVM for large scale data classification. k-Means was used to
select representative instances. The results showed a better accuracy and
a faster speed than traditional methods. The authors also stated that the
random training sample selection method could achieve good accuracy oc-
casionally in some data sets, but it is not very consistent [132]. This led to
the conclusion to use k-Means clustering in this research.

37

k-Means (MacQueen et al. [133]) is one of the oldest and widely research
clustering algorithms. It is often preferred due to its simplicity and generally
very fast performance. The main idea is to partition the input dataset into
k clusters, represented by adaptively-changing centroids (also called cluster
centers); they are initialized using so-called seed-points. k-Means computes
the squared distances between the input data points and centroids, and
assigns inputs to the nearest centroid.

Let X = {xi}, i = 1, . . . ,n be the set of n d-dimensional points to
be clustered into a set of K clusters, C = {ck}, k = 1, . . . ,K. The k-Means
algorithm finds such a partition that a squared error between the empirical
mean of a cluster and the points in the cluster is minimized. Let µk be the
mean of cluster ck. The squared error between µk and the points in cluster
ck is defined as [134]:

J(ck) = ∑
xi∈ck

‖xi−µk‖2 (2.19)

The goal of k-Means is to minimize the sum of the squared error
over all K clusters [134],

J(C) =
K

∑
k=1

∑
xi∈ck

‖xi−µk‖2 (2.20)

2.3.6 Hyperparameter optimization

Hyperparameter optimization is the problem of choosing a set of optimal hy-
perparameters for a machine learning algorithm. The goal of many machine
learning tasks can be summarized as training a model M which minimizes
a loss function L(T ; M) on a training set T . Model M is constructed by a
learning algorithm A using T , and typically involves solving an optimization
problem. The model may be parametrized by the hyperparameters λ , and
it is given as M = A(T ; λ) [135, 136]. The goal of hyperparameter optimiza-
tion is to find a set of hyperparameters λ ∗ that yield an optimal model M∗

which minimizes L(V ; M∗), where V is the validation set [135]:

λ
∗ = argmin

λ

L(T ; M) = argmin
λ

f (λ ; A, T, V, λ) (2.21)

The objective function f takes the hyperparameters λ , and returns
the associated loss value. The datasets T and V (where T

⋂
V = �) are

given, and the learning algorithm A and the loss function L are chosen [136].
All approaches to the automatic hyperparameter tuning are split

into model-free and model-based methods [136].

38

Model-free methods. The most commonly used methods are grid
search and random search. Grid search sets up a grid of hyperparame-
ter values and trains a model and scores on the validation data for each
combination. According to the authors [136], grid search downside is time
complexity, whose costs grow exponentially at a rate of O(nk) – taking n
distinct values for k parameters. Random search is an alternative to grid
search, where search sets up a grid of hyperparameter values and selects
random combinations to train the model and scores.

Model-based methods. In the case of model-based methods, the
most commonly used are Bayesian optimization, gradient-based optimiza-
tion and population-based methods. Bayesian optimization finds the value
that minimizes an objective function by building a surrogate function (prob-
ability model) based on the past evaluation results of the objective. The
surrogate is cheaper to optimize than the objective, so the next input values
to evaluate are selected by applying a criterion to the surrogate. Gradient-
based optimization computes the gradient with respect to hyperparameters
for the machine learning algorithms and optimizes the hyperparameters
using gradient descent. Population-based methods are optimization algo-
rithms that maintain a population, i.e., a set of configurations, and improve
this population by applying local perturbations (so-called mutations) and
combinations of different members (so-called crossover) to obtain a new
generation of better configurations [137].

Hyperparameter optimization is mostly guided by some heuristics,
like genetic algorithm in [138] and [139], particle swarm optimization in [140]
and [141], ant colony optimization in [142] and [143] etc. Simple grid search
is one of the most common choices of solving this problem [144] as it is often
integrated in different machine learning packages, such as LibSVM [145] or
scikit-learn [11] which helps to simplify research pipelines. In grid search a
list of candidate values for each hyperparameter is defined and evaluated,
and it could become very time-consuming or even computationally infeasible
for the optimization of many hyperparameters in large datasets [146]. The
alternative to grid search is the random search method. Bergsta et al. [147]
applied Bayesian optimization to tune the hyperparameters of a deep neural
network and outperform random search. They stated that random search is
unreliable for training deep neural network. Later Bergsta and Bengio [148]
reported that random search found better models in most cases and required
less computational time compared with neural networks configured by grid
search. Compared with deep belief networks random search found statisti-
cally equal performance on four of seven data sets, and superior performance
on one of seven data sets compared with grid search. Another comparison
performed by Bergstra et al. [149] was performed between random search
and the Bayesian based method and results showed the superiority of the
latter. Mantovani et al. [146] proved random search effectiveness in lower

39

computational cost for SVM hyperparameters tuning to compare with grid
search, genetic algorithm, particle swarm optimization and estimation of
distribution algorithms metaheuristics. Random search obtained a solution
as good as grid search. Statistical tests showed no significant difference
between metaheuristics and the other techniques for the optimization of
SVM hyperparameters. Pedregosa [150] proposed gradient-based optimiza-
tion of simple models’ hyperparameters. They reported that approach is
highly competitive with respect to state-of-the-art methods like Bayesian
optimization models, random search, grid search etc. The invention pre-
sented by Han et al. [96] relates to a product sale prediction method based
on a support vector machine model with parameter optimization, which
was performed by selecting a kernel function of support vector machine and
adopting a grid search method to optimize predetermined parameters in
the kernel function. According to the authors, “the invention overcomes
the defects of poor precision and low calculation efficiency in traditional
sale prediction, can provide a relatively accurate sale prediction reference
for a decision-making level, and has good application value”. Bakhteev and
Strijov [151] performed comprehensive analyzes of gradient-based hyperpa-
rameter optimization algorithms. The results obtained were compared with
random search. The authors concluded that the gradient-based algorithms
are significantly more effective than random search-based algorithms when
the number of hyperparameters is large. Snoek et al. [152] presented meth-
ods for performing Bayesian optimization for hyperparameter selection of
general machine learning algorithms and reported that the proposed algo-
rithms can reach or surpass human expert-level optimization for many algo-
rithms. Han et al. [153] applied a genetic algorithm for the hyperparameter
optimization of convolutional neural network and compared it with random
search and grid search. They suggested that hyperparameters can be opti-
mized better with a genetic algorithm. Bayesian optimization has received a
lot of attention in recent years. Wu et al. [154] presented a hyperparameter
tuning algorithm for machine learning models based on Bayesian optimiza-
tion. They concluded that their method could achieve great accuracy in a
few samples and could also find the best hyperparameters for the widely
used machine learning models, such as the random forest algorithm and the
neural networks, even multi-grained cascade forest under the consideration
of time cost. Gustafsson et al. [155] proposed a new Bayesian optimization
method for finding optimal hyperparameters in econometric models, which
can be used to optimize any noisy function where the precision is under the
control of the user. They reported that their method found the optimum
much quicker than traditional Bayesian optimization or grid search.

Population-based methods are conceptually simple, they can handle
different data types and are embarrassingly parallel [156] since a population
of N members can be evaluated in parallel on N machines [137]. Particle

40

swarm optimization is one of the most known population-based methods. It
is also a very promising option [157, 158, 159]. One of its strengths is combi-
nation with other evolutionary techniques. In [160] the authors proposed an
improved-quantum behaved particle swarm algorithm based on a mutation
operator. Zhang et al. [161] presented the SVM parameter optimization
technique based on intercluster distance in the feature space and a hybrid
of the barebones particle swarm optimization and differential evolution. In
[83] a differential particle swarm optimization to select parameters for sup-
port vector machines is applied. There is a number of works which focus
on the combined selection of both features and hyperparameters [93, 162].
Lu et al. [97] presented invention of optimizing two SVM parameters: C
and g by using an improved particle swarm optimization algorithm. The
authors reported that the presented invention “improves the classification
accuracy of the SVM classification model, and promotes wider applications
of the SVM classification model in the fields of model identification, sys-
tem control, production scheduling, computer engineering, and electronic
communications”.

The reviews showed that the most popular method for hyperparam-
eter optimization is Bayesian optimization, while it is mostly used when
the number of hyperparameters is large. However, in this dissertation there
is only one hyperparameter which will be optimized; based on the reviews
it was decided to use grid search and PSO, which are still very promising
[96, 97]. According to Feurer and Hutter [137], random search is a useful
baseline because it makes no assumptions on the machine learning algorithm
being optimized, and, given enough resources, will achieve performance ar-
bitrarily close to the optimum. Therefore, the random search will be used
as baseline for comparison, as well as Bayesian optimization.

Particle swarm optimization was introduced in [163]. Let ai(t) denote
the position of particle i in the search space at time step t ; unless otherwise
stated, t denotes discrete time steps. The position of the particle is changed
by adding a velocity, vi(t), to the current position, i.e.

ai(t + 1) = ai(t)+ vi(t + 1) (2.22)

with ai(0) ∼ U(amin, amax). Velocity vector reflects both the experiential
knowledge of the particle and socially exchanged information from the par-
ticle’s neighborhood.

For the global best PSO, the velocity of particle i is calculated as

vi j(t + 1) = vi j(t)+ c1r1 j(t) [bi j(t)−ai j(t)]+ c2r2 j(t)
[
b̂ j(t)−ai j(t)

]
(2.23)

where vi j(t) is the velocity of particle i in dimension j = 1, . . . ,na at time
step t, ai j(t) is the position of particle i in dimension j at time step t, c1

41

and c2 are positive acceleration constants used to scale the contribution of
the cognitive and social components respectively, and r1 j(t), r2 j(t)∼U(0, 1)
are random values in the range [0, 1], sampled from a uniform distribution.
These random values introduce a stochastic element to the algorithm.
The personal best position, bi, associated with particle i is the best position
the particle has visited since the first time step. Considering minimization
problems, the personal best position at the next time step, t +1, is calculated
as [164].

bi(t + 1) =

{
bi(t) if f (ai(t + 1))≥ f (bi(t))
ai(t + 1) if f (ai(t + 1)) < f (bi(t))

(2.24)

where f : Rna →R is the fitness function. As with evolutionary algo-
rithms, the fitness function measures how close the corresponding solution
is to the optimum, i.e. the fitness function quantifies the performance, or
quality, of a particle (or solution) [164].
The global best position, b̂(t), at time step t, is defined as

b̂(t) ∈ {b0(t), . . . ,bns(t)}| f (b̂(t)) = min{ f (b0(t)), . . . , f (bns(t))} (2.25)

where ns is the total number of particles in the swarm. b̂ is the best position
discovered by any of the particles so far – it is usually calculated as the best
personal best position. The global best position can also be selected from
the particles of the current swarm, in which case [164, 165]

b̂(t) = min{ f (a0(t)), . . . , f (ans(t))} (2.26)

2.3.7 Ensemble methods

Ensembles of classifiers are one of the most challenging areas yet they often
result in increased performance compared to single classifiers. Da Silva et
al. [166] proposed an approach that automatically classifies the sentiment of
tweets by using classifier ensembles and lexicons. Ensembles were formed by
MNB, SVM, RF and LR. They concluded that the ensemble method can im-
prove classification accuracy compared to standalone classifiers. In [167] the
proposed ensemble method is based on static classifier selection involving a
majority voting error and forward search for text sentiment classification. In
[168] an ensemble system based on three classifiers – näıve Bayes, maximum
entropy and knowledge-based tool, which are combined via a majority vot-
ing for the sentiment analysis of textual data is presented. The same authors
[169] presented a classifier ensemble approach based on a knowledge-based
tool and two machine learning classifiers (näıve Bayes and a maximum en-
tropy) in order to detect emotional content in social media and to examine
its performance under bagging and boosting combination methods. In [170]

42

the authors reported that their ensemble voting algorithm in conjunction
with three classifiers performed better solving a Turkish sentiment classifi-
cation problem. Sadhasivam and Kalivaradhan [171] proposed an ensemble
method based on majority voting, which combine näıve Bayes and support
vector machine for sentiment analysis of Amazon products. They reported
better accuracy achieved by the ensemble method, compared with stan-
dalone NB and SVM. Tan et al. [172] used a combination of multinomial
näıve Bayes and AdaBoost method for text emotion classification. MNB was
used for the generation of several weak classifiers, while AdaBoost method
was employed for obtaining a strong classifier by linear combination of sev-
eral weak classifiers. They resulted in increased accuracy compared with
ordinary MNB. Alrehili and Albalawi [173] proposed an ensemble method
based on voting for sentiment analysis on Amazon customer reviews. The
ensemble contains five machine learning methods: NB, SVM, RF, bagging
and boosting. They demonstrated that ordinary RF outperformed the pro-
posed ensemble in the case of using unigram, while with bigram and trigram
it delivered the best performance.

2.3.8 Natural language processing

Natural language processing (NLP) defined by Liddy [174] is“a theoretically
motivated range of computational techniques for analyzing and representing
naturally occurring texts at one or more levels of linguistic analysis for the
purpose of achieving human-like language processing for a range of tasks or
applications”. According Sun et al. [175], opinion mining requires several
preprocessing steps for structuring the text and extracting features, includ-
ing tokenization, word segmentation, part of speech tagging and parsing.

2.3.8.1 Features extraction

Features extraction is one of the NLP techniques and very important part of
sentiment analysis. Properly extracted features can increase the accuracy of
machine learning algorithm [26, 27]. Tommasel and Godoy [176] reviewed
features selection techniques for short texts. According to the summary
of these techniques, the most commonly used data preprocessing are the
following:

� tokenisation [177, 178, 179, 180, 181, 182];
� removal of stop words [180, 182, 183, 184, 185, 186];
� stemming [182, 184, 186];
� TF-IDF irrelevant feature removal [186];
� special symbol removal [180, 185];
� URLs removal [180, 181, 187, 188];
� removal of usernames [181, 187, 188];

43

� removal of tweets with less than 7 tokens [181, 189];
� removal of hashtags and non-alphabetic characters [187];
� nouns, verbs, and adjectives are kept [177, 178, 179];
� tweet segmentation [190];
� POS [191, 192, 193];
� n-grams [5, 6, 34, 194].

2.3.8.2 N-grams

N-grams is another feature extracting technique which is commonly used in
NLP. The mostly used are unigrams, bigrams, trigrams and their combina-
tions [5, 6, 194]. Agarwal and Mittal [195] gave a definition of unigrams and
bigrams. According to them, unigram features are “simply bag-of-words
features extracted by eliminating extra spaces and noisy characters between
two words”. Respectively bigrams are “the features, consisting of every two
consecutive words in the text”. Then we can define trigrams as the features,
consisting of every three consecutive words in the text. We can see from the
definitions that the prefix before “gram” points to a number of consecutive
words in the text.

An example of n-grams:

full sentence: purchased this with a store credit

unigrams: purchased this with a store credit

bigrams: purchased this this with with a a store store credit

trigrams: purchased this with this with a with a store a store credit

2.3.8.3 Part of speech tagging

Part of speech tagging and parsing are techniques that analyze lexical and
syntactic information. POS tagging is used to determine the corresponding
POS tag for each word. The POS tags, such as adjective and nouns are quite
helpful because opinion words are usually adjectives and opinion targets
(i.e., entities and aspects) are nouns or a combination of nouns. While POS
tagging provides lexical information, parsing obtains syntactic information.
Parsing produces a tree which represents the grammatical structure of a
given sentence with the corresponding relationship of different constituents
[175]. Neethu and Rajasree [191] proposed a feature vector creation tech-
nique, which includes these eight features: part of speech tag, special key-
word, presence of negation, emoticon, number of positive keywords, number
of negative keywords, number of positive hash tags and number of negative
hash tags. According to them, “keywords that are adjective, adverb or verb

44

show more emotion than others.” Ortigosa et al. [196] combined a lexicon-
based approach with machine learning algorithms and achieved better re-
sults. Sentiment extraction contains these steps: lowercase, idiom detection,
segmentation into sentences, tokenization, emoticon detection, interjection
detection, token score assignation, POS tagging and syntactical analysis,
polarity calculation. For feature extraction Pak and Paroubek [197] used
filtering, which includes the removal URL links, Twitter user names, Twit-
ter special words, emoticons, as well as tokenization, stop words removal,
n-grams constructing. Boiy and Moens [198] used unigrams, stems, nega-
tion, discourse features, depth difference, path distance and simple distance
for feature selection. Abdi et al. [193] also used sentiment lexicon feature,
negation features, sentence types, punctuation feature, POS feature, senti-
ment score feature. Yousefpour [192] used n-gram features, POS, negation,
sentiment lexicon, syntactic and semantic dependency. Bharti and Singh
[199] applied stop words removal, stemming, tokenization, term weighting,
relevance score computation, term variance, document frequency and merge
feature sublists.

2.3.8.4 Text preprocessing

Text preprocessing is a very important step in building a machine learning
model. It transforms text into a form which is predictable and analyzable.
The main steps of text preprocessing are as follows:

� converting to lowercase
� noise removal
� stop word removal
� TF-IDF

Let’s define df [’ text ’] as dataframe df with column [’ text ’],
which contains reviews about a product. Further text preprocessing will be
presented by using this definition.

Converting to lowercase

Converting to lowercase is the easiest and a very effective form of text pre-
processing, which can impact the classification results. It means that the
words ‘Word’, ‘WORD’ and ‘WorD’ are treated in the same way. Low-
ercasing could be performed by using Python function lower(). i.e. of
lowercasing:

#l o w e r c a s i n g by us ing Python

df [‘ t ex t ’] . apply (lambda x : x i f type (x)!= s t r e l s e x . lower ())

45

Input: Purchased this with a store credit and LIKE IT A LOT.

I paid 100$ and it compares well with more expensive ones, so don’t

pay more :)))))). RECOMMENDED!!!!! # @user: I put a photo on my

website http://www.user.com

Output: purchased this with a store credit and like it a lot. i

paid 100$ and it compares well with more expensive ones, so don’t pay

more :)))))). recommended!!!!! # @user: i put a photo on my website

http://www.user.com

The frame “Input” contains an example of a raw Amazon product

review (slightly modified for showing how test preprocessing works), while

“Output” is the text after lowercasing.

Noise removal

Noise removal is another a very important step in NLP. It cleans up the

text from noise, such as the removal of URLs, usernames, special characters,

numbers, stop words etc. Noise removal could be performed by using Python

function str.replace().

URLs removal:

#URL’ s removal by us ing Python

df [‘ t ex t ’] . s t r . r e p l a c e (’ http \S+|www.\S+’ , ’ ’ , case=False)

The frame “Input” contains the text after the previous step, when

lowercasing is applied, while “Output” is the text after the removal of URLs.

Input: purchased this with a store credit and like it a lot. i

paid 100$ and it compares well with more expensive ones, so don’t pay

more :)))))). recommended!!!!! # @user: i put a photo on my website

http://www.user.com

Output: purchased this with a store credit and like it a lot. i

paid 100$ and it compares well with more expensive ones, so don’t pay

more :)))))). recommended!!!!! # @user: i put a photo on my website

46

removal of usernames:

#removal o f usernames by us ing Python

df [‘ t ex t ’] . s t r . r e p l a c e (’@[ˆ\ s]+ ’ , ’ ’ , case=False)

The frame “Input” contains the text after the previous step, when

URLs are removed, while “Output” is the text after the removal of user-

names.

Input: purchased this with a store credit and like it a lot. i paid

100$ and it compares well with more expensive ones, so don’t pay more

:)))))). recommended!!!!! # @user: i put a photo on my website

Output: purchased this with a store credit and like it a lot. i

paid 100$ and it compares well with more expensive ones, so don’t pay

more :)))))). recommended!!!!! # i put a photo on my website

removal of special characters:

#removal o f s p e c i a l c h a r a c t e r s by us ing Python

df [‘ t ex t ’] . s t r . r e p l a c e (’ [ˆ\w\ s] ’ , ’ ’ , case=False)

The frame “Input” contains the text after the previous step, when

the usernames are removed, while “Output” is the text after the removal of

special characters.

Input: purchased this with a store credit and like it a lot. i paid

100$ and it compares well with more expensive ones, so don’t pay more

:)))))). recommended!!!!! # i put a photo on my website

Output: purchased this with a store credit and like it a lot i

paid 100 and it compares well with more expensive ones so don t pay

more recommended i put a photo on my website

removal of numbers:

#removal o f numbers by us ing Python

df [‘ t ex t ’] . s t r . r e p l a c e (’ \d+’ , ’ ’ , case=False)

47

The frame “Input” contains the text after the previous step, when

the removal of special characters is applied, while “Output” is the text after

the removal of numbers.

Input: purchased this with a store credit and like it a lot i paid

100 and it compares well with more expensive ones so don t pay more

recommended i put a photo on my website

Output: purchased this with a store credit and like it a lot i

paid and it compares well with more expensive ones so don t pay more

recommended i put a photo on my website

It is very important to process noise removal in sequence as it is pre-

sented above because for example, if special character removal is performed

before the removal of URLs or usernames, then URLs and usernames could

not be recognized and removed.

Removal of stop words

Stop words can be imported and printed by using Python code:

from n l tk . corpus import stopwords

n l tk . download (‘ stopwords ’) # update l i s t o f stopwords

p r i n t (stopwords . words (‘ e n g l i s h ’))

This code proceeded the output as follows:

[‘i’, ‘me’, ‘my’, ‘myself ’, ‘we’, ‘our’, ‘ours’, ‘ourselves’, ‘you’,

“you’re”, “you’ve”, “you’ll”, “you’d”, ‘your’, ‘yours’, ‘yourself ’, ‘your-

selves’, ‘he’, ‘him’, ‘his’, ‘himself ’, ‘she’, “she’s”, ‘her’, ‘hers’, ‘herself ’,

‘it’, “it’s”, ‘its’, ‘itself ’, ‘they’, ‘them’, ‘their’, ‘theirs’, ‘themselves’,

‘what’, ‘which’, ‘who’, ‘whom’, ‘this’, ‘that’, “that’ll”, ‘these’, ‘those’,

‘am’, ‘is’, ‘are’, ‘was’, ‘were’, ‘be’, ‘been’, ‘being’, ‘have’, ‘has’, ‘had’,

‘having’, ‘do’, ‘does’, ‘did’, ‘doing’, ‘a’, ‘an’, ‘the’, ‘and’, ‘but’, ‘if ’,

‘or’, ‘because’, ‘as’, ‘until’, ‘while’, ‘of ’, ‘at’, ‘by’, ‘for’, ‘with’, ‘about’,

‘against’, ‘between’, ‘into’, ‘through’, ‘during’, ‘before’, ‘after’, ‘above’,

‘below’, ‘to’, ‘from’, ‘up’, ‘down’, ‘in’, ‘out’, ‘on’, ‘off’, ‘over’, ‘under’,

‘again’, ‘further’, ‘then’, ‘once’, ‘here’, ‘there’, ‘when’, ‘where’, ‘why’,

48

‘how’, ‘all’, ‘any’, ‘both’, ‘each’, ‘few’, ‘more’, ‘most’, ‘other’, ‘some’,

‘such’, ‘no’, ‘nor’, ‘not’, ‘only’, ‘own’, ‘same’, ‘so’, ‘than’, ‘too’, ‘very’,

‘s’, ‘t’, ‘can’, ‘will’, ‘just’, ‘don’, “don’t”, ‘should’, “should’ve”, ‘now’,

‘d’, ‘ll’, ‘m’, ‘o’, ‘re’, ‘ve’, ‘y’, ‘ain’, ‘aren’, “aren’t”, ‘couldn’, “couldn’t”,

‘didn’, “didn’t”, ‘doesn’, “doesn’t”, ‘hadn’, “hadn’t”, ‘hasn’, “hasn’t”,

‘haven’, “haven’t”, ‘isn’, “isn’t”, ‘ma’, ‘mightn’, “mightn’t”, ‘mustn’,

“mustn’t”, ‘needn’, “needn’t”, ‘shan’, ”shan’t”, ‘shouldn’, “shouldn’t”,

‘wasn’, “wasn’t”, ‘weren’, “weren’t”, ‘won’, “won’t”, ‘wouldn’,“wouldn’t”]

Stop words removal is also one of the very common NLP tasks.

Stop words are treated as very common words. Their removing could save

computing time and efforts in processing large textual datasets. It is very

important for sentiment analysis to carefully check the list of stop words,

before removing them from textual datasets because it could impact the

results. For example, the list of stop words presented above contains such

words as ‘not’, ‘don’t’, ‘shouldn’t’ etc., which can change the polarity of

sentiment if they are removed. A modified list of stop words is presented

below:

[‘i’, ‘me’, ‘my’, ‘myself ’, ‘we’, ‘our’, ‘ours’, ‘ourselves’, ‘you’,

“you’re”, “you’ve”, “you’ll”, “you’d”, ‘your’, ‘yours’, ‘yourself ’, ‘your-

selves’, ‘he’, ‘him’, ‘his’, ‘himself ’, ‘she’, “she’s”, ‘her’, ‘hers’, ‘herself ’,

‘it’, “it’s”, ‘its’, ‘itself ’, ‘they’, ‘them’, ‘their’, ‘theirs’, ‘themselves’,

‘what’, ‘which’, ‘who’, ‘whom’, ‘this’, ‘that’, “that’ll”, ‘these’, ‘those’,

‘am’, ‘is’, ‘are’, ‘was’, ‘were’, ‘be’, ‘been’, ‘being’, ‘have’, ‘has’, ‘had’,

‘having’, ‘do’, ‘does’, ‘did’, ‘doing’, ‘a’, ‘an’, ‘the’, ‘and’, ‘but’, ‘if ’,

‘or’, ‘because’, ‘as’, ‘until’, ‘while’, ‘of ’, ‘at’, ‘by’, ‘for’, ‘with’, ‘about’,

‘against’, ‘between’, ‘into’, ‘through’, ‘during’, ‘before’, ‘after’, ‘above’,

‘below’, ‘to’, ‘from’, ‘up’, ‘down’, ‘in’, ‘out’, ‘on’, ‘off’, ‘over’, ‘under’,

‘again’, ‘further’, ‘then’, ‘once’, ‘here’, ‘there’, ‘when’, ‘where’, ‘why’,

‘how’, ‘all’, ‘any’, ‘both’, ‘each’, ‘few’, ‘more’, ‘most’, ‘other’, ‘some’,

‘such’, ‘only’, ‘own’, ‘same’, ‘so’, ‘than’, ‘too’, ‘very’, ‘s’, ‘t’, ‘will’,

‘just’, ‘should’, “should’ve”, ‘now’, ‘d’, ‘ll’, ‘m’, ‘o’, ‘re’, ‘ve’, ‘y’]

In Python the removal of stop words could be performed during

convertion into vector of numbers (see TF-IDF below). It will save the

49

execution time of text preprocessing in the case of executing these tasks

separately.

The frame “Input” contains the text after the previous step – noise

removal, while “Output” contains the text after the romoval of stop words.

Input: purchased this with a store credit and like it a lot i paid

and it compares well with more expensive ones so don t pay more rec-

ommended i put a photo on my website

Output: purchased store credit like lot paid compares well ex-

pensive ones don pay recommended put photo website

TF-IDF

Example of results achieved by converting text from the previous step.

v e c t o r i z e r = T f i d f V e c t o r i z e r (stop words=set (stopwords))

t e x t v e c t o r = v e c t o r i z e r . f i t t r a n s f o r m (text)

Table 2.2 presents the results after the execution of TF-IDF. It is

important to notice that stop word removal could affect the results because

there is a possibility that text (review) contains only stop words; then after

performing removal the result will be empty string.

Table 2.2. TF-IDF values

Word TF-IDF Word TF-IDF Word TF-IDF Word TF-IDF

purchased 0.19052 lot 0.18542 expensive 0.25197 recommended 0.24000

store 0.23592 paid 0.25772 ones 0.23271 put 0.17966

credit 0.30158 compares 0.37898 don 0.32908 photo 0.29534

like 0.12004 well 0.14507 pay 0.23737 website 0.27897

The whole textual dataset could contain more than one empty string;

then if this happens in training dataset it will contain less informative data.

To avoid this, it was decided not use stop words removal in this dissertation.

TF-IDF description Before textual data is passed to a machine

learning algorithm input it should be converted into vector of numbers be-

cause ML algorithms cannot work with text data directly. The most com-

50

mon solution for that is TF-IDF. It works by determining the relative fre-

quency of words in a specific document compared to the inverse proportion

of that word over the entire document corpus.

Term Frequency (TF) is the simplest measure to weight each term in a

text. In this method, each term is assumed to have importance proportional

to the number of times it occurs in a text [200]. The weight of a term t in

a text d is given by [201]

W (d, t) = TF(d, t) (2.27)

where TF(d, t) is the term frequency of the term t in the text d.

Inverse Document Frequency (IDF) concerns term occurrence across

a collection of texts. The importance of each term is assumed to be inversely

proportional to the number of texts that contain the term [202]. The IDF

factor of a term t is given by [201]

IDF(t) = log(N/df (t)) (2.28)

where N is the total number of texts in the collection and df (t) is

the number of texts that contain the term t.
Since TF is known to improve recall and IDF is expected to improve

the precision, Salton [203] proposed to combine them to weight terms, and

showed that they gave better performance. The combination weight of a

term t in text d is given by [201]

W (d, t) = TF(d, t) · IDF(t) (2.29)

2.4 Conclusions of Chapter 2

In this chapter related works in the field of textual data sentiment analysis

using machine learning algorithms are presented. Problems related to con-

crete ML algorithms, which other authors are trying to solve are reviewed,

as well as training data reduction and hyperparameter tuning methods; en-

semble methods and natural language processing are also presented.

1. The literature analysis showed that näıve Bayes classification, sup-

port vector machine, logistic regression, random forest and decision

51

tree are still very attractive to researchers in textual data sentiment

analysis. Consequently, they were selected for the experimental part

of this dissertation. It was decided to use classical versions of these

ML algorithms on purpose as it was easier to implement a parameter

tuning and altering the model designs, because they are quite easy to

interpret and understand. In the case of state-of-the-art methods, very

often they are“black box”and even researchers do not fully understand

their “inside” due to the lack of theoretical foundation. The review of

patents showed that textual data sentiment analysis is still attractive

to inventors, and there are a number of inventions whose goal is to

increase classification accuracy and mostly classical methods are used

as the starting point.

2. The review of aforementioned five machine learning algorithms showed

that increasing accuracy and reducing classification time are the most

common problems, which many authors are trying to solve.

3. The review of hyperparameter optimization led to conclude that Baye-

sian optimization, grid search, particle swarm optimization and ran-

dom search are very promising options, while the Bayesian optimiza-

tion and random search are very competitive compared to PSO and

grid search. Grid search and PSO methods were selected for hyper-

parameters tuning taking into account these reviews. Random search

and Bayesian optimization will be used as an option for comparison.

4. The review of ensemble methods shows that majority voting is the

most common technique for combining classifiers, which can improve

classification accuracy. Therefore, the technique was also selected for

this research.

5. Text preprocessing could increase the classification accuracy of a ma-

chine learning algorithm, while it could become very time-consuming

in large datasets. While the goal of this dissertation is to propose a hy-

brid textual data classification method for large scale datasets, it was

decided to use simple text preprocessing: lowercasing, noise removal

and TF-IDF for converting text into vector of numbers. The removal

of stop words could affect the results because there is a possibility that

text (review) consists of a lot of stop words or of only stop words;

then after performing removal, the result will contain less informative

data or the meaning of a review will be changed. To avoid this, it was

decided not use the removal of stop words in this dissertation.

52

3. METHODOLOGY OF THE RESEARCH

In this part of the dissertation a hybrid method for textual data sentiment

analysis is presented. The aim of the method is to increase the classification

speed of classical methods with a similar classification accuracy compared

with classical methods. The diagrams and algorithms of the method are

briefly described in this chapter. Parts of this chapter are published in

[A1],[A2],[A3],[A4],[A5],[A7].

Further a description of the datasets which are used for experimental

research and a performance evaluation metrics for the comparison of the

results are presented.

3.1 Proposed hybrid method

The proposed hybrid method is a combination of four methods: classical

machine learning algorithm, k-Means clustering, particle swarm optimiza-

tion metaheuristic and ensemble, which are integrated into the SpeedUP

method. The expression (Expr) of the SpeedUP method (the default pa-

rameters are set considering the experimental results) is as follows:

SpeedUP(ml, kmeans, ensemble, pso, Subsetsize, Dtext , numclass) (3.1)

Parameters:

ml – string, ‘LSVM’, ‘MNB’, ‘RF’, ‘DT’ or ‘LR’ (default = ‘LSVM’);

ml indicates the classical machine learning algorithm which is used.

kmeans – integer, 0 or 1 (default = 1); it is a training dataset selection

method. When kmeans = 1, the k-Means clustering method is used

for training dataset selection, when kmeans = 0 – training dataset is

selected by using random sampling.

ensemble – integer (default = 0); value ensemble indicates the number

of voters in the method. If ensemble = 0 or 1 (recommended when pso
= 1), then the ensemble method is not used.

pso – integer, 0 or 1 (default = 1); pso = 1 indicates that particle

swarm optimization metaheuristic is used for parameter tuning (only

for LR or LSVM). For MNB, RF and DT – pso = 0.

Subsetsize – integer (default = 30K); this value indicates the size of the

subsets into which the testing dataset is divided. When Subsetsize =

53

30K all testing dataset is divided into equal subsets, which contains

30K records.

Dtext – textual dataset.

numclass – integer (default = 2); this value indicates the number of

different classes in dataset.

The diagram of the proposed hybrid method is presented in Figure

3.1. The regions bounded by the red rectangles present whose parts of the

hybrid method, which are fully described later in this chapter.

Start

Textual dataset

Data cleaningText preprocessing

LRMNBRFDT LSVM

PSO tuning

standaloneensemble

k-Means clustering random sampling

Results

End

Data preprocessing

SpeedUP method

ML algorithm selection

Method selection

Training data selection

Fig. 3.1. Proposed hybrid method

The diagram consists of the following steps:

� SpeedUP method. This is the main part of the hybrid method; other

parts are integrated into it. The aim of this method is to increase the

54

classification speed of the classical machine learning algorithms. Its

more detailed description is presented below (See Subsec. 3.1.1).

� Textual dataset. Textual dataset, which will be used for sentiment

analysis, is read from the data source and data preprocessing is per-

formed on it. Datasets are described in Section 3.2.

� Data preprocessing. This step contains two actions: text prepro-

cessing and data cleaning. Text preprocessing includes actions like

converting to lowercase, removing redundant tokens such as hashtag,

symbols @, numbers, “http” for links, punctuation symbols, usernames

etc. Later, in the data cleaning part, the dataset is checked for empty

strings and if any exist they are removed. The aim of this step is to pre-

pare dataset for the next stage of SpeedUP, where it will be prepared

for processing on the machine learning algorithm.

� ML algorithm selection. This step contains the selection of machine

learning algorithm, which will be used with the SpeedUP method.

The selection is performed by changing ml value in SpeedUP (See

Expr. 3.1). This step also included the PSO tuning method, which

is proposed for logistic regression and linear support vector machine

to increase classification accuracy. The selection of this method is

performed by setting pso value to 1 in SpeedUP (See Expr. 3.1). A

detailed description of this method is given below (See Subsec. 3.1.3).

� Method selection. The aim of this step is to select whether the

standalone machine learning algorithm or ensemble, which is described

below (See Subsec. 3.1.4) will be used. This method is used when

value ensemble is set bigger than 1 in SpeedUP (See Expr. 3.1). This

value defines how many classifiers there will be in the ensemble. It

is important to stress that the ensemble contains only one kind of

the machine learning algorithm, which is set in value ml, i.e. if ml =

‘LSVM’, then the ensemble will contain only LSVM algorithms.

� Training data selection method. In this step the method for train-

ing data selection is chosen. There is a possibility for the random se-

lection of training data or by applying the part of proposed method

k-Means clustering. This can be done by turning on kmeans parameter

in SpeedUP (See Expr. 3.1). A detailed description of this method is

given below (See Subsec. 3.1.2).

� Results. The results of the textual dataset sentiment analysis are

expressed in statistical measures: accuracy, precision, recall, harmonic

55

mean and area under the receiver operating characteristics (See Section

3.3).

3.1.1 SpeedUP method

The SpeedUP method (introduced in [A4]) is the main part of the pro-

posed hybrid method, whose configuration is presented when other parts

are excluded. In other words, the values kmeans, ensemble and pso are set

to 0 (See Expr. 3.1). The main idea is to reduce the size of the training

dataset depending on subset size. Thus, the testing dataset is split into

equal subsets and the size of training data is calculated on the basis of the

first subset size. The subset size is defined with value Subsetsize. After the

machine learning algorithm is trained on reduced training dataset, subsets

of testing dataset are passed to it one by one and later the results of each

subset are combined into one result set. This is done anticipating that a

smaller training dataset will reduce time and computational effort to train

classifier, and it will provide similar accuracy compared to the classical ma-

chine learning algorithm. The diagram of the SpeedUP method is presented

in Figure 3.2. The dashed line in the diagram represents steps for additional

calculations executed before a concrete step is joined to it.

The diagram consists of the following steps:

� Textual dataset is split into a training and testing datasets. It is as-

sumed that the testing dataset is 30% of the full textual dataset, there-

fore, the training dataset should be 70%.

� Training dataset is divided into sets of certain categories of sentiments

(Dclass1 , Dclass2 etc.). Usually two categories are used : “positive” and

“negative”.

� Depending on values Subsetsize and numclass (See Expr. 3.1), the size

of reduced training dataset is calculated and text instances of certain

category (Traincount . This value is inside f (x)) in it are counted. After

that selected instances of each category are combined into a reduced

dataset – “Training data”. By default, selection is performed with

random sampling.

� “Training data” is passed to the ML algorithm for learning.

� Depending on value Subsetsize testing dataset is divided into subsets

td1, td2 etc. (function y(x)).

� Subsets are passed to the ML algorithm one by one and the results

achieved are stored in separate datasets r1 – for td1, r2 – for td2 etc.

56

� Finally, the results are combined into one result set – Results.

SubsetsizeTraining dataset

Dclass1

Dclass2

...

Dclassk

f(x)

Dclass1R ∪ Dclass2R ∪ . . .

Training data

Testing dataset

y(x)

td2 . . .td1 tdn

ML algorithm

r2 . . .r1 rn

Results

Fig. 3.2. Diagram of the SpeedUP method

Algorithm 1 presents the SpeedUP method.

List of parameters used in the algorithm:

Dtext – textual dataset

ml – machine learning algorithm

numclass – number of different classes in a dataset

classi – certain category of sentiment assigned to the text in a dataset

tdi – testing data subset

Subsetsize – size of the subsets into which the testing dataset is divided

Dtrain – training dataset

Dclassi – set of text instances of certain class (classi) from Dtrain

DclassiR – selected data from Dclassi depending on Traincount

Dtest – testing dataset

Traincount – count of text instances of certain class should be selected

from the dataset. This value is calculated by the proposed formula:

Traincount =
1
k
∗Subsetsize ∗

|Dtrain|
|Dtest |

where k is the number of different classes, |Dtrain| and |Dtest | are the

number of instances in Dtrain and Dtest , respectively

57

MLresi – classification results of tdi

RML – classification results of all tdi

Algorithm 1 SpeedUP

Require: ml, Dtext , numclass, Subsetsize

1. Dtext is split into a training (Dtrain) and testing datasets (Dtest).

2. Randomly select data of each presented class in Dtrain.

k← numclass

Traincount ← 1/k ∗Subsetsize ∗ (|Dtrain|/|Dtest |)
Dclass1R← (random.sample(Dclass1 , Traincount))

Dclass2R← (random.sample(Dclass2 , Traincount))

DclasskR← (random.sample(Dclassk , Traincount))

3. Create a reduced training dataset – Training data (Dtrain R)

Dtrain R← Dclass1R ∪ Dclass2R ∪·· ·∪ DclasskR

4. Train ml with Dtrain R

5. Split the testing dataset in subsets (tdi) and run on ml.
n← 0
for i = 1 : trunc(len(Dtest)/Subsetsize) do

tdi← Dtest [(n + 1) : (Subsetsize ∗ i),]
MLresi← ml.predict(tdi)

RML← RML ∪ MLresi

n← (Subsetsize ∗ i)
end for

if (len(Dtest % Subsetsize) > 0 then

tdi+1← Dtest [(n + 1) : (len(Dtest)),]

MLresi+1← ml.predict(tdi+1)

RML← RML ∪ MLresi+1

end if

Output : Results← RML

3.1.2 k-Means clustering

The k-Means clustering method (introduced in [A2]) is another part of the

proposed hybrid method, which can be used if value kmeans is set to 1 in

SpeedUP (See Expr. 3.1). The main goal of this method is to reduce the

training dataset for the ML algorithm instead of using a random training

data selection. The need of this method appeared because when random

58

training data selection is used there is a risk that training data will contain

the same data or the data will be not useful i.e. contain only one word,

stop words etc. and this could negatively affect accuracy in different runs;

therefore, multiple runs are required for more objective results, which is

affecting classification speed. The diagram of the k-Means clustering method

is presented in Figure 3.3.

The diagram consists of the following steps:

� The diagram starts with “Training dataset”, which is a full dataset

after “Data preprocessing” step (See Fig. 3.1).

� The k-Means clustering method depends on value ensemble in SpeedUP

(See Expr. 3.1), if it is disabled (set to 0 or 1), then only one reduced

training dataset “Training data” will be selected; otherwise as many

datasets as are set in value ensemble will be chosen.

� Finally, the method selects the number of reduced training datasets,

which will be used as input in the ML algorithm.

Training dataset

k-Means clustering

Training data2Training data1 . . . Training datan

Fig. 3.3. Diagram of the k-Means clustering method

Algorithm 2 presents the k-Means clustering method.

List of parameters used in the algorithm:

Dclassi – set of text instances of certain class from training dataset

DclassiR – selected data from Dclassi depending on Traincount

kopt – optimal number of clusters

Traincount – count of text instances of certain class should be selected

from the training dataset

txt1 – text from all clusters with MAX distance to the cluster center

txt2 – text from all clusters closest to MEAN distance to the cluster

center

txt3 – text from all clusters with MIN distance to the cluster center

kMeansres – results after the k-Means algorithm is executed

59

Algorithm 2 k-Means clustering method

Require: Dclassi , Subsetsize, Traincount , kopt

DclassiR←{}
clf← kmeans(kopt)

while (len(DclassiR) <= Traincount) do

rD← random.sample(Dclassi , Subsetsize)

clf.predict(rD)

distance← pairwise distances(clf.cluster centers , rD)

kMeansres =

txt1←max(distance)

txt2←min(distance, key = lambda x : abs(x−median(distance)))

txt3← pairwise distances argmin min(clf.cluster centers , rD)

DclassiR← DclassiR ∪ kMeansres

end while

Output : DclassiR

It is important to stress that the k-Means clustering method is per-

formed separately to each certain category of sentiment assigned to the

text. Finally, the results are combined into one reduced training dataset. It

is done with intend to have the equal number of instances of each class in

reduced training dataset.

Algorithm 3 presents a modified SpeedUP (See Algorithm 1) with

integrated k-Means clustering to it:

Algorithm 3 SpeedUP with k-Means clustering

Require: ml, Dtext , numclass, Subsetsize

1. Dtext is split into a training (Dtrain) and testing datasets (Dtest).

2. Select data of each presented class in Dtrain by applying k-Means

clustering.

k← numclass

Traincount ← 1/k ∗Subsetsize ∗ (|Dtrain|/|Dtest |)
Dclass1R← k-Means clustering(Dclass1 , Subsetsize, Traincount , kopt)

Dclass2R← k-Means clustering(Dclass2 , Subsetsize, Traincount , kopt)

DclasskR← k-Means clustering(Dclassk , Subsetsize, Traincount , kopt)

3. Create a reduced training dataset – Training data (Dtrain R)

Dtrain R← Dclass1R ∪ Dclass2R ∪·· ·∪ DclasskR

4. Train ml with Dtrain R

. Continued on the next page

60

Algorithm 3 SpeedUP with k-Means clustering – continued from the pre-

vious page.

5. Split the testing dataset in subsets (tdi) and run on ml.
n← 0
for i = 1 : trunc(len(Dtest)/Subsetsize) do

tdi← Dtest [(n + 1) : (Subsetsize ∗ i),]
MLresi← ml.predict(tdi)

RML← RML ∪ MLresi

n← (Subsetsize ∗ i)
end for

if (len(Dtest % Subsetsize) > 0 then

tdi+1← Dtest [(n + 1) : (len(Dtest)),]

MLresi+1← ml.predict(tdi+1)

RML← RML ∪ MLresi+1

end if

Output : Results← RML

The parameters in Algorithm 3 are the same as in Algorithm 1 and

Algorithm 2, so they are not described here.

3.1.3 PSO tuning method

The PSO tuning method (introduced in [A3]) is also a part of the proposed

hybrid method, which can be used if value pso is set to 1 in SpeedUP (See

Expr. 3.1). This method is suitable only for the LSVM and LR algorithms.

The main goal of this method is to select penalty (cost) parameter of the

error term C for the aforementioned algorithms in order to increase the

accuracy of the hybrid method. The diagram of the PSO tuning method is

presented in Figure 3.4. The dashed line in the diagram represents steps for

additional calculations executed before a concrete step is joined to it.

The diagram consists of the following steps:

� The diagram starts with ML algorithm selection. This selection is

performed in SpeedUP (See Expr. 3.1) by setting parameter ml to

‘LSVM’ or ‘LR’.

� Reduced training dataset (Training data), obtained by the k-Means

clustering method (See Subsec. 3.1.2) or random sampling, is di-

vided into training and validation data for tuning. These datasets

also will be used in the C Tuning method (introduced in [A2]) and

61

PSO search. It is important to stress that if parameter ensemble is

enabled in SpeedUP, then this and the following steps of the diagram

are performed for other reduced training datasets as well.

� The starting C (penalty parameter) value is defined by using cross-

validated grid search (GridSearchCV) over a predefined grid of possible

C values.

� The range is reduced with the C Tuning method, which is a part of

the hybrid method and is presented below in Algorithm 4.

� Finally, the particle swarm optimization method, presented below in

Algorithm 5, searches for the best C value in the previously obtained

range and then passing it to ML algorithm.

LRLSVM

Training data

GridSearchCV
Validation

data for tuning

Training data

for tuning

C Tuning

PSO search

ML algorithm selection

PSO tuning

Fig. 3.4. Diagram of the PSO tuning method

GridSearchCV is a standard method, which was used with no mod-

ifications. During experiments it was obtained that it is not very efficient

in time metrics and there is the need of a lot of iterations with reducing

ranges to find the best C value for LR and LSVM algorithms. This led to

the development of faster methods for that; GridsearchCV is used only for

searching the start C value. Algorithm 4 presents the C Tuning method

whose aim is to search the start range for PSO.

62

List of parameters used in the algorithm:

ml – machine learning algorithm (‘LSVM’, ‘LR’)

Dtrn – training data for tuning

Dval – validation data for tuning

CGsearch – C value obtained using cross-validated grid search

Algorithm 4 C Tuning

Require: ml, Dtrn, Dval, CGsearch

results← pandas.DataFrame(columns=[’acc’, ’c’])

Cmin←CGsearch−1
Cmax←CGsearch + 1
i←Cmin

while (i <= Cmax) do

clf← ml(C = i)
Train clf with Dtrn

ACC← clf.predict(Dval)

results← results.append(’acc’: ACC, ’c’ : i, ignore index = True)

i← i + 0.1
end while

C, ACC← results.loc[results[’acc’].astype(f loat).idxmax()]

Output : C – penalty (cost) parameter of the error term, ACC – classifi-

cation accuracy achieved by ml with C

Algorithm 5 presents the PSO tuning method, which includes Grid-

SearchCV and C Tuning methods.

List of parameters used in the algorithm:

ml – machine learning algorithm (‘LSVM’, ‘LR’)

Dtrn – training data for tuning

Dval – validation data for tuning

ACCGbest – the best global accuracy

CGbest – the best global C value

param grid – grid of parameters to sequences of allowed values

R – the radius; (neighborhood) of CGbest where PSO search is per-

formed. R = 0.1, which was determined during the set of experiments

Ps – particle swarm dataframe

C – ml (‘LR’ or ‘LSVM’) penalty (cost) parameter

acc – accuracy obtained after execution ml

63

v – velocity vector of the direction and magnitude of the particle move-

ment

best acc – the best personal accuracy of the particle

best C – the best personal C value of the particle (equal to position)

nPs – the number of particles in the swarm; nPs = 50, which was

determined during the set of experiments

nIteration – number of iterations; nIteration = 100, which was deter-

mined during the set of experiments

r1,r2 – random vectors

c1,c2 – acceleration coefficients; default value 2 for both coefficients

w – coefficient of inertia; default value 1

Algorithm 5 PSO tuning

Require: ml, Dtrn, Dval

1. Find initial C value using standard cross-validated grid search

ACCGbest, CGbest←GridSearchCV(ml, Dtrn, param grid = (1,2, . . . ,m))

2. Run C Tuning.

ACCGbest, CGbest←C Tuning(ml, Dtrn, Dval, CGbest)

3. Declare variables.

Cmin← CGbest−R
Cmax← CGbest + R
Ps← pandas.DataFrame(columns = [‘C’, ‘acc’, ‘v’, ‘best acc’, ‘best C’])

4. Initialize particles with population size nPs.
for k = 1 : nPs do

Ps[k].C← random.uniform(Cmin, Cmax)

Ps[k].v← 0
clf ← ml(C = Ps[k].C)

Train clf with Dtrn

Ps[k].acc← clf.predict(Dval)

Ps[k].best acc← Ps[k].acc
Ps[k].best C← Ps[k].C
if Ps[k].best acc > ACCGbest then

ACCGbest← Ps[k].best acc
CGbest← Ps[k].best C

end if

end for

. Continued on the next page

64

Algorithm 5 PSO tuning – continued from the previous page.

5. Run PSO algorithm.

for j = 1 : nIteration do

for k = 1 : nPs do

r1← random.uniform(0,1)

r2← random.uniform(0,1)

Ps[k].v← w×Ps[k].v + c1× r1× (Ps[k].best C−Ps[k].C)+

+c2× r2× (CGbest−Ps[k].C)

Ps[k].C← Ps[k].C + Ps[k].v
if Ps[k].C <= 0 then

break

end if

clf ← ml(C = Ps[k].C)

Train clf with Dtrn

Ps[k].acc← clf.predict(Dval)

if Ps[k].acc > Ps[k].best acc then

Ps[k].best acc← Ps[k].acc
Ps[k].best C← Ps[k].C

end if

if Ps[k].best acc > ACCGbest then

ACCGbest← Ps[k].best acc
CGbest← Ps[k].best C

end if

end for

w← w×0.99
end for

Output : CGbest

3.1.4 Ensemble method

The ensemble method (first publication in [A1], [A5] and later in [A3]) is

another part of the proposed hybrid method, which can be used if value

ensemble is bigger than 1 in SpeedUP (See Expr. 3.1). This approach is

majority voting based ensemble, which is presented to improve classifica-

tion accuracy for machine learning algorithms as well. The diagram of the

ensemble method is presented in Figure 3.5.

65

random samplingk-Means clustering

Training data2Training data1 . . . Training datan

Testing data ML algorithm

ResultsML2ResultsML1 . . . ResultsMLn

Voting

Results

Training data selection

Fig. 3.5. Diagram of the ensemble method

The diagram consists of the following steps:

� The diagram starts with training data selection – selection of reduced

training dataset. The method for it is set in SpeedUP by setting value

kmeans = 1 for k-Means clustering and kmeans = 0 – for random sam-

pling. The value ensemble should also be set, which determines the

number of classifiers for voting (See Expr. 3.1).

� Depending on the selected value ensemble the same number of different

reduced training datasets will be selected.

� After that all datasets are passed one by one to ML algorithm for

training and evaluating on the testing data. Thus different results sets

are obtained: ResultsML1, ResultsML2, . . . , ResultsMLn.

� Finally, voting is performed with the obtained result sets and the final

step contains the results of the majority voting.

Algorithm 6 presents the ensemble method.

List of parameters used in the algorithm:

ml – machine learning algorithm, which specified in SpeedUP (is used

one kind of ML algorithm i.e. ‘LSVM’)

Dtrn – set of reduced training dataset

Dtest – testing dataset

results – set of results of each classifier

66

ensemble – number of voters in ensemble

tdk – testing data subset

Subsetsize – size of the subsets into which the testing dataset is divided

Algorithm 6 Ensemble method

Require: ml, Dtrn = {D1, D2, . . . , Densemble}, Dtest , ensemble, Subsetsize

clf← ml
results←{}
for i = 1 : ensemble do

1. Train ml with Di

clf.fit(Di)

2. Split the testing dataset in subsets (tdk) and run on ml.
n← 0
for k = 1 : trunc(len(Dtest)/Subsetsize) do

tdk← Dtest [(n + 1) : (Subsetsize ∗ k),]

results[i]← results[i] ∪ clf.predict(tdk)

n← (Subsetsize ∗ k)

end for

if (len(Dtest % Subsetsize) > 0 then

tdk+1← Dtest [(n + 1) : (len(Dtest)),]

results[i]← results[i] ∪ clf.predict(tdk+1)

end if

end for

Output :
1

ensemble

(
ensemble

∑
i=1

results[i]

)

3.2 Datasets

For experiments and the comparison of results the proposed method is eval-

uated on the largest labeled datasets available:

� Stanford Twitter sentiment corpus dataset4 (sentiment140), is intro-

duced by Go et al. in [20]. The data is a CSV with emoticons removed.

Tweets are in English. Data file format has six fields:

0 – the polarity of the tweet (0 = negative, 2 = neutral, 4 =

positive)

1 – the id of the tweet

4http://help.sentiment140.com/

67

http://help.sentiment140.com/

2 – the date of the tweet

3 – the query

4 – the user that tweeted

5 – the text of the tweet

In the experiments only fields 0 (the polarity of the tweet) and 5 (the

text of the tweet) were used. The dataset was reconstructed into two

classes – “positive” and “negative”. The classes were converted into

binary as follows: tweets with polarity 0 or 2 were labeled as“negative”,

whereas tweets with polarity 4 received a label “positive”.

� Amazon customer reviews dataset5 (AmazonTest). It is constructed

from the dataset presented by Zhang et al. [204], which originally

is created from Amazon product data dataset6 (AmazonProduct), by

randomly taking training samples and testing samples for each review

score from 1 to 5. At the end dataset was reconstructed into two

classes. Most of the reviews are in English, but there are a few in

other languages, like Spanish.

� Amazon product data dataset6 introduced by McAuley et al. in [205].

In particular, these datasets from the Amazon product data were used:

Books (Books), Electronics (Electronics), Kindle Store (KindleStore),

Cell Phones and Accessories (Phones&Accessories). AmazonProduct

dataset includes reviews (ratings, text, helpfulness votes), product

metadata (descriptions, category information, price, brand, and image

features), and links (also viewed/also bought graphs). The format is

one-review-per-line in (loose) json. The review consists of these fields:

1. reviewerID - ID of the reviewer

2. asin - ID of the product

3. reviewerName - name of the reviewer

4. helpful - helpfulness rating of the review

5. reviewText - text of the review

6. overall - rating of the product

7. summary - summary of the review

8. unixReviewTime - time of the review (unix time)

9. reviewTime - time of the review (raw)

In the experiments only fields reviewText (text of the review) and

5https://www.kaggle.com/bittlingmayer/amazonreviews/
6http://jmcauley.ucsd.edu/data/amazon/

68

https://www.kaggle.com/bittlingmayer/amazonreviews/
http://jmcauley.ucsd.edu/data/amazon/

overall (rating of the product) were used.

A brief description of datasets is presented in Table 3.1.

Table 3.1. Description of datasets

Dataset Num. of reviews Num. of classes

sentiment140 1,600,000 3

AmazonTest 4,000,000 2

Books 22,507,155 5

Electronics 7,824,482 5

KindleStore 3,205,467 5

Phones&Accessories 3,447,249 5

In the case of two classes we have“positive”and“negative”sentiment.

Table 3.2 shows the meaning of the review of the five classes. Rating value

3 “is acceptable” means neutral sentiment. Inferior two levels (rating 1 and

2) are negative sentiments and superior two (rating 4 and 5) are positive

sentiments.

Table 3.2. Meaning of the review

Rating Meaning Sentiment

1 avoid negative

2 bad negative

3 acceptable neutral

4 good positive

5 exceptional positive

3.3 Performance evaluation

3.3.1 Effectiveness

Effectiveness is measured using statistical measures which are often used

for similar tasks, particularly, accuracy, precision, recall, F1score and AUC.

Formulas are presented below (Sammut and Webb, [206]):

Accuracy: ACC =
T P + T N

T P + T N + FP + FN

Precision. Positive predictive value: PPV =
T P

T P + FP

Precision. Negative predictive value: NPV =
T N

T N + FN

69

Recall. True positive rate: T PR =
T P

T P + FN

Recall. True negative rate: T NR =
T N

T N + FP

Harmonic mean of PPV and T PR: F1score =
2

1
PPV + 1

T PR

where TP is count of correctly classified “positive” sentiments, TN

– count of correctly classified “negative” sentiments. FP is count of incor-

rectly classified“positive”sentiments and FN – count of incorrectly classified

“negative” sentiments.

time – is execution time of the machine learning algorithm. time =

stop− start, where start – the start of ML algorithm learning, stop – the

output of results.

3.3.2 Ranking

The evaluation of machine learning algorithms is performed with average

ranks ranking method presented by the authors in [207], who were inspired

by Friedman’s statistic [208]. It is modified and adopted for ranking the

proposed hybrid method applied on classical machine learning algorithms.

The idea of this method is to order the algorithms according to the measured

effectiveness metrics (See Subsec 3.3.1) and assign ranks accordingly. The

best algorithm will be assigned rank 1, second – 2 and so on. Let rank(k)i j

be the rank of algorithm j on cross-validation (CV) split i and k dataset.

The average rank for each algorithm:

Rank j =
1

(m×n)

(
m

∑
k=1

(
n

∑
i=1

rank(k)i j

))
(3.2)

where n is the number of cross-validation splits datasets; m is the

number of datasets.

The final ranking is obtained by ordering the average ranks and

assigning ranks to the algorithms accordingly.

3.3.3 Statistical significance

Normal distribution

A random variable X is said to follow a normal distribution with parameters

µ and S2 if its probability density function is given by [209]

f (x) =
1

S
√

2π
exp
(
−(x−µ)2

2S2

)
; −∞ < x < ∞, −∞ < µ < ∞, S2 > 0 (3.3)

70

where µ – mean, S – standard deviation, S2 – variance.

When a random variable X is distributed normally with mean µ and

variance S2 it is written X ∼ N(µ, S2) [209].

The hypotheses are:

H0 : the variable is distributed normally

H1 : the distribution is not normal

Welch’s t-test

For statistical significance hypothesis testing is used, in order to make sta-

tistical decisions employing experimental data. For this issue Welch’s t-test

[209] is used, which assumes that both groups of data are sampled from

populations that follow a normal distribution, but it does not assume that

those two populations have the same variance. Welch test statistic can be

written as [209]:

T =
|d|
SE

(3.4)

where d is the difference between two groups X and Y , then d is the

difference between two groups means, which can be written |d| = |X −Y |.
SE – standard error of difference [209]:

SE =

√
S2

X
nX

+
S2

Y
nY

(3.5)

where nX and nY – the sizes of groups, SX and SY – the standard

deviation of the groups [209]:

S2
X =

1
nX −1

nX

∑
i=1

(Xi−X)2, S2
Y =

1
nY −1

nY

∑
i=1

(Yi−Y)2 (3.6)

The equation 3.4 can be rewritten as follows:

T (X ,Y) =
|X−Y |√
S2

X
nX

+
S2

Y
nY

(3.7)

the degrees of freedom is calculated by [209]:

df =

(
S2

X

nX
+

S2
Y

nY

)2

/

(
(S2

X/nX)2

nX −1
+

(S2
Y/nY)2

nY −1

)
(3.8)

71

The hypotheses are:

H0 : difference between the two methods is not significant

H1 : difference between the two methods is significant

The null hypothesis is rejected at significance level α if |T |> t, where

t is critical value in the t-distribution table that corresponds to a two-tailed

test with α for df – degree of freedom [209].

p-value

The p-value is another statistical measure for hypothesis testing, which

could help with decision making when it is necessary to decide whether

to reject or not to reject the null hypothesis. In most cases α = 0.05 is used.

p≤ α null hypothesis H0 : is rejected.

p > α null hypothesis H0 : is not rejected

3.4 Conclusions of Chapter 3

The research methodology for textual data sentiment analysis in large scale

datasets is presented in this chapter.

1. A hybrid method for textual data sentiment analysis is proposed. The

method consists of:

� SpeedUP method – this is the main part of the proposed hybrid

method, whose aim is to increase the classification speed of clas-

sical machine learning algorithms.

� k-Means clustering method is responsible for training data selec-

tion.

� PSO tuning method – this method performs the tuning of the

hyperparameters.

� Ensemble method – this is the last part of the proposed hybrid

method, which performs combination and voting of the machine

learning algorithms.

2. A brief description of the datasets, which will be used in the experi-

mental research part is given.

3. For hybrid method classification experiments statistical effectiveness

measures are selected: accuracy, precision, recall, harmonic mean and

area under the receiver operating characteristics. For methods’ rank-

ing average ranks ranking method and Welch’s t-test for statistical

hypothesis testing are selected.

72

4. EXPERIMENTS AND RESULTS

In this chapter, experimental cycles, experimental settings, also experiments

performed with the proposed hybrid method and presented results are de-

scribed. For more clarity it was decided to label the method as follows (the

variables in curly brackets are optional):

ML{PSO}
{n} {km} s SpeedUP

where:

ML – machine learning algorithm (DT, RF, MNB, LR, LSVM).

n – defines how many classifiers are combined in the case of ensemble.

If the ensemble method is not used, then this variable is blank.

PSO – indicates if the PSO tuning method is enabled. If it is not used,

then this variable is blank.

km – indicates if k-Means clustering is enabled. If the method is not

used, then this variable is blank.

s – defines subset size i.e. 30K, 60K, 120K, 180K etc.

SpeedUP – the SpeedUP method.

The aim of the experiments is to experimentally prove the effective-

ness of the proposed method, to perform comparative analysis of it and to

recommend a better setup for it. In order to achieve it the experiments

are conducted with the five classical machine learning algorithms with a

proposed method applied. Comparison with other authors’ work is also

provided, and the experiment is provided with real-world data. Parts of

this chapter are published in [A1],[A2],[A3],[A4],[A5],[A7].

The experiments are performed on the largest labeled text datasets

available (See Sec 3.2). A computer with a processor Intel(R) Core(TM)

i7-4712MQ CPU @ 2.30 GHz and 16.00 GB installed memory (RAM) was

used for the experiments.

4.1 Experimental cycles

Six cycles of experiments are carried out in this dissertation:

1. Experiment cycle with classical machine learning algorithms.

In this cycle, experiments with five classical machine learning algo-

rithms are performed: multinomial näıve Bayes, random forest, deci-

sion tree, linear support vector machines and logistic regression. For

73

this cycle ordinary dataset split into training (70% of dataset) and

testing (30% of dataset) data is used. The aim of this experiment is

to compare the results of classical machine learning algorithms and set

baselines for comparison with the hybrid method.

2. Experiment cycle with SpeedUP. Experiments by applying

SpeedUP on the aforementioned classical machine learning algorithms

and on the same testing data as in the previous cycle are performed.

The main goal is to compare the results between the classical machine

learning algorithms and SpeedUP.

3. Experiment cycle with k-Means clustering. SpeedUP is supple-

mented with the k-Means clustering method. The main goal is to show

the effectiveness of training data selection. This cycle is also performed

on the same testing dataset as the previous experiments.

4. Experiment cycle with the full proposed hybrid method. Ex-

periments by supplementing SpeedUP with k-Means clustering and

ensemble are performed. Additionally, for LR and LSVM experiments

with integrated the PSO tuning method are carried out. The aim of

this cycle is to select a better set of parameters for the proposed hybrid

method.

5. Experiment cycle of the comparison of the results. Comparison

with other authors by applying the proposed hybrid method on the

same datasets as theirs is performed.

6. Experiment cycle with real-world data. Experiments with real-

world data collected from the Internet in the public opinion research

domain are performed. The results are compared with random search,

Bayesian optimization and real results presented by two institutions of

public opinion and market research: Vilmorus ltd. and Baltic Surveys.

Detailed experiment settings and datasets are described in further

sections. For LSVM classification LinearSVC module with this default pa-

rameters is used – all parameters are selected as they are in the module

(See App. A). It is similar to SVC (implementation of conventional SVM)

with parameter kernel=‘linear’, but it is implemented in terms of LibLinear

(a library for large linear classification7) rather than LibSVM (a library for

support vector machines8), so it has more flexibility in the choice of penal-

ties and loss functions and should scale better to large numbers of samples

7https://www.csie.ntu.edu.tw/~cjlin/liblinear/
8https://www.csie.ntu.edu.tw/~cjlin/libsvm/

74

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

[11]. Modules MultinomialNB, LogisticRegression, DecisionTreeClassifier

and RandomForestClassifier from scikit-learn library with their default pa-

rameters (all parameters are selected as they are in the relevant module; see

App. A) are used for relative machine learning algorithms (MNB, LR, DT,

RF).

The experiments are implemented with Python programming lan-

guage (v3.6.2) and scikit-learn (v0.19.2) [11]: library for machine learning.

Training and testing data is converted into a matrix of TF-IDF features.

4.1.1 Experiment cycle with classical machine learning algorithms

4.1.1.1 Experimental settings

Figure 4.1 presents the diagram of the experiment cycle with classical ma-

chine learning algorithms.

List of parameters used in the figure is as follows:

classi – certain category of sentiment assigned to the text in dataset

Trni – set of training data selected from class1 or class2

tdi – set of testing data selected from class1 or class2

TrnCVi – set of training data

tdCVi – set of testing data

RCVi – set of results of every cross-validation split

RCVi – averaged final results of every cross-validation split

The diagram consists of the following steps:

� The diagram starts with “Textual dataset”. It is important to mention

that it follows the data preprocessing step (See Fig. 3.1).

� Next “Textual dataset” is split into two classes and each class is split

into 10 training Trni and testing tdi data folds.

� “Train and Test data” combines each training fold from class1 with

training fold from class2 to training data fold TrnCVi , which contains

both classes. The same is done with testing data folds. At the end

we have 10 different training and 10 testing data folds. These two

steps can be performed automatically by using Stratified ShuffleSplit

cross-validator (StratifiedShuffleSplit) from scikit-learn library. The

most common split ratio (70/30) into training and testing data is used.

Prepared datasets are saved to CSV files for further experiments. The

size of training and testing data for both datasets (sentiment140 and

AmazonTest) is shown in Table 4.1.

75

� In the next step the aforementioned training and testing datasets are

passed to ML algorithms (MNB, LR, DT, RF, LSVM).

� Finally the obtained classification results RCVi of each CV fold are av-

eraged for final results RCVi .

Textual datasetclass1 class2

Trn1

Trn2

...

Trn10

td1

td2

...

td10

Trn1

Trn2

...

Trn10

td1

td2

...

td10

TrnCV1

TrnCV2

...

TrnCV10

tdCV1

tdCV2

...

tdCV10

ML algorithm

RCV2RCV1
. . . RCV10

RCVi

Train and Test data

Fig. 4.1. Diagram of the experiment cycle with classical machine learning

algorithms

Table 4.1 presents the sizes of training and testing data, when using

the aforementioned dataset split.

Table 4.1. Fold size of training and testing data in sentiment140 and Ama-

zonTest datasets

Dataset Training data (70%) Testing data (30%)

sentiment140 1.12M 480K

AmazonTest 2.8M 1.2M

Later, the results are compared and ranks are calculated for classical

machine learning algorithms by applying an average ranks ranking method

(See Subsec 3.3.2).

76

4.1.1.2 Results

Ten-fold cross-validation was used to compare the effectiveness of the ML

algorithms. Table 4.2 gives averaged results of the classical machine learning

algorithms, when sentiment140 and AmazonTest datasets were used.

Table 4.2. Averaged effectiveness metrics and ranks of classical ML algo-

rithms in the experiment cycle with classical machine learning algorithms

Method time (s) ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB 3.86 77.53% 77.94% 77.12% 76.78% 78.27% 77.36% 85.80%

rank 1 3 4 3 4 4 3 4

LR 35.62 79.96% 79.31% 80.63% 81.06% 78.85% 80.17% 87.84%

rank 2 1 2 1 1 2 1 1

LSVM 377.16 79.52% 78.83% 80.24% 80.71% 78.32% 79.76% 87.59%

rank 3 2 3 2 2 3 2 2

RF 1012.73 76.18% 79.44% 73.58% 70.66% 81.71% 74.79% 86.14%

rank 4 4 1 4 5 1 4 3

DT 6196.69 72.09% 72.05% 72.13% 72.18% 72.00% 72.11% 79.55%

rank 5 5 5 5 3 5 5 5

rankLR1 = 1.375 | rankLSV M1 = 2.375 | rankMNB1 = 3.25 | rankRF1 = 3.25 | rankDT1 = 4.75

AmazonTest dataset

MNB 12.02 84.47% 85.10% 83.87% 83.58% 85.36% 84.33% 92.33%

rank 1 3 3 3 3 4 3 4

LR 241.31 90.20% 90.07% 90.33% 90.36% 90.03% 90.21% 96.38%

rank 2 1 2 1 1 2 1 1

LSVM 813.54 89.58% 91.77% 87.60% 86.95% 92.20% 89.29% 96.33%

rank 3 2 1 2 2 1 2 2

RF 4581.63 80.37% 84.89% 76.89% 73.90% 86.84% 79.02% 92.34%

rank 4 4 4 5 5 3 4 3

DT 98743.92 77.31% 77.31% 77.33% 77.34% 77.27% 77.31% 85.95%

rank 5 5 5 4 4 5 5 5

rankLR2 = 1.375 | rankLSV M2 = 1.875 | rankMNB2 = 3 | rankRF2 = 4 | rankDT2 = 4.75

RankLR = 1.375 | RankLSV M = 2.125 | RankMNB = 3.125 | RankRF = 3.625 | RankDT = 4.75

The results of the experiment cycle with classical machine learning

algorithms showed that the best accuracy was provided when logistic re-

gression on both datasets was used. The accuracy of linear support vector

machines was slightly smaller. Other metrics – NPV, TPR, F1score – also

showed the superiority of the logistic regression on both datasets, while in

terms of PPV and TNR it lost slightly to random forest on the sentiment140

dataset and to LSVM on the AmazonTest dataset. The quality measure of

77

the model’s predictions AUC showed that the logistic regression outper-

formed all classifiers on both datasets. The AUC of linear support vector

machines was slightly smaller.

The results of an execution time average showed that the best execu-

tion time was achieved by multinomial näıve Bayes on both datasets. The

execution time of logistic regression was slightly slower, while the worst

result was obtained when decision tree on both datasets was used.

The average ranking rankML1 on the sentiment140 showed that the

LR algorithm was of higher rank and LSVM was second best. MNB and

RF had the same rank and the last one was DT. The same results of two

best algorithms were on the AmazonTest dataset. This time MNB showed

a better rank compared with RF, DT was still the last one. The average

ranking of both datasets RankML are distributed as follows: higher rank was

obtained by LR, the second place by LSVM, the third place was taken by

MNB, the fourth place by RF and the fifth place by DT.

The distribution of classical machine learning algorithms results in

terms of ACC, PPV, NPV, TPR, TNR, F1score and AUC are depicted in

Figure 4.2 and Figure 4.3. Figure 4.4 presents the execution times of five

classical machine learning algorithms on both datasets.

ACC F1score

72

74

76

78

80

P
er

ce
n
ta

ge
(%

)

MNB LR LSVM RF DT

PPV NPV TPR TNR

72

74

76

78

80

82

Fig. 4.2. Effectiveness metrics of classical ML algorithms on sentiment140

dataset

78

ACC F1score

78

80

82

84

86

88

90

P
er

ce
n
ta

g
e

(%
)

MNB LR LSVM RF DT

PPV NPV TPR TNR

75

80

85

90

Fig. 4.3. Effectiveness metrics of classical ML algorithms on AmazonTest

dataset

As described in Section 3.3, the execution time was measured from

the start of ML algorithm learning and finished after classification results

were shown. It is evident that the best execution time was when MNB

classifier on both datasets was used. LR was the second best and LSVM

was the third. The worst results were obtained by DT. The results clearly

showed that there is a need of execution time reduction for LR, LSVM and

especially for DT.

sentiment140 AmazonTest
0

200

400

600

800

1,000

3.86 12.0235.62

241.31

377.16

813.54

1,012.73

4,581.63
6,196.69

98,743.92

E
x
ec

u
ti

on
ti

m
e

(s
)

MNB

LR

LSVM

RF

DT

Fig. 4.4. Execution time of classical ML algorithms on both datasets

The obtained results in the experiment cycle with classical machine

learning algorithms will be a baseline for further experiments where com-

parison with the proposed method is performed. Part of the results of this

79

experiment cycle is published in [A1], [A4] and [A5]. They are slightly dif-

ferent because different CV folds were used and memory RAM was 8GB

(while in this dissertation – 16GB).

4.1.2 Experiment cycle with SpeedUP

4.1.2.1 Experimental settings

Experiments with ML s SpeedUP are performed here. It means that pa-

rameters in the SpeedUP method are set as follows:

SpeedUP(ml = {‘LSVM’, ‘MNB’, ‘LR’, ‘DT’, ‘RF’}, kmeans = 0,

ensemble = 0, pso = 0, Subsetsize = {30K, 60K, 120K, 180K},
Dtext , numclass = 2)

Values in curly brackets mean that experiments will be performed

by setting only one parameter at a time. Therefore, in the case of ml pa-

rameter, one machine learning algorithm will be selected and experiments

will be performed with different Subsetsize: firstly with 30K, then 60K etc.

The same is done with the second, third, fourth and fifth machine learning

algorithms. It is important to emphasize that these sizes are selected man-

ually by the author after a set of experiments were conducted (it is possible

to set different sizes if there is a need). In the further cycles of experiments

only Subsetsize = 30K will be used, other sizes are presented for testing the

SpeedUP method.

Figure 4.5 presents the diagram of the experiment cycle with SpeedUP.

Average of all 10 cross-validation folds is given as the final results.

List of parameters used in the figure is as follows:

CVi – cross-validation folds, which contain training and testing data

SpeedUP – the main part of the proposed hybrid method

RCVi – the results of relevant cross-validation fold, achieved after the

SpeedUP method

RCVi – the averaged results of all CV folds

The diagram consists of the following steps:

� The diagram starts with CV1,CV2, . . . ,CV10 in other words they are

cross-validation folds each containing training and testing data.

� Later, each CV fold is passed to SpeedUP one by one.

� SpeedUP returns results RCVi for each CV fold.

� Finally results are averaged – RCVi .

80

CV1 CV2 CV3 CV4 CV5 . . . CV10

SpeedUP

RCV1 RCV2 RCV3 RCV4 RCV5
. . . RCV10

RCVi

Fig. 4.5. Diagram of the experiment cycle with SpeedUP

Further in Figure 4.6 a detailed diagram of the first CV fold – CV1

is shown. The same steps are performed for others: CV2, CV3 etc.

TrnCV1 tdCV1

TrnCV1 2TrnCV1 1
. . . TrnCV1 10

ML algorithm

RCV1 1 RCV1 2
. . . RCV1 10

RCV1

CV1

SpeedUP

Fig. 4.6. Diagram of the CV1 in the experiment cycle with SpeedUP

List of parameters used in the figure is as follows:

TrnCV1 – training data from CV fold

tdCV1 – testing data from CV fold

TrnCV1 n – set of training data subsets calculated depending on Subsetsize

(See Table 4.3)

RCV1 i – results of every training data subset

81

RCV1 – the averaged final results

The diagram consists of the following steps:

� The diagram starts with training and testing data from CV1.

� Rectangle contains SpeedUP. Because random training data selection is

used it was decided to select 10 datasets for training for more objective

results, which are calculated depending on Subsetsize.

� Training data are passed to the machine learning algorithm one by one

and are performed on the same testing data.

� SpeedUP returns results RCV1 i , which finally are averaged – RCV1 .

Table 4.3. Training and testing data sizes depending on Subsetsize for

SpeedUP

Dataset Testing Subset Subsets Remainder Training data

data size size quantity (SQ) TDs− (Ss∗SQ) depending

(TDs) (Ss) trunc(TDs/Ss) on Ss

Ss∗Splitratio

sentiment140 480K 30K 16 0 70K

480K 60K 8 0 140K

480K 120K 4 0 280K

480K 180K 2 120K 420K

AmazonTest 1.2M 30K 40 0 70K

1.2M 60K 20 0 140K

1.2M 120K 10 0 280K

1.2M 180K 6 120K 420K

Table 4.3 presents the sizes of training and testing data depend-

ing on Subsetsize. In SpeedUP it is performed automatically. For example,

Subsetsize is set to 30K and split ratio is 70% for training and 30% for testing

(Splitratio = 70/30); then training data ratio, depending on subset size, will be

30K ∗(70/30) =70K. The whole testing data contains 480K instances (in the

case of sentiment140 dataset). The machine learning algorithm is trained

with 70K instances and performed on the testing data, which is automati-

cally divided into subsets (16 subsets) with size 30K (in total 480K) during

execution. Practically, the trained machine learning algorithm is performed

on 16 testing data subsets and finally all results are combined into one set.

The main goal of the experiment cycle with SpeedUP is to carry

out experiments with it and to compare results with the results achieved

82

by classical ML algorithms in the experiment cycle with classical machine

learning algorithms.

4.1.2.2 Results

As described in Section 4.1, in this cycle the experiments were performed

with SpeedUP. For all experiments the same training and testing data from

the experiment cycle with classical machine learning algorithms were used.

Furthermore, testing data was divided into subsets, which contain 30K rows,

60K rows, 120K rows and at finally, 180K rows of a dataset. Depending on

subset size training data size was calculated and after that it was randomly

selected from the whole training dataset.

Table 4.4. Averaged effectiveness metrics and ranks of ML 30K SpeedUP

in the experiment cycle with SpeedUP

Method time (s) ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB 7.19 76.00% 76.89% 75.17% 74.34% 77.66% 75.60% 84.54%

rank 1 3 2 3 3 2 3 3

LR 7.56 78.05% 77.54% 78.57% 78.96% 77.13% 78.25% 85.89%

rank 3 1 1 1 1 3 1 1

LSVM 7.43 77.10% 76.60% 77.62% 78.05% 76.16% 77.32% 85.36%

rank 2 2 3 2 2 4 2 2

RF 13.99 73.18% 76.17% 70.81% 67.48% 78.89% 71.56% 82.65%

rank 4 4 4 4 5 1 4 4

DT 36.33 68.81% 68.73% 68.89% 69.03% 68.60% 68.88% 75.95%

rank 5 5 5 5 4 5 5 5

rankLR1 = 1.5 | rankLSV M1 = 2.375 | rankMNB1 = 2.5 | rankRF1 = 3.75 | rankDT1 = 4.875

AmazonTest dataset

MNB 68.90 84.13% 84.84% 83.45% 83.11% 85.15% 83.97% 92.19%

rank 3 3 3 3 3 3 3 3

LR 68.61 88.23% 88.25% 88.20% 88.19% 88.26% 88.22% 94.99%

rank 2 1 1 1 1 1 1 2

LSVM 67.51 87.59% 87.50% 87.68% 87.71% 87.47% 87.60% 95.04%

rank 1 2 2 2 2 2 2 1

RF 80.02 78.02% 82.64% 74.54% 70.94% 85.10% 76.34% 90.07%

rank 4 4 4 4 5 4 4 4

DT 155.53 73.25% 73.16% 73.34% 73.44% 73.06% 73.30% 81.92%

rank 5 5 5 5 4 5 5 5

rankLR2 = 1.25 | rankLSV M2 = 1.75 | rankMNB2 = 3 | rankRF2 = 4.125 | rankDT2 = 4.875

RankLR = 1.375 | RankLSV M = 2.0625 | RankMNB = 2.75 | RankRF = 3.9375 | RankDT = 4.875

Underscore “ ” means that 30K SpeedUP should be added at the end.

83

Table 4.4 gives averaged results of the ML 30K SpeedUP, when sen-

timent140 and AmazonTest datasets were used. The distribution of the re-

sults of the accuracy compared with baseline is depicted in Figure 4.7. The

results showed that the best accuracy was achieved when logistic regression

is used on both datasets. The accuracy of linear support vector machines

was slightly smaller. All classifiers resulted with lower accuracy compared

with baseline. This happened because the less data was used for training –

only 70K.

Other metrics – PPV, NPV, TPR, F1score – also showed the supe-

riority of the logistic regression on both datasets, while in terms of TNR

there was a slight loss to random forest on the sentiment140 dataset. The

quality measure of the model’s predictions AUC also showed that the lo-

gistic regression outperformed all classifiers on sentiment140 datasets, while

LSVM outperformed other classifiers on AmazonTest dataset.

MNB LR LSVM RF DT

70

72

74

76

78

80

P
er

ce
n
ta

ge
(%

)

classical ML algorithms ML 30K SpeedUP

(a) sentiment140

MNB LR LSVM RF DT

75

80

85

90

(b) AmazonTest

Fig. 4.7. Accuracy of the ML 30K SpeedUP and classical ML algorithms

The results of an execution time average showed that the best execu-

tion time was achieved by multinomial näıve Bayes on sentiment140 dataset

and by LSVM on the AmazonTest dataset.

The average ranking rankML1 on the sentiment140 showed that the

higher rank was obtained by the LR algorithm and LSVM was second best.

The same results of the two best algorithms were achieved on the Amazon-

Test dataset. The average ranking of both datasets RankML is distributed as

follows: higher rank was obtained by LR, the second place by LSVM, the

third place was reached by MNB, the fourth by RF and the fifth by DT.

84

Figure 4.8 shows the execution time of the ML 30K SpeedUP and

classical ML algorithms. It is evident that execution time was reduced for

LR, LSVM, RF and DT compared with classical ML algorithms. However

in the case of MNB it performed slightly worse compared with baseline.

MNB LR LSVM RF DT
0

20

40

60

80

3.86

35.62

377.16 1,012.73
6,196.69

7.19 7.56 7.43
13.99

36.33

E
x
ec

u
ti

on
ti

m
e

(s
)

classical ML algorithms ML 30K SpeedUP

(a) sentiment140

MNB LR LSVM RF DT
0

50

100

150

200

12.02

241.31
813.54 4,581.63

98,743.92

68.9 68.61
67.51 80.02

155.53

(b) AmazonTest

Fig. 4.8. Execution time of ML 30K SpeedUP and classical ML algorithms

The best results were achieved by RF and DT on both datasets,

whose execution time was reduced: in the case of RF up to 72.3x times

when they were applied on the sentiment140 dataset and up to 57.2x times

when were applied on the AmazonTest reviews dataset; in the case of DT

it was reduced up to 170.5x and up to 634.8x times respectively. The other

classifiers also reported reduced execution time: LR – 4.7x, LSVM – 50.7x,

when the sentiment140 dataset was used, and LR – 3.5x, LSVM – 12.1x on

AmazonTest.

The obtained results showed that SpeedUP fits better for DT in ex-

ecution time metric, but it also experienced bigger loses in accuracy metrics

compared with baseline. According to the ranking results, DT was removed

from further steps of this experiments cycle.

The following experiments were performed by using subset size 60K

rows of a dataset. Table 4.5 gives averaged results of the ML 60K SpeedUP,

when sentiment140 and AmazonTest datasets were used. The results showed

that the best accuracy was achieved when LR on both datasets was used.

The accuracy of LSVM was slightly smaller.

Other metrics – PPV, NPV, TPR, F1score – also showed the supe-

85

riority of the logistic regression on both datasets, while in terms of TNR

there was a slight loss to random forest on the sentiment140 dataset.

Table 4.5. Averaged effectiveness metrics and ranks of ML 60K SpeedUP

in the experiment cycle with SpeedUP method

Method time (s) ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB 7.11 76.51% 77.30% 75.76% 75.06% 77.96% 76.17% 85.00%

rank 1 3 3 3 3 2 3 3

LR 8.88 78.71% 78.15% 79.31% 79.72% 77.71% 78.93% 86.58%

rank 3 1 1 1 1 3 1 1

LSVM 8.82 77.92% 77.37% 78.50% 78.93% 76.91% 78.14% 86.13%

rank 2 2 2 2 2 4 2 2

RF 29.83 74.06% 77.14% 71.62% 68.40% 79.72% 72.51% 83.71%

rank 4 4 4 4 4 1 4 4

rankLR1 = 1.5 | rankLSV M1 = 2.25 | rankMNB1 = 2.625 | rankRF1 = 3.625

AmazonTest dataset

MNB 67.64 84.25% 84.95% 83.59% 83.26% 85.25% 84.10% 92.27%

rank 1 3 3 3 3 4 3 3

LR 70.45 88.81% 88.77% 88.85% 88.86% 88.76% 88.82% 95.42%

rank 3 1 1 1 1 1 1 2

LSVM 68.99 88.26% 88.16% 88.38% 88.41% 88.12% 88.28% 95.43%

rank 2 2 2 2 2 2 2 1

RF 98.10 78.60% 83.23% 75.10% 71.63% 85.57% 77.00% 90.64%

rank 4 4 4 4 4 3 4 4

rankLR2 = 1.375 | rankLSV M2 = 1.875 | rankMNB2 = 2.875 | rankRF2 = 3.875

RankLR = 1.4375 | RankLSV M = 2.0625 | RankMNB = 2.75 | RankRF = 3.75

Underscore “ ” means that 60K SpeedUP should be added at the end.

The quality measure of the model’s predictions AUC also showed

that the logistic regression outperformed all classifiers on sentiment140 data-

sets, while LSVM outperformed other classifiers on AmazonTest dataset.

The results of an execution time average showed that the best exe-

cution time was achieved by MNB on both datasets.

The average ranking on the sentiment140 and AmazonTest datasets

showed that as in the previous experiments, the higher rank was of LR

algorithm and the second best was LSVM. The other classifiers lined up as

follows: the third place was taken by MNB, the fourth by RF.

The distribution of the results of the accuracy compared with base-

line is depicted in Figure 4.9. As in the previous experiments, when subset

size 30K rows of a dataset was used, all classifiers resulted in slightly lower

86

accuracy compared with baseline.

MNB LR LSVM RF

74

76

78

80
P

er
ce

n
ta

g
e

(%
)

classical ML algorithms ML 60K SpeedUP ML 30K SpeedUP

(a) sentiment140

MNB LR LSVM RF

78

80

82

84

86

88

90

(b) AmazonTest

Fig. 4.9. Accuracy of ML 30K SpeedUP, ML 60K SpeedUP and classical

ML algorithms

Figure 4.10 shows the execution time of the ML 30K SpeedUP,

ML 60K SpeedUP and classical ML algorithms. The results clearly showed

that execution time of three classifiers was reduced compared with baseline,

but again in the case of MNB it increased up to 1.8x on sentiment140 and

up to 5.6x on AmazonTest datasets.

MNB LR LSVM RF
0

20

40

60

80

3.86

35.62

377.16 1,012.73

7.11 8.88 8.82

29.83

7.19 7.56 7.43
13.99

E
x
ec

u
ti

on
ti

m
e

(s
)

classical ML algorithms ML 60K SpeedUP ML 30K SpeedUP

(a) sentiment140

MNB LR LSVM RF
0

50

100

150

200

12.02

241.31
813.54 4,581.63

67.64 70.45
68.99

98.1

68.9 68.61
67.51 80.02

(b) AmazonTest

Fig. 4.10. Execution time of ML 30K SpeedUP, ML 60K SpeedUP and

classical ML algorithms

Compared with experiments when subset size was 30K rows of a

87

dataset, experiments with subset size of 60K rows slightly lost in execution

time metric. Execution time was reduced compared with baseline: LR –

4.1x, LSVM – 42.7x, RF – 33.9x when sentiment140 dataset was used and

LR – 3.4x, LSVM – 11.7x, RF – 10.3x on AmazonTest dataset.

The obtained results showed that the SpeedUP method did not suit

MNB and it was removed from further steps of this experiment cycle. Ac-

cording to ranks, RF was also removed as the weakest classifier.

The following experiments were performed by using subset size 120K

rows of a dataset. The results obtained by classifiers are shown in Table

4.6.

Table 4.6. Averaged effectiveness metrics and ranks of ML 120K SpeedUP

in the experiment cycle with SpeedUP

Method time (s) ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

LR 12.26 79.23% 78.62% 79.86% 80.29% 78.16% 79.44% 87.11%

rank 1 1 1 1 1 1 1 1

LSVM 18.50 78.57% 77.97% 79.19% 79.64% 77.49% 78.79% 86.73%

rank 2 2 2 2 2 2 2 2

rankLR1 = 1 | rankLSV M1 = 2

AmazonTest dataset

LR 78.76 89.28% 89.20% 89.36% 89.38% 89.17% 89.29% 95.76%

rank 2 1 1 1 1 1 1 1

LSVM 74.31 88.82% 88.70% 88.93% 88.96% 88.67% 88.83% 95.74%

rank 1 2 2 2 2 2 2 2

rankLR2 = 1.125 | rankLSV M2 = 1.875

RankLR = 1.0625 | RankLSV M = 1.9375

Underscore “ ” means that 120K SpeedUP should be added at the end.

The results showed that logistic regression performed better in all

effectiveness metrics – ACC, PPV, NPV, TPR, TNR, F1score, AUC – on

both datasets. The results of an execution time average showed the supe-

riority of LR on sentiment140 dataset, while LSVM performed better on

AmazonTest.

The average ranking on the sentiment140 and AmazonTest datasets

showed that as in the previous experiments, LR achieved a higher rank and

LSVM was second best.

The following experiments were performed by using subset size 180K

rows of dataset. The results obtained by classifiers are shown in Table 4.7.

88

Table 4.7. Averaged effectiveness metrics and ranks of ML 180K SpeedUP

in the experiment cycle with SpeedUP

Method time (s) ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

LR 16.49 79.47% 78.84% 80.14% 80.57% 78.37% 79.70% 87.36%

rank 1 1 1 1 1 1 1 1

LSVM 48.02 78.90% 78.28% 79.54% 79.99% 77.80% 79.12% 87.02%

rank 2 2 2 2 2 2 2 2

rankLR1 = 1 | rankLSV M1 = 2

AmazonTest dataset

LR 87.15 89.50% 89.40% 89.61% 89.63% 89.37% 89.52% 95.91%

rank 2 1 1 1 1 1 1 1

LSVM 83.97 89.08% 88.97% 89.20% 89.24% 88.93% 89.10% 95.89%

rank 1 2 2 2 2 2 2 2

rankLR2 = 1.125 | rankLSV M2 = 1.875

RankLR = 1.0625 | RankLSV M = 1.9375

Underscore “ ” means that 180K SpeedUP should be added at the end.

The results showed that logistic regression provided better in all ef-

fectiveness metrics – ACC, PPV, NPV, TPR, TNR, F1score, AUC – on both

datasets. The results of an execution time average showed the superiority of

LR on sentiment140 dataset, while LSVM performed better on AmazonTest.

The average ranking on the sentiment140 and AmazonTest datasets

showed that as in the previous experiments, LR achieved a higher rank and

LSVM was second best.

Table 4.8. Averaged effectiveness metrics of ML s SpeedUP and classical

ML algorithms on sentiment140 in the experiment cycle with SpeedUP

Method time (s) ACC PPV NPV TPR TNR F1score AUC

classical LSVM 377.16 79.52% 78.83% 80.24% 80.71% 78.32% 79.76% 87.59%

LSVM 30K 7.43 77.10% 76.60% 77.62% 78.05% 76.16% 77.32% 85.36%

LSVM 60K 8.82 77.92% 77.37% 78.50% 78.93% 76.91% 78.14% 86.13%

LSVM 120K 18.50 78.57% 77.97% 79.19% 79.64% 77.49% 78.79% 86.73%

LSVM 180K 48.02 78.90% 78.28% 79.54% 79.99% 77.80% 79.12% 87.02%

classical LR 35.62 79.96% 79.31% 80.63% 81.06% 78.85% 80.17% 87.84%

LR 30K 7.56 78.05% 77.54% 78.57% 78.96% 77.13% 78.25% 85.89%

LR 60K 8.88 78.71% 78.15% 79.31% 79.72% 77.71% 78.93% 86.58%

LR 120K 12.26 79.23% 78.62% 79.86% 80.29% 78.16% 79.44% 87.11%

LR 180K 16.49 79.47% 78.84% 80.14% 80.57% 78.37% 79.70% 87.36%

Underscore “ ” means that SpeedUP should be added at the end.

89

Table 4.8 presents the results of both machine learning algorithms:

LR and LSVM from all experiments including the classical ML algorithms,

when the sentiment140 dataset was used.

The results showed that both classical LR and LSVM outperformed

ML s SpeedUP in terms of ACC, PPV, NPV, TPR, TNR, F1score and AUC.

The difference of accuracy average was not very big: in the case of LR

difference it was 0.49%-1.91% and in the case of LSVM it was 0.62%-2.42%.

The distribution of results in terms of ACC, PPV, NPV, TPR, TNR

and F1score of LSVM is depicted in Figure 4.11 and of LR in Figure 4.12.

ACC F1score

77

77.5

78

78.5

79

79.5

80

P
er

ce
n
ta

ge
(%

)

classical LSVM 180K SpeedUP 120K SpeedUP 60K SpeedUP 30K SpeedUP

PPV NPV TPR TNR

76

77

78

79

80

81

Fig. 4.11. Effectiveness metrics of LSVM s SpeedUP and classical LSVM

on sentiment140

ACC F1score

78

78.5

79

79.5

80

80.5

P
er

ce
n
ta

ge
(%

)

classical LR 180K SpeedUP 120K SpeedUP 60K SpeedUP 30K SpeedUP

PPV NPV TPR TNR

77

78

79

80

81

Fig. 4.12. Effectiveness metrics of LR s SpeedUP and classical LR on sen-

timent140

Table 4.9 presents the results of both machine learning algorithms:

90

LR and LSVM from all experiments including the classical ML algorithms,

when AmazonTest dataset was used. As in the case of sentiment140 dataset

the results showed that both classical LR and LSVM outperformed ML s

SpeedUP method in terms of ACC, PPV, NPV, TPR, TNR, F1score and

AUC. The difference of accuracy average was not very big: in the case of

LR it was 0.7%-1.97% and in the case of LSVM it was 0.5%-1.99%.

Table 4.9. Averaged effectiveness metrics of ML s SpeedUP and classical

ML algorithms on AmazonTest in the experiment cycle with SpeedUP

Method time (s) ACC PPV NPV TPR TNR F1score AUC

classical LSVM 813.54 89.58% 91.77% 87.60% 86.95% 92.20% 89.29% 96.33%

LSVM 30K 67.51 87.59% 87.50% 87.68% 87.71% 87.47% 87.60% 95.04%

LSVM 60K 68.99 88.26% 88.16% 88.38% 88.41% 88.12% 88.28% 95.43%

LSVM 120K 74.31 88.82% 88.70% 88.93% 88.96% 88.67% 88.83% 95.74%

LSVM 180K 83.97 89.08% 88.97% 89.20% 89.24% 88.93% 89.10% 95.89%

classical LR 241.31 90.20% 90.07% 90.33% 90.36% 90.03% 90.21% 96.38%

LR 30K 68.61 88.23% 88.25% 88.20% 88.19% 88.26% 88.22% 94.99%

LR 60K 70.45 88.81% 88.77% 88.85% 88.86% 88.76% 88.82% 95.42%

LR 120K 78.76 89.28% 89.20% 89.36% 89.38% 89.17% 89.29% 95.76%

LR 180K 87.15 89.50% 89.40% 89.61% 89.63% 89.37% 89.52% 95.91%

Underscore “ ” means that SpeedUP should be added at the end.

The distribution of results in terms of ACC, PPV, NPV, TPR, TNR

and F1score of LSVM is depicted in Figure 4.13 and of LR in Figure 4.14.

Figure 4.15 shows the execution time of the ML s SpeedUP and classical

ML algorithms from all experiments on both datasets.

ACC F1score

87.5

88

88.5

89

89.5

90

P
er

ce
n
ta

ge
(%

)

classical LSVM 180K SpeedUP 120K SpeedUP 60K SpeedUP 30K SpeedUP

PPV NPV TPR TNR

87

88

89

90

91

92

Fig. 4.13. Effectiveness metrics of LSVM s SpeedUP and classical LSVM

on AmazonTest

91

Comparison of the results between LR and LSVM also showed the

superiority of LR in all metrics – ACC, PPV, NPV, TPR, TNR, F1score on

both datasets. LR slightly lost to LSVM in execution time metrics, when

30K and 60K rows of dataset applied on sentiment140 were used. In the

case of AmazonTest, LR lost to LSVM on all SpeedUP splits: 30K, 60K,

120K and 180K rows.

ACC F1score

88

88.5

89

89.5

90

90.5

P
er

ce
n
ta

ge
(%

)

classical LR 180K SpeedUP 120K SpeedUP 60K SpeedUP 30K SpeedUP

PPV NPV TPR TNR

88

88.5

89

89.5

90

90.5

Fig. 4.14. Effectiveness metrics of LR s SpeedUP and classical LR on Ama-

zonTest

LSVM LR
0

20

40

60

80

100

377.16

35.62

48.02

16.4918.5

12.26
8.82 8.88

7.43 7.56

E
x
ec

u
ti

on
ti

m
e

(s
)

classical ML 180K SpeedUP 120K SpeedUP 60K SpeedUP 30K SpeedUP

(a) sentiment140

LSVM LR
0

50

100

150

200

813.54
241.31

83.97 87.15

74.31 78.76
68.99 70.45

67.51 68.61

(b) AmazonTest

Fig. 4.15. Execution time of ML s SpeedUP and classical ML algorithms

on both datasets

92

Considering the results, it was concluded that the SpeedUP method

was suitable for classical algorithms LR, LSVM, RF and DT, while in the

case of MNB it provided opposite results. The best execution time of all

classifiers was when 30K subset size was used. Part of the results of this

experiment cycle is published in [A4]. They are slightly different because

different CV folds were used, memory RAM was 8GB (while in this dis-

sertation – 16GB) and experiments were performed only with SVM. In the

following cycle experiments to increase accuracy of ML 30K SpeedUP by

applying the k-Means clustering method are performed.

4.1.3 Experiment cycle with k-Means clustering

4.1.3.1 Experimental settings

Experiments with ML km 30K SpeedUP are performed. It means that pa-

rameters in the SpeedUP method are set as follows:

SpeedUP(ml = {‘LSVM’, ‘MNB’, ‘LR’, ‘DT’, ‘RF’}, kmeans = 1,

ensemble = 0, pso = 0, Subsetsize = 30K, Dtext , numclass = 2)

Values in curly brackets mean that experiments will be performed

by setting only one parameter at a time. For this cycle, the same diagram

(Figure 4.5) presented in the experiment cycle with SpeedUP is used. In the

diagram only the cross-validation splits are different. Figure 4.16 presents

the diagram of the experiment cycle with k-Means clustering. The dashed

line in the diagram represents steps for additional calculations executed be-

fore a concrete step is joined to it. For the final results average is calculated.

List of parameters used in the figure is as follows:

TrnCV1 – training data from CV fold

tdCV1 – testing data from CV fold

Trnkm1 i – set of training data after k-Means clustering is applied

tdkmi – testing data for k-Means clustering

Rkm1 i – results of every training data subset

Trnkm(best i) – training data selected by k-Means clustering

Rkm(best i) – results of every training data subset

RCV1 – the averaged final results

The diagram consists of the following steps:

� The diagram starts with training and testing data from CV1.

93

� The smaller rectangle contains the k-Means clustering method. As

later an ensemble method will be tested, it was decided to select 10

datasets for training by performing k-Means clustering.

� After training data is selected it is passed to ML algorithm one by one.

For validating, training data from CV1 is used from which training data

selected by k-Means clustering is excluded.

� Dependending on the obtained results, n (ensemble value in SpeedUP,

see Expr. 3.1) training data sets are selected for next step – ML km

30K SpeedUP.

� The difference between ML 30K SpeedUP and ML km 30K SpeedUP

is in the number of training data sets. In ML 30K SpeedUP, 10 train-

ing data sets are used, while in this cycle its depends on value n.

� Last step contains averaged RCV1 results returned by ML km 30K

SpeedUP method.

TrnCV1 tdCV1

Trnkm1 2Trnkm1 1
. . . Trnkm1 10

TrnCV1−Trnkm1 n

ML algorithmtdkmi

Rkm1 2Rkm1 1
. . . Rkm1 10

Select best n

Trnkm(best 2)Trnkm(best 1) . . . Trnkm(best n)

ML algorithm

Rkm(best 2)Rkm(best 1) . . . Rkm(best n)

RCV1

CV1

k-Means clustering

ML km 30K SpeedUP

Fig. 4.16. Diagram of the CV1 in the experiment cycle with k-Means clus-

tering

94

Table 4.10 shows detailed experimental settings for data splitting.

Table 4.10. Training and testing data sizes for ML km 30K SpeedUP

Dataset Testing Subset Subsets Remainder Training data

data size size quantity (SQ) TDs− (Ss∗SQ) depending

(TDs) (Ss) trunc(TDs/Ss) on Ss

Ss∗Splitratio

sentiment140 480K 30K 16 0 70K

AmazonTest 1.2M 30K 40 0 70K

While k-Means clustering needs a defined number of clusters, the

number of cluster selection method (See Algorithm 7) is proposed. This

algorithm measure time depends on the number of clusters obtained after

running k-Means. The main goal is to find the cluster configuration which

will be optimal in terms of time and separation. It is worth mentioning that

this method is not a part of the proposed hybrid method – this is a separate

method, which could help to decide how many clusters should be used. By

default, an optimal number of clusters (kopt) is 120, which is hard-coded in

the proposed method.

Algorithm 7 Number of cluster selection

Require: cluster range – max number of clusters, Dtrain – training dataset

results← pandas.DataFrame(columns=[’k’,’time’])

for k = 2 : cluster range do

clf ← kmeans(k)

start = time.time()

clf .predict(Dtrain)

stop = time.time()

time = stop− start
results← results.append(’k’: k, ’time’ : time, ignore index = True)

end for

kopt ← results[’k’].loc[abs(results[’time’]−(results[’time’].max/3)).idxmin()]

Output : kopt – optimal number of clusters.

The main goal of this experiment cycle is to perform experiments

with ML km 30K SpeedUP and to compare the results with the results

achieved in the experiment cycle with classical ML algorithms and by

ML 30K SpeedUP.

95

4.1.3.2 Results

In this cycle, the same CV datasets, which were prepared in the experiment

cycle with classical ML algorithms are used. Firstly an optimal number

of clusters were selected (See Algorithm 7) for k-Means clustering. It is

worth mentioning that the more clusters will be selected, the more different

data will there will be in training dataset, while it will be the reason of

clustering speed loses, and vice verse – less clusters, the less different data,

but a higher clustering speed. Taking the visual output (See Fig. 4.17) of

Algorithm 7 into account it was decided that an optimal number of clusters

should be 120. This value was selected by the author based on a number of

experimental attempts.

0 50 100 150 200 250 300 350

10

20

30

40

50

60

ClusterNo = 120

Cluster No.

T
im

e
(s

)

(a) sentiment140 dataset

0 50 100 150 200 250 300 350

50

100

150

200

ClusterNo = 120

Cluster No.

(b) AmazonTest dataset

Fig. 4.17. Number of cluster selection results

The obtained value was hard-coded into k-Means clustering, so it

cannot be selected as SpeedUP variable. After a number of clusters was

selected, k-Means clustering was run 10 times on each part of CV training

dataset to perform a selection of 10 training datasets from each CV fold.

Ten-fold cross-validation was performed for each selected training datasets

splitting it into training (70%) and validating (30%) datasets and passing

it into ML algorithm. Depending on the averaged accuracy, five training

datasets were selected from each CV training fold (See Subsec 4.1.3).

Table 4.11 gives averaged results of the ML 30K SpeedUP and

ML km 30K SpeedUP, when sentiment140 and AmazonTest datasets were

used. The results indicated that ML km 30K SpeedUP outperformed

ML 30K SpeedUP almost in all effectiveness metrics on both datasets.

96

Table 4.11. Averaged effectiveness metrics of ML 30K SpeedUP and ML

km 30K SpeedUP in the experiment cycle with k-Means clustering

Method ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB 76.00% 76.89% 75.17% 74.34% 77.66% 75.60% 84.54%

MNB km 76.19% 76.69% 75.70% 75.24% 77.14% 75.96% 84.58%

LR 78.05% 77.54% 78.57% 78.96% 77.13% 78.25% 85.89%

LR km 78.14% 77.66% 78.64% 79.02% 77.26% 78.33% 85.98%

LSVM 77.10% 76.60% 77.62% 78.05% 76.16% 77.32% 85.36%

LSVM km 77.30% 76.78% 77.83% 78.26% 76.33% 77.51% 85.55%

RF 73.18% 76.17% 70.81% 67.48% 78.89% 71.56% 82.65%

RF km 74.34% 77.18% 72.05% 69.13% 79.56% 72.93% 83.60%

DT 68.81% 68.73% 68.89% 69.03% 68.60% 68.88% 75.95%

DT km 70.12% 70.00% 70.25% 70.43% 69.81% 70.21% 77.04%

AmazonTest dataset

MNB 84.13% 84.84% 83.45% 83.11% 85.15% 83.97% 92.19%

MNB km 84.20% 85.10% 83.34% 82.91% 85.48% 83.99% 92.23%

LR 88.23% 88.25% 88.20% 88.19% 88.26% 88.22% 94.99%

LR km 88.28% 88.43% 88.13% 88.08% 88.47% 88.25% 95.01%

LSVM 87.59% 87.50% 87.68% 87.71% 87.47% 87.60% 95.04%

LSVM km 87.74% 87.75% 87.72% 87.71% 87.76% 87.73% 95.11%

RF 78.02% 82.64% 74.54% 70.94% 85.10% 76.34% 90.07%

RF km 78.45% 83.45% 74.76% 70.98% 85.92% 76.71% 90.34%

DT 73.25% 73.16% 73.34% 73.44% 73.06% 73.30% 81.92%

DT km 73.61% 73.68% 73.54% 73.46% 73.75% 73.57% 82.23%

Underscore “ ” means that 30K SpeedUP should be added at the end.

MNB LR LSVM RF DT

70

72

74

76

78

P
er

ce
n
ta

ge
(%

)

ML 30K SpeedUP ML km 30K SpeedUP

(a) sentiment140

MNB LR LSVM RF DT

74

76

78

80

82

84

86

88

(b) AmazonTest

Fig. 4.18. Accuracy of ML 30K SpeedUP and ML km 30K SpeedUP

97

However, there was a slight loss in terms of PPV and TNR when

MNB on sentiment140 was used; also in terms of NPV and TPR on Ama-

zonTest when MNB and LR were used.

The distribution of the accuracy results of ML 30K SpeedUP and

ML km 30K SpeedUP is depicted in Figure 4.18.

The average ranking (See Table B.1 in App. B) on the sentiment140

and AmazonTest datasets again showed the superiority of LR and LSVM:

LR achieved a higher rank while LSVM was second best.

Table 4.12. Accuracy comparison between ML 30K SpeedUP and ML km

30K SpeedUP in the experiment cycle with k-Means clustering using

Welch’s t-test

Method MNB LR LSVM RF DT

sentiment140 dataset

|d| = 0.19 |d| = 0.09 |d| = 0.19 |d| = 1.16 |d| = 1.31

Statistics SE = 0.026 SE = 0.023 SE = 0.016 SE = 0.033 SE = 0.026

|T | = 7.21 |T | = 4.05 |T | = 11.79 |T | = 34.80 |T | = 49.52

ttable = 2.12 ttable = 2.11 ttable = 2.11 ttable = 2.11 ttable = 2.12

p-value < .00001 < .00001 < .00001 < .00001 < .00001

Results |T | > ttable |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p < α p < α p < α p < α p < α

H0 rejected rejected rejected rejected rejected

rejected rejected rejected rejected rejected

AmazonTest dataset

|d| = 0.07 |d| = 0.05 |d| = 0.15 |d| = 0.44 |d| = 0.36

Statistics SE =0.021 SE = 0.007 SE = 0.007 SE = 0.044 SE = 0.03

|T | = 3.26 |T | = 6.59 |T | = 20.06 |T | = 9.95 |T | = 11.85

ttable = 2.145 ttable = 2.11 ttable = 2.145 ttable = 2.11 ttable = 2.11

p-value 0.0057 < .00001 < .00001 < .00001 < .00001

Results |T | > ttable |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p < α p < α p < α p < α p < α

H0 rejected rejected rejected rejected rejected

rejected rejected rejected rejected rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05).

Before applying Welch’s t-test it was checked whether variables fol-

low a standard normal distribution (See Table B.16 in App. B). The cal-

culation was performed based on the accuracy of each CV fold achieved

98

by relevant methods (See Table B.2 in App. B). The results in Table 4.12

showed that the biggest difference between accuracy average (d) of the two

methods was 1.31%, when DT on sentimen140 dataset was used and in the

case of RF – d = 0.44% – on AmazonTest. However, these ML methods

had the lowest accuracy compared with LR, LSVM and MNB. Considering

Welch’s t-test and p-value, the achieved accuracy by ML km 30K SpeedUP

was significant compared with ML 30K SpeedUP, because the H0 hypothe-

sis was rejected (the hypotheses are defined in Subsection 3.3.3).

Part of the results of this experiment cycle is published in [A2]. They

are slightly different because different CV folds were used, experiments were

performed only with LSVM and the C Tuning method was applied.

In the cycle with the full proposed hybrid method experiments to

increase the accuracy of ML km 30K SpeedUP are performed by applying

an ensemble method and additionally PSO tuning for LSVM and LR.

4.1.4 Experiment cycle with the full proposed hybrid method

4.1.4.1 Experimental settings

Experiments with ML
{PSO}
{n} km 30K SpeedUP are performed here. It means

that parameters in the SpeedUP method are set as follows:

SpeedUP(ml = {‘LSVM’, ‘MNB’, ‘LR’, ‘DT’, ‘RF’}, kmeans = 1,

ensemble = {3, 5}, pso = {0, 1}, Subsetsize = 30K, Dtext , numclass = 2)

Values in curly brackets mean that experiments will be performed

by setting only one parameter at a time.

For this cycle the same diagram (Figure 4.5) presented in the exper-

iment cycle with SpeedUP is used. Only cross-validation splits are different

in the diagram. Figure 4.19 presents the diagram of the experiment cycle

with the full proposed hybrid method. The diagram is slightly simplified,

because it is the same as in Figure 4.16, only the last step is different. As

the final results of CV fold, the results achieved from three and five voters

are taken.

List of parameters used in the figure is as follows:

TrnCV1 – training data from CV fold

tdCV1 – testing data from CV fold

Trnkm(best i) – training data selected by k-Means clustering

Rkm(best i) – results of every training data subset

99

RCV1 – the final results

TrnCV1 tdCV1

Trnkm(best 2)Trnkm(best 1) . . . Trnkm(best n)

ML algorithm

Rkm(best 2)Rkm(best 1) . . . Rkm(best n)

Voting

RCV1

CV1

k-Means clustering

MLn km 30K SpeedUP

Fig. 4.19. Diagram of the CV1 in the experiment cycle with the full proposed

hybrid method

The diagram consists of the following steps:

� The diagram starts with training and testing data from CV1

� In the next step k-Means clustering (See Fig. 4.16) is applied for

selecting the number of training data set by value ensemble in SpeedUP.

� After that selected training data is passed to ML algorithm.

� Last step contains results after voting is performed.

Further this cycle is expanded by applying PSO tuning to LSVM

and LR machine learning algorithms.

Experiments with MLPSO km 30K SpeedUP and MLPSO
n km 30K

SpeedUP are performed here. It means that parameters in the SpeedUP

method are set as follows:

100

SpeedUP(ml = {‘LSVM’, ‘LR’}, kmeans = 1, ensemble = 0, pso = 1,

Subsetsize = 30K, Dtext , numclass = 2)

and for the second case:

SpeedUP(ml = {‘LSVM’, ‘LR’}, kmeans = 1, ensemble = {3, 5}, pso = 1,

Subsetsize = 30K, Dtext , numclass = 2)

Values in curly brackets mean that experiments will be performed

by setting only one parameter at a time. Starting C value is defined by

using cross-validated grid search over a predefined grid of possible C values

(this range is selected manually and is hard-coded in PSO tuning) and after

that range is minimized by applying C Tuning.

TrnCV1 tdCV1

Trnkm(best 2)Trnkm(best 1) . . . Trnkm(best n)

ML algorithmPSO tuning

Rkm(best 2)Rkm(best 1) . . . Rkm(best n)

RCV1

Voting

RCV1

CV1

k-Means clustering

MLPSO
{n} km 30K SpeedUP

Fig. 4.20. Diagram of the CV1 in the extended experiment cycle with the

full proposed hybrid method

Figure 4.20 presents an extended diagram of the experiment cycle

with the full proposed hybrid method. The parameters in the diagram

101

are the same as in Figure 4.19, so they are not described here. The steps

of the diagram are also described above, only one step is added – PSO

tuning. In this step tuning of the parameters of LR and LSVM by using

training datasets is performed, which are achieved after k-Means clustering.

The dashed line in the diagram represents steps for additional calculations

executed before a concrete step is joined to it.

The main goal is to propose the recommended settings for the hybrid

method.

4.1.4.2 Results

In this cycle, the same CV datasets, which were prepared in the experiment

cycle with classical ML algorithms are used. It is assumed that the ensemble

contains three (n = 3) and five (n = 5) classifiers.

Table 4.13. Averaged effectiveness metrics of ML km 30K SpeedUP, MLn

km 30K SpeedUP and classical ML algorithms in the experiment cycle with

the full proposed hybrid method on sentiment140

Method ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB km 76.19% 76.69% 75.70% 75.24% 77.14% 75.96% 84.58%

MNB3 km 76.93% 77.39% 76.49% 76.10% 77.77% 76.74% 85.38%

MNB5 km 77.15% 77.60% 76.72% 76.34% 77.97% 76.97% 85.57%

classical MNB 77.53% 77.94% 77.12% 76.78% 78.27% 77.36% 85.80%

LR km 78.14% 77.66% 78.64% 79.02% 77.26% 78.33% 85.98%

LR3 km 78.68% 78.15% 79.23% 79.62% 77.75% 78.88% 86.44%

LR5 km 78.84% 78.28% 79.42% 79.82% 77.86% 79.04% 86.53%

classical LR 79.96% 79.31% 80.63% 81.06% 78.85% 80.17% 87.84%

LSVM km 77.30% 76.78% 77.83% 78.26% 76.33% 77.51% 85.55%

LSVM3 km 78.51% 77.87% 79.18% 79.65% 77.36% 78.75% 86.84%

LSVM5 km 78.93% 78.25% 79.65% 80.14% 77.72% 79.18% 87.14%

classical LSVM 79.52% 78.83% 80.24% 80.71% 78.32% 79.76% 87.59%

RF km 74.34% 77.18% 72.05% 69.13% 79.56% 72.93% 83.60%

RF3 km 76.14% 79.51% 73.47% 70.45% 81.84% 74.70% 85.25%

RF5 km 76.87% 80.44% 74.06% 71.02% 82.73% 75.44% 85.79%

classical RF 76.18% 79.44% 73.58% 70.66% 81.71% 74.79% 86.14%

DT km 70.12% 70.00% 70.25% 70.43% 69.81% 70.21% 77.04%

DT3 km 73.49% 73.45% 73.52% 73.57% 73.41% 73.51% 82.16%

DT5 km 75.06% 75.08% 75.05% 75.03% 75.10% 75.05% 83.64%

classical DT 72.09% 72.05% 72.13% 72.18% 72.00% 72.11% 79.55%

Underscore “ ” means that 30K SpeedUP should be added at the end.

102

Table 4.13 gives averaged results of ML km 30K SpeedUP, ML3 km

30K SpeedUP, ML5 km 30K SpeedUP and classical ML algorithms on sen-

timent140 and Table 4.14 on AmazonTest datasets.

Table 4.14. Averaged effectiveness metrics of ML km 30K SpeedUP, MLn

km 30K SpeedUP and classical ML algorithms in the experiment cycle with

the full proposed hybrid method on AmazonTest

Method ACC PPV NPV TPR TNR F1score AUC

AmazonTest dataset

MNB km 84.20% 85.10% 83.34% 82.91% 85.48% 83.99% 92.23%

MNB3 km 84.59% 85.51% 83.72% 83.30% 85.88% 84.39% 92.56%

MNB5 km 84.64% 85.54% 83.78% 83.37% 85.91% 84.44% 92.59%

classical MNB 84.47% 85.10% 83.87% 83.58% 85.36% 84.33% 92.33%

LR km 88.28% 88.43% 88.13% 88.08% 88.47% 88.25% 95.01%

LR3 km 88.55% 88.70% 88.40% 88.35% 88.75% 88.53% 95.18%

LR5 km 88.64% 88.80% 88.48% 88.43% 88.85% 88.62% 95.22%

classical LR 90.20% 90.07% 90.33% 90.36% 90.03% 90.21% 96.38%

LSVM km 87.74% 87.75% 87.72% 87.71% 87.76% 87.73% 95.11%

LSVM3 km 88.90% 88.90% 88.89% 88.89% 88.90% 88.90% 95.78%

LSVM5 km 89.29% 89.30% 89.27% 89.27% 89.30% 89.28% 95.93%

classical LSVM 89.58% 91.77% 87.60% 86.95% 92.20% 89.29% 96.33%

RF km 78.45% 83.45% 74.76% 70.98% 85.92% 76.71% 90.34%

RF3 km 81.58% 87.56% 77.24% 73.61% 89.54% 79.98% 92.45%

RF5 km 82.53% 88.95% 77.93% 74.29% 90.77% 80.96% 92.89%

classical RF 80.37% 84.89% 76.89% 73.90% 86.84% 79.02% 92.34%

DT km 73.61% 73.68% 73.54% 73.46% 73.75% 73.57% 82.23%

DT3 km 77.72% 77.97% 77.48% 77.28% 78.16% 77.62% 87.49%

DT5 km 79.31% 79.65% 78.98% 78.73% 79.89% 79.19% 88.75%

classical DT 77.31% 77.31% 77.33% 77.34% 77.27% 77.31% 85.95%

Underscore “ ” means that 30K SpeedUP should be added at the end.

The results showed the superiority of ensembles compared to ML

km 30K SpeedUP of all classifiers – MNB, LR, LSVM, RF and DT. The

classical algorithms still reported better in terms of ACC, PPV, NPV, TPR,

TNR, F1score and AUC, when MNB, LR and LSVM with SpeedUP on sen-

timent140 and when LR and LSVM on AmazonTest were used. However,

classical ML algorithms lost to ensembles ML3 km 30K SpeedUP in all ef-

fectiveness metrics, when DT on sentiment140 was employed and when RF

and DT were used on AmazonTest. In the case of ML5 km 30K SpeedUP,

classical ML algorithms lost to RF and DT on sentiment140 and to RF and

DT on AmazonTest. ML3 km 30K SpeedUP and ML5 km 30K SpeedUP,

103

when MNB was used on AmazonTest, also outperformed classical MNB in

terms of ACC, PPV, TNR, F1score and AUC, while there was a slight loss

to NPV and TPR.

The distribution of results is depicted in Figure 4.21.

MNB LR LSVM RF DT

70

72

74

76

78

80

P
er

ce
n
ta

g
e

(%
)

ML km 30K SpeedUP ML3 km 30K SpeedUP ML5 km 30K SpeedUP classical ML algorithms

(a) sentiment140

MNB LR LSVM RF DT

75

80

85

90

(b) AmazonTest

Fig. 4.21. Accuracy of the ML km 30K SpeedUP, MLn km 30K SpeedUP

and classical ML algorithms

The average ranking rankML1 (See Table B.3 and B.4 in App. B) on

the sentiment140, when ensemble ML3 km 30K SpeedUP was used, showed

that LR reached a higher rank and LSVM was second best. However, on

AmazonTest and in both cases when ensemble ML5 km 30K SpeedUP was

used, LSVM showed the superiority over LR, and final average ranks are

distributed as follows: LSVM reached a higher rank, LR was second best,

then MNB and RF followed and DT was the last one.

Before applying Welch’s t-test it was checked whether variables fol-

low standard normal distribution (See Table B.16 in App. B).

The calculation was performed based on the accuracy of each CV

fold achieved by relevant methods (See Table B.5 in App. B). The results

in Table 4.15 showed that the biggest difference between accuracy average

(d) of the two methods was 3.37%, when DT on sentimen140 dataset was

used and d = 4.11% – on AmazonTest. LR received the least d = 0.54% on

sentiment140 and d = 0.27% – on the AmazonTest. Considering Welch’s

t-test and p-value, the achieved accuracy by ML3 km 30K SpeedUP was

significant compared with ML km 30K SpeedUP, because the H0 hypothesis

was rejected (the hypotheses are defined in Subsection 3.3.3).

104

Table 4.15. Accuracy comparison between ML km 30K SpeedUP and ML3

km 30K SpeedUP in the experiment cycle with the full proposed hybrid

method using Welch’s t-test

Method MNB LR LSVM RF DT

sentiment140 dataset

|d| = 0.74 |d| = 0.54 |d| = 1.21 |d| = 1.80 |d| = 3.37

Statistics SE = 0.035 SE = 0.023 SE = 0.026 SE = 0.031 SE = 0.031

|T | = 20.99 |T | = 23.94 |T | = 46.38 |T | = 57.74 |T | = 109.94

ttable = 2.12 ttable = 2.11 ttable = 2.145 ttable = 2.11 ttable = 2.131

p-value < .00001 < .00001 < .00001 < .00001 < .00001

Results |T | > ttable |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p < α p < α p < α p < α p < α

H0 rejected rejected rejected rejected rejected

rejected rejected rejected rejected rejected

AmazonTest dataset

|d| = 0.40 |d| = 0.27 |d| = 1.16 |d| = 3.12 |d| = 4.11

Statistics SE = 0.028 SE = 0.008 SE = 0.011 SE = 0.044 SE = 0.038

|T | = 13.95 |T | = 32.87 |T | = 105.56 |T | = 70.51 |T | = 108.22

ttable = 2.11 ttable = 2.12 ttable = 2.12 ttable = 2.11 ttable = 2.131

p-value < .00001 < .00001 < .00001 < .00001 < .00001

Results |T | > ttable |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p < α p < α p < α p < α p < α

H0 rejected rejected rejected rejected rejected

rejected rejected rejected rejected rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05).

The results in Table 4.16 were calculated based on the accuracy of

each CV fold achieved by relevant methods (See Table B.6 in App. B).

Again, the biggest difference between accuracy average (d) of the two meth-

ods was 1.58%, when DT on sentiment140 dataset was used and d = 1.59% –

on AmazonTest dataset. LR received the least d = 0.16% on sentiment140,

while MNB – d = 0.05% – on the AmazonTest. Considering Welch’s t-test

and p-value, the achieved accuracy by ML5 km 30K SpeedUP was signif-

icant compared with ML3 km 30K SpeedUP (except in the case between

MNB3 km 30K SpeedUP and MNB5 km 30K SpeedUP on the Amazon-

Test dataset where the H0 hypothesis was not rejected), because the H0

hypothesis was rejected (the hypotheses are defined in Subsection 3.3.3).

105

Table 4.16. Accuracy comparison between ML3 km 30K SpeedUP and

ML5 km 30K SpeedUP in the experiment cycle with the full proposed hy-

brid method using Welch’s t-test

Method MNB LR LSVM RF DT

sentiment140 dataset

|d| = 0.22 |d| = 0.16 |d| = 0.42 |d| = 0.73 |d| = 1.58

Statistics SE = 0.035 SE = 0.025 SE = 0.027 SE = 0.028 SE = 0.033

|T | = 6.33 |T | = 6.28 |T | = 15.66 |T | = 25.69 |T | = 48.48

ttable = 2.12 ttable = 2.12 ttable = 2.131 ttable = 2.11 ttable = 2.12

p-value < .00001 < .00001 < .00001 < .00001 < .00001

Results |T | > ttable |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p < α p < α p < α p < α p < α

H0 rejected rejected rejected rejected rejected

rejected rejected rejected rejected rejected

AmazonTest dataset

|d| = 0.05 |d| = 0.09 |d| = 0.39 |d| = 0.95 |d| = 1.59

Statistics SE = 0.03 SE = 0.008 SE = 0.011 SE = 0.043 SE = 0.041

|T | = 1.67 |T | = 11.44 |T | = 34.43 |T | = 22.32 |T | = 39.14

ttable = 2.11 ttable = 2.131 ttable = 2.12 ttable = 2.12 ttable = 2.12

p-value 0.1126 < .00001 < .00001 < .00001 < .00001

Results |T | < ttable |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p > α p < α p < α p < α p < α

H0 not rejected rejected rejected rejected rejected

not rejected rejected rejected rejected rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05).

As ensembles ML5 km 30K SpeedUP (in the case of MNB, RF and

DT) achieved better accuracy compared with baseline, then there is a need

to check the statistical significance of the results. The results presented in

Table 4.17 were calculated based on the accuracy of each CV fold achieved

by relevant methods (See Table B.8 in App. B). The biggest difference

between accuracy average (d) of the two methods was 2.98%, when DT

on sentiment140 was used and in the case of RF –d = 2.17% – on Ama-

zonTest. Considering Welch’s t-test and p-value, the achieved accuracy by

ML5 km 30K SpeedUP was significant compared with classical ML, because

the H0 hypothesis was rejected (the hypotheses are defined in Subsection

3.3.3).

106

Table 4.17. Accuracy comparison between classical ML and ML5 km 30K

SpeedUP in the experiment cycle with the full proposed hybrid method

using Welch’s t-test

Method RF DT MNB RF DT

sentiment140 dataset AmazonTest dataset

|d| = 0.69 |d| = 2.98 |d| = 0.17 |d| = 2.17 |d| = 2.00

Statistics SE = 0.03 SE = 0.024 SE = 0.021 SE = 0.079 SE = 0.037

|T | = 23.01 |T | = 125.51 |T | = 8.00 |T | = 27.44 |T | = 53.71

ttable = 2.12 ttable = 2.131 ttable = 2.201 ttable = 2.228 ttable = 2.11

p-value < .00001 < .00001 < .00001 < .00001 < .00001

Results |T | > ttable |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p < α p < α p < α p < α p < α

H0 rejected rejected rejected rejected rejected

rejected rejected rejected rejected rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05).

Table 4.18. Accuracy comparison between LSVM5 km 30K SpeedUP and

LR5 km 30K SpeedUP in the experiment cycle with the full proposed hy-

brid method using Welch’s t-test

Method LR5 km LR5 km

LSVM5 km LSVM5 km

sentiment140 AmazonTest

|d| = 0.09 |d| = 0.64

Statistics SE = 0.025 SE = 0.008

|T | = 3.67 |T | = 79.27

ttable = 2.12 ttable = 2.228

p-value 0.0021 < .00001

Results |T | > ttable |T | > ttable

p < α p < α

H0 rejected rejected

rejected rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05). Underscore “ ” means that 30K SpeedUP should be added at the end.

The results in Table 4.13 and Table 4.14 showed that in the case

107

of ML5 km 30K SpeedUP, LSVM outperformed LR, then there is a need

to check the statistical significance of the results. The results in Table

4.18 were calculated based on the accuracy of each CV fold achieved by

relevant methods (See Table B.7 in App. B). The results showed that LSVM

outperformed LR with difference between accuracy average (d) of the two

methods – 0.09% on sentiment140 and d = 0.64% – on the AmazonTest.

Statistically the difference was significant, because the H0 hypothesis was

rejected (the hypotheses are defined in Subsection Subsection 3.3.3).

Futher experiments with LSVM and LR machine learning algorithms

by applying PSO tuning are performed. Figure 4.22 depicts the results of

the PSO tuning method performed with LSVM on sentiment140 training

dataset, where each point was represented by ∆ value. ∆d is always equal to

0, because this is difference between accuracy obtained by using default C
(C = 1) value (LSVM km 30K SpeedUP). ∆PSO is the accuracy difference

between LSVMPSO km 30K SpeedUP and LSVM km 30K SpeedUP.

2
4

6
8

10

∆d

∆tune

∆PSO

0

1

iterations

difference
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 4.22. Results of PSO tuning on the sentiment140 dataset performed

with LSVM

It is important to stress that the results shown in Figures (4.22,

4.23, 4.24) and Tables (4.19, 4.20, 4.23) are only a visual depiction of the

PSO tuning results during execution process; they are processed inside the

method and are not shown as final results. Selected C value is automaticaly

set to relevant ML algorithm.

The results clearly showed that PSO tuning obtained higher accu-

108

racy (more than 1.2%) compared with the method executed with default

C value. ∆tune is intermediate result (the result of C Tuning) before PSO

tuning is executed.

Table 4.19 contains the best results of sentiment140 training data in

CV fold proceeded by PSO tuning with LSVM. CPSO presented in the table

is the value which is assigned to ML algorithm as parameter.

Table 4.19. Results of PSO tuning on sentiment140 dataset performed for

LSVM km 30K SpeedUP

CV ACCd ACCtune ACCPSO ∆tune Ctune ∆PSO CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

CV1 76.97% 78.20% 78.29% 1.23% 0.1 1.32% 0.07326

CV2 77.02% 78.25% 78.40% 1.23% 0.1 1.38% 0.07676

CV3 76.66% 78.11% 78.23% 1.45% 0.1 1.57% 0.08243

CV4 76.75% 78.04% 78.05% 1.29% 0.1 1.30% 0.09315

CV5 76.77% 77.94% 78.12% 1.17% 0.1 1.35% 0.05658

CV6 76.73% 77.99% 78.16% 1.26% 0.1 1.43% 0.06470

CV7 77.15% 78.45% 78.53% 1.30% 0.1 1.38% 0.06151

CV8 77.11% 78.56% 78.59% 1.45% 0.1 1.48% 0.08413

CV9 77.14% 78.35% 78.35% 1.21% 0.1 1.21% 0.09963

CV10 77.20% 78.43% 78.55% 1.23% 0.1 1.35% 0.08645

2
4

6
8

10

∆d

∆tune

∆PSO

0

0.1

0.2

iterations

difference
0

5 ·10−2

0.1

0.15

0.2

0.25

Fig. 4.23. Results of PSO tuning on the sentiment140 dataset performed

with LR

109

Figure 4.23 visually depicts the results of PSO tuning performed

with LR on sentiment140 training dataset, where each point is represented

by ∆ value.

Table 4.20 contains the best results of sentiment140 training data in

CV fold proceeded by PSO tuning with LR. CPSO presented in the table is

the value which is assigned to ML algorithm as parameter.

Table 4.20. Results of PSO tuning on the sentiment140 dataset performed

for LR km 30K SpeedUP

CV ACCd ACCtune ACCPSO ∆tune Ctune ∆PSO CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

CV1 77.83% 77.95% 77.96% 0.12% 0.7 0.13% 0.70398

CV2 78.14% 78.28% 78.29% 0.14% 1.5 0.15% 1.50783

CV3 78.02% 78.11% 78.12% 0.09% 1.6 0.10% 1.60344

CV4 77.98% 78.05% 78.08% 0.07% 0.9 0.10% 0.92663

CV5 78.00% 78.13% 78.14% 0.13% 1.4 0.14% 1.38613

CV6 77.82% 77.93% 77.99% 0.11% 0.7 0.17% 0.66908

CV7 78.14% 78.24% 78.28% 0.1% 0.7 0.14% 0.64271

CV8 78.35% 78.45% 78.46% 0.10% 0.7 0.11% 0.70233

CV9 78.09% 78.17% 78.19% 0.08% 1.2 0.10% 1.24708

CV10 78.01% 78.10% 78.12% 0.09% 1.4 0.11% 1.37735

Table 4.21 gives averaged results of ML km 30K SpeedUP and

MLPSO km 30K SpeedUP on the sentiment140. The results indicated that

LSVMPSO km 30K SpeedUP outperformed the LSVM km 30K SpeedUP in

all effectiveness metrics, while in the case of LRPSO km 30K SpeedUP there

was a slight loss to LR km 30K SpeedUP in all metrics.

Table 4.21. Averaged effectiveness metrics of ML km 30K SpeedUP and

MLPSO km 30K SpeedUP on the sentiment140 in the experiment cycle with

the full proposed hybrid method

Method ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

LR km 78.14% 77.66% 78.64% 79.02% 77.26% 78.33% 85.98%

LRPSO km 78.11% 77.61% 78.63% 79.02% 77.20% 78.30% 85.95%

LSVM km 77.30% 76.78% 77.83% 78.26% 76.33% 77.51% 85.55%

LSVMPSO km 78.12% 77.64% 78.62% 79.99% 77.24% 78.31% 85.95%

Underscore “ ” means that 30K SpeedUP should be added at the end.

110

Before applying Welch’s t-test it was checked whether variables fol-

low a standard normal distribution (See Table B.16 in App. B). The results

in Table 4.22 were calculated based on the accuracy of each CV fold achieved

by relevant methods (See Table B.9 in App. B). They showed that the differ-

ence between accuracy average (d) of the two methods increased by 0.82%,

when LSVM was used and in the case of LR it decreased by 0.02%.

Table 4.22. Accuracy comparison between MLPSO km 30K SpeedUP and

ML km 30K SpeedUP in the experiment cycle with the full proposed hybrid

method using Welch’s t-test

Method LR LSVM

sentiment140 dataset

|d| = 0.02 |d| = 0.82

Statistics SE = 0.021 SE = 0.022

|T | = 0.874 |T | = 36.80

ttable = 2.131 ttable = 2.131

p-value 0.3961 p < .00001

Results |T | < ttable |T | > ttable

p > α p < α

H0 not rejected rejected

not rejected rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05).

Considering Welch’s t-test and p-value, the accuracy achieved by

LSVMPSO km 30K SpeedUP was significant compared with LSVM km 30K

SpeedUP, because the H0 hypothesis was rejected, while in the case of

LRPSO km 30K SpeedUP and LR km 30K SpeedUP was not significant,

because the H0 hypothesis was not rejected (the hypotheses are defined in

Subsection 3.3.3). Taking the results into aacount it was decided to exclude

LR from the further experiments.

Futher experiments with LSVM on AmazonTest dataset are per-

formed.

Figure 4.24 visually depicts the results of PSO tuning performed

with LSVM on AmazonTest training dataset, where each point represented

by ∆ value.

111

2
4

6
8

10

∆d

∆tune

∆PSO

0

0.5

1

iterations

difference
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4.24. Results of PSO tuning on the AmazonTest dataset performed

with LSVM

Table 4.23 contains the best results of AmazonTest training data in

CV fold proceeded by PSO tuning with LSVM. CPSO presented in the table

is the value which is assigned to LSVM as parameter.

Table 4.23. Results of PSO tuning on AmazonTest performed for LSVM

km 30K SpeedUP

CV ACCd ACCtune ACCPSO ∆tune Ctune ∆PSO CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

CV1 87.40% 88.35% 88.47% 0.95% 0.2 1.07% 0.15276

CV2 87.33% 88.34% 88.38% 1.01% 0.2 1.05% 0.17476

CV3 87.11% 88.13% 88.22% 1.02% 0.1 1.11% 0.10908

CV4 87.22% 88.31% 88.37% 1.09% 0.2 1.15% 0.13103

CV5 87.24% 88.15% 88.21% 0.91% 0.2 0.97% 0.18523

CV6 87.28% 88.27% 88.33% 0.99% 0.2 1.05% 0.18628

CV7 87.45% 88.49% 88.56% 1.04% 0.2 1.11% 0.14771

CV8 87.46% 88.54% 88.59% 1.08% 0.2 1.13% 0.21088

CV9 87.46% 88.46% 88.52% 1.0% 0.3 1.06% 0.28866

CV10 87.39% 88.63% 88.64% 1.24% 0.2 1.25% 0.19760

Table 4.24 gives averaged results of ML km 30K SpeedUP and

MLPSO km 30K SpeedUP on the AmazonTest. The results indicated that

LSVMPSO km 30K SpeedUP outperformed LSVM km 30K SpeedUP in all

112

effectiveness metrics – ACC, PPV, NPV, TPR, TNR, F1score and AUC on

AmzonTest dataset.

Table 4.24. Averaged effectiveness metrics of LSVM km 30K SpeedUP and

LSVMPSO km 30K SpeedUP on the AmazonTest in the experiment cycle

with the full proposed hybrid method

Method ACC PPV NPV TPR TNR F1score AUC

LSVM km 87.74% 87.75% 87.72% 87.71% 87.76% 87.73% 95.11%

LSVMPSO km 88.45% 88.57% 88.33% 88.29% 88.61% 88.43% 95.24%

Underscore “ ” means that 30K SpeedUP should be added at the end.

Considering the results it was decided to apply PSO tuning with clas-

sical LSVM without SpeedUP. The aim is to increase the accuracy of classi-

cal ML algorithm. Results proceeded by PSO tuning for classical LSVM are

presented in Appendices B in Table B.12. Next LSVMPSO km 30K SpeedUP

will be tested with ensembles LSVMPSO
3 km 30K SpeedUP and

LSVMPSO
5 km 30K SpeedUP. For that purpose, there is a need to select

respectively three and five training datasets from each CV by applying

k-Means clustering and PSO tuning on each selected dataset. Results pro-

ceeded by PSO tuning on each dataset are presented in Appendices B in

Table B.10 for sentiment140 dataset and in Table B.11 for AmazonTest.

Table 4.25 gives averaged results of the proposed method with differ-

ent settings are set on and also a classical LSVM with PSO tuning applied

on it.

The distribution of the results of the accuracy of the proposed method

with different settings is depicted in Figure 4.25.

The results clearly showed that the accuracy of LSVM 30K SpeedUP

was increased up to 1.02%, when it was used with ensembles of classifiers

– up to 1.83% on sentiment140. The difference with classical LSVM also

decreased – only 0.59% in the case of LSVM5 km 30K SpeedUP. The accu-

racy of classical LSVM increased by 0.38%, when PSO tuning was applied

on it. The results on AmazonTest dataset also indicated the increased ac-

curacy of ML 30K SpeedUP. Accuracy increased up to 0.86%, when it was

used with ensembles of classifiers up to 1.7%. The accuracy of baseline was

increased up to 0.64%, when PSO tuning was applied on it.

113

Table 4.25. Averaged effectiveness metrics of the proposed hybrid method

Method ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

LSVM 77.10% 76.60% 77.62% 78.05% 76.16% 77.32% 85.36%

LSVM km 77.30% 76.78% 77.83% 78.26% 76.33% 77.51% 85.55%

LSVMPSO km 78.12% 77.64% 78.62% 79.99% 77.24% 78.31% 85.95%

LSVM3 km 78.51% 77.87% 79.18% 79.65% 77.36% 78.75% 86.84%

LSVMPSO
3 km 78.62% 77.98% 79.29% 79.76% 77.48% 78.86% 86.41%

LSVM5 km 78.93% 78.25% 79.65% 80.14% 77.72% 79.18% 87.14%

LSVMPSO
5 km 78.81% 78.16% 79.49% 79.96% 77.66% 79.05% 86.55%

classical LSVM 79.52% 78.83% 80.24% 80.71% 78.32% 79.76% 87.59%

classical LSVMPSO 79.90% 79.02% 80.82% 81.40% 78.39% 80.19% 87.82%

AmazonTest dataset

LSVM 87.59% 87.50% 87.68% 87.71% 87.47% 87.60% 95.04%

LSVM km 87.74% 87.75% 87.72% 87.71% 87.76% 87.73% 95.11%

LSVMPSO km 88.45% 88.57% 88.33% 88.29% 88.61% 88.43% 95.24%

LSVM3 km 88.90% 88.90% 88.89% 88.89% 88.90% 88.90% 95.78%

LSVMPSO
3 km 88.88% 89.02% 88.74% 88.70% 89.06% 88.86% 95.49%

LSVM5 km 89.29% 89.30% 89.27% 89.27% 89.30% 89.28% 95.93%

LSVMPSO
5 km 89.03% 89.17% 88.89% 88.85% 89.21% 89.01% 95.56%

classical LSVM 89.58% 91.77% 87.60% 86.95% 92.20% 89.29% 96.33%

classical LSVMPSO 90.22% 90.20% 90.24% 90.24% 90.19% 90.22% 96.43%

Underscore “ ” means that 30K SpeedUP should be added at the end.

ACC F1score

77

78

79

80

P
er

ce
n
ta

ge
(%

)

LSVM LSVM km LSVMPSO km LSVM3 km LSVMPSO
3 km

LSVM5 km LSVMPSO
5 km classical LSVM classical LSVMPSO

(a) sentiment140

ACC F1score

87.5

88

88.5

89

89.5

90

90.5

(b) AmazonTest

Fig. 4.25. Averaged effectiveness metrics of the full proposed hybrid method

Before applying Welch’s t-test it was checked whether variables fol-

114

low a standard normal distribution (See Table B.16 in App. B).

Table 4.26. Accuracy comparison between the proposed hybrid method with

different parts enabled/disabled using Welch’s t-test

Method LSVM LSVM3 km LSVM5 km LSVM

LSVMPSO km LSVMPSO
3 km LSVMPSO

5 km LSVMPSO

sentiment140 dataset

|d| = 1.01 |d| = 0.11 |d| = 0.12 |d| = 0.38

Statistics SE = 0.021 SE = 0.031 SE = 0.028 SE = 0.023

|T | = 48.13 |T | = 3.52 |T | = 4.34 |T | = 16.63

ttable = 2.145 ttable = 2.11 ttable = 2.145 ttable = 2.11

p-value < .00001 0.0026 0.0007 < .00001

Results |T | > ttable |T | > ttable |T | > ttable |T | > ttable

p < α p < α p < α p < α

H0 rejected rejected rejected rejected

rejected rejected rejected rejected

AmazonTest dataset

|d| = 0.86 |d| = 0.02 |d| = 0.25 |d| = 0.64

Statistics SE = 0.007 SE = 0.015 SE = 0.011 SE = 0.033

|T | = 126.19 |T | = 1.22 |T | = 24.36 |T | = 19.50

ttable = 2.131 ttable = 2.12 ttable = 2.11 ttable = 2.228

p-value < .00001 0.2402 < .00001 < .00001

Results |T | > ttable |T | < ttable |T | > ttable |T | > ttable

p < α p > α p < α p < α

H0 rejected not rejected rejected rejected

rejected not rejected rejected rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05). Underscore “ ” means that 30K SpeedUP should be added at the end.

The calculation was performed based on the accuracy of each CV fold

achieved by relevant methods (See Table B.13 in Appendices B). The results

in Table 4.26 showed that the biggest difference between accuracy average

(d) of the two methods was 1.01% on the sentiment140 and 0.86% on Ama-

zonTest, when LSVMPSO km 30K SpeedUP compared with LSVM 30K

SpeedUP was used. In the case of LSVM and LSVMPSO difference be-

tween accuracy average of the two methods increased by 0.38% on the sen-

timent140 and by 0.64% on AmazonTest. Considering Welch’s t-test and

p-value, the achieved results were significant in all cases (H0 hypothesis

115

was rejected), except in the case between LSVMPSO
3 km 30K SpeedUP and

LSVM3 km 30K SpeedUP where the H0 hypothesis was not rejected (the

hypotheses are defined in Subsection 3.3.3).

The results showed that ensembles from weaker classifiers (without

PSO tuning applied) could give better results than stronger ones. Part of

the results of this experiment cycle are published in [A2], [A3] and [A7].

They are slightly different because different CV folds were used.

Hybrid method for textual data sentiment classification

The aim of this dissertation was to propose a hybrid method for textual

data sentiment classification with the recommend set of the parameters

for it. Considering the achieved results, the recommended parameters for

proposed method are presented in expression 4.1 and 4.2.

For standalone use:

SpeedUP(ml = ‘LSVM’, kmeans = 1, ensemble = 0, pso = 1, Subsetsize = 30K,

Dtext , numclass = 2) (4.1)

For using in ensemble:

SpeedUP(ml = ‘LSVM’, kmeans = 1, ensemble = 5, pso = 0, Subsetsize = 30K,

Dtext , numclass = 2) (4.2)

The main advantage of the proposed method that it is a synergy of

the individual methods, which aim to combine their best properties, thereby

compensating for the shortcomings of them. As presented in Table 4.27

the authors mostly used one or two methods, while the proposed method

combine them all.

Further a comparison of the proposed method with other authors’

work is made. The label for the proposed method will be as follows:

LSVMPSO 30K SpeedUP – for standalone method, LSVMPSO
3 30K SpeedUP

– for ensemble and LSVMPSO – for classical LSVM with PSO tuning applied

on it. It is assumed not to use k-Means clustering to show the effectiveness

of the proposed method on large datasets, when only 70K instances for

training are selected and all other data is used for testing.

116

Table 4.27. Advantage of proposed method compared to existing methods

for research problem

Method Training dataset reduction Hyperparameter Ensemble

k-Means random selection tuning

Zheng et al. [131]
√

Qian et al. [160]
√

Zhang et al. [161]
√

Mao et al. [127]
√ √

Pedregosa [150]
√

Osman et al. [94]
√

Catal and Nangir [170]
√ √

Gu et al. [159]
√

Tang et al. [132]
√

Sadhasivam and Kalivaradhan [171]
√

Alrehili and Albalawi [173]
√

Proposed method
√ √ √ √

4.1.5 Experiment cycle of the comparison of the results

4.1.5.1 Experimental settings

For the comparison of the proposed method with other authors’ research,

datasets and their settings presented in Table 4.28. For this cycle parameters

in the SpeedUP method are set as follows:

For the first case LSVMPSO 30K SpeedUP will be used:

SpeedUP(ml = ‘LSVM’, kmeans = 0, ensemble = 0, pso = 1, Subsetsize = 30K,

Dtext , numclass = 2)

For the second case LSVMPSO
3 30K SpeedUP will be used:

SpeedUP(ml = ‘LSVM’, kmeans = 0, ensemble = 3, pso = 1, Subsetsize = 30K,

Dtext , numclass = 2)

It was decided to additionally perform PSO tuning when it is applied

on classical LSVM. It will be labeled LSVMPSO. The goal is to check the

effectiveness of PSO tuning. Table 4.29 shows the sizes of training and

testing datasets for LSVMPSO with split ratio 70/30.

Although the Amazon reviews come in 5-star rating, the aforemen-

tioned authors used only two classes of presented datasets. According to

them, 3-star ratings are considered as neutral reviews (meaning neither

positive nor negative), hence instances with this class were discarded from

117

datasets. The remaining classes were converted into binary as follows: re-

views with 1 or 2 star rating were labeled as ‘0’, whereas reviews with 4 and

5 stars received a label ‘1’.

Table 4.28. Training and testing data sizes of the experiment cycle of the

comparison of the results

Dataset Testing Subset Subsets Remainder Training data

data size size quantity (SQ) TDs− (Ss∗SQ) depending

(TDs) (Ss) trunc(TDs/Ss) on Ss

Ss∗Splitratio

Books 20,037,414 30,000 667 27,414 70,000

Electronics 7,117,716 30,000 237 7,716 70,000

KindleStore 2,828,300 30,000 94 8,300 70,000

Phones&Accessories 3,025,090 30,000 100 25,090 70,000

To show the effectiveness of the proposed method on large datasets it

was decided not to use k-Means clustering for training data selection; instead

of it training data was randomly selected from the whole dataset and the

remaining part was used for testing. All experiments were performed ten

times to get more accurate results and the average was taken as the final

result.

Table 4.29. Training and testing data sizes for the comparison when a

classical LSVM with PSO tuning is used

Dataset Training data (70%) Testing data (30%)

Electronics 5,031,400 2,156,316

Cell Phones and Accessories 2,166,563 928,527

4.1.5.2 Results

In this cycle comparison of our proposed method with other authors’ work

was performed. It is difficult to explicitly compare the results obtained with

results in other papers due to discrepancy in implementations, parameters

or tasks. Therefore, Table 4.30 presents the results of comparative analysis

based on accuracy, when the proposed method was applied to the same

datasets and contains the same number of classes. The results demonstrated

that sufficient accuracy can be obtained using a smaller training subset.

118

Table 4.30. Comparison of the results with other authors’ research

Authors Dataset ML method Accuracy

Rain C. [210] (2013) Books NB 84.50%

Shaikh and Deshpande NB 80.00%

[211] (2016)

Proposed method LSVMPSO 30K SpeedUP 89.50%

LSVMPSO
3 30K SpeedUP 89.86%

Rain C. [210] (2013) KindleStore NB 87.33%

Proposed method LSVMPSO 30K SpeedUP 91.27%

LSVMPSO
3 30K SpeedUP 91.50%

Haque et al. [212] (2018) Phones& LSVM 93.57%

Accessories MNB 90.28%

SGD 91.88%

RF 92.72%

LR 88.20%

DT 91.45%

Wang et al. [88] (2018) CNN 85.9%

CFM 83.5%

PFM 84.2%

LR-BoW 83.8%

SVM-BoW 83.7%

SVM-Poly 82.30%

LR-WE 76.7%

SVM-WE 76.7%

CNN 75.4%

FM 78.6%

Proposed method LSVMPSO 30K SpeedUP 90.57%

LSVMPSO
3 30K SpeedUP 90.83%

LSVMPSO 93.22%

Haque et al. [212] (2018) Electronics LSVM 93.52%

MNB 89.36%

SGD 92.61%

RF 92.89%

LR 88.96%

DT 91.57%

Proposed method LSVMPSO 30K SpeedUP 90.14%

LSVMPSO
3 30K SpeedUP 90.52%

LSVMPSO 93.17%

119

Table 4.30 showed that LSVMPSO 30K SpeedUP and LSVMPSO
3 30K

SpeedUP resulted in higher accuracy compared with [210] and [211], when

applied on the largest Books dataset and KindleStore dataset [210].

The proposed method and its ensembles also outperformed CNN,

CFM and PFM, when they were applied on Phones&Accessories dataset

compared with [88]. However, it performed slightly worse when compared

with [212], where the proposed method was slightly surpassed by LSVM on

the Electronics and Phones&Accessories datasets. The results showed that

the proposed method proved to be competitive when compared with the

research of other authors. Part of the results of this experiment cycle are

published in [A3].

4.1.6 Experiment cycle with real-world data

4.1.6.1 Experimental settings

For this cycle the data was collected from the Internet. These two topics

were selected: “A public person” (Person) and “The event” (Event). The

questions for public opinion research were: “How do you appreciate this

person: positively or negatively?” and “Do you agree with this event: Yes

or No?”. Both topics were related to Lithuania, so the comments should also

be selected in Lithuanian. There are a lot of tools created for downloading

data, but because the Lithuanian language was selected for this research,

web scrapping (it is used to collect information from websites) tool was

written by using Python programming language. The time range of both

collected datasets is from 01.01.2019 to 01.04.2019. Social networks and

social media served as sources.

Experiments with LSVMPSO s SpeedUP are performed here. It means

that parameters in the SpeedUP method are set as follows:

SpeedUP(ml = ‘LSVM’, kmeans = 0, ensemble = 0, pso = 1,

Subsetsize = {287, 300}, Dtext , numclass = 2)

where Subsetsize = 287, when Person dataset is used and Subsetsize =

300, when in the case of Event.

The aim is to present practical usage of the method proposed in

this dissertation. Figure 4.26 presents the diagram of the experiment cycle

with real-world data. The dashed line in the diagram represents steps for

additional calculations executed before a concrete step is joined to it.

120

Internet Topic

Web scraper

Collected data

Text preprocessing

Data cleaningTraining data Testing data

LSVM

Results

Data preprocessing

LSVMPSO s SpeedUP

PSO tuning

Fig. 4.26. Diagram of the experiment cycle with real-world data

The diagram consists of the following steps:

� The diagram starts with collecting data. Data was collected according

to the selected topics.

� Data preprocessing is performed on collected data. This step contains

two actions: text preprocessing and data cleaning. Text preprocessing

includes actions such as converting to lowercase, removing redundant

tokens such as hashtag, symbols @, numbers, “http” for links, punc-

tuation symbols, usernames etc. Later, in the data cleaning part, the

dataset is checked for empty strings and if any exist they are removed.

� After that data is split into training and testing data. In particular,

data is split into ten training and testing data folds by using Stratified

ShuffleSplit cross-validator (StratifiedShuffleSplit) from scikit-learn li-

brary for more objective results. The most common split ratio (70/30)

into training and testing data is used. The description of datasets is

shown in table 4.31, while sizes of training and testing data are pre-

sented in Table 4.32.

� Training and testing data are passed to LSVMPSO s SpeedUP.

� PSO tuning performs selecting the C parameter for LSVM.

121

� Later LSVM executes and provides sentiment classification results.

However, the results are provided from 10 CV folds, and they are

averaged as final results.

Table 4.31. The description of datasets

Dataset Num. of Positive Negative Num. of

comments comment comment classes

Person 954 304 650 2

Event 1000 346 654 2

The data for both datasets is in a CSV file format. Comments are

in Lithuanian. Data file format has 2 fields:

0 – the polarity of a comment (0 = negative, 1 = positive)

1 – the text of the comment

It is important to mention that all data was labeled manually by the author,

therefore the datasets contain this amount of data.

Table 4.32. Training and testing data sizes

Dataset Training data (70%) Testing data (30%)

Person 667 287

Event 700 300

Person dataset contains 954 sentiments in total, which consists of

two classes with 304 positive sentiments in the first class and 650 negative

sentiments in the other; Event is composed of 1,000 sentiments in total,

which contains 2 classes with 346 positive sentiments in one and 654 negative

in the other.

The aim is to compare the results achieved by LSVMPSO s SpeedUP

with classical LSVM, classical LSVM with random search (LSVMRS) and

Bayesian optimization (LSVMBopt) hyperparameter tuning methods inte-

grated into it, and the real results presented by two institutions of public

opinion and market research: Vilmorus ltd. (Source1) and Baltic Surveys

(Source2).

122

4.1.6.2 Results

The aim of this cycle of experiments was to present practical usage of the hy-

brid method proposed in this dissertation. For comparison classical LSVM,

LSVMRS, LSVMBopt and LSVMPSO s SpeedUP were used. Table 4.33 shows

the results of the aforementioned methods.

The results showed that LSVMRS outperformed classical LSVM in

terms of ACC, PPV and TNR on Person dataset, while there was a slight

loss in terms of NPV, TPR and F1score. LSVMRS also slightly exceeded

LSVMPSO 287 SpeedUP, while difference in terms of ACC was only 0.1%; in

the case of LSVMBopt it was 1.22%. The quality measure of the model’s pre-

dictions AUC also showed the superiority of the LSVMRS on Person dataset.

However, LSVMRS lost to LSVMPSO 300 SpeedUP and LSVMBopt on Event

dataset, where the data contained more ambiguity. The difference in terms

of ACC was 0.73% in the case of LSVMPSO 300 SpeedUP and LSVMBopt .

The results showed that LSVMPSO s SpeedUP also outperformed classical

LSVM on both datasets with 3.59% on Person and 1.19% on Event. The

quality measure of the model’s predictions AUC showed the superiority of

the LSVMBopt .

Table 4.33. Averaged effectiveness metrics of LSVMPSO s SpeedUP,

LSVMRS, LSVMBopt and classical LSVM in the experiment cycle with real-

world data

Method ACC PPV NPV TPR TNR F1score AUC

Person dataset

classical LSVM 72.51% 59.30% 76.90% 45.76% 85.13% 51.57% 74.43%

LSVMRS 76.20% 81.00% 75.57% 34.13% 96.05% 47.82% 76.21%

LSVMBopt 74.98% 69.82% 77.05% 42.72% 90.21% 51.81% 75.71%

LSVMPSO 287 76.10% 76.68% 76.39% 38.59% 93.79% 50.93% 75.91%

Event dataset

classical LSVM 70.70% 58.83% 76.04% 51.54% 80.81% 54.70% 73.97%

LSVMRS 71.16% 62.53% 74.39% 43.56% 85.74% 50.41% 74.41%

LSVMBopt 71.89% 63.21% 75.26% 46.15% 85.48% 52.55% 74.55%

LSVMPSO 300 71.89% 63.78% 75.06% 45.38% 85.89% 52.21% 74.49%

Underscore “ ” means that SpeedUP should be added at the end.

The distribution of the results of the accuracy of LSVMPSO s SpeedUP,

LSVMRS, LSVMBopt and classical LSVM methods is depicted in Figure 4.27.

123

ACC F1score

50

55

60

65

70

75

P
er

ce
n
ta

g
e

(%
)

classical LSVM LSVMRS LSVMBopt LSVMPSO s SpeedUP

(a) Person dataset

ACC F1score
50

55

60

65

70

(b) Event dataset

Fig. 4.27. Accuracy of LSVMPSO s SpeedUP, LSVMRS, LSVMBopt and clas-

sical LSVM in the experiment cycle with real-world data

Depending on the results, the accuracy of Event dataset was smaller

than Person. This happened because the second dataset contained more

ambiguity. For example, in the case of Person dataset, when it was check-

ing the appreciation of a person, the answer was very simple: positive or

negative, while on Event dataset an opinion was positive, when it was re-

lated directly to this event e.g. “yes, this event should happen”, “I’m waiting

for it” etc.; if an opinion was not related directly to the first event e.g. “the

other proposed event is much better”, “other event is fantastic” etc. it was

negative.

Before applying Welch’s t-test it was checked whether variables fol-

low a standard normal distribution (See Table B.16 in App. B). The re-

sults presented in Table 4.34 were calculated based on the accuracy of each

CV fold achieved by relevant methods (See Table B.15 in App. B). They

showed that the biggest difference between accuracy average (d) of the two

methods LSVMPSO s SpeedUP and classical LSVM was 3.59%, on Person

dataset. The achieved results were statistically significant, because the H0

hypothesis was rejected (the hypotheses are defined in Subsection 3.3.3).

The comparison of the results between LSVMPSO s SpeedUP and LSVMRS,

and also between LSVMPSO s SpeedUP and LSVMBopt were not significant,

because the H0 hypothesis was not rejected. This led to the conclusion that

the proposed method could be competitive with such methods for tuning

hyperparameters as random search and Bayesian optimization.

124

Table 4.34. Accuracy comparison between LSVMPSO s SpeedUP, LSVMRS,

LSVMBopt and classical LSVM in the experiment cycle with real-world data

using Welch’s t-test

Method LSVM LSVMBopt LSVMRS LSVM LSVMRS

LSVMPSO LSVMPSO LSVMPSO LSVMPSO LSVMPSO

A public person The event

|d| = 3.59 |d| = 1.12 |d| = 0.10 |d| = 1.20 |d| = 0.73

Statistics SE = 1.135 SE = 1.162 SE = 0.925 SE = 1.038 SE = 1.025

|T | = 3.16 |T | = 0.96 |T | = 0.11 |T | = 1.15 |T | = 0.71

ttable = 2.11 ttable = 2.11 ttable = 2.131 ttable = 2.11 ttable = 2.11

p-value 0.0057 0.3508 0.9112 0.2654 0.4854

Results |T | > ttable |T | < ttable |T | < ttable |T | < ttable |T | < ttable

p < α p > α p > α p > α p > α

H0 rejected not rejected not rejected not rejected not rejected

rejected not rejected not rejected not rejected not rejected

d – mean accuracy between the two methods, SE – standard error of difference, T
– Welch’s test statistic, ttable – value from t-distribution table, α – significance level

(α = 0.05). Underscore “ ” means that s SpeedUP should be added at the end.

Table 4.35. Result comparison between the original sources, manually la-

beled data and ML methods

Dataset Person Event

positive negative positive negative

The results presented by Vilmorus ltd. and Baltic Surveys

Source1 35.5% 41.3% 20% 60%

Source2 43% 50% – –

The results obtained from manually selected and labeled data

LabeledData 32.06% 67.94% 34.55% 65.45%

The results obtained by ML methods

classical LSVM 14.67% 57.84% 17.81% 52.89%

LSVMRS 10.94% 65.26% 15.04% 56.11%

LSVMBopt 13.69% 61.29% 15.95% 55.95%

LSVMPSO s SpeedUP 12.37% 63.73% 15.68% 56.21%

Finally, the results of the aforementioned methods were expressed

in the percentage of positive and negative opinions. Table 4.35 shows the

results which were presented by Source1, Source2, LabeledData (opinions

125

which were collected from the Internet, manually labeled and the percent-

age expression of positive and negative opinions was calculated), classical

LSVM, LSVMRS, LSVMBopt and LSVMPSO s SpeedUP.

LabeledData on Person dataset is not very different from Source1

and Source2, especially in the case of positive opinions. The difference

in the case of negative opinions could be explained by missing data on

Source1 and Source2, when participants in the surveys did not have any

opinion. Classical LSVM outperformed all methods on Person in the case

of positive opinions; LSVMPSO s SpeedUP exceeded LSVMRS, while it lost

to LSVMBopt ; in the case of negative opinions the results of LSVMRS were

best, while LSVMPSO s SpeedUP outperformed LSVMBopt . The results of

classical LSVM were best on Event dataset in the case of positive opinions,

while the results of LSVMPSO s SpeedUP – in the case of negative opinions.

The distribution of the results is depicted in Figure 4.28.

Positive Negative

20

30

40

50

60

P
er

ce
n
ta

ge
(%

)

Source 1 Source 2 LabeledData classical LSVM LSVMRS LSVMBopt LSVMPSO s SpeedUP

(a) Person

Positive Negative
0

10

20

30

40

50

60

P
er

ce
n
ta

ge
(%

)

(b) Event

Fig. 4.28. Percentage results of “positive” and “negative” opinions obtained

by the sources and ML methods in the experiment cycle with real-world

data

4.2 Conclusions of Chapter 4

In this chapter, experiments and experimental settings for experiments with

the proposed hybrid method for textual data sentiment analysis are de-

scribed. The experiments were performed by turning on/off settings of the

proposed method. The classical algorithms – MNB, LR, LSVM, DT and RF

– were compared and baselines for the hybrid method were set according to

126

the obtained results. The experimental results showed the following:

1. The comparison between classical MNB, LR, LSVM, RF and DT al-

gorithms showed that the best execution time was achieved by MNB

on both experimental datasets – 3.86s on sentiment140 and 12.02s on

AmazonTest datasets, while LR performed better in terms of ACC

(79.96% and 90.20%), NPV (80.63% and 90.33%), TPR (81.06% and

90.36%), F1score (80.17% and 90.21%) and AUC (87.84% and 96.38%)

on both datasets; however, there was a slight loss in the case of PPV

(79.44%) and TNR (81.71%) to RF on the sentiment140 and to LSVM

in terms of PPV (91.77%) and TNR (92.20%) on AmazonTest. Aver-

age ranking showed the superiority of LR and LSVM compared with

others classifiers.

2. ML 30K SpeedUP showed the reduced execution time in the case of

LR (up to 4.7x), LSVM (up to 50.7x), RF (up to 72.3x) and espe-

cially of DT (up to 634.8x). In the case of MNB it resulted in in-

creased execution time (up to 5.6x) compared with the classical al-

gorithms. However, all classifiers reported slightly lower accuracy.

ML km 30K SpeedUP achieved higher accuracy compared with

ML 30K SpeedUP: in the case of MNB (0.07%-0.19%), LR (0.05%-

0.09%), LSVM (0.15%-0.20%), RF (0.43%-1.16%), DT (0.36%-1.31%).

In the case of ensembles, classifiers showed significantly higher results

compared to standalone methods: ML3 km 30K SpeedUP achieved

the higher accuracy in the case of MNB (0.39%-0.74%), LR (0.27%-

0.54%), LSVM (1.16%-1.21%), RF (1.80%-3.13%), DT (3.37%-4.11%);

ML5 km 30K SpeedUP in the case of MNB (0.44%-0.96%), LR (0.36%-

0.70%), LSVM (1.55%-1.63%), RF (2.53%-4.08%), DT (4.94%-5.70%).

The results also showed that MNB3 km 30K SpeedUP outperformed

classical MNB on AmazonTest dataset by 0.17%; RF5 km 30K

SpeedUP outperformed classical RF on both datasets (0.69%-2.16%),

while DT5 km 30K SpeedUP methods exceeded classical DT (2.00%-

2.97%). However, they resulted in less accuracy compared with LR and

LSVM in all cases. The average ranking showed the superiority of LR

and LSVM in all experiments. PSO tuning – MLPSO km 30K SpeedUP

– in the case of the LSVM showed the significantly higher results com-

pared with LSVM km 30K SpeedUP (0.71%-0.82%), while in the case

of LR it achieved slightly lower results (0.03%). However, in the case of

ensembles LSVMPSO
3 km 30K SpeedUP outperformed LSVM3 km 30K

127

SpeedUP (0.11%) on the sentiment140, while it lost on AmazonTest

(0.02%); in the case of LSVMPSO
5 km 30K SpeedUP it lost to

LSVM5 km 30K SpeedUP (0.12%-0.26%) on both datasets. The av-

erage ranking showed the superiority of LSVM compared with LR.

3. According to ranks, LR and LSVM were the best classifiers, but LSVM

was the best choice for the proposed hybrid method, because it fit bet-

ter. The accuracy of LSVM 30K SpeedUP by applying the full pro-

posed method increased 1.70%-1.83%, while in the case of LR 30K

SpeedUP only by 0.41%-0.79%. Two sets of parameters were recom-

mended for the proposed method. The recommendation is to keep

PSO tuning turned off in the case of ensembles and turned on, when

standalone method is used. The comparison with other work showed

that the proposed method could be competitive compared with clas-

sical (LSVM, LR, MNB, RF, DT) and state-of-the-art (CNN, CFM,

PFM) methods which are used by other authors.

4. The experimental results performed on real-world data with the hy-

brid method showed that LSVMPSO s SpeedUP outperformed classical

LSVM in terms of accuracy by 1.19%-3.59% on both datasets; LSVM

with Bayesian optimization for tuning of parameters by 1.12% on Per-

son dataset, while on Event they performed with equal accuracy of

71.89%. LSVM with random search for tuning of parameters per-

formed better on Person – by 0.10%, while it lost on Event dataset by

0.73%. Statistically this difference was not significant, so it led to the

conclusion that the proposed hybrid method with PSO tuning could

be competitive with such popular methods as RS and Bopt.

128

GENERAL CONCLUSIONS

1. The proposed hybrid method for textual data sentiment analysis in

large scale datasets can increase classification speed up to 4.7x-634.8x

of classical machine learning algorithms such as LSVM, LR, DT and

RF, while losing in terms of accuracy is 0.29%-4.06%. The method

includes the following:

� SpeedUP – the main part of the proposed hybrid method, whose

aim is to increase the classification speed of classical machine

learning algorithms. The speed increased: LSVM (up to 50.7x),

LR (up to 4.7x), DT (up to 634.8x) and RF (up to 72.3x). Ac-

curacy loses compared with classical ML algorithms were: LSVM

(1.99%-2.42%), LR (1.91%-1.97%), DT (3.28%-4.06%) and RF

(2.35%-3.00%).

� k-Means clustering – responsible for training data selection.

Accuracy loses compared with classical ML algorithms were:

LSVM (1.84%-2.22%), LR (1.82%-1.92%), DT (1.97%-3.70%) and

RF (1.84%-1.92%).

� PSO tuning – performs the tuning of hyperparameters. Accu-

racy loses compared with classical LSVM were 1.13%-1.40%.

� Ensemble – performs combination and voting of the machine

learning algorithms. Accuracy loses compared with classical ML

algorithms were: LSVM (0.29%-0.59%), LR (1.12%-1.56%), DT

(outperformed classical DT by 2.0%-2.97%) and RF (outperformed

classical RF by 0.69%-2.16%).

2. Two recommended sets of parameters for the hybrid method were pro-

posed according to the experimental results: the first for the standalone

classifier and the second for ensemble. The best results were achieved,

when LSVM was used with the first set (accuracy increased by 0.96%-

1.02%) and the second set (accuracy increased by 1.70%-1.83%) of

parameters. It is recommended to turn off PSO tuning if the ensemble

method is enabled, since ensemble works better with weaker classifiers

– it outperformed ensemble with PSO tuning by 0.02%-0.26%.

3. According to the results achieved during the comparison with other

authors’ work, the proposed hybrid method could be used as an alter-

129

native method on large scale textual datasets for classical (LSVM, LR,

MNB, RF, DT) (the proposed method lost by 0.35%-3.00% and outper-

formed it by 0.28%-9.86%) and state-of-the-art methods (CNN, CFM,

PFM) (the proposed method outperformed by 6.77%-17.82%), which

are used by other authors on not very powerful computers. Moreover,

PSO tuning applied on LSVM could be an alternative to such pop-

ular methods as random search (the proposed method lost by 0.10%

and outperformed by 0.73%) and Bayesian optimization (the proposed

method outperformed by 1.12%) on the real-world data classification

tasks in public opinion research.

130

REFERENCES

[1] B. Pang and L. Lee, “Opinion Mining and Sentiment Analysis,” Foun-

dations and Trends® in Information Retrieval, vol. 2, no. 1–2, pp.

1–135, 2008.

[2] S. Das and M. Chen, “Yahoo! for Amazon: Extracting market senti-

ment from stock message boards,” in Proceedings of the Asia Pacific

finance association annual conference (APFA), vol. 35. Bangkok,

Thailand, 2001, p. 43.

[3] R. M. Tong, “An operational system for detecting and tracking opin-

ions in on-line discussion,” in Working Notes of the ACM SIGIR 2001

Workshop on Operational Text Classification, vol. 1, no. 6, 2001.

[4] P. D. Turney, “Thumbs up or thumbs down?: semantic orientation

applied to unsupervised classification of reviews,” in Proceedings of

the 40th annual meeting on association for computational linguistics.

Association for Computational Linguistics, 2002, pp. 417–424.

[5] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment

classification using machine learning techniques,” in Proceedings of

the ACL-02 conference on Empirical methods in natural language

processing-Volume 10. Association for Computational Linguistics,

2002, pp. 79–86.

[6] K. Dave, S. Lawrence, and D. M. Pennock,“Mining the peanut gallery:

Opinion extraction and semantic classification of product reviews,” in

Proceedings of the 12th international conference on World Wide Web,

2003, pp. 519–528.

[7] B. Liu, Sentiment analysis: Mining opinions, sentiments, and emo-

tions. Cambridge University Press, 2015.

[8] D. Maynard and A. Funk, “Automatic detection of political opinions

in tweets,” in Extended Semantic Web Conference. Springer, 2011,

pp. 88–99.

131

[9] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-

based methods for sentiment analysis,” Computational linguistics,

vol. 37, no. 2, pp. 267–307, 2011.

[10] A. Giachanou and F. Crestani, “Like it or not: A survey of twitter sen-

timent analysis methods,” ACM Computing Surveys (CSUR), vol. 49,

no. 2, pp. 1–41, 2016.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,

“Scikit-learn: Machine learning in Python,” Journal of machine learn-

ing research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[12] K. Ravi and V. Ravi, “A survey on opinion mining and sentiment anal-

ysis: tasks, approaches and applications,” Knowledge-Based Systems,

vol. 89, pp. 14–46, 2015.

[13] J. Khairnar and M. Kinikar, “Machine learning algorithms for opinion

mining and sentiment classification,” International Journal of Scien-

tific and Research Publications, vol. 3, no. 6, pp. 1–6, 2013.

[14] H. Tang, S. Tan, and X. Cheng, “A survey on sentiment detection of

reviews,” Expert Systems with Applications, vol. 36, no. 7, pp. 10 760–

10 773, 2009.

[15] E. Cambria, B. Schuller, Y. Xia, and C. Havasi, “New avenues in opin-

ion mining and sentiment analysis,” IEEE Intelligent systems, vol. 28,

no. 2, pp. 15–21, 2013.

[16] A. Yousif, Z. Niu, J. K. Tarus, and A. Ahmad, “A survey on sentiment

analysis of scientific citations,” Artificial Intelligence Review, vol. 52,

no. 3, pp. 1805–1838, 2019.

[17] R. Feldman, “Techniques and applications for sentiment analysis,”

Communications of the ACM, vol. 56, no. 4, pp. 82–89, 2013.

[18] A. Qazi, R. G. Raj, G. Hardaker, and C. Standing, “A systematic

literature review on opinion types and sentiment analysis techniques,”

Internet Research, 2017.

[19] C. Dhaoui, C. M. Webster, and L. P. Tan, “Social media sentiment

analysis: lexicon versus machine learning,” Journal of Consumer Mar-

keting, 2017.

132

[20] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification

using distant supervision,” CS224N Project Report, Stanford, vol. 1,

no. 12, 2009.

[21] V. Kharde, P. Sonawane et al., “Sentiment analysis of twitter data: a

survey of techniques,” arXiv preprint arXiv:1601.06971, 2016.

[22] D. Davidov, O. Tsur, and A. Rappoport, “Enhanced sentiment learn-

ing using twitter hashtags and smileys,” in Coling 2010: Posters, 2010,

pp. 241–249.

[23] J. Kapočiūtė-Dzikienė, A. Krupavičius, and T. Krilavičius,“A compar-

ison of approaches for sentiment classification on lithuanian internet

comments,” in Proceedings of the 4th Biennial International Workshop

on Balto-Slavic Natural Language Processing, 2013, pp. 2–11.

[24] B. Le and H. Nguyen, “Twitter sentiment analysis using machine

learning techniques,” in Advanced Computational Methods for Knowl-

edge Engineering. Springer, 2015, pp. 279–289.

[25] G. Gautam and D. Yadav, “Sentiment analysis of twitter data using

machine learning approaches and semantic analysis,” in Contemporary

computing (IC3), 2014 seventh international conference on. IEEE,

2014, pp. 437–442.

[26] O. Kolchyna, T. T. Souza, P. Treleaven, and T. Aste, “Twitter senti-

ment analysis: Lexicon method, machine learning method and their

combination,” arXiv preprint arXiv:1507.00955, 2015.

[27] M. Kanakaraj and R. M. R. Guddeti, “NLP based sentiment analy-

sis on Twitter data using ensemble classifiers,” in Signal processing,

communication and networking (ICSCN), 2015 3rd international con-

ference on. IEEE, 2015, pp. 1–5.

[28] Y. Wan and Q. Gao, “An ensemble sentiment classification system of

twitter data for airline services analysis,” in Data Mining Workshop

(ICDMW), 2015 IEEE International Conference on. IEEE, 2015,

pp. 1318–1325.

[29] A. Amolik, N. Jivane, M. Bhandari, and M. Venkatesan, “Twitter sen-

timent analysis of movie reviews using machine learning techniques,”

133

International Journal of Engineering and Technology, vol. 7, no. 6, pp.

1–7, 2016.

[30] A. Tripathy, A. Agrawal, and S. K. Rath, “Classification of senti-

ment reviews using n-gram machine learning approach,” Expert Sys-

tems with Applications, vol. 57, pp. 117–126, 2016.

[31] S. Bhuta, A. Doshi, U. Doshi, and M. Narvekar, “A review of tech-

niques for sentiment analysis Of Twitter data,” in 2014 International

conference on issues and challenges in intelligent computing techniques

(ICICT). IEEE, 2014, pp. 583–591.

[32] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algo-

rithms and applications: A survey,” Ain Shams Engineering Journal,

vol. 5, no. 4, pp. 1093–1113, 2014.

[33] M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad, “Machine

Learning Techniques for Sentiment Analysis: A Review,” Int. J. Mul-

tidiscip. Sci. Eng, vol. 8, no. 3, pp. 27–32, 2017.

[34] T. Pranckevičius and V. Marcinkevičius, “Comparison of naive bayes,

random forest, decision tree, support vector machines, and logistic

regression classifiers for text reviews classification,” Baltic Journal of

Modern Computing, vol. 5, no. 2, p. 221, 2017.

[35] A. S. Rathor, A. Agarwal, and P. Dimri, “Comparative Study of Ma-

chine Learning Approaches for Amazon Reviews,” Procedia Computer

Science, vol. 132, pp. 1552–1561, 2018.

[36] R. Manikandan and R. Sivakumar, “Machine learning algorithms for

text-documents classification: A review,” Machine learning, vol. 3,

no. 2, 2018.

[37] R. V. A. Ogutu, R. Rimiru, and C. Otieno,“Target Sentiment Analysis

Model with Näıve Bayes and Support Vector Machine for Product Re-

view Classification,” International Journal of Computer Science and

Information Security (IJCSIS), vol. 17, no. 7, 2019.

[38] I. A. Kandhro, M. A. Chhajro, K. Kumar, H. N. Lashari, and U. Khan,

“Student Feedback Sentiment Analysis Model using Various Machine

Learning Schemes: A Review,” Indian Journal of Science and Tech-

nology, vol. 12, p. 14, 2019.

134

[39] J. Kapočiūtė-Dzikienė, R. Damaševičius, and M. Woźniak, “Sentiment

analysis of lithuanian texts using traditional and deep learning ap-

proaches,” Computers, vol. 8, no. 1, p. 4, 2019.

[40] R. B. Shamantha, S. M. Shetty, and P. Rai, “Sentiment Analysis Using

Machine Learning Classifiers: Evaluation of Performance,” in 2019

IEEE 4th International Conference on Computer and Communication

Systems (ICCCS). IEEE, 2019, pp. 21–25.

[41] A. Gupta, A. Singh, I. Pandita, and H. Parashar, “Sentiment Analy-

sis of Twitter Posts using Machine Learning Algorithms,” in 2019 6th

International Conference on Computing for Sustainable Global Devel-

opment (INDIACom). IEEE, 2019, pp. 980–983.

[42] S. Kumar, M. Gahalawat, P. P. Roy, D. P. Dogra, and B.-G. Kim,

“Exploring Impact of Age and Gender on Sentiment Analysis Using

Machine Learning,” Electronics, vol. 9, no. 2, p. 374, 2020.

[43] N. C. Dang, M. N. Moreno-Garćıa, and F. De la Prieta, “Sentiment

Analysis Based on Deep Learning: A Comparative Study,” Electron-

ics, vol. 9, no. 3, p. 483, 2020.

[44] A. Kumar and A. Jaiswal, “Systematic literature review of sentiment

analysis on Twitter using soft computing techniques,” Concurrency

and Computation: Practice and Experience, vol. 32, no. 1, p. e5107,

2020.

[45] S. Huang, L. Bao, Y. Cao, Z. Chen, C.-Y. Lin, C. R. Ponath, J.-T.

Sun, M. Zhou, and J. Wang, “Smart Sentiment Classifier for Product

Reviews,” Oct. 9 2008, US Patent App. 11/950,512.

[46] C. Xia, “Social media sentiment analysis method adopting machine

learning,” 2017, Patent App. CN106776982 (A).

[47] S. Li, X. Zhang, and G. Zhou, “Text sentiment classification method

and system,” 2012, Patent App. CN102682130 (A).

[48] Z. Wang, J. C. V. TONG, and S.-B. HO, “Method And System Of

Intelligent Sentiment And Emotion Sensing With Adaptive Learning,”

2018, Patent App. WO 2018/182501 Al.

135

[49] M. Chatterjee, R. Turan, B. Lue, A. Agrawal, and K. Perillo, “Hybrid

human machine learning system and method,”Oct. 18 2016, US Patent

9,471,883.

[50] R. R. Nair, J. Mathew, V. Muraleedharan, and S. D. Kanmani, “Study

of Machine Learning Techniques for Sentiment Analysis,” in 2019 3rd

International Conference on Computing Methodologies and Commu-

nication (ICCMC). IEEE, 2019, pp. 978–984.

[51] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the

poor assumptions of naive bayes text classifiers,” in Proceedings of the

20th international conference on machine learning (ICML-03), 2003,

pp. 616–623.

[52] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, “Multinomial

naive bayes for text categorization revisited,” in Australasian Joint

Conference on Artificial Intelligence. Springer, 2004, pp. 488–499.

[53] J. Su, J. S. Shirab, and S. Matwin,“Large scale text classification using

semi-supervised multinomial naive bayes,” in Proceedings of the 28th

international conference on machine learning (ICML-11). Citeseer,

2011, pp. 97–104.

[54] L. Jiang, S. Wang, C. Li, and L. Zhang, “Structure extended multino-

mial naive Bayes,” Information Sciences, vol. 329, pp. 346–356, 2016.

[55] M. Mowafy, A. Rezk, and H. El-Bakry, “An efficient classification

model for unstructured text document,” American Journal of Com-

puter Science and Information Technology, vol. 6, no. 1, p. 16, 2018.

[56] M. Abbas, K. A. Memon, A. A. Jamali, S. Memon, and A. Ahmed,

“Multinomial Naive Bayes Classification Model for Sentiment Analy-

sis,” IJCSNS, vol. 19, no. 3, p. 62, 2019.

[57] J. Chen, Z. Dai, J. Duan, H. Matzinger, and I. Popescu, “Improved

Naive Bayes with optimal correlation factor for text classification,” SN

Applied Sciences, vol. 1, no. 9, p. 1129, 2019.

[58] S. Ruan, H. Li, C. Li, and K. Song, “Class-Specific Deep Feature

Weighting for Näıve Bayes Text Classifiers,” IEEE Access, vol. 8, pp.

20 151–20 159, 2020.

136

[59] V. Balakrishnan and W. Kaur,“String-based Multinomial Näıve Bayes

for Emotion Detection among Facebook Diabetes Community,” Pro-

cedia Computer Science, vol. 159, pp. 30–37, 2019.

[60] A. A. Farisi, Y. Sibaroni, and S. Al Faraby, “Sentiment analysis on

hotel reviews using Multinomial Näıve Bayes classifier,” in Journal of

Physics: Conference Series, vol. 1192, no. 1. IOP Publishing, 2019,

pp. 12–24.

[61] H. Zhang, “The Optimality of Naive Bayes,” Proceedings of the Sev-

enteenth International Florida Artificial Intelligence Research Society

Conference, FLAIRS 2004, vol. 2, 2004.

[62] H. Hamdan, P. Bellot, and F. Bechet, “Lsislif: Crf and logistic regres-

sion for opinion target extraction and sentiment polarity analysis,” in

Proceedings of the 9th international workshop on semantic evaluation

(SemEval 2015), 2015, pp. 753–758.

[63] E. Byrne and P. Schniter, “Sparse multinomial logistic regression via

approximate message passing,” IEEE Transactions on Signal Process-

ing, vol. 64, no. 21, pp. 5485–5498, 2016.

[64] R. Rafeek and R. Remya, “Detecting contextual word polarity us-

ing aspect based sentiment analysis and logistic regression,” in 2017

IEEE International Conference on Smart Technologies and Manage-

ment for Computing, Communication, Controls, Energy and Materials

(ICSTM). IEEE, 2017, pp. 102–107.

[65] H. Wang, R. Zhu, and P. Ma, “Optimal subsampling for large sample

logistic regression,” Journal of the American Statistical Association,

vol. 113, no. 522, pp. 829–844, 2018.

[66] H. Zhang, Z. Li, H. Shahriar, L. Tao, P. Bhattacharya, and Y. Qian,

“Improving Prediction Accuracy for Logistic Regression on Imbal-

anced Datasets,” in 2019 IEEE 43rd Annual Computer Software and

Applications Conference (COMPSAC), vol. 1. IEEE, 2019, pp. 918–

919.

[67] C. Zhu, C. U. Idemudia, and W. Feng, “Improved logistic regression

model for diabetes prediction by integrating PCA and K-means tech-

niques,” Informatics in Medicine Unlocked, vol. 17, p. 100179, 2019.

137

[68] X. Mai, Z. Liao, and R. Couillet, “A large scale analysis of logistic

regression: Asymptotic performance and new insights,” in ICASSP

2019-2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2019, pp. 3357–3361.

[69] C.-X. Zhang, S. Xu, and J.-S. Zhang, “A novel variational Bayesian

method for variable selection in logistic regression models,” Computa-

tional Statistics & Data Analysis, vol. 133, pp. 1–19, 2019.

[70] M. Okabe, J. Tsuchida, and H. Yadohisa, “F-measure Maximizing

Logistic Regression,” arXiv preprint arXiv:1905.02535, 2019.

[71] C. Robert, “Machine learning, a probabilistic perspective,” 2014.

[72] H. Abdi and N. J. Salkind, “Encyclopedia of measurement and statis-

tics,” Thousand Oaks, CA: Sage. Agresti, A.(1990) Categorical data

analysis., New York: Wiley. Agresti, A.(1992) A survey of exact in-

ference for contingency tables. Statist Sci, vol. 7, pp. 131–153, 2007.

[73] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to

logistic regression analysis and reporting,” The journal of educational

research, vol. 96, no. 1, pp. 3–14, 2002.

[74] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proceedings of the fifth annual workshop

on Computational learning theory, 1992, pp. 144–152.

[75] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-

ing, vol. 20, no. 3, pp. 273–297, 1995.

[76] V. Vapnik, The Nature of Statistical Learning Theory. Springer Ver-

lag, 2000.

[77] R. Damaševičius, “Optimization of SVM parameters for recognition of

regulatory DNA sequences,” Top, vol. 18, no. 2, pp. 339–353, 2010.

[78] I. Martǐsius, R. Damaševic̆ius, V. Jusas, and D. Birvinskas, “Using

higher order nonlinear operators for SVM classification of EEG data,”

Elektronika ir Elektrotechnika, vol. 119, no. 3, pp. 99–102, 2012.

[79] J. Tichonov, O. Kurasova, and E. Filatovas, “Vaizdu↪ klasifikavimas

pagal suspaudimo algoritmo poveiki↪ ju↪ kokybei.” Informacijos Mok-

slai/Information Sciences, vol. 73, 2015.

138

[80] D. K. Jain, S. B. Dubey, R. K. Choubey, A. Sinhal, S. K. Arjaria,

A. Jain, and H. Wang, “An approach for hyperspectral image clas-

sification by optimizing SVM using self organizing map,” Journal of

Computational Science, vol. 25, pp. 252–259, 2018.

[81] P. Danėnas and G. Garšva, “Selection of support vector machines

based classifiers for credit risk domain,” Expert Systems with Applica-

tions, vol. 42, no. 6, pp. 3194–3204, 2015.

[82] F. Deng, S. Guo, R. Zhou, and J. Chen, “Sensor multifault diagno-

sis with improved support vector machines,” IEEE Transactions on

Automation Science and Engineering, vol. 14, no. 2, pp. 1053–1063,

2015.

[83] T. T. Hoang, M.-Y. Cho, M. N. Alam, and Q. T. Vu, “A novel differ-

ential particle swarm optimization for parameter selection of support

vector machines for monitoring metal-oxide surge arrester conditions,”

Swarm and Evolutionary Computation, vol. 38, pp. 120–126, 2018.

[84] R. Morisi, D. N. Manners, G. Gnecco, N. Lanconelli, C. Testa,

S. Evangelisti, L. Talozzi, L. L. Gramegna, C. Bianchini, G. Calandra-

Buonaura et al., “Multi-class parkinsonian disorders classification with

quantitative MR markers and graph-based features using support vec-

tor machines,” Parkinsonism & related disorders, vol. 47, pp. 64–70,

2018.

[85] R. Ren, D. D. Wu, and T. Liu, “Forecasting stock market movement

direction using sentiment analysis and support vector machine,” IEEE

Systems Journal, vol. 13, no. 1, pp. 760–770, 2018.

[86] S. Liu and I. Lee, “Email Sentiment Analysis Through k-Means La-

beling and Support Vector Machine Classification,” Cybernetics and

Systems, vol. 49, no. 3, pp. 181–199, 2018.

[87] Y. Chen and Z. Zhang, “Research on text sentiment analysis based

on CNNs and SVM,” in 2018 13th IEEE Conference on Industrial

Electronics and Applications (ICIEA). IEEE, 2018, pp. 2731–2734.

[88] S. Wang, M. Zhou, G. Fei, Y. Chang, and B. Liu, “Contextual and

position-aware factorization machines for sentiment classification,”

arXiv preprint arXiv:1801.06172, 2018.

139

[89] T. Joachims, “Text categorization with support vector machines:

Learning with many relevant features,” in European conference on ma-

chine learning. Springer, 1998, pp. 137–142.

[90] F. Colas and P. Brazdil, “Comparison of SVM and some older clas-

sification algorithms in text classification tasks,” in IFIP Interna-

tional Conference on Artificial Intelligence in Theory and Practice.

Springer, 2006, pp. 169–178.

[91] G. Fei and B. Liu, “Social media text classification under negative

covariate shift,” in Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, 2015, pp. 2347–2356.

[92] I. Steinwart and A. Christmann, Support vector machines. Springer

Science & Business Media, 2008.

[93] Z. A. Sunkad et al., “Feature selection and hyperparameter optimiza-

tion of SVM for human activity recognition,” in 2016 3rd Interna-

tional Conference on Soft Computing & Machine Intelligence (IS-

CMI). IEEE, 2016, pp. 104–109.

[94] H. Osman, M. Ghafari, and O. Nierstrasz, “Hyperparameter optimiza-

tion to improve bug prediction accuracy,” in Machine Learning Tech-

niques for Software Quality Evaluation (MaLTeSQuE), IEEE Work-

shop on. IEEE, 2017, pp. 33–38.

[95] J. Liu and E. Zio, “SVM hyperparameters tuning for recursive multi-

step-ahead prediction,” Neural Computing and Applications, vol. 28,

no. 12, pp. 3749–3763, 2017.

[96] H. Han, X. Cui, Y. Fan, L. Xu, and H. Wu, “Product sale predic-

tion method based on support vector machine model with parameter

optimization,” 2018, patent App. CN108305103 (A).

[97] S. Lu, M. Li, M. Zhang, and N. Zhong, “Method For Optimizing

Support Vector Machine On Basis Of Particle Swarm Optimization

Algorithm,” 2018, Patent App. WO2018072351 (A1).

[98] M. Asif, A. Ishtiaq, H. Ahmad, H. Aljuaid, and J. Shah, “Sentiment

Analysis of Extremism in Social Media from Textual Information,”

Telematics and Informatics, p. 101345, 2020.

140

[99] C. Meng, J. Zhang, X. Ye, F. Guo, and Q. Zou, “Review and compar-

ative analysis of machine learning-based phage virion protein identifi-

cation methods,” Biochimica et Biophysica Acta (BBA)-Proteins and

Proteomics, p. 140406, 2020.

[100] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,

“LIBLINEAR: A library for large linear classification,” Journal of ma-

chine learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[101] Y. Tang, “Deep learning using linear support vector machines,” arXiv

preprint arXiv:1306.0239, 2013.

[102] K. Kim, “A hybrid classification algorithm by subspace partitioning

through semi-supervised decision tree,” Pattern Recognition, vol. 60,

pp. 157–163, 2016.

[103] C.-C. Wu, Y.-L. Chen, Y.-H. Liu, and X.-Y. Yang, “Decision tree in-

duction with a constrained number of leaf nodes,” Applied Intelligence,

vol. 45, no. 3, pp. 673–685, 2016.

[104] J. Tanha, M. van Someren, and H. Afsarmanesh, “Semi-supervised

self-training for decision tree classifiers,” International Journal of Ma-

chine Learning and Cybernetics, vol. 8, no. 1, pp. 355–370, 2017.

[105] S. Y. Ooi, S. C. Tan, and W. P. Cheah, “Temporal Sleuth Machine

with decision tree for temporal classification,” Soft Computing, vol. 22,

no. 24, pp. 8077–8095, 2018.

[106] M. Saremi and F. Yaghmaee, “Improving evolutionary decision tree

induction with multi-interval discretization,” Computational Intelli-

gence, vol. 34, no. 2, pp. 495–514, 2018.

[107] S. Nor, S. Heryati, S. Ismail, and B. W. Yap, “Personal bankruptcy

prediction using decision tree model,” Journal of Economics, Finance

and Administrative Science, vol. 24, no. 47, pp. 157–170, 2019.

[108] Y. Cai, H. Zhang, Q. He, and S. Sun, “New classification technique:

fuzzy oblique decision tree,” Transactions of the Institute of Measure-

ment and Control, vol. 41, no. 8, pp. 2185–2195, 2019.

[109] R. Primartha, B. A. Tama, A. Arliansyah, and K. J. Miraswan, “De-

cision tree combined with PSO-based feature selection for sentiment

141

analysis,” in Journal of Physics: Conference Series, vol. 1196, no. 1.

IOP Publishing, 2019, p. 012018.

[110] V. Y. Kulkarni, P. K. Sinha, and M. C. Petare, “Weighted hybrid

decision tree model for random forest classifier,” Journal of The In-

stitution of Engineers (India): Series B, vol. 97, no. 2, pp. 209–217,

2016.

[111] A. Chaudhary, S. Kolhe, and R. Kamal, “An improved random for-

est classifier for multi-class classification,” Information Processing in

Agriculture, vol. 3, no. 4, pp. 215–222, 2016.

[112] M. Z. Alam, M. S. Rahman, and M. S. Rahman, “A Random Forest

based predictor for medical data classification using feature ranking,”

Informatics in Medicine Unlocked, vol. 15, p. 100180, 2019.

[113] V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment Analysis

of Social Media Twitter with Case of Anti-LGBT Campaign in Indone-

sia using Näıve Bayes, Decision Tree, and Random Forest Algorithm,”

Procedia Computer Science, vol. 161, pp. 765–772, 2019.

[114] G. Khanvilkar and D. Vora, “Smart Recommendation System Based

on Product Reviews Using Random Forest,” in 2019 International

Conference on Nascent Technologies in Engineering (ICNTE). IEEE,

2019, pp. 1–9.

[115] M. Z. Ansari, M. Aziz, M. Siddiqui, H. Mehra, and K. Singh, “Analysis

of Political Sentiment Orientations on Twitter,” Procedia Computer

Science, vol. 167, pp. 1821–1828, 2020.

[116] R. Kumar and J. Kaur, “Random Forest-Based Sarcastic Tweet Clas-

sification Using Multiple Feature Collection,” in Multimedia Big Data

Computing for IoT Applications. Springer, 2020, pp. 131–160.

[117] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.

5–32, 2001.

[118] Y. Amit and D. Geman, “Shape quantization and recognition with

randomized trees,” Neural computation, vol. 9, no. 7, pp. 1545–1588,

1997.

142

[119] W. Fan, E. Greengrass, J. McCloskey, P. S. Yu, and K. Drammey, “Ef-

fective estimation of posterior probabilities: Explaining the accuracy

of randomized decision tree approaches,” in Fifth IEEE International

Conference on Data Mining (ICDM’05). IEEE, 2005, pp. 154–161.

[120] Y.-J. Lee and O. L. Mangasarian, “RSVM: Reduced support vector

machines,” in Proceedings of the 2001 SIAM International Conference

on Data Mining. SIAM, 2001, pp. 1–17.

[121] H. Lei and V. Govindaraju, “Speeding up multi-class SVM evaluation

by PCA and feature selection,” Feature Selection for Data Mining,

vol. 72, 2005.

[122] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik,

“Parallel support vector machines: The cascade svm,” in Advances in

neural information processing systems, 2005, pp. 521–528.

[123] O. Meyer, B. Bischl, and C. Weihs, “Support vector machines on large

data sets: Simple parallel approaches,” in Data Analysis, Machine

Learning and Knowledge Discovery. Springer, 2014, pp. 87–95.

[124] M. Nandan, P. P. Khargonekar, and S. S. Talathi, “Fast SVM training

using approximate extreme points,” The Journal of Machine Learning

Research, vol. 15, no. 1, pp. 59–98, 2014.

[125] S. Wang, Z. Li, C. Liu, X. Zhang, and H. Zhang, “Training data

reduction to speed up SVM training,” Applied intelligence, vol. 41,

no. 2, pp. 405–420, 2014.

[126] L. Guo and S. Boukir, “Fast data selection for SVM training using

ensemble margin,” Pattern Recognition Letters, vol. 51, pp. 112–119,

2015.

[127] X. Mao, Z. Fu, O. Wu, and W. Hu, “Fast kernel SVM training via

support vector identification,” in 2016 23rd International Conference

on Pattern Recognition (ICPR). IEEE, 2016, pp. 1554–1559.

[128] S. Mourad, A. Tewfik, and H. Vikalo, “Data subset selection for effi-

cient SVM training,” in 2017 25th European Signal Processing Con-

ference (EUSIPCO). IEEE, 2017, pp. 833–837.

143

[129] Z. Huang, “Extensions to the k-means algorithm for clustering large

data sets with categorical values,” Data mining and knowledge discov-

ery, vol. 2, no. 3, pp. 283–304, 1998.

[130] J. A. Olvera-López, J. A. Carrasco-Ochoa, and J. F. Mart́ınez-

Trinidad, “A new fast prototype selection method based on cluster-

ing,” Pattern Analysis and Applications, vol. 13, no. 2, pp. 131–141,

2010.

[131] B. Zheng, S. W. Yoon, and S. S. Lam, “Breast cancer diagnosis based

on feature extraction using a hybrid of K-means and support vector

machine algorithms,” Expert Systems with Applications, vol. 41, no. 4,

pp. 1476–1482, 2014.

[132] T. Tang, S. Chen, M. Zhao, W. Huang, and J. Luo, “Very large-

scale data classification based on K-means clustering and multi-kernel

SVM,” Soft Computing, vol. 23, no. 11, pp. 3793–3801, 2019.

[133] J. MacQueen et al., “Some methods for classification and analysis of

multivariate observations,” in Proceedings of the fifth Berkeley sympo-

sium on mathematical statistics and probability, vol. 1, no. 14. Oak-

land, CA, USA, 1967, pp. 281–297.

[134] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern

recognition letters, vol. 31, no. 8, pp. 651–666, 2010.

[135] M. Claesen and B. De Moor, “Hyperparameter search in machine

learning,” arXiv preprint arXiv:1502.02127, 2015.

[136] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor,

“Particle swarm optimization for hyper-parameter selection in deep

neural networks,” in Proceedings of the genetic and evolutionary com-

putation conference, 2017, pp. 481–488.

[137] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Auto-

mated Machine Learning. Springer, 2019, pp. 3–33.

[138] I. Ilhan and G. Tezel, “A genetic algorithm–support vector machine

method with parameter optimization for selecting the tag SNPs,”

Journal of biomedical informatics, vol. 46, no. 2, pp. 328–340, 2013.

144

[139] J.-S. Chou, M.-Y. Cheng, Y.-W. Wu, and A.-D. Pham, “Optimizing

parameters of support vector machine using fast messy genetic al-

gorithm for dispute classification,” Expert Systems with Applications,

vol. 41, no. 8, pp. 3955–3964, 2014.

[140] C. Yongqi, “LS SVM parameters selection based on hybrid complex

particle swarm optimization,” Energy Procedia, vol. 17, pp. 706–710,

2012.

[141] G. Garšva and P. Danėnas, “Particle swarm optimization for linear

support vector machines based classifier selection,” Nonlinear Analy-

sis: Modelling and Control, vol. 19, no. 1, pp. 26–42, 2014.

[142] C.-L. Huang, “ACO-based hybrid classification system with feature

subset selection and model parameters optimization,” Neurocomput-

ing, vol. 73, no. 1-3, pp. 438–448, 2009.

[143] X. Zhang, X. Chen, and Z. He, “An ACO-based algorithm for param-

eter optimization of support vector machines,” Expert Systems with

Applications, vol. 37, no. 9, pp. 6618–6628, 2010.

[144] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz,

“SVM optimization for sentiment analysis,” International Journal of

Advanced Computer Science & Applications, vol. 9, no. 4, pp. 393–398,

2018.

[145] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector

machines,” ACM transactions on intelligent systems and technology

(TIST), vol. 2, no. 3, pp. 1–27, 2011.

[146] R. G. Mantovani, A. L. Rossi, J. Vanschoren, B. Bischl, and

A. C. De Carvalho, “Effectiveness of random search in SVM hyper-

parameter tuning,” in 2015 International Joint Conference on Neural

Networks (IJCNN). Ieee, 2015, pp. 1–8.

[147] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms

for hyper-parameter optimization,” in Advances in neural information

processing systems, 2011, pp. 2546–2554.

[148] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-

mization,” The Journal of Machine Learning Research, vol. 13, no. 1,

pp. 281–305, 2012.

145

[149] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model

search: Hyperparameter optimization in hundreds of dimensions for

vision architectures,” in International conference on machine learning,

2013, pp. 115–123.

[150] F. Pedregosa, “Hyperparameter optimization with approximate gradi-

ent,” arXiv preprint arXiv:1602.02355, 2016.

[151] O. Y. Bakhteev and V. V. Strijov, “Comprehensive analysis of

gradient-based hyperparameter optimization algorithms,” Annals of

Operations Research, pp. 1–15, 2019.

[152] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian opti-

mization of machine learning algorithms,” in Advances in neural in-

formation processing systems, 2012, pp. 2951–2959.

[153] J.-H. Han, D.-J. Choi, S.-U. Park, and S.-K. Hong, “Hyperparame-

ter Optimization Using a Genetic Algorithm Considering Verification

Time in a Convolutional Neural Network,” Journal of Electrical Engi-

neering & Technology, vol. 15, no. 2, pp. 721–726, 2020.

[154] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,

“Hyperparameter optimization for machine learning models based on

bayesian optimization,” Journal of Electronic Science and Technology,

vol. 17, no. 1, pp. 26–40, 2019.

[155] O. Gustafsson, M. Villani, and P. Stockhammar, “Bayesian Optimiza-

tion of Hyperparameters when the Marginal Likelihood is Estimated

by MCMC,” arXiv preprint arXiv:2004.10092, 2020.

[156] I. Loshchilov and F. Hutter, “CMA-ES for hyperparameter optimiza-

tion of deep neural networks,” arXiv preprint arXiv:1604.07269, 2016.

[157] C.-L. Huang and J.-F. Dun, “A distributed PSO–SVM hybrid sys-

tem with feature selection and parameter optimization,” Applied soft

computing, vol. 8, no. 4, pp. 1381–1391, 2008.

[158] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee,“Particle swarm opti-

mization for parameter determination and feature selection of support

vector machines,” Expert systems with applications, vol. 35, no. 4, pp.

1817–1824, 2008.

146

[159] X. Gu, T. Li, Y. Wang, L. Zhang, Y. Wang, and J. Yao, “Traffic fa-

talities prediction using support vector machine with hybrid particle

swarm optimization,” Journal of Algorithms & Computational Tech-

nology, vol. 12, no. 1, pp. 20–29, 2018.

[160] Q. Qian, H. Gao, and B. Wang, “A SVM method trained by improved

particle swarm optimization for image classification,” in Chinese Con-

ference on Pattern Recognition. Springer, 2014, pp. 263–272.

[161] X. Zhang, D. Qiu, and F. Chen, “Support vector machine with pa-

rameter optimization by a novel hybrid method and its application to

fault diagnosis,” Neurocomputing, vol. 149, pp. 641–651, 2015.

[162] Y. Maali and A. Al-Jumaily, “A novel partially connected cooperative

parallel PSO-SVM algorithm: Study based on sleep apnea detection,”

in 2012 IEEE Congress on Evolutionary Computation. IEEE, 2012,

pp. 1–8.

[163] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in MHS’95. Proceedings of the Sixth International Symposium

on Micro Machine and Human Science. Ieee, 1995, pp. 39–43.

[164] A. P. Engelbrecht, Computational intelligence: an introduction. John

Wiley & Sons, 2007.

[165] H. Zhenya, W. Chengjian, Y. Luxi, G. Xiqi, Y. Susu, R. C. Eber-

hart, and Y. Shi, “Extracting rules from fuzzy neural network by par-

ticle swarm optimisation,” in Evolutionary Computation Proceedings,

1998. IEEE World Congress on Computational Intelligence., The 1998

IEEE International Conference on. IEEE, 1998, pp. 74–77.

[166] N. F. Da Silva, E. R. Hruschka, and E. R. Hruschka Jr, “Tweet sen-

timent analysis with classifier ensembles,” Decision Support Systems,

vol. 66, pp. 170–179, 2014.

[167] A. Onan, S. Korukoğlu, and H. Bulut, “A multiobjective weighted

voting ensemble classifier based on differential evolution algorithm

for text sentiment classification,” Expert Systems with Applications,

vol. 62, pp. 1–16, 2016.

147

[168] I. Perikos and I. Hatzilygeroudis, “Recognizing emotions in text using

ensemble of classifiers,” Engineering Applications of Artificial Intelli-

gence, vol. 51, pp. 191–201, 2016.

[169] I. Perikos and I. Hatzilygeroudis, “A classifier ensemble approach to

detect emotions polarity in social media,” in Special Session on So-

cial Recommendation in Information Systems, vol. 2. SCITEPRESS,

2016, pp. 363–370.

[170] C. Catal and M. Nangir, “A sentiment classification model based on

multiple classifiers,” Applied Soft Computing, vol. 50, pp. 135–141,

2017.

[171] J. Sadhasivam and R. B. Kalivaradhan, “Sentiment Analysis of Ama-

zon Products Using Ensemble Machine Learning Algorithm,” Inter-

national Journal of Mathematical, Engineering and Management Sci-

ences, vol. 4, no. 2, pp. 508–520, 2019.

[172] Z. Tan, Y. Zhang, C. Zhang, R. Huang, P. Lei, and X. Duan, “Re-

search on The Text Emotion of Multinomial Näıve Bayes Integration

Algorithm,” in 2019 IEEE 3rd Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IM-

CEC). IEEE, 2019, pp. 107–111.

[173] A. Alrehili and K. Albalawi, “Sentiment Analysis of Customer Re-

views Using Ensemble Method,” in 2019 International Conference on

Computer and Information Sciences (ICCIS). IEEE, 2019, pp. 1–6.

[174] E. D. Liddy, “Natural language processing,” 2001.

[175] S. Sun, C. Luo, and J. Chen, “A review of natural language processing

techniques for opinion mining systems,” Information fusion, vol. 36,

pp. 10–25, 2017.

[176] A. Tommasel and D. Godoy, “Short-text feature construction and se-

lection in social media data: a survey,” Artificial Intelligence Review,

vol. 49, no. 3, pp. 301–338, 2018.

[177] B.-K. Wang, Y.-F. Huang, W.-X. Yang, and X. Li, “Short text classi-

fication based on strong feature thesaurus,” Journal of Zhejiang Uni-

versity SCIENCE C, vol. 13, no. 9, pp. 649–659, 2012.

148

[178] Z. Liu, W. Yu, W. Chen, S. Wang, and F. Wu, “Short text feature

selection for micro-blog mining,” in 2010 International Conference on

Computational Intelligence and Software Engineering. IEEE, 2010,

pp. 1–4.

[179] G. Tang, Y. Xia, W. Wang, R. Lau, and F. Zheng, “Clustering tweets

using Wikipedia concepts.” in LREC. Citeseer, 2014, pp. 2262–2267.

[180] S. Verma, S. Vieweg, W. J. Corvey, L. Palen, J. H. Martin, M. Palmer,

A. Schram, and K. M. Anderson, “Natural language processing to the

rescue? extracting” situational awareness” tweets during mass emer-

gency,” in Fifth international AAAI conference on weblogs and social

media, 2011.

[181] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learn-

ing sentiment-specific word embedding for twitter sentiment classifi-

cation,” in Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2014,

pp. 1555–1565.

[182] O. Ozdikis, P. Senkul, and H. Oguztuzun, “Semantic expansion of

tweet contents for enhanced event detection in twitter,” in 2012

IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining. IEEE, 2012, pp. 20–24.

[183] X. Hu, N. Sun, C. Zhang, and T.-S. Chua, “Exploiting internal and

external semantics for the clustering of short texts using world knowl-

edge,” in Proceedings of the 18th ACM conference on Information and

knowledge management. ACM, 2009, pp. 919–928.

[184] J. Tang, X. Hu, H. Gao, and H. Liu, “Unsupervised feature selection

for multi-view data in social media,” in Proceedings of the 2013 SIAM

International Conference on Data Mining. SIAM, 2013, pp. 270–278.

[185] Y. Fang, H. Zhang, Y. Ye, and X. Li, “Detecting hot topics from Twit-

ter: A multiview approach,” Journal of Information Science, vol. 40,

no. 5, pp. 578–593, 2014.

[186] J. Tang and H. Liu, “Feature selection with linked data in social me-

dia,” in Proceedings of the 2012 SIAM International Conference on

Data Mining. SIAM, 2012, pp. 118–128.

149

[187] H. Saif, Y. He, and H. Alani, “Alleviating data sparsity for twitter

sentiment analysis.” CEUR Workshop Proceedings (CEUR-WS. org),

2012.

[188] S. Amir, M. B. Almeida, B. Martins, J. Filgueiras, and M. J. Silva,

“Tugas: Exploiting unlabelled data for twitter sentiment analysis,” in

Proceedings of the 8th International Workshop on Semantic Evalua-

tion (SemEval 2014), 2014, pp. 673–677.

[189] L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, “Target-dependent

twitter sentiment classification,” in Proceedings of the 49th annual

meeting of the association for computational linguistics: human lan-

guage technologies, 2011, pp. 151–160.

[190] C. Li, A. Sun, and A. Datta, “Twevent: segment-based event detection

from tweets,” in Proceedings of the 21st ACM international conference

on Information and knowledge management, 2012, pp. 155–164.

[191] M. Neethu and R. Rajasree, “Sentiment analysis in twitter using ma-

chine learning techniques,” in 2013 Fourth International Conference

on Computing, Communications and Networking Technologies (ICC-

CNT). IEEE, 2013, pp. 1–5.

[192] A. Yousefpour, R. Ibrahim, and H. N. A. Hamed, “Ordinal-based and

frequency-based integration of feature selection methods for sentiment

analysis,” Expert Systems with Applications, vol. 75, pp. 80–93, 2017.

[193] A. Abdi, S. M. Shamsuddin, S. Hasan, and J. Piran, “Machine

learning-based multi-documents sentiment-oriented summarization

using linguistic treatment,”Expert Systems with Applications, vol. 109,

pp. 66–85, 2018.

[194] D. Q. Nguyen, D. Q. Nguyen, T. Vu, and S. B. Pham, “Sentiment

classification on polarity reviews: an empirical study using rating-

based features,” in Proceedings of the 5th workshop on computational

approaches to subjectivity, sentiment and social media analysis, 2014,

pp. 128–135.

[195] B. Agarwal, N. Mittal et al., Prominent feature extraction for senti-

ment analysis. Springer, 2016.

150

[196] A. Ortigosa, J. M. Mart́ın, and R. M. Carro, “Sentiment analysis in

Facebook and its application to e-learning,” Computers in human be-

havior, vol. 31, pp. 527–541, 2014.

[197] A. Pak and P. Paroubek, “Twitter as a corpus for sentiment analysis

and opinion mining.” in LREc, vol. 10, no. 2010, 2010, pp. 1320–1326.

[198] E. Boiy and M.-F. Moens, “A machine learning approach to sentiment

analysis in multilingual Web texts,” Information retrieval, vol. 12,

no. 5, pp. 526–558, 2009.

[199] K. K. Bharti and P. K. Singh, “Hybrid dimension reduction by in-

tegrating feature selection with feature extraction method for text

clustering,” Expert Systems with Applications, vol. 42, no. 6, pp. 3105–

3114, 2015.

[200] H. P. Luhn, “A statistical approach to mechanized encoding and

searching of literary information,” IBM Journal of research and de-

velopment, vol. 1, no. 4, pp. 309–317, 1957.

[201] T. Tokunaga and I. Makoto, “Text categorization based on weighted

inverse document frequency,” in Special Interest Groups and Informa-

tion Process Society of Japan (SIG-IPSJ). Citeseer, 1994.

[202] K. S. Jones, “A statistical interpretation of term specificity and its

application in retrieval,” Journal of documentation, 1972.

[203] G. Salton and C.-S. Yang, “On the specification of term values in

automatic indexing,” Cornell University, Tech. Rep., 1973.

[204] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-

works for text classification,” in Advances in neural information pro-

cessing systems, 2015, pp. 649–657.

[205] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based

recommendations on styles and substitutes,” in Proceedings of the 38th

International ACM SIGIR Conference on Research and Development

in Information Retrieval. ACM, 2015, pp. 43–52.

[206] C. Sammut and G. I. Webb, Encyclopedia of machine learning.

Springer Science & Business Media, 2011.

151

[207] P. B. Brazdil and C. Soares, “A comparison of ranking methods for

classification algorithm selection,” in European conference on machine

learning. Springer, 2000, pp. 63–75.

[208] H. R. Neave and P. L. Worthington, Distribution-free tests. Unwin

Hyman, 1988.

[209] C. Heumann, M. Schomaker et al., Introduction to statistics and data

analysis. Springer, 2016.

[210] C. Rain, “Sentiment Analysis in Amazon Reviews Using Probabilistic

Machine Learning,” Swarthmore College, 2013.

[211] T. Shaikh and D. Deshpande,“Feature Selection Methods in Sentiment

Analysis and Sentiment Classification of Amazon Product Reviews,”

International Journal of Computer Trends and Technology (IJCTT),

vol. 36, no. 4, pp. 225–230, 2016.

[212] T. U. Haque, N. N. Saber, and F. M. Shah, “Sentiment analysis

on large scale Amazon product reviews,” in 2018 IEEE Interna-

tional Conference on Innovative Research and Development (ICIRD).

IEEE, 2018, pp. 1–6.

152

Appendix A. Default parameters of machine learning
algorithms

Multinomial näıve Bayes9:

� alpha: float, optional (default=1.0). Additive (Laplace/Lidstone)

smoothing parameter (0 for no smoothing).

� fit prior: boolean, optional (default=True). Whether to learn

class prior probabilities or not. If false, a uniform prior will be used.

� class prior: array-like, size (n classes), optional

(default=None). Prior probabilities of the classes. If specified the

priors are not adjusted according to the data.

Linear support vector machines9:

� C: float, optional (default=1.0). Regularization parameter. The

strength of the regularization is inversely proportional to C. Must be

strictly positive.

� penalty: str, ‘l1’ or ‘l2’ (default=‘l2’). Specifies the norm used

in the penalization. The ‘l2’ penalty is the standard used in SVC. The

‘l1’ leads to coef vectors that are sparse.

� dual: bool, (default=True). Select the algorithm to either solve

the dual or primal optimization problem. Prefer dual=False when

n samples > n features.

� tol: float, optional (default=1e-4). Tolerance for stopping criteria.

� loss: str, ‘hinge’ or ‘squared hinge’ (default=‘squared hinge’).

Specifies the loss function. ‘hinge’ is the standard SVM loss (used e.g.

by the SVC class) while ‘squared hinge’ is the square of the hinge loss.

� multi class: str, ‘ovr’ or ‘crammer singer’ (default=‘ovr’). De-

termines the multi-class strategy if y contains more than two classes.

‘ovr’ trains n classes one-vs-rest classifiers, while ‘crammer singer’ op-

timizes a joint objective over all classes.

� fit intercept: bool, optional (default=True). Whether to calcu-

late the intercept for this model. If set to false, no intercept will be

used in calculations (i.e. data is expected to be already centered).

� class weight: {dict, ‘balanced’}, optional (default=None). Set

the parameter C of class i to class weight[i]*C for SVC. If not given,

all classes are supposed to have weight one.

9https://scikit-learn.org/

153

https://scikit-learn.org/

� verbose: int, (default=0). Enable verbose output.

� random state: int, RandomState instance or None, optional

(default=None). The seed of the pseudo random number genera-

tor to use when shuffling the data for the dual coordinate descent (if

dual=True). When dual=False the underlying implementation of Lin-

earSVC is not random and random state has no effect on the results.

If int, random state is the seed used by the random number gener-

ator; If RandomState instance, random state is the random number

generator; If None, the random number generator is the RandomState

instance used by np.random.

� max iterint, (default=1000). The maximum number of iterations

to be run.

Logistic regression (aka logit, MaxEnt)9:

� C: float (default: 1.0). Inverse of regularization strength; must be a

positive float. Like in support vector machines, smaller values specify

stronger regularization.

� penalty: {‘l1’, ‘l2’, ‘elasticnet’, ‘none’} (default=‘l2’). Used to

specify the norm used in the penalization.

� dual: bool (default=False). Dual or primal formulation. Dual

formulation is only implemented for l2 penalty with liblinear solver.

Prefer dual=False when n samples > n features.

� tol: float (default=1e-4). Tolerance for stopping criteria.

� fit intercept: bool (default=True). Specifies if a constant (a.k.a.

bias or intercept) should be added to the decision function.

� class weight: dict or ‘balanced’ (default=None). Weights as-

sociated with classes in the form class label: weight. If not given, all

classes are supposed to have weight one.

� random state: int, RandomState instance (default=None).

The seed of the pseudo random number generator to use when shuffling

the data.

� solver: {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’} (de-

fault=‘lbfgs’). Algorithm to use in the optimization problem.

� max iter: int (default=100). Maximum number of iterations taken

for the solvers to converge.

� multi class: {‘auto’, ‘ovr’, ‘multinomial’} (default=‘auto’). If

the option chosen is ‘ovr’, then a binary problem is fit for each label.

154

For ‘multinomial’ the loss minimised is the multinomial loss fit across

the entire probability distribution, even when the data is binary.

� verbose: int (default=0). For the liblinear and lbfgs solvers set

verbose to any positive number for verbosity.

� warm start: bool (default=False). When set to True, reuse the

solution of the previous call to fit as initialization, otherwise, just erase

the previous solution.

� n jobs: int (default=None). Number of CPU cores used when

parallelizing over classes if multi class=‘ovr’.

Decision tree9:

� criterion: {‘gini’, ‘entropy’} (default=‘gini’). The function to

measure the quality of a split. Supported criteria are ‘gini’ for the Gini

impurity and ‘entropy’ for the information gain.

� splitter: {‘best’, ‘random’} (default=‘best’). The strategy used

to choose the split at each node. Supported strategies are ‘best’ to

choose the best split and ‘random’ to choose the best random split.

� max depth: int (default=None). The maximum depth of the tree.

If None, then nodes are expanded until all leaves are pure or until all

leaves contain less than min samples split samples.

� min samples split: int or float (default=2). The minimum num-

ber of samples required to split an internal node.

� min samples leaf: int or float (default=1). The minimum num-

ber of samples required to be at a leaf node.

� min weight fraction leaf: float (default=0.0). The minimum

weighted fraction of the sum total of weights (of all the input sam-

ples) required to be at a leaf node. Samples have equal weight when

sample weight is not provided.

� max features: int, float or {‘auto’, ‘sqrt’, ‘log2’}
(default=None). The number of features to consider when looking

for the best split.

� random state: int or RandomState (default=None). If int,

random state is the seed used by the random number generator; If

RandomState instance, random state is the random number generator;

If None, the random number generator is the RandomState instance

used by np.random.

� max leaf nodes: int (default=None). Grow a tree with

155

max leaf nodes in best-first fashion. Best nodes are defined as relative

reduction in impurity. If None then unlimited number of leaf nodes.

� min impurity decreasefloat (default=0.0). A node will be split

if this split induces a decrease of the impurity greater than or equal to

this value.

� min impurity split: float (default=1e-7). Threshold for early

stopping in tree growth. A node will split if its impurity is above the

threshold, otherwise it is a leaf.

� class weight: dict, list of dict or ‘balanced’ (default=None).

Weights associated with classes in the form class label: weight. If

None, all classes are supposed to have weight one.

� ccp alpha: non-negative float (default=0.0). Complexity param-

eter used for Minimal Cost-Complexity Pruning. The subtree with the

largest cost complexity that is smaller than ccp alpha will be chosen.

Random forest9:

� n estimators: integer, optional (default=100). The number of

trees in the forest.

� criterion: string, optional (default = ‘gini’). The function to

measure the quality of a split. Supported criteria are ‘gini’ for the Gini

impurity and ‘entropy’ for the information gain. Note: this parameter

is tree-specific.

� max depth: integer or None, optional (default=None). The

maximum depth of the tree. If None, then nodes are expanded until all

leaves are pure or until all leaves contain less than min samples split

samples.

� min samples split: int, float, optional (default=2). The mini-

mum number of samples required to split an internal node.

� min samples leaf: int, float, optional (default=1). The mini-

mum number of samples required to be at a leaf node.

� min weight fraction leaf: float, optional (default=0). The min-

imum weighted fraction of the sum total of weights (of all the input

samples) required to be at a leaf node. Samples have equal weight

when sample weight is not provided.

� max features: int, float, string or None, optional (default =

‘auto’). The number of features to consider when looking for the best

split.

156

� max leaf nodes: int or None, optional (default=None). Grow

trees with max leaf nodes in best-first fashion. Best nodes are defined

as relative reduction in impurity. If None then unlimited number of

leaf nodes.

� min impurity decrease: float, optional (default=0). A node

will be split if this split induces a decrease of the impurity greater

than or equal to this value.

� min impurity split: float, (default=1e-7). Threshold for early

stopping in tree growth. A node will split if its impurity is above the

threshold, otherwise it is a leaf.

� bootstrap: boolean, optional (default=True). Whether boot-

strap samples are used when building trees. If False, the whole dataset

is used to build each tree.

� oob score: bool (default=False). Whether to use out-of-bag sam-

ples to estimate the generalization accuracy.

� n jobs: int or None, optional (default=None). The number of

jobs to run in parallel.

� random state: int, RandomState instance or None, optional

(default=None). Controls both the randomness of the bootstrap-

ping of the samples used when building trees (if bootstrap=True) and

the sampling of the features to consider when looking for the best split

at each node (if max features < n features).

� verbose: int, optional (default=0). Controls the verbosity when

fitting and predicting.

� warm start: bool, optional (default=False). When set to True,

reuse the solution of the previous call to fit and add more estimators

to the ensemble, otherwise, just fit a whole new forest.

� class weight: dict, list of dicts, ‘balanced’,

‘balanced subsample’ or None, optional (default=None).

Weights associated with classes in the form class label: weight. If not

given, all classes are supposed to have weight one.

� ccp alpha: non-negative float, optional (default=0.0). Com-

plexity parameter used for Minimal Cost-Complexity Pruning. The

subtree with the largest cost complexity that is smaller than ccp alpha

will be chosen. By default, no pruning is performed.

� max samples: int or float (default=None). If bootstrap is True,

the number of samples to draw from X to train each base estimator.

157

Appendix B. Classification results

Table B.1. ML km 30K SpeedUP ranking results of the experiment cycle

with k-Means clustering

Method ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB km 76.19% 76.69% 75.70% 75.24% 77.14% 75.96% 84.58%

rank 3 4 3 3 3 3 3

LR km 78.14% 77.66% 78.64% 79.02% 77.26% 78.33% 85.98%

rank 1 1 1 1 2 1 1

LSVM km 77.30% 76.78% 77.83% 78.26% 76.33% 77.51% 85.55%

rank 2 3 2 2 4 2 2

RF km 74.34% 77.18% 72.05% 69.13% 79.56% 72.93% 83.60%

rank 4 2 4 5 1 4 4

DT km 70.12% 70.00% 70.25% 70.43% 69.81% 70.21% 77.04%

rank 5 5 5 4 5 5 5

rankLR1 = 1.14 | rankLSV M1 = 2.43 | rankMNB1 = 3.14 | rankRF1 = 3.43 | rankDT1 = 4.86

AmazonTest dataset

MNB km 84.20% 85.10% 83.34% 82.91% 85.48% 83.99% 92.23%

rank 3 3 3 3 4 3 3

LR km 88.28% 88.43% 88.13% 88.08% 88.47% 88.25% 95.01%

rank 1 1 1 1 1 1 2

LSVM km 87.74% 87.75% 87.72% 87.71% 87.76% 87.73% 95.11%

rank 2 2 2 2 2 2 1

RF km 78.45% 83.45% 74.76% 70.98% 85.92% 76.71% 90.34%

rank 4 4 4 5 3 4 4

DT km 73.61% 73.68% 73.54% 73.46% 73.75% 73.57% 82.23%

rank 5 5 5 4 5 5 5

rankLR2 = 1.14 | rankLSV M2 = 1.86 | rankMNB2 = 3.14 | rankRF2 = 4 | rankDT2 = 4.86

RankLR = 1.14 | RankLSV M = 2.14 | RankMNB = 3.14 | RankRF = 3.71 | RankDT = 4.86

Underscore “ ” means that 30K SpeedUP should be added at the end.

158

Table B.2. Accuracy of ML 30K SpeedUP and ML km 30K SpeedUP in

each CV fold of the experiment cycle with k-Means clustering

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

sentiment140 dataset

MNB (%) 76.05 75.99 75.95 76.01 76.03 76.07 75.93 76.04 75.98 75.96

MNB km (%) 76.10 76.20 76.10 76.27 76.19 76.30 76.13 76.17 76.23 76.18

LR (%) 78.07 78.08 77.99 78.11 78.06 78.11 77.97 78.05 77.99 78.05

LR km (%) 78.10 78.16 78.09 78.19 78.14 78.24 78.07 78.18 78.09 78.16

LSVM (%) 77.12 77.09 77.08 77.15 77.10 77.16 77.05 77.10 77.09 77.11

LSVM km (%) 77.28 77.33 77.24 77.31 77.30 77.37 77.25 77.26 77.31 77.32

RF (%) 73.18 73.25 73.12 73.19 73.22 73.19 73.03 73.31 73.21 73.13

RF km (%) 74.35 74.37 74.25 74.35 74.44 74.40 74.31 74.21 74.35 74.40

DT (%) 68.82 68.91 68.79 68.86 68.78 68.84 68.77 68.68 68.78 68.88

DT km (%) 70.14 70.13 70.09 70.19 70.11 70.12 70.19 70.01 70.12 70.10

AmazonTest dataset

MNB (%) 84.17 84.12 84.12 84.08 84.12 84.08 84.15 84.18 84.15 84.12

MNB km (%) 84.13 84.14 84.23 84.12 84.15 84.18 84.24 84.25 84.26 84.25

LR (%) 88.23 88.25 88.22 88.21 88.24 88.20 88.24 88.25 88.23 88.21

LR km (%) 88.28 88.28 88.30 88.25 88.28 88.26 88.29 88.29 88.28 88.26

LSVM (%) 87.59 87.60 87.59 87.58 87.59 87.58 87.61 87.58 87.60 87.57

LSVM km (%) 87.77 87.73 87.73 87.73 87.74 87.75 87.76 87.74 87.72 87.70

RF (%) 77.95 78.14 77.96 78.05 78.15 77.85 78.02 78.17 77.96 77.91

RF km (%) 78.57 78.27 78.57 78.42 78.46 78.42 78.46 78.42 78.46 78.45

DT (%) 73.26 73.29 73.22 73.21 73.25 73.20 73.38 73.18 73.17 73.34

DT km (%) 73.53 73.74 73.56 73.51 73.62 73.60 73.61 73.62 73.62 73.65

Underscore “ ” means that 30K SpeedUP should be added at the end.

Table B.3. ML3 km 30K SpeedUP ranking results of the experiment cycle

with the full proposed hybrid method

Method ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB3 km 76.93% 77.39% 76.49% 76.10% 77.77% 76.74% 85.38%

rank 3 4 3 3 2 3 3

LR3 km 78.68% 78.15% 79.23% 79.62% 77.75% 78.88% 86.44%

rank 1 2 1 2 3 1 2

LSVM3 km 78.51% 77.87% 79.18% 79.65% 77.36% 78.75% 86.84%

rank 2 3 2 1 4 2 1

RF3 km 76.14% 79.51% 73.47% 70.45% 81.84% 74.70% 85.25%

rank 4 1 5 5 1 4 4

DT3 km 73.49% 73.45% 73.52% 73.57% 73.41% 73.51% 82.16%

rank 5 5 4 4 5 5 5

Continued on next page

159

Table B.3 continued from the previous page.

Method ACC PPV NPV TPR TNR F1score AUC

rankLR1 = 1.71 | rankLSV M1 = 2.14 | rankMNB1 = 3 | rankRF1 = 3.43 | rankDT1 = 4.71

AmazonTest dataset

MNB3 km 84.59% 85.51% 83.72% 83.30% 85.88% 84.39% 92.56%

rank 3 4 3 3 4 3 3

LR3 km 88.55% 88.70% 88.40% 88.35% 88.75% 88.53% 95.18%

rank 2 2 2 2 3 2 2

LSVM3 km 88.90% 88.90% 88.89% 88.89% 88.90% 88.90% 95.78%

rank 1 1 1 1 2 1 1

RF3 km 81.58% 87.56% 77.24% 73.61% 89.54% 79.98% 92.45%

rank 4 3 5 5 1 4 4

DT3 km 77.72% 77.97% 77.48% 77.28% 78.16% 77.62% 87.49%

rank 5 5 4 4 5 5 5

rankLSV M2 = 1.14 | rankLR2 = 2.14 | rankMNB2 = 3.29 | rankRF2 = 3.71 | rankDT2 = 4.71

RankLSV M = 1.64 | RankLR = 1.93 | RankMNB = 3.14 | RankRF = 3.57 | RankDT = 4.71

Underscore “ ” means that 30K SpeedUP should be added at the end.

Table B.4. ML5 km 30K SpeedUP ranking results of the experiment cycle

with the full proposed hybrid method

Method ACC PPV NPV TPR TNR F1score AUC

sentiment140 dataset

MNB5 km 77.15% 77.60% 76.72% 76.34% 77.97% 76.97% 85.57%

rank 3 4 3 3 2 3 4

LR5 km 78.84% 78.28% 79.42% 79.82% 77.86% 79.04% 86.53%

rank 2 2 2 2 3 2 2

LSVM5 km 78.93% 78.25% 79.65% 80.14% 77.72% 79.18% 87.14%

rank 1 3 1 1 4 1 1

RF5 km 76.87% 80.44% 74.06% 71.02% 82.73% 75.44% 85.79%

rank 4 1 5 5 1 4 3

DT5 km 75.06% 75.08% 75.05% 75.03% 75.10% 75.05% 83.64%

rank 5 5 4 4 5 5 5

rankLSV M1 = 1.71 | rankLR1 = 2.14 | rankMNB1 = 3.14 | rankRF1 = 3.29 | rankDT1 = 4.71

AmazonTest dataset

MNB5 km 84.64% 85.54% 83.78% 83.37% 85.91% 84.44% 92.59%

rank 3 4 3 3 4 4 4

LR5 km 88.64% 88.80% 88.48% 88.43% 88.85% 88.62% 95.22%

rank 2 3 2 2 3 3 2

LSVM5 km 89.29% 89.30% 89.27% 89.27% 89.30% 89.28% 95.93%

rank 1 1 1 1 2 2 1

Continued on next page

160

Table B.4 continued from the previous page.

Method ACC PPV NPV TPR TNR F1score AUC

RF5 km 82.53% 88.95% 77.93% 74.29% 90.77% 80.96% 92.89%

rank 4 2 5 5 1 5 3

DT5 km 79.31% 79.65% 78.98% 78.73% 79.89% 79.19% 88.75%

rank 5 5 4 4 5 1 5

rankLSV M2 = 1.29 | rankLR2 = 2.43 | rankMNB2 = 3.57 | rankRF2 = 3.57 | rankDT2 = 4.14

RankLSV M = 1.5 | RankLR = 2.29 | RankMNB = 3.36 | RankRF = 3.43 | RankDT = 4.43

Underscore “ ” means that 30K SpeedUP should be added at the end.

Table B.5. Accuracy of ML km 30K SpeedUP and ML3 km 30K SpeedUP

in each CV fold of the experiment cycle with the full proposed hybrid method

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

sentiment140 dataset

MNB km (%) 76.10 76.20 76.10 76.27 76.19 76.30 76.13 76.17 76.23 76.18

MNB3 km (%) 76.76 76.92 76.87 76.98 76.95 77.10 76.86 76.96 76.98 76.93

LR km (%) 78.10 78.16 78.09 78.19 78.14 78.24 78.07 78.18 78.09 78.16

LR3 km (%) 78.67 78.67 78.64 78.72 78.67 78.76 78.67 78.71 78.59 78.71

LSVM km (%) 77.28 77.33 77.24 77.31 77.30 77.37 77.25 77.26 77.31 77.32

LSVM3 km (%) 78.46 78.54 78.42 78.50 78.56 78.67 78.47 78.44 78.49 78.53

RF km (%) 74.35 74.37 74.25 74.35 74.44 74.40 74.31 74.21 74.35 74.40

RF3 km (%) 76.22 76.17 76.00 76.09 76.20 76.19 76.10 76.13 76.13 76.22

DT km (%) 70.14 70.13 70.09 70.19 70.11 70.12 70.19 70.01 70.12 70.10

DT3 km (%) 73.49 73.56 73.50 73.62 73.44 73.40 73.54 73.34 73.53 73.45

AmazonTest dataset

MNB km (%) 84.13 84.14 84.23 84.12 84.15 84.18 84.24 84.25 84.26 84.25

MNB3 km (%) 84.49 84.56 84.60 84.48 84.57 84.59 84.61 84.70 84.66 84.65

LR km (%) 88.28 88.28 88.30 88.25 88.28 88.26 88.29 88.29 88.28 88.26

LR3 km (%) 88.54 88.56 88.59 88.51 88.54 88.55 88.55 88.57 88.54 88.55

LSVM km (%) 87.77 87.73 87.73 87.73 87.74 87.75 87.76 87.74 87.72 87.70

LSVM3 km (%) 88.92 88.92 88.87 88.89 88.89 88.95 88.91 88.87 88.88 88.86

RF km (%) 78.57 78.27 78.57 78.42 78.46 78.42 78.51 78.42 78.46 78.45

RF3 km (%) 81.64 81.41 81.69 81.46 81.74 81.63 81.63 81.45 81.53 81.59

DT km (%) 73.53 73.74 73.56 73.51 73.62 73.60 73.61 73.62 73.62 73.65

DT3 km (%) 77.60 77.89 77.69 77.56 77.74 77.73 77.67 77.70 77.84 77.79

Underscore “ ” means that 30K SpeedUP should be added at the end.

161

Table B.6. Accuracy of ML3 km 30K SpeedUP and ML5 km 30K

SpeedUP in each CV fold of the experiment cycle with the full proposed

hybrid method

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

sentiment140 dataset

MNB3 km (%) 76.76 76.92 76.87 76.98 76.95 77.10 76.86 76.96 76.98 76.93

MNB5 km (%) 77.03 77.16 77.07 77.21 77.19 77.24 77.13 77.17 77.13 77.21

LR3 km (%) 78.67 78.67 78.64 78.72 78.67 78.76 78.67 78.71 78.59 78.71

LR5 km (%) 78.82 78.87 78.77 78.90 78.83 78.96 78.77 78.85 78.76 78.87

LSVM3 km (%) 78.46 78.54 78.42 78.50 78.56 78.67 78.47 78.44 78.49 78.53

LSVM5 km (%) 78.91 78.97 78.84 78.97 78.94 78.99 78.91 78.91 78.90 78.97

RF3 km (%) 76.22 76.17 76.00 76.09 76.20 76.19 76.10 76.13 76.13 76.22

RF5 km (%) 76.92 76.89 76.80 76.82 76.95 76.95 76.82 76.88 76.82 76.91

DT3 km (%) 73.49 73.56 73.50 73.62 73.44 73.40 73.54 73.34 73.53 73.45

DT5 km (%) 75.06 75.18 75.03 75.16 75.02 75.07 75.03 74.98 75.04 75.07

AmazonTest dataset

MNB3 km (%) 84.49 84.56 84.60 84.48 84.57 84.59 84.61 84.70 84.66 84.65

MNB5 km (%) 84.57 84.58 84.68 84.55 84.61 84.61 84.69 84.71 84.70 84.71

LR3 km (%) 88.54 88.56 88.59 88.51 88.54 88.55 88.55 88.57 88.54 88.55

LR5 km (%) 88.64 88.65 88.66 88.61 88.63 88.65 88.64 88.64 88.64 88.64

LSVM3 km (%) 88.92 88.92 88.87 88.89 88.89 88.95 88.91 88.87 88.88 88.86

LSVM5 km (%) 89.31 89.31 89.29 89.27 89.27 89.31 89.29 89.29 89.26 89.25

RF3 km (%) 81.64 81.41 81.69 81.46 81.74 81.63 81.63 81.45 81.53 81.59

RF5 km (%) 82.65 82.42 82.58 82.51 82.61 82.51 82.54 82.52 82.40 82.58

DT3 km (%) 77.60 77.89 77.69 77.56 77.74 77.73 77.67 77.70 77.84 77.79

DT5 km (%) 79.22 79.42 79.31 79.14 79.33 79.31 79.34 79.31 79.33 79.38

Underscore “ ” means that 30K SpeedUP should be added at the end.

Table B.7. Accuracy of LSVM5 km 30K SpeedUP and LR5 km 30K

SpeedUP in each CV fold of the experiment cycle with the full proposed

hybrid method

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

sentiment140 dataset

LR5 km (%) 78.82 78.87 78.77 78.90 78.83 78.96 78.77 78.85 78.76 78.87

LSVM5 km (%) 78.91 78.97 78.84 78.97 78.94 78.99 78.91 78.91 78.90 78.97

AmazonTest dataset

LR5 km (%) 88.64 88.65 88.66 88.61 88.63 88.65 88.64 88.64 88.64 88.64

LSVM5 km (%) 89.31 89.31 89.29 89.27 89.27 89.31 89.29 89.29 89.26 89.25

Underscore “ ” means that 30K SpeedUP should be added at the end.

162

Table B.8. Accuracy of ML5 km 30K SpeedUP and classical ML algorithm

in each CV fold of the experiment cycle with the full proposed hybrid method

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

sentiment140 dataset

RF5 km (%) 76.92 76.89 76.80 76.82 76.95 76.95 76.82 76.88 76.82 76.91

classical RF (%) 76.11 76.29 76.22 76.30 76.17 76.19 76.05 76.18 76.15 76.16

DT5 km (%) 75.06 75.18 75.03 75.16 75.02 75.07 75.03 74.98 75.04 75.07

classical DT (%) 72.07 72.11 72.07 72.07 72.14 72.06 72.12 72.13 72.00 72.11

AmazonTest dataset

MNB5 km (%) 84.57 84.58 84.68 84.55 84.61 84.61 84.69 84.71 84.70 84.71

classical MNB (%) 84.45 84.47 84.45 84.48 84.47 84.48 84.52 84.48 84.47 84.43

RF5 km (%) 82.65 82.42 82.58 82.51 82.61 82.51 82.54 82.52 82.40 82.58

classical RF (%) 80.42 80.31 80.44 80.12 80.09 80.88 80.39 80.56 80.14 80.31

DT5 km (%) 79.22 79.42 79.31 79.14 79.33 79.31 79.34 79.31 79.33 79.38

classical DT (%) 77.31 77.42 77.20 77.30 77.35 77.15 77.38 77.25 77.40 77.34

Underscore “ ” means that 30K SpeedUP should be added at the end.

Table B.9. Accuracy of ML km 30K SpeedUP and MLPSO km 30K

SpeedUP in each CV fold of the experiment cycle with the full proposed

hybrid method

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

sentiment140 dataset

LR km (%) 78.10 78.16 78.09 78.19 78.14 78.24 78.07 78.18 78.09 78.16

LRPSO km (%) 78.11 78.17 78.07 78.16 78.12 78.16 78.07 78.14 78.10 78.14

LSVM km (%) 77.28 77.33 77.24 77.31 77.30 77.37 77.25 77.26 77.31 77.32

LSVMPSO km (%) 78.04 78.14 78.08 78.19 78.13 78.21 78.04 78.15 78.08 78.13

Underscore “ ” means that 30K SpeedUP should be added at the end.

Table B.10. Results of PSO tuning on sentiment140 dataset performed with

LSVM

CV Data ACCd ACCtune ACCPSO ∆1 Ctune ∆2 CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

1st 77.04% 78.10% 78.22% 1.06% 0.1 1.18% 0.06246

2nd 77.18% 78.25% 78.26% 1.07% 0.1 1.08% 0.10079

CV1 3rd 76.97% 78.20% 78.29% 1.23% 0.1 1.32% 0.07326

4th 77.08% 77.94% 78.02% 0.86% 0.1 0.94% 0.14623

5th 76.75% 78.03% 78.05% 1.28% 0.1 1.30% 0.10826

1st 77.14% 78.05% 78.19% 0.91% 0.1 1.05% 0.07333

2nd 76.96% 77.94% 77.97% 0.98% 0.1 1.01% 0.12298

Continued on next page

163

Table B.10 continued from the previous page.

CV Data ACCd ACCtune ACCPSO ∆1 Ctune ∆2 CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

CV2 3rd 76.89% 78.15% 78.18% 1.26% 0.1 1.29% 0.08048

4th 77.02% 78.25% 78.40% 1.23% 0.1 1.38% 0.07676

5th 76.96% 78.15% 78.20% 1.19% 0.1 1.24% 0.11223

1st 76.91% 78.17% 78.22% 1.26% 0.1 1.31% 0.08546

2nd 77.22% 78.30% 78.34% 1.08% 0.1 1.12% 0.09296

CV3 3rd 76.96% 78.09% 78.14% 1.13% 0.1 1.18% 0.07326

4th 76.66% 78.11% 78.23% 1.45% 0.1 1.57% 0.08243

5th 77.00% 78.17% 78.21% 1.17% 0.1 1.21% 0.11362

1st 77.37% 78.35% 78.38% 0.98% 0.1 1.01% 0.13370

2nd 76.97% 77.96% 78.05% 0.99% 0.1 1.08% 0.13907

CV4 3rd 76.64% 77.62% 77.74% 0.98% 0.1 1.10% 0.11705

4th 77.27% 78.36% 78.41% 1.09% 0.1 1.14% 0.11806

5th 76.75% 78.04% 78.05% 1.29% 0.1 1.30% 0.09315

1st 77.08% 78.21% 78.25% 1.13% 0.1 1.17% 0.08416

2nd 76.77% 77.94% 78.12% 1.17% 0.1 1.35% 0.05658

CV5 3rd 77.26% 78.07% 78.17% 0.81% 0.1 0.91% 0.12122

4th 77.05% 77.91% 77.98% 0.86% 0.1 0.93% 0.16853

5th 77.50% 78.46% 78.56% 0.96% 0.2 1.06% 0.13961

1st 77.05% 78.27% 78.28% 1.22% 0.1 1.23% 0.10142

2nd 76.73% 77.99% 78.16% 1.26% 0.1 1.43% 0.06470

CV6 3rd 76.77% 77.86% 78.02% 1.09% 0.1 1.25% 0.04829

4th 76.78% 77.89% 77.96% 1.11% 0.1 1.18% 0.15426

5th 76.59% 77.87% 77.93% 1.28% 0.1 1.34% 0.08601

1st 77.15% 78.45% 78.53% 1.30% 0.1 1.38% 0.06151

2nd 76.97% 78.14% 78.25% 1.17% 0.1 1.28% 0.12156

CV7 3rd 77.20% 77.98% 78.07% 0.78% 0.1 0.87% 0.13970

4th 77.19% 78.33% 78.44% 1.13% 0.1 1.25% 0.07078

5th 77.31% 78.50% 78.54% 1.19% 0.1 1.23% 0.08743

1st 77.07% 78.16% 78.19% 1.09% 0.1 1.12% 0.10652

2nd 76.85% 77.89% 77.97% 1.04% 0.1 1.12% 0.09225

CV8 3rd 77.07% 78.19% 78.33% 1.12% 0.1 1.26% 0.07209

4th 77.11% 78.56% 78.59% 1.45% 0.1 1.48% 0.08413

5th 76.96% 77.96% 78.05% 1.0% 0.1 1.09% 0.14011

1st 77.11% 78.24% 78.26% 1.13% 0.1 1.15% 0.10998

2nd 77.14% 78.35% 78.35% 1.21% 0.1 1.21% 0.09963

CV9 3rd 77.04% 78.00% 78.09% 0.96% 0.1 1.05% 0.07189

4th 77.09% 78.19% 78.26% 1.10% 0.1 1.17% 0.06221

5th 77.03% 78.06% 78.15% 1.03% 0.1 1.12% 0.07794

1st 77.06% 78.17% 78.33% 1.11% 0.1 1.27% 0.13223

2nd 77.20% 78.43% 78.55% 1.23% 0.1 1.35% 0.08645

CV10 3rd 77.42% 78.26% 78.41% 0.84% 0.1 0.99% 0.11247

Continued on next page

164

Table B.10 continued from the previous page.

CV Data ACCd ACCtune ACCPSO ∆1 Ctune ∆2 CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

4th 77.33% 78.26% 78.36% 0.93% 0.1 1.03% 0.14616

5th 77.10% 78.13% 78.25% 1.03% 0.1 1.15% 0.06572

Table B.11. Results of PSO tuning on AmazonTest dataset performed with

LSVM

CV Data ACCd ACCtune ACCPSO ∆1 Ctune ∆2 CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

1st 87.56% 88.31% 88.40% 0.75% 0.2 0.84% 0.14700

2nd 87.40% 88.35% 88.47% 0.95% 0.2 1.07% 0.15276

CV1 3rd 87.58% 88.32% 88.42% 0.74% 0.2 0.84% 0.14713

4th 87.46% 88.36% 88.37% 0.90% 0.2 0.91% 0.19511

5th 87.40% 88.37% 88.41% 0.97% 0.2 1.01% 0.21929

1st 87.26% 88.09% 88.20% 0.83% 0.2 0.94% 0.13333

2nd 87.33% 88.34% 88.38% 1.01% 0.2 1.05% 0.17476

CV2 3rd 87.68% 88.57% 88.61% 0.89% 0.3 0.94% 0.15670

4th 87.39% 88.30% 88.33% 0.91% 0.2 0.94% 0.20296

5th 87.26% 88.18% 88.25% 0.92% 0.2 0.99% 0.13678

1st 87.11% 88.13% 88.22% 1.02% 0.1 1.11% 0.10908

2nd 87.56% 88.47% 88.54% 0.91% 0.2 0.98% 0.17474

CV3 3rd 87.29% 88.23% 88.29% 0.94% 0.1 1.0% 0.13681

4th 87.10% 88.13% 88.17% 1.03% 0.2 1.07% 0.18266

5th 87.49% 88.30% 88.38% 0.81% 0.3 0.89% 0.24559

1st 87.92% 88.77% 88.91% 0.85% 0.2 0.99% 0.16078

2nd 87.68% 88.38% 88.42% 0.70% 0.2 0.74% 0.15654

CV4 3rd 87.81% 88.66% 88.69% 0.85% 0.2 0.88% 0.23245

4th 87.22% 88.31% 88.37% 1.09% 0.2 1.15% 0.13103

5th 87.11% 88.06% 88.15% 0.95% 0.2 1.04% 0.17856

1st 87.24% 88.15% 88.21% 0.91% 0.2 0.97% 0.18523

2nd 87.45% 88.40% 88.41% 0.95% 0.2 0.96% 0.19971

CV5 3rd 87.55% 88.40% 88.49% 0.85% 0.2 0.94% 0.14573

4th 87.35% 88.12% 88.14% 0.77% 0.2 0.79% 0.17251

5th 87.06% 88.22% 88.27% 1.16% 0.2 1.21% 0.15860

1st 87.26% 88.14% 88.16% 0.88% 0.2 0.90% 0.17073

2nd 87.28% 88.27% 88.33% 0.99% 0.2 1.05% 0.18628

CV6 3rd 87.45% 88.41% 88.45% 0.96% 0.2 1.0% 0.21723

4th 87.32% 88.28% 88.33% 0.96% 0.2 1.01% 0.17768

5th 87.74% 88.41% 88.49% 0.67% 0.2 0.75% 0.13177

1st 87.70% 88.53% 88.56% 0.83% 0.1 0.86% 0.12571

2nd 87.11% 88.05% 88.14% 0.94% 0.2 1.03% 0.16029

CV7 3rd 87.54% 88.48% 88.52% 0.94% 0.2 0.98% 0.21895

Continued on next page

165

Table B.11 continued from the previous page.

CV Data ACCd ACCtune ACCPSO ∆1 Ctune ∆2 CPSO

(acc1) (acc2) (acc3) (acc2−acc1) (acc3−acc1)

4th 87.45% 88.49% 88.56% 1.04% 0.2 1.11% 0.14771

5th 87.13% 88.10% 88.10% 0.97% 0.2 0.97% 0.19679

1st 87.42% 88.28% 88.31% 0.86% 0.1 0.89% 0.10955

2nd 87.46% 88.54% 88.59% 1.08% 0.2 1.13% 0.21088

CV8 3rd 87.70% 88.47% 88.52% 0.77% 0.2 0.82% 0.13807

4th 87.81% 88.67% 88.71% 0.86% 0.2 0.90% 0.22941

5th 87.24% 88.10% 88.15% 0.86% 0.1 0.91% 0.18526

1st 87.50% 88.32% 88.39% 0.82% 0.2 0.89% 0.17923

2nd 87.46% 88.46% 88.52% 1.0% 0.3 1.06% 0.28866

CV9 3rd 87.57% 88.41% 88.45% 0.84% 0.2 0.88% 0.12109

4th 87.57% 88.51% 88.56% 0.94% 0.2 0.99% 0.11533

5th 87.99% 88.79% 88.82% 0.80% 0.2 0.83% 0.24146

1st 87.35% 88.31% 88.38% 0.96% 0.2 1.03% 0.17733

2nd 87.50% 88.39% 88.44% 0.89% 0.2 0.94% 0.17063

CV10 3rd 87.39% 88.63% 88.64% 1.24% 0.2 1.25% 0.19760

4th 87.79% 88.54% 88.59% 0.75% 0.2 0.80% 0.16918

5th 87.42% 88.51% 88.57% 1.09% 0.2 1.15% 0.18131

Table B.12. Results of PSO tuning performed for classical LSVM

CV ACCd ACCPSO ∆ CPSO

(acc1) (acc2) (acc2−acc1)

sentiment140 dataset

CV1 77.40% 78.23% 0.83% 0.07706

CV2 77.10% 78.23% 1.23% 0.12161

CV3 77.33% 78.43% 1.10% 0.08602

CV4 77.19% 78.25% 1.06% 0.05472

CV5 77.12% 78.09% 0.97% 0.10539

CV6 77.51% 78.32% 0.81% 0.09774

CV7 76.99% 78.11% 1.12% 0.07228

CV8 76.77% 78.17% 1.40% 0.07039

CV9 77.30% 78.41% 1.11% 0.07723

CV10 77.18% 78.30% 1.12% 0.09720

AmazonTest dataset

CV1 87.80% 88.54% 0.74% 0.18855

CV2 87.81% 88.54% 0.73% 0.14663

CV3 87.85% 88.70% 0.85% 0.13294

CV4 87.81% 88.67% 0.86% 0.18163

Continued on next page

166

Table B.12 continued from the previous page.

CV ACCd ACCPSO ∆ CPSO

(acc1) (acc2) (acc2−acc1)

CV5 87.79% 88.57% 0.78% 0.22259

CV6 87.73% 88.56% 0.83% 0.21497

CV7 87.75% 88.70% 0.95% 0.16057

CV8 87.80% 88.60% 0.80% 0.20158

CV9 87.68% 88.57% 0.89% 0.15131

CV10 88.00% 88.82% 0.82% 0.21164

Table B.13. Accuracy of the proposed hybrid method in each CV fold of

the experiment cycle with the full proposed hybrid method

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

sentiment140 dataset

LSVM (%) 77.12 77.09 77.08 77.15 77.10 77.16 77.05 77.10 77.09 77.11

LSVMPSO km (%) 78.04 78.14 78.08 78.19 78.13 78.21 78.04 78.15 78.08 78.13

LSVM3 km (%) 78.46 78.54 78.42 78.50 78.56 78.67 78.47 78.44 78.49 78.53

LSVMPSO
3 km (%) 78.56 78.70 78.51 78.71 78.64 78.62 78.56 78.61 78.58 78.70

LSVM5 km (%) 78.91 78.97 78.84 78.97 78.94 78.99 78.91 78.91 78.90 78.97

LSVMPSO
5 km (%) 78.78 78.86 78.71 78.95 78.87 78.79 78.75 78.82 78.71 78.85

LSVM (%) 79.50 79.54 79.42 79.53 79.55 79.62 79.47 79.52 79.49 79.52

LSVMPSO (%) 79.88 79.90 79.82 79.92 79.92 79.98 79.82 79.91 79.87 79.92

AmazonTest dataset

LSVM (%) 87.59 87.60 87.59 87.58 87.59 87.58 87.61 87.58 87.60 87.57

LSVMPSO km (%) 88.47 88.44 88.43 88.44 88.46 88.48 88.46 88.45 88.43 88.43

LSVM3 km (%) 88.92 88.92 88.87 88.89 88.89 88.95 88.91 88.87 88.88 88.86

LSVMPSO
3 km (%) 88.86 88.85 88.82 88.88 88.90 88.95 88.89 88.84 88.90 88.89

LSVM5 km (%) 89.31 89.31 89.29 89.27 89.27 89.31 89.29 89.29 89.26 89.25

LSVMPSO
5 km (%) 89.03 89.00 89.00 89.00 89.01 89.07 89.05 89.04 89.05 89.04

LSVM (%) 89.38 89.58 89.59 89.65 89.44 89.56 89.69 89.56 89.70 89.59

LSVMPSO (%) 90.25 90.20 90.23 90.24 90.20 90.18 90.26 90.20 90.21 90.20

Underscore “ ” means that 30K SpeedUP should be added at the end.

167

Table B.14. C values obtained by PSO tuning, random search and Bayesian

optimization of the experiment cycle with real-world data

CV CPSO CRS CBopt CPSO CRS CBopt

Person dataset Event dataset

CV1 0.16395 0.18788 0.26478 0.35264 0.17426 0.37357

CV2 0.5 0.23655 0.09187 0.32594 0.23655 0.48067

CV3 0.20836 0.17426 0.25998 0.3 0.87517 0.68186

CV4 0.2 0.14207 0.36230 0.17209 0.82932 0.15582

CV5 0.14461 0.14207 0.81331 0.3 0.19420 0.80211

CV6 0.14885 0.17426 0.98462 0.21387 0.56561 0.18215

CV7 0.4 0.27637 0.41633 1.9 0.28671 0.46562

CV8 0.39414 0.17426 1.39327 1.11668 0.32262 1.29922

CV9 0.34895 0.12045 2.05769 0.27715 0.14207 0.39434

CV10 0.3 0.18788 0.42478 0.32752 0.50658 0.43190

Table B.15. Accuracy of ML in each CV fold of the experiment cycle with

real-world data

Method CV1 CV2 CV3 CV4 CV5 CV6 CV7 CV8 CV9 CV10

Person dataset

LSVM (%) 73.17 67.60 74.22 70.38 73.52 77.70 73.17 72.82 71.43 71.08

LSVMPSO 287 (%) 77.70 72.13 77.00 76.66 79.09 79.44 75.61 74.91 72.82 75.61

LSVMRS (%) 74.56 74.91 78.75 76.31 78.75 77.70 75.26 74.91 74.56 76.31

LSVMBopt (%) 74.56 74.91 79.09 76.66 78.40 74.56 73.52 73.17 69.34 75.61

Event dataset

LSVM (%) 71.76 68.44 75.08 68.44 72.76 70.76 73.42 68.11 69.77 68.44

LSVMPSO 300 (%) 71.43 69.77 76.41 70.43 73.09 72.76 73.09 68.77 70.76 72.43

LSVMRS (%) 70.10 70.43 75.42 68.44 70.43 71.43 75.42 68.77 70.43 70.76

LSVMBopt (%) 71.43 69.77 76.74 70.10 73.09 71.76 74.09 68.77 71.10 72.09

Underscore “ ” means that SpeedUP should be added at the end.

Table B.16. Normal distribution

z-score p-value results H0

Method sentiment140 dataset

classical MNB 0.197 0.906 p > α not rejected

MNB 30K SpeedUP 1.077 0.584 p > α not rejected

MNB km 30K SpeedUP 0.324 0.85 p > α not rejected

Continued on next page

168

Table B.16 continued from the previous page.

z-score p-value Results H0

MNB3 km 30K SpeedUP 1.303 0.521 p > α not rejected

MNB5 km 30K SpeedUP 1.195 0.55 p > α not rejected

classical LR 0.418 0.812 p > α not rejected

LR 30K SpeedUP 1.058 0.584 p > α not rejected

LR km 30K SpeedUP 0.418 0.811 p > α not rejected

LR3 km 30K SpeedUP 1.295 0.523 p > α not rejected

LR5 km 30K SpeedUP 0.406 0.816 p > α not rejected

LRPSO km 30K SpeedUP 1.182 0.554 p > α not rejected

classical LSVM 1.495 0.473 p > α not rejected

LSVM 30K SpeedUP 0.323 0.851 p > α not rejected

LSVM km 30K SpeedUP 0.104 0.949 p > α not rejected

LSVM3 km 30K SpeedUP 5.053 0.08 p > α not rejected

LSVM5 km 30K SpeedUP 0.988 0.61 p > α not rejected

LSVMPSO km 30K SpeedUP 0.502 0.778 p > α not rejected

LSVMPSO
3 km 30K SpeedUP 0.864 0.649 p > α not rejected

LSVMPSO
5 km 30K SpeedUP 0.234 0.89 p > α not rejected

classical RF 0.038 0.981 p > α not rejected

RF 30K SpeedUP 1.161 0.56 p > α not rejected

RF km 30K SpeedUP 1.396 0.498 p > α not rejected

RF3 km 30K SpeedUP 2.25 0.325 p > α not rejected

RF5 km 30K SpeedUP 3.01 0.222 p > α not rejected

classical DT 2.062 0.357 p > α not rejected

DT 30K SpeedUP 0.856 0.652 p > α not rejected

DT km 30K SpeedUP 2.764 0.251 p > α not rejected

DT3 km 30K SpeedUP 0.165 0.921 p > α not rejected

DT5 km 30K SpeedUP 2.32 0.314 p > α not rejected

AmazonTest dataset

classical MNB 2.086 0.352 p > α not rejected

MNB 30K SpeedUP 0.234 0.89 p > α not rejected

MNB km 30K SpeedUP 5.093 0.078 p > α not rejected

MNB3 km 30K SpeedUP 0.173 0.917 p > α not rejected

MNB5 km 30K SpeedUP 4.427 0.109 p > α not rejected

classical LR 0.627 0.731 p > α not rejected

LR 30K SpeedUP 1.193 0.551 p > α not rejected

LR km 30K SpeedUP 0.586 0.746 p > α not rejected

LR3 km 30K SpeedUP 1.444 0.486 p > α not rejected

LR5 km 30K SpeedUP 5.593 0.061 p > α not rejected

classical LSVM 1.499 0.473 p > α not rejected

Continued on next page

169

Table B.16 continued from the previous page.

z-score p-value Results H0

LSVM 30K SpeedUP 0.136 0.934 p > α not rejected

LSVM km 30K SpeedUP 0.245 0.885 p > α not rejected

LSVM3 km 30K SpeedUP 0.86 0.651 p > α not rejected

LSVM5 km 30K SpeedUP 1.216 0.545 p > α not rejected

LSVMPSO km 30K SpeedUP 1.172 0.556 p > α not rejected

LSVMPSO
3 km 30K SpeedUP 0.54 0.763 p > α not rejected

LSVMPSO
5 km 30K SpeedUP 1.377 0.502 p > α not rejected

classical RF 3.479 0.176 p > α not rejected

RF 30K SpeedUP 1.084 0.582 p > α not rejected

RF km 30K SpeedUP 2.611 0.271 p > α not rejected

RF3 km 30K SpeedUP 1.013 0.603 p > α not rejected

RF5 km 30K SpeedUP 0.361 0.835 p > α not rejected

classical DT 1.106 0.575 p > α not rejected

DT 30K SpeedUP 1.254 0.534 p > α not rejected

DT km 30K SpeedUP 1.778 0.411 p > α not rejected

DT3 km 30K SpeedUP 0.03 0.985 p > α not rejected

DT5 km 30K SpeedUP 4.084 0.13 p > α not rejected

Person dataset

classical LSVM 1.417 0.492 p > α not rejected

LSVMPSO 287 SpeedUP 0.309 0.857 p > α not rejected

LSVMRS 1.974 0.373 p > α not rejected

LSVMBopt 1.337 0.512 p > α not rejected

Event dataset

classical LSVM 1.306 0.521 p > α not rejected

LSVMPSO 300 SpeedUP 1.945 0.378 p > α not rejected

LSVMRS 3.205 0.201 p > α not rejected

LSVMBopt 2.573 0.276 p > α not rejected

170

Konstantinas Korovkinas

HYBRID METHOD FOR TEXTUAL DATA SENTIMENT ANALYSIS

Doctoral Dissertation

Natural Sciences

Informatics (N 009)

Editor Zuzana Šiušaitė

Vilnius University Press

9 Saulėtekio Ave., Building III, LT-10222 Vilnius

Email: info@leidykla.vu.lt, www.leidykla.vu.lt

Print run copies 20

	Title
	Titulinis
	Summary
	Santrauka
	Acknowledgements
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Research context
	1.2 Research problem
	1.3 Object of the research
	1.4 Goal and objectives of the research
	1.5 Research methodology and tools
	1.6 Scientific novelty
	1.7 Practical significance
	1.8 Defended statements
	1.9 Presentation and approbation of the results
	1.10 Structure of the dissertation

	2 TEXTUAL DATA SENTIMENT ANALYSIS USING MACHINE LEARNING
	2.1 Sentiment analysis
	2.2 Machine learning in sentiment analysis
	2.3 Relevant methods and reviews
	2.3.1 Multinomial naïve Bayes
	2.3.2 Logistic regression
	2.3.3 Linear support vector machines
	2.3.4 Random forest
	2.3.5 Training dataset reduction
	2.3.6 Hyperparameter optimization
	2.3.7 Ensemble methods
	2.3.8 Natural language processing
	2.3.8.1 Features extraction
	2.3.8.2 N-grams
	2.3.8.3 Part of speech tagging
	2.3.8.4 Text preprocessing

	2.4 Conclusions of Chapter 2

	3 METHODOLOGY OF THE RESEARCH
	3.1 Proposed hybrid method
	3.1.1 SpeedUP method
	3.1.2 k-Means clustering
	3.1.3 PSO tuning method
	3.1.4 Ensemble method

	3.2 Datasets
	3.3 Performance evaluation
	3.3.1 Effectiveness
	3.3.2 Ranking
	3.3.3 Statistical significance

	3.4 Conclusions of Chapter 3

	4 EXPERIMENTS AND RESULTS
	4.1 Experimental cycles
	4.1.1 Experiment cycle with classical machine learning algorithms
	4.1.1.1 Experimental settings
	4.1.1.2 Results

	4.1.2 Experiment cycle with SpeedUP
	4.1.2.1 Experimental settings
	4.1.2.2 Results

	4.1.3 Experiment cycle with k-Means clustering
	4.1.3.1 Experimental settings
	4.1.3.2 Results

	4.1.4 Experiment cycle with the full proposed hybrid method
	4.1.4.1 Experimental settings
	4.1.4.2 Results

	Hybrid method for textual data sentiment classification
	4.1.5 Experiment cycle of the comparison of the results
	4.1.5.1 Experimental settings
	4.1.5.2 Results

	4.1.6 Experiment cycle with real-world data
	4.1.6.1 Experimental settings
	4.1.6.2 Results

	4.2 Conclusions of Chapter 4

	GENERAL CONCLUSIONS
	REFERENCES
	Appendix A Default parameters of machine learning algorithms
	Appendix B Classification results

