

VILNIUS UNIVERSITY

Gabrielė

STUPURIENĖ

Concept-Driven Informatics Education:

Extension of Computational Thinking

Tasks and Educational Platform for

Primary School

DOCTORAL DISSERTATION

Technological Sciences,

Informatics Engineering T 007

VILNIUS 2019

This dissertation was written between 2014 and 2018 at Vilnius University.

Academic supervisor:

Prof. Dr. Valentina Dagienė (Vilnius University, Technological Sciences,

Informatics Engineering – T 007).

VILNIAUS UNIVERSITETAS

Gabrielė

STUPURIENĖ

Konceptais grįstas informatikos

mokymas: informatinio mąstymo

užduočių ir edukacinės platformos

išplėtimas pradiniam ugdymui

DAKTARO DISERTACIJA

Technologijos mokslai,

Informatikos inžinerija T 007

VILNIUS 2019

Disertacija rengta 2014–2018 metais Vilniaus universitete.

Mokslinis vadovas:

Prof. Dr. Valentina Dagienė (Vilniaus universitetas, Technologijos

mokslai, informatikos inžinerija – T 007)

5

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor Prof.

Dr. Valentina Dagienė as this work would not have been possible

without her guidance and support. In the past years she granted me all

the freedom to explore my research interests while offering invaluable

suggestions that inspired me to stay on course. With her insightfulness

in research and passion for the Informatics education field she served

as an excellent role model that I aspire to be.

I have great pleasure in acknowledging my gratitude to Prof. Dr.

Saulius Gudas (Vilnius University) and Prof. Dr. Vitalij Denisov

(Klaipėda University) for very valuable remarks and comments. Their

ideas and feedback have contributed significantly to the completion of

this dissertation.

I would like to thank all members of the international Bebras

community that took part in the development of tasks and in this way

influenced the outcome of this dissertation. Especially to Christian

Datzko (Switzerland) for collaboration and sharing of ideas.

I am also grateful to the staff of Vilnius University Institute of Data

Science and Digital Technologies. Especially I would like to thank all

the colleagues in the Educational Systems research group. All of you

supported me a lot during my work on the thesis. A special thanks

goes to Lina Vinikienė and Dr. Anita Juškevičienė for their spiritual

support for whatever I pursue.

I would like to thank my parents and my brother who encouraged me

to choose this road and constantly supported me during all these years,

also my husband Mindaugas and my children Kajus, Benas and Sofija

for listening to my complaints and for believing in me, for the great

sacrifices they made in the past years to help me get to this point.

Last but not least, I would like to express my thanks to all the people

who have been in one way or another involved in the preparation of

this dissertation, for all of their support and tolerance during this

challenging period of my life.

What does not kill me makes me stronger.

Friedrich Nietzsche, Twilight of the Idols, 1888

6

CONTENTS

1. INTRODUCTION .. 13

1.1 Research Context and Motivation .. 13

1.2 Objectives and Tasks of the Research .. 16

1.3 Problem Statement ... 16

1.4 Research Methods .. 17

1.5 Scientific Novelty of the Research ... 17

1.6 Statements to be Defended ... 17

1.7 Practical Significance of the Results .. 18

1.8 Approval of the Research ... 18

1.9 Outline of the Dissertation ... 21

2. ANALYTICAL PART ... 22

2.1 Conception of Concept and Learning Approaches 22

2.2 Overview of Frameworks for Informatics Education 26

2.3 Concepts for Informatics Education ... 30

2.3.1 Informatics Concepts ... 32

2.3.2 Concepts of Computational Thinking .. 37

2.4 Informatics Education at Primary School across the World 40

2.5 Case of Computational Thinking Activity ... 44

2.6 Template of ICDT .. 48

2.7 Two-Dimensional Categorization .. 53

2.7.1 Examples of ICDT ... 57

2.7.2 Analysis of Existing ICDT ... 62

2.8 Contest Management Systems ... 65

2.9 Summary .. 69

3. RESEARCH PART .. 71

3.1 Extension of cpm.4.CSE Model ... 71

3.1.1 Functional Modeling Methodology .. 71

7

3.1.2 Process of cpm.4.CSE Extension ... 72

3.1.3 Concept Map of Informatics Concepts for Primary School 78

3.2 Adaptation of Two-Dimensional Categorization 81

3.3 Modification of ICDT Template .. 83

3.4 Development of CDIEM .. 87

3.5 Structure of the CMS Developed in Lithuania 88

3.6 Design of Educational Platform Extension .. 94

3.7 Implementation of the Prototype of the Designed Module 98

3.8 Summary .. 101

4. EXPERIMENTAL PART ... 102

4.1 Evaluation of Categorization System ... 102

4.2 Evaluation of Extended Educational Platform 105

4.2.1 Quality in Use Model ... 105

4.2.2 Experts’ evaluation .. 108

4.3 Summary .. 112

CONCLUSIONS ... 113

FUTHER WORKS ... 115

REFERENCES ... 116

8

LIST OF FIGURES

Fig. 1. Context of this study (adapted from Kinnunen (2009)) 13

Fig. 2. The areas of research that provide the basis for this thesis 15

Fig. 3. Structure of the thesis... 21

Fig. 4. Meaning – Notion – Concept and Sense (Gudavičius, 2011) 22

Fig. 5. Dimensions of conceptual understanding (Mills, 2016) 23

Fig. 6. Educational Reconstruction for Computer Science Education

(Diethelm et al., 2012) .. 27

Fig. 7. Application of the MER for CS Education (Grillenberger et al.,

2016)... 27

Fig. 8. Competence process model for Computer Science education

(Zendler et al., 2016) .. 28

Fig. 9. Number of papers by years and categories 45

Fig. 10. Cloud of keywords found in publications 46

Fig. 11. The task developing process (Dagienė, Stupurienė, 2016a) 47

Fig. 12. Structure (framework) of Informatics learning task................... 50

Fig. 13. An example of the Informatics learning task 52

Fig. 14. ICDT title: Strawberry hunt ... 58

Fig. 15. ICDT title: Sticks and shields .. 59

Fig. 16. ICDT title: Parking lot ... 60

Fig. 17. ICDT title: The way home ... 61

Fig. 18. Proposed and accepted tasks from 2015-2018 63

Fig. 19. Distribution of accepted tasks according to old categories (2015–

2016)... 65

Fig. 20. Distribution of accepted tasks according to new categories

(2017–2018) ... 65

Fig. 21. The typical modular structure of the Bebras CMS..................... 68

Fig. 22. The basic IDEF0 constructs (Menzel, Mayer, 1998) 71

Fig. 23. The subprocesses from A2 to A4 in model cpm.4.CSE (Zendler

et al., 2016) ... 73

Fig. 24. Extended subprocesses for Informatics concepts identification 75

Fig. 25. Concept map of Informatics concepts for primary school 80

Fig. 26. Data model of two-dimensional categorization system 81

Fig. 27. Adapted two-dimensional categorization system....................... 82

Fig. 28. Tasks creating, categorizing and using process 82

Fig. 29. The element hierarchy of the IEEE LOM standard 83

Fig. 30. Informatics learning task (international version) metadata 85

Fig. 31. Informatics concept-driven task metadata (Lithuanian version) 86

9

Fig. 32. Extracted metadata of ICDT .. 86

Fig. 33. Concept-driven Informatics education model 87

Fig. 34. Conceptual model of teaching domain....................................... 88

Fig. 35. The architecture of the Lithuanian Bebras CMS 89

Fig. 36. Use case diagram of the Lithuanian Bebras CMS 90

Fig. 37. The modular structure of the Lithuanian Bebras CMS 90

Fig. 38. The relational database structure underlying the task management

subsystem ... 93

Fig. 39. The relational database model underlying the EEP 94

Fig. 40. Use case diagram of main modules in the current version of CMS

 .. 95

Fig. 41. New module in the extended CMS .. 95

Fig. 42. Use case diagram of task selection module 96

Fig. 43. Activity diagram of structural task selection process in the

module .. 96

Fig. 44. Activity diagram of the whole task selection process 97

Fig. 45. Task creation mode of the prototype.. 98

Fig. 46. Task selection mode of the prototype .. 99

Fig. 47. Formation of tasks collection ... 99

Fig. 48. Example of tasks collection formation in prototype 100

Fig. 49. Example of task assignment to collection in prototype 100

Fig. 50. Example from the 21 tasks in the TCS Oxford Computing

Challenge, 2017 .. 104

Fig. 51. The quality in use model according to ISO/IEC 25010:2011 .. 106

Fig. 52. Triangular fuzzy numbers .. 109

10

LIST OF TABLES

Table 1. Comparison of the frameworks ... 29

Table 2. Occurrences of codes within the knowledge categories 34

Table 3. Matching of core categories of Informatics concepts 36

Table 4. Informatics content domains and keywords 54

Table 5. Computational thinking skills and ways to identify them 55

Table 6. Two-Dimensional categorization system 56

Table 7. A template table for task categorization 56

Table 8. Matching of categorization systems .. 64

Table 9. Percentage of accepted tasks the most popular categories 65

Table 10. Countries distribution by responsibilities of CMS support (2017

data) .. 66

Table 11. Outputs from subprocesses A1, A2 and A3 77

Table 12. Example of the questionnaire .. 102

Table 13. Quality in use model characteristics and subcharacteristics . 106

Table 14. EEP evaluation criteria (adapted from ISO/IEC 25010:2011)

 .. 107

Table 15. Triangular Fuzzy numbers values ... 109

Table 16. Questions of the developed questionnaire 109

Table 17. Experts’ evaluation results .. 110

Table 18. Experts' evaluation results converted into numerical values . 111

11

GLOSSARY

Computational thinking is the thought process involved in formulating

a problem and expressing its solution(s) in such a way that a computer,

machine or human can effectively carry out (Wing, 2014).

Concept is defined as an abstract idea which generalizes separate objects,

and defines attributes and relations between objects in sciences. It is a mental

representation that is implicated in many of human higher thought processes,

including various forms of reasoning and inference, categorization, planning

and decision making, constructing and testing explanations (Encyclopedia...,

2017).

Conceptual Knowledge is knowledge rich in relationships and

understanding. Conceptual knowledge is knowledge of classifications,

principles, generalizations, theories, models, or structures pertinent to a

particular disciplinary area (Walsh, 2011).

Contest Management System is an essential software environment for

running and organizing various contests (IOI-like programming competition,

Bebras-like contest, etc.). It should support simple tools, which enable tasks

development, user management, grading, announcement area, record of

solutions, reports, and data storage (Skūpienė, 2010).

cpm.4.CSE model is a process model that allows the systematic

development of the competence model for Computer Science education at

University level (Zendler et al., 2016).

Informatics (Information science) is the science that is concerned with

the gathering, manipulation, classification, storage, and retrieval of recorded

knowledge (American…, 2011).

Informatics/Computer Science/Computing education at school refer

to more or less the same thing, that is, the entire scientific discipline

underlying the current digitalization and information technology. All of the

terms differ greatly from information (and communication) technology (IT,

ICT), which mostly focus on computer literacy, that is, knowing how to use

computers and their applications as tools (Heintz et al., 2016). The term

Informatics education will be used in this thesis.

Informatics concepts play the central role for understanding

fundamentals of computers, information technology, software, hardware, and

information systems (Dagienė, Stupurienė, 2016b). The use of Informatics

concepts is necessary for cognitive processes such as categorization,

memory, decision making, learning, and inference.

12

Informatics concept-driven task is a short task developed for

teaching/learning of some subset of Informatics concepts; it requires deep-

thinking skills of Informatics field (Dagienė, Stupurienė, 2016a).

Educational platform is a widely-used term used to define the integrity

of tools and services for writing, storing, disseminating digital

communication, manage student’s activities, searching information etc.

(Encyclopedia..., 2018). Meanwhile when an existing educational platform is

mentioned in this thesis it means the Lithuanian Bebras contest management

system.

Student is one who is enrolled or attends classes at a school, college, or

university (American…, 2016). It this thesis when student is mentioned it

means pupil from school.

ABBREVIATIONS

CAS – organization Computing at School (United Kingdom)

CDIE – concept-driven Informatics education

CDIEM – concept-driven Informatics education model

CMS – Contest Management System

cpm.4.CSE – competence process model for Computer Science

education

CT – Computational thinking

EEP – extended educational platform

ICDT – Informatics concept-driven task

MER – model of educational reconstruction

13

1. INTRODUCTION

1.1 Research Context and Motivation

While Informatics is a well-established discipline in higher education all

around the world, it is not the case for secondary and primary education.

From early 2000s what was taught at school was not Informatics as a

subject with its own methods, concepts, and principles, but information

technology oriented teaching with the goal that the use of software tools was

sufficient for students to acquire practical skills (Schwill, 1997; Hadjerrouit,

2009).

During the last decade the situation has been changing. UK Education

Secretary Michael Gove in 2012 said (Sutherland, 2013):

Imagine the dramatic change which could be possible in

just a few years... Instead of children bored out of their

minds being taught how to use Word and Excel by bored

teachers, we could have 11-year-olds able to write simple

2D computer animations… By 16, they could have an

understanding of formal logic previously covered only in

university courses and be writing their own apps for

smartphones.

Informatics education (Fig. 1) is a term that relates more to the practice of

teaching/learning about Informatics, rather than the use of information

technology in support of teaching and learning.

Fig. 1. Context of this study (adapted from Kinnunen (2009))

Informatics is becoming a common, mandatory subject in school

curricula of an even increasingly number of countries across the world.

14

Practically, Informatics is a necessary skill for European students to get the

Informatics-intensive jobs of the 21st century. Educationally, Informatics is

an invaluable intellectual tool for developing essential conceptual cognitive

skills that will serve students through their careers and through all areas of

future work (Gander et al., 2013).

Informatics is the only subject that teachers of primary schools have to

teach, but never studied themselves (Hromkovic, Lacher, 2017). Teachers

need to understand the contributions of Informatics to the understanding of

the world and to the growth of intellectual abilities of their students, and that

they focus on teaching fundamental and, therefore, stable concepts of

Informatics instead of operating instructions for short-term applications.

In order to provide up-to-date Informatics education in schools that

integrates every-day experiences of students and thus also activates their

intrinsic motivation, current developments and innovations in Informatics

must not be neglected. At the same time, general Informatics education

needs to focus on central ideas and concepts of Computer Science

(Grillenberger et al., 2016).

The concept can be understood as extensive information on a particular

object, existing in the human mind. Concepts of Informatics are tightly

related with our intentions: what we would like to teach at school. The

concept can be defined as a set of objects having common attributes.

Informatics concepts play a central role for understanding fundamentals

of computers, information technologies, software, hardware and other

devices. However, in practice very often the training of skills in application

software is given much more room at schools than to discover and to go

deeper into concepts of Informatics.

On the other hand, the digital age demands new abilities, skills and

knowledge, which have to be acquired already at school. Overall

digitalization of societal processes, public life, economics and health are

currently underway. Students should be ready for emerging challenges: big

data, virtual reality, artificial intelligence, Industry 4.0, Industry 5.0 and so

on.

This thesis is developed as an interdisciplinary research. The work draws

upon different research areas. Fig. 2 illustrates the interconnections of the

research of this thesis.

First, we see learning theories that are conceptual frameworks describing

how students absorb, process, and retain knowledge during learning

(Chaudhary, 2013). Cognitive, emotional, and environmental influences as

15

well as prior experience all play a part in how understanding or a world view

is acquired or changed and knowledge and skills retained.

Fig. 2. The areas of research that provide the basis for this thesis

Second there is Informatics, the study of Computer Science including

computers design (architecture) and their uses for computations, data

processing, and systems control. As a discipline, Informatics spans a range

of topics from theoretical studies of algorithms and the limits of computation

to the practical issues of implementing computing systems in hardware and

software (Belford, 2017).

Third we notice the educational technology the study and ethical practice

of facilitating learning and improving performance by creating, using, and

managing appropriate technological processes and resources (Robinson et

al., 2008).

The last component is systems engineering that is an interdisciplinary

field of general engineering and engineering management with focus on how

to design and manage complex systems over their life cycles.

The intersection and interaction of different areas is typical of research of

the educational aspects of a specific subject.

In this thesis we present the development of concept-driven Informatics

education model for extension of an educational platform. The use of

extended educational platform will help learners as well as primary school

teachers to acquire competences of Informatics education.

16

1.2 Objectives and Tasks of the Research

The research object is teaching and learning Informatics at schools,

educational processes and competencies of Informatics.

The subject domain is Informatics education at primary school.

The objective of this research is to a develop concept-driven Informatics

education model and extend an existing educational platform by adding a

well-structured selection of concept learning tasks aligned with the primary

school integrated curricula.

In order to achieve this objective, the following research tasks have been

stated:

1. To analyze the existing frameworks of basic components and

processes for Informatics education and highlight the importance of

Informatics concept-driven approach;

2. To develop the concept-driven Informatics education model and

adapt it to the primary school integrated curricula;

3. To design a template for learning tasks of Informatics concepts and

computational thinking;

4. To develop the educational platform extension model for the concept-

driven Informatics education;

5. To construct a prototype of an extended educational platform that

implements the model proposed;

6. To evaluate the quality in use of the prototype of an extended

educational platform.

1.3 Problem Statement

What should be included in Informatics education in primary school? This

problem is raised for the following reasons:

1. There is a widespread controversial idea with a long history that

Informatics at schools is only about the use of computers and

applications;

2. There is no common agreement (framework) on which part of the

background (concepts) of Informatics should be introduced to

school, and, in particular, to primary school;

3. There is no educational and technological framework how it should

be done and what technologies should be applied.

17

1.4 Research Methods

A systematic literature review was used to compare, analyze and apply the

results of the other researchers. Methodological triangulation in qualitative

research that combines content analysis and unstructured interview methods

is also applied.

Techniques of data modeling (Entity-Relationship model, UML) and

function modeling method (IDEF0) were used to represent the research

process. The expert evaluation method and the quality in use model were

used to evaluate the proposed model and the quality of extended educational

platform.

1.5 Scientific Novelty of the Research

The main novel aspects of concept-driven Informatics education in primary

schools suggested in the thesis are as follows:

1. An extended cpm.4.CSE model is adapted for primary school

education;

2. The process of identification of Informatics concepts is based on a

methodological triangulation in qualitative research;

3. The Informatics concept-driven tasks (ICDT) template (which

integrates Informatics concepts with computational thinking skills)

was developed and proposed for introducing Informatics at primary

school;

4. The educational platform (the Lithuanian Bebras CMS) is extended

by a new module containing a specific task selection feature for

structured selection of ICDT.

1.6 Statements to be Defended

1. The proposed concept-driven Informatics education model that consists

of the extension of cpm.4.CSE model and design of ICDT template is

adapted to the primary school integrated curricula. The model is

dynamic and can be applied to the other educational levels;

2. The extended educational platform is appropriate and effective (in terms

of quality in use) for selection of Informatics concept-driven tasks for

Informatics education at primary school.

18

1.7 Practical Significance of the Results

1. The main practical importance of the work is that the proposed CDIE

model can be applied to introduce Informatics for primary school

students and herewith to improve primary school teachers’ competencies

to teach Informatics;

2. The didactic novelty is the paradigm of a short task with a double folded

aim: to cover Informatics concepts (together with CT skills) while being

solvable in a few minutes to attract students to learn;

3. The educational platform extended by the task selection module allows

teachers to structurally and effectively select Informatics concept-driven

task for educational process;

4. The prototype of the EEP was highly evaluated by experts according to

the chosen quality in use criteria.

1.8 Approval of the Research

The results of the Doctoral thesis were published in 16 scientific publications

(8 of them in periodical peer-reviewed journals, and 8 in the proceedings of

a scientific conference).

List of Publications:

Articles in the reviewed scientific periodical publications:

1. Dagienė, V., Sentance, S., & Stupurienė, G. (2017). Developing a

Two-Dimensional Categorization System for Educational Tasks in

Informatics. Informatica, 28(1), 23-44.

2. Dagienė, V., Stupurienė, G., & Vinikienė, L. (2017). Implementation

of Dynamic Tasks on Informatics and Computational Thinking. Baltic

Journal of Modern Computing, 5(3), 306-316.

3. Izu, C., Mirolo, C., Settle, A., Mannila, L., & Stupuriene, G. (2017).

Exploring Bebras Tasks Content and Performance: A Multinational

Study. Informatics in Education, 16(1), 39-59.

4. Benaya, T., Zur, E., Dagiene, V., & Stupuriene, G. (2017). Computer

Science High School Curriculum in Israel and Lithuania–Comparison

and Teachers' Views. Baltic Journal of Modern Computing, 5(2), 164.

5. Dagiene, V., Stupuriene, G. (2016). Informatics Concepts and

Computational Thinking in K-12 Education: A Lithuanian Perspective.

Journal of Information Processing, 24(4), 732-739 (Invited paper).

6. Dagiene, V., & Stupuriene, G. (2016). Bebras - A Sustainable

Community Building Model for the Concept Based Learning of

19

Informatics and Computational Thinking. Informatics in Education,

15(1), 25-44.

7. Dagienė, V., Pėlikis, E., Stupurienė, G. (2015). Introducing

Computational Thinking through a Contest on Informatics: Problem-

solving and Gender Issues. Informacijos mokslai, 73, 43-51.

8. Dagienė, V., Pėlikis, E., & Stupurienė, G. (2015). Informatinio

mąstymo ugdymo užduotys: merginų ir vaikinų sprendimų analizė.

Acta paedagogica Vilensia, 35, 53-66.

Proceedings of scientific conferences:

1. Dagienė, V., Stupurienė, G. (2018). Short Tasks - Big Ideas:

Constructive Approach for Learning and Teaching of Informatics

Concepts in Primary Education // Constructionism 2018:

Constructionism, computational thinking and educational innovation:

conference proceedings. Vilnius: Vilnius University, 169-179. eISBN

9786099576015.

2. Dagienė, V., Stupurienė, G., Vinikienė, L. (2017). Informatics Based

Tasks Development in the Bebras Contest Management System.

Communications in Computer and Information Science. Vol. 756, 466-

477. ISSN 1865-0929, eISSN 1865-0937.

3. Dagiene, V., Stupuriene, G., Vinikiene, L., & Zakauskas, R. (2017).

Introduction to Bebras Challenge Management: Overview and Analyses

of Developed Systems. In International Conference on Informatics in

Schools: Situation, Evolution, and Perspectives. LNCS, Vol. 10696,

232-243.

4. Dagienė, V., Stupurienė, G., & Vinikienė, L. (2016). Promoting

Inclusive Informatics Education Through the Bebras Challenge to All K-

12 Students. In Proceedings of the 17th International Conference on

Computer Systems and Technologies. ACM. 407-414.

5. Stupurienė, G., Vinikienė, L., & Dagienė, V. (2016). Students’ Success

in the Bebras Challenge in Lithuania: Focus on a Long-Term

Participation. In: International Conference on Informatics in Schools:

Situation, Evolution, and Perspectives. LNCS, Vol. 9973, 78-89.

Springer.

6. Dagienė, V., Futschek, G., Stupurienė, G. (2016). Teachers’

Constructionist and Deconstructionist Learning by Creating Bebras

Tasks // Constructionism in Action 2016, February 1-5, Bangkok,

Thailand: conference proceedings. Bangkok: Suksapattana Foundation.

255-263. eISBN 9786169272601.

20

7. Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C.,

... & Stupurienė, G. (2015). Concepts in K-9 Computer Science

Education. In Proceedings of the 2015 ITiCSE on working group

reports. ACM, 85-116.

8. Jasutė, E., Stupurienė, G. (2015). Finding Threshold Concepts in

Computer Science Contest // IFIP TC3 working conference “A new

culture of learning: computing and next generations” proceedings.

Vilnius: Vilniaus universiteto leidykla, 289-293.

The main results of the thesis were presented and approved at the following

scientific conferences.

International conferences and doctoral consortiums:

1. International conference Constructionism 2018: Constructionism,

computational thinking and educational innovation. August 21-25, 2018,

Vilnius, Lithuania.

2. XIV International symposium on creating and analyzing educational

informatics tasks. May 7-11, 2018, Cyprus.

3. 8th International doctoral consortium on informatics engineering

education research, December 6-10, 2017, Druskininkai, Lithuania.

4. The 10th International Conference on Informatics in Schools (ISSEP)

and doctoral consortium. November 12-15, 2017, Helsinki, Finland.

5. XIII International symposium on creating and analyzing educational

informatics tasks. May 29-June 2, 2017, Italy.

6. International conference Constructionism in Action, February 1-5, 2016,

Bangkok, Thailand.

7. XII International symposium on creating and analyzing educational

informatics tasks. May 21-27, 2016, Turkey.

8. 6th International doctoral consortium on informatics engineering

education research. December 08-12, 2015, Druskininkai, Lithuania.

9. 20th Annual Conference on Innovation and Technology in Computer

Science Education (ITICSE), July 6-8, 2015, Vilnius, Lithuania.

10. International IFIP TC3 Working Conference “A New Culture of

Learning: Computing and Next Generations”, July 1-3, 2015, Vilnius,

Lithuania.

11. 5th International doctoral school on informatics education and

educational software engineering research. November 26-30, 2014,

Druskininkai, Lithuania.

21

1.9 Outline of the Dissertation

The text of the thesis consists of introduction, three main chapters,

conclusions, list of references, list of publications and appendixes. The work

includes 130 pages of text, 52 figures, 18 tables and 169 references.

Chapter 1 (Introduction) describes the research context, presents the

problem statement, discusses motivation, aims and objectives of the

research, states research questions, describes research methods, research

results, contributions of the thesis. Chapter 2 presents theoretical

backgrounds and related works. Chapter 3 develops and discusses main

results of the research. Chapter 4 describes experts’ evaluation of the

quality of the extended educational platform. Conclusions present the main

results of the dissertation. The structure of the thesis is presented in Fig. 3.

Fig. 3. Structure of the thesis

22

2. ANALYTICAL PART

The purpose of this chapter is to introduce the theoretical background related

to concept-driven approach for Informatics education. Starting with learning

theories and approaches, we overview frameworks of basic components and

processes for Informatics education. Also, we present common view of

related works about Informatics education at primary school.

2.1 Conception of Concept and Learning Approaches

In the physicalism (in philosophy), the concept is a mental representation,

which the brain uses to denote a class of things in the world. This is to say

that it is literally, a symbol or group of symbols together made from the

physical material of the brain (Carey, 2009; Gagne et al., 1993). Concepts

are mental representations that allow us to draw appropriate inferences about

the type of entities we encounter in our everyday lives (Murphy, 2002).

Concepts do not encompass all mental representations, but are merely a

subset of them. The use of concepts facilitates the cognitive processes such

as categorization, memory, decision making, learning, and inference.

According to Gudavičius (2007), the concept is a global mental unit, and

a unit of systematic knowledge about the world. The concept is a result of

human being’s experience and psychomotor activity (Gudavičius, 2009).

Papaurelytė-Klovienė (2002; 2005) defines the concept as the unit of

thought. Concept is all information about something that human being

contains in his or her consciousness. According to Gudavičius (2011), the

words meaning, notion, and concept describe a certain content of

consciousness: image, perception, knowing (Fig. 4).

Fig. 4. Meaning – Notion – Concept and Sense (Gudavičius, 2011)

23

So we can see that concept is understood as a unit of thinking that can be

realized in the form of verbalization or as a part of cognition with its own

real world image.

Papaurelytė-Klovienė (2004) also emphasizes that when we deal with

concept, we cannot avoid the terms of notion and conceptualization. The

difference between notion and concept is that notion deals with theoretical

knowledge (only basic features are stressed) and cognition (all features are

stressed). Conceptualization is also inseparable from concept. It reflects a

concept’s individuality. Conceptualization is one of the most important

processes of cognition performed by human being. The main point of

conceptualization is that information in the human mind is processed;

concepts, conceptual structures and all conceptual systems lead to in

consciousness. In other words, conceptualization is the formation of

concepts (Papaurelytė-Klovienė, 2007).

Byrnes and Wasik (1991) noted that conceptual knowledge, which

consists of the core concepts for a given domain and their interrelations (i.e.,

“knowing that”), has been characterized using several different constructs,

including semantic nets, hierarchies, and mental models. Procedural

knowledge, on the other hand, is “knowing how” or the knowledge of the

steps required to attain various goals. Procedures have been characterized

using such constructs as skills, strategies, productions, and interiorized

actions.

Conceptual understanding appears when children can grasp ideas in a

transferrable way and apply them across domains. The ability to transfer

skills and knowledge is much more advantageous than memorizing factual

information. According to Mills (2016), four salient dimensions of

conceptual understanding can be framed: 1) factual and procedural

knowledge, 2) making connections, 3) knowledge transfer, and 4)

metacognition (Fig. 5).

Fig. 5. Dimensions of conceptual understanding (Mills, 2016)

The starting point in the process of conceptual understanding is the

attainment of procedural knowledge. Making connections incorporates new

24

concepts and promotes conceptual learning through concept maps and

reflection, and fosters deep learning and enhanced conceptual understanding.

The conceptual understanding is deepening by moving forth and back

between theory and practice when transferring learning. Despite the fact that

both processes of knowledge transfer and the process of making connections

seem to be similar, they are two different dimensions of conceptual

understanding. It is impossible to transfer knowledge without making

connections. Transferring previously learned facts to a new topic helps the

learner to reinforce connections and to think in a different way. Finally,

metacognition is the knowledge one has about their own thinking and the use

of strategies to guide and redirect thinking (Gredler, 2008).

Giddens and Brady (2007) have described conceptual learning as a

process by which students learned how to organize information into logical,

mental structures. These structures enhance conceptual understanding and

strengthen the thought process. Concepts are expressed by words, but

learning cannot be accomplished by describing things or processes. The

generalization of a concept does not mean creating a description but it means

adjusting a physical coordination in the learner’s brain (Clancey, 1995).

Deep learning can be encouraged by emphasizing principles and concepts

rather than accumulated facts (Hounsell, 1997; Warburton, 2003). Given the

unusual breadth of the sustainability agenda, it is important to provide the

focus in the form of a unifying framework that permits meaningful dialogue

across conventional disciplines. This can be done by identifying key

concepts and considering interpretations and implications of each concept in

the environmental, social and economic spheres. The key concepts can be

reinforced further by returning to them periodically at increasing levels of

detail and abstraction – a “spiral curriculum” (Bruner, 1960). It is important

to provide a clear structure, a logical progression and unifying themes, and

to indicate them at the outset (Entwistle, 1981). Through problem-based

learning tasks, students can be encouraged to clarify assumptions, choose

analytic techniques and examine value judgments (Hounsell, 1997).

Deep learning is internally motivated and is associated with the intention

to understand, rather than to simply pass an assessment task (Marton, Saljo,

1997). Thus, a priority for educators must be to provide an environment

where students can develop a strong personal interest in sustainable issues.

Conceptual frameworks should be developed in a clear and graphic

fashion. Through enquiry, discussion and problem-based exercises students

can make connections between key concepts and visualize these

relationships in networks or mind maps.

25

A concept map or conceptual diagram is a diagram that depicts suggested

relationships between concepts (Hager, Scheiber, Corbin, 1997; Mühling,

2014). It is a graphical tool that instructional designers, engineers, technical

writers and others use to organize and structure knowledge of a specific

domain.

A concept map typically represents ideas and information as boxes or

circles, which it connects with labeled arrows in a downward-branching

hierarchical structure. The relationship between concepts can be articulated

in linking phrases such as causes, requires or contributes to (Novak, Cañas,

2008). Concept maps have become a rather popular tool of teaching, learning

and assessment because they are easy to construct and use (Grundspenkis,

Strautmane, 2009).

The technique for visualizing these relationships among different

concepts is called concept mapping. Concept maps have been used to define

the ontology of computer systems, for example with the object-role

modeling or Unified Modeling Language formalism (Gonzalez, Dahanayake,

2007).

There are several types of concept maps. One of them is hierarchical

structure, where the knowledge domain is allocated on the descending order

of importance (Ku, 2007). This type was chosen for use in the thesis.

Concept maps have their origin in constructivism. Constructivism is

based on the idea that learners have actively constructed knowledge.

Nowadays it is probably the most popular theoretical approach in

Informatics education (Machanick, 2007). It derives from the theories of

Piaget (Piaget, 1971), who observed learning as occurring in distinct stages,

particularly the stages of general understanding which a child went through

(Piaget, 1953). The simpler type of learning is often referred to as

assimilation when new details fit into the existing model. Learning that

requires changes to the model is referred to as accommodation (von

Glasersfeld, 1995).

Papert extended the Piagetian theory of constructivism in a way that

applies to practical construction and named it by constructionism (Papert,

1987), it specifies how individual learners construct mental models in order

to understand the world around them.

For both constructivism and constructionism, knowledge is built by the

learner instead of being presented and imposed on students by an expert,

such as a teacher. Constructionism adds to the constructivist perspective the

idea of artifact construction. Where constructivists view the learner as an

active builder of knowledge, constructionism places a critical emphasis on

26

having learners engage in artifacts constructions that are external and shared.

In contrast to Piaget who focuses on cognitive processes of learning,

Papert’s constructionism focuses on learning through making and

emphasizes individual learners’ interactions with their artifacts that are

mostly built through the assistance of digital media and computer based

technologies (Parmaxi, Zaphiris, 2014).

Wilensky (1991) took this point further providing a new perspective into

our understanding of concrete elucidation, that concreteness is not a property

of an object but rather a property of a person's relationship to an object.

Concepts that were hopelessly abstract at one time can become concrete for

us if we get into the “right” relationship with them. In light of this

perspective, any idea, concept or a piece of knowledge can become concrete

provided that a person develops a set of representations, interactions and

connections with them.

Constructionism provides us with the basic idea of an appropriate

learning object. Such an object should support a learner’s step-by-step

understanding of the materials and concepts it represents, allowing the

learner to self-construct his or her own knowledge. Constructionism is

focused on the personal construction of ideas and relations through the

construction of real-life artifacts (Ben-Ari, 2001).

2.2 Overview of Frameworks for Informatics Education

A number of frameworks of basic components and processes for Informatics

education are described in literature. Some of them came from university

level or other sciences areas.

One of them is a model of educational reconstruction (MER) that was

developed by Kattmann et al. (1996). They argue that the central aspects of

lesson planning such as the perspectives of learners are often only

considered after the clarification and analysis of the science subject matter, if

considered at all. They saw a clear gap between science education research

and science instruction practice. However, as Diethelm et al. (2012) point

out that Informatics differs from other science subjects in goals, knowledge

structure and teaching methods. Therefore, they extended the original ideas

with missing aspects from MER and also take into account the general

educative nature of Informatics education in schools. Therefore, they have

adapted MER for CS education (MER-CSE) (Fig. 6) and illustrated some of

the components with examples.

27

Fig. 6. Educational Reconstruction for Computer Science Education (Diethelm et al.,

2012)

The authors highlighted the role of context and phenomena “to motivate

the students, to open connections to prior knowledge or to show application

situations of the intended knowledge.” This approach also ties in with the

ideas of Piaget’s constructivism, i.e. that learning means to build knowledge

structures from interpreting new information based on existing knowledge

and experience (Diethelm et al., 2012).

Later, Grillenberger et al., in 2016 proposed the idea that when preparing

the contents of innovative Informatics topics for schools, merely reducing

the complexity and perceived difficulty of the subject matter is not enough.

Instead, the field needs to be thoroughly examined. Innovations in

Informatics can be didactically prepared for teaching by using the model of

educational reconstruction for CSE (MER-CSE). Therefore, the authors

described the adaptation and application of the MER-CSE as a research

framework (Fig. 7).

Fig. 7. Application of the MER for CS Education (Grillenberger et al., 2016)

28

The selection of concepts helps us to focus on aspects that are interesting

for students and at the same time represent fundamentals of the subject.

Students’ perceptions are important here because they tell us about their

“mental constructions” with regard to the content in question, which will

affect the choice and preparation of concepts for contextualized learning

(Grillenberger et al., 2016; Grillenberger, Romeike, 2017).

The next framework is process-based development of competence models

to Computer Science (Informatics) education at university level, which is

provided by Zendler, Seitz and Klaudt (Zendler et al., 2016). The process

model (cpm.4.CSE) includes eight subprocesses: A1 determines competence

concept; A2 determines competence areas; A3 identifies Computer Science

concepts; A4 assigns competence dimensions to Computer Science; A5

codes competences; A6 formulates competences; A7 formulates learning

tasks; and A8 formulates test tasks (Fig. 8).

Fig. 8. Competence process model for Computer Science education (Zendler et al.,

2016)

The model is based on four main dimensions of competence (Rychen,

Salganik, 2003): (1) knowledge, (2) cognitive skills, (3) practical skills, and

(4) attitudes.

Before developing and presenting this cpm.4.CSE model, Zendler and

colleagues empirically determined four competence areas for high school

education on the basis of expert assessments (Zendler, Spannagel, 2008;

Zendler et al., 2014). Using a cluster analysis approach and with

multidimensional scaling, the following competence areas have been

29

identified: (1) information technology, (2) modeling, (3) computer

communication, and (4) software engineering.

The last framework analyzed was suggested by Manev and Maneva

(2017). They proposed methodology for development of school curricula in

Computing. The main feature of this methodology is that it is extracted from

the guidance for creating university Computer science curricula (CS2013) of

the most respected professional associations in the domain – ACM

(Association for Computing Machinery) and the Computer Science section

of IEEE (The Institute of Electrical and Electronics Engineers).

The body of knowledge of the Computing domain is hierarchically

organized in four levels. Level 1 contains the fields of the domain; on Level

2 the fields are divided into areas; on Level 3 each area is divided into units;

on Level 4 each unit is composed of individual topics.

According to Manev and Maneva (2017), in the secondary school model

students can have only one or maximum two courses in the domain with one

to four class hours per week; asking for more class hours for Computing

nowadays seems not realistic. So the model has to include some “class hours

per week” scheme, which defines the grade, number of courses, class hours

per week and distribution of the class hours. The body of knowledge for the

created curriculum was chosen mainly from two fields of Computer Science

and Information Technology from Computing Curricula (2001). Is it

possible to define different kind of models also on the base of preferred main

fields – CS-oriented (most appropriate for mathematical and engineering

schools), IT-oriented (more appropriate for language, art and sport schools),

CS & IT-oriented (more appropriate for regular schools).

All above mentioned frameworks are compared in Table 1.

Table 1. Comparison of the frameworks

 Criterion

Framework C
le

ar
ly

d
ef

in
ed

E
m

p
h

as
iz

es

im
p

o
rt

an
ce

 o
f

co
n

ce
p

ts

E
m

p
h

as
iz

es

im
p

o
rt

an
ce

 o
f

co
m

p
et

en
ce

s

C
o

m
p

o
si

ti
o

n

o
f

le
ss

o
n

 a
n

d

co
u

rs
e

Diethelm et al., 2012 No No No Yes

Grillenberger et al., 2016 Yes Yes No Yes

Zendler et al., 2016 Yes Yes Yes No

Manev, Maneva, 2017 No No No Yes

30

The most important criteria of comparison are whether the framework is

clearly defined (steps, processes, relations), or whether it emphasizes the

importance of Informatics concepts, the importance of Informatics

competences, and whether it describes the composition of lesson and course.

The overview of these frameworks lets us get an understanding of basic

components and processes for Informatics education. It was decided to

choose one of them, therefore we selected cpm.4.CSE.

These are the reasons why this framework was selected:

1. In this framework the entire educational process has clearly

indicated steps;

2. From our view of point, it is also important to determine

Informatics competencies and identify Informatics concepts.

3. This framework is closely related with what Informatics topics

should be taught at the university level, so that they can be

adapted to the school level;

2.3 Concepts for Informatics Education

In 2013, the Association Informatics Europe and ACM Europe Working

Group on Informatics Education prepared the report “Europe cannot afford

to miss the boat” (Gander et al., 2013). Based on the analysis of the current

situation of Informatics education in Europe and experience in many

countries, this report makes four key recommendations:

1. All students should benefit from education in digital literacy,

starting from an early age and mastering the basic concepts by age

12. Digital literacy education should emphasize not only skills but

also the principles and practices of using them effectively and

ethically.

2. All students should benefit from education in Informatics as an

independent scientific subject, which is studied both for its intrinsic

intellectual and educational value and for its applications to other

disciplines.

3. A large-scale teacher training program should urgently be started.

To bootstrap the process in the short term, creative solutions should

be developed involving school teachers paired with experts from

academia and the industry.

4. The definition of Informatics curricula should rely on the

considerable body of existing work on the topic and the specific

recommendations of the present report.

31

For better understanding in which direction the research concerning the

Informatics concepts education is going, it was decided to make a revision of

research publications by using a systematic literature review. A systematic

review is a structured, comprehensive, transparent, and methodical process

in which literature is rigorously identified, appraised, and synthesized

(Kitchenham et al., 2004; Biolchini et al., 2005). This review was conducted

in 2016 and later supplemented.

To gain a comprehensive understanding of current literature on a topic

and identify literature gaps, it was looked to the literature to answer the

question: What evidence in the literature is in order to determine what kind

of concepts does exist in Informatics education at school?

Based on the principles of the systematic literature review, first, the aim

of this analysis, selected electronic sources and search terms were

determined. Suitable literature was collected according abstract and later

according the full text of papers.

The selected electronic sources are: Thomson Reuters Web of Science,

SpringerLink, ACM Digital Library, Ebsco Host, Google Scholar.

Years covered by search: 2005– 2016, language – English.

The search was conducted according to three Boolean search terms:

1. Concept* AND computer science education AND school*

335 pieces of literature were found, only 20 suited our analysis.

2. Concept* AND informatics education AND school*

68 pieces of literature were found, only 3 suited for analysis.

3. Concept* AND computing education AND school*

67 pieces of literature were found, only 2 suited for analysis.

The topic related with Informatics concepts education at school was not

very popular in academic electronic resources. More information can be

found in the existing curricula of various countries (Italy, Poland, the

Netherlands, the United Kingdom).

In Informatics education research, there is a strong consensus that

teaching should focus on aspects that are fundamental to the subject and

relevant in the long term instead of short-lived technical developments. For

this reason, various catalogs of principles, ideas and concepts, which

characterize Informatics or one of its areas, have been proposed over the past

30 years (Grillenberger, Romeike, 2017).

After the systematic literature review of appropriate scientific literature

and curricula related with Informatics education at school, we can notice that

there exist three types of concepts:

1. Informatics concepts;

32

2. Computational thinking concepts;

3. Programing concepts.

Programming concepts are part of Informatics concepts, so they not will

be described as separate concepts. So the two types of concepts are discussed

in detail below.

2.3.1 Informatics Concepts

Computer Science Teacher Association (CSTA) from the USA in 2003

provides a Model Curriculum for K-12 Computer Science (Tucker et al.,

2003). For the purposes of that document, they rely heavily on the definition

of computer science and believe that this definition has the most direct

relevance to high school Computer Science education. They define the

discipline as follows:

“Computer science is the study of computers and algorithmic processes,

including their principles, their hardware and software designs, their

applications, and their impact on society” (p. 6).

 In 2006 they improved the Model Curriculum for K-12 Computer

Science (Tucker et al., 2006) and provided 14 topics. All topics are described

in detail in Verno et al. (2006). In 2011 the Model Curriculum for K-12

Computer Science was revised one more time and was called K-12

Computer Science Standards.

Strands in Computer Science standards:

1. Computational thinking;

2. Collaboration;

3. Computing practice and programming;

4. Computers and communication devices;

5. Community, global, and ethical impacts.

In 2012 the organization Computing at School (CAS; UK) prepared the

document “Computer Science: A Curriculum for Schools”. In this document

Computer Science is defined as a discipline that seeks to understand and

explore the world around us, both natural and artificial, in computational

terms. Computer Science is particularly, but by no means exclusively,

concerned with the study, design, and implementation of computer systems,

and understanding the principles underlying these designs.

A number of key concepts are grouped:

1. Languages, machines, and computation;

2. Data and representation;

3. Communication and coordination;

4. Abstraction and design;

33

5. The wider context of computing.

Mark Dorling and Matthew Walker (2014), from Computing at School,

proposed the Computing Progression Pathways, which describes how it can

be used to acknowledge progression and reward performance in mastering

both the computing program of study content and computational thinking

skills. It includes the dependencies and interdependencies between concepts

and principles. This may help non-specialist teachers and inexperienced

teachers to understand what should be taught in the classroom (Selby,

Dorling, Woollard, 2014; Selby, 2014):

The framework is grid-based. Each row represents a level of student

progression. Six strands are represented as columns:

1. Algorithms;

2. Programming & Development;

3. Data & Data Representation;

4. Hardware & Processing;

5. Communication & Networks;

6. Information Technology.

A group of researchers (the author of this thesis was a member of the

group) have conducted the research regarding concepts in K–9 Computer

Science Education (Barendsen et al., 2015) and present the results of the

exploratory study. They were interested in the CS content in K-9, i.e., topics

and ideas belonging to the subject matter, regardless of the specific skills or

attitudes in which they appear and referred to these topics and ideas as

concepts. They have clustered the knowledge areas into a conveniently small

number of categories suitable to classify the CS content for K-9 education,

providing enough detail to distinguish variations in content. This report

presents the results of this exploratory study.

The documents analyzed in this preliminary report were:

1. CSTA curriculum, K-9 part;

2. CAS curriculum, K-9 part;

3. English (EN) national curriculum, K-9 part;

4. Italian (IT) guidelines, K-8 part.

The distribution of code occurrences found in the documents is displayed

in Table 2.

34

Table 2. Occurrences of codes within the knowledge categories

These absolute numbers reflect the respective sizes of the documents. For

example, the English and Italian documents are written in a more compact

style than the CAS curriculum. The global concept distribution suggests that

all four K-9 documents give substantial attention to algorithmic aspects,

especially CAS, EN and IT. Programming is seen in the documents in

comparable fractions. The engineering aspect is absent in the Italian

guidelines, and does not play an important role in EN either. CSTA seems to

have more emphasis on societal aspects than the other two documents. For

instance, in CAS, societal aspects are not very prominent, in favor of the

more technical aspects (Engineering, Networks). These categories appear to

be the main differences between CAS and EN.

In 2016 CSTA, ACM, and Code.org joined forces with more than 100

advisors within the computing community and prepared the K–12 Computer

Science framework (K-12 Computer Science..., 2016). The framework

identified the key K-12 Computer Science concepts and practices which

students expect to know in grades 2, 5, 8, and 12. Beginning with the earliest

grades and continuing through the 12th grade, students will develop a

foundation of Computer Science knowledge and learn new approaches to

problem solving that harness the power of computational thinking to become

both users and creators of computing technology. By applying Computer

Science as a tool for learning of various disciplines, students will actively

participate in the world that is increasingly influenced by technology.

The core concepts of the K–12 Computer Science Framework represent

the major content areas in the field of Computer Science. The core concepts

are delineated by multiple subconcepts that represent specific ideas within

35

each concept. The learning progressions for each subconcept provide a

thread connecting students’ learning from kindergarten to the 12th grade.

Core concepts of the framework are as follows:

1. Computing Systems;

2. Networks and the Internet;

3. Data and Analysis;

4. Algorithms and Programming;

5. Impacts of Computing.

Crosscutting concepts are themes that illustrate connections among

different concept statements. They are integrated into concept statements,

instead of existing as an independent dimension of the framework. The

crosscutting concepts that are represented in each concept statement are

noted in the statement’s descriptive material.

Crosscutting concepts of the framework:

1. Abstraction;

2. System Relationships;

3. Human–Computer Interaction;

4. Privacy and Security;

5. Communication and Coordination.

The practices of the K–12 Computer Science Framework are the behavior

that computationally literate students use to fully engage with the core

concepts of Computer Science. Concepts and practices are integrated to

provide complete experiences for students engaging in Computer Science.

The criteria of the selection of practice should be the following:

1. help students engage with course content through the development

of artifacts;

2. be helpful to fully explore and understand the framework concepts;

3. capture important behaviors that computer scientists engaged in;

4. be based on processes and proficiencies with importance in

Computer Science.

The practices intentionally overlap with those in other disciplines and use

similar language to help teachers make connections between Computer

Science and other disciplines they are more familiar with and to make the

framework more accessible to a wider audience.

The seven core practices of Computer Science describe the behavior and

ways of thinking that computationally literate students use to fully engage in

today’s data-rich and interconnected world.

The new K-12 computing curriculum draft for Chinese Taipei (Taiwan

Province) secondary schools was designed to launch in 2018, but the draft

36

only outlined themes and contents for students to learn, without further

details about the key concepts to be covered in the contents (Hu et al., 2017).

Therefore, in 2016, the Delphi study was conducted to survey the opinions

about what “key learning concepts” should be included for the

implementation at the secondary school level based on the draft. By adopting

the Delphi method, different viewpoints of computer scientists and

secondary school computing teachers were collected to build consensus of

key concepts through a series of convergence. This study found computer

scientists tended to be more conservative about this issue, therefore they

suggested that the advanced and theoretical concepts are not essential at the

secondary level, e.g., recursion, searching, sorting, data compression, data

conversion. This was because the computer scientists considered these

concepts as they were when they had studied at college. Computing teachers

knew how to simplify these concepts for teaching at the secondary level. In

the Delphi study the following six categories of learning contents were

described: 1) programming; 2) algorithm design; 3) system platform; 4) data

representation, processing and analysis; 5) application of ICT; 6) ICT and

social, legal and ethical issues.

After the overview of literature related with Informatics concepts it was

decided to match proposed categories of core Informatics concepts (Table 3).

Table 3. Matching of core categories of Informatics concepts

Key concepts

(CAS, 2012)

Six strands

(CAS, 2014)

Core concepts of the

framework (K-12 CS

Framework, 2016)

Six categories of

learning contents

(Taiwan, 2017)

Languages,

machines, and

computation

Algorithms AND

Programming and

development

Algorithms and

Programming

Programming AND

Algorithm design

Data and

representation

Data and Data

Representation
Data and Analysis

Data representation,

processing and analysis

Abstraction and

design

Hardware and

Processing
Computing Systems System platform;

Communication and

coordination

Communication

and Networks

Networks and the

Internet

The wider context of

computing
Impacts of Computing

ICT and social, legal and

ethical issue

Information

Technology
Application of ICT

The results show that when comparing the four documents with the

frameworks of Informatics concepts categories, three main categories were

suggested:

37

1. Algorithms;

2. Programming issues;

3. Data and representation.

Other categories are not so clearly distinguished and depend on various

interpretations.

2.3.2 Concepts of Computational Thinking

The term computational thinking (CT) was popularized in 2006 with

Jeanette Wing's article (2006) but actually originated with Seymour Papert’s

constructionist learning ideas (1996). There are differences between these

two definitions: Wing's definition is more focused on problem solving and

Papert’s definition is more focused on ideas and analysis (Mannila et al.,

2014). Subsequent research has expanded and interpreted the term further

(Grover & Pea, 2013; Kalelioglu et al., 2016; Lu & Fletcher; 2009, Selby &

Woollard, 2013; Wolz et al., 2011, Lee et al., 2014).

In the summer of 2009, the Computer Science Teachers Association

(CSTA) and the International Society for Technology in Education (ISTE)

began a multi-phase project aimed at developing an operational definition of

computational thinking for K-12 (Barr, Stephenson, 2011). They identified

many ideas about what computational thinking is and what it could be in

classrooms. When challenged with the task of describing what makes

computational thinking differ from other kinds of thinking, participants

tended to focus on the centrality of the computer and a set of concepts that

computational thinking and doing encompass:

CT is an approach to solving problems in a way that can be

implemented with a computer. Students become not merely tool

users but tool builders. They use a set of concepts, such as

abstraction, recursion, and iteration, to process and analyze

data, and to create real and virtual artifacts. CT is a problem

solving methodology that can be automated and transferred and

applied across subjects.

The operational definition provides a framework and vocabulary for

computational thinking that will resonate with all K–12 educators

(International Society…, 2011).

Computational thinking is a problem-solving process that includes (but is

not limited to) the following characteristics:

1. Formulating problems in a way that enables us to use a computer and

other tools to help solve them;

38

2. Logically organizing and analyzing data;

3. Representing data through abstractions such as models and

simulations;

4. Automating solutions through algorithmic thinking (a series of

ordered steps);

5. Identifying, analyzing, and implementing possible solutions with the

goal of achieving the most efficient and effective combination of

steps and resources;

6. Generalizing and transferring this problem solving process to a wide

variety of problems.

According to Computing at School (2012), computational thinking is the

process of recognizing aspects of computation in the world that surrounds

us, and applying tools and techniques from computing to understand and

reason about both natural and artificial systems and processes. Computer

Science is more than programming, but programming is one of the

absolutely central processes for it. Programs written with different syntax

can perform the same semantic task. In an educational context, programming

encourages creativity, logical thought, precision and problem-solving, and

helps foster the personal, learning and thinking skills required in the modern

school curriculum. Programming gives concrete, tangible form to the idea of

“abstraction”, and repeatedly shows how useful it is.

1. Abstraction:

 Modeling (the process of developing a representation of a real

world issue, system, or situation that captures the aspects of

the situation that are important for a particular purpose, while

omitting everything else);

 Decomposition (a problem can often be solved by

decomposing it into sub-problems, solving them, and

composing the solutions together to solve the original

problem);

 Generalization (the process of recognizing these common

patterns, and using them to control complexity by sharing

common features).

2. Programming:

 Designing and writing programs;

 Abstraction mechanisms (effective use of the abstraction

mechanisms supported by programming languages (functions,

39

procedures, classes, and so on) is central to managing the

complexity of large programs);

 Debugging, testing, and reasoning about programs.

Focusing only on mental processes, Selby and Woollard (2013) define

CT as a cognitive or mental process of humans, not of machines, of problem

solving in a broad sense, and involving abilities such as:

1. Abstraction consists of hiding the inherent complexity of reality to

represent only its essential aspects;

2. Decomposition consists of dividing a task or problem into simpler

parts so that they can be solved;

3. Algorithmic thinking consists of defining a task as a set of simple

step-by-step instructions;

4. Evaluation consists of assessing the advantages and limitations of a

solution;

5. Generalization consists of being able to move from a specific

situation to more general ones.

Computational thinking is at the heart of the Computer Science practices

and is delineated by practices from the K–12 Computer Science Framework

(K-12 Computer Science..., 2016):

1. Recognizing and defining computational problems;

2. Developing and using abstractions;

3. Creating computational artifacts;

4. Testing and refining computational artifact.

CT definitions analysis was conducted by Juškevičienė and Dagienė

(2018), and presented in the percentage form of the words used to describe

the essence of CT: problem solving (22%), abstraction (13%), computer

(13%), process (9%), science (7%), data (7%), effective (6%), algorithm

(6%), concepts (5%), ability (5%), tools (4%) and analyzing (4%). However,

some researchers concluded that current limitations in the CT definition are

that it is shaped by technology-aided problem solving (Haseski et al., 2018).

Flórez et al., (2017) mentioned that it is important to understand the

complexity and importance of teaching CT, and differentiate among specific

key terms: computer programming, computational thinking, and algorithmic

thinking. They define computer programming as the process through which a

person is able to provide a set of instructions that will communicate, as

specifically and accurately as possible, a procedure, method, practice, or task

to a machine. They also define algorithmic thinking as a way of obtaining a

solution through a series of steps. Thus, CT is a broader term that involves

40

among other skills, algorithmic thinking, logic, abstraction, generalization,

decomposition, and debugging.

The other important aspect is that CT is related not only with Informatics

or programming, but also with other disciplines. Sengupta, Dickes and Farris

(2018) highlight the importance of grounding computational thinking in

representational and epistemic practices that are central to knowing and

doing in science, and more broadly, in STEM education.

Computational thinking and digital competence are indicated by many

education policy makers as important twenty-first century skills. The

European Commission Science Hub has promoted computational thinking

and has launched the Digital Competence Framework 2.0 (DigCom)1 in its

portal. Nowadays computational thinking and digital competence are

essential skills and the young generation should learn them for life

(Juškevičienė, Dagienė, 2018).

2.4 Informatics Education at Primary School across the World

Informatics education is an emerging area starting with the first level in

primary schools. Informatics activities can be included in other subjects but

not only at the level of using digital technologies.

In particular, there are two major educational challenges related to: (a)

what Informatics content to teach across different educational levels, and (b)

what body of knowledge do teachers need to have to be able to teach the

Informatics curriculum (Angeli et al., 2016).

There are many reasons for including Informatics education at the

primary level. One of them is reducing gender inequality in the information

technology sphere. Upper school students already have a vision on what is

“for girls” and what things are “for boys”. Informatics usually falls into “for

boys only” category. This problem might be partly avoided by introducing

the course earlier (Margolis, Fisher, 2003).

Informatics education researchers also have concerns with regard to

teaching Informatics at primary school. These concerns are primarily linked

to the incompatibility between abstraction, an essential process in

Informatics, and children’s weakness to understand abstraction because of

their very young age. Armoni (2012) explained that abstraction is an

inherent component of Informatics that is always encapsulated during the

1 https://ec.europa.eu/jrc/en/digcomp/digital-competence-framework

41

process of thinking about and automating a solution to a problem. From a

Piagetian perspective, children before the age of seven cannot really

understand concrete logic, whereas children between seven and eleven years

old can solve problems that apply to concrete objects, but not problems that

apply to abstract concepts or phenomena. Conversely, Gibson (2012) argued

that high school is too late for exposing students to Informatics for the first

time, and stated that early exposure at kindergarten is necessary. He found

that young children can think abstractly when concrete reference systems are

used to situate their thinking.

The numerous studies have confirmed the benefits generated by the

teaching of programming concepts as they require the use of structured

thinking and in the development of basic cognitive skills, which are

associated, for example, with the mathematical ability and the development

of logical thinking in children of preschool and early primary school age

(Kazakoff and Bers, 2012; Grover and Pea, 2013; Kazakoff et al., 2013;

Strawhacker et al., 2015).

In 2010, Austria had a project “Informatik erLeben” (Experiencing

Informatics) that aims at attracting students to Informatics as a constructive,

technical discipline (Mittermeir et al., 2010; Bischof, Sabitzer, 2011).

Students from primary school up to upper secondary school obtained

lectures by university teachers spread over a period of one and a half year.

The prepared lessons were proposed to students and the selected core-

concepts of Informatics were introduced in a playful way at an age-specific

level. The topics are divided into core-concepts and into several modules

that can be composed individually. For example, Coding (Morse Game;

Creating a Code with Colors; Code trees; Error Detection); Computer

Networks (Chinese Whispers; Communication Rules; Postman-Game);

Algorithms (Instructions how to get somewhere); Sorting (Binary Search-

tree); Searching (Blind Search; Searching in a linear Structure) etc.

Depending on the topic they act either as part of the computer, serving as

data or as an object being manipulated by algorithms, or assuming some role

of a program. On principle, computers were specifically not used during the

lessons. The students learned, based on activities, simulations, and

animations. Important didactical principles behind the concept are discovery

learning and teamwork.

Based on the project reflection there are some useful findings:

1. It is very important to start at an early age to broaden the students’

image of Informatics and to create interest;

42

2. While some boys already have been interested in Informatics before,

all participating girls could be influenced;

3. Students must have the possibility to attend exciting Informatics

lessons during all grades. Because primary school kids are very open

and enthusiastic about new topics and concepts, it is necessary to

bring more technical topics in all primary schools.

Duncan and Bell (2015), having established the six general areas covered

by existing primary school curricula, analyzed three key English-language

computing curricula: the CSTA K-12 Computer Science standards (2011),

the English computing curriculum (2014), and the Australian Digital

Technologies curriculum (2013). They found some notable features:

1. all three curricula introduce programming concepts from the first

year (5 or 6 years old), using only sequences and turtle graphics,

which are based on concrete physical motion that students can relate

to;

2. selection (branching) and IF iteration (repetition) are introduced from

about seven years of age, it seems to be in the form of simple

WHILE-DO counted loops. More sophisticated iteration with

conditions on the loops, and the introduction of textual (general

purpose) languages, seems to be expected around 11 or 12 years of

age;

3. topics relating to safety and ethics are covered from the very first

year, again gradually increasing in sophistication from simple

scenarios for young students to more serious issues of identity and

privacy as students approach their adolescent years.

There is some difference in what is taught around “algorithms”, which

covers both the design of simple programs, as well as understanding

algorithms for standard problems such as searching and sorting. These

standard problems serve as examples of clearly defined problems, but also

allow students to investigate their performance. The Australian curriculum

starts earlier with standard problems, but by 11 years of age all three

curricula include such algorithms. This will be another important area to

evaluate in studies with students to determine whether it is worthwhile

starting early with these concepts.

Webb et al. (2018) discussed the evidence that young student, of 7 or 8

years of age can start to develop understanding of important Informatics

concepts. Students can learn through hands-on experience and gradually

begin to link theoretical concepts to their developing practical problem-

solving capabilities. Therefore, identifying trajectories in the development of

43

these concepts and devising effective pedagogical approaches which make

use of the tools available are important current research challenges.

Furthermore, in addition to developing Informatics concepts to support the

subject per se, it is necessary to define the underlying knowledge base of

Informatics concepts and crucial skills needed to support digital citizenship.

There are some suggestions about introducing Informatics in primary

education in Poland: Informatics activities need to be included in the same

place where kids are playing, so there is no need for a fully equipped

classroom. Integration of Informatics with other subjects during the whole

week (1 hour lasts a week). Sometimes a teacher may take students to a

computer laboratory. Teachers have access to students’ results regardless of

the place they work, at school or at home (homework). The flipped learning

method is suggested to be used (Sysło, 2017).

While computational thinking is just one element of Informatics, Angeli

et al. (2016) suggested designing a curriculum for primary school with an

explicit focus on computational thinking, before covering more theoretical

and applied concepts of Informatics in secondary education.

Six core learning areas have been announced in the curriculum of New

Zealand: (1) algorithms, (2) programming, (3) data representation, (4) digital

devices and infrastructure, (5) digital applications, and (6) humans and

computers. The suggestion that these areas should be related to the principles

of computational thinking is made (Duncan, Bell, Atlas, 2017).

Angeli et al., (2016) support the holistic design approach for teaching

computational thinking and emphasize two steps: (a) the design of problem

solving tasks with a focus on real-life issues, and (b) the sequencing of

problem solving tasks from simple to complex. It is also evident that

children may need guidance and support as they start working on more

challenging tasks. Support may come from the teachers, but for them it is

also important to have pedagogical content knowledge, in order to better

explain what students need to know.
There are many ways for selecting problems to be solved by students in

the classroom. For primary education two types of problem solving are

usually declared:

1. Practical problems which take more time and cover several

topics;

2. Everyday exercises (they are very common in mathematics

and language [grammar] lessons).

44

In this thesis we provide the third type of problems - short tasks with a

double-sided aim: to cover Informatics concepts and to be solvable in a few

minutes (more in the next subsection).

The conclusion is that many countries are integrating digital

competencies in primary education already and introducing basics of

Informatics by using various activities.

2.5 Case of Computational Thinking Activity

Attracting youngsters to choose Informatics at school has always been a

challenge for educators. Understanding and handling the basics and

foundations of Informatics or computing is more important than knowing

many technical details.

For this purpose, the idea of developing a contest on Informatics

fundamentals for school students was raised by Lithuania in 2004 (Dagiene,

2005; Dagiene, 2006). The Bebras contest (www.bebras.org) focuses on

understanding Informatics concepts and phenomena. In 2015, the Bebras

contest on Informatics and computer fluency was renamed the Bebras

contest on Informatics and computational thinking. Nowadays it is based on

the expression of Informatics concepts in attractive, interesting, and fun

tasks. Specifically, the idea is to encourage children to learn Informatics

fundamentals (concepts), and to support the development of algorithmic

thinking as well as computational thinking (Dagienė, Stupurienė, 2014;

Dagienė et al., 2014).

From a single contest-focused annual event Bebras has developed into a

multifunctional contest and an activities-based educational model. The

model combines both international and national levels and involves a variety

of activities, especially at the country level (Stupurienė et al., 2016).

Recently, this contest has been spreading to 68 countries (2019 April data)

all around the world: Australia, Austria, Algeria, Azerbaijan, Belarus,

Belgium, Bulgaria, Bosnia and Herzegovina, Brazil, Cambodia, Canada,

China, Croatia, Cyprus, Czech Republic, Dominican Republic, Egypt, El

Salvador, Estonia, Finland, France, Germany, Greece, Hong Kong, Hungary,

Iceland, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, Jordan,

Kazakhstan, Latvia, Lithuania, Malaysia, Malta, Mongolia, Netherlands,

New Zealand, Nigeria, North Macedonia, Norway, State of Palestine,

Pakistan, Poland, Portugal, Romania, Russian Federation, Serbia, Singapore,

Slovakia, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland,

Taiwan, Thailand, Tunisia, Turkey, UK, Ukraine, USA, Vietnam.

45

Countries involve various activities, e.g. several rounds of the challenge,

discussion on Informatics topics, task solving seminars, teacher workshops,

and task developing events.

For better understanding in which direction the research concerning the

Bebras contest is going, Dagienė and Stupurienė (2016a) decided to make a

revision of research publications by using a systematic literature review.

Sources: Web of Science, ACM Digital Library, Springer Link,

SCOPUS, Google Scholar. Search term: Beaver contest OR Bebras contest

OR Bebras challenge. Language: English. Bebras was established in 2004,

and the first publication appeared in 2005, so the time range was 2005–2015.

We found 149 papers, but only 76 met the language criteria and were

selected for further analysis. Remaining 73 papers were published in

different languages (Czech, Finnish, French, German, Italian, Japanese,

Lithuanian, Russian, Slovakian, Slovenian, and Mandarin Chinese). The

papers are divided into three categories: 1. The Bebras contest is the main

source for research question (39 papers); 2. The Bebras contest is discussed

as a good practice example for Informatics education (17 papers); 3. The

Bebras contest is only mentioned between other activities (20 papers). The

number of research papers has significantly grown during the last years; Fig.

9 represents the dynamic of publications on the topic.

Fig. 9. Number of papers by years and categories

At first, all the 76 papers were analyzed by their keywords in order to

find out the key topics of the Bebras contest. Naturally, Informatics

education, Computer Science, programming, contest in learning, learning,

computational thinking, and problem solving are the most dominating topics

(Fig. 10).

46

Fig. 10. Cloud of keywords found in publications

Further the authors analyzed 56 papers where the Bebras contest was the

main source of research questions or served as reasoning of good Informatics

education practices.

The review was driven by the following research questions:

1. What evidence is there in the literature to identify that the Bebras

contest is effective enough in promoting Informatics concepts and

computational thinking in children and young people?

2. What evidence is there in the literature how to develop the quality of

the Bebras contest?

3. What evidence is there in the literature to see the impact of the

Bebras contest on formal and/or non-formal Informatics education in

countries?

A more detailed overview is provided in the paper by Dagienė and

Stupurienė (2016b).

The worldwide Bebras Informatics contest is discussed as an example of

connecting formal and non-formal Informatics education by using thousands

of tasks based on Informatics concepts and applying problem-solving

strategies (Dagienė, 2018).

It appeared that tasks are the core elements of the Bebras model. The

quality of tasks is crucial for the success of the Bebras contest. Tasks are an

important source for introducing kids to Informatics concepts and

procedures.

Bebras tasks are short, answerable in a few minutes through a

computerized interface or in some cases even with pen and paper, and

require deep-thinking skills in the Informatics field and no pre-knowledge is

required. To solve those tasks, students are required to think in and about

47

information, discrete structures, computation, data processing, data

visualization, and they should use algorithmic as well as programming

concepts. Each Bebras task has a dual aim: to demonstrate an aspect of

Informatics and to test the participant’s ability to understand Informatics

fundamentals (Dagiene et al., 2015a; Dagiene et al., 2015b).

The contest should help children to get interested in Informatics and to

stimulate thinking about contributions of Informatics to science at the very

beginning of school (Dagiene, 2010). The Bebras contest may play an

important role in creating the school curricula from the “bottom”, from basic

elements and individual questions upon which broader Informatics concepts

may be introduced (Vaníček, 2013; Vaníček, 2014).

As suggested by Dagienė and Stupurienė (2016a), an Informatics learning

task developing process (spiral cycle) (Fig. 11) begins with a chosen

Informatics concept, which is the key idea what we want to teach the

students. Usually a text with the visual components is created by involving

in a story or fiction. By using gamification (application of game principles in

non-game contexts) and by adding dynamic components (dragging,

dropping, etc.) a task for the Bebras contest can be created. A Bebras task is

usually modified several times (using the iterative method): simplified in

text, better explained and presented or changed in its story or the question is

changed and sometimes even the type of task is changed as well (dynamic,

multiple choice, open-ended).

Fig. 11. The task developing process (Dagienė, Stupurienė, 2016a)

The Bebras tasks code and design process by using a tool is presented in

the paper published by Dagienė, V., Stupurienė, G., Vinikienė, L. (2017b).

48

The creation of tasks for learning Informatics concepts is a constructive

way of learning. Teachers have the freedom to create any task that is useful

for the Bebras contest. In creating tasks, a deconstructionist way of learning

also takes place: Informatics concept is analyzed and deconstructed in its

main aspects; some of these aspects are chosen for the task creation where

these aspects are constructed to a suitable task. Very often a suitable story

has to be invented that enables us to convey the aspects of the Informatics

concept in an easy way. Creating (constructing) tasks have the same

importance as deconstructing the given task – to find out what concepts are

hidden in the task and to provide a conceptual bridge to Informatics science.

The most important goal of the Bebras contest is to present Informatics

concepts in an understandable way and an attractive format so that

everybody could learn these concepts and would be motivated to learn

Informatics further on.

2.6 Template of ICDT

The development of learning tasks for Informatics contest is important: they

must cover Informatics concepts and as many areas of the discipline as

possible. Moreover, the tasks have to be selected carefully, with regard to the

different aspects of each task (i.e., how the topic is pitched) and evaluation

of its attractiveness to students (whether it stimulates learning and

discovery).

Based on the previous rich experience collected by the international

community of the Bebras contest in creating learning tasks, a set of

requirements was formulated (with the participation of the author). Every

participating country may decide which attributes can be included in their

tasks. However, the following requirements are mandatory for the

international version of task (Fig. 12).

First, a task must have a title. This title is displayed to the students during

the contest; it may change over time and differ from translation to

translation.

Age groups depend on the biological age of students and are defined as

follows: I group: 6-8 years of age; II group: 8-10 years of age; III group: 10-

12 years of age; IV group: 12-14 years of age; V group: 14-16 years of age;

VI group: 16-19 years of age.

Difficulty is a measure of complexity of the task for students in a

particular group: easy, medium, or hard.

49

(continues in next page)

50

Fig. 12. Structure (framework) of Informatics learning task

In general, it is important to develop a categorization system or taxonomy

of learning tasks. Based on previous learning tasks’ category systems for

Bebras tasks (Opmanis et al., 2006; Dagiene, Futschek, 2008), new

categorization system was proposed in 2016 by Dagiene, Sentance and with

direct involvement of the author, and used from 2017. The content of school

Informatics can be divided into five knowledge areas (content categories):

1. Algorithms and programming, including logical reasoning (ALP);

2. Data, data structures and representations (includes graphs,

automaton, data mining) (DSR);

3. Computer processes and hardware (includes anything to do with how

the computer works – scheduling, parallel processing) (CPH);

4. Communications and networking (includes cryptography, cloud

computing) (COM);

5. Interaction (Human-Computer Interaction, HCI), systems and society

(all other topics!) (ISS).

These Informatics areas are used for the Category attribute in task from

2017.

For practical use, when developing or using Informatics tasks, a precise

description of each category is needed. One way of achieving this is the use

of keywords. Keywords are important to assist in the categorization. They

will also be important to teachers who wish to find tasks that fit with the

topic being taught in the curriculum (Dagiene, Sentance, 2016; Yang, Park,

2014). Therefore, keywords information should be retained with the task to

help Bebras users select from previous tasks and identify teaching topics

around Bebras tasks. Practically no more than three keywords are necessary.

51

There are three types of answers to tasks and it depends on contest

management systems features. Types: (1) multiple-choice (text / image); (2)

open input (integer / text); (3) constructive (script-based)

The Task body consists of task text, images (optional) and question. In

case of a multiple-choice or open-answer task, it is necessary to insert the

question. In case of a constructive task, the contest and instructions for the

interaction should be inserted, if needed.

Answer. In case of a multiple-choice task there should be four possible

answers. In case of an open-answer task it is needed to specify the range of

answers that an implementation of a task should accept, for examples:

integer numbers from [0,99]; strings of four capital letters. In case of a

constructive task what the task script will accept as contestant input has to be

specified.

The correct answer is an explanation which is the correct answer and

why. In case of a multiple-choice task, it should also be explained why the

other answer choices are incorrect and motivate the choice of wrong answers

in the comment section below. If the task asks for an optimum, you should

be able to prove the optimality of the correct answer. Also students (Bebras

participants of the relevant age) must be able to understand this explanation.

Focus narrowly on the task; do not explain yet what this has to do with

Informatics.

In “It's Informatics!” part there is an explanation to the target age

group, why this task is about Informatics (and computational thinking):

What are the Informatics concepts, what is the Informatics “story” behind

this task? Do not explain the correct answers of a task, but give a larger

picture. If there are several concepts in this task, it is recommended to focus

on one of them. It might be also nice to add one or two relevant web-links

here, for further reading. This text is both for teachers and students.

Note that not all parts of the task are shown to the students during the

solving time in the information system. Some of the parts are necessary for

the teachers, for example, explanations. As many of our teachers have no

formal training in Informatics, it is very useful for them to understand why

answers are correct or incorrect so as to form their future teaching activities.

Other parts of the task in this thesis are not described in detail.

An example of a learning task is presented in Fig. 13. This task is created

by representatives from Malaysia, who are members of the international

Bebras community. The version presented is the primary source and will be

used for translation to other languages and for implementation in various

contest management systems.

52

Fig. 13. An example of the Informatics learning task

All tasks created by representatives of the international Bebras

community are licensed under a Creative Commons Attribution-ShareAlike

4.0 International License (CC BY-SA 4.0) and have Copyright: Copyright ©

Bebras – International Contest on Informatics and Computational Thinking.

53

2.7 Two-Dimensional Categorization

Conceptualization is formation of concepts (Papaurelytė-Klovienė, 2007)

(see subsection 2.1). George Lakoff (1987) in his famous book “Women,

Fire and Dangerous Things” states that there is nothing more important than

categorization of our thought, perception, action and speech. Whenever we

think about something, we are categorizing. Things surrounding us are

categorized and grouped together according to what they have in common.

When we deal with concepts, we cannot forget the importance of

conceptualization and categorization. The process of conceptualization

allows us to form concepts in our minds. Categorization allows us to

categorize them according to some common features.

According to Jacob (2004), categorization is the process of dividing the

world into groups of entities whose members are in some way similar to

each other. Categorization is the basic cognitive process of arranging objects

into categories. It is a fundamental process in human and machine

intelligence and is probably central to investigations and research in

cognitive science (Cohen, Lefebvre, 2005). It is important to develop a

categorization system or taxonomy of learning tasks.

A new categorization system for learning tasks that includes both content

areas of Informatics (knowledge) and computational thinking (skills) was

proposed by Dagiene, Sentance and Stupuriene in 2016. The main reasons

were: (1) Categorization can help keep track of what type of tasks are being

used; (2) Can help identify particular tasks for use in the curriculum; (3) Can

help task developers to write tasks around varied areas of the curriculum; (4)

To ensure a balance of tasks across a range of Informatics concepts.

Computational thinking is an increasingly important focus within

Informatics curricula around the world and ways of incorporating it into the

school curricula are being sought (Dolgopolovas et al., 2015).

The area of computational thinking covers a range of different skills

relating to problem-solving. The issue becomes the need to select a

categorization system which is true to the definition of computational

thinking whilst encompassing the range of skills that students utilize when

solving learning tasks. There are two advantages of incorporating this into

the revised category system: (1) Task development can focus more closely

on how computational thinking skills are being developed or utilized; (2)

Teachers and students can relate the learning from the task to their

understanding of computational thinking when the tasks are discussed during

the lessons.

54

For practical use, when developing learning tasks, a precise description of

each category is needed. One way of achieving this uses keywords.

Each category (content domain) and keywords were discussed with

researchers and experts from Informatics education (mostly from the

international Bebras community) and comparing previously used

categorization systems (Opmanis et al., 2006; Dagiene, Futschek, 2008;

Kalas, Tomcsanyiova, 2009). A suggested set of keywords is shown in Table

4. Keywords are important for assisting the categorization of the tasks.

Table 4. Informatics content domains and keywords

Domain Keywords

Algorithms and

programming

Algorithm; Binary search; Boolean algebra; Breadth-first search;

Brute-force search; Bubble sort; Coding; Computational complexity;

Constants; Constraints; Debugging; Depth-first search; Dijkstra's

algorithm; Dynamic programming; Divide and conquer;

Encapsulation; Function; Greedy algorithm; Heuristic; IF conditions;

Inheritance; Iteration; Kruskal's algorithm; Logic gates; Loop;

Maximum flow problem; Objects; Operations AND, OR, NOT;

Optimization; Parameters; Prim's algorithm; Procedure; Program;

Programming language; Program execution; Quick sort; Recursion;

RSA algorithm; Shortest path; Searching; Sorting; Traveling

salesman problem; Variables.

Data, data

structures and

representations

Array; Attributes; Biconnected graph; Binary and hexadecimal

representations; Binary tree; Character encoding; Databases; Data

mining; Eulerian path; Finite-state machine; Flowcharts; Fractals;

Graph; Hash table; Integer; Information; Linked list; List; Queue;

Record; Stack; String.

Computer

processes and

hardware

Cloud computing; Deadlock; Fetch-execute cycle; Grid computing;

Image processing; Interpreter; Memory; Multithreading; Operating

systems; Parallel processing; Peripherals; Priorities; RAID array;

Registers; Scheduling; Sound processing; Translator; Turing

machine.

Communication

and networking

Client/server; Computer networks; Cryptography; Cryptology; E-

commerce; Encryption; Parity bit; Protocols; Security; Topologies.

Interactions,

systems and

society

Classification; Computer use; Design; Ethics; Graphical user

interface; Interaction; Legal issues; Robotics; Social issues, Virus.

A suggested categorization of computational thinking skills follows the

work of Selby and Woollard (2013), which has been adopted by Computing

at School in the UK in developing guidance on computational thinking for

55

teachers (Csizmadia et al., 2015). This describes aspects of computational

thinking skills exhibited by learners as falling into the five categories below:

1. Abstraction;

2. Algorithmic thinking;

3. Decomposition;

4. Evaluation;

5. Generalization.

The use of keywords will be slightly different for computational thinking

skills. Classifiers need to know how to identify whether that skill can be

used to solve that task (Table 5). One of the difficulties is that we can only

presume how the learner solves the task which may be a different way to the

way the task setter might solve the task. This means that more than one

computational thinking skill may be associated with each task. We are

suggesting a maximum of three, in order to concentrate more on

understanding of them.

Table 5. Computational thinking skills and ways to identify them

Computational

thinking skill
How to spot the use of that skill

Abstraction

Removing unnecessary details;

Spotting key elements in problem;

Choosing a representation of a system.

Algorithmic

thinking

Thinking in terms of sequences and rules;

Executing an algorithm;

Creating an algorithm.

Decomposition

Breaking down tasks;

Thinking about problems in terms of component parts;

Making decisions about dividing into sub-tasks with

integration in mind, e.g. deduction.

Evaluation

Finding best solution;

Making decisions about whether good use of resources;

Fitness for purpose.

Generalization

Identifying patterns as well as similarities and connections;

Solving new problems based on already-solved problems;

Utilizing the general solution, e.g. induction.

Incorporating both described categorization systems we can compose a

two-dimensional system which can be represented as shown in

Table 6.

56

Table 6. Two-Dimensional categorization system

The suggested categorization system incorporates both computational

thinking skills and Informatics concepts in the classification of learning

tasks.

The presentation of this schema as a 2-D matrix merely indicates that

every computational thinking skill can occur with each of the concept ideas

– there is no dependency between the two classifiers. In practical terms, a

task should be allocated to one Informatics content domain only but may

have up to three computational thinking skills identified. Computational

thinking skills are more difficult to clearly define and identify in a task as

they are dependent on the approach taken to solve the problem; thus some

flexibility is needed here.

The categorization system could be used in addition to encourage the

development of tasks that use a variety of Informatics topic areas as well as

computational thinking skills. On the other hand, this system helps

Informatics teachers to choose the content of a lesson and provides them

with a tool effective to select the tasks according to the particular topic.

The matrix presented in Table 7 demonstrates that this schema can be

seen as a two-dimensional one. In practical terms, a template has been

designed for developers to assign categories to tasks, including keywords

(Table 4).

Table 7. A template table for task categorization

Name of task Informatics domain Keywords (≤3) CT Skill (≤3)

First, this approach is quite complex. It gives more finely-grained

classification that will produce much more useful outputs as a number of

available tasks for teaching purposes. However, a more finely-grained

system requires more knowledge and understanding of how to implement it

57

correctly. Task developers in different countries may not be able (or not

willing) to assign the level of the detailed categorization of each task.

Second, not all teachers can be familiar with computational thinking, and

understanding of the component skills presented here may not be shared. So

teachers will need clear examples of computational thinking skills in

learning tasks and explanations should be available to ensure some

consistency of allocation of computational thinking skills to task.

Third, related to this, we will need to develop more precision in

allocating computational thinking skills to tasks. The description by Wing

(2006) that “computational thinking involves solving problems, designing

systems, and understanding human behavior, by drawing on the concepts

fundamental to Computer Science” may lead us to think that computational

thinking is everywhere and the composite skills appear in all tasks. A liberal

interpretation such as this may render the computational thinking skill

allocation to be meaningless. Computational thinking skills should only be

allocated to a task where there is some element of Informatics in the task that

develops this skill. For the future implementation it would necessary not

only provide the list of CT, but also how much of each skill is expressed in

the task (could be in scale from 1 to 10, or in percentages).

With due attention to the points raised above, the purpose of this

development is to build up a bank of tasks which are categorized using the

proposed framework. This will enable teachers to find useful tasks that they

can use in the curriculum. It will also help task developers to focus on

writing tasks around topics that are under-represented in the bank of tasks.

An online search facility could be implemented to assist teachers looking for

tasks on certain topics via keywords, concepts or computational thinking

skills.

Tasks are very important both for students and task developers (teachers):

students should be encouraged to think about Informatics, educators should

think about the harmonization of the syllabus of Informatics.

The evaluation of the proposed categorization system is provided in

Section 4.

2.7.1 Examples of ICDT

In order to illustrate the two-dimensional categorization system, we will

describe here four examples of Informatics concept-driven tasks created by

the international Bebras community.

Example 1. The task title is Strawberry hunt. Age group: grades 1 and

2. Difficulty - medium. Informatics domain - Data, data structures and

58

representations. Keywords - Graph, Edges, Nodes. Computational thinking

skills - Abstraction, Algorithmic Thinking, Evaluation. Authorship: Dasović

Rakijašić (Croatia)

Fig. 14. ICDT title: Strawberry hunt

Explanation

The system of the canals in which the beavers are swimming has two

main elements: canals (where the beavers can swim through) and crossings

(where the beavers have to decide, by the arrow, into which canal to swim

next). In Computer Science this system is called a graph with edges (the

canals) and nodes (the crossings). In this case the nodes have extra

information attached to them: which canal should the beaver swim into next.

“It's Informatics!”

Graphs can be used to describe situations like this task. They can also be

used for programming a computer: the computer is following a path in the

graph and at each crossing it receives an instruction on what to do next. In

some cases, it ends up solving the problem (which would be the beaver

reaching the strawberry) and in some cases it ends up in a dead end or even

never finishes the program (like the two other beavers).

Example 2. The task title is Sticks and shields. Age group: grades 3 and

4. Difficulty - hard. Informatics domain - Algorithms and Programming.

Keyword - searching, backtracking, pruning. Computational thinking skills -

Algorithmic Thinking, Decomposition, Evaluation. Authorship: Hiroki

Manabe (Japan), Momo Yokoyama (Japan), Maiko Shimabuku (Japan).

59

Fig. 15. ICDT title: Sticks and shields

Explanation

This is a task where the solution has to satisfy particular criteria. It is also

a task where the number of possible arrangements is quite high but not many

are correct. The first thing to do when solving this problem is to split the

beavers into those that have to be on the top row, those that have to be on the

bottom row and those that can be anywhere. This simplifies the task

somewhat; however, it is still not an easy problem!

“It's Informatics!”

This could actually be a very complicated puzzle. Just a few pictures lead

to a very time-consuming search among all possible (but incorrect) solutions.

If you add just one more picture to a puzzle of six pieces, you would have

six times as many different possibilities of placing the seven cards in the

empty spots. For n cards, you have (n-1)! = 1 x 2 x 3 x … x (n-2) x (n-1)

different possible solutions. So in this case there are 720 different possible

solutions (but almost all of them are wrong).

However, using some logical thinking the search space can be pruned a

lot. For instance, all beavers with a stick pointing down must be placed on

60

the top row, and there is only a single beaver that can be placed right above

Lucia. A full exhaustive search can be done using an algorithm called

backtracking. Using the backtracking algorithm, the search space can get

really large. This is why pruning is important.

Example 3. The task title is Parking lot. Age group: grades 3 and 4.

Difficulty - medium. Informatics domain - Data, data structures and

representations. Keywords - Bit, Binary Code, OR logical operation.

Computational thinking skills - Algorithmic Thinking, Decomposition,

Evaluation. Authorship: J.P. Pretti (Canada).

Fig. 16. ICDT title: Parking lot

Explanation

The answer is four spaces. Placing the pictures of the cars from both days

together in the parking spaces, gives the image on the right. Then all we

have to do is count the empty spaces.

61

“It's Informatics!”

All data can be thought of as a sequence of zeros and ones. Each zero or

one is called a “bit” and the sequence is called a binary code, binary

representation, or binary number.

Here, we can model the presence of a car as a “one” and an empty

parking space as a “zero”; so the parking space corresponds to a “bit”. We

get a sequence of bits if we view the parking spaces in order.

For example, we might move across the top row and then along the

bottom row to get 101001001010 from the parking lot on Monday and

100100000111 from the parking lot on Tuesday. This task tells you to

determine which of the twelve positions contain a 1 in either of these binary

numbers. This is an operation named OR. Notice how we can compute the

correct answer by seeing that 101001001010 OR 100100000111 gives

10110100111. This resulting binary number has four zeros in it.

Example 4. The task title is The way home. Age group: grades 3 and 4.

Difficulty - medium. Informatics domain - Algorithms and programming.

Keywords - Route, Backward searching, Black holes. Computational

thinking skills - Algorithmic Thinking, Decomposition, Evaluation.

Authorship: Zhukovsky Serhij (Ukraine).

Fig. 17. ICDT title: The way home

Explanation

One way of solving this is to first identify black holes (see big black dots

on the left) where the beaver can enter but not escape. We can also identify

places that can only lead to a black hole (little black dots). The answer then

62

becomes obvious. An alternative strategy is to follow the arrows backwards

from the house.

“It's Informatics!”

Finding the route is one of the classical problems in algorithm theory.

Backward searching and identifying black holes are two algorithmic

techniques used to solve such problems.

2.7.2 Analysis of Existing ICDT

In this subsection statistical analysis of Informatics concept-driven tasks

created during a four-year period (2015-2018) by the community of the

international contest on Informatics and computational thinking (see more

about this contest in Section 2.5) is described.

The development of tasks for an educational contest is very important:

they should cover fundamentals and as many subareas of discipline as

possible. Moreover, the tasks have to be selected carefully, with regard to the

different aspects of each task (i.e. how the topic is pitched) and interpretation

of its attractiveness to students (whether it stimulates learning and

discovery).

International Bebras task developing workshops have been organized

annually (since 2005) and they bring together the representatives of all these

countries for hard work and making decisions on good tasks for promoting

Informatics education at primary and secondary schools. The tasks are

created by representatives from various countries within the Bebras

community. Each participating country provides from five to ten ICDT. Any

member of the Bebras community may act as a reviewer. At least two

reviewers are assigned for each proposed task to make a comments and rate

63

the tasks. It is called pre-workshop review process and review platform is

developed in order to accelerate the reviewing process.

After tasks reviewing process finishes, discussions on accepted tasks

begins in annual workshop. A result of that is the list of accepted tasks for

the contest. Each task is further developed after the Bebras workshop within

the community and there are different forms of tasks in various countries.

Every year a large amount of tasks is created by the Bebras community.

In this thesis the proposed and accepted tasks during the period of 2015-

2018 are analyzed. During the four years a total of 848 Informatics tasks

were analyzed (Fig. 18).

Fig. 18. Proposed and accepted tasks from 2015-2018

Categorization of the tasks is a significant point and it ensures that tasks

span a wide range of topics. The categories proposed by Dagiene and

Futschek (2008) were used between 2008 and 2016.

The categories proposed by Dagiene and Futschek (2008) were used

between 2008 and 2016:

1) Information comprehension (INF);

2) Algorithmic thinking (ALG);

3) Structures, patterns and arrangements (STRUC);

4) Puzzles (logical) (PUZ);

5) Using computer systems (USE);

6) Social, ethical, cultural, international, and legal issues (SOC).

As mentioned in the previous section (see Section 2.6), a new

categorization system was proposed in 2016 by Dagiene, Sentance,

Stupuriene and it was used from 2017 year. It is based on a two-dimensional

approach: integrates Informatics concepts together with computational

thinking skills.

163

209

251

225

124

184 179

126

2015 2016 2017 2018

Number of proposed tasks Number of accepted tasks

64

A content analysis of 613 accepted categorized tasks was performed in

respect of tasks categorization systems. The old categorization system was

used for 2015 and 2016 years’ tasks. The new tasks’ categorization system

was used for 2017 and 2018. In order to compare the results, were match two

different categorization systems were matched and they are not very

accurate, but the main topics are covered. The results are presented in Table

8.

Table 8. Matching of categorization systems

It is important to mention that some of the tasks suit not one, but two or

more different categories. The most popular categories and combination of

their combinations (if accepted more than 10 tasks) in the old categorization

systems are presented in Fig. 19. With the rules the same as for the old

categorization system, the most popular categories for the new

categorization systems are presented in

Fig. 20.

0

10

20

30

40

50

60

70

80

90

ALG ALG+INF ALG+STRUC INF STRUC

2015 2016

Old system (2008–2016) New system (from 2017)

INF DSR+COM

ALG ALP

STRUC DSR

SOC ISS

USE -

- CPH

PUZ -

65

Fig. 19. Distribution of accepted tasks according to old categories (2015–2016)

Fig. 20. Distribution of accepted tasks according to new categories (2017–

2018)

As we can see from Table 9, the percentage of accepted tasks from the

most popular categories is almost the same every year. It means (not

directly) that with learning tasks developed by the community of the

international contest, the following topics can be covered: algorithms,

programming, logical reasoning, data, data structures and representations

(includes graphs, automaton, and data mining).

Table 9. Percentage of accepted tasks the most popular categories

Year 2015 2016 2017 2018

Percentage 83 % 88 % 85 % 87 %

In this content analysis we did not pay attention to the distribution of

computational thinking categories because the data is not available on them

during 2015–2016.

2.8 Contest Management Systems

The contest management system (CMS) is the essential software

environment in running the contest effectively and efficiently. For running a

contest, more than 19 different CMS have been maintained in participating

countries. CMS should support simple tools, which enable tasks

development, users’ management, announcement area, records of solutions,

0

10

20

30

40

50

60

70

ALP ALP+DSR DSR

2017 2018

66

reports, and data storage. The requirements for CMS were formulated in the

paper written by Dagienė, Stupurienė, Vinikienė (2017a).

The survey designed by the author was conducted to compare and

analyze different CMS. The main aim of this survey was to gather

information about the systems used, and to get an understanding of the

differences of the basic contest management principles. A questionnaire with

fourteen open questions was announced in May 2016 and was accessible

until the end of February (2017). The aim of this questionnaire was to collect

information about CMSs in different Bebras community countries, to

understand the real situation about CMSs (what is common, what is

different), and to elaborate valuable suggestions for others.

Thirty-two countries (out of a total of 39 countries running the contest

hereupon at 2017) answered the questionnaires regarding the Bebras contest.

 Table 10 shows the distribution of countries by responsibilities of CMS

support: (1) organizers in countries themselves create and develop the

system; (2) support of the system is trusted for the private company

(https://www.eljakim.nl/project/beverwedstrijd/); (3) organizers use

platforms available on the Internet.

Table 10. Countries distribution by responsibilities of CMS support (2017 data)

CMS Countries

Developed by

organizers

Belgium, Bulgaria, Cyprus, Estonia, Finland, France,

Hungary, Indonesia, Italy Latvia, Lithuania, Macedonia,

Russia, Slovakia, Slovenia, Spain, Taiwan, Ukraine

Developed by

a company

Canada, Germany, Ireland, Japan, Netherlands, Romania,

Singapore, Switzerland, USA

Platforms
Croatia (Moodle), Turkey (Moodle), Belarus (Yandex

Contest)

Sweden and Finland collaborated in the development of the same system.

Their system is implemented using Ruby and dynamic tasks are created

using JavaScript. Serbia uses Slovenia's well-developed system (from 2013).

They decided that a system has to be of high performance, scalable, and

fault-tolerant (Kristan et al., 2014). To achieve that, a three-tier architecture

consisting of a front-end layer, a business logic layer, and a distributed

database back-end layer was applied.

The CMS of France (http://castor-informatique.fr/) is one of the most

well-developed: in this system, an optimized front-end is used which reduces

67

the number of requests from clients to the server and consequently the load

on a server. While the web workload is distributed, all the web servers

access a single relational database. The sessions are implemented using

Memcached technology, reducing the load on a database while still

maintaining a single session across all the web servers. If the web servers

become unavailable, competitors are provided with a coded message at the

end of their competition. They can send this coded message to the organizers

by e-mail and have their results entered into the system. To minimize the

communication between the web server and the clients, results are only

submitted at the end of the competition, with no backup in case a

competitors’ web browser crashes.

Turkey uses LMS Moodle (however, they do not have dynamic tasks). It

is easy to use although the interface should be changed and there needed to

have a special template necessary for the contest (Kalelioglu et al., 2015).

Croatia also uses LMS Moodle. Teachers there take care of editing and

publishing tasks, and managing participants with Moodle, since every

student has their own access to the system.

Belarus uses the Yandex:Contest system. It is similar to the ACM-like

contest system where it is possible to check test-like questions. Macedonia

prefers to use a self-developed web-based system, developed with node:js.

The main features of this system are multiple browsers and devices support,

statistics collection, data backup, and it can also sustain the connection loss

of a server or database.

The crucial point for CMSs is the number of people who participate at the

same time. It partially depends on the settings of the system. However, small

countries with fewer participants do not measure this. For example, for

France (more than 470 000 participants) the maximum number of

participants is 10 000. The French platform is designed to handle much

more, if needed. For Belarus, Croatia, Lithuania, and Turkey, the maximum

number of participants at the same time is 1,000, and for Bulgaria, Finland,

and Italy it is 500 participants. Slovenia is able to connect the largest number

of participants at the same time (more than 20 000). There is no limitation

for contestants in Ukraine because they work offline, their answers are

recorded as files, and are collected afterwards.

Using CMS options or additional analytics tools, organizers can provide

data about their system, devices, technical details, the number of

participants, and answer statistics for those participants. For example, France

and Russia collect information about devices or browser versions through

Google Analytics. Belarus has installed Yandex:Metrica.

68

Twenty countries gather information about gender and seven countries

were not interested in the gender issue. In some cases, such as Italy and

Singapore, the possibility of indicating gender is optional. All countries

collect the number of participants by age group, but in some CMSs, such as

Belarus, France, and Romania, participants are listed with their precise ages.

Personal information, such as the name, surname, school, or language is

collected in individual cases. It depends on the countries’ attitude to privacy

rules and data publication. Some countries privacy rules forbid using the

student data for statistical research.

After comparing the data regarding to the possible main components of

the different Bebras CMS, it seems that according to functionality, design of

the typical Bebras CMS should be modular and consists at least of 6 modules

(Fig. 21).

Fig. 21. The typical modular structure of the Bebras CMS

Experience with contest management inspires those interested to think

about new system features or improvements for the present CMS. French

Bebras organizers would like to have a tool for teachers for creating dynamic

tasks (something similar to the Bebras Lodge tool; this is a special tool for

creating and developing dynamic tasks), but with a different approach.

Germany would like to have an API to import, store, and export Bebras tasks

including their complete interactivity (the Bebras Pool). Lithuania has a plan

to collect data regarding how many times participants have a second look at

the same task or return to resolve that task, and how many times they have

changed the answer. Slovakia wants to measure the time spent on each task.

Ukraine would like to do compatibility with mobile devices and developer-

friendly animations. Belarus, Canada, Croatia, Indonesia, Serbia and Turkey

are planning to add different types of dynamic tasks or develop more

69

dynamic tasks’ features. Macedonia would like to add more functionality to

its CMS to create a friendlier environment for the teacher (for example, with

ability to see information about students). Macedonia also emphasized the

importance of testing as ensuring the performance of participants. Singapore

is planning to introduce reports on results for schools and students into their

CMS.

2.9 Summary

Embracing concept-driven Informatics education means that one needs to

think about conceptual knowledge and deep learning, which can be

encouraged by emphasizing principles and concepts rather than accumulated

facts. Conceptual knowledge for a particular domain consists of the core

concepts and their interrelations and can be characterized by using a number

of different constructs, including semantic nets, hierarchies, and mental

models. Learning theories, as constructionism, specify how individual

learners construct mental models in order to understand the world around

them.

The analysis of the existing Informatics education frameworks as well as

their basic components and processes allows us making a conclusion that the

most appropriate framework CDIE is cpm.4.CSE. The main reasons are that

it clearly indicates the steps of the whole process and is closely related with

determination of Informatics competences and concepts. However, the

cpm.4.CSE should be improved/refined and modified for primary school

context.

The systematic literature review was conducted to revise research

publications in the CDIE field for better understanding in which direction the

research concerning the Informatics concepts education is going. The

analysis shows that there exist three types of concepts: (1) Informatics

concepts; (2) computational thinking concepts; (3) programing concepts. The

latter is often a part of Informatics concepts; therefore, it is not described as

being separate concepts.

The analysis shows that students (like all humans) need motivation to

learn things. One of the ways to encourage motivation is solving tasks. So

we need to consider and design a new-task paradigm for future learning.

Learning and understanding process of Informatics concepts will come later,

actually after practice to solve many of concept-driven tasks. The teacher’s

role is important for strengthening the understanding of the Informatics

70

concepts. Teachers can help students to clarify tasks solutions, to explain

why it is Informatics, and to provide resources for reading and discussions.

The template for developing the Informatics concept-driven task is

presented based on 15 years of experience collected in creating and using

such learning task by the community of international contests on Informatics

and computational thinking. Analysis of tasks created by this community

between 2015 and 2018 showed that in average 150 ICDT are accepted

every year.

The two-dimensional categorization system for Informatics learning tasks

has been developed. To make a classification of learning tasks, the

categorization system incorporates both computational thinking skills and

Informatics concepts.

Learning of Informatics concepts at an early age is important for a deeper

understanding of various Informatics topics. Informatics concept-driven

tasks focus on the concepts and support the understanding of Informatics

phenomena. It is a promising way to develop computational thinking, which

is probably one of the most important sets of skills for twenty-first century

citizens.

The study of existing CMS has showed that there is a need to implement

a structural selection of ICDT in the existing educational platform.

71

3. RESEARCH PART

In this section the process of development of the model for concept-driven

Informatics education is presented. Separate parts of this model are

introduced first in order to explain better the relations between them. The

design of the educational platform extension is based on the developed

model.

3.1 Extension of cpm.4.CSE Model

3.1.1 Functional Modeling Methodology

A modeling method comprises a specialized modeling language for

representing a certain class of information, and modeling methodology for

collecting, maintaining, and using the information so represented (Menzel,

Mayer, 1998).

The methodology chosen for this research is the functional modeling

family IDEFx. In particular, IDEF0 (Integration DEFinition level 0) is one of

the widely spread techniques which is used as functional modeling

methodology of all activities that affect the educational process (El-Sharef,

El-Kilany, 2011).

As a business process model, IDEF is used to produce both descriptive

and analytical models that support process development and design. The two

primary modeling components used in IDEF0 are (IEEE Standard…, 1998):

1. Functions (represented by boxes on a diagram).

2. Data and objects that interrelate those functions (represented by

arrows).

Fig. 22. The basic IDEF0 constructs (Menzel, Mayer, 1998)

72

IDEF0 describes any process as a series of linked activities, each with

inputs and outputs. External or internal factors control each activity, and

each activity requires one or more mechanisms or resources (Fig. 22).

Inputs are data or objects that are consumed or transformed by an

activity. Computer or processed outputs are data or objects that are the direct

result of an activity. Controls are data or objects that specify conditions that

must exist for an activity to produce correct outputs. Finally, mechanisms (or

resources) support the successful completion of an activity, but are not

changed in any way by the activity.

The essence of IDEF0 is its hierarchical approach, in which a basic,

single-activity description of the process is decomposed systematically into

its constituent activities (El-Sharef, El-Kilany, 2011).

This modeling method is used for the extension of the cpm.4.CSE model

described in the next subsection.

3.1.2 Process of cpm.4.CSE Extension

As shown in Chapter 2 of the thesis, based on an overview of frameworks of

basic components and processes for Informatics education it was decided to

choose one of them as a background for further research. We selected a

process-based development of competence models to CS (Informatics)

education (cpm.4.CSE) that was suggested by Zendler et al. (2016); more in

Section 2.2.

Since a process model allows the development of competence models in

Informatics education related to curricular requirements we selected it. This

model is composed of eight subprocesses, based on the formulated

objectives of the thesis; we focus only on two essential subprocesses: A2

(determines competence areas) and A3 (identifies Computer Science

concepts).

 The IDEF0 modeling language was used for a process model

(cpm.4.CSE) (Fig. 23). The input to the subprocess A2 were Computer

Science researches at the university level (e.g., Das, 2007; Tucker, 2004) and

Computer Science education (e.g., ACM, 2003; 2008; ACM/IEEE-CS Joint

Curriculum Task Force, 2001; Hubwieser, 2007; Fincher, 2004).

73

Fig. 23. The subprocesses from A2 to A4 in model cpm.4.CSE (Zendler et al., 2016)

The output of this subprocess forms four competence areas (Zendler et al.,

2014):

1. Information technology: this competence comprises the two content

concepts data and information, which are merged early due to their

similar values in relation to the degree of process-related coverage

and the educational accessibility.

2. Modeling: this competence area comprises the four content concepts

problem, model, structure, and algorithm. The competence area has a

high degree of process-related coverage but is not very easily

accessible educationally. This is true, in particular, of algorithm.

However, what is striking for this competence area is the early fusion

of problem and model, whereas structure and algorithm cannot be

assigned unless at some distance. This implies certain heterogeneity

of the concepts on the background of their degree of process-related

coverage and their educational accessibility.

3. Computer communication: this competence area consists of the two

content concepts: computer and communication. Typical of this

competence area is a low degree of process-related coverage and easy

educational accessibility.

4. Software engineering: this competence area comprises the following

seven content concepts: process, language, computation, system, test,

program, and software. It characterizes content concepts whose

degree of process-related coverage and educational accessibility are

in the mid-range.

74

Subprocess A3 focuses on identifying Informatics concepts (process- and

content-oriented). When designing curricula, it is necessary to know the

basic content concepts as well as processes that are relevant to Computer

Science (Zendler et al., 2011). The output of subprocess A3 is identified CS

concepts, structured by competence areas.

For example, the competence area “Modeling” consists of CS concepts

(Zendler et al., 2016):

1. Model concept. A model can be interpreted as a system (isomorphic)

mapping elements of a domain to elements of a range with

statements for purpose and usage;

2. Classification of models. The classification of models can be made

from different points of view: area of consciousness, mode of

representation, application range, and usage;

3. Diagram types. The main diagram types are class, component,

activity, use case, communication, interaction, and sequence

diagram;

4. Process of modeling. The process of modeling allows using diagram

types to specify requirements for a software system under static,

functional, and dynamic points of view;

5. Modeling languages.

The conditions of control for subprocess A3 are the same as for

subprocess A1 and A2: curricular structural elements such as future life

situations, necessary qualifications, or fundamental principles. Mechanisms

for A3 are teachers and professors of Computer Science who are responsible

for the selection of Computer Science concepts.

After long discussions with Informatics education experts and teachers it

was decided (by the author of the thesis together with the supervisor) to

modify the subprocesses of identification Informatics concepts for the

following reasons:

1. Process model (cpm.4.CSE) is dedicated to higher education because

the input to subprocess A2 is based on literature and curricular

elements from colleges and universities;

2. We are interested in Informatics concepts identification for primary

and secondary education, also higher education (K-12), so it is not

enough to determine competencies areas. There is also the need to

provide competencies and Informatics concepts/keywords. It is

aimed at teachers to help them easily find and choose a particular

concept-driven task. It is important to remember that Informatics is

the only subject in Lithuania that teachers of primary schools have to

75

teach, but most likely they have never studied it. Competencies are

usually defined as context-specific cognitive dispositions that are

acquired and needed to successfully cope with certain situations or

tasks in specific domains (Koeppen et al., 2008). Competence-

oriented approaches focus on the output as a result of task-solving

(performance) by learners, on several knowledge components

(knowledge, skills, dispositions, attitudes), on the acquisition of

competences, and on standardized methods of competence

assessment (Zendler, Klaudt, Seitz, 2014). For Informatics education

the competence areas are characterized by both the content concepts,

and the process concepts. Informatics concepts can be considered as

key components of the content of Informatics education.

A sequence of subprocesses related to Informatics concepts identification

(Fig. 24) should start with the determination of competencies area - A1,

identification of competencies - A2, and finish with the identification of

Informatics concepts (keywords) - A3.

Fig. 24. Extended subprocesses for Informatics concepts identification

This extension (marked with an additional rectangle) is based on long-

term practical experience of the author of the thesis together with the

supervisor while using ICDT at school as the tool to introduce Informatics

science. Also participation in a projects: “Network on Innovative Computing

76

Education” (2015-2017); “Teaching Informatics: development of activities-

based model” (2016-2017); “Card-games for students to learn Informatics”

(2017-2018); “Informatics in primary education” (2017-2022).

The fulfillment of modified process model is based on subprocesses

called A2 (determines competencies areas) and A3 (identifies Informatics

concepts) from process model cpm.4.CSE, which are documented by IDEF0

modeling language. We also focus only on the content oriented Informatics

concepts for primary education. As mentioned before, we have modified a

sequence of subprocesses in the process model that was suggested by

Zendler et al. (2016)

The input to subprocess A1 (determines Informatics competencies areas)

are literature for Informatics education at school, e.g., Australian

Curriculum: Digital Technologies, v8.3, 2016; the national curriculum in

England, 2013; K-12 Computer Science Framework, 2016; CSTA K–12

Computer Science Standards, 2011, and published papers, e.g., Bell et al.,

2014; Caspersen, Nowack, 2013; Sysło, Kwiatkowska, 2015; Barendsen,

Steenvoorden, 2016; Barendsen et al., 2016.

The control conditions for subprocess A1 are curricular structural

elements (for school), which may differ from country to country.

Teachers, Informatics education experts, professors of Informatics in

collaboration with education policy makers (curricula developers and

evaluators), who are responsible for selecting the competencies areas are

involved in mechanisms roles.

The output of subprocess A1 is determined by the Informatics

competencies areas. In our context we determined six such areas: Digital

content; Algorithms and programs; Problem solving; Data and information;

Virtual communication; Safety and protection (see Table 11). All of them

are defined as equally important.

The input to subprocess A2 (identifies Informatics competencies) are

determined Informatics competencies areas and the same literature as to

subprocess A1; also the same control and mechanisms elements.

The output of subprocess A2: Informatics competencies are determined.

The list of competencies is provided in Table 11 (column second).

The input to subprocess A3: (identifies Informatics concepts/keywords)

Informatics competencies are determined.

The output of subprocess A3: Informatics concepts / keywords are

identified. The results are provided in Table 11 as well (column third).

77

Table 11. Outputs from subprocesses A1, A2 and A3

Competencie

s areas
Competencies Informatics concepts//keywords

D
ig

it
a

l
co

n
te

n
t Become familiar with a variety of

digital content

Image representation; Sound representation;

Video representation; Color representation;

Character encoding;

Use digital content Online documents, PDF

Create contents by using

technologies
Text; Table; Cell; Formula; Chart;

Evaluate and improve digital

content
Criteria; Presentation;

A
lg

o
ri

th
m

s
a
n

d

p
ro

g
ra

m
s

Understand the benefits of an

algorithm, program

Algorithm; Searching; Shortest path; Sorting;

Optimization; Sequence; Scheduling;

Perform the sequence of actions

indicated by the commands
Command; Constraint; IF condition; Variable;

Use commands and logical
operations

Operations AND, OR, NOT; Loop;
Repetition;

Create and executes programs Program; Programming language; Coding;

Search for debugs, tests and
upgrades

Debugging; Testing; Bug;

P
ro

b
le

m
 s

o
lv

in
g
 Find out the problems posed by

digital technology
Memory; Pattern recognition;

Creatively use of digital
technology

Multitasking; Physical devices; Robotics;
Sensors; Input / Output devices;

Select and combines of digital

technologies
Parallel processing; Deadlock;

Self-evaluation of digital

competence

D
a

ta
 a

n
d

in
fo

rm
a

ti
o
n

Understand the importance of

data and information

Big data; Classification; Data compression;

Database; Data mining; Information; Priorities;

A targeted search for information
Data retrieval; Information search; Binary
representations; Coordinates;

Perform a variety of actions with

the data: collect, store, group, sort

Sorting; Binary tree; Graph; List; Queue;

Stack; String; Tree; Pattern; Table;

Evaluate the suitability and
reliability of information

Validation; Information analysis;

V
ir

tu
a

l

co
m

m
u

n
ic

a
ti

o
n

Understand the nature of

communication in the virtual

space

Internet; Social networks

Communicate by using digital

technology
Mobile phone; Computer;

Collaborate, share experiences
and resources

Social networks; Cloud computing;

Estimate the risk of virtual

communication
Netiquette; E-bullying

S
a

fe
ty

 a
n

d

p
ro

te
ct

io
n

 Protect devices from virus Virus; Security;

Protect personal data and privacy
Authentication; Copyright; License; Open

Source; Legal issues;

Manage digital identity Self-identity; Social engineering;

Protect environment

Research methods from social science were used for all these processes.

One of them is methodological triangulation in qualitative research that

combines content analysis and the unstructured interview method.

78

Triangulation is a powerful technique that facilitates validation of data

through cross verification from two or more sources (Carvalho, White,

1997). First, the content analysis that is defined as the systematic reading of

the body of texts, images, and symbolic matter, not necessarily from the

author's or user's perspective (Krippendorff, 2004) was performed. In other

words, content analysis is distinguished from other kinds of social science

research in that it does not require the collection of data from people. Like

documentary research, content analysis is the study of already recorded

information, i.e. information which has been recorded in texts, media, or

physical items.

In this research work, the content analysis was conducted by analyzing

documents defined as input to subprocess A1.

The second method that comprises methodological triangulation is the

unstructured interview method. It is a qualitative research method in which

the questions are prepared during the interview (Wethington, McDarby,

2015). In exploratory research, the unstructured interview is used as the

basic tool for collecting information.

The processes of cpm.4.CSE model extension presented above and

identified Informatics concepts were discussed within peer-research groups

that are renown in the field; in particular, the discussion with Prof. Juraj

Hromkovič (ETH Zurich University) and his group colleagues during

workshops and meetings.

The concepts identification process was finally discussed during the

workshop “Model of Informatics education activities”, Druskininkai,

Lithuania, 03-09-2016, (16 participants with experience in Informatics

education).

3.1.3 Concept Map of Informatics Concepts for Primary School

As was mentioned before, teaching of Informatics at school cannot be

performed without first understanding of its fundamentals.

In this section, slightly different approach to Informatics concepts will be

described. This approach is based on the body of knowledge of Informatics

science.

Peter J. Denning defined Informatics as “the body of knowledge dealing

with the design, analysis, implementation, efficiency, and application of

processes that transform information” (Denning, 1985). Later, Michael Loui

defines engineering approach to Informatics as “the theory, design, and

79

analysis of algorithms for processing information, and the implementations

of these algorithms in hardware and in software” (Loui, 1987).

Informatics is interdisciplinary at heart, because it is focused on the

search for solution for problems in all areas of sciences, wherever the use of

computers is imaginable. While doing so, it employs a wide spectrum of

methods, ranging from precise formal mathematical methods to experienced-

based “know-how” of engineering (Hromkovic, 2006).

The concept mapping method described in Section 2.1 was used to

represent the relationships between Informatics concepts at primary school (

Fig. 25). Also, it is ontological point of view when presented high-level

knowledge and data representation structure. Ontologies can be used to

represent the structure of a domain by means of defining concepts and

properties that relate them (Lhotska et al., 2013).

The first level categories of Informatics concepts are:

1. Algorithms and Programming;

2. Data, Data structures and representation;

3. Technology.

The previously identified Informatics concepts (Table 11) form the

second and third levels of the concept map produced.

First level category “Algorithms and Programming” consists of three

second level categories: Algorithms and Computing problems;

Programming; Logic.

Category “Data, Data structures and representation” also consists of three

second level categories: Data and Information; Data structuring; Data

representation.

Category “Technology” consists of four second level categories:

Networking; Computer architecture; Interaction; Security and privacy.

80

Fig. 25. Concept map of Informatics concepts for primary school

81

3.2 Adaptation of Two-Dimensional Categorization

Based on the analysis of the proposed two-dimensional categorization

system provided in Section 2.7, we decided to adapt this system for ICDT

categorization.

A logical data model is described (Fig. 26). It organizes elements of data

and describes how they relate to each other and to the properties of the real

world entities.

Data modeling in software engineering is the process of creating a data

model for an information system by applying certain formal techniques, e.g.

UML notation (class diagram). This is a static (or structural) view of the

designed system, which emphasizes the static structure of the system using

objects, attributes, operations and relationships.

Fig. 26. Data model of two-dimensional categorization system

Two types of relations are presented in this model: Aggregation

() and Composition (). Aggregation implies a

relationship where the child can exist independently of the parent. Example:

School class (parent) and its Students (child). Delete the School class and the

Students still exist. Composition implies a relationship where the child

cannot exist independently of the parent. Example: House (parent) and

Room (child). Rooms do not exist separately from House (Fowler, 2004).

This two-dimensional categorization system for ICDT is dynamic and can

be applied to other educational levels. It depends on the results of the

identification process of Informatics competencies and concepts and also on

categories of computational thinking skills.

82

The schema with detailed information and a fragment from the example

(explanation of learning task) in order to clarify the two-dimensional

categorization system (Fig. 27) was prepared.

Fig. 27. Adapted two-dimensional categorization system

The learning task illustrated in example is presented in Section 2.6. The

sequence of processes of ICDT creation, categorization and using for both

formal and non-formal education are presented in Fig. 28.

Fig. 28. Tasks creating, categorizing and using process

83

3.3 Modification of ICDT Template

A learning object is defined as any digital resource that can be reused to

support learning (Wiley, 2000). The metadata that learning objects contain

allow them to be located and retrieved, and the idea is that they can be

reused in different educational contexts and can help with the specific needs

of users and platforms (Morgado et al., 2018). From this point of view ICDT

is a learning object and has metadata.

The IEEE 1484.12.1 – 2002 Standard for Learning Object Metadata

(LOM) (IEEE Standard…, 2002) is an internationally recognized open

standard for the description of “learning objects”. The LOM comprises the

hierarchy of elements. At the first level, there are nine categories, each of

which contains sub-elements; these sub-elements may be simple elements

that hold data, or may themselves be aggregate elements, which contain

further sub-elements. The semantics of an element are determined by its

context: they are affected by the parent or container element in the hierarchy

and by other elements in the same container. Data elements describe a

learning object and are grouped into categories.

Fig. 29. The element hierarchy of the IEEE LOM standard

84

The LOMv1.0 base schema (Fig. 29) consists of nine such categories

(IEEE Standard…, 2002):

1. The general category groups the general information that describes

the learning object as a whole.

2. The lifecycle category groups the features related to the history and

current state of this learning object and those who have affected this

learning object during its evolution.

3. The meta-metadata category groups information about the

metadata instance itself (rather than the learning object that the

metadata instance describes).

4. The technical category groups the technical requirements and

technical characteristics of the learning object.

5. The educational category groups the educational and pedagogic

characteristics of the learning object.

6. The rights category groups the intellectual property rights and

conditions of use for the learning object.

7. The relation category groups feature that define the relationship

between the learning object and other related learning objects.

8. The annotation category provides comments on the educational use

of the learning object and provides information on when and by

whom the comments were created.

9. The classification category describes this learning object in relation

to a particular classification system.

All data elements in LOMv1.0 base schema are optional. This means that

a conforming LOM instance may include values for any data element

defined in LOMv1.0 base schema.

The current version of learning task template proposed by the community

of the international Bebras contest as a learning object has metadata

presented in Fig. 30. It consists of four categories and 14 sub-elements.

Some of them were detailed in the previous subsection. The elements of

LOM used are denoted with grey boxes.

85

Fig. 30. Informatics learning task (international version) metadata

For the Lithuanian version we suggest to use a slightly modified structure

of ICDT compared with the international version of a task (Fig. 31). This is

closely related with the aim to implement the two-dimensional

categorization system for learning tasks. The suggested categorization

system incorporates both computational thinking skills and Informatics

concepts in the classification of tasks (provided in Sect 2.7). This grey box

 denotes metadata that are mandatory additional attributes for ICDT.

It consists of five categories and 19 sub-elements.

86

Fig. 31. Informatics concept-driven task metadata (Lithuanian version)

For the reasons of clearness for practical usage the metadata of ICDT is

extracted from the whole map and is presented in more detail in Fig. 32.

Fig. 32. Extracted metadata of ICDT

87

3.4 Development of CDIEM

Based on the conclusions of Chapter 2, it is reasonable to develop concept-

driven Informatics education model (CDIEM) for extension of educational

platform. This model is based on the following components:

1. extension of cmp.4.CSE model and results from concepts

identification process (Sect 3.1.2);

2. design of ICDT template related to two-dimensional categorization

system (Sect 2.7);

3. Modification of ICDT template (Sect 3.3);

4. Possibility of structural selection of ICDT in CMS.

The resulting model is defined as the flowchart presented in Fig. 33.

Fig. 33. Concept-driven Informatics education model

For a better understanding of the relationships between the entities of the

CDIE domain, the entity relationship diagram (ERD) is developed (Fig. 34).

In this case, ERD is depicted in the conceptual data model, which lacks

specific details but provides an overview of the domain and how data sets

relate to one another.

88

Fig. 34. Conceptual model of teaching domain

As discovered in the analytical part of the research there are no such

educational platforms, which would allow teachers the structural selection of

Informatics concept-driven tasks for the educational process.

3.5 Structure of the CMS Developed in Lithuania

The Lithuanian Bebras contest management system was realized in 2010 and

named as the Bebras contest tool (in Lithuanian - Bebro varžybų laukas,

lt.bebras.lt). The main functional requirements include the management of

an information about participants (students) as well as teachers

(coordinators) gather the data for solutions of tasks, organize contests and

provide a detailed statistics and reports. The system was tested (more than 44

000 students entered the system in 2018) and efficiency-designed for

managing contest. More than 5 500 new accounts were created for primary

and secondary school students in 2017. The number of new user accounts is

growing by similar additional accounts each year.

The Lithuanian Bebras CMS is based on three-tier architecture (Fig. 35)

(Dagienė et al., 2017c) and it is a framework composed of MySQL relational

database management system (DBMS), Apache HTTP server and PHP

programming language and Linux OS. CMS use the Model-View-Controller

structural pattern, which means that an application should be divided from

its presentation into three main parts. In Model-View-Controller, the View

component displays information to the user and together with the Controller

comprises the applications user interface (Leff, Rayfield, 2001). CMS is

built to be compatible with all operating systems and the latest versions of

89

browsers, although the use of Microsoft Internet Explorer or Microsoft Edge

browsers is not recommended.

Fig. 35. The architecture of the Lithuanian Bebras CMS

The system works as a web application and consists of a set of

subsystems, which has a well-designed interface:

1) System administration (security, back up, resource monitoring, etc.);

2) User management (registration system, authentication, user profile

management);

3) Contest management (creation, administration and monitoring of the

contest);

4) School administration (official list of all schools in Lithuania). The

school list is updated in accordance with cooperation with the Centre

of Information technologies in Education every year;

5) Tasks management (create, import tasks);

6) Results and communication management (participants and teachers

can discuss particular tasks, preview statistical data).

Lithuanian Bebras CMS functionality is shown by using the Use case

diagram (Fig. 36) (Dagienė et al., 2017b). System administrators have full

access, including the management of task: creation and importation from the

Bebras Lodge2 tool (it is an authoring tool developed for coding and

implementing dynamic tasks).

Teachers are provided with contest access to their schools’ students and

have access to the results of their students. First, the teachers register their

students and then the system administrators enroll them in the system (it

helps to avoid cheating). The registered teachers can confirm students’

2 http://bebras.licejus.lt/

90

participation in the contest during the school-wide contest in November.

Furthermore, the teachers have the opportunity to preview the tasks,

participate in the discussion, and print certificates for their own students.

Students have access to the contest during the Bebras week and can preview

the tasks, and comment on or discuss the particular tasks after the contest

week. They can see their results only after completing the contest.

Fig. 36. Use case diagram of the Lithuanian Bebras CMS

According to its functionality (Fig. 37), CMS design is modular (consists

of 11 modules). All modules are described in detail below (Dagienė et al.,

2017a).

Fig. 37. The modular structure of the Lithuanian Bebras CMS

Users management module includes actions such as create, edit,

confirm, delete user, preview or edit data, preview the list of participants,

91

archive participants, give a new password, move student to a higher class,

search user, send news and reminders for the participant, give permission for

the teacher to coordinate the contest, and generate the reports for students’

solutions.

Contest management module involves these actions: to create and edit

the task collection, set the contest date and time, preview task in the task

collection, task testing, manage permission to solve task collection,

participation in the contest, and answer survey about particular tasks.

System administration module consists of previewing the list of

schools, editing participants and teachers’ data, searching (by school title,

teacher name/surname, student name/surname), and the creation of a survey

for participants.

Tasks management module is designed to create, edit, copy, upload,

delete, preview, export task, filter task by tags, create tags for the tasks, and

search tasks by name or ID. The system supports multiple-choice questions

with the opportunity to select one correct answer from four. Other questions,

such as animated tasks, text input field tasks, and drag and drop tasks are

imported from the Bebras Lodge tool. For multiple-choice tasks, the

administrator fills in these fields: task ID, title, task description and possible

answers, answer comment if it is needed, chosen task difficulty, age group,

and language.

Results preview module provides the opportunity to revise the desired

student and class solutions. Tasks are shown with the marked

correct/incorrect answer, the student’s choice, and the points he or she

receives. The contest results for registered participants are stored and

teachers can view them.

Statistical and report module is used to review data about the time

taken to solve the tasks, answers, and the number of participants. We collect

the following data about participants: name, surname, gender, grade, and

school. Also, we gather data about the type of devices and browsers the

participants use in the contest; how much time spent when solving the task

for the first time; how much time in seconds the participant spends on every

task (the sum of seconds is counted if the participant returns to solve the

task). Each solution is separated by the student ID number generated by the

system; therefore, all statistics can be compared. In addition, data about the

students’ numbers in Lithuanian schools are saved in the system as well,

therefore we can compare how many students of a particular school

participated.

92

Front-page. The module includes login to the system, a preview of

participants’ results according to the municipality, age group, and a report

about participants’ numbers in Lithuania. Training is available on the front-

page without any special registration. The time of training is limited to sixty

minutes and does not depend on the students’ age. There is no limit to the

number of answer submissions. Training results for unregistered users are

displayed immediately after finishing the session.

Authentication. The module implements the user registration, login and

logout function, and password reminder. Participants are able to login with a

Facebook account. When a user registers with the system for the first time,

the system automatically sends an email with the link, and the user has to

approve it. An email is a required field on the systems registration form for

purposes of authentication and personal data. Primary school students are

faced with the problem of not having a personal email account. For this

reason, their teachers can upload the list of participants to the system. The

system generates passwords and usernames automatically from the uploaded

file.

Certificate module. The system automatically generates the filled

certificate that is prepared by an administrator after the contest is completed.

Teachers get certificates for organizing and coordinating the contest.

Students who participated in the first or second round of the contest receive

certificates for participation. About 10% of the best students from each age

group get winners’ diplomas. These diplomas are printed and students

receive them during the awards ceremony.

Language module enables localization and adapts the system for a

specific language by translating resources.

Employing the discussion module users can follow discussions (read,

comment, delete, edit).

In the case of the Lithuanian Bebras CMS (lt.bebras.lt), a relational

database (of tasks management subsystem) is created to store details of tasks

(Fig. 38). The data are stored in different tables and relations are established

using the primary keys; below the information engineering notation is used

to represent a logical data model developed.

93

Fig. 38. The relational database structure underlying the task management

subsystem

The Lithuanian Bebras CMS is mainly used as a tool for contest

management. Sometimes it also used for training teachers or systems

developers to provide them with practice, understanding the contest policy.

Unfortunately, the Lithuanian system does not provide teachers with the

possibility of preparing their own contest to use in the educational process.

The Bebras CMS also is used as a repository. At the end of 2018, more

than 2 300 tasks were collected in the platform. At the same time, this

platform lacks the possibility to structurally select appropriate ICDT and to

form ICDT’s collections in order to use them for further educational process

(for formal, informal and non-formal education).

Regarding to developed CDIEM, there is a need to extend the educational

platform. For this reason, in the next subsection, the process of the

educational platform extension design is described.

94

3.6 Design of Educational Platform Extension

The design of educational platform extension presented here is aimed at

the implementation of concept-driven Informatics education model. This

extension is based on:

1. Integration of additional attributes of the ICDT template into the

Lithuanian Bebras CMS;

2. Creation of a new module for the structured selection of ICDT in the

Lithuanian Bebras CMS.

The structure of the improved ICDT described in Section 3.3 is used to

implement the first step. We provide an improved version of the relational

database (Fig. 39) in order to show differences between this one and the

existing relational database of the task management subsystem in the

Lithuanian Bebras CMS (Fig. 38).

Fig. 39. The relational database model underlying the EEP

95

The relational database (Fig. 39) was supplemented by two tables

(denoted by arrows): brv_exercise_keywords and brv_keywords. These two

tables related to the implementation of the two-dimensional categorization of

tasks are created. Table brv_exercise was also supplemented by one attribute

bre_why_is_it_cs, which include records of explanation “It is Informatics”.

The use case diagram of main modules related to tasks management in

the current version of CMS is shown in Fig. 40.

Fig. 40. Use case diagram of main modules in the current version of CMS

It shows that the teacher can give permission to a student to participate in

the contest. Meanwhile the existing system does not provide functional

features of task management, selection of tasks in order to form a collection

of them, which are appropriate for a particular use in the educational

process. All the most important features related with tasks and contest

management are available only for the platform administrators.

For this purpose, there is a reasoned proposal to develop a new module

(Task selection module) in the current version of the Lithuanian Bebras

CMS. The Lithuanian Bebras CMS is presented in Subsection 3.5. An

extended structure of CMS is in Fig. 41.

Fig. 41. New module in the extended CMS

96

The Use case diagram of the tasks selection module (Fig. 42) shows that

there are two users (teacher and student) and their interactions with the

module.

Fig. 42. Use case diagram of task selection module

The activity diagram presents a dynamic behavior of the system, i.e. the

actions of the teacher with the task management module. The most important

function of the task selection module is that the teacher can perform

structural selection of ICDT. The structural selection of the tasks is

presented in Fig. 43. The teacher can form a collection of tasks that can be

additionally filtered according to CT skills.

Fig. 43. Activity diagram of structural task selection process in the module

97

The activity diagram of the whole process for tasks selection is presented

in Fig. 44.

Fig. 44. Activity diagram of the whole task selection process

98

3.7 Implementation of the Prototype of the Designed Module

In order to verify the designed task selection model, the prototype was

created. The concept-driven Informatics education model is implemented

within the prototype of the EEP that was developed on the basis of the

existing Lithuanian Bebras CMS.

In this extended platform the selection of tasks is realized for two

competencies areas: Algorithms and programming, and Data and

information. It is based on the results presented in Section 2.7.2.

First, the additional ICDT attributes were integrated into the task

management module. Then the administrator should mark appropriate

Computational thinking categories and Informatics competencies and

concepts for each task in the task creation mode (Fig. 45). Informatics

competencies areas, competencies and concepts are presented in a

hierarchical structure like in the hierarchical concept map that contains the

domain of knowledge on the top of the map.

Fig. 45. Task creation mode of the prototype

99

After integrating additional ICDT attributes to the task management

module, the teacher can fulfill a structural selection of ICDT for the

educational process and decide which of CT categories and Informatics

competencies should be included in a particular ICDT (Fig. 46).

Fig. 46. Task selection mode of the prototype

In case the teacher wants to form a collection of tasks, she or he should

start to create a new task collection and then fill in all required fields (Fig.

47).

Fig. 47. Formation of tasks collection

100

Selected tasks can be easily added to the collection by clicking on the

button at the task collection mode (Fig. 48). Tasks can be added by

selecting one of three difficulty levels (easy, medium, hard).

Fig. 48. Example of tasks collection formation in prototype

Fig. 49. Example of task assignment to collection in prototype

An example of task assignment to the collection is presented in Fig. 49.

All appropriate tasks can be additionally filtered by performing CT and

Informatics concepts selection.

101

3.8 Summary

In this section the main components of concept-driven Informatics education

model for the educational platform extension were described.

First, the extension of existing cmp.4.CSE model was made. This model

was selected for the following reasons: (1) clearly indicated steps of the

whole educational process; (2) possible adaptation to school level; (3)

provides framework of competencies and concepts.

The results of the identification process of Informatics competencies and

concepts were obtained by performing methodological triangulation in

qualitative research that combines content analysis and the unstructured

interview method. Six competency areas were determined.

Second, the adaptation of this two-dimensional categorization system for

ICDT was performed. The proposed categorization system incorporates both

Informatics concepts and computational thinking skills. This categorization

system is dynamic and can be applied not only at primary school but also at

higher levels. It depends on the results of the identification process of

Informatics competencies and concepts and also on the selected categories of

computational thinking skills.

Third, the ICDT template that supports the LOM metadata structure and

is related to the two-dimensional categorization system was designed.

All these components are integrated into the model of CDIE for primary

school and implemented within the extension of the Lithuanian Bebras CMS

(educational platform).

102

4. EXPERIMENTAL PART

In this part, the performed evaluation of the two-dimensional categorization

system for Informatics learning tasks will be described. While the first

evaluation was of qualitative nature, the developed EEP was evaluated by

experts using quantitative approach based on selected quality in use criteria

and fuzzy numbers.

4.1 Evaluation of Categorization System

The evaluation of two-dimensional categorization system was planned

during the annual international Bebras contest community meeting in

Bodrum, Turkey (May 2016), with representatives from almost every

country in the community. There were around 80 members of the Bebras

community present and the early version of the proposed system was

explained and exemplified.

The Bebras community members were given three tasks (Beaver the

Alchemist; Reaching the target; Beaver tutorials) as example to categorize

according to a proposed version of the categorization system. The members

were asked for each task to fill in the table like that presented in Table 12.

And also answer the question: How would you categorize the following

tasks utilizing the new (proposed) classification?

Table 12. Example of the questionnaire

Task

name
Beaver the Alchemist

Concept

Algorithms

and

programming

Data and

data

structures

Computer

processes

and

hardware

Communi-

cation and

networking

Systems and

society

Tick

CT Skill Abstraction
Algorithmic

thinking

Decom-

position
Evaluation Generalization

Tick

Also, the members were asked for additional comments on questions like:

What is missing? Do categories overlap? Is it possible to select only one of

them? Is this too complex?

103

The feedback was collected both verbally (summary of comments) and in

writing (filling the questionnaire). The feedback and comments of each

member were used to refine the system.

In particular, the experience of sharing the categorization illuminated

some of the points raised below:

1. “Clear illustration of computational thinking skills with examples is

needed as we cannot assume that any knowledge of these is shared

in the community”;

2. “Keywords are essential both to illustrate the Informatics content

domains and the computational thinking skills to assist

categorizers”;

3. “Categorizers need to focus on the experience of the student solving

the problem and not the task setter (expert) in assigning both the

concept and computational thinking skills”.

The proposed task categorization system was applied for real practice for

first time in 2016 by UK Bebras organizers (University of Oxford). They

have prepared a booklet with answers and explanations of learning tasks for

teachers and students3. Later they repeated it for the 2017 and 2018 Bebras

tasks.

In 2017 and 2018 this categorization system was also used and tested by

the organizers of the TCS Oxford Computing Challenge4
. It is an online

challenge that asks the students invited from the UK and English-speaking

international schools around the world to solve tasks using computational

thinking skills and then provide coded solutions. After each task there is an

example answer, an explanation of how the answer could be obtained plus a

section on how the tasks are related to computational thinking (Fig. 50).

They have mapped each task to up to three computational thinking skills and

add also to a particular Informatics domain.

3 http://www.bebras.uk/answer-booklets.html
4 http://www.tcsocc.uk/prepare.html#examples

104

Fig. 50. Example from the 21 tasks in the TCS Oxford Computing Challenge, 2017

In 2019 Csizmadia, Standl and Waite published research based on

proposed two-dimensional categorization system. Their contribution was to

present a new mapping tool which can be used to review classroom activities

in terms of both computational thinking and constructionist learning. For the

tool, they have reused existing definitions of Computer Science concepts and

computational thinking concepts (from the two-dimensional categorization

system) and combined these with new constructionism matrix.

105

4.2 Evaluation of Extended Educational Platform

The CDIE model, proposed in the previous section, is aimed to support the

concept-driven approach to Informatics education at primary school.

To assess the quality of the CDIEM implemented by the extension of the

educational platform in respect of usage, the experts’ evaluation method is

selected.

According to Oppermann, Reiterer (1997) the expert evaluation methods

draw upon expert knowledge to make judgments about the usability of the

product for specific end users and tasks.

4.2.1 Quality in Use Model

In order to determine how much the proposed EEP allows an effective and

structural ICDT selection (which opens opportunities to get appropriate

ICDT and use them in real educational practice), an interview of experts was

conducted.

At present, the EEP lacks some features and data that would allow us to

carry out a full range engineering experiment. Pilot data are produced using

the prototype.

A quality model provides means to control software quality (Kan, 2002).

It usually defines quality attributes that good software should have and can

associate metrics or a methodology to assess the level of quality. According

to Gasperovic and Calpinskas (2006) from the technological point of view,

one of the quality criteria of the learning software is quality in use and it is

an evaluative characteristic of software obtained by making a judgment

based on the criteria that determine the worthiness of software for particular

users.

According to the standard, the quality in use model (ISO/IEC

25010:2011) is selected to be used in this thesis. It is composed of five

characteristics (Fig. 51), which are further subdivided into sub-

characteristics. The later can be measured when a product is used in a

realistic context.

106

Fig. 51. The quality in use model according to ISO/IEC 25010:2011

The quality in use is the user’s perspective view of the quality of a

system, and is measured in terms of the result of using the system (i.e. how

people behave and whether they are successful in their tasks), rather than the

properties of the system itself. The output can be measured as effectiveness,

productivity, and satisfaction of the users (ISO/IEC 25010:2011).

Definitions of each characteristics and subcharacteristics of the quality in

use model are presented in Table 13.

Table 13. Quality in use model characteristics and subcharacteristics

Characteristics
Sub-

characteristics
Definition

Effectiveness
Accuracy and completeness with which users

achieve specified goals.

Efficiency
Resources expended in relation to the accuracy and

completeness with which users achieve goals.

Satisfaction

Degree to which user needs are satisfied when a

product or system is used in a specified context of

use.

 Usefulness

Degree to which a user is satisfied with their

perceived achievement of pragmatic goals,

including the results of use and the consequences of

use.

 Trust

Degree to which a user or other stakeholder has

confidence that a product or system will behave as

intended.

 Pleasure
Degree to which a user obtains pleasure from

fulfilling their personal needs.

107

 Comfort
Degree to which the user is satisfied with physical

comfort.

Freedom from

risk

Degree to which a product or system mitigates the

potential risk to economic status, human life,

health, or the environment.

Economic risk

mitigation

Degree to which a product or system mitigates the

potential risk to financial status, efficient operation,

commercial property, reputation or other resources

in the intended contexts of use.

Health and

safety risk

mitigation

Degree to which a product or system mitigates the

potential risk to people in the intended contexts of

use.

Environmental

risk mitigation

Degree to which a product or system mitigates the

potential risk to property or the environment in the

intended contexts of use.

Context

coverage

Degree to which a product or system can be used

with effectiveness, efficiency, freedom from risk

and satisfaction in both specified contexts of use

and in contexts beyond those initially explicitly

identified.

 Flexibility

Degree to which a product or system can be used

with effectiveness, efficiency, freedom from risk

and satisfaction in contexts beyond those initially

specified in the requirements.

Context

completeness

Degree to which a product or system can be used

with effectiveness, efficiency, freedom from risk

and satisfaction in all the specified contexts of use.

In this work, four criteria (Table 14) were formulated to evaluate the

quality in use of the EEP: (1) Effectiveness, (2) Efficiency, (3) Flexibility,

(4) Context completeness. In this thesis, we do not measure two

characteristics (with their subcharacteristics): Satisfaction and Freedom from

risk. They are not quantifiable qualities in a case of the educational platform,

which is specific in respect of the users and purpose.

Table 14. EEP evaluation criteria (adapted from ISO/IEC 25010:2011)

Characteristics Subcharacteristics Definition

Effectiveness

Appropriate ICDT are provided to teachers,

which allows them to form a collection of

ICDT that can be solved by the student. It helps

the student pursue competencies provided in

the Informatics curriculum.

108

Efficiency

Method proposed in the extended educational

platform allows teachers to save time in

selecting the appropriate ICDT for the

educational process.

Context

coverage

Flexibility

In the extended educational platform proposed

method allows teachers to modify the process

of ICDT selection.

Context

completeness

ICDT template proposed in the extended

educational platform can be used in all the

prescribed contexts of use.

4.2.2 Experts’ evaluation

Since the expert evaluation method depends on the skill of the expert, the

following competence requirements for their selection were defined by the

author:

1. no less than five-year experience in the field of Informatics

education;

2. no less than three-year experience of teaching Informatics;

3. at least two scientific papers published in the field of Informatics or

Informatics engineering;

4. Master’s degree (or Doctor’s degree) in Informatics or Informatics

engineering.

In order to reduce the subjectivity of evaluation due to the expert’s

personal assessment a detailed presentation and instructions were used to

evaluate the quality of the EEP.

In many practical situations, decision makers (experts) may be reluctant

or unable to assign exact numerical values to make comparison judgments.

Therefore, for resolving the uncertainty and imprecision of software

evaluation, the comparative judgments of a decision-maker are represented

as triangular fuzzy numbers (Chang, Wu, Lin, 2008). Fuzzy sets theory

oriented towards the rationalization of uncertainty. The application of

uncertainty lets the experts evaluate not only one point but an appropriate

range of values (Byrne, 1995). A fuzzy set is a class of objects with a graded

continuum of membership and is characterized by a membership function,

which assigns to each object a membership grade between zero and one.

Since each number represents the subjective opinion of decision makers and

is an ambiguous concept, fuzzy numbers work best to consolidate

fragmented expert opinions. A triangular fuzzy numbers (Fig. 52) is denoted

simply as (L, M, U), the parameters L, M and U denote the smallest possible

109

value, the most promising value and the largest possible value (Chang, Wu,

Lin, 2008).

Fig. 52. Triangular fuzzy numbers

In this thesis, the experts used the linguistic variables “very small”,

“small”, “average”, “good”, and “very good” to establish the ratings (values)

of the quality criteria.

The triangular fuzzy numbers (Table 15) were chosen to use for this

evaluation.

Table 15. Triangular Fuzzy numbers values

Linguistic term
Triangular Fuzzy numbers

value

Very good (VG) (0.8; 1.0; 1.0)

Good (G) (0.6; 0.8; 1.0)

Average (A) (0.4; 0.6; 0.8)

Small (S) (0.2; 0.4; 0.6)

Very small (VS) (0.0; 0.2; 0.2)

A questionnaire, consisting of four questions, based on the ISO/IEC

25010:2011 quality in use model was developed for experts’ evaluation.

Table 16 presents the questions and the corresponding answer options.

Table 16. Questions of the developed questionnaire

1. Appropriateness of the achieved goals (Effectiveness)

Very good (VG) 86 -100 % accurate

Good (G) 67 - 85 % accurate

Average (A) 50 - 66 % accurate

Small (S) 33 - 49 % accurate

Very small (VS) 0 - 32 % accurate

110

2. The time spent to achieve the goals compared with the time spent to achieve goals

without the prototype (Efficiency)

Very good (VG) 86 -100 % time saved

Good (G) 67 - 85 % time saved

Average (A) 50 - 66 % time saved

Small (S) 33 - 49 % time saved

Very small (VS) 0 - 32 % time saved

3. Flexibility of the achieved goals

Very good (VG) 86 -100 % accurate

Good (G) 67 - 85 % accurate

Average (A) 50 - 66 % accurate

Small (S) 33 - 49 % accurate

Very small (VS) 0 - 32 % accurate

4. Context completeness of the achieved goals

Very good (VG) 86 -100 % accurate

Good (G) 67 - 85 % accurate

Average (A) 50 - 66 % accurate

Small (S) 33 - 49 % accurate

Very small (VS) 0 - 32 % accurate

Please comment all the options (except the option “Very good”)

After defining the evaluation criteria, the interviews with the selected

experts were conducted. The designed EEP prototype was presented and

experts were asked to choose the given values of evaluation criteria. Experts’

evaluation results are presented in Table 17.

Table 17. Experts’ evaluation results

No. Criteria
Experts

E1 E2 E3 E4 E5 E6 E7

1. Effectiveness VG VG VG VG G VG VG

2. Efficiency VG G G VG VG VG G

3. Flexibility G VG VG VG VG VG G

4. Context completeness VG VG VG G VG VG A

Different decision making theories (e.g. Fuzzy, AHP) are applied to

obtain final evaluation measures. The influence of uncertainty could be

evaluated in different ways by applying the theory of Fuzzy numbers or

mathematical statistics methods. According to Kurilovas and Serikovienė,

2013, the fuzzy numbers are applicable to evaluate the quality of learning

software. After applying the multiple criteria decision making technique

111

(Skūpienė, 2010) and using fuzzy numbers linguistic values, the experts’

evaluation was turned into a numerical scale, which specifies the expression

of criterion (Table 18). Other calculations use the following middle values of

the triangular fuzzy numbers: VG – 1.0, G – 0.8, A – 0.6, S – 0.4, VS – 0.2.

Table 18. Experts' evaluation results converted into numerical values

No. Criteria Weight
Experts Average

(ai) E1 E2 E3 E4 E5 E6 E7

1. Effectiveness 0.25 1 1 1 1 0.8 1 1 0.9714

2. Efficiency 0.25 1 0.8 0.8 1 1 1 0.8 0.9143

3. Flexibility 0.25 0.8 1 1 1 1 1 0.8 0.9429

4. Context

completeness
0.25 1 1 1 0.8 1 1 0.6 0.9143

All decision-makers are equally important, their estimates xij, where i = 1,

2, ..., n (number of criteria) and j = 1, 2, ..., m, (number of experts), have the

same weight dj=0.1429, and

∑ ⅆ𝑗
𝑚
𝑗=1 = 1, where j > 2. (1)

Arithmetic means of each criterion ai were calculated (Table 18). Every

criterion in the set of evaluation is of equal importance, so their weights si

are equal to 0.25 and

∑ 𝑠𝑖
𝑛
𝑖=1 = 1, where 𝑖 > 2. (2)

Finally, an overall evaluation of the quality of the EEP was made. To do

that, the following function f (x), is calculated:

𝑓(𝑥) = ∑ 𝑠𝑖 ∙ 𝑎𝑖
𝑛
𝑖=1 (3)

Applying the formula, the final result is:

𝑓(𝑥) = 0.25 × 0.971429 + 0.25 × 0.914286 + 0.25 ×

 0.942857 + 0.25 × 0.914286 = 0.935714

To summarize the procedure, the overall evaluation result depends on

triangular fuzzy numbers conversion to linguistic variables values (Table

15), and is transformed into a linguistic variable. Then it was determined that

the overall evaluation of the extended educational platform is very high, it

corresponds to 93.57% of the absolute quality (i.e. 100%).

112

The particular results also show that the effectiveness of EEP is very

good (97.14 %), efficiency – very good (91.43 %), flexibility – very good

(94.29 %), context completeness – very good (91.43 %).

4.3 Summary

Two different evaluation processes were described in this chapter. The first

evaluation was selected for the two-dimensional categorization system, one

of components of the concept-driven Informatics education model. This

evaluation was iterative, i.e. it consists of a repetition of a process in order to

generate a sequence of outcomes. Each repetition of the process is a single

iteration, and the outcome of each iteration is then the starting point (input)

of the next iteration.

The results have showed that chosen keywords are essential both to

illustrate the Informatics content domains and the computational thinking

skills and to assist categorizers; also this categorization system is appropriate

and can be used for similar learning tasks in other Informatics contests.

After the experts’ evaluation of the quality in use of the developed

extended educational platform, it has been determined that it is of very high

quality in terms of the following criteria:

1. Effectiveness – while appropriate ICDT are provided to the teacher,

it allows teachers to form a collection of ICDT that can be presented

to the student. It helps the student to pursue competencies provided

in the Informatics curriculum;

2. Efficiency – a task selection method proposed in the EEP allows the

user to save time while selecting the appropriate ICDT for a

particular topic;

3. Flexibility – the proposed method also allows the user to modify the

process of ICDT selection in the EEP;

4. Context completeness – the ICDT template applied within the EEP

can be used in all the specified contexts of use, thus ensuring context

conformity.

113

CONCLUSIONS

1. After analyzing the impact of the Informatics concept-driven

approach, and reviewing Informatics concepts, the following

conclusions and results have been obtained:

a. The Informatics concept-driven approach is helpful to the learner

to gain conceptual knowledge, not only procedural knowledge.

b. The overview of frameworks of basic components and processes

for Informatics education shows that the most promising

framework for further devotement of concept-driven Informatics

education is the cpm.4.CSE. The main reasons are that it clearly

indicates steps of the whole process and is closely related with the

determination of Informatics competences and concepts. The

chosen cpm.4.CSE framework was then adapted and modified for

primary school context.

c. The study of existing CMS was conducted to better fit the needs of

the educational platforms used, and to get an understanding of the

differences of the basic contest management principles appeared.

Representatives from 32 countries filled in the prepared

questionnaire. The study showed that among 19 different CMS,

there is no such an educational platform where structural selection

of ICDT could be directly implemented.

2. The concept-driven Informatics education model (CDIEM) aimed to

extend the educational platform was created. The model is based on

three main components: (1) extended cmp.4.CSE model,

documented by IDEF0; It enables to perform the identification

process of Informatics competencies and concepts; (2) adaptation of

the two-dimensional categorization system for Informatics concept-

driven tasks; (3) integration of ICDT template to CMS for well-

structured selection of learning tasks.

3. The template for Informatics concept-driven tasks was developed

based on 15 years of experience collected while creating and using

Informatics learning tasks in 68 countries and discussed in the

community. They were involved in the implementation and

validation of the template. Using the designed template, annually

~150 ICDT are created and accepted by the international Bebras

community.

4. The proposed CDIE model enables the extension of the educational

platform where the new task selection module is integrated.

114

Additional ICDT template attributes are also added to CMS to

facilitate a well-structured selection of ICDT for educational

process.

5. The experts’ evaluation of the quality in use of the developed EEP

showed a very high overall quality that corresponds to 93.57 % of

absolute quality, and from high to very high quality with regard to

effectiveness (97.14 %), efficiency (91.43 %), flexibility (94.29 %),

and context completeness (91.43 %) criteria.

115

FUTHER WORKS

In this thesis only the initial framework on how concept-driven Informatics

education for primary school could be carried out is presented.

The cmp.4.CSE framework was chosen to apply for primary school

context. Based on that, the CDIEM was developed.

The cmp.4.CSE as well as CDIE model have required a lot of work on

selection of the list of Informatics concepts. The core list of concepts for

primary education identified and argued in the thesis. However, for further

investigations and substantiation of provided list of Informatics concepts the

comprehensive pedagogical as well as psychological studies are needed.

And much more: the developed CDIE model can be extended for

secondary education. Again, a new selection of the Informatics concepts

need to be done in regards to pedagogical-psychological issues suitable to

the age of students.

REFERENCES

1. ACM/IEEE-CS Joint Curriculum Task Force. (2001). Computing

Curricula 2001 Computer Science. Retrieved from

https://www.acm.org/binaries/content/assets/education/curricula-

recommendations/cc2001.pdf

2. A Curriculum for School. (2012). Computing at School. Retrieved from

http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pd

f

3. American Heritage Dictionary of the English Language, Fifth Edition.

(2011). Retrieved March 25 2019 from

https://www.thefreedictionary.com/information+science

4. American Heritage Dictionary of the English Language, Fifth Edition.

(2016). Retrieved May 20 2019 from

https://www.thefreedictionary.com/student

5. Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., &

Zagami, J. (2016). A K-6 Computational Thinking Curriculum

Framework: Implications for Teacher Knowledge. Journal of

Educational Technology & Society, 19(3).

6. Armoni, M. (2012). Teaching CS in Kindergarten: How Early Can the

Pipeline Begin? ACM Inroads, 3(4), 18-19.

7. Association for Computing Machinery. (2003). A Model Curriculum for

K-12. ACM Computer Science. New York, NY: ACM.

8. Australian Curriculum: Digital Technologies, v8.3. (2016). Available

from http://www.australiancurriculum.edu.au/technologies/digital-

technologies/structure

9. Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C.,

... & Stupurienė, G. (2015). Concepts in K-9 Computer Science

Education. In Proceedings of the 2015 ITiCSE on working group

reports, ACM, 85-116.

10. Barendsen, E., & Steenvoorden, T. (2016). Analyzing Conceptual

Content of International Informatics Curricula for Secondary Education.

In International Conference on Informatics in Schools: Situation,

Evolution, and Perspectives, Springer International Publishing, 14-27.

11. Barendsen, E., Grgurina, N., & Tolboom, J. (2016). A New Informatics

Curriculum for Secondary Education in The Netherlands. In

International Conference on Informatics in Schools: Situation,

Evolution, and Perspectives, Springer International Publishing, 105-117.

117

12. Barr, V., Stephenson, C. (2011). Bringing Computational Thinking to K-

12: What is Involved and What is the Role of the Computer Science

Education Community? Inroads, 2(1).

13. Belford, G., G. (2017). Computer Science. Encyclopedia Britannica,

inc.,

14. Bell, T., Andreae, P., & Robins, A. (2014). A Case Study of the

Introduction of Computer Science in NZ Schools. ACM Transactions on

Computing Education (TOCE), 14(2), 10.

15. Ben-Ari, M. (2001). Constructivism in Computer Science Education.

Journal of Computers in Mathematics and Science Teaching, 20(1), 45-

73.

16. Biolchini, J., Mian, P. G., Natali, A. C., and Travassos G. H. (2005).

Systematic Review in Software Engineering: Relevance and Utility,

Technical Report ES67905, PESC – COPPE/UFRJ

17. Bischof, E., & Sabitzer, B. (2011). Computer Science in Primary

Schools–Not Possible, But Necessary?! In International Conference on

Informatics in Schools: Situation, Evolution, and Perspectives, Springer,

Berlin, Heidelberg, 94-105.

18. Bruner, J., S. (1960). The Process of Education (Cambridge MA,

Harvard University Press).

19. Byrne, P. (1995). Fuzzy Analysis: A Vague Way of Dealing with

Uncertainty in Real Estate Analysis? Journal of Property Valuation and

Investment, 13(3), 22-41.

20. Byrnes, J. P., & Wasik, B. A. (1991). Role of Conceptual Knowledge in

Mathematical Procedural Learning. Developmental Psychology, 5, 777-

786.

21. Carey, S. (2009). The Origin of Concepts. Oxford University Press.

ISBN 978-0-19-536763-8.

22. Carvalho, S., White, H. (1997). Combining the Quantitative and

Qualitative Approaches to Poverty Measurement and Analysis: The

Practice and the Potential. World Bank Technical Paper 366.

Washington, D.C.: World Bank

23. Caspersen, M. E., & Nowack, P. (2013). Computational Thinking and

Practice: A Generic Approach to Computing in Danish High Schools. In

Proceedings of the Fifteenth Australasian Computing Education

Conference, Australian Computer Society, Inc., 136, 137-143.

118

24. Chang, C. W., Wu, C. R., & Lin, H. L. (2008). Integrating Fuzzy Theory

and Hierarchy Concepts to Evaluate Software Quality. Software Quality

Journal, 16(2), 263-276.

25. Chaudhary, D. A. (2013). Theories of Teaching. Education, 2(3).

26. Clancey, W. J. (1995). A Tutorial on Situated Learning. Proceedings of

the International Conference on Computers and Education (Taiwan).

Self, J. (Ed.) Char-lottesville, VA: AACE. 49-70.

27. Cohen, H., Lefebvre, C. (Eds.). (2005). Handbook of Categorization in

Cognitive Science. Elsevier.

28. Computer Science Curricula (2013). Available via internet:

https://www.acm.org/education/CS2013-final-report.pdf

29. Computing Curricula. Computer Science (2001). Available via internet:

http://www.acm.org/education/curric_vols/cc2001.pdf

30. Csizmadia, A. et al. (2015). Computational Thinking: A guide for

teachers, available via internet:

http://computingatschool.org.uk/computationalthinking

31. Csizmadia, A., Standl, B., & Waite, J. (2019). Integrating the

Constructionist Learning Theory with Computational Thinking

Classroom Activities. Informatics in Education, 18(1), 41-67.

32. Dagiene, V. (2005). Competition in Information Technology: An

Informal Learning. In: Digital Tools for Lifelong Learning, Poland, 228-

234.

33. Dagiene, V., Futschek, G. (2008). Bebras International Contest on

Informatics and Computer Literacy: Criteria for Good Tasks. In:

Mittermeir, R.T., Syslo, M.M. (Eds.), Informatics Education –

Supporting Computational Thinking. Lecture Notes in Computer

Science. Springer, 5090, 19-30

34. Dagienė, V., Sentance, S., Stupurienė, G. (2017). Developing a Two-

Dimensional Categorization System for Educational Tasks in

Informatics. Informatica, 28(1), 23-44.

35. Dagiene, V., Sentance, S. (2016). It’s Computational Thinking! Bebras

Tasks in the Curriculum. In: LNCS, 9973, 28-39.

36. Dagienė, V., Stupurienė, G. (2016a). Bebras - a Sustainable Community

Building Model for the Concept Based Learning of Informatics and

Computational Thinking. Informatics in education, 15(1), 25-44.

37. Dagienė, V., Stupurienė, G. (2016b). Informatics Concepts and

Computational Thinking in K-12 Education: A Lithuanian Perspective.

119

Journal of information processing. Tokyo: Information Processing

Society of Japan, 24(6), 732-739.

38. Dagiene, V. (2006). Information Technology Contests – Introduction to

Computer Science in an Attractive Way. Informatics in Education, 5(1),

37-46.

39. Dagienė, V. (2010). Sustaining Informatics Education by Contests.

LNCS, 5941, 1-12.

40. Dagienė, V., Pėlikis, E., Stupurienė, G. (2015a). Introducing

Computational Thinking through a Contest on Informatics: Problem-

solving and Gender Issues. Informacijos mokslai, 73, 43-51.

41. Dagienė, V., Pėlikis, E., & Stupurienė, G. (2015b). Informatinio

mąstymo ugdymo užduotys: merginų ir vaikinų sprendimų analizė. Acta

paedagogica Vilensia, 35, 53-66.

42. Dagienė, V., Stupurienė, G. (2014). Informatics Education based on

Solving Attractive Tasks through a Contest. In: Brinda, T; Reynolds, N.;

Romeike, R. (Ed.): Proceedings of the IFIP TC3 Conference “Key

Competences in Informatics and ICT”, 51-62.

43. Dagienė, V., Mannila, L., Poranen, T., Rolandsson, L., Stupurienė, G.

(2014). Reasoning on Children’s Cognitive Skills in an Informatics

Contest: Findings and Discoveries from Finland, Lithuania, and Sweden.

LNCS, 8730, 66–77. ISSN 0302-974. Cham: Springer International

Publishing, ISBN 978331

44. Dolgopolovas, V., Jevsikova, T., Savulionienė, L., Dagienė, V. (2015)

On Evaluation of Computational Thinking of Software Engineering

Novice Students. In: IFIP TC3 Working Conference “A New Culture of

Learning: Computing and next Generations”.

45. Dagienė, V., Stupurienė, G., Vinikienė, L. (2017a). Informatics Based

Tasks Development in the Bebras Contest Management System. In:

International Conference on Information and Software Technologies,

466-477. Springer, Cham.

46. Dagienė, V., Stupurienė, G., Vinikienė, L. (2017b). Implementation of

Dynamic Tasks on Informatics and Computational Thinking. Baltic

Journal of Modern Computing, 5(3), 306.

47. Dagiene, V., Stupuriene, G., Vinikiene, L., & Zakauskas, R. (2017c).

Introduction to Bebras Challenge Management: Overview and Analyses

of Developed Systems. In: International Conference on Informatics in

Schools: Situation, Evolution, and Perspectives, 232-243. Springer,

Cham.

120

48. Das, S. K. (2007). Handbook of Computer Science. New Delhi, India:

Dominant Publishers and Distributors.

49. Denning, P. J. (1985). The Science of Computing: What Is Computer

Science? American Scientist, 73(1), 16-19.

50. Department for Education, (2013). The National Curriculum in England:

Framework Document (London, DfE).

51. Diethelm, I. et al., (2012). Students, Teachers and Phenomena:

Educational Reconstruction for Computer Science Education.

Proceedings of the Koli Calling ’12, 164-173.

52. Dorling, M., Walker, M. (2014). Computing Progression Pathways V2.0.

Computing at School, Available from

community.computingatschool.org.uk/resources/2324

53. Duncan, C., & Bell, T. (2015). A Pilot Computer Science and

Programming Course for Primary School Students. In Proceedings of the

Workshop in Primary and Secondary Computing Education, 39-48.

ACM.

54. Duncan, C., Bell, T., & Atlas, J. (2017). What Do the Teachers Think?

Introducing Computational Thinking in the Primary School Curriculum.

In Proceedings of the Nineteenth Australasian Computing Education

Conference, 65-74. ACM.

55. El-Sharef, B., & El-Kilany, K. S. (2011). Process Modeling and

Analysis of a Quality Management System for Higher Education. In

Proceedings of the World Congress on Engineering, 1, 6-8.

56. Encyclopedia of Information Science and Technology (internet), (2018).

Available: https://www.igi-global.com/dictionary/educational-

platform/42260

57. Encyclopedia of Philosophy, (2017). Available:

http://www.iep.utm.edu/th-th-co/

58. Entwistle, N. (1981). Styles of Learning and Teaching, John Wiley,

Chichester.

59. Fincher, S. (2004). Computer Science Education Research. New York,

NY: Routledge Falme.

60. Flórez, F. B., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., &

Danies, G. (2017). Changing a Generation’s Way of Thinking: Teaching

Computational Thinking Through Programming. Review of Educational

Research, 87(4), 834-860.

121

61. Fowler, M. (2004). UML distilled: A Brief Guide to the Standard Object

Modeling Language. Addison-Wesley Professional.

62. Gagne, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The

Cognitive Psychology of School Learning. Allyn & Bacon.

63. Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick,

A., ... & Meyer, B. (2013). Informatics Education: Europe Cannot

Afford to Miss the Boat. Report of the joint Informatics Europe & ACM

Europe Working Group on Informatics Education.

64. Gasperovic, J., Caplinskas, A. (2006). Methodology to Evaluate the

Functionality of Specification Languages. Informatica 17(3), 325-346.

65. Gibson, J. P. (2012). Teaching Graph Algorithms to Children of All

Ages. In Proceedings of the 17th ACM annual conference on Innovation

and technology in computer science education, 34-39. ACM.

66. Giddens, J. F., & Brady, D. P. (2007). Rescuing Nursing Education from

Content Saturation: The Case for a Concept-Based Curriculum. Journal

of Nursing Education, 46, 65-69.

67. von Glasersfeld, E. A. (1995) Constructivist Approach to Teaching. In L.

P. Steffe & J. Gale (Eds.), Constructivism in education. Hillsdale, NJ:

Lawrence Erlbaum Associates, 3-15.

68. Gonzalez, R., & Dahanayake, A. (2007). A Concept Map of Information

Systems Research Approaches. In: Proceedings of the 2007, IRMA

International Conference, Vancouver.

69. Gredler, M. E. (2008). Learning and Instruction. Upper Saddle River,

NJ: Pearson Prentice Hall.

70. Grover, S., Pea, R. (2013). Computational Thinking in K–12: A Review

of the State of the Field. Educational Researcher, 42(1), 38-43.

71. Grillenberger, A., Przybylla, M., & Romeike, R. (2016). Bringing CS

Innovations to the Classroom: A Process Model of Educational

Reconstruction. ISSEP 2016, 31-39.

72. Grillenberger, A., & Romeike, R. (2017). Key Concepts of Data

Management: An Empirical Approach. In Proceedings of the 17th Koli

Calling Conference on Computing Education Research, 30-39. ACM.

73. Grundspenkis, J., & Strautmane, M. (2009). Usage of Graph Patterns for

Knowledge Assessment Based on Concept Maps. Scientific Journal of

Riga Technical University. Computer Sciences, 38(38), 60-71.

74. Gudavičius, A. (2007). Gretinamoji semantika. Šiauliai: ŠU leidykla

122

75. Gudavičius A. (2009). Etnolingvistika (Tauta kalboje). Šiauliai.

76. Gudavičius, A. (2011). Reikšmė – sąvoka – konceptas ir prasmė. Res

Humanitariae, 10(2), 108-119.

77. Hadjerrouit, S. (2009). Teaching and Learning School Informatics: A

Concept-Based Pedagogical Approach. Informatics in Education, 8(2),

227-250.

78. Hager, P. J., Scheiber, H. J., & Corbin, N. C. (1997). Designing &

Delivering: Scientific, Technical, and Managerial Presentations. John

Wiley & Sons.

79. Haseski, H.I., Ilic, U., Tugtekin, U. (2018). Defining a New 21st Century

Skill-Computational Thinking: Concepts and Trends. International

Education Studies, 11(4), 29.

80. Heintz, F., Mannila, L., & Färnqvist, T. (2016). A Review of Models for

Introducing Computational Thinking, Computer Science and Computing

in K-12 Education. In: Frontiers in Education Conference (FIE), IEEE,

1-9.

81. Hromkovic, J., & Lacher, R. (2017). How to Convince Teachers to

Teach Computer Science Even If Informatics Was Never a Part of Their

Own Studies. Bulletin of EATCS, 3(123).

82. Hromkovič, J. (2006). Contributing to General Education by Teaching

Informatics. In: International Conference on Informatics in Secondary

Schools-Evolution and Perspectives, Springer, Berlin, Heidelberg, 25-

37.

83. Hounsell, D. (1997). Understanding Teaching and Teaching for

Understanding. In: Marton, F., Hounsell, D. and Entwistle, N. (Eds). The

Experience of Learning, Scottish Academic Press, Edinburgh, 238-57.

84. Hubwieser, P. (2007). Didaktik der Informatik [Computer science

education]. Berlin, Germany: Springer.

85. Hu, C. F., Wu, C. C., Lin, Y. T., & Wang, A. T. (2017). How Computer

Scientists and Computing Teachers Think Differently in the Concepts to

be Included in a Secondary School Computing Curriculum. Siu-cheung

KONG The Education University of Hong Kong, Hong Kong, 50.

86. IEEE Standard for Functional Modeling Language—Syntax and

Semantics for IDEF0. (1998). Institute of Electrical and Electronics

Engineers, Inc.

87. IEEE Standard for Learning Object Metadata (2002). 1484.12.1-2002.

ISBN: 0-7381-3297-7. https://ieeexplore.ieee.org/document/1032843

123

88. ISO/IEC 25010:2011. Systems and Software Engineering – Systems and

Software Quality Requirements and Evaluation (SQuaRE) – System and

software quality models

89. International Society for Technology in Education & Computer Science

Teachers Association (2011). Operational definition of computational

thinking for K–12 educations. Retrieved from

https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

90. Jacob, E. K. (2004). Classification and Categorization: A difference that

Makes a Difference. In Library Trends.

91. Juškevičienė, A., & Dagienė, V. (2018). Computational Thinking

Relationship with Digital Competence. Informatics in Education, 17(2).

92. K-12 Computer Science Framework Steering Committee. (2016). K–12

Computer Science Framework. Retrieved from http://www.k12cs.org

93. Kalas, I. Tomcsanyiova, M. (2009). Students’ Attitude to Programming

in Modern Informatics. Informática na Educa-ção: teoria & prática,

Porto Alegre, 12(1), 127-135.

94. Kalelioglu, K. Gülbahar, Y. & Kukul, V. (2016). A Framework for

Computational Thinking Based on a Systematic Research Review. Baltic

Journal of Modern Computing, 4(3), 583–596.

95. Kalelioglu, F., Gulbahar, Y., Madran, O. (2015). A Snapshot of the First

Implementation of Bebras International Informatics Contest in Turkey.

In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. Springer. LNCS,

9378, 131-140.

96. Kan, S. H. (2002). Metrics and Models in Software Quality Engineering.

Addison-Wesley Longman Publishing Co., Inc.

97. Kazakoff, E. and Bers, M. (2012). Programming in a Robotics Context

in the Kindergarten Classroom: The Impact on Sequencing Skills.

Journal of Educational Multimedia and Hypermedia, 21(4), 371-391.

98. Kazakoff, E., Sullivan, A. and Bers, M.U. (2013). The Effect of a

Classroom-Based Intensive Robotics and Programming Workshop on

Sequencing Ability in Early Childhood. Early Childhood Education

Journal, 41(4), 245-255.

99. Kattmann, U. et al. (1996). Educational Reconstruction – Bringing

together Issues of scientific clarification and students’ conceptions.

Annual Meeting of the National Association of Research in Science

Teaching (NARST). St. Louis.

124

100. Kinnunen, P. (2009). Challenges of Teaching and Studying

Programming at a University of Technology-Viewpoints of Students,

Teachers and the University. Doctoral dissertation, Helsinki University

of Technology.

101. Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004). Evidence-based

Software Engineering. In Software Engineering, ICSE 2004, 273-281.

102. Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current

Issues in Competence Modeling and Assessment. Journal of Psychology,

216(2), 61-73.

103. Krippendorff, K. (2004). Reliability in Content Analysis: Some

Common Misconceptions and Recommendations. Human

communication research, 30(3), 411-433.

104. Kristan, N., Gostisa, D., Fele-Zorz, G., Brodnik, A. (2014). A High-

availability Bebras Competition System. In: Gulbahar, Y., Karata, E.

(eds.) ISSEP 2014. Springer, Heidelberg, LNCS, 8730, 78-87.

105. Ku, W. A. (2007). Using Concept Maps to Explore the Conceptual

Knowledge of Technology Students: An Exploratory Study. Doctoral

dissertation, The Ohio State University.

106. Kurilovas, E., & Serikoviene, S. (2013). New MCEQLS TFN Method

for Evaluating Quality and Reusability of Learning Objects.

Technological and Economic Development of Economy, 19(4), 706-723.

107. Lakoff, G. (1987). Women, Fire and Dangerous Things. The University

of Chicago Press.

108. Lee, I., Martin, F., Apone, K. (2014). Integrating Computational

Thinking Across the K-8 Curriculum. ACM Inroads, 5(4), 64-71.

109. Leff, A., & Rayfield, J. T. (2001). Web-application Development Using

the Model/view/controller Design Pattern. In: Proceedings of Enterprise

Distributed Object Computing Conference, EDOC'01. Fifth IEEE

International, 118-127.

110. Lhotska, L., Bursa, M., Huptych, M., Chudacek, V., & Havlik, J.

(2013). Interoperability of Medical Devices and Information Systems. In

Handbook of Research on ICTs for Human-Centered Healthcare and

Social Care Services, IGI Global, 749-762.

111. Lu, J. J. & Fletcher, G.H. (2009). Thinking about Computational

Thinking. ACM SIGCSE Bulletin, 41(1), 260-264.

112. Loui, M. C. (1987). Computer Science Is an Engineering Discipline.

Engineering Education, 78(3), 175-78.

125

113. Machanick, P. (2007). A Social Construction Approach to Computer

Science Education. Computer Science Education, 17(1), 1-20.

114. Manev, K., & Maneva, N. (2017). On a Methodology for Creating

School Curricula in Computing. Olympiads in Informatics, 11, 93-107.

115. Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C.,

Rolandsson, L., Settle, A. (2014). Computational Thinking in K-9

Education. In: Goldweber, M. (ed.): ITiCSE '14 Proceedings of the 2014

conference on Innovation & technology in computer science education,

1-29.

116. Margolis, J., & Fisher, A. (2003). Unlocking the Clubhouse: Women in

computing. MIT press.

117. Marton, F., & Saljo, R. (1997). Approaches to Learning. Eds. Marton,

F., Hounsell, D. and Entwistle, N. The Experience of Learning.

118. Menzel, C., & Mayer, R. J. (1998). The IDEF Family of Languages. In

Handbook on architectures of information systems, Springer Berlin

Heidelberg, 209-241.

119. Mills, S. (2016). Conceptual Understanding: A Concept Analysis. The

Qualitative Report, 21(3), 546.

120. Mittermeir, R., Bischof, E., Hodnigg, K. (2010). Showing Core-

Concepts of Informatics to Kids and Their Teachers. LNCS, Springer,

5941, 143-154.

121. Morgado, E. M. M., Ortuño, R. A. C., Yang, L. L., & Ferreras-

Fernández, T. (2018). Adaptation of Descriptive Metadata for Managing

Educational Resources in the GREDOS Repository. In Online Course

Management: Concepts, Methodologies, Tools, and Applications, IGI

Global, 2063-2085.

122. Mühling, A. M. (2014). Investigating Knowledge Structures in

Computer Science Education. Doctoral dissertation, Technische

Universität München.

123. Murphy, G. (2002). The Big Book of Concepts. Massachusetts Institute

of Technology. ISBN 0-262-13409-8.

124. Novak, J., D., Cañas, A., J. (2008). The Theory Underlying Concept

Maps and How to Construct and Use Them. Technical Report. Institute

for Human and Machine Cognition, Pensacola.

125. Opmanis, M., Dagiene, V., Truu, A. (2006). Task Types at Beaver

Contests. Information Technologies at School, 509-519.

126

126. Oppermann, R., & Reiterer, H. (1997). Software Evaluation Using the

9241 Evaluator. Behaviour & Information Technology, 16(4-5), 232-

245.

127. Papert, S. (1987). Computer Criticism vs. Technocentric Thinking.

Educational Researcher, 16(1), 22-30.

128. Papert, S. (1996). A Word for Learning. In: Kafai, Y., Resnick, M.

(eds.) Constructionism in Practice, Lawrence Erlbaum associates Inc.,

New Jersey, 9-24.

129. Papaurėlytė, S. (2002). Liūdesio konceptualizavimas lietuvių kalboje.

Kalbotyra, (51), 1.

130. Papaurelytė-Klovienė, S. (2004). Liūdesio konceptas lietuvių ir rusų

kalbose. Daktaro disertacija. Vilnius.

131. Papaurelytė-Klovienė, S. (2005). Konceptualusis lūdesio modelis

lietuvių ir rusų kalbų pasaulėvaizdžiuose. Žmogus kalbos erdvėje.

132. Papaurelytė-Klovienė, S. (2007). Lingvistinės kultūrologijos bruožai.

Šiauliai

133. Parmaxi, A., & Zaphiris, P. (2014). The Evolvement of

Constructionism: An Overview of the Literature. In International

Conference on Learning and Collaboration Technologies, Springer,

Cham, 452-461.

134. Piaget, J. (1971). Psychology and Epistemology. New York: Grossman.

135. Piaget, J. (1953). The Origin of Intelligence in the Child. London:

Routledge.

136. Robinson, R., Molenda, M., & Rezabek, L. (2008). Facilitating

Learning. Educational technology: A definition with commentary.

Routledge, 15-48.

137. Rychen, D. S., & Salganik, L. H. (2003). Definition and Selection of

Competencies: Theoretical and Conceptual Foundations (DeSeCo).

Summary of the final report: Key Competencies for a Successful Life

and a Well-Functioning Society.

138. Schwill, A. (1997). Computer Science Education Based on

Fundamental Ideas. In: Proceedings of the IFIP TC3 WG3.1/3.5 Joint

Working Conference on Information Technology: Supporting Change

through Teacher Education, 285-291.

139. Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O'Grady-

Cunniff, D., Boucher-Owens, B., Stephenson, C., Verno, A. (2011).

127

CSTA K–12 Computer Science Standards. Computer Science Teachers

Association and Association for Computing Machinery.

140. Selby, C. (2014). How Can the Teaching of Programming Be Used to

Enhance Computational Thinking Skills? Doctoral dissertation.

141. Selby, C., Woollard, J. (2013). Computational Thinking: The

Developing Definition. In, Special Interest Group on Computer Science

Education (SIGCSE) 2014, Atlanta, US

142. Selby, C., Dorling, M., Woollard, J. (2014). Evidence of Assessing

Computational Thinking. University of Southampton, 1-11.

143. Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a

Phenomenology of Computational Thinking in STEM Education. arXiv

preprint arXiv:1801.09258.

144. Sutherland, R. (2013). Education and Social Justice in a Digital Age.

Policy Press.

145. Skūpienė, J. (2010). Evaluation of Algorithm-code Complexes in

Informatics Contests. Doctoral dissertation, PhD thesis, Matematikos ir

informatikos institutas.

146. Syllabus di Elementi di Informatica la scuola dell’obbligo, 2010.

Retrieved from

https://www.olimpiadiproblemsolving.it/documenti/SYLLABUS.pdf

147. Sysło, M. (2017). Implementing Computer Science Curriculum in

Schools in Poland: Issues, Challenges, and Practice, WCCE, Ireland.

148. Strawhacker, A., Portelance, D., Lee, M. and Bers, M.U. (2015).

Designing Tools for Developing Minds: The Role of Child Development

in Educational Technology. Proceedings of the 14th International

Conference on Interaction Design and Children (IDC’15), ACM,

Boston, MA, USA.

149. Stupurienė, G.; Vinikienė, L.; Dagienė, V. (2016). Students’ Success in

the Bebras Challenge in Lithuania: Focus on a Long-Term Participation.

ISSEP 2016. Proceedings. LNCS, 9973. Cham: Springer International

Publishing, 78-89.

150. Sysło, M. M., & Kwiatkowska, A. B. (2015). Introducing a New

Computer Science Curriculum for All School Levels in Poland. In

International Conference on Informatics in Schools: Situation,

Evolution, and Perspectives, Springer International Publishing, 141-154.

151. Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., &

Verno, A. (2003, 2006). A Model Curriculum for K–12 Computer

128

Science: Report of the ACM K–12 Task Force Computer Science

Curriculum Committee, New York, NY: Association for Computing

Machinery.

152. Tucker, A. B. (Ed.). (2004). CRC Handbook of Computer Science and

Engineering (2nd ed.). Boca Raton, FL: CRC Press.

153. Zendler, A., Spannagel, C. (2008). Empirical Foundation of Central

Concepts for Computer Science Education. ACM Journal on Educational

Resources in Computing, 8(2).

154. Zendler, A., Seitz, C., & Klaudt, D. (2016). Process-Based

Development of Competence Models to Computer Science Education.

Journal of Educational Computing Research, 54(4), 563-592.

155. Zendler, A., Spannagel, C., & Klaudt, D. (2011). Marrying Content and

Process in Computer Science Education. IEEE Transactions on

Education, 54(3), 387-397.

156. Zendler, A., Klaudt, D., & Seitz, C. (2014). Empirical Determination of

Competence Areas to Computer Science Education. Journal of

Educational Computing Research, 51(1), 71-89.

157. Vaníček, J. (2013). Introducing Topics from Informatics into Primary

School Curricula: How Do Teachers Take It? LNCS, 7780, 41.

158. Vaníček, J. (2014). Bebras Informatics Contest: Criteria for Good

Tasks Revised. LNCS, 8730, 17-28.

159. Verno, A., Carter, D., Cutler, R., Hutton, M., Pitt, L. (2006). A Model

Curriculum for K-12 Computer Science Level 2 Objectives and

Outlines. SIGCSE05, St. Louis, Missouri, USA.

160. Walsh, J. (2011). Information Literacy Instruction: Selecting an

Effective Model. Elsevier.

161. Warburton, K. (2003). Deep Learning and Education for Sustainability.

International Journal of Sustainability in Higher Education, 4(1), 44-56.

162. Webb, M. E., Bell, T., Davis, N., Katz, Y. J., Fluck, A., Sysło, M. M.,

... & Brinda, T. (2018). Tensions in Specifying Computing Curricula for

K-12: Towards a Principled Approach for Objectives. IT-Information

Technology, 60(2), 59-68.

163. Wethington, E., & McDarby, M. L. (2015). Interview methods

(Structured, Semistructured, Unstructured). The Encyclopedia of

Adulthood and Aging, 1-5.

164. Wiley, D., A. (2000). Connecting Learning Objects to Instructional

Design Theory: A Definition, A Metaphor, and A Taxonomy, in Wiley,

129

David A. (DOC), The Instructional Use of Learning Objects: Online

Version.

165. Wing, J. (2006). Computational thinking. Communications of the

ACM, 49(3), 33-35.

166. Wing, J. (2014). Computational Thinking Benefits Society. 40th

Anniversary Blog of Social Issues in Computing.

167. Wilensky, U., (1991). Abstract Meditations on the Concrete and

Concrete Implictions for Mathematics Education. In: Harel, I., Papert, S.

(eds.) Constructionism, Ablex Publishing Corporation, Norwood, 193-

203.

168. Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M.

(2011). Computational Thinking and Expository Writing in the Middle

School. ACM Transactions on Computing Education (TOCE), 11(2).

169. Yang, S., & Park, S. (2014). Teaching Some Informatics Concepts

Using Formal System. Informatics in Education, 13(2), 323.

130

Gabrielė Stupurienė

CONCEPT-DRIVEN INFORMATICS EDUCATION: EXTENSION OF

COMPUTATIONAL THINKING TASKS AND EDUCATIONAL

PLATFORM FOR PRIMARY SCHOOL

Doctoral Dissertation

Technological Sciences, Informatics Engineering T 007

Editor Zuzana Šiušaitė

131

UŽRAŠAMS

Vilniaus universiteto leidykla

Saulėtekio al. 9, LT-10222 Vilnius

El. p. info@leidykla.vu.lt,

www.leidykla.vu.lt

Tiražas 20 egz.

