

VILNIUS UNIVERSITY

Rima
KRIAUZIENĖ

Parallel algorithms for non-classical
problems with big computational costs

DOCTORAL DISSERTATION

Natural Sciences,
Informatics N 009

VILNIUS 2019

This dissertation was written between 2015 and 2019 at Vilnius University.

Academic supervisor:
Prof. Habil. Dr. Raimondas Čiegis (Vilnius Gediminas Technical
University, Natural Sciences, Informatics – N 009).

Academic consultant:
Prof. Dr. Julius Žilinskas (Vilnius University, Natural Sciences, Informatics
– N 009).

VILNIAUS UNIVERSITETAS

Rima
KRIAUZIENĖ

Didelės skaičiavimo apimties
neklasikinių uždavinių sprendimo
lygiagretieji algoritmai

DAKTARO DISERTACIJA

Gamtos mokslai,
Informatika N 009

VILNIUS 2019

Disertacija rengta 2015–2019 metais Vilniaus universitete.

Mokslinis vadovas:
prof. habil. dr. Raimondas Čiegis (Vilniaus Gedimino technikos
universitetas, gamtos mokslai, informatika – N 009).

Mokslinis konsultantas:
prof. dr. Julius Žilinskas (Vilniaus universitetas, gamtos mokslai,
informatika – N 009).

SUMMARY

This research focuses on parallel algorithms, which are important for solving
contemporary problems. Parallel algorithms help to solve the problems
of memory limitation and computational time, when we can not find the
solution reasonably fast using a single core on the fastest computers.

The object of the thesis are efficient parallel algorithms for problems
with big computational costs, including optimization problems.

In the first chapter of the dissertation the research area and problem,
the aim and objectives of the research, the structure of the dissertation are
presented.

In the second chapter of the dissertation the non-local problem with
fractional powers of the Laplacian was analysed. In this dissertation, we
study and compare parallel algorithms for various most recent numerical
methods proposed for solving the fractional powers of elliptic problems.
We consider four different numerical methods. These methods are based
on the general approach: the given non-local differential problem is trans-
formed to a local differential problem of elliptic or pseudo-parabolic type,
but formulated in a higher dimensional space Rd+1, if Ω ⊂ Rd. The scalabil-
ity and convergence analysis of parallel algorithms for these problems was
performed. Recommendations to achieve given accuracy for the provided
fractional power coefficient were specified.

In the third chapter of the dissertation the detailed analysis of absorb-
ing boundary conditions for the linear Schrödinger equation was performed.
We were interested in methods based on the approximation of exact trans-
parent boundary conditions by rational functions. Different strategies were
investigated to find coefficients of approximations. In this research we com-
pare the state-of-art methods. Recommendations for constructing absorbing
boundary conditions for the one-dimensional Schrödinger equation using in-
vestigated methods were presented. The proposed methodology has shown

5

that it is possible to find the accurate absorbing boundary conditions for
four qualitatively different tasks.

In the fourth chapter of the dissertation a three-level parallelisation
scheme was proposed. The possibilities of this methodology are demon-
strated for solving local optimization problems from the second part of
dissertation. Comparing the three-level scheme to the classical two level
scheme, the proposed scheme increases the amount of computational re-
sources, which can be used efficiently.

To show that these ideas work for a broad scope of applications, we dis-
cussed the possibility to apply the proposed scheme to other examples. The
comparison of different Nelder-Mead parallelisation methods is discussed.

The dissertation consists of Introduction, three chapters, conclusions
and bibliography. The chapters are divided into sections, sections – into
subsections. The scope of the dissertation is 106 pages including 10 figures
and 30 tables. The list of references consists of 103 sources.

The results of this research were presented at five international and
three national Lithuanian conferences, at the PhD Symposium 2018 of the
3rd NESUS Winter School. Three articles were published in periodical
scientific publications in journals referred to ISI Web of science. One article
was published in Conference Proceedings.

6

SANTRAUKA

Šis darbas skirtas lygiagretiesiems algoritmams, kurie ypač svarbūs spren-
džiant šiuolaikinius uždavinius. Lygiagretieji algoritmai padeda išspręsti
atminties išteklių ribojimo ir skaičiavimo laiko problemas, kai naudojant
pačius greičiausius šiuolaikinius nuosekliuosius kompiuterius negalime laiku
rasti atsakymo.

Disertacijos tyrimo objektas – lygiagretieji algoritmai, skirti uždavini-
ams, susijusiems su didelėmis skaičiavimo sąnaudomis, taip pat optimizav-
imo uždaviniai.

Pirmajame disertacijos skyriuje aptariama tyrimo sritis ir problema,
darbo tikslas ir uždaviniai, disertacijos struktūra.

Antrajame disertacijos skyriuje išnagrinėtas nelokalus uždavinys su Lap-
laso operatoriumi, pakeltu trupmeniniu laipsniu. Disertacijoje nagrinėjami
ir lyginami lygiagretieji algoritmai, skirti skirtingiems naujausiems skaitini-
ams metodams, kurie literatūroje siūlomi uždaviniams su elipsiniu operato-
riumi, pakeltu trupmeniniu laipsniu, spręsti. Pasirinkti keturi skirtingi nau-
jausi skaitiniai metodai. Šie metodai pagrįsti bendra idėja: nelokalusis di-
ferencialinis uždavinys transformuojamas į lokalųjį pseudo-parabolinio arba
elipsinio tipo diferencialinį uždavinį, tačiau suformuluotą aukštesnės dimen-
sijos Rd+1 erdvėje, kai elipsinis operatorius buvo iš Rd. Atlikta lygiagrečiųjų
algoritmų išplečiamumo ir konvergavimo analizė. Pateiktos rekomendacijos,
kaip pasiekti norimą tikslumą atitinkamam elipsnio operatoriaus trupmeni-
niam laipsniui β.

Trečiajame disertacijos skyriuje atlikta išsami tiesinės Šriodingerio lygties
sugeriančių kraštinių sąlygų konstravimo analizė. Naudojami metodai pa-
remti tikslių pralaidžių kraštinių sąlygų aproksimavimu racionaliosiomis
trupmenomis. Nagrinėti ir lyginti skirtingi metodai, kurie leidžia rasti
racionaliųjų funkcijų koeficientus. Pateikta rekomendacijų, kaip naudojant
šiuos metodus konstruoti sugeriančias kraštines sąlygas vienmatei Šriodin-

7

gerio lygčiai. Pasiūlyta metodika parodė, kad galima rasti sugeriančias
kraštines sąlygas keturiems kokybiškai skirtingiems uždaviniams.

Ketvirtajame disertacijos skyriuje pasiūlyta trijų lygmenų lygiagretinimo
schema. Šios metodikos galimybės rodomos sprendžiant lokalaus optimiza-
vimo uždavinį iš trečiojo disertacijos skyriaus. Pasiūlyta trijų lygmenų ly-
giagretinimo schema, lyginant su klasikine dviejų lygių schema, padidina
skaičiavimo išteklių kiekį, kurie gali būti efektyviai naudojami. Siekiant
parodyti, kad ši idėja gali būti plačiai taikoma, aptarėme galimybę taikyti
siūlomą schemą ir kitiems pavyzdžiams. Šioje tyrimo dalyje atliekamas
skirtingų simplekso metodų lyginimas.

Disertaciją sudaro įvadas, trys skyriai, literatūros sąrašas, publikacijų
sąrašas, santrauka lietuvių kalba ir padėka. Disertacijos skyriai padalyti
į poskyrius, o poskyriai – į skyrelius. Disertacijoje yra 106 puslapiai, 10
paveikslų ir 30 lentelių. Disertacijoje cituojami 103 informacijos šaltiniai.

Disertacijos rezultatai pristatyti penkiose tarptautinėse konferencijose,
trijose konferencijose, vykstančiose Lietuvoje, dviejose jaunųjų mokslininkų
konferencijose ir Nesus organizuojamos žiemos mokyklos doktorantų sim-
poziume Zagrebe. Disertacijos tema paskelbti trys straipsniai, įtraukti į
Thompson Reuters ISI Web of Science duomenų bazę ir turi citavimo in-
deksą, vienas straipsnis paskelbtas konferencijų medžiagoje.

8

Contents

1 INTRODUCTION 12
1.1 Research Area and Relevance of the Problem 12
1.2 The object of the thesis . 14
1.3 The Aim and Objectives of the Research 14
1.4 Research Methodology . 15
1.5 Novelty of the Thesis . 15
1.6 Practical Value of the Research Findings 16
1.7 Defended Statements . 16
1.8 Presentation and Approbation of the Results 16
1.9 Structure of the Dissertation and Main Results 17

2 Parallel Algorithms for Problems of Fractional Powers of
Elliptic Operators 18
2.1 Introduction to this Chapter 19
2.2 Definitions of Fractional Power of Elliptic Operators 20
2.3 State of the Art in Numerical Solution Methods 22
2.4 PDE Approximations of the Fractional Model 23

2.4.1 Extension to a Mixed Boundary Value Problem in the
Semi-Infinite Cylinder C = Ω× (0,∞) ⊂ Rd+1 (M1) . 23

2.4.2 Reduction to a Pseudo-Parabolic PDE Problem (M2) 24
2.4.3 Integral Representation of the Solution of Initial Prob-

lem (2.3) M3 . 25
2.4.4 Approximation of the Solution of Problem (2.3) using

Rational Approximations M4 27
2.5 Parallel Algorithms . 28

2.5.1 Convergence and Scalability Analysis of the Parallel
Algorithms for 2D Problems 31

9

2.5.2 Convergence and Scalability Analysis of the Parallel
Algorithms for 3D Problems 44

2.6 Conclusions of the Second Chapter 52

3 The construction of absorbing boundary conditions for the
one-dimensional Schrödinger equation 53
3.1 Introduction to this Chapter 54
3.2 Formulation of the Problem 56
3.3 Methods for Finding Coefficients for Absorbing Boundary

Conditions . 58
3.3.1 Padé Coefficients . 59
3.3.2 Approximation of the Fourier Symbol in the L2 Norm 60
3.3.3 Approximation of Reflection Coefficient 60
3.3.4 The Adaptive Minimization of Errors in the L2 and

L∞ Norms . 61
3.4 Global optimization . 61
3.5 Parallel Algorithm . 62
3.6 Numerical Experiments . 65
3.7 Conclusions of the Third Chapter 70

4 Three-level Parallelisation Scheme 71
4.1 Introduction into this Chapter 72
4.2 Workload Balancing Problem 76
4.3 Application of the Three-Level Parallelisation Scheme 81
4.4 Experimental Results . 84

4.4.1 The Control of Efficiency 86
4.5 The Comparison of Different Nelder-Mead Parallelisation Meth-

ods . 89
4.6 Conclusions of the Fourth Chapter 91
References . 95

10

NOTATION

p Number of processes
Sp Speed-up of parallel algorithm
Ep Efficiency of parallel algorithm

‖v‖ L2 norm, ‖v‖ = ‖E‖2 =

(∫
Ω

|v(x)|2dx
)1/2

‖ψ‖∞ Maximum norm, ‖ψ‖∞ = max{|ψ1|, . . . , |ψN |}
Vectors are denoted with bold letters.

Abbreviations

1D 1-Dimensional
2D 2-Dimensional
3D 3-Dimensional
CG Conjugate Gradients
FDM Finite difference method
FFT Fast Fourier transformation
FS Fourier symbol
FVM Finite volume method
NM Nelder-Mead
MG Multigrid
PCG Preconditioned conjugate gradient
PDE Partial differential equation
R Reflection coefficient

11

Chapter 1

INTRODUCTION

1.1 Research Area and Relevance of the Problem

Nowadays, we need to solve problems with big computational costs, when
we can not find a solution reasonably fast using a single core on the fastest
computers. Another limitation of calculations is high memory requirements,
that can not be fulfilled using a single shared memory computer. Thus,
parallel computations are necessary.

In this dissertation, two problems are investigated. The first problem is
described by fractional powers of elliptic operators [12,72,73]. This non-local
problem has an important property: the increasment of the problem size
greatly increases the numerical costs of computation. Parallel computing
makes the application of such non-local models more feasible and attrac-
tive. However, the efficient parallel computations require the application
of appropriate parallel algorithms and a detailed theoretical analysis. We
investigate and compare the parallel numerical algorithms for different state-
of-the-art [13,45,72,90] numerical methods proposed to solve the non-local
problems described by elliptic operators of fractional powers [12,13,72,73].
In this research, the non-local problem is transformed to some local (clas-
sical) differential problem of elliptic or pseudo-parabolic type, formulated
in a space of higher dimension Rd+1, if Ω ⊂ Rd. We investigate the weak
and strong scalability of the developed parallel algorithms. Two- and three-
dimensional test problems are solved and the results of extensive conver-
gence tests are presented. The main aim of this part of dissertation is to
determine, which parallel algorithms can be recommended to achieve certain
accuracy for the given fractional power coefficient.

The second non-local problem of this dissertation deals with the con-
struction of absorbing boundary conditions for the one-dimensional Schrö-

12

dinger equation [5,7,66,88]. A simple standard boundary conditions are for-
mulated on the boundaries of the restricted domain (e.g. the homogeneous
Dirichlet boundary conditions), the solution after reaching the boundary will
be reflected back into the domain and will pollute the results of subsequent
simulations. Thus it is a challenge to construct appropriate local boundary
conditions and to avoid the negative long memory computational effects in-
cluded into the definition of the exact non-local transparent boundary condi-
tions. We are interested in methods based on the approximation of the exact
transparent boundary conditions by rational functions. Different strategies
are investigated for the optimal selection of the coefficients of rational func-
tions, including the Padé approximation, the L2 norm approximations of
the Fourier symbol, L2 minimization of a reflection coefficient, techniques,
based on minimization in two different norms for the chosen benchmark
problems with known exact solutions and coupled adaptive strategy. The
formulated minimization problems are considered as black box problems of
global optimization. Since the objective functions of the attacked global
optimization problems are computationally expensive, experiments take a
considerable amount of time. Parallel computing should be applied to make
experiments faster. The proposed minimisation technique showed that it is
possible to find optimal values of coefficients that suit both test problems
with the errors that are small enough for many modelling purposes.

We propose a general methodology for parallelisation of algorithms that
address the considered problems. The optimization problems that are solved
during the approximation of absorbing boundary conditions for the Schrö-
dinger equation fits this methodology very well. The strategy of parallelisa-
tion has three-levels. Different parallelisation levels of this scheme give new
parallelisation possibilities; at the same time they also and create different
computational challenges. The important part of the proposed three-level
scheme is based on a assumption that there exists parallel alternatives to the
original sequential optimization algorithm on the first level. The first level
of parallelisation template becomes a part of a new parallel algorithm and
the degree of the first level parallelism can be selected dynamically during
the computations. The parallelisation technologies on the first level vary
depending on a problem, there are no concrete methods that would work in
all cases. However, we are presenting a general abstract procedure of appli-
cation of this approach. On the second level, a set of computational tasks
with different computational sizes is defined. These tasks can be solved
independently, which means this part can be done in parallel. The third
level is defined by parallel algorithms used to solve tasks from the second

13

level. We optimise the workload distribution, for this purpose we propose a
greedy workload balancing heuristic and test it on benchmark problems.

To show that these ideas work for a broad scope of applications, we dis-
cuss the possibility to apply the proposed three level parallelisation scheme
to other examples.

1.2 The object of the thesis

The object of the thesis is to create and analyse efficient parallel algorithms
for problems with big computational costs including optimization problems.

1.3 The Aim and Objectives of the Research

The aim of the research is to investigate efficient parallel algorithms for
problems with the fractional powers of elliptic operators and optimization
problems with big computational costs.

Thesis tasks are:

• Tasks for constructing parallel algorithms for problems with fractional
powers of elliptic operators:

– the review the parallel algorithms for problems with fractional
powers of elliptic operators;

– propose and analyse efficient parallel algorithms for problems
with fractional powers of elliptic operators;

– perform scalability analysis of parallel algorithms;

– formulate conclusions and recommendations for problems with
fractional powers of elliptic operators.

• Tasks for construction of absorbing boundary conditions for the one-
dimensional Schrödinger equation:

– to review of literature for constructing absorbing boundary con-
ditions for the Schrödinger equation;

– propose and investigate methods for finding coefficients for bound-
ary conditions;

– perform calculations with different initial boundary conditions
for the Schrödinger problem;

14

– formulate conclusions and recommendations for constructing ab-
sorbing boundary conditions for the one-dimensional Schrödinger
equation using proposed methods.

• Tasks for three-level parallelisation scheme:

– propose a three-level parallelisation scheme for solving optimiza-
tions problems;

– perform the detailed analysis of this scheme;

– apply the three-level scheme for optimization problems;

– formulate conclusions and recommendations for using all possi-
bilities of this scheme.

1.4 Research Methodology

In the dissertation we use numerical schemes (finite volume method (FVM),
the finite difference method (FDM)) from mathematical modelling theory,
the methods of convergence analysis from the theory of algorithms, scal-
ability analysis from the theory of parallel computing, multigrid, domain
decompasition method, simplex method from the optimization theory.

1.5 Novelty of the Thesis

• In this dissertation, parallel algorithms for various most recent nu-
merical methods for solving the fractional powers of elliptic operators
problems were investigated and compared. Scalability and conver-
gence analysis of parallel algorithms was performed. Recommenda-
tions to achieve a given accuracy for the provided fractional power β
coefficient were the specified.

• Recommendations to construct absorbing boundary conditions for the
one-dimensional Schrödinger equation using investigated methods were
presented. The proposed methodology showed that it is possible to
find the accurate absorbing boundary conditions for four qualitatively
different problems.

• The proposed three-level parallelisation scheme comparing to the clas-
sical two level algorithm increases the amount of computational re-
sources and lets us to achieve additional speed-up. It was shown, that
the proposed methodology lets us use available resources efficiently.

15

1.6 Practical Value of the Research Findings

• The amount of calculations for solving a non-local problem with frac-
tional power of elliptic operators are large and even a single solution
of this problem without parallel calculations is difficult. In this dis-
sertation, scalability analysis of parallel algorithms was performed.
Different methods were compared using parallel algorithms. The rec-
ommendations to achieve a given accuracy for the provided fractional
power coefficient β help to select the appropriate method.

• The three-level parallelisation scheme and recommendations for usage
of this scheme were proposed. This scheme can be applied to problems
efficiently in the case when a big number of computational resources
is available efficiently.

1.7 Defended Statements

1. For the given cases of test problems with fractional powers of elliptic
operators the recommended parallel algorithms are optimal in terms
of computational time in order to achieve certain accuracy for the
provided fractional power coefficients.

2. Using the proposed methodology there were found absorbing bound-
ary conditions for four qualitatively different tasks in a specified seven
parameters space.

3. The proposed three-level scheme improves the degree of parallelism
and improves the amount of available computational resources, which
gave to achieve additional speed-up.

1.8 Presentation and Approbation of the Results

The results of this research were presented at five international and three
national Lithuanian conferences, at the PhD Symposium 2018 of the 3rd
NESUS Winter School. Three articles were published in periodical scientific
publications in journals referred to ISI Web of science. One article was
published in Conference Proceedings. The detailed list of publications can
be found in the “List of Publications by the Author on the Topic of the
Dissertation” theme.

The results of this research were presented at the following conferences

16

• MMA2019: 24nd international conference, May 28-31, 2019, Tallinn,
Estonia.

• DAMSS: 10th international workshop on data analysis methods for
software systems, November 29–December 1, 2018, Druskininkai.

• DAMSS: 9th international workshop on data analysis methods for
software systems, November 30–December 2, 2017, Druskininkai.

• MMA2018: 23nd international conference, May 29-June 1, 2018, Sigulda,
Latvia.

• DAMSS: 8th Data Analysis Methods for Software Systems, December
1-3, 2016, Druskininkai, Lithuania.

• MMA2017: 22nd International Conference Mathematical Modelling
and Analysis, May 30-June 2, 2017, Druskininkai, Lithuania.

• 12th International Conference on Parallel Processing and Applied
Mathematics [PPAM 2017], September 10-13, 2017, Lublin, Poland.

• MMA2016: 21st International Conference Mathematical Modelling
and Analysis, June 1-4, 2016, Tartu.

Schools

• 3rd NESUS Winter School and the PhD Symposium 2018, 22nd-25th
January 2018, Zagreb, Croatia. Topic of speech was "Numerical analy-
sis and optimization of parallel algorithms for problems with big com-
putational costs." http://nesusws.irb.hr/images/BookofAbstracts.pdf

• NESUS Winter School & PhD Symposium 2016, February 8–11, 2016,
West University of Timisoara, Romania.

Contributing talks were given at the seminars at the Institute of Data
Science and Digital Technologies in Vilnius University and at the Depart-
ment of Mathematical Modelling of Vilnius Gediminas Technical University.

1.9 Structure of the Dissertation and Main Re-
sults

The dissertation consists of Introduction, three chapters, conclusions and
bibliography. The chapters are divided into sections, sections – into subsec-
tions. The scope of the dissertation is 106 pages including 10 figures and 30
tables. The list of references consists of 103 sources.

17

Chapter 2

Parallel algorithms for
problems of fractional
powers of elliptic operators∗

In this chapter we investigate the parallel numerical algorithms for four
different state-of-the-art numerical methods for solving the non-local prob-
lems described by fractional powers of elliptic operators. These methods
transform the non-local problem into some local differential problems of el-
liptic or pseudo-parabolic types, formulated in a space of higher dimension
Rd+1, if Rd. The selected four basic methods lead to different properties
of the constructed parallel algorithms. The proposed parallel algorithms
for these numerical methods are based on the domain decomposition and
master-slave methods.

The scalability and convergence analysis of parallel algorithms for these
problems was performed. Recommendations to achieve certain accuracy for
the provided fractional power coefficient were provided.

Parts of this chapter are published in [23–25].

∗1. Čiegis, R.; Starikovičius, V.; Margenov, S; and Kriauzienė. Parallel solvers for
fractional power diffusion problems. Concurrecy Comput.: Pract. Exper., 2017, Vol. 29„
iss. 24, p. 1–12. DOI: 10.1002/cpe.4216. 2. Čiegis, R.; Starikovičius, V.; Margenov, S;
and Kriauzienė. A comparison of accuracy and efficiency of parallel solvers for fractional
power diffusion problems. In Parallel Processing and Applied Mathematics, (PPAM2017,
Lublin, Poland, September 9–13, 2017) Proceedings, part I, volume 10777 of Lecture Notes
in Computer Science, pages 79–89, Berlin, Heidelberg, 2018. Springer. 3. Čiegis, R.;
Starikovičius, V.; Margenov, S; and Kriauzienė. Scalability analysis of different parallel
solvers for 3D fractional power diffusion problems. Concurrecy Comput.: Pract. Exper.,
2019. DOI: 10.1002/cpe.5163

18

2.1 Introduction to this Chapter

Fractional derivatives are more and more often used for the mathemati-
cal modeling of various problems in physics [46, 76], geophysics [17], chem-
istry [100], biology [62], image processing [45,98] and finance [83]. Fractional-
order derivatives are able to describe anomalous behaviors of various ma-
terials, which are in between ideal solids and Newtonian fluids, such as
granular materials, colloids, polymers, emulsions, sediments, biological ma-
terials, multiphase fluids, et al. [52, 100]. The behavior of these materials
often does not obey to the standard gradient laws, such as, Fick’s law of
diffusion, Fourier’s law of heat conduction, Newtonian viscosity, Darcy law
of fluid flow through a porous medium et. al. [46]. The fractional-order
models appear to be more adequate than the standard models in the de-
scription of the long range interactions, memory and hereditary properties
of different substances [28,61,76].

In spite of the increasing popularity of the fractional-order models, there
is a significant difference in the number of applications of time-fractional
models compared to the space-fractional ones. This can be partially ex-
plained by the fact that mathematical definitions of the space-fractional
derivatives, notably of the multi-dimensional fractional Laplacian, are much
more complicated [31, 76]. However, more important is that the space-
fractional models are computationally very expensive when applied to the
higher dimensional cases. Non-local nature of the fractional models leads to
a challenging numerical discretisation. Numerical techniques for the mul-
tidimensional space-fractional models remain far from mature [43, 99]. Be-
cause of these difficulties significantly less results has been reported on the
space-fractional derivative modeling in the literature [28,36].

Nowadays, application of parallel computing technologies presents a nat-
ural approach to make the space-fractional derivative modelling more fea-
sible and attractive. However, efficient parallel computations require appli-
cation of appropriate parallel algorithms. The permanent development of
the parallel computing systems with all their diversity requires a constant
attention, which must be paid to a development and selection of proper
parallel algorithms for the solution of various problems.

There are several different definitions of fractional power of elliptic op-
erators. Fractional powers of elliptic operators are usually defined through
integral expressions with singular kernels [12, 31, 76]. Standard numerical
solution methods lead to the solution of systems of linear equations with
dense matrices, what is computationally very expensive. We use a differ-

19

ent definition based on the spectral decomposition of the elliptic operator
and the following solution approach. The non-local problem with fractional
power of the Laplacian is transformed to a local differential problem of ellip-
tic or pseudo-parabolic type, but formulated in a higher dimensional space
Rd+1, if Ω ⊂ Rd. An important advantage of this approach is that the ob-
tained differential models are widely used in many applications; thus, the
related numerical solution methods are well developed. Numerous efficient
numerical software packages are available, which are subject to a long-time
development and permanent improvements.

Four different transformations are considered. The first one transforms
the non-local problem with fractional power of elliptic operator to a local
elliptic problem with a singular diffusion coefficient [9, 12, 65, 72, 73]. For
the second one, the non-local problem is transformed to a pseudo-parabolic
problem [32, 90, 91]. In the third approach [12, 13], quadrature formulas
are applied to the integral representation of a sought solution. The last
method [44, 45] is based on best uniform rational approximation (BURA)
of a scalar function of the form tγ , γ ∈ (0, 1), t ∈ [0, 1]. This method
conceptually differs from the previous three, as the original dimensionality
of the problem is preserved.

We have developed different parallel algorithms for these numerical meth-
ods. These solvers are based on the domain decomposition and master-slave
methods. We use the finite volume method to approximate the differential
problems. Open source parallel multigrid libraries are employed for the
numerical solution of arising systems of linear equations.

It is important to note that the selected four basic methods lead to dif-
ferent properties of the constructed parallel algorithms. The main objective
of our research is to analyse and compare their scalability, efficiency, and
accuracy.

2.2 Definitions of Fractional Power of Elliptic Ope-
rators

There are different definitions of fractional power of elliptic operators [12].
The integral definition of fractional Laplacian in a bounded domain Ω ⊂ Rd

is introduced by the Riesz potential:

(−∆)βu(x) = C(d, β)P.V.

∫
Rd

u(x)− u(x′)

|x− x′|d+2β
dx′ = f(x), u = 0 in Ωc = Rd \ Ω,

(2.1)

20

where P.V. stands for the Cauchy principle value and C(d, β) is a normaliza-
tion constant. In study, [1] error bounds in the energy norm and numerical
experiments (in 2D) are presented for the integral definition of fractional
Laplacian, demonstrating an accuracy of the order O(h

1
2 lnh) for solutions

obtained by means of linear elements on a quasi uniform mesh. The nu-
merical solution of problems involving such a non-local operator is rather
complicated. There are at least two major reasons for that: highly singular
kernels and an unbounded region of integration. The standard numerical
methods lead to systems of linear equations with dense matrices. This is
computationally expensive.

Another definition is based on the spectral decomposition of the elliptic
operator. Let Ω be a bounded domain in Rd. In order to find u ∈ V we
define the bilinear form [13]:

a(u, v) :=

∫
Ω

(a(x)∇u(x) · ∇v(x) + q(x)u(x)v(x)) dx, ∀v ∈ V, (2.2)

where V := {v ∈ H1
0 (Ω) : v(x) = 0 on ΓD}, Γ = ∂Ω, and Γ = Γ̄D ∪ Γ̄N .

We assume that ΓD has a positive measure, q(x) ≥ 0 in Ω, and a(x) is
a symmetric and positive definite d × d tensor product matrix, uniformly
bounded in Ω. Let τ : L2(Ω) → V , where for f ∈ L2(Ω) the function
u = τf ∈ V is the unique solution to a(u, ψ) = (f, ψ),∀ψ ∈ V , and (v, u),
for u, v ∈ L2(Ω) is the inner product in L2(Ω). Let L = τ−1. Then,
fractional power of elliptic operator Lβ, 0 < β < 1, is introduced through
its spectral decomposition, that is,

Lβu = f, Lβu(x) =

∞∑
i=1

λβi ciψi(x), where u(x) =

∞∑
i=1

ciψi(x), (2.3)

where {ψi(x)}∞i=1 are the eigenfunctions of L, orthonormal in L2-inner prod-
uct and {λi}∞i=1 are the corresponding positive real eigenvalues.

Bonito and Pasciak [13] showed that Hβ = {v ∈ L2 :
∞∑
i=1

λ2β
i | (v, ψj) |2 <

∞} is a Hilbert space under the inner product aβ(v, w) :=
(
Lβ/2v,Lβ/2w

)
for all v, w ∈ Hβ. The weak formulation of the elliptic problem is as follows:
find u ∈ Hβ such that

aβ(u, v) = (f, v), ∀v ∈ Hβ.

Thus, a unique solution of this problem is u = τβf =
∞∑
i=1

λ−βi (f, ψi)ψi.

Let us assume that linear elements are used to obtain the finite element

21

method’s approximation Uh ∈ Vh, where h is the mesh size and Vh ⊂ H1
0 (Ω)

is the space of continuous piece-wise linear functions over the mesh. In the
case of full regularity, the best possible convergence rate for f ∈ L2(Ω) is,
cf., [13]

‖u− Uh‖L2(Ω) ≤ Ch2β| lnh| ‖f‖L2(Ω). (2.4)

This estimate illustrates how the accuracy of the numerical method is re-
duced, depending on power β ∈ (0, 1). This property requires solving the
fractional diffusion problems on fine meshes.

The research about the relations between these two fractional powers of
elliptic operators definitions is still ongoing. However, it is known [12] that
they are not equivalent and may produce different solutions over bounded
domains.

The direct implementation of this approach is very expensive. It requires
computing all eigenvectors and eigenvalues of large matrices. The given
spectral algorithm can be used for practical computations if the fractional
power of the Laplace operator is solved in a rectangular domain, when the
basis functions are known in advance and the fast Fourier transform (FFT)
techniques can be applied. In such cases the computational complexity of
solving fractional power elliptic problems is the same as for solving classical
elliptic problems. However, we are interested in more general methods,
which can be applied in general domains for general elliptic operators.

2.3 State of the Art in Numerical Solution Me-
thods

The existing most advanced numerical methods are based on the following
general approach. The non-local differential problem Lβu = f is trans-
formed to a local differential problem, which formulated in a higher dimen-
sional space Rd+1. The introduction of an additional dimension considerably
increase computational complexity of fractional-in-space diffusion problems
compared to the classical diffusion problems. Also the proposed algorithms
require more memory. This makes parallel computations to be necessary in
order to solve such problems.

Four different numerical methods are used, they are denoted by (M1)–
(M4).

M1 Extension to a mixed boundary value problem in the semi-infinite
cylinder Ω × [0,∞) [9, 12, 65, 72, 73]. The semi-infinite cylinder is

22

then truncated by finite cylinder to allow numerical solution of elliptic
problem in a bounded domain CT = Ω× [0, T] ⊂ Rd+1.

M2 Transformation to a pseudo-parabolic problem [32,90,91]. Here the ex-
tended dimension is defined by the pseudo-time. The obtained pseudo-
parabolic problem is solved numerically. This approach is further ap-
plied to problems with fractional order boundary conditions [57].

M3 Integral representation of a sought solution of the non-local problem
[12, 13]. Different quadrature formulas can be applied to evaluate
numerically the related integrals.

M4 Alternative methods for solving algebraic systems LβhUh = fh (discrete
problems). These methods are based on the best uniform rational
approximations of the function t1−β for the BURA method [45] and
of the function tβ for the R-BURA method [44] in the interval [0, 1].
Computationally, a limited number of linear systems need to be solved
independently, the matrices of these systems are the positive diagonal
shifts of the (original, non-fractional) discrete elliptic operator.

All methods (M1)–(M4) are applicable to fractional diffusion problems
in computational domains with general geometry. For methods (M1)–(M3),
the computational domain is of higher (d+ 1) dimension.

2.4 PDE Approximations of the Fractional Model

We formulate PDE models to approximate problems involving fractional
powers of elliptic operators. These approximations allow us to construct
efficient numerical solution algorithms for the original non-local problem.
The formulated PDEs are approximated by finite volume schemes.

2.4.1 Extension to a Mixed Boundary Value Problem in the
Semi-Infinite Cylinder C = Ω× (0,∞) ⊂ Rd+1 (M1)

The non-local problem (2.3) is equivalent to the following classical local
linear problem in the extended space Rd+1 [72, 73]:

23

− ∂

∂y

(
yα
∂U

∂y

)
+ yαLU = 0, (x, y) ∈ C, C = Ω× (0,∞) α = 1− 2β,

(2.5)

− yα∂U
∂y

= dβf, (x, 0) ∈ Ω̄× {0},

U = 0, (x, y) ∈ CB = ∂C \ Ω̄× {0},

where dβ is a positive normalization constant that depends only on β. Then
the solution of problem (2.3) is obtained by u(x) = U(x, 0).

In order to construct a finite volume approximation of 2.5, the semi-
infinite cylinder is approximated by a truncated cylinder CY = Ω× {0, Y }
with a sufficiently large Y . A uniform mesh Ωh is introduced in Ω and
anisotropic mesh ωh = {yj = (j/M)γY, j = 0, . . . ,M} is used to compensate
the singular behavior of the solution as y → 0, where γ > 3/(2β) [72, 73].
In this way we obtain the mesh CY,h = Ωh × ωh for discretization of the
extended problem.

Using the finite volume method and applying the standard notations of
the finite differences [18, 19, 27, 101] we define the discrete problem, which
approximates (2.5):

−
(
yαj+1/2

Uh,j+1 −Uh,j

Hj+1/2
− yαj−1/2

Uh,j −Uh,j−1

Hj−1/2

)
(2.6)

+
yα+1
j+1/2 − y

α+1
j−1/2

α+ 1
LhUh = 0, (Xh, yj) ∈ CY,h,

− yα1/2
Uh,1 −Uh,0

H1/2
+
yα+1

1/2

α+ 1
LhUh = dβfh, Xh ∈ Ω̄h × {0},

Uh = 0, (Xh, yj) ∈ ∂CY h \ Ω̄h × {0},

where yj+1/2 = 1
2

(
yj + yj+1

)
, Hj+1/2 = yj+1 − yj .

2.4.2 Reduction to a Pseudo-Parabolic PDE Problem (M2)

The solution of the non-local problem (2.3) is sought as a mapping [57, 90,
91]:

U(x, t) =
(
t(L − δI) + δI

)−β
f, (2.7)

where L ≥ δ0I, δ = γδ0, 0 < γ < 1. Thus, it follows from (2.7) that function
U(x, 1) = L−βf defines the solution of the non-local problem (2.3). The

24

function U satisfies the evolutionary pseudo-parabolic problem

(tG+ δI)
∂U

∂t
+ βGU = 0, 0 < t ≤ 1, (2.8)

U(x, 0) = δ−βf, t = 0,

where operator G = L − δI. We see a typical property of such transforma-
tions, when instead of the non-local problem (2.3) a local pseudo-parabolic
problem (2.8) is solved (in higher dimension space Rd+1).

We employ the geometrically graded time-stepping scheme [32]. Con-
sidering K = log(λM), we set a basic non uniform graded mesh: t0 = 0

and tn = 2n−1−K for n = 1, . . . ,K + 1. Here, λM is the largest eigenvalue
of discrete operator Lh. Then, each interval [tn−1, tn] is partitioned into J
subintervals with the points

tn−1,j = tn−1 + jτn, j = 0, . . . , J, τn = (tn − tn−1)/J.

We denote the mesh points tn,j in the increasing order by tk for k =

0, . . . ,M , where M = (K + 1)J , and τn = τn(k) is the time step for a given
k. We approximate the problem (2.8) by the following Crank–Nicolson
scheme [18,19,27]:

(tk−1/2Gh + δIh)
Ukh − U

k−1
h

τn
+ βGhU

k−1/2
h = 0, 1 ≤ k ≤M, (2.9)

U0
h = δ−βfh,

where Gh = Lh − δIh, U
k−1/2
h = (Ukh + Uk−1

h)/2 and tk−1/2 = (tk−1 +

tk)/2. It has been proven [32] that the time discretization error of such
finite difference scheme is bounded by CJ−2, that is, the discrete solution
is converging with the second order in time with respect to J .

If τn is constant, then the mesh is uniform.

2.4.3 Integral Representation of the Solution of Initial Prob-
lem (2.3) M3

The third numerical method is based on an integral representation of the
solution of non-local problem (2.3) using the local elliptic operators (cf.
[12, 13]):

L−β =
2 sin(πβ)

π

∫ ∞
0

y2β−1(I + y2L)−1dy. (2.10)

25

Again, this problem is formally defined in a higher dimension space Rd+1,
and the integral kernel is singular with respect the extended dimension vari-
able. To calculate integral in (2.10), three different numerical quadrature
formulas are proposed in the literature, which we have used to develop three
parallel numerical algorithms.

In the first algorithm [12, 13], the integral (2.10) is first transformed to
a sum of two integrals

L−β =
2 sin(πβ)

π

[∫ 1

0
y2β−1(I + y2L)−1dy +

∫ 1

0
y1−2β(y2I + L)−1dy

]
.

(2.11)

Then a quadrature scheme based on a graded partition of the integration
interval [0, 1] is applied to resolve the singular behaviour of coefficient y2β−1:

y1,j =

(j/M)
1
2β if 2β − 1 < 0,

j/M if 2β − 1 ≥ 0,
j = 0, . . . ,M.

A similar partition is used to resolve the singularity of y1−2β. The finite
volume discrete operator Lh approximates the elliptic operator L. Then
integrals (2.11) to compute L−βh fh are approximated as

U−βh,1fh =
2 sin(πβ)

π

[M∑
j=1

y2β
1,j − y

2β
1,j−1

2β

(
Ih + y2

1,j−1/2Lh
)−1

fh (2.12)

+
M∑
j=1

y2−2β
2,j − y2−2β

2,j−1

2− 2β

(
y2

2,j−1/2Ih + Lh
)−1

fh

]
.

The second quadrature algorithm is defined on the uniform grid points
yj = jhy and hy = 1/

√
M [12, 13]:

U−βh,2fh =
2hy sin(πβ)

π

M∑
j=−M

e2βyj
(
Ih + e2yjLh

)−1
fh. (2.13)

It provides an exponential convergence to (2.10). We note that for both
quadrature algorithms (2.12) and (2.13) all 2M local discrete elliptic prob-
lems can be solved independently.

26

The third quadrature algorithm is defined as in [12,13]:

U−βh,3fh =
2k sin(πβ)

π

m2∑
j=−m1

e2(β−1)jk
(
Lh + e−2jkIh

)−1
fh, (2.14)

where m1 =
⌈
π2/(4βk2)

⌉
and m2 =

⌈
π2/(4(1− β)k2)

⌉
. It provides an ex-

ponential convergence to (2.10). The parameter k > 0 controls the accuracy
of the approximation of integral and the number of local elliptic problems
that need to be solved.

2.4.4 Approximation of the Solution of Problem (2.3) using
Rational Approximations M4

The fourth algorithm is defined by using a different approach. Instead
of transforming the non-local problem (2.3) to a locally defined classical
PDE in a higher dimension space, the method is based on the best uniform
rational approximations of function t1−β for BURA [45] and of function tβ

for R-BURA [44] in the interval [0, 1]. The approximate solution Uh of the
discrete problem LβhUh = fh is defined as

Uh = c0A
−1
h f̃h +

m∑
j=1

ci(Ah − djI)−1f̃h, (2.15)

where the matrix Ah and the right-hand side function f̃h are scaled as
Ah = h2/lLh and f̃h = (h2/l)βfh (l = 8 for 2D problem, l = 12 for 3D
problem), respectively.

The coefficients cj and dj for the BURA method are obtained by solving
the global optimization problem to find the best uniform rational approxi-
mation r∗m(t) of function t1−β [45]:

rm(t) = c0 +

m∑
j=1

cjt

t− dj
,

min
rm

max
t∈[0,1]

∣∣t1−β − rm(t)
∣∣ = max

t∈[0,1]

∣∣t1−β − r∗m(t)
∣∣ =: εm(β).

In recent research [45] the efficiently modified Remez algorithm is proposed
to compute the coefficients cj and dj . Moreover, the coefficients for 5 ≤
m ≤ 7 and β = {0.25, 0.5, 0.75} are provided. In the another study, [92]
the coefficients and errors εm(β) are computed with high accuracy for β =

{i/8, i = 1, . . . , 7} and m ≤ 30. The corresponding coefficients, however,
are not provided.

27

2.5 Parallel Algorithms

We consider the parallelisation of all numerical solution algorithms pre-
sented in Section 2.4. In order to implement the developed parallel al-
gorithms, we use the two-level parallel programming templates [26]. The
efficient parallel multigrid solvers from HYPRE numerical library [34, 35]
are applied as preconditioners in the parallel conjugate gradient method.
A similar approach was used also in [23, 24]. On the first level, we define
a set of discrete problems, which can be solved independently in parallel
and these tasks are statically or dynamically distributed among processors.
On the second level, each discrete problem is solved by using the domain
decomposition method and a specified parallel linear system solver based on
preconditioned CG method. Two types of multigrid solvers from HYPRE
numerical library are used as preconditioners in the parallel conjugate gradi-
ent method. To study the performance of considered parallel numerical al-
gorithms on structured grids, we use the geometric multigrid solver PFMG.
To estimate their performance on general non-structured grids suitable for
general domains, we use the algebraic multigrid solver BoomerAMG.

We have compared selected numerical algorithms in terms of accuracy
and computational costs using the following test problem:

Lβu = f(x), x ∈ Ω = (0, 1)d, u(x) = 0, x ∈ ∂Ω, (2.16)

with the Laplace operator L = −∆, β = 0.25, 0.75, d – number of dimension,
where the right-hand-side f is the well-known checkerboard function (see
[13,45]):

f(x) =

1, if Πd
i=1(xi − 0.5)d > 0;

−1, otherwise.
(2.17)

Similar test problems (only in 2D domains) with checkerboard right-
hand-side functions are used to demonstrate the convergence of the selected
numerical methods in many papers: (M2) [32], (M3) [13], (M4) [44,45]. This
test demonstrates the important feature of the fractional diffusion problems,
how the convergence rate of numerical discretisation methods depends on
the smoothness of the solution. The checkerboard right-hand-side function
f is leading to the well expressed boundary layers in the solution. The
regularity of this solution is decreasing with the decreasing fractional power
parameter β, what is reducing the rate of convergence of discrete solutions.
A popular approach to resolve such problems is to use adaptive meshes [2].

28

We restrict to uniform space grids to compare the accuracy of the selected
numerical methods.

In order to analyse and compare the accuracy of the numerical solutions,
we compute the reference (exact) solutions UFN of our test problem (2.16)–
(2.17). We use as reference (exact) solutions UFN , the numerical solutions
obtained via Fourier algorithm on uniform space grid with N = 212 =

4096 N = 215 = 32768 (for 2D case) or N = 212 = 4096 (for 3D case)
discretisation points in each direction. In the 3D case, such a fine grid
requires over 1024 GB of memory for a double precision. Thus we use
the parallel version of our Fourier solver to compute the reference (exact)
solutions, where computations are done on 32 nodes with 64 GB of memory
per node.

The Fourier method is very fast when the FFT algorithm can be applied
(constant coefficients of the elliptic operator and rectangular parallelepiped
Ω). In such cases the computational complexity of solving fractional power
elliptic problems is the same as for solving classical elliptic problems. How-
ever, we are interested in more general methods, which can be applied in
general domains for general elliptic operators.

We use the relative errors to report and analyse the accuracy of obtained
numerical solutions. The relative error EM∗N of the numerical solution UM∗N

obtained by method M* on the uniform space grid with N points in each
direction is defined as follows:

EM∗N =
‖u− UM∗N ‖∞
‖u‖∞

, (2.18)

where u denotes the reference (exact) solution obtained by the Fourier
method. In the case for 2D problem and β = 0.25, the maximal abso-
lute value of the solution is ‖u‖∞ = 0.3904; for 3D problem and β = 0.25,
the maximal absolute value of the solution is ‖u‖∞ = 0.4097, for β = 0.75,
‖u‖∞ = 0.0672. The reference relative error values are shown in Table 2.1–
2.2 for solutions with β = 0.25 or β = 0.75.

To solve the arising linear systems, we use the preconditioned conjugate
gradient (PCG) method with a geometric multigrid preconditioner from the
HYPRE library and we set tolerance to 10−8 in all tests.

Table 2.1: Relative error EFN (2.18) of Fourier solution UFN of 2D test prob-
lem (2.16)–(2.17)

Mesh size, N2 1282 2562 5122 10242 20482

EFN for β = 0.25 0.00946 0.00669 0.00473 0.00334 0.00236

29

Table 2.2: Relative error EFN (2.18) of Fourier solution UFN of 3D test prob-
lem (2.16)–(2.17)

Mesh size, N3 163 323 643 1283 2563 5123

EFN for β = 0.25 0.035654 0.025169 0.017792 0.012569 0.008855 0.006171
EFN for β = 0.75 0.012563 0.004399 0.001554 0.000549 0.000193 0.000067

In accordance with the theory (2.4), due to the singularity of the solution
the reduced convergence rate O(h2β) is observed. For β = 0.25 the error is
reduced 2 times when the space step is reduced 4 times, and for β = 0.75

the error is reduced 8 times.
All tests were performed on the “Avitohol” cluster at the Institute of In-

formation and Communication Technologies (IICT) of the Bulgarian Academy
of Sciences The cluster consists of 150 HP Cluster Platform SL250S GEN8
servers. Each computational node has 2 Intel® Xeon® processors E5-2650v2
@ 2.6GHz (8 cores each), 64GB RAM and 2 Intel® Xeon® Phi 7120P copro-
cessors. The computational nodes are interconnected via fully non-blocking
56Gbps FDR InfiniBand network. Up to 64 nodes (1024 cores) were used
in our parallel tests.

The parallel performance analysis considers both strong and weak scal-
ability of the developed parallel algorithms. The strong scaling shows the
efficiency of parallel algorithm solving the problem of a fixed size, increas-
ing the number of parallel processes. This is important in situations when
the solution time should be reduced as much as possible, for example, for
time-critical applications or for solving optimization problems.

Nowadays, it is often more important to solve larger problems in a rea-
sonable time. The weak scaling demonstrates the ability of parallel algo-
rithm to solve the problem of increasing size with a proportionally increased
number of parallel processes in a similar time.

Both 2D and 3D are computationally costly. Thus, parallel computation
applicable in both cases. However it is easier to perform analysis for 2D
problem. Moreover some of methods (M1) have some difficulties in 3D case,
so in order to evaluate effectiveness we need to restrict 2D problems.

The aim of this chapter is to construct efficient parallel algorithms for
methods (M1)–(M4). First of all, we investigate the weak and strong scal-
ability of the developed parallel algorithms and compare their parallel per-
formance for 2D problems. Based on the results for 2D problems, we made
several changes to analyse parallel algorithms for 3D problems:

• The method (M1) was excluded from the list of considered methods as
less suitable for 3D case due to high memory requirements. However,

30

authors [12] have presented a new version of method (M1). This ver-
sion makes method (M1) competitive comparing to others methods.

• For the pseudo-parabolic method (M2), we use the recently proposed
geometrically graded time stepping scheme [32], which should resolve
the singular behavior of the solution for pseudo-time t close to 0 and
give better convergence results compared to the uniform time stepping
scheme used for 2D problem.

• For the quadrature method (M3), we employ a quadrature formula [12]
with geometrically graded mesh and show superior convergence results
due to this new formula.

• For analysis of the BURA method (M4) [45] we include its recent
modification R-BURA [44] which has been recommended for the power
coefficient closer to 1.

We compare the developed algorithms in terms of parallel solution time,
that parallel solution times of the developed algorithms that are required
to achieve the specified accuracy of the solution.

2.5.1 Convergence and Scalability Analysis of the Parallel
Algorithms for 2D Problems

Extension to a Mixed Boundary Value Problem (M1)

The finite volume discretisation scheme (2.6) leads to a large system of linear
equations. In the case of two-dimensional problem domain Ω, one has to
solve a system with 7-point stencil of size Nx1 ×Nx2 ×M .

One standard approach for parallel solution of such problems is the do-
main decomposition method [77]. The discrete mesh of the problem domain
and its associated fields are partitioned into sub-domains, which are allo-
cated to different processes. Note that in our case, the discrete mesh CY,h

of the truncated cylinder CY = Ω× {0, Y } has to be partitioned.
We have used the parallel algebraic multigrid solver BoomerAMG from

the well-known HYPRE numerical library [34, 35] as a preconditioner for
the parallel conjugate gradient method. The default parameter settings of
BoomerAMG are applied, performing only a small tuning to adapt them to
our problems. It is clear that the default parameters are optimized for the
isotropic problems, thus there remains a potential possibility to improve the
scalability of the solvers.

31

The accuracy and solution times of the parallel elliptic solver are shown
in Table 2.3. Second order of convergence is observed with respect to the
extended variable y and discrete error values from Table 2.1 are attained.
Serial solution times T1 are shown for the discrete problems that fit into
single node’s memory. Minimal parallel solution times Tp with optimal
decomposition of the discrete mesh and corresponding speed-ups Sp are
demonstrated using up to 512 parallel processes.

Table 2.3: The accuracy and solution times of the parallel elliptic solver on
uniform space grid N ×N

N M Error T1 p Tp Sp
128 128 0.00985 13.03 48 1.02 12.80
128 256 0.00956 25.95 48 2.03 12.78
256 128 0.00703 56.36 64 3.29 17.11
256 256 0.00678 122.93 128 5.10 24.10
512 128 0.00503 236.95 256 6.86 34.56
512 256 0.00481 586.61 256 10.57 55.52
1024 128 0.00360 512 14.85
1024 256 0.00341 512 29.36
2048 128 0.00258 512 53.95
2048 256 0.00241 512 144.19

We investigate the strong scaling of the developed parallel solver for a
fixed problem size Nx1 = Nx2 = 400 and M = 400. Parallel performance re-
sults of these tests are presented in Table 2.4. Here p = nd×nc is the number
of used parallel processes, corresponding to computing with nd nodes and
nc cores per node. Here, P1 × P2 × P3 defines the topology of partitioning,
while DOF/p = Nx1×Nx2×M/p shows the degrees of freedom per process,
i.e. the number of unknowns per core. The total wall time Tp is given in
seconds. The AMG preconditioning includes the recursive multilevel fac-
torization, where the coarse grid matrices are computed. The cost of this
task can be quite large. Thus we show the BoomerAMG setup time Tset,
and the solution time Tsol of of the parallel conjugate gradient solver with
Niter iterations. Finally, we present the obtained values of parallel speed-up
Sp = T1/Tp, and parallel efficiency Ep = Sp/p.

The parallel algebraic multigrid preconditioner is robust, and the num-
ber of iterations is stable at about 20-22, for different numbers of the uti-
lized processes and topologies of grid partitioning. The optimal partitioning
topology is 2D and the anisotropic y coordinate should be kept in one pro-
cess.

The solution time Tsol scales quite well for smaller number of processes.

32

Table 2.4: Total wall time Tp, speed-up Sp, and efficiency Ep, solving the
problem (2.5) with Nx1 = Nx2 = 400, M = 400, β = 0.25.

p nd × nc P1 × P2 × P3 DOF/p Tp Tset Tsol Niter Sp Ep
1 1× 1 1× 1× 1 64 · 106 557.0 161.1 360.2 21 1.00 1.00
2 1× 2 2× 1× 1 32 · 106 1455.1 1265.0 172.1 21 0.38 0.19
2 1× 2 1× 2× 1 32 · 106 1463.5 1275.2 170.5 21 0.38 0.19
2 1× 2 1× 1× 2 32 · 106 4561.7 4330.1 213.3 22 0.12 0.06
4 1× 4 4× 1× 1 16 · 106 1189.0 1097.0 82.5 19 0.47 0.12
4 1× 4 2× 2× 1 16 · 106 730.1 635.7 85.2 20 0.76 0.19
4 1× 4 1× 2× 2 16 · 106 1524.4 1404.6 110.2 22 0.37 0.09
8 1× 8 8× 1× 1 8 · 106 617.5 562.1 49.9 21 0.90 0.11
8 1× 8 2× 4× 1 8 · 106 416.1 362.4 48.4 21 1.34 0.17
8 1× 8 2× 2× 2 8 · 106 543.8 479.9 58.5 21 1.02 0.13
16 1× 16 16× 1× 1 4 · 106 391.1 351.8 35.2 21 1.42 0.09
16 1× 16 4× 4× 1 4 · 106 184.5 146.7 33.9 21 3.02 0.19
16 1× 16 4× 2× 2 4 · 106 270.7 223.4 43.5 22 2.06 0.13

The setup costs of the parallel BoomerAMG preconditioner are relatively
large. We note that a big increase of the setup complexity and time takes
place when a parallel version of multigrid preconditioner is started to be
used (p = 2). Later, the setup time Tset scales quite well. Thus, in order
to investigate further the strong scalability of our parallel algorithm, we
compute the speed-up and the efficiency coefficients with respect to the
solution time obtained on one node with 16 cores.

Strong scaling results for larger numbers of processes are shown in Ta-
ble 2.5. Here, Snd = T1×16/Tnd×16 is the parallel speed-up on nd nodes with
respect to one node, End = Snd/nd is the parallel efficiency.

Table 2.5: Total wall time Tp, speed-up Snd , and efficiency End , solving the
problem (2.5) with Nx1 = Nx2 = 400, M = 400, β = 0.25.

p nd × nc P1 × P2 × P3 DOF/p Tp Tset Tsol Niter Snd End
16 1× 16 4× 4× 1 4 · 106 184.5 146.7 33.9 21 1.00 1.00
16 2× 8 4× 4× 1 4 · 106 173.4 146.0 24.6 21 1.06 0.53
32 2× 16 4× 8× 1 2 · 106 78.1 58.3 17.8 22 2.36 1.18
32 2× 16 4× 4× 2 2 · 106 109.6 86.0 21.6 22 1.68 0.84
64 4× 16 8× 8× 1 1 · 106 31.9 21.9 8.9 21 5.78 1.45
64 4× 16 4× 4× 4 1 · 106 44.4 30.7 12.6 22 4.15 1.04
128 8× 16 8× 16× 1 5 · 105 17.8 11.6 4.9 22 10.38 1.30
128 8× 16 8× 4× 4 5 · 105 21.5 13.0 7.0 24 8.59 1.07
256 16× 16 16× 16× 1 2.5 · 105 11.9 7.2 3.0 23 15.49 0.97
256 16× 16 8× 8× 4 2.5 · 105 12.3 7.3 3.6 23 14.95 0.93
512 32× 16 16× 32× 1 1.25 · 105 12.4 8.3 2.2 23 14.83 0.46
512 32× 16 8× 8× 8 1.25 · 105 12.1 9.5 2.2 25 15.19 0.47

The parallel solution time with all 16 cores of a single node is similar to
the solution time with two nodes using only 8 cores each (see Table 2.5) Our

33

parallel application is certainly memory bound, as most of the time is spent
in operations with stored sparse matrices. However further performance
degradation due to the memory saturation increasing the number of utilized
cores from 8 to 16 per node appears to be not significant, being comparable
with the additional overhead of the inter-node communications. Therefore,
we have always used all 16 cores in our multi-node parallel tests.

The parallel preconditioner setup time Tset scales even over-linearly.
Thus we have obtained efficiencies End > 1 in some cases. It follows from
the presented results, that up to 256 processes can be used efficiently for
this size of the discrete problem.

In these parallel performance tests, the number of grid points per process
is kept constant: DOF/p = 4 ·106. This also means that the number of grid
points per node is constant. The total number of grid points was increased
from 6.4 · 107 up to 4.096 · 109 on the largest grid, while the number of
processes was increased from 16 to 1024. The results of computational
experiments are presented in Table 2.6.

The efficiency of the parallel algorithm is defined as End = T1×16/Tnd×16.
As it follows from the presented results, the number of iterations is slightly
increasing when the size of the problem N = Nx1 ×Nx2 ×M is increased.
In order to estimate the performance of parallel algorithm excluding this
factor, we also calculate and show in Table 2.6 the scaled parallel efficiency
regarding the time per iteration

Ênd =
Niter(nd)

Niter(1)
End .

Table 2.6: Weak scalability of the parallel algorithm solving problem (2.5)
with β = 0.25.

p nd × nc P1 × P2 × P3 Nx1 ×Nx2 ×M Tp Tset Tsol Niter End Ênd
16 1× 16 4× 4× 1 4003 = 64 · 106 184.5 146.7 33.9 21 1.00 1.00
32 2× 16 8× 4× 1 5043 ≈ 128 · 106 241.8 200.4 37.4 23 0.76 0.84
32 2× 16 4× 4× 2 5043 ≈ 128 · 106 320.5 271.4 45.2 23 0.58 0.63
64 4× 16 8× 8× 1 6353 ≈ 256 · 106 276.6 232.9 39.5 24 0.67 0.76
64 4× 16 4× 4× 4 6353 ≈ 256 · 106 394.8 335.6 55.1 24 0.47 0.53
128 8× 16 8× 16× 1 8003 = 512 · 106 260.8 225.0 32.2 26 0.71 0.88
128 8× 16 8× 4× 4 8003 = 512 · 106 365.0 300.0 60.1 26 0.51 0.63
256 16× 16 16× 16× 1 10083 ≈ 1024 · 106 332.8 281.1 46.2 27 0.55 0.71
256 16× 16 8× 8× 4 10083 ≈ 1024 · 106 404.9 335.5 64.3 28 0.46 0.61
512 32× 16 16× 32× 1 12703 ≈ 2048 · 106 411.7 353.6 51.8 30 0.45 0.64
512 32× 16 8× 8× 8 12703 ≈ 2048 · 106 486.2 409.2 72.5 31 0.38 0.56
1024 64× 16 32× 32× 1 16003 = 4096 · 106 394.9 315.4 69.3 32 0.47 0.71

The time per iteration scales well for our parallel solver up to 1024

34

processes. The 2D partitioning of the problem domain is producing bet-
ter performance results, since the significantly higher setup costs for the
partitioning of anisotropic coordinate y are not compensated by the better
geometric quality of 3D partitioning. Although, this difference in computa-
tion time is decreasing. The test with 16× 8× 8 partitioning is missing in
Table 2.6 since it does not fit into 64GB of memory available on the nodes.
Memory requirements of our elliptic problem solver, mostly of BoomerAMG
preconditioner, are growing very fast.

Pseudo-Parabolic Method

The constructed finite volume scheme (2.9) implies that this numerical al-
gorithm will advance in pseudo-time computing Un

h from Un−1
h , solving one

system of linear equations at each ofM time steps. These systems are solved
sequentially, one after another. Thus, the pseudo-parabolic numerical algo-
rithm does not allow parallelism in the introduced new pseudo-time dimen-
sion. The usage of the proposed general two-level parallelisation template is
reduced only to the second level, at which discrete subproblems are solved
in parallel. In the case, when the problem domain Ω is two-dimensional,
the linear system will have 5-point stencil matrix, three-dimensional – 7-
point stencil matrix. We use a standard domain decomposition method for
the parallel solution of pseudo-parabolic PDE problem (2.8). The discrete
mesh of problem domain Ω and its associated fields are partitioned into
sub-domains, which are allocated to different processes.

Table 2.7: The accuracy and solution times of the parallel pseudo-parabolic
solver on uniform space grid N ×N

N M Error T1 p Tp Sp
128 592 0.00939 7.37 16 4.46 1.65
256 2348 0.00676 102.76 16 26.29 3.91
512 9216 0.00498 1252.90 48 153.36 8.17

1024 36864 0.00353 24712.00 96 950.42 26.00

The errors and solution times of the parallel pseudo-parabolic solver are
shown in Table 2.7. We see that the error values of the discrete solution
from Table 2.1 are eventually obtained by increasing the number of time
steps M . However, the number of time steps M for the uniform time grid
should be taken quite large. It makes this method (M2) non-competitive.
However this part of the algorithm was improved with the recently proposed
geometrically graded time stepping scheme [32], which resolved the singular

35

behavior of the solution for pseudo-time t close to 0. The results of methods
(M2) with geometrically graded time stepping scheme will be presented in
Section 2.5.2.

One can easily see the similarities and differences between the (M1)
and (M2) approaches. One of the important practical implications is the
significantly smaller amount of memory required for the pseudo-parabolic
algorithm – O(N2), compared to the elliptic approach – O(N2M). On the
other hand, the parallel pseudo-parabolic algorithm does not have paral-
lelism in the introduced additional dimension, i.e. in the pseudo-time. This
structure of the algorithm poses restrictions on the size of the tasks that can
be solved in parallel, thus leading to smaller sub-problems that are assigned
to each of the parallel processes.

Parallel performance results on strong scaling of the developed pseudo-
parabolic solver are presented in Table 2.8, where Sp = T1/Tp is the parallel
speed-up, Ep = Sp/p is the parallel efficiency. We show the degree of free-
dom per process, i.e. the number of unknowns in linear solver per core,
DOF/p = Nx1 × Nx2/p. We also calculate and present the scaled parallel
efficiency for the time per iteration

Êp =
Niter(p)

Niter(1)
Ep,

where Niter(p) is the total number of iterations of parallel preconditioned
conjugate gradient solver, i.e. summed up for all time steps.

For the pseudo-parabolic problem the additional setup costs of paral-
lel BoomerAMG preconditioner are not so large as for the elliptic problem
solver (see in Table 2.8). This is a consequence from the much better struc-
ture of the matrix for the discretised pseudo-parabolic problem (2.9). It
includes not only a diffusion term but also a positive diagonal matrix.

The parallel multigrid preconditioner is robust for the solved problem,
i.e. the number of iterations is quite stable. It increases only slightly with
the number of parallel processes.

As it is expected from the standard volume and area analysis, the 2D
partitioning strategy is more efficient than the 1D one, because it reduces
the data transfer between the parallel processes.

The results of strong scaling for different problem sizes are shown in
Figure 2.1.

In accordance with the parallel computing theory, the efficiency of strong
scaling is increasing when increasing the problem size. The most interesting
performance results are observed for the largest size problems. Due to the

36

Table 2.8: Total wall time Tp, speed-up Sp, and efficiency Ep solving prob-
lem (2.8) with β = 0.25.

Nx1 ×Nx2 , M p nd × nc P1 × P2 DOF/p Tp Niter Sp Ep Êp
4002, 400 1 1× 1 1× 1 16 · 104 147.5 1738 1.00 1.00 1.00
4002, 400 2 1× 2 2× 1 8 · 104 84.8 1764 1.74 0.87 0.88
4002, 400 4 1× 4 4× 1 4 · 104 51.9 1789 2.84 0.71 0.73
4002, 400 4 1× 4 2× 2 4 · 104 46.7 1899 3.16 0.79 0.86
4002, 400 16 1× 16 16× 1 1 · 104 20.1 1976 7.32 0.46 0.52
4002, 400 16 1× 16 4× 4 1 · 104 16.2 1956 9.13 0.57 0.64
4002, 400 32 2× 16 4× 8 0.5 · 104 10.7 2022 13.80 0.43 0.50
4002, 400 64 4× 16 8× 8 0.25 · 104 12.2 2060 12.10 0.19 0.22
8002, 800 1 1× 1 1× 1 64 · 104 1230.3 3338 1.00 1.00 1.00
8002, 800 2 1× 2 2× 1 32 · 104 729.2 3352 1.69 0.84 0.85
8002, 800 4 1× 4 4× 1 16 · 104 435.8 3370 2.82 0.71 0.71
8002, 800 4 1× 4 2× 2 16 · 104 382.0 3363 3.22 0.81 0.81
8002, 800 16 1× 16 16× 1 4 · 104 139.5 3430 8.82 0.55 0.57
8002, 800 16 1× 16 4× 4 4 · 104 119.7 3436 10.28 0.64 0.66
8002, 800 32 2× 16 32× 1 2 · 104 90.1 3603 13.65 0.43 0.46
8002, 800 32 2× 16 4× 8 2 · 104 63.8 3466 19.28 0.60 0.63
8002, 800 64 4× 16 8× 8 1 · 104 44.4 3589 27.74 0.43 0.47
8002, 800 128 8× 16 8× 16 0.5 · 104 38.0 3758 32.39 0.25 0.29
8002, 800 256 16× 16 16× 16 0.25 · 104 48.2 3892 25.50 0.10 0.12

16002, 1600 1 1× 1 1× 1 256 · 104 10828.0 6538 1.00 1.00 1.00
16002, 1600 2 1× 2 2× 1 128 · 104 7007.4 6547 1.55 0.77 0.77
16002, 1600 4 1× 4 4× 1 64 · 104 4272.2 6558 2.53 0.63 0.64
16002, 1600 4 1× 4 2× 2 64 · 104 3559.2 6558 3.04 0.76 0.76
16002, 1600 16 1× 16 16× 1 16 · 104 1276.9 6602 8.48 0.53 0.54
16002, 1600 16 1× 16 4× 4 16 · 104 1056.7 6595 10.25 0.64 0.65
16002, 1600 32 2× 16 32× 1 8 · 104 680.9 6635 15.90 0.50 0.50
16002, 1600 32 2× 16 4× 8 8 · 104 520.9 6624 20.79 0.65 0.66
16002, 1600 64 4× 16 8× 8 4 · 104 266.8 6670 40.58 0.63 0.65
16002, 1600 128 8× 16 8× 16 2 · 104 162.0 6728 66.84 0.52 0.54
16002, 1600 256 16× 16 16× 16 1 · 104 138.4 6805 78.26 0.31 0.32
16002, 1600 512 32× 16 16× 32 0.5 · 104 149.1 6936 72.64 0.14 0.15
16002, 1600 512 64× 8 16× 32 0.5 · 104 119.3 6935 90.75 0.18 0.19
16002, 1600 1024 64× 16 32× 32 0.25 · 104 210.7 7037 51.39 0.05 0.05

over-linear speed-up of the setup costs of BoomerAMG solver, and due to
the better utilization of cores for the smaller size problems, the efficiency
of the parallel solver is significantly bigger than 100% with respect to the
performance of one node with 16 cores.

The size of the discrete problem was defined as Nx1 × Nx2 ×M . The
numbers of grid points and the number of time steps were selected to keep
constant the size of each subproblem per process. Thus if the number of pro-
cesses was increased 8 times, the size of the linear system was increased only
4 times. Therefore, some degradation of the efficiency of the parallel algo-
rithm is expected when the number of processes is increased, in accordance
with the previously observed results of the strong scaling. This theoretical

37

16 32 64 128 256 512 1024
0

25

50

75

100

125

150

Number of processes

E
ffi
ci
en
cy

E
n
d

400

800

1600

3200

6400

Figure 2.1: Strong scalability of the parallel pseudo-parabolic solver

conclusion agrees well with the experimental results in Figure 2.2, where the
parallel efficiency End is shown. However, the weak scaling of the algorithm
improves vastly with the increased size of the problem.

16 32 64 128 256 512 1024
0

20

40

60

80

100

Number of processes

E
ffi
ci
en
cy

E
n
d
,
%

400

800

1600

Figure 2.2: Weak scalability of the parallel pseudo-parabolic solver

Integral Representation of the Solution (M3)

Using the third approach described in Section 2.4.3, the non-local fractional
diffusion problem (2.16) is transformed into a computation of two integrals
(2.11). Each term in both sums of the numerical approximation (2.12) can
be computed independently, what is very convenient for the parallelization.

We employ the well-known Master-Slave parallel model [26,54]. Master
process generates and distributes tasks (a block of consecutive yj values)
between the slave processes. For each received yj value, a slave process

38

solves the local elliptic problem

(Ih + y2
jLh)−1f or (y2

j Ih + Lh)−1f

in Ωh. This is the first level of parallelization. When each independent ellip-
tic problem is solved sequentially, one-level Master-Slave solver is obtained.
For large size grids Ωh, these sub-problems need to be solved in parallel in
the two-level parallel solver. The parallel performance results are obtained
with one-level Master-Slave solver using the conjugate gradient method with
the sequential version of BoomerAMG preconditioner.

Differently from the usual Master-Slave model, in our solver, slave pro-
cesses do not return to the master results of each task immediately after
its solution. The slave processes accumulate the obtained results - compute
partial sums of the solution u for each mesh point. These big data vectors
of the size Nx1 ×Nx2 are sent only once, after the solution of the last task.
The final solution u is collected from the partial sums at the master process
by MPI reduction operation [68].

The main challenge for this parallel algorithm is to guarantee a good
load balancing and to minimize the data communication and synchroniza-
tion costs. Thus we have implemented different task partitioning and distri-
bution approaches, including dynamic and static cyclic algorithms. A single
task is defined as a block of K consecutive yj values. We have used K = 1

and K = 10 in the presented tests.
Parallel performance results on strong scaling of the developed parallel

solver are presented in Table 2.9. The total wall time Tp is given in seconds.
Here p = nd × nc is the total number of the used parallel processes using
nd nodes and nc cores per node, s = p− 1 is the number of slave processes,
which are solving the computational tasks. In Table 2.9, we also present
the obtained parallel speed-up Ss = T2/Tp, the efficiency Es = Ss/s, and
the parallel efficiency with respect to one node with 16 cores.

Both task partitioning algorithms (dynamic and static cyclic) are achiev-
ing very similar load balancing. This fact is a consequence from the robust-
ness of BoomerAMG preconditioner, since the numbers of iterations and
solution times are almost constant with respect to the parameters yj .

The good strong scaling of the presented parallel algorithm is preserved
even for large numbers of processes, if the size of task pool is sufficiently
big. Results of strong scaling for increasing problem sizes are shown in
Figure 2.3.

As it follows from the results obtained with the block size K = 10, a

39

Table 2.9: Total wall time Tp, speed-up Sp, and efficiency Ep solving prob-
lem (2.10) with β = 0.25.

Nx1 ×Nx2 , M s nd × nc Partition Block Tp Ss Es End
4002, 400 1 1× 2 cyclic 1 294.1 1.00 1.00 -
4002, 400 2 1× 3 cyclic 1 150.1 1.96 0.98 -
4002, 400 15 1× 16 cyclic 1 22.5 13.08 0.87 1.00
4002, 400 31 2× 16 cyclic 1 11.8 24.97 0.81 0.95
4002, 400 63 4× 16 cyclic 1 6.1 48.45 0.77 0.93
4002, 400 127 8× 16 cyclic 1 3.4 87.70 0.69 0.84
4002, 400 255 16× 16 cyclic 1 2.3 129.98 0.51 0.62
4002, 400 511 32× 16 cyclic 1 2.5 117.85 0.23 0.28
4002, 400 15 1× 16 dynamic 1 22.8 13.08 0.87 1.00
4002, 400 31 2× 16 dynamic 1 11.6 25.62 0.83 0.98
4002, 400 63 4× 16 dynamic 1 6.1 48.66 0.77 0.93
4002, 400 127 8× 16 dynamic 1 4.0 75.22 0.59 0.72
4002, 400 255 16× 16 dynamic 1 3.9 75.58 0.30 0.36
4002, 400 511 32× 16 dynamic 1 4.1 72.56 0.14 0.17
4002, 400 15 1× 16 dynamic 10 24.6 11.92 0.79 1.00
4002, 400 31 2× 16 dynamic 10 13.1 22.48 0.73 0.94
4002, 400 63 4× 16 dynamic 10 8.8 33.36 0.53 0.70

16 32 64 128 256 512 1024
0

20

40

60

80

100

Number of processes

E
ffi
ci
en
cy

E
n
d
,
%

400, cyclic

400, dynamic

800, cyclic

800, dynamic

1600, cyclic

1600, dynamic

Figure 2.3: Strong scaling of the parallel integral solver

degradation of the performance of the parallel solver is caused by the load
imbalance of the slave processes when the number of tasks is not sufficient to
guarantee a balanced distribution of tasks. In the case when the complexity
of all tasks is the same, this load imbalance can be estimated as [94]

g(M,p) =
max0≤j<pMj

M/p
,

where M is the number of tasks, p is the number of processes and Mj is the
number of tasks solved by jth process. For example, if M = 800 then for
400 and 799 processes the parallel computation time is the same T400 = T799

since in both cases some processes should solve 2 tasks. Even for large size

40

problems this bottleneck is important if the problem is solved on massively
parallel computers.

The weak scalability results of the proposed parallel algorithm are shown
in Table 2.10, where again the scaling is done controlling the accuracy of
the algorithm. Thus, when p is increased 8 times all three parameters Nx1 ,
Nx2 and M are increased 2 times.

Table 2.10: Weak scaling of the parallel integral solver

Nx1 ×Nx2 , M p nd × nc Partition Block Tp End
4002, 400 16 1× 16 cyclic 1 22.48 1.00
8002, 800 128 8× 16 cyclic 1 26.75 0.84

16002, 1600 1024 64× 16 cyclic 1 36.12 0.62
4002, 400 16 1× 16 dynamic 1 22.79 1.00
8002, 800 128 8× 16 dynamic 1 26.54 0.86

16002, 1600 1024 64× 16 dynamic 1 35.70 0.64

A degradation of the performance of the parallel solver is caused by the
need to solve simultaneously in one node elliptic problems of increasing size.

Next, we will present the convergences analysis of the case with geomet-
ric MG preconditioners and thus the setup costs are minimal. The accuracy
and solution times of the parallel quadrature solver with graded mesh (2.12)
and with exponential mesh (2.14) are shown in Tables 2.11–2.12. The intro-
duction of additional dimension gives the second order of convergence with
the graded mesh (2.12) and exponential order of convergence with exponen-
tial mesh (2.14), the obtained discrete error values are close to values from
Table 2.1.

Minimal parallel solution times Tp with optimal number of groups of pro-
cessors and decomposition of the discrete mesh and corresponding speed-ups
Sp are demonstrated using up to 256 parallel processes. For 256 processors
we obtained the values of Sp equal to 114 and 78 with graded mesh (2.12)
and with exponential mesh (2.14), respectively.

Table 2.11: The accuracy and solution times of the parallel quadrature
solver with graded mesh on uniform space grid N ×N

N M Error T1 p Tp Sp
128 128 0.009710 2.67 32 0.15 17.35
256 128 0.007041 9.90 64 0.47 20.87
512 256 0.004854 105.47 208 1.45 72.63

1024 256 0.003517 505.51 256 4.41 114.50
2048 512 0.002417 4764.46

41

Table 2.12: The accuracy and solution times of the parallel quadrature
solver with exponential mesh on uniform space grid N ×N

N m1 m2 k Error T1 p Tp Sp
128 40 14 0.50 0.00956 0.43 16 0.062 6.90
128 89 30 0.33 0.00946 0.87 32 0.096 9.07
256 40 14 0.50 0.00678 1.56 32 0.13 11.89
256 89 30 0.33 0.00669 3.20 32 0.22 14.60
512 40 14 0.50 0.00482 7.97 96 0.25 31.81
512 89 30 0.33 0.00473 16.06 96 0.41 38.95

1024 40 14 0.50 0.00343 38.66 256 0.71 54.58
1024 89 30 0.33 0.00334 77.45 256 1.49 51.89
2048 40 14 0.50 0.00245 185.00 256 2.37 78.01
2048 89 30 0.33 0.00236 370.08 256 4.70 78.75

BURA Method (M4)

Solution of the non-local fractional diffusion problem (2.16) is transformed
into a computation of sums (2.15). The corresponding m+1 discrete elliptic
subproblems can be solved independently. The same two-level parallel algo-
rithm as for integral method (M3) can be used. However, the parallelisation
degree is small, therefore, two-level parallel algorithm is limited.

Table 2.13: The accuracy and solution times of BURA(m) solver on uniform
space grid N ×N

BURA(5) BURA(6) BURA(7)
N Error Time Error Time Error Time
16 0.02697 0.009 0.02704 0.010 0.027025 0.010
32 0.01894 0.012 0.01893 0.013 0.018947 0.015
64 0.01339 0.022 0.01339 0.026 0.013380 0.029

128 0.00947 0.061 0.00946 0.072 0.009464 0.081
256 0.02775 0.209 0.00669 0.245 0.006691 0.280
512 0.07146 0.997 0.02804 1.164 0.006003 1.35

1024 0.17077 4.82 0.05785 5.54 0.02803 6.43
2048 0.06132 21.96 0.17017 26.11 0.05719 30.40

The accuracy and solution times of the BURA(m) solvers are shown in
Table 2.13. Analysing the accuracy of BURA(5) solutions, we see that the
error values are close to values in Table 2.1 for N ≤ 128, and BURA(6),
BURA(7) for N ≤ 256. The accuracy of BURA(m) solutions is decreasing
with increasedN due to the approximation error. Still we note that determi-
nation of coefficients cj and dj in (2.15) for arbitrarym and β is a non-trivial

42

and computation demanding task [45,92]. In the work [92], coefficients and
errors εm(β) are computed with high accuracy for β = {i/8, i = 1, . . . , 7}
and m ≤ 30. The corresponding coefficients, however, are not provided.

Comparison of Accuracy

We presented the comparison in terms of the accuracy and parallel computa-
tional times for five numerical algorithms: elliptic (2.6), pseudo-parabolic (2.9),
quadrature algorithm with graded mesh (2.12), quadrature algorithm with
exponential mesh (2.14), BURA(7) (2.15) algorithm. The reference (exact)
solution was obtained for test problem (2.16)–(2.17) with β = 0.25 using the
pseudo-spectral Fourier method [4] on uniform space grid with N = 32768

points.
The parallel solvers are compared in terms of solution times Tp needed to

achieve certain accuracy in Figure 2.4. Minimal parallel solution times are
obtained with an optimal number of parallel processes and parameters of
parallel algorithms. The corresponding speed-ups are shown in Figure 2.5.

Figure 2.4: Comparison of parallel solvers in terms of accuracy

The performed analysis has shown that selection of the best algorithm is
problem- dependent. The BURA method of rational approximation presents
an attractive alternative if the high accuracy is not required and coefficients
of the method for given fractional power β = 0.25 are known in advance. For
the considered test problem, the relative accuracy of 0.006 can be achieved
very cheaply with the BURA(7) algorithm. Seeking more accurate solutions,
quadrature algorithm with exponential mesh has the smallest computational
cost needed to achieve the required accuracy.

Pseudo-parabolic problem 2.9 was solved using a uniform grid, which

43

Figure 2.5: Speed-ups of parallel solvers

allowed us to evaluate the properties of its parallelisation, but it becomes
competitive in terms of computational time only when geometrically graded
time stepping scheme [32] is used. The results of method (M2) with geo-
metrically graded time stepping scheme will be presented in Section 2.5.2.

2.5.2 Convergence and Scalability Analysis of the Parallel
Algorithms for 3D Problems

To develop the parallel numerical algorithms, we use the same two-level
parallelization approach. The set of M discrete 3D elliptic subproblems
defines the first level of parallelization. A significant difference is observed
among the three considered methods (M2)–(M4). For the pseudo-parabolic
method (M2), the discrete subproblems cannot be solved concurrently. For
the quadrature method (M3), the number M = M(β, k) depends on the
required level of transformation error. For the BURA method (M4), the
number M = m + 1 is quite small. On the second level of parallel al-
gorithms, each discrete subproblem is solved in parallel using the domain
decomposition method. To implement these parallel algorithms, we use our
C++ parallel programing templates [26] with MPI library for master–slave,
parallelization on the first level. Discrete subproblems are statically or dy-
namically distributed between the groups of parallel processes. Different
number of groups can be used. On the second level, each obtained discrete
subproblem is solved in parallel by the corresponding group of processes
using the parallel preconditioned conjugate gradient method for solving the
arising linear systems.

It is important to note that the method (M1) was excluded from the

44

list of considered method as less suitable for 3D case due to high memory
requirements.

In recent study [12], authors propose the new numerical methods for
fractional diffusion. The numerical approximation is based on different def-
initions of fractional powers of elliptic operators: PDE approach for the
spectral definition, integral formulation and a discretization of the Dunford-
Taylor formula. In this study [12] authors demonstrated, that the new
Dunford-Taylor algorithm is good for parallelisation and gives good weak
and strong scalability properties. Authors modified the first method (M1),
which made it competitive in 3D case. In the next study [65], authors
propose the new approach for first method (M1), it gave reduction of the
computational complexity and improved convergence properties of the state-
of-the-art discretisation. It was achieved by discretisation with linear finite
elements in the original domain and hp-finite elements in the extended direc-
tion. In one more recent study [9], authors demonstrated exponential rates
of convergence of hp-finite elements method for Caffarelli-Silvestre exten-
sion in the truncated cylinder Ω(0, Y) with anisotropic geometric meshes.
In study [29], authors recommended a novel discretisation of the spectral
fractional on bounded domains based on integral expression of the opera-
tor via the heat-semigroup method. The comparison of these new methods
requires additional computations, it is planed future research.

Pseudo-Parabolic Method (M2)

In Section 2.5.1 we have used the uniform time-stepping. However, our ex-
periments in solving the current test problem (2.16)–(2.17) have not shown
the second order of convergence in time, even for quite small time steps.
Such convergence rate is expected asymptotically for the Crank–Nicolson
scheme. Consequently a large number of time steps is essential to reduce
the time discretization (non-local problem transformation) error to the level
of space discretization error. Such a behavior of this version of the numerical
scheme makes the respective parallel algorithm not competitive in compar-
ison with the remaining two methods (M3,M4).

In study, [32] it has been shown that the convergence rate of time dis-
cretization scheme with the uniform time-stepping depends on the smooth-
ness of the solution. A new geometrically graded time-stepping scheme is
proposed to deal with the singular behavior of the solution for time t close
to 0. The authors [32] have proved that the convergence rate of the time dis-
cretization schemes with such geometrically refined mesh does not depend
on the smoothness of the solution.

45

We performed convergence tests of the constructed scheme (2.9), solving
the 3D test problem (2.16)–(2.17). In Table 2.14, we present the relative
error EM2

N (2.18) of the discrete solution UM2
N obtained on a uniform space

grid with N3 cells and doing M = (K + 1)J time steps. We also try to es-
timate the transformation (time discretization) error. We use the reference
solution UFN obtained with the Fourier method on the same space grid in-
stead of the exact solution u in (2.18) to compute and present the estimate
ÊM2
N of the transformation error of the method.

In Table 2.14, we present the total number of iterations, Niter, to eval-
uate the performance of the iterative method, which is employed to solve
the discrete 3D elliptic subproblems. We use the preconditioned conju-
gate gradient method with the geometric multigrid PFMG solver from the
HYPRE library [34, 35] as preconditioner. PFMG is a parallel alternating
semi-coarsening V-cycle multigrid solver that uses pointwise relaxation for
solving scalar diffusion equations on logically rectangular grids. We perform
one iteration of the PFMG solver with the symmetric red-black Gauss-Seidel
relaxation and default parameters. We present in Table 2.14 the solution
times T1, later used in our parallel scalability studies.

Table 2.14: Convergence of the discrete solution UM2
N (2.9) obtained by the

pseudo-parabolic method (M2) for β = 0.25 and β = 0.75.

β = 0.25 β = 0.75

N3 J M EM2
N ÊM2

N Niter Time EM2
N ÊM2

N Niter Time
163 4 52 0.034854 0.000800 178 1.65 · 10−1 0.012284 0.000412 189 1.69 · 10−1

163 8 104 0.035453 0.000201 324 3.13 · 10−1 0.012492 0.000104 362 3.29 · 10−1

163 16 208 0.035604 0.000050 636 6.18 · 10−1 0.012545 0.000026 654 6.28 · 10−1

323 4 60 0.024296 0.000873 224 1.16 · 100 0.004238 0.000425 235 1.19 · 100

323 8 120 0.024949 0.000220 415 2.22 · 100 0.004359 0.000107 454 2.33 · 100

323 16 240 0.025114 0.000055 796 4.38 · 100 0.004389 0.000027 831 4.48 · 100

643 4 68 0.016950 0.000890 270 1.13 · 101 0.001473 0.000427 282 1.15 · 101

643 8 136 0.017580 0.000224 519 2.20 · 101 0.001533 0.000107 546 2.21 · 101

643 16 272 0.017739 0.000056 948 4.25 · 101 0.001548 0,000027 1021 4.38 · 101

1283 4 76 0.011814 0.000895 317 1.30 · 102 0.000512 0.000428 327 1.32 · 102

1283 8 152 0.012379 0.000225 612 2.56 · 102 0.000539 0.000107 628 2.59 · 102

1283 16 304 0.012521 0.000057 1117 4.90 · 102 0.000546 0,000027 1204 5.08 · 102

2563 4 84 0.008207 0.000898 361 1.22 · 103 0.000383 0.000428 378 1.26 · 103

2563 8 168 0.008692 0.000226 696 2.41 · 103 0.000189 0.000107 710 2.43 · 103

2563 16 336 0.008815 0.000057 1314 4.67 · 103 0.000192 0.000027 1377 4.73 · 103

5123 4 92 0.005632 0.000898 416 1.34 · 104 0.000417 0.000428 425 1.37 · 104

5123 8 184 0.006035 0.000226 778 2.60 · 104 0.000096 0.000107 817 2.67 · 104

5123 16 368 0.006137 0.000057 1506 5.10 · 104 0.000067 0.000027 1544 5.16 · 104

Analysing the values of the relative error EM2
N in Table 2.14, the ref-

erence values from Table 2.2 can be achieved by increasing the number of
time steps J and thus reducing the time discretization error. In almost all
cases the value of the error EM2

N is smaller for J = 2 than for J = 4 and

46

J = 8. This is caused by effect of compensation of errors, which is discussed
earlier.

Analysing the error ÊM2
N in Table 2.14, the second-order convergence in

time can be observed: the error is reduced around four times by doubling
J . These results confirm the theoretical estimates [32] for the selected 3D
test problem as well. For comparison, we present the results obtained using
the uniform time-stepping mesh as well. Then, the error EM2

512 = 0.008378

is obtained for β = 0.25 and 4096 time steps. The computation time of the
parallel algorithm is T256 = 9.04 ·103, that is here 256 processes are used.
Method (M2) with the geometrically graded time-stepping scheme can be
considerably more competitive.

Analysing the performance of the iterative solver, a quite robust per-
formance of the geometric multigrid preconditioner can be observed. The
average number of iterations per time step - Niter/M is quite stable. It is
slightly reducing for the doubling M and fixed N . Moreover, it is slightly
increasing for the fixed J and doubling N : 3.12, 3.46, 3.82, 4.03, 4.14, 4.23
for J = 8. In addition, note here that the total number of iterations Niter

and the solution times T1 are almost identical for β = 0.25 and β = 0.75,
that is, the computational complexity of the solvers does not depend on the
fractional power parameter β.

Quadrature Method (M3)

In Table 2.15, we present the relative error EM3
N (2.18) of the discrete so-

lution UM3
N (2.14) obtained on the uniform space grid with N3 cells. Two

values of the quadrature’s parameter k are used: 1/2 and 1/3. We es-
timate and present the method’s transformation (integral approximation)
error ÊM3

N using the reference Fourier solution UFN instead of the exact so-
lution u in (2.18).

In addition we present in Table 2.15 the total number of iterations, Niter,
that are preformed by the PCG method to solve M discrete 3D elliptic
subproblems. Finally, we present the solution times T1, later used in our
parallel scalability studies.

Analysing the relative error EM3
N values in Table 2.15, the reference

values from Table 2.2 are achieved by decreasing the parameter k and thus
reducing the error of transformation (integral approximation).

The exponential convergence of employed quadrature formula can be
obtained from the transformation error ÊM3

N values given in Table 2.15.
The error is reduced 138 times for β = 0.25 and 98 times for β = 0.75

(N = 512) by increasing the number M of quadrature points yj twice. For

47

Table 2.15: Convergence of the discrete solution UM3
N (2.14) obtained by

the quadrature method (M3) for β = 0.25 and β = 0.75.

β = 0.25 β = 0.75

N3 k M EM3
N ÊM3

N Niter Time EM3
N ÊM3

N Niter Time
163 1/2 55 0.035742 8.82 · 10−5 187 1.62 · 10−1 0.012647 9.77 · 10−5 343 2.18 · 10−1

163 1/3 120 0.035654 3.71 · 10−7 370 3.34 · 10−1 0.012564 9.16 · 10−7 724 4.62 · 10−1

323 1/2 55 0.025257 8.82 · 10−5 194 9.63 · 10−1 0.004482 9.78 · 10−5 350 1.33 · 100

323 1/3 120 0.025169 4.50 · 10−7 383 1.99 · 100 0.004400 1.00 · 10−6 737 2.81 · 100

643 1/2 55 0.017880 8.82 · 10−5 204 8.11 · 100 0.001636 9.78 · 10−5 360 1.12 · 101

643 1/3 120 0.017792 5.03 · 10−7 395 1.66 · 101 0.001555 1.04 · 10−6 749 2.36 · 101

1283 1/2 55 0.012657 8.82 · 10−5 211 8.30 · 101 0.000631 9.78 · 10−5 367 1.15 · 102

1283 1/3 120 0.012570 5.53 · 10−7 407 1.70 · 102 0.000550 1.05 · 10−6 761 2.42 · 102

2563 1/2 55 0.008943 8.82 · 10−5 238 7.35 · 102 0.000273 9.78 · 10−5 419 1.04 · 103

2563 1/3 120 0.008856 6.04 · 10−7 457 1.49 · 103 0.000194 1.05 · 10−6 870 2.25 · 103

5123 1/2 55 0.006259 8.82 · 10−5 249 7.10 · 103 0.000140 9.78 · 10−5 427 1.07 · 104

5123 1/3 120 0.006171 6.41 · 10−7 470 1.52 · 104 0.000068 1.05 · 10−6 883 2.25 · 104

comparison, we note that the relative error EM3
512 = 0.0062042 for β = 0.25

is obtained with M = 512 quadrature points if the quadrature formula with
β-dependent graded mesh is applied.

Analysing the computational complexity of numerical algorithm (2.14)
for the same N , M , and different β values, we observe that 1.7–1.9 times
more PCG iterations are performed for β = 0.75 in comparison with β =

0.25. This result is explained by the adaptive nature of the summation
range [−m1,m2]:

β = 0.25 : [−40, 14] for k = 1/2 and [−89, 30] for k = 1/3;

β = 0.75 : [−14, 40] for k = 1/2 and [−30, 89] for k = 1/3.

For negative quadrature points yj = kj, coefficient e−2yj increases rapidly
and then the respective matrices e−2yjIh+Lh become with a strongly dom-
inating diagonal. The linear systems with such matrices are solved in just
one iteration. For example, in case of N = 16 and k = 1/3 , 76 linear
systems are solved in one iteration for β = 0.25 and only 15 systems for
β = 0.75. Most of the other linear systems in (2.14) are solved in 7–8 it-
erations for all N sizes, as is expected from the multigrid preconditioner
properties. Such a difference in computational complexity for different β
values is not observed for the quadrature formula with β-dependent graded
mesh.

BURA Method (M4)

Analysing the values of the relative error EM4
N in Table 2.16, many re-

sults, which significantly differ from the reference values in Table 2.2 are

48

observed. The obtained relative errors, which are close to the reference
values, are marked with bold font. For the test problem with β = 0.25,
the approximate solutions UM4

N are sufficiently accurate on the coarse grids
with N = 16, 32, 64. However, the accuracy starts to deteriorate with the
further increasing N (decreasing h) due to the increase in the approxima-
tion error. To some extent, this effect can be mitigated by using higher
order approximations with m > 5. However, the relative error of 0.006171
is not accessible with the available approximations (coefficients cj and dj).
For the test problem with β = 0.75, only the R-BURA method with m = 7

produces satisfactory results. The relative error of 0.001554 is obtained on
the grid with N = 64.

Table 2.16: Accuracy of the discrete solution UM4
N (2.15) obtained by the

BURA method (M4) for β = 0.25 and β = 0.75.

β = 0.25 β = 0.75

N3 Method(m) M EM4
N ÊM4

N Niter Time EM4
N ÊM4

N Niter Time
163 BURA(5) 6 0.035645 3.12 · 10−4 33 2.58 · 10−2 0.022243 1.17 · 10−2 38 2.81 · 10−2

163 BURA(6) 7 0.035657 4.06 · 10−4 39 2.97 · 10−2 0.012599 1.42 · 10−3 45 3.20 · 10−2

163 BURA(7) 8 0.035656 7.10 · 10−5 45 3.33 · 10−2 0.012584 3.04 · 10−3 51 3.51 · 10−2

163 R-BURA(7) 8 0.012563 8.04 · 10−5 47 3.40 · 10−2

323 BURA(5) 6 0.025167 3.84 · 10−4 33 1.39 · 10−1 0.015659 1.50 · 10−2 38 1.50 · 10−1

323 BURA(6) 7 0.025168 6.35 · 10−4 40 1.65 · 10−1 0.005484 4.55 · 10−3 45 1.77 · 10−1

323 BURA(7) 8 0.025169 4.07 · 10−4 45 1.84 · 10−1 0.007342 3.99 · 10−3 52 2.01 · 10−1

323 R-BURA(7) 8 0.004399 5.71 · 10−5 48 1.91 · 10−1

643 BURA(5) 6 0.017791 2.30 · 10−3 33 1.09 · 100 0.008597 7.57 · 10−3 38 1.19 · 100

643 BURA(6) 7 0.017792 8.44 · 10−4 40 1.31 · 100 0.011952 1.09 · 10−2 45 1.40 · 100

643 BURA(7) 8 0.017792 6.46 · 10−4 45 1.47 · 100 0.004588 4.15 · 10−3 52 1.61 · 100

643 R-BURA(7) 8 0.001554 4.63 · 10−4 47 1.51 · 100

1283 BURA(5) 6 0.025491 1.92 · 10−2 33 1.10 · 101 0.018907 1.86 · 10−2 38 1.21 · 101

1283 BURA(6) 7 0.012569 3.60 · 10−3 39 1.29 · 101 0.017447 1.73 · 10−2 45 1.43 · 101

1283 BURA(7) 8 0.012569 8.64 · 10−4 45 1.48 · 101 0.002476 2.13 · 10−3 50 1.60 · 101

1283 R-BURA(7) 8 0.002224 1.87 · 10−3 47 1.53 · 101

2563 BURA(5) 6 0.061277 5.69 · 10−2 35 9.48 · 101 0.042304 4.22 · 10−2 41 1.05 · 102

2563 BURA(6) 7 0.024703 2.03 · 10−2 40 1.09 · 102 0.014040 1.39 · 10−2 49 1.24 · 102

2563 BURA(7) 8 0.008855 3.67 · 10−3 48 1.28 · 102 0.005037 5.04 · 10−3 55 1.40 · 102

2563 R-BURA(7) 8 0.005349 5.27 · 10−3 50 1.32 · 102

5123 BURA(5) 6 0.120413 1.20 · 10−1 34 8.57 · 102 0.023142 2.32 · 10−2 41 9.89 · 102

5123 BURA(5) 6 0.120413 1.20 · 10−1 34 8.57 · 102 0.023142 2.32 · 10−2 41 9.89 · 102

5123 BUR A(6) 7 0.050764 4.77 · 10−2 40 1.00 · 103 0.014994 1.50 · 10−2 48 1.17 · 103

5123 BURA(7) 8 0.023393 2.03 · 10−2 47 1.20 · 103 0.016757 1.67 · 10−2 55 1.34 · 103

5123 R-BURA(7) 8 0.010876 1.08 · 10−2 49 1.26 · 103

Analysing the computational complexity of numerical algorithm (2.15)
for the same N , M , and different β values, we observe that the difference
is not significant. On average, one more PCG iteration is performed for
each of the solved linear systems for β = 0.75, that is, 6 and 7 iterations,
respectively. The number of iterations Niter is stable with the increasing N ,
as it should be expected for the multigrid preconditioner.

49

Comparison of Accuracy

We compare in Fig. 2.6(a) and (b) the serial solution times T1 from Ta-
bles 2.14 to 2.16 that are essential to achieve a similar accuracy with different
algorithms. Note that logarithmic scales are used for the relative error EM∗N

and serial times T1 in seconds. We compare the results for the pseudo-
parabolic method M2 with J = 8, the quadrature method M3 with k = 1/2

and k = 1/3, and the BURA method M4 with BURA(7) for β = 0.25 and
R-BURA(7) for β = 0.75.

We see that for β = 0.25 the accuracy of up to two digits is very cheaply
obtained by the BURA(7) method (M4). The acceptable error level depends
on the application. In some cases, the percent error values of 2.5% - 0.9%
may well be acceptable, for example, due to the high level of measurement
errors. In these cases, the BURA(m) method (M4) is the best choice. How-
ever, if this level of accuracy is not acceptable and coefficients of the BURA
method are not available for higher order approximations, then the quadra-
ture method (M3) with k = 1/2 is recommended to obtain more accurate
solutions.

Due to the faster convergence rate of discrete solution Uh for β = 0.75,
more accurate solutions can be obtained on the same space grids in com-
parison to β = 0.25. However, in order to achieve such accuracy, the trans-
formation error also should be decreased to lower levels. R-BURA(7) is
showing the best results for the method (M4) and allows to achieve the
accuracy of 0.001554 (i.e. 0.1554%). Again, for the higher accuracy, the
quadrature method (M3) is recommended.

It should be noted that the results of pseudo-parabolic method (M2)
with J = 8 are very close to the results of quadrature method (M3) with
k = 1/3 in terms of accuracy and related computational costs for N = 128

and 256. This result confirms the good performance of new geometrically
graded time-stepping scheme for the pseudo-parabolic method (M2).

The detailed results of comparison of developed parallel solver are pre-
sented in Figure 2.6. The parallel algorithm for the pseudo-parabolic method
(M2) shows the significantly larger solution times Tp and lower speedups Sp.
For the smaller problems N3 = 323, 643, 1283, all 512 processes cannot be
efficiently employed to achieve additional speedup. Owing to the relatively
small number M = m+1 for the BURA method (M4), the parallel speedups
Sp of the according parallel algorithm are closer to the speedups of pseudo-
parabolic method (M2) than to the quadrature method (M3). Third, the
highest speedups are obtained for the quadrature method M3: S512 = 259.96

50

for β = 0.25 and S512 = 262.27 for β = 0.75 when the largest problem with
k = 1/3 is solved. The reduction of transformation error with decreasing
parameter k leads to the higher degree of concurrency.

0.0061710.0088550,0125690.0177920.025169

Relative error EM*
N

2 10-1

5 10-1
1 100
2 100

5 100
1 101
2 101

5 101
1 102
2 102

5 102
1 103
2 103

5 103
1 104
2 104

T
im

e
 T

1

M2: J=8

M3: k=1/3

M3: k=1/2

M4: BURA(7)

0.0000670.0001930.0005490.0015540.004399

Relative error EM*
N

2 10-1

5 10-1
1 100
2 100

5 100
1 101
2 101

5 101
1 102
2 102

5 102
1 103
2 103

5 103
1 104
2 104

T
im

e
 T

1

M2: J=8

M3: k=1/3

M3: k=1/2

M4: R-BURA(7)

(a) Serial solution times T1 (b) Serial solution times T1

for β = 0.25 for β = 0.25

0.0061710.0088550.0125690.0177920.025169

Relative error EM*
N

3 10-2

5 10-2

1 10-1

2 10-1

5 10-1

1 100

2 100

5 100

1 101

2 101

5 101

1 102

P
a
ra

lle
l
ti
m

e
 T

p

M2: J=8

M3: k=1/3

M3: k=1/2

M4: BURA(7)

256

512

512

128

32

16

64

512

512

512

512

512

512

256

256

32

32

512

512

0.0061710.0088550.0125690.0177920.025169

Relative error E
M*

N

0

50

100

150

200

250

P
a

ra
lle

l
s
p

e
e

d
u

p
 S

p

M2: J=8

M3: k=1/3

M3: k=1/2

M4: BURA(7)

512

512

512512

512

512

512

512

256

256

128

512

512

256

32
32

64

16

32

(c) Parallel solution times Tp (d) Parallel speedups Sp
for β = 0.25 for β = 0.25

0.0000670.0001930.0005490.0015540.004399

Relative error EM*
N

3 10-2

5 10-2

1 10-1

2 10-1

5 10-1

1 100

2 100

5 100

1 101

2 101

5 101

1 102

P
a
ra

lle
l
ti
m

e
 T

p

M2: J=8

M3: k=1/3

M3: k=1/2

M4: R-BURA(7)

16

32

128

512

512
512

512

512

512

512

512

512

128

32

64
256

512

0.0000670.0001930.0005490.0015540.004399

Relative error E
M*

N

0

50

100

150

200

250

P
a

ra
lle

l
s
p

e
e

d
u

p
 S

p

M2: J=8

M3: k=1/3

M3: k=1/2

M4: R-BURA(7)

512

512 512

512

512512

512

512
512

128

512

256

32

16

64 32

128

(e) Parallel solution times Tp (f) Parallel speedups Sp
for β = 0.75 β = 0.75

Figure 2.6: Comparison of parallel numerical algorithms for selected meth-
ods (M2)–(M4) solving the 3D test problem (2.16)–(2.17)

51

2.6 Conclusions of the Second Chapter

The Fourier method is the best method when the FFT algorithm can be
applied. In this case the eigenvectors and eigenvalues of the elliptic opera-
tor should be known in advance. For problems in non-rectangular domains
and/or with general elliptic operator, more general methods should be con-
sidered.

The BURA method (M4) of the best uniform rational approximation
presents an attractive alternative if the high accuracy of numerical solution
is not required.

The R-BURA method shows better results for the fractional power β
values closer to 1. However, coefficients of the method should be known
in advance for the provided fractional power β and they are difficult to
compute.

The pseudo-parabolic method (M2) with geometrically graded time-
stepping scheme has shown in some cases competitive results in terms of
accuracy and related computational costs. However, this method is outper-
formed in terms of parallel scalability by the quadrature method (M3).

The quadrature method (M3) with exponentially convergent quadrature
formula is recommended if the higher accuracy solutions are required.

The first method (M1) appears to be very sensible to the partitioning of
anisotropic y coordinate, which was introduced during the transformation.
The setup of AMG preconditioner is taking the most of the total solution
time (around 80% and more). The 2D partitioning of the problem do-
main is producing better performance results, since the significantly higher
setup costs for the partitioning along the anisotropic coordinate y are not
compensated by the better geometric quality of the 3D partitioning. The
memory requirements of our elliptic problem solver, mostly of BoomerAMG
preconditioner, are growing very fast.

52

Chapter 3

The construction of
absorbing boundary
conditions for the
one-dimensional Schrödinger
equation∗

In the second part of the dissertation the non-local problem with fractional
powers of elliptic operators was investigated. The aim was to construct and
compare parallel algorithms for different state-of-the-art numerical meth-
ods used for solving the fractional powers of elliptic problems. The fourth
method (M4) is based on the best uniform rational approximation (BURA)
of a scalar function of the form tγ . In this part of dissertation the one di-
mensional linear Schrödinger equation is analysed. We investigate how to
construct the absorbing boundary conditions for this equation. These con-
ditions are obtained by using rational functions to approximate exact trans-
parent boundary conditions. The aim is to find optimal coefficients of ratio-
nal functions. Different strategies are investigated for the optimal selection
of coefficients of these rational functions, including the Padé approximation,
the L2 norm approximation of the Fourier symbol, L2 minimization of the
reflection coefficient, and two adaptive minimization techniques that min-
imize the error of solution for a selected benchmark problems with known

∗Bugajev, A.; Čiegis, R.; Kriauzienė, R.; Leonavičienė, T.; Žilinskas, J. On the accu-
racy of some absorbing boundary conditions for the Schrödinger equation Mathematical
modelling and analysis. Vilnius: Taylor & Francis, VGTU. 2017, Vol. 22, iss. 3, p.
408–423. DOI:10.3846/13926292.2017.1306725.

53

exact solutions and coupled adaptive strategy. The formulated optimiza-
tion problems are computationally costly; therefore, parallel computing was
used. The results of computational experiments are given and a detailed
comparison of the efficiency of these techniques is presented.

Parts of this chapter are published in [15].

3.1 Introduction to this Chapter

The initial-value problem for the linear one-dimensional Schrödinger equa-
tion is i

∂ũ

∂t
+
∂2ũ

∂x2
= 0, −∞ < x <∞, t > 0,

ũ(x, 0) = u0(x).
(3.1)

The Schrödinger equation is widely used for modelling quantum mechan-
ics and non-linear optics problems. Usually the equation is supplemented
with an initial condition and only asymptotical behaviour of the solution
at infinite boundaries is defined (the last requirement is equivalent to the
boundedness of the solution in some specified norm). In order to solve this
problem a discretisation must be performed and an infinite space domain
must be reduced to a finite domain. Thus it is necessary to formulate correct
artificial boundary conditions at the new boundaries of the selected domain.

In most cases we are interested to find the solution only on a finite do-
main so a proper restriction of the infinite domain is well suited for most real
world modelling applications. Thus it is a common practice to approximate
the initial value problem (3.1) by some initial-boundary value problem.

However, these new boundary conditions must be carefully constructed,
because they can perturb essentially a solution of the initial value problem.
It is well known that if simple standard boundary conditions are formulated
on boundaries of the restricted domain (e.g. homogeneous Dirichlet bound-
ary conditions), the solution after reaching a boundary will be reflected
back into the domain and will pollute results of subsequent simulations. A
simple and straightforward way to avoid such perturbations is to enlarge
the domain of simulations and thus to delay the reflection of the wave from
artificial boundaries. However, for a long time modelling this strategy is
very inefficient – it forces calculations to be performed on a domain that is
much bigger than the domain of interest.

Special artificial and transparent boundary conditions were developed
and investigated in many papers, see [5, 6, 10, 14, 21, 66]. A comprehensive

54

review of construction of transparent boundary conditions not only for dif-
ferential problems but also for discrete finite difference schemes, the stability
analysis and computational experiments is given in [6,66]. The exact trans-
parent boundary conditions are non-local in time and the full history of
the solution at the boundary should be preserved during computations. We
also mention papers where exact transparent boundary conditions are con-
structed and the stability of initial-boundary value problem is analysed for
the differential Schrödinger equation [5,6,10]. A similar analysis of discrete
unconditionally stable schemes for one-dimensional Schrödinger equation is
done in [6, 7]. The transparent boundary conditions for high-order finite
difference schemes are constructed in [67,78].

Non-local boundary conditions increase the computational costs and
memory requirements of the numerical algorithms and they are inefficient
for long time modelling problems. Thus it is a challenge to construct ap-
propriate local boundary conditions and to avoid the negative long memory
effects included into the definition of exact non-local transparent boundary
conditions. A few approaches are proposed to construct such boundary con-
ditions. Various absorbing boundary conditions (ABCs) are constructed for
this purpose (see, e.g. [66] and references therein). These boundary con-
ditions absorb the energy of waves as they reach the boundary area and
attempt to minimize the amount of energy reflected by the artificial bound-
aries.

In this part of the dissertation four methods based on approximations
by rational functions [14,66] are investigated.

• The first method is the classical Padé method, then coefficients of the
approximation can be computed in explicit form [8,74,97].

• The second technique is based on the approximation of the Fourier
symbol in the L2 norm. In this method coefficients of the rational
function are defined by solving the minimization problem.

• The third method is minimisation of the reflection coefficient [88],
since the main aim of artificial boundary conditions is to avoid a re-
flection from the new boundaries. We note that the Nelder-Mead
method [70] was used to find local minimum points in [88].

• The fourth approach is based on the adaptive strategy [39]. Two
representative benchmarks are selected and exact solutions of these
problems are known. Then coefficients of rational functions are de-
termined by minimizing the error of the approximate solution in the

55

L2 and L∞ norms. This part of computations enabled us to test the
robustness of the developed global minimization algorithms and to
estimate the possibilities/limits of rational functions technique when
the order of polynomials is small.

The formulated minimization problems are used as black box problems
of global optimization [89, 102]. We use the multi-start strategy [63, 89]
for estimating the globally optimal solution. Starting points are gener-
ated randomly and local optimization by the Nelder-Mead downhill simplex
method [70] is applied. This strategy is also favorable for parallelization
since different runs of local optimization are independent and may be per-
formed in parallel.

The main aim was to estimate the accuracy of artificial boundary con-
ditions by using results of selected computational experiments. The most
important question was to investigate if it is possible to find a universal set
of coefficients of rational functions which can be used for important different
cases of one dimensional Schrödinger problems.

3.2 Formulation of the Problem

To solve the initial value problem (3.1) we approximate it by an initial-
boundary value problem formulated in a finite space domain:

i
∂u

∂t
+
∂2u

∂x2
= 0, x ∈ (a, b), t ∈ (0, T],

u(x, 0) = u0(x), x ∈ [a, b],

Llu(a) = 0, Lru(b) = 0, t ∈ (0, T],

(3.2)

where operators Ll, Lr define the artificial boundary conditions. Let us
assume that we are interested to find a solution only in domain [A,B].
Then operators Ll, Lr and the ends of a finite domain a, b must be such
that ∫ T

0

∫ B

A
|ũ− u|2 dxdt ≤ ε, a ≤ A < B ≤ b, (3.3)

where ũ is the solution of (3.1), ε is a selected accuracy of the approxi-
mation. The extended domains [a,A), (B, b] can be used to damp possible
reflections and oscillations of the solution from artificial boundaries. But
for simplicity we will restrict ourselves to the case A = a, B = b.

56

Finite difference scheme. We approximate equation (3.2) by the Crank-
Nicolson method. We consider the domain [a, b]× [0, T] and introduce dis-
cretization ωh × ωτ , where ωh and ωτ are discrete uniform grids, h and τ

are discrete steps:

ωh =
{
xj : x0 = a, xJ = b, xk = xk−1 + h, k = 1, . . . , J

}
, (3.4)

ωτ = {tn : tn = nτ, n = 0, . . . , N, Nτ = T}. (3.5)

We consider numerical approximations Unj of the exact solution unj = u(xj , t
n)

at the grid points (xj , t
n) ∈ ωh × ωτ . For the functions defined on the grid

we introduce the forward and backward difference quotients with respect to
x

∂xU
n
j = (Unj+1 − Unj)/h, ∂x̄U

n
j = (Unj − Unj−1)/h

and similarly the backward difference quotient and the averaging operator
with respect to t

∂t̄U
n
j = (Unj − Un−1

j)/τ, Un−0.5+θ
j = 0.5

(
Unj + Un−1

j

)
.

We approximate the differential equation (3.2) by the Crank-Nicolson
finite difference scheme [78]

i∂t̄U
n
j + ∂x∂x̄U

n−0.5
j = 0 xj ∈ ωh, n > 0. (3.6)

Exact transparent boundary conditions. Following [5], for differen-
tial equation (3.2) we can write the exact transparent boundary conditions.
To do this we factorize the Schrödinger equation (3.2)(

ux −
√

(−i)∂tu
)(

ux +
√

(−i)∂tu
)

= 0

and get the following boundary conditions

∂nu+ e−i
π
4D

1/2
t u = 0, x = a, b, (3.7)

where ∂n is the normal derivative and

D
1/2
t u(x, t) =

1√
π

∂

∂t

∫ t

0

u(x, s)√
t− s

ds

is a nonlocal operator. There are many quadrature algorithms to approxi-
mate the integral in this boundary condition.

57

It is important to note, that a similar factorization can be done also
for the discrete finite difference scheme (3.6) (see [5] for details), or for the
high-order accuracy Numerov type finite difference scheme (see, e.g. [78]
for details). Then specific discrete approximation algorithms are obtained
and such finite difference schemes have the same stability properties as the
original schemes formulated in the infinite domain.

A very simple and convenient approximation algorithm can be obtained
if a semi-discrete finite difference scheme is considered, when the Crank-
Nicolson approximation is applied only in time. Then after factorization,
we get the following transparent boundary conditions [5]

∂nU
n+1 = −eiπ/4

√
2

τ

n+1∑
k=0

βkU
n+1−k,

where βk = (−1)kαk, α0 = 1, α2k =
k∏
j=1

(2j − 1)/2j = 2k−1
2k α2k−2, α2k+1 =

α2k, k ≥ 0:

(α0, α1, α2, α3, . . .) =

(
1, 1,

1

2
,
1

2
,
3

8
,
3

8
, . . .

)
.

All these boundary conditions are non-local and for the implementation
of them we must store the full history of the solution at the boundary
points. Since the coefficients of discrete transparent boundary conditions
(see, e.g. βk) decay very slowly it is impossible to reduce the complexity of
the algorithm by summing only a small number of terms.

3.3 Methods for Finding Coefficients for Absorb-
ing Boundary Conditions

Our approach for constructing local artificial boundary conditions is based
on approximation of the transparent boundary condition (3.7) by rational
functions. First, the Fourier transform is applied to get a spectral represen-
tation of the boundary condition:

∂nû+ e−i
π
4

+
√
iωû = 0, (3.8)

where û(x, ω) = 1√
2pi

∫ +∞
−∞ u(x, t)e−iωtdt. Then the Fourier symbol +

√
iω is

approximated by rational functions:

+
√
iω ≈ Pm(iω)

Qm(iω)
= c0 +

m∑
k=1

ckiω

iω + dk
,

58

where the stability of finite difference schemes leads to the restrictions on
coefficients ck > 0, dk > 0, k = 0, . . . ,m (see [88]).

The important advantage of this algorithm is that there exists an efficient
implementation of the inverse Laplace transform, proposed by Lindmann
in [59], which leads to local boundary conditions. New functions ϕ̂k(x, ω) =

1

iω + dk
û(x, ω) are introduced for x = a, b and linear equations are obtained

after simple computations

û = iωϕ̂k + dkϕ̂k, k = 1, . . . ,m.

Applying the inverse Laplace transform we get the initial value ODEs for
ϕk(x, t):

dϕk(x, t)

dt
+ dkϕk(x, t) = u (x, t) , x = a, b, k = 1, . . . ,m. (3.9)

Then the approximate boundary conditions can be written as:

∂nu = −e−i
π
4

((m∑
k=0

ak

)
u−

m∑
k=1

ckdkϕk

)
, x = a, b. (3.10)

We formulate four methods to compute the coefficients ck, dk. Let us de-
note the set of coefficients Sm(c, d) = (c0, c1, . . . , cm, d1, . . . , dm), satisfying
the stability requirements cj ≥ 0, dj ≥ 0.

3.3.1 Padé Coefficients

First a well known algorithm is applied to compute the Padé approximation
[74](Padé approximation is one of the approximations by rational functions).
Then the coefficients are defined by [88]

cm0 = 0, cmk =
1

m cos2
((2k + 1)π

4m

) , dk = tan2

(
(2k + 1)π

4m

)
. (3.11)

Since the Padé approximation is based on a local information of the function
it is approximating, the convergence can be slow and a sufficiently large m
should be used. As a consequence the memory requirements still can be
quite large.

59

3.3.2 Approximation of the Fourier Symbol in the L2 Norm

In this algorithm we directly minimize the Fourier symbol (FS) approxima-
tion error in the L2 norm

RF = min
Sm(c,d)

1

ω̄

∫ ω̄

0

∣∣∣∣ +
√
iω − c0 −

m∑
k=1

ckiω

iω + dk

∣∣∣∣2dω. (3.12)

We integrate only with positive ω, since for negative values the function
becomes conjugate of itself. The selection of ω̄ requires a special analysis.
In all computations we take ω̄ = 100 without any proof of the optimality of
such a choice.

3.3.3 Approximation of Reflection Coefficient

An interesting approach is proposed in [88]. There a reflection coefficient

RC(ω) =

−
√
ω − ic0 − i

m∑
k=1

ck(−ω)

−ω + dk
√
ω − ic0 − i

m∑
k=1

ck(−ω)

−ω + dk

,

ω ∈ R, ci > 0, dj > 0, i = 0, 1, . . . ,m, j = 1, 2, . . . ,m (3.13)

is minimized. The coefficients of the optimal rational function are obtained
for r = − 1

ω by solving the following minimization problem with the weight

R = min
Sm(c,d)

(∫ T/2π

δt/2π

∣∣∣∣∣
√
r − c0r −

m∑
k=1

ckr/(1 + dkr)

√
r + c0r +

m∑
k=1

ckr/(1 + dkr)

∣∣∣∣∣
2

dr

1 + r2

)
, (3.14)

where, 1/(1 + r2) is the weight function. In the case of m = 3 we get seven
coefficients: c0, c1, c2, c3, d1, d2, d3. It is noted in [88], that because δt is
small, the reflection coefficient was optimized in the interval [0, T/2π] and
the following values of coefficients were obtained

a0 = 0.7269284, a1 = 2.142767, a2 = 5.742223, a3 = 46.58032,

d1 = 6.906263, d2 = 65.82243, d3 = 1124.376. (3.15)

60

3.3.4 The Adaptive Minimization of Errors in the L2 and L∞
Norms

In order to test the potential/limitations of the rational functions to approx-
imate the non-local transparent boundary conditions and to investigate the
robustness of the selected global optimization algorithms, we have included
one more strategy for the selection of objective functions. Two representa-
tive benchmark problems with the known exact solutions are selected and
the coefficients of rational functions are obtained by minimizing the errors
of the discrete solutions in the L2 and L∞ norms:

E2 = min
Sm(c,d)

(∫ T

0

∫ B

A
|u− ũ|2dxdt

)1/2

= min
Sm(c,d)

‖E‖2, (3.16)

E∞ = min
Sm(c,d)

(
max

x∈[A,B], t∈[0,T]
|u− ũ|

)
= min

Sm(c,d)
‖E‖∞,

here E = u− ũ.
We note that this technique adapts the coefficients to the selected bench-

mark problem, when the exact solution is known. Thus the results for these
objective functions may lack the universality, but analysis of them can show
the limits of the approach based on rational functions.

In the case of M different problems with different solutions uj , j =

1, 2, . . . ,M we introduce a coupled adaptive strategy

Ec∞ = min
Sm(c,d)

(
max

1≤j≤M

(
max

x∈[Aj ,Bj], t∈[0,Tj]
|uj − ũj |

))
. (3.17)

3.4 Global optimization

The formulated minimization problems (3.14), (3.16) and (3.17) are used
as black box problems of global optimization [89]. The evaluation of the
values of these objective functions requires numerical integration or even
numerical solution of the modelling problem. Thus, the evaluation of the
objective functions is computationally expensive. Moreover, the properties
of objective functions of these problems are not known, the unimodality or
convexity of the objective functions may not be assumed. In such cases local
optimization may result in different solutions. Both from the same point
when stochastic optimization is used and when different starting points are
used. Moreover, intervals of possible values for variables (coefficients) are
not known and optimal values of different coefficients may differ by several
orders of magnitude. Therefore the search space may be very large and

61

standard deterministic covering methods for global optimization are not
applicable.

However, the initial investigation has shown that local optimization from
different starting points sometimes finishes with the same optimal solution
found. This substantiates the use of the multi-start strategy for estimating
the globally optimal solution [63,89]. Random starting points are generated
and a local optimization algorithm is applied from a number of random
starting points. Since the objective functions are black boxes analytical
expressions for gradients are not available. Moreover, since the objective
functions are computationally expensive, the numerical estimation of the
gradient is also too expensive. Therefore derivative-free methods for local
optimization should be used. We applied one algorithm in our experimental
investigations: the Nelder-Mead downhill simplex method [70]. This method
was also used in [88].

Since the objective functions of global optimization problems are compu-
tationally expensive, the experiments take a considerable amount of time.
Parallel computing should be applied to make experiments shorter. The
multi-start strategy for global optimization is favourable for parallelisation.
Separate runs of local optimization algorithm are independent and there-
fore may be performed in parallel. Another level of parallelisation may be
evaluation of values of the objective function at different sample points.

3.5 Parallel Algorithm

Parallel calculation was used to solve optimization problems for which the
computation of objective function requires solution of M different subprob-
lems, with a priori estimated sizes of subproblems. Such optimization prob-
lems are often very computationally intensive. Thus, the parallel computa-
tions are necessary.

We use the two-level parallel programming template [20,26]. On the first
level, we define a set of discrete problems, which can be solved independently
in parallel. On the second level, each discrete problem is solved in parallel
using the Wang algorithm [94].

On the first level, we calculate solutions for independentM tasks, each of
them consists of numerical solving of the Schrödinger equation. However, for
different sizes of discretisation of grids J and N may differ – they are tuned
to achieve the required precision levels. The amount of calculations is pro-
portional to J ·N and we will refer to it as a size of tasks Zi, i = 1, 2, . . . ,M .
Thus, the computational sizes of these tasks can be very different. In order

62

to perform load balancing, we introduce the second level of parallelisation
when subproblems are solved using some parallel algorithm In our case sub-
problems are non-stationary 1D differential equations. At each time step
they are approximated by systems of linear equations with a tridiagonal
matrix. We use the Wang [94] algorithm to solve the obtained systems.
This second level lets us perform the workload balancing at the first level of
our algorithm. We assign different numbers of processes for different prob-
lems on the second level with different computational costs. Assuming that
we use p processes to compute the functional (3.17), we distribute these
processes among M tasks by taking the number of processor for each task
proportional to Zi = Ji ·Ni, where Ji, Ni are discretization sizes in x and t
directions, respectively.

The second level can be used alone, however, the efficiency of the Wang
algorithm is limited due to the well known speed-up saturation effect, i.e.
computations are slowed down due to large communication costs when the
number of processes is increased. It can be see from the curves of speed-up’s
of the Wang algorithm for different sizes of linear systems in Figure 3.1. As
we see from the presented curves the speed-up is not linear, if it was linear,
the parallelisation of the Wang algorithm alone would be sufficient. Thus,
a well-balanced distribution of tasks in two levels should be defined.

Figure 3.1: The speed-ups of the Wang parallel algorithm for different num-
ber of processes p and sizes J of systems.

Load balancing techniques for two level parallelisation are widely used
[20,26]. To test the balancing algorithm we use four differently sized prob-
lems: Z1 = 3.2 ·107, Z2 = 4.8 ·107, Z3 = 1.152 ·107, Z4 = 9.6 ·107. A simple
rule of proportionality to the sizes of problems is provided in the example
(see Table 3.1). The workload distribution is not uniform when the num-
ber of processes is small. Distribution becomes closer to uniform when we

63

increase the number of processes. Also, from Table 3.1 it can be seen that
increasing the number of processors, leads to the increase of the efficiency of
the parallel algorithm. The goal of workload balancing is to ensure that all
processors have a similar computations time because the computation of the
functional (3.17) is determined by the time of the longest calculated process.
When we increase the number of processors, the workload balancing is get-
ting more and more balanced between the groups. As we can see, the last
row in Table 3.1 shows that increasing the number of processors increases
the efficiency of workload balancing. Hence, the efficiency improvement is
the result of the good workload balancing of the algorithm.

Table 3.1: Distribution of processes using simple rule of proportionality to
the sizes of problems, efficiency=

sum of complexities of all tasks
max(complexities of all tasks)

p
j 1 2 3 4 Efficiency

4 1 1 1 1 0,49
8 1 2 1 4 0,73
16 3 4 1 8 0,98
32 6 8 2 16 0,98
64 11 17 4 32 0,98
128 22 33 8 65 0,99

Algorithm 1 The partitioning function
1: getTaskNumAndSize(p, Z,M)

2: T =
M∑
i=1

Zi

3: Si = floor(Zi·pT), i = 1, 2, . . . ,M

4: rem = size−
M∑
i=1

Si

5: for i = 1→ rem do
6: w = arg max

i=1,...,M

Zi
Si

7: S[w] = S[w] + 1
8: end for
9: End

In Algorithm 1 we implement the partitioning function. This algorithm
takes these parameters: Z – problem sizes, M – number of tasks, p – number
of processors. The complexity of tasks is proportional to size of task Zi =

Ji ·Ni. Each of process calculates this complexity of all tasks

64

T =
M∑
i=1

Zi.

The number of processes in the group is chosen so that we get a the uniform
distribution of the work:

µi = bZi/T c,

Si = max(1, µi · p).

The rest of processes is distributed using a greedy algorithm:

rem = p−
M∑
M=1

pM .

The two-level parallel algorithm allows to use significant by more pro-
cesses comparing to one level parallelisation. However, for a big number of
processes p and a small number of problemsM two-level parallelisation algo-
rithm may become inefficient. That’s why we propose three level approach
in Chapter 4, which lets to eliminate the mentioned drawback.

3.6 Numerical Experiments

Two examples, presented in papers [88, 103], are chosen as representative
test problems.

Example 1. We use the exact solution of (3.1) (see [88]):

u(t, x) =
exp (−iπ/4)√

4t− i
exp

(
ix2 − 6x− 36t

4t− i

)
. (3.18)

The problem is solved in domain [−5, 5] for t ∈ [0, 0.8]. It can be noted that
the solution has almost compact support in (−5, 5) at t = 0 and crosses
the boundary x = −5 for some t < 1. In order to avoid the influence of
discretization errors we take the uniform grid J ×N = 8000× 4000.

Example 2. We use the exact solution of (3.1) (see [103]):

u(t, x) =
1

+
√

1 + it/α
exp

(
ik(x− x(0) − kt)− (x− x(0) − 2kt)2

4(α+ it)

)
, (3.19)

where k = 100, α = 1/120, x(0) = 0.8 presented in [103]. In this case we
compute the numerical solutions in domain [0, 1.5] for t ∈ [0, 0.04] and the

65

uniform grid J ×N = 12000× 4000 is used.
In all computations the finite difference scheme (3.6) is used and bound-

ary conditions are approximated by (3.10). All error values provided are at
least 10 times bigger than the errors of approximation of the Schrödinger
equation (3.6). The discretization (3.6) size is enough to keep the errors of
approximation of Schrödinger equation, at least 10 times smaller than the
values of errors that will be provided in all tables.

Comparison of different approaches. To solve the formulated global
minimization problems random starting points are used. For problems
(3.12), (3.14) we have taken up to 10000 points. For each parameter the
exponential distribution is applied with averages equal to values defined by
(3.15).

In the cases of adaptive minimization the evaluation of the objective
functions requires solution of the 1D non-stationary discrete problem for
each sample point. This step is computationally quite costly. So we have
restricted to 100 runs of local optimization even in the case of parallel com-
putations.

The integration in (3.12) and (3.14) is performed by using the Gauss-
Lobatto quadrature with adaptive refinement, the accuracy tolerance is
equal to 10−12. According to [70], the following parameters are specified
for the downhill simplex algorithm: reflection coefficient α = 1, expansion
coefficient γ = 2, contraction coefficient β = 0.7 (used for both – single
point and full contractions), the tolerance parameter ε = 10−10 (for (3.14)
we have used ε = 10−15).

In Table 3.2 we present coefficients of the optimal rational functions
obtained applying different objective functions. It follows from the presented
results that the coefficients vary a lot from one approach to another. We
only note that adaptive techniques in different norms (for the same test
problem) give similar coefficients. So it is hard to formulate any constructive
conclusion about the distribution of these coefficients. The Padé coefficients
presented in Table 3.2 are calculated by explicit formulas (3.11). It is well
known that Padé approximation can be not accurate for small m but the
accuracy is improved as m increases. Thus in order to test the potential
of Padé approximation we take bigger m to analyze the convergence rate.
The results are presented in Table 3.3. It follows from Table 3.3 that the
convergence rate for Example 2 is significantly smaller than for Example 1.
So the required value of m may be quite large depending on the problem and
this can be computationally expensive. Therefore, alternative techniques to

66

Table 3.2: Coefficients obtained with different approaches

Approach a0 a1 a2 a3 d1 d2 d3

Refl. coef. [88](3.14) 0.727 2.14 5.74 46.6 6.91 65.8 1124
Padé [74](3.11) 0 0.357 0.667 4.98 0.0717 1 13.9
FS(3.12) 0.602 1.78 3.53 23.1 4.94 38.0 364
Adapt.(E∞) Ex. 1 1.01 2.11 3.30 24.5 10.4 51.3 413
Adapt.(E2) Ex. 1 1.07 2.11 3.48 26.9 10.9 53.5 470
Adapt.(E∞) Ex. 2 9.30 29.3 7.20 229 0.437 1.01 28847
Adapt.(E2) Ex. 2 11.3 25.1 4.64 210 0.434 13.7 25567
Adapt.(Ec∞) 2.91 0 10.6 138 5.26 106 10329

Table 3.3: Padé test for two benchmark problems

Example 1 Example 2

m ‖E‖∞ ‖E‖2 m ‖E‖∞ ‖E‖2
3 0.179 0.174 3 0.882 1.02e-2
9 1.407e-2 1.395e-2 15 0.627 7.17e-3
15 1.463e-3 1.356e-3 90 7.58e-2 8.30e-4

compute coefficients for small m, e.g. m = 3, are needed.
The problems (3.14) and (3.12) are global optimization problems. In

our experiments we select a fixed number of starting points and use a local
optimization algorithm to descent to the minimum. Then the best local
minimum point is used as an approximation of the global minimum point.
This strategy is based on the assumption that a smaller value of the ob-
jective function means also a smaller error of the discrete solution of the
Schrödinger problem. In order to analyse this assumption we have selected
7 random local minima for each functional R and RF that were found dur-
ing optimization. By using these coefficients we have solved Examples 1
and 2 and computed the errors of discrete solutions. Thus, it follows from
Tables 3.4 and 3.5 that for both examples the errors of discrete solutions
monotonically decrease as the values of functionals become smaller. But
errors for Example 2 are quite large, so it is hard to make any conclusion
on the convergence in this case. It is importat to note, that for Example 2
the L2 norm is scaled ‖E‖∗2 = ‖E‖2 /

√
T .

The comparison of obtained results (the optimization results for uni-
versal functionals R and RF and solution errors in L∞ and L2 norms) by
using all different techniques is presented in Table 3.6. R and RF values for
adaptive techniques are presented for Example 2, since it gives the biggest
values.

67

Table 3.4: Monotonicity analysis of local minima using the reflection coef-
ficient R

Example 1 Example 2
R ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2
7.29e-06 3.39e-2 3.35e-2 0.712 4.08e-2
7.14e-06 3.68e-2 3.61e-2 0.685 3.92e-2
2.66e-09 1.01e-2 9.74e-3 0.507 2.89e-2
2.41e-09 9.77e-3 9.42e-3 0.505 2.88e-2
2.25e-09 9.57e-3 9.23e-3 0.505 2.87e-2
2.61e-10 5.71e-3 5.36e-3 0.422 2.40e-2
1.40e-10 5.16e-3 4.89e-3 0.452 2.57e-2

Table 3.5: Monotonicity analysis of local minima using the Fourier symbol
RF

Example 1 Example 2
RF ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2
0.446 5.08e-2 4.62e-2 0.738 4.24e-2
0.161 2.53e-2 2.26e-2 0.746 4.28e-2
8.20e-2 1.46e-2 1.22e-2 0.726 4.16e-2
5.81e-2 1.25e-2 1.08e-2 0.712 4.08e-2
4.27e-2 6.89e-3 6.95e-3 0.702 4.02e-2
3.54e-2 5.87e-3 6.06e-3 0.694 3.98e-2
3.18e-3 2.17e-3 1.56e-3 0.636 3.64e-2

Several conclusions follow from the presented results of computational
experiments. First, the heuristic for solving global optimization problems is
quite robust. We have no guarantees that the global optimization problem
is solved exactly, however, the smallest values for all objective functions are
obtained when the global optimization algorithm has minimized the speci-
fied objective functional (the best results of functional are marked with bold
font). So we have concluded that the obtained computational results are
sufficient to formulate our main qualitative conclusions.

Second, considering both universal objective functions (reflection coef-
ficient R and Fourier symbol RF), the accuracy of both ABCs is similar:
the errors of discrete solutions are small for Example 1 and these errors are
much larger for Example 2. The two presented techniques are not universal,
there is no guarantee that they are suitable for all initial conditions, at least
with small m = 3. Moreover, from Table 3.6 we see that both functionals R

68

Table 3.6: Values of all objective functions obtained with different ap-
proaches

Example 1 Example 2
Approach R RF ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2
Refl. coef.(3.14) 1.40e-10 2.15e-2 5.16e-3 4.89e-3 0.452 2.57e-2
FS(3.12) 4.62e-06 3.18e-3 2.18e-3 1.56e-3 0.636 3.64e-2
Adapt.(E∞) 0.106 1689 3.21e-4 2.75e-4 9.43e-3 6.13e-4
Adapt.(E2) 0.100 1255 7.19e-4 2.58e-4 1.53e-2 4.09e-4
Padé 2.06e-3 16.2 0.179 0.173 0.882 5.07e-2

and RF obtain big values when we adaptively optimize these coefficients for
Example 2. Although m = 3 is small so this result was expected – adaptive
error minimization cannot guarantee small values of general functionals.

Third, the adaptive techniques for Example 2 gave sufficiently small
errors of the discrete solution. So even for this example an accurate ap-
proximation by small order rational functions is still possible. However,
this adaptive technique fits the coefficients to the selected example and the
obtained optimal coefficients can give considerably bigger errors for other
initial conditions.

We investigate the suitability of ABCs approximation by rational func-
tions technique in general case. In Table 3.7, a cross-check of adaptive
techniques for different examples is done, i.e. errors of discrete solutions are
estimated for both examples using coefficients that were obtained applying
adaptive techniques for both benchmarks.

Table 3.7: Cross-check of the accuracy for different examples

Example 1 Example 2
Approach ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2

Example 1 Adapt.(E∞) 3.21e-4 2.75e-4 0.600 3.43e-2
Adapt.(E2) 7.19e-4 2.58e-4 0.596 3.40e-2

Example 2 Adapt.(E∞) 0.594 0.560 9.43e-3 6.13e-4
Adapt.(E2) 0.576 0.542 1.53e-2 4.09e-4

coupled Adapt.(Ec∞) 4.44e-2 3.73e-2 4.44e-2 2.64e-3

It follows from the results presented in Table 3.7, that errors of the
discrete solutions are small when the specific norm for the same solution is
used as an objective function. The type of the norm is not very important
in computation of optimal coefficients for the given benchmark problem.
At the same time errors of the discrete solution are big for the remaining
test problem. In order to test the approximation accuracy of the family

69

of rational functions with m = 3 we have used one more objective function
(3.17), when a coupling of errors of both benchmark problems is considered.
The results presented in Table 3.7 show that this objective function enables
to find coefficients giving small enough errors for both benchmarks. Thus
a coupled adaptive strategy still allows us to find an efficient compromise
among two discrete solutions.

3.7 Conclusions of the Third Chapter

Two universal techniques for obtaining coefficients, approximation of the
Fourier symbol and minimization of the reflection coefficient, resulted in
small errors of the same order in the case of the first test problem. How-
ever, these techniques gave big errors for the second test problem. This
means that these techniques do not suit all possible problems.

Minimization of the actual error gave a significant increase in accuracy of
calculations. However, this technique is tuned only to selected test problem.

The coupled adaptive technique for obtaining values of coefficients showed
that it is possible to find values that suit both test problems. However, it is
unclear, if such values exist in a general case with any initial conditions. In
Chapter 4 it is demonstrated that it is also possible to find values for four
test problems.

The two-level parallel algorithm allows us to use significantly more pro-
cesses comparing to one level parallelisation. However, for a big number
of processes p and small number of problems M two-level parallelisation
algorithm may become inefficient. That’s why we propose a three-level ap-
proach in Chapter 4, which lets to eliminate the mentioned drawback.

70

Chapter 4

Three-level parallelisation
scheme for optimizations
problems∗

We propose a general methodology for solving problems when there is a big
number of processes available. We investigate a three-level parallelisation
algorithm for optimization problems, different parallelisation levels create
different possibilities but also challenges. At the first level of parallelisation
we assume that there exist parallel alternatives to the original sequential
modelling algorithm. The first level of parallelisation becomes a part of a
new parallel algorithm and the degree of parallelism can be selected dy-
namically during the computations. The parallelisation speed-up on the
first level is not linear, it can reduce the efficiency of the whole parallelisa-
tion. But this level enables to use many much more processes and to solve
the given problem faster than two-level parallelisation. In this chapter as
an example we consider the parallelised simplex downhill method. On the
second level, a set of computational tasks with different computational sizes
is defined. The work amount distribution between tasks is non-uniform –
this makes the parallelisation challenging. This leads to the necessity of
third level, because a proper load balancing must be performed. As an
example we investigate the case when M partial differential equations are
solved. The computational sizes of these tasks are non-equal because differ-
ent discretisation grids must be used for each equation in order to achieve
the same level of accuracy. The third level defines parallel algorithms to

∗Kriauzienė, R.; Bugajev, A.; Čiegis, R. A three-Level parallelisation scheme and
application to the Nelder-Mead Algorithm. 2019, http://arxiv.org/abs/1904.05208

71

solve tasks from the second level. As an example we take Wang’s algorithm
to parallelise the solution of systems of linear equations with tridiagonal
matrices [94]. This level can be used alone, however, it is limited due to
Amdahl’s law. We presented a general methodology, which combines the
parallelisation of a local optimization algorithm with a standard two-level
parallelisation.

Parts of this chapter are published in [53].

4.1 Introduction into this Chapter

Current trends in supercomputing show that in order to accumulate high
computing power, computers with more, but not faster, processors are used.
This trend induces changes in the development of parallel algorithms. The
important challenge is to develop parallelization techniques which enable ex-
ploitation of substantially more computational resources than the standard
existing methods.

This part of the dissertation deals with problems that can be split into
a collection of independent subproblems and this splitting step is repeated
iteratively. The solutions of subproblems define the solution of an initial
problem. Thus, an additional splitting step increases the potential paral-
lelisation degree of a parallel algorithm.

Any multi-level parallelisation can be considered as a way to generate
a pool of tasks. After the pool of tasks is obtained, it is not important
how many parallelisation levels were used. However, often such final sim-
plification of the template leads to a loss of important information and as
a consequence to degraded efficiency of the parallel algorithm. Especially
this is true if different levels of the scheme are characterised by different
properties of an algorithm that should be properly addressed.

We consider a special case of a three-level parallelisation. The template
of this approach is given in Fig. 4.1:

• At the first level of parallelisation we assume that there exist a few
parallel alternatives Aj (see Figure 4.1) to the original modelling al-
gorithm. The first level of parallelisation becomes a part of a new
parallel algorithm and the degree of the first level parallelism can be
selected dynamically during the computations – a selection of the best
algorithm is performed. As an example we consider two new parallel
modifications of the Nelder-Mead method [69].

72

• On the second level, a set of computational tasks V j = {vj1, v
j
2, . . . , v

j
Mj
}

(see Figure 4.1) with different computational complexities is defined.
These tasks are solved in parallel. As an example we investigate the
case when computation of one value of the objective function requires
to solve numerically M partial differential equations. The computa-
tional complexities of tasks are non-equal because different discretisa-
tion steps must be used for different equations in order to achieve the
same accuracy for each equation.

• The third level defines parallel algorithms to solve tasks from the
second level. As an example we use the Wang algorithm to parallelise
the solution of systems of linear equations with tridiagonal matrices
[94].

Problem

A1

v11

p11

v12

p12

...

...

v1M1

p1M1

A2

v21

p21

v22

p22

...

...

v2M2

p2M2

AJ

vJ1

pJ1

vJ2

pJ2

...

...

vJMJ

pJMJ

Level 1

Level 2

Level 3

Figure 4.1: Three level parallelisation scheme.

The second and the third levels define a well-investigated two-level par-
allelisation template. We note that load balancing techniques for two-level
parallelisation are widely used in applications, see, e.g., [20], [47].

The scheduling problem can be formulated representing a parallel al-
gorithm by a directed acyclic graph (DAG). The vertices define computa-
tional tasks, the edges define connections/order among tasks. Then a set
of partially ordered computational tasks is scheduled onto a multiproces-
sors system to minimise the computational time (or to optimise some other
performance criteria). It is well known that the scheduling problem is NP
complete. Many interesting heuristics are proposed to solve it, we mention
greedy algorithms [22], genetic algorithms [84], [85], simulated annealing
and tabu search algorithms [51], [41], [42]. Such algorithms include a possi-
bility of dynamic scheduling and allow for tasks to arrive continuously and
they can consider variable in time computational resources.

A scheduling task can be very challenging due to the specificity of a given
application problem and the necessity to parallelise it on modern parallel

73

architectures. As an example we mention the particle simulation which
is solved by appropriate domain decomposition techniques [40]. Another
example is the dynamic load balancing on heterogeneous clusters for parallel
ant colony optimization [60]. In the recent work [30] it is concentrated on the
problem of high-dimensionality of the data while solving subspace clustering
problem.

In this article we focus on the scheduling problem, when all tasks in the
set are independent and can be solved in parallel. It is well known that the
given optimization problem can be redefined as a problem to equalise the
computational times of all processes. The simplest load balancing algorithm
is based on the assumption that the computation time is proportional to the
sizes of sub-tasks. Then the domain decomposition algorithm is applied to
guarantee that the sizes of subtasks scheduled for each group of processors
are equal [20].

The quasi-optimal distributions of tasks can be obtained using the greedy
strategy to distribute the work on demand, i.e. to apply dynamic load bal-
ancing techniques such as work-stealing [49], self-organising process reschedul-
ing [81].

However, the efficiency of two-level approach is limited due to a typical
saturation of the speed up of parallel algorithms for increased numbers of
processors and fixed sizes of tasks. Exactly this situation has motivated us
to introduce an additional level of parallelisation template. In most cases
its usage leads to a less efficient algorithms than the initial state-of-the-art
algorithm. But the additional degree of parallelism on the second level gives
a large overall speed-up, if the number of available resources is large.

Recent developments of new architectures of parallel processors make
even more challenging the task to build accurate theoretical performance
models. The empirical data shows that for some advanced algorithms the
efficiency of parallel computations can depend non-monotonically on the
size of a task. Thus the model-based load balancing method starts to be-
come the main tool in developing efficient and accurate task scheduling
algorithms. In our work we build the model for prediction of computation
time empirically by solving the specialised benchmarks for a wide range of
problem sizes and numbers of processors. In fact this analysis resembles the
classical experimental strong scalability analysis of a given parallel algo-
rithm. We note, that these measurements are always done for all processes
working simultaneously in order to reflect their actual performance during
the execution of real applications (see, also [55,56]).

Here we mention two interesting papers, where the model-based task

74

scheduling algorithms are considered. In [56], it is concentrated on multi-
core co-processors Xeon Phi, where the empirical computation time curves
are used to find optimal parameters for a workload distribution. The ob-
tained model predicts non-monotonic dependence of computation speed on
the sizes of problems. The authors call their approach "load imbalancing",
however, it can be considered as an advanced balancing which adapts the
scheduling algorithm to the specificity of Xeon Phi processors. Obviously in
this case the assumption that computation time is proportional to the task
size is not valid. In a similar research [55], computations were performed on
non-uniform memory access (NUMA) parallel platform with various shared
on-chip resources such as Last Level Cache. Again the model-based ap-
proach enables to take into account the specific properties of the algorithm
and processors. The matrix multiplication and Fast Fourier Transform are
used as benchmark problems. It is interesting to note that, according to
the presented results, the globally optimal solutions may not load-balance
the sizes of sub-tasks. The authors pay a special attention to the energy
efficiency of calculations. We note, that there are some papers that are
specifically dedicated to load balancing of energy efficiency [75]. In our
work we formulate some restrictions that are connected to energy efficiency
as well – we do not use additional available computational resources if the
parallelisation efficiency drops below some specific level. The other work [80]
is dedicated to model-based optimization on hybrid heterogeneous systems
composed of CPUs and accelerators. In that research the authors investigate
the problem of communications costs due to uneven workload distribution
between accelerators and CPUs. They propose to generalise the τ -Lop [79]
model for heterogeneous computations.

In this part of the dissertation we propose a general methodology for
parallelisation of algorithms. As an example we use it to solve some ap-
plied optimizations problems. is shown The superiority of the three level
parallelisation scheme is shown, comparing it with two-level paralleisation
scheme. On the second level a set of different-size tasks is defined, which
is a typical situation for computation of one value of a black box objective
function. In most cases these tasks (or groups of tasks) are independent but
computationally costly. Thus each task also should be solved in parallel.
This fact leads to a necessity of the third level. The second and third levels
of the template define a set of tasks solved in parallel and some load bal-
ancing algorithm should be used to take into account the different sizes of
subtasks. The necessity of the additional first level comes from the assump-
tion of having more computational resources than can be utilised by the

75

two-level parallelisation approach. It is a consequence of the efficiency sat-
uration for parallel algorithms when the size of the problem is fixed and the
number of processes is increased. We select a different optimization method
(or a modification of the basic solver) which gives additional degrees of par-
allelisation thus enabling the possibility to use more processors. At the first
level of the template the optimal algorithm is selected. This part requires
finding a compromise between the increased parallelisation degree and the
decreased convergence rate of the modified parallel optimization algorithm.

In this work we are also interested to address some green computing
(GC) challenges. In a broader sense GC is the practices and procedures of
designing, manufacturing, using of computing resources in an environment
friendly way while maintaining overall computing performance and finally
disposing in a way that reduces their environmental impact [82]. The re-
search in green computing is done in many areas [71]: Energy Consumption;
E-Waste Recycling; Data Center Consolidation and Optimization; Virtual-
ization; I. T Products and Eco-labeling. One of approaches for optimiza-
tion of energy consumption on the software level is the autotuning software,
which is able to optimise its own execution parameters with respect to a
specific objective function (usually, it is execution time) [16]. Well known
examples of autotuning software are: FFTW [38] (fast Fourier transforma-
tions); ATLAS [96], PHiPAC [11] (dense matrix computations); OSKI [93],
SPARSITY [48] (sparse matrix computations).

Usually, the goal for any autotuning software is to achieve the same
result with the same resources, however, reducing the computation time –
in terms of parallelisation it means to increase the parallelisation efficiency.
Another way to decrease the power consumption is to increase the efficiency
by avoiding inefficient calculations; this may slightly increase the execution
time, however will give a reasonable increase of parallel efficiency, which
leads to the energy savings. We propose to control the efficiency of the par-
allel algorithm on the load balancing stage of the parallelisation template.
In many cases this strategy reduces the amount of computational resources
used in computations. This analysis is done a priori, meaning that the user
knows how many cores should be used for solving a specific parallel task
even before starting real computations.

4.2 Workload Balancing Problem

In this section we formulate the workload balancing problem for the two-
level parallelisation. Also we present a greedy scheduling algorithm to dis-

76

tribute the processes among tasks. Next, we introduce the additional level –
the first and second levels of the two-level parallelisation technique becomes
the second and the third levels, accordingly and the first level is a new par-
allelisation level. On the first level the selection of the optimal algorithm is
performed.

First, we will present two-level parallelisation template. Let’s assume
that we solve a given problem by using the basic method A. The solution
process consists of K blocks of tasks (a simple DAG)

A = {V1 ≺ V2 ≺ . . . ≺ VK}, (4.1)

and all blocks must be solved sequentially one after another. Each block
consists of M tasks

Vk = {v1(Xk), v2(Xk), . . . , vM (Xk)}, k = 1, . . . ,K,

where Xk defines a set of parameters for the Vk block. Vk defines the first
level of the two-level parallelisation scheme. Each task vm can be solved by
a parallel algorithm – this is the second level of the scheme.

The complexities of tasks vm are different, however, they are known
in advance and do not depend on k. For each task vm the prediction of
computation time tm(p), p ≤ P , m = 1, . . . ,M is given – it is based on
the modelling results, P is the number of processors in a parallel system.
We assume that up to Pm processes the computation time monotonically
decreases:

tm(p2) < tm(p1), for p1 < p2 ≤ Pm. (4.2)

For Pm the predicted computation time function tm(p) reaches the minimum
value:

tm(p) ≥ tm(Pm), p > Pm. (4.3)

Such a model of computation time tm(p) is important for algorithms
with limited scalability such as Wang’s algorithm. In Fig. 3.1 we present
speed-ups of this algorithm for different sizes of linear systems. It is impor-
tant to mention that the provided results include some additional costs for
computation of the objective function along with Wang’s algorithm com-
putational costs. These additional calculations slightly increase the overall
parallelisation scalability, thus the provided figure represents the optimistic
scenario for general Wang’s algorithm and the realistic scenario for actual
computations, that were done.

In our specific case this data was derived from a simple benchmark

77

implementing Wang’s algorithm. This benchmark performs computations
using different numbers of processes and different problem complexity pa-
rameters J . It is important to note, that nodes were artificially loaded with
calculations to imitate the real situation. For example, with the number of
processes p = 4 there were 32 tasks that were solved by 128 processes at
the same time. Thus this benchmark must be run once, using all processes
available.

From Figure 3.1 it follows that the computation time monotonically
decreases till some critical number of processes and therefore the efficient
usage of processes is limited to this number of processes. Even for large size
systems, when the number of equations is J = 16000, the maximum number
of processes Pm does not exceed 80. This analysis justifies our motivation
to use the multi-level approach in order to solve the given applied problem.

In the two-level parallelisation scheme for each block of tasks Vk we select
the number of processes such that the overall solution time is minimised:

arg min
(p1,...,pM)∈Q

max
1≤m≤M

tm(pm),

where a set of feasible processors distributions Q is defined as

Q = {(p1, . . . , pM) : p1 + . . .+ pM ≤ P}.

In the case when we solve only few large size tasks and the remaining
tasks are much smaller and the number of processes P is not very big,
the optimal scheduling is obtained when a few smaller tasks are combined
into one group ṽm. Then sub-task ṽm consists of tasks vl1 , . . . , vln . The
computation time for this combined task is predicted by the model:

t̃m(pm) =

n∑
i=1

tli(p̃li), p̃li = min (pm, Pli) .

In this work we are interested to solve the scheduling problem, when the
number of processes is large, so the aggregation step is not used.

Next, we propose a simple greedy partitioning algorithm, which is de-
scribed in Algorithm 4.2. It aims to find a near-optimal distribution of
M tasks of different sizes between homogeneous P processes by using the
model-based complexity model tm(p) (similar ideas are also used in [55]).
We assume that P ≥M . The interesting feature of the presented algorithm
is that for a given number of processes P the number of active processes can
be taken less than P to minimise the overall execution time of the parallel

78

1: Set p[m] = 1, for m = 1, . . . ,M
2: P = P −M
3: Compute tm(p[m]), for m = 1, . . . ,M
4: stop = 0
5: while P > 0 & stop == 0 do
6: find j such that tj(p[j]) = max

1≤m≤M
tm(p[m])

7: if p[j] == Pj then
8: stop = 1
9: else

10: p[j] = p[j] + 1
11: P = P − 1
12: end if
13: end while

Figure 4.2: The algorithm for distribution of P processes between M tasks

algorithm.
The algorithm starts from the initial distribution when one process is

assigned for each task and the predictions of parallel execution times are
calculated using the selected performance model. Then, the greedy iterative
procedure is applied to distribute the remaining processes. At each iteration,
one additional process is assigned to the task which has the largest predicted
computation time. Then its parallel execution time is updated. Iterations
are repeated until all processes are distributed or the number of processes
for some task reaches the limit Pm.

Note, that before tm(p) has reached the minimum, value starts to de-
crease slowly, thus the parallelisation efficiency drops. Therefore, it may be
wise to restrict the number of processes by taking into account the efficiency
value.

We define the maximum number of processes P̃k for which the efficiency
condition is still satisfied

Ep(Vk) ≥ Emin, for p ≤ P̃m, (4.4)

where Ep(Vk) = Sp(Vk)/p ir Sp(Vk) = tk(1)/tk(p), Emin ∈ [0, 1] is a given
efficiency lower bound. Estimate (4.4) is used to modify the limit of the
maximum number of processes (4.3) that can be used to solve the j-th task

Pm = min (Pm, P̃m). (4.5)

Therefore, in the presented technique Pm includes two restrictions:

79

• The number of processes cannot exceed the number after which the
speed-up drops down (see Fig. 3.1).

• The number of processes is limited by efficiency requirement (4.4),
which states: the number of processes per block of tasks Vk is not
allowed to be increased if the efficiency of the parallel algorithm on
the third level reaches the critical value Emin.

In fact the second level of the two-level scheme can be used alone, how-
ever, it is limited due to Amdahl’s law [3], i.e. the efficiency begins to
drop as the number of processes increases for a fixed size of problem. The
two-level approach let us solve this issue up to some point.

Exactly this situation has motivated us to introduce an additional level
of parallelisation template.

In the new three-level parallelisation scheme, the second and third lev-
els represent the two-level scheme part described before. Additionally, we
add a new first level of the template. We assume that there exist parallel
alternative algorithms Aj :

Aj = {V j
1 ≺ V

j
2 ≺ . . . ≺ V

j
Kj
}, j = 1, . . . , J.

Each block V j
k consists of Mj independent tasks

V j
k = {vj1(Xk), v

j
2(Xk), . . . , v

j
Mj

(Xk)}, k = 1, . . . ,K.

The numbers of blocks of tasks Kj , the numbers of tasks per block Mj , the
sizes of tasks |vjm| may be different for different j.

Next, we select the optimal algorithm according to the number of re-
sources available. We denote

TP (Aj) = TP (V j)Kj

the total solution time for algorithm Aj . The block of tasks V j is solved by
using the heuristic proposed above. Then the optimal algorithm is defined
as

arg min
1≤j≤J

TP (Aj).

The usage of j > 1 may lead to a less efficient algorithm than the initial
basic algorithm. But the additional degree of parallelism gives a large overall
speed-up.

80

4.3 Application of the Three-Level Parallelisation
Scheme

The three level parallel partitioning algorithm proposed in Section 4.2 to
solve local optimization problems using the well-known Nelder-Mead algo-
rithm [69] was applied.

The aim is to find optimal values of parameters {a0, a1, . . . al, d1, a2, . . . dl},
when the following minimisation problem is solved

Ec∞ = min
{ak,dk}

Vk, Vk = max
1≤m≤M̃

vm(Xk),

vm = max
j∈[0,Jm], n∈[0,Nm]

∣∣u(xj,m, t
n
m)− Unj,m

∣∣, (4.6)

and M̃ specially selected benchmark PDEs are solved.
In all examples we use l = 3, i.e., the dimensionality of the optimization

problem (4.6) is equal to 7. Here discrete approximations of PDEs represent
the tasks vm in (4.1). To solve vm we must find solutions of N systems of
linear equation with tridiagonal matrix [15]. According to our three-level
parallelisation scheme, the calculations of a single point in minimisation
problem (4.6) define the block of tasks Vk.

The systems of linear equations with tridiagonal matrices are solved
using Wang’s algorithm. It is well known that if the size of a system is J
and p processes are used then the computation time can be estimated as

TWp = 17
J

p
+ 8p+ Tc1(p), (4.7)

where Tc1(p) defines communication costs. The time to compute a value of
the objective function f for the specified equation can be estimated as

TOp = c1
J

p
+ Tc2(p). (4.8)

In this work instead of theoretical complexity models (4.7) and (4.8) we use
tm(p), m = 1, . . . ,M , based on empirical computations for a selected set
of benchmark problems. Such an approach takes into account all specific
details of the parallel algorithm and the computer system.

It is interesting to note that the complexity of computational task vm

depends on both parameters: the number of linear equations Jm of the
system and the number of integration in time steps Nm. The computation
time Tmp is equal to Nmtm(p), but the scalability of the parallel algorithm

81

depends on Jm only, since the integration in time is done sequentially step
by step.

Next, we have solved an example with M = 4, where four different
benchmark PDE problems (3.2) with explicit solutions [88,103] are defined
in Chapter 3:

1.
u(t, x)=

exp (−iπ/4)√
4t− i

exp

(
ix2−6x−36t

4t− i

)
, (4.9)

x ∈ [−5, 5], t ∈ [0, 0.8]. The problem is approximated on the uniform
grid J ×N = 8000× 4000.

2.

u(t, x) =
1

+
√

1 + it/α
exp

(
ik(x− x(0) − kt)

−(x− x(0) − 2kt)2

4(α+ it)

)
,

(4.10)

where k = 100, α = 1/120, x(0) = 0.8 . x ∈ [0, 1.5], t ∈ [0, 0.04]. We
use the uniform discretisation grid J ×N = 12000× 4000.

3. The solution is defined by (4.9), x ∈ [−10, 10], t ∈ [0, 2]. We use the
uniform discretisation grid J ×N = 16000× 10000.

4. The solution if defined by (4.10), where k = 100, α = 1/120, x(0) =

0.8. x ∈ [0, 2], t ∈ [0, 0.08]. We use the uniform discretisation grid
J ×N = 16000× 8000.

Next, we consider the problem (4.6) as a local optimization problem,
which can be solved using an iterative algorithm with a given initial starting
point. As a local optimiser Nelder-Mead algorithm is used [69].

We propose a family of modifications of the original Nelder-Mead (see
Figure 4.3) algorithm in order to increase the parallelisation degree of it.
At each iteration the following four different scenarios can be obtained:

• Reflection – compute the value fR of the objective function at the
point XR. Depending on the value fR this can be the end of the
iteration.

• Expansion – depending on the fR, an additional computation of the
objective function at the point XE is done, meaning the total compu-
tation of two objective function values: fR, fE .

82

X1

X1

X2

XM

XR

Reflection

X1

X2

XM

XR

XE

X0

Expansion

X0

X1

X2

XM

XR

XC

Contraction

X0

X1

X2

X1'

X2'
Shrinking

Figure 4.3: One possible step of the Nelder-Mead algorithm applied to a
problem in R2 [95], here Xi is vertices, XM – centroid of two worst vertices.

• Contraction – depending on the fR, an additional computation of the
objective function at point XC is done, meaning the total computation
of two objective function values: fR, fC .

• Compression – compute m objective function values, as well as fR and
fC . Here m is the number of simplex dimensions.

The first three scenarios require to compute one or two values of the
objective function from the set: fR, fE , fC . We can neglect the last scenario,
because it occurs very rarely. For the first three scenarios we propose to
compute two or three points simultaneously. Algorithmically this means
that we change the order of computations, which let us to parallelise the
Nelder-Mead method. In most cases only two of three points will be used.
Therefore, some redundant calculations will be performed, however, this
modification gives an additional parallelisation of computations.

Thus, two modifications of the sequential (A1) Nelder-Mead method are
defined. For A2 we compute in parallel values fR, fE and for A3 = 3 we
compute in parallel all three values fR, fE , fC . As a test case we assume
that the first scenario is relatively rare, the extension step is done with
probability 2/3 and contraction steps occurs with probability 1/3. Then we
get that the algorithmic efficiency of the proposed parallel modifications are
equal to γ2 = 0.75 and γ3 = 2/3, respectively. We note, that these values
can be estimated more precisely for specific applications, and one example
is given for the computational experiments with the Rosenbrock objective
function in Section 4.5.

In some cases the Nelder-Mead method is not the best method for local
optimization problem. In paper [64], it was shown that the method converge
to a non-stationary point. However, for the most practical problems it gives
good results with the reasonable amount of computations. Thus it is widely

83

used, that’s why we used it as an example for applications of our methodol-
ogy. In our studied case this gives sufficiently good solutions. It is important
to note, that our methodology can be applied to other method such as the
Spendley Hext and Himsworth simplex [86], Hooke-Jeeves algorithm [50],
etc.

On the first level different parallel algorithms can be used, however, the
proposed approach is oriented to the cases when the increased degree of
parallelisation gives the speed-up at the cost of efficiency which is a typ-
ical situation in parallel algorithms theory (Amdahl’s law). As one more
example we mention new algorithms developed to solve the global optimiza-
tion problems. The modification of the well-known DIRECT method [37]
was presented in [87], it is called DIRECT-GL. The new modification is
based on the idea at each iteration to analyse more potential optimal rect-
angles. This approach increases the global sensitivity of the method but
in many cases this property is achieved at the cost of additional computa-
tions. The potential parallelisation degree of the DIRECT-GL algorithm
can increase up to 2-3 times. But the results of computational experiments
in [87] show that for many benchmark problems (in [87] these cases are num-
bered 1,2,5,6,20,21,22,24,35,37,38,47,48,49,52) the DIRECT-GL algorithm
increases the computational costs to achieve the same accuracy of approxi-
mations as DIRECT algorithm. Thus, the classical DIRECT algorithm and
its modification DIRECT-GL fit well into the proposed three-level paral-
lelisation template. Then the degree of parallelisation should be increased
only if this increasement compensates the reduced efficiency of the modi-
fied algorithm. Thus we state, that in order to apply the proposed three
level parallelisation scheme, first the computations of one point should be
parallelised by a two-level parallelisation approach. Then alternative cases
of parallel algorithms with additional degrees of parallelisation should be
identified and the optimal algorithm should be selected.

4.4 Experimental Results

In this section we present the results of the parallel scalability tests. All
parallel numerical tests in this work were performed on the computer cluster
“HPC Sauletekis” at the High Performance Computing Center of Vilnius
University, Faculty of Physics. We used up to 8 nodes with Intel® Xeon®

processors E5-2670 with 16 cores (2.60 GHz) and 128 GB of RAM per node.
Computational nodes are interconnected via the InfiniBand network.

Our main goal is to investigate the efficiency of the proposed three level

84

template of workload distribution between processes. First, we selected
three specific benchmarks with different discretizations (3.4), when M = 4

discrete approximations of PDEs (3.6) are solved numerically to compute
one value of the objective function. The sizes (Jm × Nm), m = 1, . . . , 4 of
discrete problems are given in Table 4.1.

Table 4.1: Benchmarks with different sizes Jm×Nm of the discrete problem
(3.6)

Benchmark 1 Benchmark 2 Benchmark 3
Eq. Sizes Sizes Sizes
1 8000× 40000 8000× 20000 8000× 10000
2 4000× 20000 4000× 20000 2000× 20000
3 2000× 20000 4000× 10000 2000× 10000
4 2000× 10000 2000× 10000 1000× 20000

In the first benchmark the size of one task v1 is much bigger than the
sizes of the remaining three tasks. In the second benchmark two changes are
made. They make this set of tasks more suited for parallelisation on a large
number of processes: the size of task v1 is reduced twice by taking a smaller
number of time steps N1; the size of task v3 remains the same, but the
number of points J3 is increased twice, therefore the scalability of Wang’s
algorithm is improved for this task. In the third benchmark the relative
sizes of tasks vm are more homogeneous than in the first benchmark, but
this result is achieved by reducing the number of space grid points J2, J4,
therefore the scalability of Wang’s algorithm is decreased for these two tasks,
especially for v4.

First, we exclude the efficiency condition from the load balancing algo-
rithm by taking Emin = 0 in (4.4). The distribution of processors between
tasks is presented in Tables 4.2–4.4. We also provide the actual computation
time Tp along with TMp that were predicted by the theoretical complexity
model. As we can see from Table 4.2 the model and experimental times
are close to each other. The experimental time is smaller in cases when
there is no interpolation error. Also it is smaller than the model time –
it is an expected result, model times (see Figure 3.1) are based on bench-
mark, that imitate pessimistic scenario – as it was mentioned before, all
nodes were artificially loaded at the same time. The prediction accuracy
depends on many parameters such as cluster architecture, network loads
during computations.

For comparison purposes we provide the results obtained by using the
two-level parallelisation template. K = 1, then the first level of the three-

85

level template is not used.
It is important to note, that in Tables 4.2-4.5 we present the CPU time

needed to compute one useful point (4.6), i.e., the actual time is divided by
γk k, which represents the usefulness of computations. Optimal algorithm
Ak is selected automatically using the approach that was described above.

As it follows from Table 4.2, the usage of the first level with k = 3 and
P = 128 processes increases the potential speed-up from 38.75 to 60.44. If
P = 128 and k = 1 then only 70 processes are used. However the result is
very similar to the case when P = 64 processes are used, which means that
these additional resources are used very inefficiently.

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

Eq
u

at
io

n
s

Seconds
0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

Eq
u

at
io

n
s

Seconds

Figure 4.4: Experimental model times for Benchmark 1 with p = 16(left)
and p = 64(right)

In the Figure 4.4 the Gantt charts show theoretical model time tm(p),
that is needed to obtain the solutions of different equations. The work-
load distribution becomes closer to uniform as the number of processes is
increased.

4.4.1 The Control of Efficiency

The reduction of the energy consumption is an important goal, especially
when increasement of computation speed-up are small for additional pro-
cesses. The presented results indicate that in some cases there is a highly
inefficient usage of computational resources.

For the purposes of controlling the efficiency of calculations the condi-
tion (4.4) was introduced in Algorithm 4.2. This condition guarantees that
the efficiency of the numerical solution of each block of tasks will be at least
Emin. It is important to note, that we are not attempting to generate opti-
mal mappings of processors – we have developed an heuristic that provides
the quality of distribution of tasks, which is sufficient for the most practical
purposes. The quality of the algorithm is improved when more processors

86

Table 4.2: The results for Benchmark 1. Tp is the CPU time in seconds
required to compute one useful point (4.6)

p 16 32 64
k = 1

Eq. 1 10 22 50
Eq. 2 3 5 8
Eq. 3 2 3 4
Eq. 4 1 2 2

Total number of p 16 32 64
Model TMp 11.145 5.784 3.614

Tp 11.003 5.394 3.608
Speed-up 12.679 25.862 38.664

p 96 128 128
k = 2 k = 3 K = 1

Eq. 1 34 29 56
Eq. 2 8 7 8
Eq. 3 4 4 4
Eq. 4 2 2 2

Total number of p 96 126 70
Model TMp 2.742 2.272 3.605

Tp 2.719 2.308 3.600
Speed-up 51.307 60.444 38.75

are available.
Next, a more detailed analysis of the Benchmark 1 is provided. In

Table 4.5 the results for Emin > 0 are presented. Comparing the results in
Table 4.5 with the results in Table 4.2 we see that for K = 1 and Emin = 0.6

the number of processes for the first equation is decreased by 14, however,
the computation times are almost the same as it was in the case of Emin = 0.
Also, for K = 3 the efficiency requirement begins to limit the number of
processes for Emin = 0.75 and it decreases further with Emin = 0.8.
However, even then a three level approach with K = 3 is superior to the
standard two-level approach in terms of the final speed-up. The results in
Table 4.5 indicate that even for the efficiency limitation Emin = 0.75 the
proposed three-level approach lets us maintain a big number of parallel pro-
cesses active, this number is equal to (26+7+4+2)×3 = 117. The speed-up
is 56 and the efficiency of the parallel algorithm is 56/117 ≈ 0.48. The last
column in Table 4.5 with K = 1 presents the results for the two-level ap-
proach (without the first level). A straightforward two-level parallelisation

87

Table 4.3: The results for Benchmark 2. Tp is the CPU time in seconds
required to compute one useful point (4.6).

p 16 32 64 96 128 128
k = 1 k = 2 K = 1

Eq. 1 9 18 37 26 37 56
Eq. 2 4 8 15 12 15 18
Eq. 3 2 4 8 7 8 8
Eq. 4 1 2 4 3 4 4

Total number of p 16 32 64 96 128 86
Model time 6.59 3.36 2.01 1.65 1.34 1.8

Tp 6.69 3.37 1.98 1.62 1.33 1.86
Speed-up 13.6 27.03 46.03 56.24 68.25 49.03

Table 4.4: The results for Benchmark 3. Tp is the CPU time in seconds
required to compute one useful point (4.6).

p 16 32 64 96 128 128
k = 1 k = 2 K = 1

Eq. 1 8 16 32 24 32 56
Eq. 2 4 8 16 12 16 31
Eq. 3 2 4 8 6 8 8
Eq. 4 2 4 8 6 8 9

Total number of p 16 32 64 96 128 104
Model time 3.33 1.76 1.05 0.87 0.7 0.9

Tp 3.38 1.76 1.06 0.86 0.7 0.95
Speed-up 14.33 27.55 45.96 56.72 69.08 51.23

approach would have a limited parallelisation possibility especially for prob-
lems of the size J = 2000. For such small subproblems it would be possible
to utilise only up to 32 processes (Figure 3.1), the speed-up would be quite
limited as well.

Note, that all previous results represent the analysis based on a single
Nelder-Mead iteration. Next, we solve the actual real-world optimization
problem (4.6). The maximum number of processes P = 128 the load bal-
ancing algorithm has selected k = 1. The number of Nelder-Mead method
iterations was fixed to 1000. The parallel and sequentional versions gave the
same results the minimum value of the error EC∞ = 0.0806. The sequentional
version of computations took 180286 seconds, the parallel version computa-
tions took 2232 seconds. Thus, a speed-up factor of 81.8 was achieved. The
selection of k = 1 indicates that the number of processes can be greatly in-

88

Table 4.5: The results for Benchmark 1 with Emin > 0. Tp is the CPU time
in seconds required to compute one useful point (4.6).

p 128
Emin 0.75 0.8 0.6

k = 3 k = 3 K = 1

Eq. 1 26 19 42
Eq. 2 7 5 8
Eq. 3 4 3 4
Eq. 4 2 1 2

Total number of p 117 84 56
Model TMp 2.45 3.17 3.84

Tp 2.49 3.08 3.76
Speed-up 56.03 45.37 37.11

creased – the algorithm has selected k = 1 automatically for a given number
of processes.

4.5 The Comparison of Different Nelder-Mead Par-
allelisation Methods

Here we present the analysis of the convergence properties of different mod-
ifications of the Nelder-Mead method. As it was mentioned before, the
convergence rate of the selected algorithm directly affects the parallelisa-
tion efficiency, which is represented by γk, where k is the parallelisation
degree. In this section we measure γk by measuring the experimental par-
allel efficiency of algorithms.

The detailed analysis of convergence behaviour for different objective
functions is out of the scope of this research. However, the objective function
from the previous sections is suitable for a narrow class of applications.
Thus, to perform a comparison of different parallel versions of Nelder-Mead
method we minimise the Rosenbrock objective function that is widely used
by researchers in the field of optimization theory [33], [87].

We show that in the case of the Rosenbrock function the real experimen-
tal γk values are different than were assumed to be in the experiments of the
previous sections. The reason is that the significant number of iterations
require to compute only one point FR.

We compare the results of our parallel modification of the Nelder-Mead
method with the state-of-art technique proposed in [58]. As a benchmark

89

we use the Rosenbrock function

f(x1, . . . , xd) =
d−1∑
i=1

100(xi+1 − x2
i)

2 + (1− xi)2, (4.11)

which makes the optimization problem challenging. It should be noted
that the parallel algorithm [58] can achieve the parallelisation degree K

that is equal to the optimization problem dimension d. Thus potentially
this algorithm is well suited for parallel computers with a big number of
processes.

Table 4.6: The γk values for direct Nelder-Mead parallelisation

k d = 3 d = 6 d = 7

2 0.603 0.604 0.606
3 0.584 0.517 0.502

In the Table 4.6 we compare three cases d = 3, 6, 7: d = 3 – the min-
imum, that is needed for parallelilsation with both methods, d = 7 – the
case that was studied in the previous section, d = 6 – to show the tendency
for smaller d. We provide the results obtained when the Rosenbrock func-
tion of different dimensions d = 3, 6, 7 was minimized by using our parallel
modification of the Nelder-Mead method. The values of the efficiency co-
efficients γk are presented. They show that this parallel algorithm is quite
stable and it is well-suited to be used in the three-level template solver for
small dimension objective functions.

Table 4.7: The γk values for the parallel Nelder-Mead algorithm from (Lee
and Wiswall, 2007)

k d = 3 d = 6 d = 7

2 0.668 0.685 0.714
3 – 0.436 0.454
4 – 0.023 0.104
5 – 0.001 0.002
6 – – 0.001

Table 4.7 presents results obtained by using the state-of-the-art parallel
Nelder-Mead algorithm from [58]. It follows, that in all investigated cases
the parallelisation degree is very limited, since the convergence drops signif-
icantly when the parallelization degree is increased. This method is mainly
targeted to solve problems when the dimension of the objective function is
big (e.g. problems in financial mathematics, when d ≈ 100).

90

4.6 Conclusions of the Fourth Chapter

We introduced a three-level parallelisation template which utilises a new
computational cost model based on experimental data. This model is used
to perform the load balancing during task distribution step.

• Comparing the three-level template to the classical two-level scheme,
the proposed algorithm greatly expands the number of processes that
can be used. in the case when a big number is computational resources
is available.

• The model-based approach performs balancing well enough for prac-
tical purposes. The model prediction times are close to times of the
real computational experiments.

• The possibilities of the three-level parallelization template are demon-
strated for solving local optimization problems. The proposed load
balancing algorithm chooses the optimal version of the parallel Nelder-
Mead algorithm. It dynamically increases the parallelisation degree
on the first level when the speed-up of the second and third levels
begins to saturate.

• The proposed approach extends the parallelisation degree allowing to
achieve an additional speed-up.

• The proposed load balancing algorithm limits the size of computa-
tional resources to preserve the efficiency requirement which can be
controlled by selecting the parameter Emin. The results of computa-
tional experiments show, that This heuristic for considered cases is
sufficient.

91

General Conclusions

1. The proposed parallel algorithms for the problems of fractional po-
wers of elliptic operators are efficient enough (in some cases, efficiency
is close to 1). The highest accuracy solutions are obtained using the
quadrature method (M3) with exponentially convergent quadrature
formula.

2. Two techniques to obtain coefficients of rational function, approxi-
mation of the Fourier symbol and minimization of the reflection co-
efficient, are not universal. The appropriate set of coefficients for
four qualitatively different testing Schrödinger problems in the se-
lected seven parameters space was found using a coupled adaptive
technique, when evaluating errors for different tasks.

3. The proposed three-level parallel scheme was compared to the classical
two-level parallel algorithm. The proposed parallel scheme improves
the degree of parallelism and the additional degree of parallelism, this
lets to use a bigger number of available computational resources (1.5
times more in the considered cases) and lets to achieve an additional
speed-up.

92

List of Publications by the
Author on the Topic of the
Dissertation

The articles published in peer-reviewed periodical journals

1. Čiegis, R.; Starikovičius, V.; Margenov, S.; Kriauzienė, R. Scalability
analysis of different parallel solvers for 3D fractional power diffusion
problems. Concurrency and computation: practice and experience.
Chichester: John Wiley & Sons, Ltd. ISSN 1532-0626. eISSN 1532-
0634. 2019, Vol. 3, iss. , p. –. DOI: 10.1002/cpe.5163.

2. Čiegis, R; Starikovičius, V; Margenov, S; Kriauzienė, R. Parallel solvers
for fractional power diffusion problems Concurrency and computation:
practice and experience. Chichester: John Wiley & Sons, Ltd. ISSN
1532-0626. eISSN 1532-0634. 2017, Vol. 29, iss. 24, p. 1-12. DOI:
10.1002/cpe.4216.

3. Bugajev, A.; Čiegis, R.; Kriauzienė, R.; Leonavičienė, T.; Žilinskas,
J. On the accuracy of some absorbing boundary conditions for the
Schrödinger equation Mathematical modelling and analysis: the Baltic
journal on mathematical applications, numerical analysis and differ-
ential equations. Vilnius: Taylor& Francis, VGTU. ISSN 1392-6292.
eISSN 1648-3510. 2017, Vol. 22, iss. 3, p. 408–423.
DOI: 10.3846/13926292.2017.1306725.

Proceedings of other conferences:

1. Čiegis, R., Starikovičius, V., Margenov, S., Kriauzienė, R. 2018. A
comparison of accuracy and efficiency of parallel solvers for fractional
power diffusion problems. Parallel Processing and Applied Mathe-
matics: 12th international conference, PPAM 2017, Lublin, Poland,

93

September 10–13, 2017. Basel, Springer International Publishing, pp.
79-89, ISBN 9783319780238. DOI: 10.1007/978-3-319-78024-5_8.

Book chapter

1. Margenov, S; Rauber, Th.; Atanassov, E.; Almeida, F.; Blanco, V.;
Čiegis, R.; Cabrera, A.; Frasheri, N.; Harizanov, S.; Kriauzienė, R.;
Rünger, R.; Segundo, P.S.; Starikovičius, V.; Szabo, S.; Zavalnij, B.
Ultrascale Computing Systems. Applications for ultrascale systems.
Institution of Engineering and Technology, 2019, p. 189-244.
DOI: 10.1049/PBPC024E_ ch6.
https://digital-library.theiet.org/content/books/10.1049/pbpc024e_ch6

Abstracts in the conference proceedings:

1. Kriauzienė, R; Bugajev, A; Čiegis, R. The analysis and application
of a three-level parallelisation scheme Mathematical Modelling and
Analysis [MMA2019]: 24rd international conference, May 28-May 31,
2019, Talinn, : abstracts.

2. Kriauzienė, R; Bugajev, A; Čiegis, R. A three-level parallelisation
algorithm for optimization problems Mathematical Modelling and
Analysis [MMA2018]: 23rd international conference, May 29-June 1,
2018, Sigulda, Latvia: abstracts. Riga: University of Latvia, 2018.
ISBN 9789934195174. p. 41.

3. Kriauzienė, R; Bugajev, A.; Čiegis, R. Numerical analysis and opti-
mization of parallel algorithms for problems with big computational
costs 3rd NESUS Winter School and PhD Symposium 2018, 22nd-
25th January 2018, Zagreb, Croatia. Zagreb: Ruder Bošković Insti-
tute. 2018, vol. 1, no. 1, p. 10.

4. Kriauzienė, R.; Bugajev, A.; Čiegis, R. Three level parallelisation
scheme for optimization problems involving simultaneous calculations
of multiple differential equations DAMSS 2018 : 10th international
workshop on "Data analysis methods for software systems", Druskininkai,
Lithuania, November 29 – December 1, 2018 : [abstract book]. Vilnius
: Vilnius University Press, 2018. ISBN 9786090700433. p. 48. DOI:
10.15388/DAMSS.2018.1.

5. Čiegis, R.; Starikovičius, V.; Margenov, S.; Kriauzienė, R. A compar-
ison of accuracy and efficiency of parallel solvers for fractional power
diffusion problems PPAM 2017: 12th International Conference on

94

Parallel Processing and Applied Mathematics, September 10-13, 2017,
Lublin, Poland: book of abstracts. Czestochowa: Czestochowa Uni-
versity of Technology. 2017, p. 99.

6. Čiegis, R.; Starikovičius, V.; Margenov, S.; Kriauzienė, R. Lygia-
grečiųjų skaitinių algoritmų, skirtų uždaviniams su elipsiniais operato-
riais, pakeltais trupmeniniu laipsniu, analizė Fizinių ir technologijos
mokslų tarpdalykiniai tyrimai: 7-oji jaunųjų mokslininkų konferencija,
2017 m. vasario 9 d. Vilnius: Lietuvos mokslų akademijos leidykla.
2017, p. 56-57.

7. Starikovičius, V.; Čiegis, R.; Margenov, S.; Kriauzienė, R.. Paral-
lel algorithms for the numerical solution of problems with fractional
powers of elliptic operators Mathematical Modelling and Analysis
[MMA2017] : 22nd international conference, May 30-June 2, 2017,
Druskininkai, Lithuania : abstracts. Vilnius : Technika, 2017. ISBN
9786094760228. eISBN 9786094760211. p. 64-65.

8. Kriauzienė, R.; Bugajev, A.; Čiegis, R. The new parallel multilevel
tool for implementation of applied optimization algorithms 9th Inter-
national workshop on Data Analysis Methods for Software Systems
(DAMSS), Druskininkai, Lithuania, November 30 - December 2, 2017.
Vilnius : Vilniaus University, 2017. ISBN 9789986680642. p. 28-29.
DOI: 10.15388/DAMSS.2017.

9. Bugajev, A.; Kriauzienė, R.; Čiegis, R. On the accuracy of some ab-
sorbing boundary conditions for the Schrodinger equation Mathemat-
ical Modelling and Analysis (MMA2016): 21st international confer-
ence, June 1-4, 2016 in Tartu, Estonia: abstracts Institute of Mathe-
matics and Statistics of the University of Tartu, European Consortium
for Mathematics in Industry, Vilnius Gediminas Technical University,
Estonian Mathematical Society. Tartu : University of Tartu, 2016.
ISBN 9789949918096. p. 11.

10. Kriauzienė, R.; Bugajev, A.; Čiegis, R.; Leonavičienė, T.; Žilinskas,
J.; Jankevičiūtė, G. Optimization of efficient absorbing boundary con-
ditions for schrödinger equation Data analysis methods for software
systems: 8th international workshop on data analysis methods for
software systems, Druskininkai, December 1-3, 2016 : [abstract]. Vil-
nius: Vilniaus universiteto leidykla, 2016. ISBN 9789986680611. p.
30-31. DOI: 10.15388/DAMSS.2016.

95

Bibliography

[1] G. Acosta and J. Borthagaray. A fractional laplace equation: Regu-
larity of solutions and finite element approximations. SIAM Journal
on Numerical Analysis, 55(2):472–495, 2017.

[2] M. Ainsworth and C. Glusa. Aspects of an adaptive finite element
method for the fractional Laplacian: A priori and a posteriori error
estimates, efficient implementation and multigrid solver. Computer
Methods in Applied Mechanics and Engineering, 327:4–35, 2017.

[3] G. Amdahl. Validity of the single processor approach to achieving
large-scale computing capabilities. AFIPS Conference Proceedings,
30:483–485, 1967.

[4] S. Amiranashvili, R. Čiegis, and M. Radziunas. Numerical methods
for a class of generalized nonlinear schrödinger equations. Kinetic and
Related Models, 8(2):215–234, 2015.

[5] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle. A
review of transparent and artificial boundary conditions technique for
linear and nonlinear Schrödinger equations. Communications in Com-
putational Physics, 4(4):729–796, 2008.

[6] X. Antoine and C. Besse. Unconditionally stable discretization
schemes of non-reflecting boundary conditions for the one-dimensional
Schrödinger equation. Journal of Computational Physics, 188:157–
175, 2003. doi:10.1016/S0021-9991(03)00159-1.

[7] A. Arnold. Numerically absorbing boundary conditions for quantum
evolution equations. VLSI Design, 6(1–4):313–319, 1998.

[8] G. A. Baker and J. L. Gammel. The Padé approximant in theoretical
physics, volume 71. Academic Press, New York, NY, USA, 1970.

96

[9] L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otárola, A. J. Salgado,
and C. Schwab. Tensor FEM for spectral fractional diffusion. Foun-
dations of Computational Mathematics, 19(4):901–962, 2018.

[10] V. Baskakov and A. Popov. Implementation of transparent boundaries
for numerical solution of the Schrödinger equation. Wave Motion,
14(2):123–128, 1991.

[11] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing
matrix multiply using phipac: a portable, high-performance, ansi c
coding methodology. In Proceedings of the 11th international confer-
ence on Supercomputing, pages 340–347. ACM, 1997.

[12] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, and A. J.
Salgado. Numerical methods for fractional diffusion. Computing and
Visualization in Science, 19(5):19–46, 2018.

[13] A. Bonito and J. Pasciak. Numerical approximation of fractional pow-
ers of elliptic operator. Mathematics of Computation, 84, 2015.

[14] C. Bruneau, L. D. Menza, and T. Lehner. Numerical resolution
of some nonlinear Schrödinger-like equations in plasmas. Numerical
Methods for Partial Differential Equations, 15(6):672–696, 1999.

[15] A. Bugajev, R. Čiegis, R. Kriauzienė, T. Leonavičienė, and J. Žilin-
skas. On the accuracy of some absorbing boundary conditions for
the schrodinger equation. Mathematical Modelling and Analysis,
22(3):408–423, 2017.

[16] J. Carretero, S. Distefano, D. Petcu, D. Pop, T. Rauber, G. Rünger,
and D. E. Singh. Energy-efficient algorithms for ultrascale systems.
Supercomputing frontiers and innovations, 2(2):77–104, 2015.

[17] A. Caserta, R. Garra, and E. Salusti. Application of the fractional
conservation of mass to gas flow diffusivity equation in heterogeneous
porous media. Geophysics, 2016. arXiv:1611.01695v1.

[18] R. Čiegis. Investigation of difference schemes for a class of models of
excitability. Computational Mathematics and Mathematical Physics,
32(6):757–767, 1996.

[19] R. Čiegis. Parallel algorithms and networking technologies. Technika,
Vilnius, 2005. (in Lithuanian).

97

[20] R. Ciegis and M. Baravykaite. Implementation of a black-box global
optimization algorithm with a parallel branch and bound template.
Applied Parallel Computing: State of the Art in Scientific Computing,
4699:1115–1125, 2007.

[21] R. Čiegis and M. Radziunas. Effective numerical integration of trav-
eling wave model for edge-emitting broad-area semiconductor lasers
and amplifiers. Mathematical Modelling and Analysis, 15(4):409–430,
2010.

[22] R. Čiegis and G. Šilko. A scheme for partitioning regular graphs.
In R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski, J. Ki-
towski, and K. Wiatr, editors, Proc. 4th International Conference on
Parallel Processing and Applied Mathematics (PPAM2001, Naleczsow,
Poland, September9-12, 2001), volume 2328 of Lecture Notes in Com-
puter Science, pages 404–409, Berlin, Germany, 2002. Springer.

[23] R. Čiegis, V. Starikovičius, S. Margenov, and R. Kriauzienė. Paral-
lel solvers for fractional power diffusion problems. Concurrency and
Computation: Practice and Experience, 25(24), 2017.

[24] R. Čiegis, V. Starikovičius, S. Margenov, and R. Kriauzienė. A com-
parison of accuracy and efficiency of parallel solvers for fractional
power diffusion problems. In Parallel Processing and Applied Math-
ematics, (PPAM2017, Lublin, Poland, September 9–13, 2017) Pro-
ceedings, part I, volume 10777 of Lecture Notes in Computer Science,
pages 79–89, Berlin, Heidelberg, 2018. Springer.

[25] R. Čiegis, V. Starikovičius, S. Margenov, and R. Kriauzienė. Scal-
ability analysis of different parallel solvers for 3D fractional power
diffusion problems. Concurrency and Computation: Practice and Ex-
perience, 2019.

[26] R. Čiegis, V. Starikovičius, N. Tumanova, and M. Ragulskis. Appli-
cation of distributed parallel computing for dynamic visual cryptog-
raphy. The Journal of Supercomputing, 72(11):4204–4220, 2016.

[27] R. Čiegis and N. Tumanova. On construction and analysis of finite
difference schemes for pseudoparabolic problems with nonlocal bound-
ary conditions. Mathematical Modelling and Analysis, 19(2):281–297,
2014.

98

[28] N. Cusimano, A. Bueno-Orovio, I. Turner, and K. Burrage. On the or-
der of the fractional laplacian in determining the spatio-temporal evo-
lution of a space-ractional model of cardiac electrophysiology. PLOS
ONE, 10(12):1–16, 2015.

[29] N. Cusimano, F. del Teso, L. Gerardo-Giorda, and G. Pagnini. Dis-
cretizations of the spectral fractional laplacian on general domains
with Dirichlet, Neumann, and Robin boundary conditions. SIAM
Journal on Numerical Analysis, 56(3):1243–1272, 2018.

[30] A. Datta, A. Kaur, T. Lauer, and S. Chabbouh. Exploiting multi–
core and many–core parallelism for subspace clustering. International
Journal of Applied Mathematics and Computer Science, 29(1):81–91,
2019.

[31] M. D’Elia and M. Gunzburger. The fractional Laplacian operator on
bounded domains as a special case of the nonlocal diffusion opera-
tor. Computers and Mathematics with Applications, 66(7):1245–1260,
2013.

[32] B. Duan, R. Lazarov, and J. Pasciak. Numerical approximation of
fractional powers of elliptic operators, 2019.

[33] I. Fajfar, Á. Bűrmen, and J. Puhan. The nelder–mead simplex al-
gorithm with perturbed centroid for high-dimensional function opti-
mization. Optimization Letters, pages 1–15, 2018.

[34] R. Falgout, J. Jones, and U. Yang. The design and implementation
of Hypre, a library of parallel high performance preconditioners. In
A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial
Differential Equations on Parallel Computers, part III, volume 51 of
Lecture Notes in Computational Science and Engineering, pages 264–
294, Springer, Berlin, Heidelberg, 2006.

[35] R. Falgout and U. Yang. hypre: a library of high performance pre-
conditioners. In P. M. A. Sloot, A. Hoekstra, C. Tan, and J. Don-
garra, editors, Computational Science 2002. International Conference
(ICCS, Amsterdam, The Netherlands, April 21–24, 2002) Proceed-
ings, part III, volume 2331 of Lecture Notes in Computer Science,
pages 632–641, Berlin, Heidelberg, 2002. Springer.

99

[36] M. Fan, S. Li, and L. Zhang. Weak solution of the equation for a
fractional porous medium with a forcing term. Computers and Math-
ematics with Applications, 67(1):145–150, 2014.

[37] D. Finkel. DIRECT optimization algorithm user guide. Center for
Research in Scientific Computation, North Carolina State University,
2:1–14, 2003.

[38] M. Frigo and S. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005.

[39] H. Fu, M. Ng, M. Nikolova, and J. Barlow. Efficient minimization
methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM
Journal on Scientific Computing, 27(6):1881–1902, 2006.

[40] M. Furuichi and D. Nishiura. Iterative load-balancing method with
multigrid level relaxation for particle simulation with short-range in-
teractions. Computer Physics Communications, 219:135–148, 2017.

[41] F. Glover. Tabu search–part I. ORSA Journal on Computing,
1(3):190–206, 1989.

[42] F. Glover. Tabu search–part II. ORSA Journal on Computing, 2(1):4–
32, 1990.

[43] C. Gong, W. Bao, and G. Tang. A parallel algorithm for the Riesz
fractional reaction-diffusion equation with explicit finite difference
method. Fractional Calculus and Applied Analysis, 16(3):654–669,
2016.

[44] S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, and J. Pasciak.
Comparison analysis on two numerical methods for fractional diffusion
problems based on rational approximations of tγ , 0 ≤ t ≤ 1, 2018.

[45] S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, and Y. Vutov.
Optimal solvers for linear systems with fractional powers of sparse
SPD matrices. Numerical Linear Algebra with Applications, 25(5),
2018.

[46] B. I. Henry, T. A. M. Langlands, and P. Straka. An Introduction to
Fractional Diffusion, pages 37–89. World Scientific, 2012.

[47] I. Huismann, J. Stiller, and J. Frohlich. Two-level parallelization of
a fluid mechanics algorithm exploiting hardware heterogeneity. Com-
puters & Fluids, 117:114–124, 2015.

100

[48] E.-J. Im and K. Yelick. Optimizing sparse matrix computations for
register reuse in SPARSITY. In International Conference on Compu-
tational Science, pages 127–136. Springer, 2001.

[49] S. Imam and V. Sarkar. Load balancing prioritized tasks via work-
stealing. In Euro-Par 2015: Parallel Processing, volume 9233, pages
222–234, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[50] C. Kelley. Iterative methods for optimization. Society for Industrial
and Applied Mathematics, Philadelphia, 1999.

[51] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[52] M. Köpf, R. Metzler, O. Haferkamp, and T. F. Nonnenmacher. NMR
Studies of Anomalous Diffusion in Biological Tissues: Experimen-
tal Observation of Lévy Stable Processes, pages 354–364. Birkhäuser
Basel, 1998.

[53] R. Kriauzienė, A. Bugajev, and R. Čiegis. A three-level paral-
lelisation scheme and application to the Nelder-Mead algorithm.
http://arxiv.org/abs/1904.05208, 2019.

[54] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction
to Parallel Computing: Design and Analysis of Parallel Algorithms.
Benjamin-Cummings Pub Co, 1994.

[55] A. Lastovetsky and R. R. Manumachu. New model-based methods and
algorithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters. IEEE Transactions
on Parallel and Distributed Systems, 28(4):1119–1133, 2017.

[56] A. Lastovetsky, L. Szustak, and R. Wyrzykowski. Model-based opti-
mization of eulag kernel on intel xeon phi through load imbalancing.
Ieee Transactions on Parallel and Distributed Systems, 28(3):787–797,
2017.

[57] R. Lazarov and P. Vabishchevich. A numerical study of the homo-
geneous elliptic equation with fractional order boundary conditions.
Fractional Calculus and Applied Analysis, 20(2):337–351, 2017.

[58] D. Lee and M. Wiswall. A parallel implementation of the simplex
function minimization routine. Computational Economics, 30(2):171–
187, 2007.

101

[59] E. Lindman. Free-space boundary conditions for the time dependent
wave equation. Journal of Computational Physics, 18(1):16–78, 1985.

[60] A. Llanes, J. M. Cecilia, A. Sanchez, J. M. Garcia, M. Amos, and
M. Ujaldon. Dynamic load balancing on heterogeneous clusters for
parallel ant colony optimization. Cluster Computing-the Journal of
Networks Software Tools and Applications, 19(1):1–11, 2016.

[61] R. Magin, C. Ingo, L. Colon-Perez, W. Triplett, and T. Mareci. Char-
acterization of anomalous diffusion in porous biological tissues using
fractional order derivatives and entropy. Microporous and Mesoporous
Materials, 178:39–43, 2013.

[62] R. L. Magin. Fractional calculus models of complex dynamics in
biological tissues. Computers and Mathematics with Applications,
59(5):1586–1593, 2010.

[63] R. Mart́i, J. Lozano, A. Mendiburu, and L. Hernando. Multi-start
methods. Springer International Publishing, Vilnius, Lithuania, 2015.

[64] K. McKinnon. Convergence of the nelder–mead simplex method to a
nonstationary point. SIAM Journal on Optimization, 9(1):148–158,
1998.

[65] D. Meidner, J. Pfefferer, K. Schürholz, and B. Vexler. hp-finite ele-
ments for fractional diffusion. SIAM Journal on Numerical Analysis,
56(4):2345–2374, 2018.

[66] L. D. Menza. Transparent and absorbing boundary conditions for the
Schrödinger equation in a bounded domain. Numerical Functional
Analysis and Optimization, 18(7–8):759–775, 1997.

[67] C. Moyer. Numerov extension of transparent boundary conditions
for the Schrödinger equation in one dimension. American Journal of
Physics, 72(3):351–358, 2004.

[68] MPI: A message passing interface standard.

[69] J. Nelder and R. Mead. A simplex method for function minimization.
The computer journal, 7(4):308–313, 1965.

[70] J. A. Nelder and R. Mead. A simplex method for function minimiza-
tion. The Computer Journal, 7(4):308–313, 1965.

102

[71] B. S. Nemalikanti, P. Sindhura, P. K. Tumalla, and S. Ve-
muru. Achieving green computing through algorithmic efficiency. i-
Manager’s Journal on Information Technology, 1(1):39, 2011.

[72] R. Nochetto, E. Otárola, and A. Salgado. A PDE approach to frac-
tional diffusion in general domains: a priori error analysis. Founda-
tions of Computational Mathematics, 15(3):733–791, 2015.

[73] R. Nochetto, E. Otárola, and A. Salgado. A PDE approach to nu-
merical fractional diffusion. In Proceedings of the 8th ICIAM, Beijing,
China, pages 211–236, 2015.

[74] H. Padé. Sur la représentation approchée d’une fonction par des frac-
tions rationnelles. Annales scientifiques de l’École Normale, 9(3):1–93,
1892.

[75] B. Perez, E. Stafford, J. Bosque, and R. Beivide. Energy efficiency of
load balancing for data-parallel applications in heterogeneous systems.
Journal of Supercomputing, 73(1):330–342, 2017.

[76] C. Pozrikidis. The Fractional Laplacian. CRC Press, 2016.

[77] A. Quarteroni and A. Valli. Domain Decomposition Methods for Par-
tial Differential Equations. Oxford Science Publications, 1999.

[78] M. Radziunas, R. Čiegis, and A. Mirinavičius. On compact high or-
der finite difference schemes for linear Schrödinger problem on non-
uniform meshes. International Journal of Numerical Analysis and
Modelling, 11(2):303–314, 2014.

[79] J. A. Rico-Gallego and J. C. Diaz-Martin. τ -Lop: Modeling per-
formance of shared memory MPI. Parallel Computing, 46(C):14–31,
2015.

[80] J. A. Rico-Gallego, A. L. Lastovetsky, and J. C. Diaz-Martin. Model-
based estimation of the communication cost of hybrid data-parallel
applications on heterogeneous clusters. IEEE Transactions on Parallel
and Distributed Systems, 28(11):3215–3228, 2017.

[81] R. D. Righi, R. D. Gomes, V. F. Rodrigues, C. A. da Costa, A. M.
Alberti, L. L. Pilla, and P. O. A. Navaux. Migpf: Towards on self-
organizing process rescheduling of bulk-synchronous parallel applica-
tions. Future Generation Computer Systems-the International Journal
of Escience, 78:272–286, 2018.

103

[82] B. Saha. Green computing: Current research trends. International
Journal of Computer Sciences and Engineering, 6(3):467–469, 2018.

[83] E. Scalas, R. Gorenflo, and F. Mainardi. Fractional calculus and
continuous-time finance. Physica A: Statistical Mechanics and its Ap-
plications, 284(1-4):376–384, 2000.

[84] A. Sharma and M. Kaur. An efficient task scheduling of multiprocessor
using genetic algorithm based on task height. Journal of Information
Technology & Software Engineering, 5(2):1000151, 2015.

[85] R. Singh. Task scheduling in parallel systems using genetic algorithm.
International Journal of Computer Applications, 108(16):34–40, 2014.

[86] W. Spendley, G. Hext, and F. Himsworth. Sequential application of
simplex designs in optimisation and evolutionary operation. Techno-
metrics, 4(4):441–461, 1962.

[87] L. Stripinis, R. Paulavičius, and J. Žilinskas. Improved scheme for
selection of potentially optimal hyper-rectangles in DIRECT. Opti-
mization Letters, 12(7):1699–1712, Oct 2018.

[88] J. Szeftel. Design of absorbing boundary conditions for Schrödinger
equations in Rd. SIAM Journal on Numerical Analysis, 42(4):1527–
1551, 2004.

[89] A. Törn and A. Žilinskas. Global Optimization. Springer-Verlag New
York, Inc., New York, NY, USA, 1989.

[90] P. Vabishchevich. Numerically solving an equation for fractional pow-
ers of elliptic operators. Journal of Computational Physics, 282:289–
302, 2015.

[91] P. Vabishchevich. Numerical solving unsteady space-fractional prob-
lems with the square root of an elliptic operator. Mathematical Mod-
elling and Analysis, 21(2):220–238, 2016.

[92] R. Varga and A. Carpenter. Some numerical results on best uni-
form rational approximation of xα on [0, 1]. Numerical Algorithms,
2(2):171–185, 1992.

[93] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of
automatically tuned sparse matrix kernels. In Journal of Physics:
Conference Series, volume 16, pages 521–530. IOP Publishing, 2005.

104

[94] H. Wang. A parallel method for tridiagonal equations. ACM Trans-
actions on Mathematical Software (TOMS), 7(2):170–183, 1981.

[95] T. Weise. Global optimization algorithms. Theory and application.
Self-Published Thomas Weise, 2009.

[96] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra
software. In Supercomputing, 1998. SC98. IEEE/ACM Conference
on, pages 38–38. IEEE, 1998.

[97] H. S. Yamada and K. Ikeda. A numerical test of padé approximation
for some functions with singularity. International Journal of Compu-
tational Mathematics, 2014, 2014.

[98] Q. Yang, D. Chen, T. Zhao, and Y. Chen. Fractional calculus in
image processing: A review. Fractional Calculus and Applied Analysis,
19(5):1222–1249, 2016.

[99] Q. Yang, F. Liu, and I. Turner. Numerical methods for fractional
partial differential equations with Riesz space fractional derivatives.
Applied Mathematical Modelling, 34(1):200–218, 2010.

[100] S. B. Yuste, L. Acedo, and K. Lindenberg. Reaction front in an A+
→
B

C reaction-subdiffusion process. Physical Review E, 69(3):036126,
2004.

[101] Y. Zheng, C. Li, and Z. Zhao. A note on the finite element method
for the space-fractional advection diffusion equation. Computers and
Mathematics with Applications, 59:1718–1726, 2010.

[102] J. Žilinskas. Black box global optimization: covering methods and their
parallelization. KTU, Kaunas, Lithuania, 2002. Doctoral dissertation.

[103] A. Zlotnik and I. Zlotnik. Remarks on discrete and semi-discrete
transparent boundary conditions for solving the time-dependent
Schrödinger equation on the half-axis. Russian Journal of Numer-
ical Analysis and Mathematical Modelling, 31(1):51–64, 2016.

105

Rima Kriauzienė

PARALLEL ALGORITHMS FOR NON-CLASSICAL PROBLEMS WITH
BIG COMPUTATIONAL COSTS

Doctoral Dissertation
Natural Sciences
Informatics (N 009)
Editor Zuzana Šiušaitė

UŽRAŠAMS

Vilniaus universiteto leidykla

Saulėtekio al. 9, LT-10222 Vilnius

El. p. info@leidykla.vu.lt,

www.leidykla.vu.lt

Tiražas 20 egz.

