
VILNIUS UNIVERSITY

VLADIMIRAS DOLGOPOLOVAS

SOFTWARE LEARNING OBJECTS FOR
SCIENTIFIC COMPUTING EDUCATION:
TEACHING SCIENTIFIC INQUIRY WITH

RECURRENCE BASED STOCHASTIC MODELS

Doctoral Dissertation
Technological Sciences, Informatics Engineering (07 T)

Vilnius, 2018



The dissertation was written between 2013 and 2017 at Vilnius University.

Scientific Supervisor
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Abstract
Modern education requires innovative approaches that need to be implemented
both at the highest levels of the educational environment, such as educational
policy or curriculum requirements, and at practical levels such as instructional
design and didactic aspects of particular subjects of university education. The
reasons for this are: (1) obvious technological changes, including the progress of
the world digital economy as a whole; (2) sufficient improvement of innovative
digital technologies in the services and industry in particular. This progress re-
quires that more and more knowledge and practical skills of students be taught
and trained in university curricula.

One of the most important and at the same time difficult areas is computational
science. Modern computational science has been transformed from emphasis in
the early days to pure computing aspects, to the present-day focus on applica-
tions, scientific research, scientific inquiry and the digital design process, and this
is of paramount importance for every area of modern science and technology.
Another important aspect is innovation. Modern innovations are primarily in-
terdisciplinary and require an interdisciplinary approach to the research process,
which should be developed, implemented and taught in the framework of a very
diverse curriculum of the university.

The aims of the research are: (1) to provide an integral view on various earlier
described aspects of educational technology in general; (2) to provide a method-
ological constructionist framework for Scientific Inquiry (SI) based Scientific Com-
puting Education (SCE); (3) to develop Design Principles and the Supportive Ap-
plication and Integration Methodology (DPSAIM) for the development of Learn-
ing Resources for SCE; (4) to practically implement a set of sample learning
resources including implementations for instructional design and didactics. The
set of sample learning resources in the form of programming models and Software
Learning Objects (SLOs) is aimed at such topics within the scope of scientific
computing education as stochastics, including limit theorems, Monte Carlo meth-
ods, queueing theory, and big-data computation and visualization techniques. To
implement the research task: (1) a comprehensive meta analysis of domain fea-
tures which is based on the well known Technological Pedagogical and Content
Knowledge (TPACK) model is provided; (2) a comprehensive study of a model
of a general form of stochastic recurrence is done and the relevant computational
model is provided; (3) a comprehensive study of a model of the system of queues
in series, which is based on a general model of stochastic recurrence is done,
the relevant computational model is provided; (4) a set of learning resources in
the form of SLOs is developed and provided; (5) a constructionist framework for
Scientific Computing (SC) education is provided; (6) a set of didactic tools and
instructional design methods is implemented.

Keywords: scientific computing education, methodology of Scientific Com-
puting education, Design Science Research, engineering education, university ed-
ucation, computer science education, information systems, interdisciplinary inno-
vations, interdisciplinary university education, STEM university education, sci-
entific inquiry, cognitive artifacts, model-centred instruction, model-based educa-
tion, constructionism, constructionist education, computer simulations, computer
science education, informatics education.
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1 Research context

1.1 Introduction

Nowadays research activities of university education in general and engi-
neering education in particular are focused on a broad range of problems
including philosophical and cognitive foundations of university and engi-
neering education, topic-specific and general educational technology, orga-
nizational aspect of the educational process, and didactic research aimed
to specific engineering disciplines. In spite of solid theoretical foundations
and comprehensive practical input from the educational theorists and prac-
titioners into each of these fields of study, it seems that there is a lack of
interconnection between these specific research areas. As it could observed,
many solid theoretical ideas and practical solutions in the field of didactic
for engineering disciplines are mainly developed with minor or no attention
to the educational technology. At the same time, the technology, consid-
ered as the universal one, is usually developed with serious attention to
details and with little attention to the tools this technology should use in
educational practice. This is especially true for such interdisciplinary and
comprehensive educational field as Scientific Computing Education (SCE)
within the university curriculum. SCE as a university discipline claims to be
one of the most important within the scope of engineering education. The
reason for such an attitude is following. As it is clear from the name of the
topic, it deals with science, computing, and education. Going into details
later in this study, it could be stated that science, scientific approach, sci-
entific research, Scientific Inquiry (SI) and modern engineering educational
technology are closely connected not only as stock-holding counter-agents
of modern academic and scholar environments but also as important parts
of the possible unifying holistic approach to modern engineering education.

One could hardly imagine a modern global world of engineering without
non-stop questions and inquiries, experiments and solutions, innovations,
pioneering engineering, and state-of-the-art technological approaches. All
this, besides positive attitude to the participating parts, is based on sci-
entific and technological inquiries and on modern computing as well. An
obvious and not a trivial question arises: should one be taught Scientific
Computing (SC)? The reasoning against could be like this: computing and
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informatics are taught in various separate courses and why are any ad-
ditional models needed? Is there any reason to teach SI and should it
be taught separately and (or) should it be taught within the scope of SC
course? An affirmative answer is proposed – SC as an educational disci-
pline should exist. Moreover, relevant educational technology should be
developed, taking into account the comprehensive nature of the topic in the
study. Plenty of environments, a variety of questions and inquiries are un-
der the potential cover of this interdisciplinary in nature and wide-ranging
in its scope educational topic. Unifying solutions, or at least some wide-
ranging approaches, could serve a lot of scientists and educators, students,
society and modern industry in general.

Innovations provide a challenging pathway for modern science and en-
gineering. It is easy to declare, but not so easy to implement in practice
and there are many obstacles on the way. Obviously, innovations are based
on research, therefore, effective and innovations-oriented interdisciplinary
research is needed. There is a need to merge different disciplines with
different backgrounds, inner reasoning culture, and knowledge base. Inter-
disciplinary research team members should communicate and look for prac-
tical solutions. At the same time, research institutions should provide an
effective interdisciplinary environment for support and management. Tradi-
tionally, to solve the described problems, some sort of managerial solutions
are offered. New interdisciplinary educational programs are created, in-
ner team communications are enhanced by better management solutions
and similar “traditional” approaches based on directions and directives are
promoted. Even if such solutions could be temporarily effective, the need
for the new managerial decisions will arise with time, and such an ap-
proach will not solve the problem in general. The other possible solution
– the self-directed environment should be designed. Universities should de-
velop universal scientific culture including universal scientific approaches
and unifying reasoning schemes. This will allow researchers from different
disciplines communicate using the same scientific “Esperanto” and will pro-
vide the self-directed and self-organizing interdisciplinary environment for
research and innovations.

Within this study, a SI centered model as a unifying solution for interdis-
ciplinary education is proposed. SI is defined as an integrated and based on
human-computer interaction activity of conducting (designing, developing
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and implementing) a set of simulations. Such simulation making activities
are based on a set of conceptual models and are focused on conducting com-
puter simulations for the topic of study. At the same time, this model is
closely integrated with such cognitive processes as developing of the learner’s
understanding via simulative mental reasoning. Simulation as an artifact,
allows using a set of well-developed Design Science Research (DSR) an-
alytic techniques for its design and evaluation. Design Science Research
and model-based simulation making skills could provide the required basis
for SI centered pedagogy and become the universal solution for university
interdisciplinary education. This practical and at the same time well theo-
retically grounded approach could satisfy both the industry and academia
seeking for innovations and appropriate educational solutions. Therefore,
the practical implementation of this model is a challenging task for the uni-
versity and supporting educational systems. There is a need to rethink and
redesign the present approaches to teaching and learning. However, this
will provide a benefit and an advantage in the educational, research and
global innovations markets.

1.2 Motivation

Diverse and interdisciplinary research is now a priority for high-
ranked educational institutions. For example, the University of
Turku (www.utu.fi/en/) stresses the importance of the interdisciplinary
view on university education (https://www.utu.fi/en/university/
strategy-and-values/effective-research/Pages/home.aspx); the im-
portant research question: is it possible to force interdisciplinarity without
serious improvements of the classical approach to and style of university ed-
ucation? There are several practical reasons for a need of a new paradigm
for university education, which enables teaching interdisciplinarity and its
applications: Developing of interdisciplinarity enabling a unifying approach
to university Science, Technology, Engineering and Mathematics (STEM)
education; Focusing on and enabling of the learner-centered strategies in
university education. At the same time, the next research questions are
important: What is a unifying paradigm for interdisciplinary university
education? What is the learner-centered methodology for SC education?
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1.3 Problem statement

Scientific computing (after revision of the curriculum) could become a uni-
fying discipline for the whole university (engineering, STEM) educational
system. The possible methodology could be based on such well-known or
well-developed approaches like SI, model-based simulations, DSR. Scien-
tific Inquiry (in a broader sense) should be taught: how to design scientific
model-based simulations (artifacts, which could be designed and evaluated
using DSR methodology) to solve specific scientific problems. The unifying
teaching paradigm for interdisciplinary university education could be for-
mulated: SI (research) should be taught by means of making model-based
computer simulations in various fields by implementing DSR methodology
(as a teaching method for designing models and simulations) and using
seamless approach for theoretical prerequisites. The meaning of SI is uni-
versal for all disciplines. At the same time, a general definition (a broader
sense) could be provided: SI is an activity of conducting (making and using)
scientific model-based simulations. The next important question to answer
is – why models? The following argumentation could be provided:
(1) Theories of model-centered instruction and model-based education are

well developed [1];
(2) Model as an artifact allows practical methods and analytic techniques

of DSR and model-based system analysis to be used in research and
education;

(3) There is a strong connection between cognitive activities (mental mod-
els) of students and activities of making (developing, programming and
even using predeveloped) computer models [2];

(4) Model serves as a basis for model-based simulations.
Model-based simulations could be positioned as a basic tool within the
provided methodology. There are several reasons for such an approach:
(1) There is a connection between mental simulations and computer simu-

lations activities [3];
(2) In any case, simulations (of one or another type) are involved in the

activity of any model development;
(3) Simulations is a kind of generalization of models;
(4) Simulations intersect with serious games and enable the constructionist

environment and learner-centered education.
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The research questions are formulated as follows:
(1) What is the generalized methodological framework for design and im-

plementation of the relevant teaching and learning methods for SCE,
which covers such major parts of the educational system like educa-
tional technology, instructional design, didactic tools?

(2) Focusing on general aspects of educational technology, what is the
methodology for design of the university curriculum in general and
STEM university curriculum in particular, focusing on interdisciplinary
and research-based education? How could SC the discipline be inte-
grated into the curriculum?

(3) Focusing on aspects of instructional design, how the teaching and learn-
ing process for SCE should be designed enabling SI and constructionist
based education?

(4) Focusing on didactic aspects, how should the Learning Resources (LR)
for SCE be designed?

(5) What are the appropriate computational models which are based on
modelling of stochastic recurrences, which enable the relevant imple-
mentation of the LR in the form of Software Learning Objects (SLOs)
for teaching introductory stochastics, basic probability distributions,
limit theorems, queuing systems, hardware and software specific paral-
lelization methodologies?

(6) How could educational tools which enable simulation-making and SI
centered approach to a teaching and learning process, and promote
practical knowledge of the relevant parallelization techniques, includ-
ing hybrid computational platforms and big-data-related topics be de-
signed? What are practical examples of implementations?

1.4 Research goal, objectives and tasks

(G) The goal of the research is to develop Design Principles (DP) for the de-
sign of the learning resources, including a set of Software Learning Ob-
jects for the effective teaching of Scientific Inquiry based Scientific Com-
puting educational solutions. Achieving this goal, Scientific Computing
Education and the relevant Scientific Computing teaching methods are
positioned to be focused on teaching SI within a Science, Technol-
ogy, Engineering and Mathematics interdisciplinary curriculum. The
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Learning Resources (Software Learning Objects) are developed on the
subjects of Introductory Stochastics and Parallelization. Making sci-
entific model-based simulations is the key to model-centered and con-
structionist approaches to learning. This methodology should serve as
a universal platform for designing of teaching methods aiming to en-
hance university interdisciplinary curricula by simulation-centred and
problem-solving research-based educational activities.

(O) In achieving this goal, the research will address these objectives:
(1) To develop the supporting methodology for practical application

and integration of the relevant learning resources;
(2) To develop the theoretical model for parallelization of Monte Carlo

experiments for stochastic recurrences. Such theoretical model
provides foundations for the development of appropriate compu-
tational models;

(3) To develop the relevant algorithms and software solutions for exper-
imental validation of the law of the iterated logarithm for queues in
series, which are based on the previously developed computational
models for parallelization of stochastic recurrence.

For the research objectives:
(1) The supportive methodology should include a set of heuristics and

feature models for teaching SI based Scientific Computing edu-
cational solutions. The process of the methodology development
should be based on the Technological Pedagogical and Content
Knowledge (TPACK) model including analysis the educational con-
text, technological, content and pedagogical domains of the Scien-
tific Computing Education domain and should be developed using
a generalized Meta Analysis of Domain Features method, enabling
to identify critical domain features, which are relevant to the goal
of the research;

(2) Theoretical model for parallelization provides foundations for the
development of appropriate computational models. Based on this,
to develop the set of computational models for explicit paralleliza-
tion of Monte Carlo experiment for stochastic recurrences. Such
computational models provide foundations for computational ex-
periments to be implemented during the experimental phase of the
research;
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(3) The developed algorithms and software should provide a set of
technological solutions for designing learning resources and for the
implementation of sample learning resources.

(T) Tasks of the research are to provide sample educational solutions of
implementation of the developed Design Principles and the supportive
methodology in the form of a set of practical learning resources includ-
ing Software Learning Objects within the scope of Scientific Computing
Education. The aim of these sample Learning Resources is to present
the practical examples of the Software Learning Objects for teaching
SI based Scientific Computing:
(1) teaching basics of stochastics;
(2) teaching parallelization.

1.5 Research methods

1.5.1 Introduction

Design Science Research is used as the thesis research methodology for
design and implementation of LR.
• The problems to be solved

(A) There is a need to specify Scientific Computing (SC) courses:
(1) SC courses are too technical;
(2) are mainly oriented in to mathematical and algorithmic founda-

tions;
(3) require many prerequisites;
(4) hard to motivate students.

(B) to specify SC educational technology:
(1) there is no vision of suitable educational technology (including the

lack of solutions of how to develop the content and teach SC);
(2) there is no vision on how to integrate SC to a broader curriculum.
• Motivation
It is based on various opinions and literature review (presented in Sec-
tion 3.3). The origin of problems with the present approaches to Sci-
entific Computing Education (SCE):
(A) improper didactic approaches and teaching techniques to SCE;
(B) the lack of modern and focused on inter-disciplinary and research-

based education approaches to SCE.
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• Tentative solutions
(1) SCE should be based on teaching SI;
(2) SI is understood (in a broader sense) as a research activity based

on scientific simulations (including and computer simulations);
(3) scientific simulations are based on computer models (artifacts);
(4) SCE is based on teaching of how to develop scientific simulations;
(5) simulation-based education is based on simulation-based cognitive

reasoning processes;
(6) learner-centered educational technologies like co-mediated learning

should be used;
(7) focus on DSR as a teaching technique.
• Artifact
The aim of this study is to provide solutions (DP) of how to design and
unify proper LR, Knowledge Objects (KO), and Learning Objects (LO)
for simulation-based SCE. The general requirements for the methodol-
ogy are:
(1) should provide a solution for SI and simulation-based SCE (as it

was previously described);
(2) should be suitable for use within a learner-centered educational

environment (support co-mediated learning technology, support the
constructionist approach to learning).

• Evaluation
It is based on formal DSR evaluation requirements including author
related publications [4–8] in peer-review journals which are cited in
Clarivate Analytics database and positive reviews related to these pub-
lications.

1.5.2 Implemented research methodology

The research by itself is based on well-known and well-described methodol-
ogy – DSR [9–21]. Although the primary application of DSR is Information
System (IS) design, the methodology has migrated into various fields like ed-
ucation technology and business management. The common feature of the
described application is these are socio-technical domains. Not only techni-
cal aspects of the system but also social aspect and interactions should be
considered. The relevance of the proposed methodology for the Computer
Science (CS) educational domain is based on the next propositions. The
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domain:
(P1) Has a type of a socio-technical system;
(P2) Includes as participants (teachers, students, educational authorities,

community, other stakeholders) as well as educational technology, in-
structional design methods, educational tools;

(P3) Educational tools are (mainly) artifacts including cognitive artifacts in
the form of software-based LO (software as a learning object, educa-
tional software);

The research methodology specifies the general approach to the research
procedures, as specific methods are defined by the topic and the scope of
the research. DSR is also known as methodology for doctoral research for
IS and related topics [16, 18].

1.5.3 Design Science Research methodological formalization

Design Science Research methodological formalization are based on a num-
ber of heuristics [10], which are presented below. This set of heuristics is
incorporated into the design framework (see Figure 1, reprinted from [9,
p. 2]). This approach provides a systematic methodology for conducting of
a research.
1. What is the research question (design requirements)?
2. What is the artifact? How is the artifact represented?
3. What will design processes (search heuristics) be used to build the

artifact?
4. How are the artifact and the design processes grounded in the knowl-

edge base?
4a. What, if any, theories support the artifact design and the design pro-

cess?
5. What evaluations are performed during the internal design cycles?

What design improvements are identified during each design cycle?
6. How is the artifact introduced into the application environment and

how is it tested? What metrics are used to demonstrate artifact utility
and improvement over previous artifacts?

7. What new knowledge is added to the knowledge base and in what
form (e.g., peer-reviewed literature, meta-artifacts, new theory, and
new method)?

8. Has the research question been satisfactorily addressed?

9



The inplemented research scheme and correspondence to DSR method-
ological formalization is presented in Fig. 2.

Conclusions: DSR as a methodology provides all the necessary formal-
ization for the implementation of the research task – DP for development
of LO for SCE. The presented design cycle provides the relevant formaliza-
tion for utilization of inductive-abductive-deductive reasoning approach for
conducting the research.

Environment Design Science Research Knowledge Base

Build Design
Artifacts &
Processes

Evaluate

Relevance Cycle
- Requirements
- Field Testing

Rigor Cycle
- Grounding
- Additions to KB

Design 
Cycle

5

1
2 3

46

7

8

Foundations
- Scientific Theories
 & Methods

- Experience &
Expertise

- Meta-Artifacts (Design 
Products & Design
Processes)

Application Domain
- People
- Organizational Systems
- Technical Systems

 

- Problems &
Opportunities

1  What is the research question (design requirements)? 
2  What is the artifact? How is the artifact represented?
3  What will design processes (search heuristics) be used to build the artifact?
4  How are the artifact and the design processes grounded in the knowledge base?
    What, if any, theories support the artifact design and the design process?
5  What evaluations are performed during the internal design cycles?
    What design improvements are identified during each design cycle?
6  How is the artifact introduced into the application environment and how is it tested?
    What metrics are used to demonstrate artifact utility and improvement over previous artifacts?
7  What new knowledge is added to the knowledge base and in what form
   (e.g., peer-reviewed literature, meta-artifacts, new theory, and new method)?   
8 Has the research question been satisfactorily addressed?
 

Figure 1: Design Science Research design cycle. Adapted from [9, p. 2]

1.5.4 Methodological requirements and implementation

The summary of characteristics, DSR formal requirements and the relevant
implementation are presented in Table 2.
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Figure 2: Generalized scheme of the research and correspondence to DSR formal-
ization
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Table 2: Formal requirements and implementations in the research

Characteris-
tics

DSR Requirements Implementation

Objectives Develop artifacts that
enable satisfactory
solutions to practical
problems

Develop Design Principles and the Sup-
portive Application and Integration
Methodology (DPSAIM) for design of
LR for SCE

Main activities Define the problem;
Suggest; Develop;
Evaluate; Conclude

Problems in SCE:
• There is no documented LR DP-
SAIM for SCE

Suggestion (research task):
• To develop LR DPSAIM for SCE
based on constructionist paradigm
• To develop practical examples of
LR for SCE using the provided
methodology

Evaluation:
• Ex-ante evaluation: comprehen-
sive literature review, logical rea-
soning, assertion
• Ex-post evaluation: demonstra-
tions with prototypes, case studies

Conclusions:
• The LR DPSAIM for SCE is
developed. The developed DP-
SAIM implements the construc-
tionist paradigm
• Ex-ante and ex-post evaluations
are fulfilled
• Example of LR and case studies
are presented

Results Artifacts (constructs,
models, methods,
DP, instantiations)
and improvement of
theories

Constructionist LR DPSAIM for SCE;
Samples of LR for SCE and case studies.

Type of knowl-
edge

Prescriptive How to design LR enhancing inter-
disciplinarily and seamless approach to
SCE
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Table 2: Formal requirements and implementations in the research

Researcher’s
role

Builder and/or evalua-
tor of the artifact

The scope of the research: analysis
of the current state in the field of
SCE; logical analysis, theoretical asser-
tions, and confirmations of psychologi-
cal, technological and instructional rele-
vance and theoretical basics for the im-
plemented LR DPSAIM; developing of
the methodology; developing of sample
LR; demonstrations via case studies

Empirical ba-
sis, Implemen-
tation

Not mandatory Not implemented

Evaluation of
results

Applications; Simula-
tions; Experiments

Is based on ex-ante and ex-post evalu-
ations methodology implementing DSR
requirements

Approach Qualitative and/or
quantitative

Qualitative approach is used, including
theoretical analysis and literature re-
view

Specificity Generalizable to a cer-
tain class of problems

Is generalizable for problems of devel-
oping of interdisciplinary curricula for
inquiry-based university education

1.6 Summary of results and implementation

1.6.1 Application domain, research question

The application domain hierarchy consists of a set of sub related domains
within the general domain of university educational system:
• University educational system;
• E-learning;
• STEM university curriculum;
• Interdisciplinary university curriculum;
• Scientific computing education (discipline);
• Simulation and modelling with computers.

The research question (design requirements) is DPSAIM for SLOs design,
which support the relevant contructionistic methodology for SCE. The DP-
SAIM should provide possibility of the constructionist approach to inter-
disciplinary university education in general, and in particular, provide for-
malization for SCE:
• from the perspectives of educational technology;
• from the perspectives of instructional design;
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• from the perspectives of Educational Content (EC) design: provide a
methodology for design of LR for SCE.

1.6.2 Description of the research results

Formalization for the developed DPSAIM is provided. This formalization
include implementation guidelines, recommendations, designing criteria, a
set of heuristics, case studies and practical examples for SCE related do-
mains:
• Educational technology domain;
• Instructional design techniques;
• Development of Learning Resources (LR) and Knowledge Objects
(KO);
• Implementation of LOs for SCE.
From the perspectives of educational technology: the innovative method-

ology of designing of interdisciplinary STEM curriculum is proposed. The
methodology is based on the proposition of the central place of SC within
university STEM curricula. This provides the basis for the design of inter-
disciplinary and innovations oriented learning environment.

From the perspectives of instructional design:
(1) the revised definition of SCE is developed. The developed definition

provide a basis for implementation of innovative instructional design
techniques;

(2) a methodology for structuring of the EC is provided;
(3) an instructional approach and innovative epistemic educational tool

based on deductive and circumscriptive reasoning techniques are im-
plemented.

From the perspectives of the content design:
(1) the Design Principles (DP) of EC design are provided; the DP are based

on the presented approaches and requirements enabling development of
the learning content providing constructionist educational environment
and co-mediated learning technology;

(2) practical examples of LR including software learning objects are de-
signed.
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1.6.3 Grounding with the knowledge base

The proposed educational solutions are grounded in a systematic literature
review. Table 3 provides a summary of topics, which were systematically
observed for grounding purposes.

Table 3: Grounding with a literature review

Section Observed topics Number of
literature
sources

Motivation and devel-
opment for interdisci-
plinary university cur-
riculum (STEM, Sci-
entific Computing)

Interdisciplinary innovations; Inter-
disciplinary research; Interdisciplinary
education; Creating interdisciplinary
environment

20

Scientific computing Meaning and definitions; Existing ap-
proaches to SC education 29

Educational technolo-
gies

Constructivism and Construction-
ist approaches to learning; Con-
structivism and Constructionist
approaches to Computer Science
Education (CSE); Educational tech-
nologies for university education in
general

22

Instructional ap-
proaches

Model-based approaches in education;
Model-centered co-instruction and
co-mediated constructionism; Model-
based education; Simulations-centered
approach; Scientific models and
model-based scientific simulations;
Simulation – the revised definition;
Simulative Scientific reasoning

79

Formalization Learning objects for SC and CSE;
Classification of learning objects;
Learning objects for CSE; Software
program as a learning object; E-
learning and the concept of Smart
Learning Objects.

38

1.6.4 Grounding with the supporting theories

Systematic grounding with supporting theories is provided in Table 4.
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Table 4: Grounding with supporting theories

Name of theory Contributors Literature
Pragmatism C. Peirce [17, 22]
Constuctivism J. Piaget [23]
Constructionism S. Papert [24, 25]
Model-centered instruction A. S. Gibbons [26]
Simulative reasoning theory P. Johnson-Laird [27]
Model based scientific reason-
ing theory

N. J. Nersessian, L. Magnani,
P. Thagard

[28–32]

Theory of Smart Learning Ob-
jects

V.Štuikys [33, 34]

Theory of Design Science Re-
search

H.Simon, A.Hevner,
V.Vaishnavi, W.Kuechler

[10, 9, 11, 35]

1.6.5 Evaluations

Evaluation of the research results is based on formal requirements to evalu-
ation procedures under DSR methodology formal requirements [16, 36, 37].
The practical evaluation consists of two major parts: ex-ante evaluation and
ex-post evaluation. Ex-ante evaluation is based on a systematic literature
review, logical reasoning, and assertion evaluation patterns; ex-post evalu-
ation are based on demonstrations and case studies (see Figure 3, adapted
from [37, p. 14]).

Figure 3: Evaluation of the research results. Adapted from [37, p. 14]
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1.6.6 Example of the implementations

Examples of implementation the developed methodology in the form of
Software Learning Objects are presented in Section 6.3.

1.7 Scientific contribution of the research

The research provides the Design Principles and the Supportive Application
and Integration Methodology (DPSAIM) for application and integration of
the educational resources in the form of software learning objects for teach-
ing SC in general and teaching introductory stochastics and parallelization
in particular.
(1) The educational solutions for teaching scientific inquiry based scientific

computing education using Design Science Research analytical tech-
niques are introduced. The presented educational solutions allow de-
veloping learner-oriented Educational Content (EC), which focuses on
the constructionist approach to learning, thus improving the efficiency
of educational process enhancing students’ scientific inquiry, profes-
sional knowledge, and skills. Design Science Research provides a rele-
vant set of analytical techniques that enable the creation of a unifying
approach to such strongly interdisciplinary in its nature field like sci-
entific computing education. Such unifying approach, in the form of
the developed Design Principles and the Supportive Application and
Integration Methodology, provides a base for modernization of existing
and creation of innovative university educational programs, enhancing
diversity and interdisciplinarity in research and modern university ed-
ucation. The presented educational solutions are aimed at university
STEM education that is focused on enhancing interdisciplinary and
innovations in the modern university curricula.

(2) The developed educational solutions use a scientific inquiry centered ap-
proach and provide a set of practical educational techniques and unify-
ing teaching methods. Relying on Peirce pragmatism and principles of
embodied cognition this study suggests a bridge from the cognitive the-
oretical constructions to practical educational techniques and methods,
which are pragmatically useful and applicable for educational practi-
tioners. The presented approach is based on such well theoretically
grounded and practically effective solutions as the Design Science Re-
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search methodology, a model-centered approach to instructional design,
model-based teaching methods, problem-solving and constructionist di-
dactic approaches. For the purpose of this study, scientific inquiry
centered approach is understood as an educational process of design-
ing (developing, testing, evaluating, and improving) model-based scien-
tific computer simulations. Computer simulations, underlying software,
computational and conceptual models as cognitive artifacts allow the
Design Science Research methodology to be implemented in the form
of a practical teaching tool. Accordingly, an appropriate educational
environment that is based on pre-designed multifaceted models and a
seamless approach to theoretical prerequisites is introduced.

(3) Several practical examples of the implementation of the developed ed-
ucational solutions are provided – the Design Principles for designing
Learning Resources for scientific computing education and the sup-
portive application and integration methodology – in the form of a
set of practical Learning Resources. The first one covers the topic of
introductory statistics – Teaching introductory stochastics and queue-
ing models with Python. The second one covers queueing in series
systems and probability topics and could be positioned within the sci-
entific computing or programming curricula – Teaching parallelization
methods with C.

1.8 Scientific novelty

(1) Educational solutions – the Design Principles for the development of
Learning Resources for teaching scientific inquiry based scientific com-
puting education including the Supportive Application and Integration
Methodology – are developed. A comprehensive analysis of the scien-
tific computing educational domain from perspectives of constructionist
approaches to education within STEM university curricula is provided;

(2) Model-centered instructional design methods for teaching scientific in-
quiry and scientific computing are introduced;

(3) A didactic model of introductory stochastics and parallelization using
stochastic recurrence models is introduced.
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1.9 Engineering novelty

(1) An innovative computational model for explicit parallelization of
stochastic recurrences is developed;

(2) An innovative computational model for experimental confirmation of
the limit theorem for the system of queues in series under heavy-traffic
conditions is developed;

(3) An innovative model-centred framework for designing of learning re-
sources for scientific computing education is developed;

(4) An innovative set of learning resources in the form of Software Learning
Objects for teaching introductory stochastics is developed;

(5) An innovative set of Learning Resources in the form of Software Learn-
ing Objects for teaching parallelization is developed.

1.10 Practical significance of the achieved results

(1) The presented scientific results allow developing an innovative curricu-
lum for SCE. Such a curriculum enhance interdisciplinarity and is fo-
cused on research-based and constructivists educational methods. The
research provides a universal framework of the integral view at SCE
with STEM university curricula covering educational technology, in-
structional design, and didactics of SCE.

(2) The presented engineering results allow the development of practically
applicable learning resources for SCE in the form of SLOs under the
constructionist paradigm.

1.11 Defending claims

(1) The developed Design Principles for design of educational resources
allow design and development of the Learning Resources for teach-
ing scientific inquiry based scientific computing education including
the relevant Software Learning Objects which corresponds to design
requirements – model-centred education methods and the construc-
tionist education paradigm. The developed supportive methodology is
appropriate for the application and integration of the relevant learning
resources within interdisciplinary university curricula.

(2) Developed parallelization algorithms for Monte Carlo experiments for
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stochastic recurrence models are relevant for designing learning re-
sources in the form of Software Learning Objects for teaching scientific
inquiry based introductory stochastics and parallelization.

The generalized view on the contribution of the thesis author is presented
in Figure 4.

1.12 Approbation and publications

The results of the dissertation were presented and discussed at the following
national and international conferences:
• 4th Doctoral Consorcium on Informatics Engineering Education Re-
search, Druskininkai, Lithuania, 2013.12.03–07.
• 10th International Seminar on Informatics Contests, Druskininkai,
Lithuania, 2014.06.03–06.
• 5th Doctoral Consorcium on Informatics Engineering Education Re-
search, Druskininkai, Lithuania, 2014.11.26–30.
• ITiCSE 2014 19th Annual Conference on Innovation and Technology
in Computer Science Education, June 23–25, 2014, Uppsala, Sweden.
• 8th International conference on E-learning, The University of La La-
guna,Tenerife, Spain, 2014.09.06–14.
• 6th Doctoral Consorcium on Informatics Engineering Education Re-
search, Druskininkai, Lithuania, 2015.12.08–12.
• ISSEP 2017, The 10th International Conference on Informatics in
Schools, November 13–15, 2017, University of Helsinki, Helsinki, Fin-
land.

The main results of the dissertation were published in the following pa-
pers:
• Dolgopolovas V, Dagienė V, Minkevičius S, Sakalauskas L. (2015)
Teaching Scientific computing: a model-centered approach to pipeline
and parallel programming with C. Scientific programming, 2015 Jan
1;2015:11.
• Dolgopolovas V, Dagienė V, Minkevičius S, Sakalauskas L. (2014).
Python for Scientific computing Education: Modeling of Queueing Sys-
tems. Scientific Programming, 2014 Jan 1;22(1):37–51.
• Minkevičius S, Dolgopolovas V, Sakalauskas L (2014) A law of the iter-
ated logarithm for the sojourn time process in queues in series Method-
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ology and Computing in Applied Probability, 2016 Mar 1;18(1):37–57.
• Dolgopolovas V, Jevsikova T, Dagienė V, Savulionienė L. Exploration
of Computational Thinking of Software Engineering Novice Students
Based on Solving Computer Science Tasks. International Journal of
Engineering Education, 2016 Jan 1;32(3):1–10.
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learn programming: A case study. Computer Applications in Engi-
neering Education, 2018 Jan 1;26(1):75–90.

1.13 Outline

The dissertation consists of several major parts. The Research Context
section (Section 1) presents introductory topics including an overview of the
research methods, research findings, and results. The research methodology
is covered in detail including formal requirements and implementation in the
research.

Problematics of the implementation section (Section 2) describes the
main topics covered in the research focusing on the requirements of the
TPACK model. This section specifies the main parts of the model including
technological, content, and pedagogical domains.

Section 3 describes the context topic of the TPACK model in detail. This
section covers SC, SCE and related topics from the point of educational
technologies, teaching methods, requirements for SLOs and didactic for-
malization combined with a systematic literature review. This part covers
such important topics as motivation for the research; discussion on the SCE
scope and definitions; discussion on educational technologies; approaches to
instructional design; formalization techniques for design of SLOs; discussion
on didactic approaches to SCE.

Section 4 provides detailed meta analysis of domain features of the SCE
domain. The focus is on the Pedagogical Content (PC), Educational Con-
tent (EC), and Technological Content (TC) knowledge domains. The sec-
tion provides a brief description of practical implementation, which is based
on the provided analysis.

Section 5 covers theoretical aspects of the construction of SLOs for teach-
ing parallelization based on stochastic recurrence models. The advantage
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of such an approach is that stochastic models allow the implementation of
the process of multidimensional modeling during the construction of com-
putational models and algorithms. At the same time, recurrences allow the
implementation of additional dimensions for computational models under
design. Two types of models are considered:
(I) implicit models, generally implemented by categorial data types within

the functional programming paradigm. For such models parallelization
is considered to be an automatic process, based on software sceletons.
In the research such models are not studied in detail, and this study is
positioned as a topic for future research;

(E) explicit models, based on explicit parallelization techniques. These
models are studied in detail.

Section 6 covers the experimental part of the research. First, it studies
and develops a big data computational model and algorithmic solution for
experimental research of the limit behaviour of queues in series. Then the
detailed results of the computational experiment are provided. Later, it
describes two case studies of the implementation of LR for SCE and teaching
parallelization, which are based on the developed computational model of
queues in series. The first case study focuses on the topics of design and
implementation of SLOs in an introductory SC course. The next one covers
the topics of design and implementation of SLOs for teaching parallelization.
Practical examples of SLOs are presented in the Appendices section.

Section 7 provides the author and expert evaluations and includes: spec-
ification of the developed sample educational resources, outline of the eval-
uation methodology, the author evaluations of the research results, outline
of the expert evaluation.

Please note that figures, tables, formulas, theorems, algorithms, listings,
statements, proofs without citations are made, formulated, proved by the
author of the dissertation.
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2 Problematics of the implementation of the
TPACK model in the scientific computing
educational domain

2.1 TPACK framework for scientific computing edu-
cation

2.1.1 Introduction

The TPACK model for the systematization of the research content is imple-
mented. The aim of this is to provide the description and specification of
the content specific aspects, specifying definite feature, enabling the process
of design of SLOs for SCE. The next remark should be made: a specific view
on teaching with technology is implemented. In the context of this research,
teaching with technology actually transforms into teaching technology, and
the technological domain is presented in the content of teaching. Both
technological and content knowledge domains are intersected forming an
educational environment based on the common features of both domains.

The modeling methodology is based on the TPACK framework, based
on which the generalized research content can be specified as:
(i) teaching theories for pedagogical knowledge;
(ii) educational environments for technological knowledge;
(iii) SC curriculum for content knowledge.

The TPACK model itself is presented in Figure 5 (reprinted from [38,
p. 9]). One of the most important parts of the model, as well as one of the
most important tasks to specify during the process of design of SLOs, is the
proper understanding and specification of the features of the context. From
the point of view of the pragmatist researcher (here the word “pragmatists”
is understood as the description of a research paradigm [39, 22, 40–42], there
exist some subsets of context features (sub-contexts), which are practically
important during the design process of SLOs. Such sub-contexts include:
(1) interdisciplinarity university education in general and aspects of inter-

disciplinary university education from the point of view on interdisci-
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Figure 5: TPACK model. Reprinted from [38, p. 9]

plinary innovations and research;
(2) aspects of SC education, including descriptions of the existing ap-

proaches to SC education in general;
(3) general aspects of educational technologies focusing on the construc-

tionist approach including CS educational aspects;
(4) model-based approaches in education. These features provide the con-

text for formulating DP of proper design of SLOs and proper didactic
solutions;

(5) simulations in education. It is important to consider simulations not
only as a technological or didactic tool but as an integral part of a learn-
ing/teaching context, including such cognitive processes as simulative
reasoning and grounding;

(6) common features and intersection between CS and SC educational do-
mains;

(7) aspects of SI and its place in STEM and engineering education;
(8) didactic aspects of using SLOs in SC education, including possible for-

malization using the DSR methodology.

2.1.2 Technological domain

The proper specification of a technological domain is one of the most impor-
tant parts of the specification process. The main aspects of the technological
domain for SCE are:
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(1) hardware architectures in general;
(2) SC and parallelization specific aspects of hardware architectures in par-

ticular;
(3) software engineering technologies in general; this is important from the

point of view of the possible implementation of software development
methods in the design process of creating of SLOs;

(4) model-based methods of software development; this technology could
be promoted as a basic technology for design and implementation of
SLOs.

Parallel computations are based on the next hardware architectures [43,
44]: Single Instruction, Single Data (SISD), Single Instruction, Multiple
Data (SIMD), and Multiple Instructions, Multiple Data (MIMD). Multiple
Instructions, Multiple Data machines are commonly divided into Shared-
memory and Distributed-memory architectures. Implementing calculations,
High Performance Computing Cluster (HPCC) could be considered as a
target platform. Such a platform allows us to study different parallelization
techniques and implement shared memory, distributed memory, and hybrid
memory solutions. The technological domain from the point of view on
hardware features is studied in Subsection 5.1.2. Software developments
(programming) methods include explicit parallelization tools for distributed
memory – Message Passing Interface (MPI) and shared memory – Open
Multi-Processing (OpenMP) implementations.

2.1.3 Content domain

In the general form, the content is based on the model of the stochastic
recurrence. For example, the model is widely used in the queueing theory
[45]. The most general model is the multi-variable, non-linear stochastic re-
currence model. The solution for such a model will depend on the concrete
form of non-linearity. For us it is the most interesting case is the model
with linear and parametric non-linear parts. Depending on the value of the
parameter, it could be possible to transform a non-linear part to its linear
representation. Stochastic features of the model enable using such relevant
modeling techniques as the Monte Carlo modeling method, which enables
designing of models for studying parallelization. The content domain, fo-
cusing on content domain features, is studied in Subsection 4.3.
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2.1.4 Pedagogical domain

The pedagogical domain is based on three major parts: educational technol-
ogy, instructional design, and didactic aspects of SC education. Educational
technology as related to SC education is focusing on the next questions:
(1) why is teaching SC important?
(2) could it be possible to use SCE as a part of a interdisciplinary curricu-

lum?
The next important topic is the relevance of the instructional design.

What are appropriate methods for SCE? Here the main focus could be made
on studying methods of computer simulation with applications in education.
How could computer simulations could be implemented and incorporated
improving interdisciplinary and innovations focused educational methods?

Didactics aspects include the next questions: if there is a focus on SI and
simulations, which didactic approaches are suitable for teaching SC and at
the same time enabling an interdisciplinary approach to curricula design?
The pedagogical domain is studied in Subsection 4.2.

2.2 Conclusions

The TPACK model provides a relevant framework for systematizing re-
search context in the form of a definite structure. This could serve as a
meta-structure for research context focusing on the three major areas: ed-
ucational technology, instructional design and didactic aspects of teaching
SC. As the result, the main directions for the research could be specified.
(E) Specifying an EC domain, the main focus should be on the next fea-

tures:
(E1) educational technology could be studied from the point of view on

interdisciplinary university education as on the unifying paradigm
within university curricula;

(E2) instructional design could be focused on teaching/learning process
which enables students’ activities of designing simulations; the pro-
cess of designing simulations could be positioned within the educa-
tional framework, which enables the relevant process of the SI;

(E3) didactic approach could be focused on appropriate formalization
which enable a suitable arrangement of the previously described
teaching/learning process; the main focus could be on the cogni-
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tive aspects of the educational process, including such important
features as scaffolding and grounding.

(T) Specifying TC domain, the main focus could be done on:
(T1) appropriate and parallelization enabling hardware architectures;
(T2) relevant software engineering methods, enabling model-centered

approaches for software development;
(T3) relevant parallelization enabling software develop-

ment/programming tools;
(T4) relevant big data processing/programming/presentation tools;

(C) Specifying the content domain, the main focus could be on teach-
ing/learning aspects of:

(C1) stochastic and theoretical aspects of introductory stochastics and
probability;

(C2) theoretical and computational aspects of introductory recurrences
and stochastic recurrences;

(C3) distributions, limit theorems, and stochastic processes in the basics
of probability theory;

(C4) Monte Carlo modeling methods and the relevant computational
aspects of Monte Carlo modeling;

(C5) basic queueing theory, main parameters, and characteristics of
queues, queues in series, queueing networks and computational as-
pects of queueing models.

3 Specification of the context for the scien-
tific computing TPACK model

3.1 Enhancing interdisciplinarity

3.1.1 Interdisciplinary innovations

There is a need for interdisciplinary innovations. New areas and applica-
tions could be uncovered by crossing the boundaries including academics,
business, government, society [46, p. 3]. Globalization and the knowledge
economy requires more and more innovations in various fields, therefore
interdisciplinary innovations could be by no means an advantage in the
competition-driven economy. Generally, the importance of innovations and
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high quality Research and Design (R&D) activities is undoubted [47]. Mul-
tidisciplinary and Interdisciplinary innovations are mentioned among key
factors for appropriate R&D policies for global innovations success. World
Intellectual Property Organization (WIPO) reports [47, p. 13]: “Calls for
proposals could, more often, be jointly issued by multiple countries, partic-
ularly when convening large-scale, multidisciplinary programs”. The world
leaders for global Innovations implement a strategy focusing on interdisci-
plinary innovations. For example, Singapore, one of the world global inno-
vations leaders (world rank 6 in 2016 [47]), fosters the cooperation between
leading universities and major industry players in R&D focusing on inter
- and transdisciplinary. “Singapore recognizes that the greatest impact of
innovation is often found at the convergence of different research fields and
professions” [48, p. 137]. Finkel and Bell report about the Australian chal-
lenge to overcome: “. . . the growing complexity of science and technology,
which requires greater international and inter-disciplinary cooperation” [49,
p. 141].

3.1.2 Interdisciplinary research

Obviously, to move on with interdisciplinary innovations, interdisciplinary
research needed to be implemented. The industry and academia are ex-
pecting increasing efforts for interdisciplinary research of all types. Lead-
ing universities announce the priority for interdisciplinary research in their
development strategy. Stanford University [50] reports about 18 interdis-
ciplinary “institutes span school boundaries, providing a physical and in-
tellectual intersection between disciplines where new ideas emerge and in-
novative research across the humanities and sciences can happen”. Cam-
bridge University focus on interdisciplinarity within the research strategy:
“Strategic Research Initiatives and Networks build on areas of existing re-
search strength by bringing together a critical mass of expertise from across
the Schools, with four key aims: to address large-scale multi-disciplinary
research challenges; to strengthen research collaborations and knowledge
transfer across disciplines” [51]. The University of Turku announces in the
strategy for 2016− 2020: “. . . Our strongest fields of research form the ba-
sis for innovative and interdisciplinary projects.. . .We allocate resources for
creating versatile research communities and interdisciplinary intersections”
[52]. Townsend et al. [53] report about a single case of a university in the
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United Kingdom describing the university attitude and supporting organi-
zational structure for interdisciplinary research. The above set of examples
shows a widespread interest of universities in interdisciplinary research that
is supported by practical managerial and organizational activities.

Another motivational factor is the high ranking of interdisciplinary pub-
lications (see Figure 6, reprinted from [54]). As an illustrative example, the
Keck Futures Initiative [55] awarded 9 interdisciplinary grants (2004−2015)
for overall 132 interdisciplinary research projects. What are the challenges?
First, interdisciplinary innovation is based on teamwork. Team members
bring a different background and different knowledge. Blackwell et al. re-
port: “Different disciplines often have different core values, and have grown
together as social groups precisely because of the shared values within each
discipline. In order for a new interdisciplinary team to become effective,
that team must develop shared values and culture” [46, p. 3].

Boundaries arise between various scientific approaches and disciplines
like mathematics, law, medicine, engineering, history, biology, and many
others [46, p. 15]. Interdisciplinary innovations and teamwork are closely
connected; therefore, the problem is to combine disciplinary knowledge of
the team members who came from different disciplines. The next remark
should be made. There are several well-known models for the general orga-
nizational structure of the research process [46, p. 37]:
• Multidisciplinarity: “Researchers in different disciplines work in par-
allel and exchange knowledge in order to work on a shared goal. Each
researcher’s objectives are still determined by their discipline and re-
sults are reintegrated into this separate disciplinary context”;
• Interdisciplinarity: “Researchers in different disciplines work to-
wards a common goal in such a way that they cross subject boundaries
and integrate knowledge from other disciplines. Disciplinary knowledge
is transformed through this process such that new and independent
theories and methods are created”;
• Transdisciplinarity: “Involves academic researchers from different
disciplines and non-academic participants who work together towards
a common goal. Like interdisciplinarity “integration” is a key word in
accounts of transdisciplinarity, but here it involves the breakdown of
epistemological barriers not only at the level of disciplines but also at
the level of institution.”
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Generally, in literature and among officials and scientists these approaches
are usually considered as synonyms of the similar research activities based
on more than one scientific fields, like in the case described by [53]. Dif-
ferent models require different approaches to teamwork, problem solving
and collaborations, and that could become a reason for possible difficulties,
which are model-dependent, and misunderstandings for the team members
with different backgrounds. In spite of this, for the purpose of this study,
the term “interdisciplinarity” is used as a general term describing all of the
previous models, unless the definite model is not indicated in the text.

Traditionally, “classical” approach to research, focused on a research in
a single area of knowledge, has been dominating for many years in the
academy. “. . . is clear, then, that a move towards interdisciplinary collab-
oration requires a sea-change both in how researchers think about the re-
lationships between individual disciplines and in how these relationships
are supported” [56, p. 16]. Research institutions should “. . . provide suit-
able training to promote interdisciplinary understanding. . . ” [57, p. 109].
Summarizing, two main obstacles are traditionally mentioned in literature:
(1) the problem of the inner-team communication;
(2) the lack of institutional support.
Various solutions are proposed. To overcome the problem of the inner-team
communication, a suitable and interdisciplinary oriented training should be
provided. The main tendency is to join several single disciplines into one
“inter discipline” using the already existing scientific input (see for example
[58]). Such “merging” approach could be effective, but this could introduce
another set of problems. At the time, there will be a need to merge this
newly merged discipline with another discipline and so on. It will not solve
the problem in general. There is a need for the unifying approach that
will enable a kind of a “seamless” and self-directed integration between re-
searchers and research teams. Generally, all university STEM education
should be transformed into teaching and learning of such interdisciplinary
communication principles, and the language for this interdisciplinary com-
munication, a kind of “interdisciplinary Esperanto” should be developed.

3.1.3 Interdisciplinary education

Is there any need for multidisciplinary, interdisciplinary education? What
are the benefits? What are the challenges? Smith [59] reports about the
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Figure 6: H-factor for US journals 2015. Reprinted from [54]

practice of curriculum redevelopment in the University of Southampton.
The traditional, single discipline-based curriculum is constrained by ac-
creditation requirements and generally, is focused on the content [59, p. 2]:
“This focus on the delivery of content may lead to a perceived need to ‘cover’
a specified set of outcomes within the curriculum. This can then become
a straitjacket that inhibits innovation. It may also lead to a preoccupa-
tion with modes of delivery and assessment, rather than on education in its
broader sense. In turn, this may lead to a compartmentalization of learning
and to emphasizing the need to ‘get through’ the necessary subject matter.
Students become trapped in subject silos and may become preoccupied with
outcomes, rather than being exposed to new and different ways of thinking”.
After some time and due to the increasing specialization of the “traditional”
teachers, the content of the curriculum become more and more specialized
as well. On the contrary, as was described earlier, the nature of the research
becomes more and more interdisciplinary. Therefore, the redevelopment of
the curriculum could serve as a possible solution [59]. Generally, many ef-
forts should be used to develop an interdisciplinary curriculum in practice.
But as a result, many advantages could be gained [60, p. 80]: “Interdisci-
plinary curricula are time-consuming and take collaborative teamwork to
create, which can seem like a hard and exhausting disadvantage, but in
the end, the interdisciplinary approached inhibits many favored skills that
are sought by future colleges and employers. Students and their teachers
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will advance in critical thinking, communication, creativity, pedagogy, and
essential academia with the use interdisciplinary techniques”. The criti-
cism, mostly concerned the lack of a deeper approach to foundations of
constituent disciplines, should be mentioned [61, p. 480]. This is partially
explainable by the fact that interdisciplinary teaching methods are focused
on constructivist approaches, as for example [61, p. 480], [62].

3.1.4 Creating interdisciplinary environment

The most popular approach to the creation of an interdisciplinary edu-
cational environment could be named as “managerial”. The general idea
is to “correct” the existing “imperfect” (from the interdisciplinary point
of view) educational environment through organizational mechanisms. As
an example, the comprehensive approach offered by Kidron and Kali [63]
could be mentioned. In order to promote interdisciplinary understanding,
the authors develop the following model [63, p. 3]: “Boundary Breaking
for Interdisciplinary Learning (BBIL) model, which harnesses technology
to address the limitations described above regarding compartmentalization,
traditional pedagogy, and organizational hierarchies”. The model refers to
the next perspectives: “From the curricula perspective, the model seeks to
address the compartmentalization challenge by technology enhanced fea-
tures, designed to promote interdisciplinary understanding and focusing on
a crosscutting theme to help learners integrate knowledge from several disci-
plinary lenses; From the pedagogical perspective, the model seeks to address
the traditional pedagogy challenge by adopting a learning community [64]
in which a technological infrastructure is used for promoting a learning cul-
ture that enables participants to synthesize different views, solve problems
and collaboratively advance knowledge using the wealth and diversity of
ideas that community members contribute; From the organizational per-
spective, the model seeks to address the organizational hierarchy challenge
by breaking the traditional boundaries between graduate and undergradu-
ate students, while using technology enhanced features that implement a
cognitive apprenticeship approach [65] to promote productive interactions”.
As it was mentioned earlier, in spite of presented profound study and com-
prehensive solutions, such “managerial” approach will not solve the problem
in general. There is a need for new pedagogy, which will provide grounds
for a self-regulated research environment. The outline for such pedagogical
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approach will be presented in the next sections.

3.2 Scientific computing

3.2.1 Introduction

The aim of this section is to provide existing definitions of the research and
educational areas called Scientific Computing (SC) and existing approaches
to Scientific Computing Education (SCE). Based on this, problems and
drawbacks will be discovered and revisions and new teaching methods will
be proposed in the next sections.

3.2.2 Meaning and definitions

We procced towards the definitions and meaning of SC and SCE. First, it
should be discovered what is around or what is the world of SC [66]:
(1) The first part of this world is application. This could be from all possi-

ble fields of science like biology, ecology, chemistry, physics, astronomy,
and engineerings like civil engineering, mechanical engineering, and
aerospace;

(2) The next part of this world is mathematical solutions from the field of
classical and applied mathematics. The technology for solving (1) prob-
lems is based on a definite type model, which is used for calculations
or simulations answering question in study;

(3) The other part is computations and CS;
(4) Finally, the important part is the computer itself. The diagram of the

SC is presented in Figure 7 (reprinted from [66, p. 3]).

Problem from 
 Science or
Engineering

Mathematics

Numerical
Analysis

Scientific
Computing

Computer
Science

Computer
System Solution

Figure 7: Scientific Computing and related areas. Reprinted from [66, p. 3]
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The next important topic that should be taken into account is the com-
mon technology of SC [66]. First of all, the key to this technology is a model.
Therefore, the process begins with the formulation of the model and contin-
ues with calculations, validations, and corrections of the model. A general
view on the technological process is presented in Figure 8 (reprinted from
[66, p. 6]).

Modification
of model

Formulation of Mathematical Model

Solution of Model

Unsatisfactory Validation

Ready to Predict

Satisfactory

Figure 8: Mathematical modeling and solution process. Reprinted from [66, p. 6]

The third important part is methods or processes within the presented
technology. This includes numerical solutions and related parameters like
rounding and discretization errors, an efficiency of programming solutions
and other topics like reliability, robustness, portability, and maintainability
of the code [66]. The fourth player in this team called SC is a set of tools
and equipment in the form of hardware and software as in the case of com-
puting. Hardware could vary from a laptop on the table of the researcher
to a high-performance computer cluster owned by a research institution or
business. Software topics deal with operating systems and languages, data
management problems, solutions for visualization and symbolic computa-
tions.

Summarizing all of the above the next working definition of SC [66] is
accepted: “SC is the collection of tools, techniques, and theories required
to solve on a computer mathematical models of problems in science and
engineering”.
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3.2.3 Alternative approaches

Some alternative or similar approaches should be mentioned as well. These
approaches arise due to greater emphasis on one or another part or the pro-
cess, which is mentioned in the provided definition of the SC. An approach
focusing on modeling of the specific types stresses the importance of sim-
ulations in the SI [67]. As there is no possibility by one or another reason
to make physical experiments in situations, which are in the field of inter-
est of scientists or engineers, simulations of the relevant computer model,
could help. It is important to stress that an advantage of simulations is
not only to provide the possibility of graphical representation of processes
of interest in the real-time format but also the possibility to construct a
virtual reality and to look beyond the horizons of the present possibilities.
Such a simulation-centric approach describes SC as “the heart of simulation
science” [67]. Figure 9 (reprinted from [67, p. 4]) presents the definition of
SC as the intersection of numerical mathematics, computer science, and
modeling.

Figure 9: Definition of SC as the intersection of numerical mathematics, CS and
modelling. Reprinted from [67, p. 4]

The overall problem solving process using simulations in SC includes
[68, p. xv]:

“(1) Development of a mathematical model – often expressed as some
type of equation – of a physical phenomenon or system of interest;

(2) Development of an algorithm to solve the equation numerically;
(3) Implementation of the algorithm in computer software;
(4) Numerical simulation of the physical phenomenon using the computer

36



software;
(5) Representation of the computed results in some comprehensible form

such as graphical visualization;
(6) Interpretation and validation of the computed results, which may

lead to correction or further renewal of the original mathematical model
and repetition of the cycle, if necessary.”

Focusing on numerical analysis, SC could be defined as a set of numer-
ical methods and solutions, which are used for numerical computations in
various fields of science. This is the historically traditional approach, and
numerical methods are very important for the field of SC. These numerical
methods include among others: solving systems of linear equations, eigen-
value problems, nonlinear equations, optimization, interpolation, numerical
integration and differentiation, partial differential equations, fast Fourier
transforms, random numbers, stochastic simulation, numerical approxima-
tions of linear and nonlinear differential equations, polynomial approxima-
tion, least squares approximations, numerical integration, finite element and
spectral method, Swartz method and others [66–69].

Focusing on computations and hardware, SC could be defined as a set
of tools and techniques which enables sufficient efficiency of computations
[69–71]. The relevant theoretical basis, numerical methods, and algorithms,
a computer model for calculations or imitations do not provide any guar-
antee of the final successful solution. The relevant computational resources
should be employed for calculations, which should use a definite amount
of the processor time. In the other case, even if the model is properly de-
signed and coded but the computational efficiency of the model is low, the
model should be redesigned or optimized, taking into account the relevant
hardware resources.

3.3 Existing approaches to scientific computing edu-
cation

3.3.1 Solving scientific problems

Scientific Computing plays an important role in science and engineering ed-
ucation. The leading world universities and organizations pay an increasing
attention to the curriculum and educational methods. One of the tasks in
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SC education is to provide a general understanding of solving scientific prob-
lems. For example, Allen et al. report on a new graduate course in SC that
was taught at Louisiana State University [72]: The course was designed
to provide students with a broad and practical introduction to SC which
would provide them with the basic skills and experience to very quickly
get involved in research projects involving modern cyberinfrastructure and
complex real-world scientific problems.

Michael Heath [68] writes, “. . . try to convey a general understanding of
the techniques available for solving problems in each major category, includ-
ing proper problem formulation and interpretation of results. . . ”. Michael
Heath offers a wide curriculum to be studied including a system of linear
equations, eigenvalue problems, nonlinear equation, optimization, interpo-
lation, numerical integration and differentiation, partial differential equa-
tions, fast Fourier transform, random numbers, and stochastic simulation.
All these topics require a large number of computations and could require
parallelization solutions to be solved.

3.3.2 Seamless approach to theoretical prerequisites

Studying SC is always a challenging task for a learner as well as for an
educator. Such a studying process deals with plenty of technical and mul-
tidisciplinary issues and requires a synchronization of the learner’s math-
ematical and CS competencies. One of the possible solutions, in order to
overcome these difficulties, is to develop a set of learning objects and the rel-
evant methodology. This should be based on the constructionist approach
to learning, should provide a relevant framework for an educator and ap-
propriate learning material for students. Such a framework should enable a
learner to conduct series of computational experiments with computer mod-
els. Using this approach, related mathematical and programming learning
material is provided on demand and in parallel to the main curriculum.
This is especially true for an introductory SC course as possible applica-
tion scope of this approach. For example, Karniadakis and Kirby II define
[67]: “. . . a seamless approach to numerical algorithms, modern program-
ming techniques, and parallel computing . . . Often times such concepts and
tools are taught serially across different courses and different textbooks,
and hence the interconnection between them is not immediately apparent.
The necessity of integrating concepts and tools usually comes after such
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courses are concluded, e.g. during a first job or a thesis project, thus forc-
ing the student to synthesize what is perceived to be three independent
subfields into one in order to produce a solution. Although this process is
undoubtedly valuable, it is time-consuming and in many cases, it may not
lead to an effective combination of concepts and tools. Moreover, from the
pedagogical point of view, the integrated seamless approach can stimulate
the student simultaneously through the eyes of multiple disciplines, thus
leading to enhanced understanding of subjects in scientific computing.”

3.3.3 Towards a learner-oriented and constructivist technology

It is obvious that, from the point of view on an educator, the presented
topic is broad and complex in its nature, and to develop a proper and effec-
tive educational technology is a difficult and challenging task. Historically,
SC started from applied mathematics, applied numerical computations and
moved to computational and finally imitational modeling involving more
and more topics to study including describing theories, scientific and en-
gineering applications. The heritage of this is a variety of approaches to
SC presented in the literature related to SC education. The main tendency
is to move from traditional and less effective teacher-centered pedagogical
approach like the one presented in [66, 73, 74] to more learner-oriented and
constructivist technology. At the same time, the didactical aspects of the
course are usually left as they traditionally were. This is especially true for
traditional educational literature like textbooks. At the same time, only a
small number of papers focused on SC education, has been already pub-
lished.

To solve obvious problems with students’ motivation, when students need
years of pre-studying, educators try to adopt the classical teacher-centered
educational methods and try to wrap these methods in a learner-centered
wrapper. These techniques include various modernizations for the course
syllabus including problem-based and other technologies. For example, a
rather theoretical course for random differential equations called “Dynamic
Systems and Scientific Computing – Introduction to the Theory and Simu-
lation of Random Differential Equations” is designed in a student-centered
manner as is presented in Figure 10 (adapted from [75, p. iii]):
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Figure 10: The outline of the student-centered course. Adapted from [75, p. iii]

3.3.4 Project-based approach

Historically, software packages like packages for symbolic computations such
as Matlab, Maple, Maxima or similar, made it possible to include additional
student-oriented features into a course for SC. Educators, who initially were
focused on numerical analysis, find it attractive to include Matlab-based
projects in their course [69, 76]. The general motivation for this is various
difficulties students have during learning. For example, Turner [76] reported
about too much time students spend mastering the details often missing the
point as to why there is a need for SC. Another advantage is to allow student
teamwork, as project-based education enables this feature. And the next
important feature is that such a computer-based project-oriented education
allow users to continue their activities improving the model they already
constructed in the previous steps [76]. Summarizing, the project-based
approach to SC education helps to improve the course adding the next
main features: computer models, possibility to develop earlier developed
models, teamwork possibilities, making the course more student-oriented,
and adding constructivist features.

Educators, who place emphasis on computations and hardware, are fac-
ing similar difficulties as colleagues based on numerical analyses approach to
SC . One remark should be made in this context. If the focus is on computa-
tions, the efficiency of algorithms and coding solutions is of primary impor-
tance. If such topics are within the focus, usually such courses are developed
under the names of “Scientific Programming” or “ High-performance com-
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puting”. The curriculum of a course for scientific programming is mainly
concentrated on algorithms efficiency, coding techniques and code efficiency,
programming languages, and parallelization, where different programming
techniques and parallelization are usually within the main focus [70, 77–84].
The problems with the efficiency arise during practical calculations within
a limited number of computational resources involved as it is usually in
practice. So even a well-developed model with correct algorithms could
fail to provide the result if the computational resource is limited in time of
performance. Therefore, two basic aspects are of considerable attention to
educators: parallelization and software engineering.

3.3.5 Importance of parallelization methods

Modern technologies widely involve parallel computing, and plenty of scien-
tific and industrial applications use parallel programming techniques. The
teaching of parallel computing is one of the most important and challeng-
ing topics in SC and programming education. Properly developed con-
structionist educational methodology, for example as one which is based on
a model-centered approach and uses the learning by comparison method,
could be considered as an effective solution for this course. Different par-
allelization techniques could be implemented for programming of a model.
Such an approach allows students to carry out a series of experiments with
different programming models, compare the results, and investigate the ef-
fectiveness of parallelization and different parallelization methods. Such
parallelization methods could include shared memory, distributed memory,
and hybrid parallelization, which are implemented by MPI and OpenMP
Application Programming Interfaces (APIs) [67, 85–88].

Karniadakis and Kirby II write [67]: “With the rapid and simultane-
ous advances in software and computer technology, especially commodity
computing, the so-called supercomputing, every scientist and engineer will
have on her desk an advanced simulation kit of tools consisting of a soft-
ware library and multi-processor computers that will make analysis, prod-
uct development, and design more optimal and cost-effective”. The authors
suggest the integration of teaching of MPI tools into the educational pro-
cess. A large number of MPI implementations are currently available, each
of which emphasizes different aspects of high-performance computing or is
intended to solve a specific research problem. Other implementations deal
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with a grid, distributed, or cluster computing, solving more general research
problems, but such applications are beyond the scope of this study. M. A.
Heroux et al. [89] describe SC as “. . . a broad discipline focused on using
computers as tools for scientific discovery”. The authors claim: “The impact
of parallel processing on SC varies greatly across disciplines, but it could
be strongly argued, that it plays a vital role in most problem domains and
has become essential in many”.

NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed
Computing (PDC), Core Topics for Undergraduates, contain comprehen-
sive research on the curriculum for parallel computing education [90]. The
authors suggest including the teaching of PDC: “In addition to enabling
undergraduates to understand the fundamentals of ‘von Neumann comput-
ing’, we must now prepare them for the very dynamic world of parallel
and distributed computing”. G. Zarza [91] et al. report: “High Perfor-
mance Computing has turned into an important tool for modern societies,
becoming the engine of an increasing number of applications and services.
Along these years, the use of powerful computers has become widespread
throughout many engineering disciplines. As a result, the study of parallel
computer architectures is now one of the essential aspects of the academic
formation of students in Computational Science, particularly in postgrad-
uate programs”. The authors notice significant gaps between theoretical
concepts and practical experience: “In particular, postgraduate High Per-
formance Computing (HPC) courses often present significant gaps between
theoretical concepts and practical experience”. B. Wilkinson et al. [92] offer
“. . . an approach for teaching PDC at the undergraduate level using com-
putational patterns. The goal is to promote higher-level structured design
for parallel programming and make parallel programming easier and more
scalable”. J. Iparraguirre et al. [93] share their experience in a practical
course of PDC for Argentina engineering students. One of the suggestions
is: “Shared memory practices are easier to understand and should be taught
first”. The authors also suggest focusing on smartphones and tablets as on
target platforms for learning parallelization.

Langtangen presents an approach, which focuses on software engineering
[94]. He stresses the importance of software engineering techniques in SC:
“Teaching material on SC has traditionally been very focused on mathemat-
ics and its applications, while details on how the computer is programmed
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to solve the problems have received little attention. Many end up writing as
simple programs as possible, without being aware of much useful CS tech-
nology that would increase the fun, efficiency, and reliability of the their SC
activities”.

3.3.6 Conclusions

To conclude the material presented in this section, the importance of ped-
agogical ideas of integration and stemless approach to Scientific Comput-
ing Education (SCE) [67] could be stressed. As the discipline that could
potentially cover different fields of science, with a variety of theoretical
backgrounds and traditions, a unifying approach, implemented within an
educational institution like a university, could provide complex foundations
aimed, besides field-specific knowledge, at improving SI, computational lit-
eracy, and engineering skills. At the same time, such unifying approach
could provide a solid background for interdisciplinary research activities,
and this is of primary importance for modern science, technology, and ed-
ucation in these fields.

3.4 Educational technologies

3.4.1 Introduction

The term “educational technology” is understood here as the theory and
practice of educational approaches to learning. This section presents educa-
tional technologies, which focuses on learner-centered approaches to univer-
sity education in general, and CSE in particular. CS could be considered as
a related field to SC (especially taking into account a computer simulations
making approach to CSE). First, the description of constructionism and its
applications to CSE will be provided. Next, the learner-centered approaches
in general and the so-called “mediated” teaching style in particular will be
examined. The learner-centered technologies are considered as important
for SCE. Such technologies support the so-called “seamless” approach to
students’ theoretical prerequisites, provide a constructionist learning envi-
ronment and support SI and simulation-making based education in the field
of SC.
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3.4.2 Constructivism and constructionist approaches to learning

First, the general approach to constructivism in education is studied. Con-
structivism is a theory of knowledge that argues that humans generate
knowledge and meaning from an interaction between their experiences and
their ideas [95]. Von Glasersfeld [96] describes Constructivism as “a theory
of knowledge with roots in philosophy, psychology, and cybernetics. It as-
serts two main principles whose application has far-reaching consequences
for the study of cognitive development and learning as well as for the prac-
tice of teaching, psychotherapy, and interpersonal management in general”.
The two principles are:
(1) knowledge is not passively received but actively built up by the cogniz-

ing subject;
(2) the function of cognition is adaptive and serves the organization of the

experiential world, not the discovery of ontological reality.
These principles are of primary importance for the purpose of our study.

To support an active buildup of knowledge, the appropriate learning ob-
jects needed to be constructed. Caine and Caine [97] in their fundamental
research propose the main principles of constructivist learning. One of the
most important for us is as follows: “The brain processes parts and wholes
simultaneously”. Therefore, a well-organized learning process provides de-
tails as well as underlying ideas. Using model-centered learning, the goal
of the research is introduced first, after, the learner experiments with the
model for simulation should take place. That allows us to observe the re-
sults and to draw relevant conclusions. Constructivism advocates student-
centered and discovery learning where students use the information they
already know to acquire more knowledge [98].

Constructionism [25] and constructionist learning is inspired by the con-
structivist theory specifying how individual learners construct mental mod-
els in order to understand the world around them. Constructionism pro-
vides us with a basic idea of an appropriate learning object. Such an object
should support systematic understanding of the materials and concepts it
represents, allowing the user to self-construct his or her knowledge.
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3.4.3 Constructivism and constructionist approaches to com-
puter science education

Ben-Ari [99] has developed a constructivist methodology for CSE. The au-
thor stresses an idiosyncratic version of knowledge each student constructs
basing on the knowledge the students already have. Here it is very impor-
tant to show the difference between classical and constructivist educational
paradigm. The classical paradigm, among other theoretical statements,
describes the student as “clear minds” and tries to fill it (his mind) with
particular knowledge. The constructivist paradigm considers any student’s
previous experience (knowledge) as the main part of an educational process,
stressing that the new knowledge could be only built “on the top” of the
previous one and only by students themselves. Therefore, active learning
must take place [99]: “Passive learning will likely fail, because each student
brings a different knowledge framework to the classroom, and will construct
new knowledge in a different manner. Learning must be active: the student
must construct knowledge assisted by guidance from the teacher and feed-
back from other students”. Therefore, the task of the educator is to develop
the learning process in the manner that supports the self-construction of the
student’s knowledge with emphasis on the student’s previous background
(mental model) existence or non-existence.

Wulf [100] reviews “the application of constructivist pedagogical ap-
proaches to teaching computer programming in high school and under-
graduate courses”. The author stresses an importance of communicating
with students explaining the principles of the constructivist approach to
learning. Students, who are not familiar with the constructivist approach,
usually complain about the lack of explanations from the teacher. Here it is
important to motivate the student by involving him or her to the teaching
process by providing an appropriately designed learning object.

Several additional remarks could be made here [99]. First, if the con-
structivist approach to programming education is accepted, the appropri-
ate “level” of the basic mental model is essential for successful further ed-
ucation, so the model-centered approach could serve us in our didactical
constructions. Second, the so-called “bricolage”, a term coined by Claude
Levi-Strauss and adapted for the needs of teaching programming by Turkle
and Papert [101] should be avoided. The bricolage leads to the “endless
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debugging of the ’try-it-and-see-what-happens’ variety” [99], therefore, an
appropriately designed learning object must take care of this issue. In such a
case, the model-centered approach could serve us as well. The basic model,
which lies in the “center” of the learning object, will “protect” the student
from the unlikely bricolage side effects.

Hadjerrouit [102] investigates the constructivist approach to practical
software engineering lecturing and presents a case study of practical ex-
amples of the constructivist approach to teaching object programming and
using web-based resources for the course. It is obvious that the construc-
tivist approach should be supported by appropriate and properly designed
learning objects, which support the constructivist paradigm.

The constructionist approach makes it possible to overcome difficulties
and to raise motivation of the novice programmers. This could be con-
sidered as [8, p. 1]: “. . . an important factor for engineering education in
general and for programming of embedded devices, as well as for calcula-
tions and modeling in the field of scientific computing in particular.” Such
an approach enables us to overcome some negative effects like the effect
of the “bricolage” [99]. The negative influence of this side effect could be
very important and could have a great influence on the teaching results
especially within a simulation driven educational activity.

Another important topic is how to develop computational thinking skills
for software engineering novice students. Such skills are of primary im-
portance for school and university students [103]. The important problem
here is the problem of the evaluation of the level of students’ compuational
thinking skills and abilities [7]. The solution could be to motivate students’
participation in internationally based educational activities, like interna-
tional challenge on informatics and computational thinking “Bebras” [104].
Such participation, besides the motivational factors, will provide a plat-
form for a social learning thus enabling constructionist learning and even
a further step of moving from computational thinking to computational
participation [105].

3.4.4 Educational technologies for university education in gen-
eral

As it could be seen from the previous section, educators pay little attention
to the technology of SC education and its connection with the content of
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the course. In order to provide the pathway for improvements and innova-
tions, this section will observe general tendencies in educational technology
and applications in engineering and CSE. Generally, the main tendency in
educational technology that could be observed is moving towards a learner
or the so-called learner-centered approach. Educators would like to unify
the technology, providing different unifying approaches and collecting the
best practice in the field. Generally, the technology is based on two main
principles:
(1) first, educators look for unifying and the most effective technological

approach to pedagogy;
(2) and next, educators try to collect the best practices or case studies of

applications of (1) in various fields of teaching and learning.
Several main questions concerning general principles of academic learning
are considered to be of primary importance. Should learning be considered
as imparting knowledge? Should learning be considered as situated cog-
nition? Considering the arguments for and against, the conclusion could
be drawn in favor of situated learning, so learning is more effective if it is
situated in the domain of objective. As to academic education, situated
learning is criticized for neglecting the role of abstraction, as an abstrac-
tion is essential for academic learning. Laurillard [106] proposes to consider
teaching process as mediated learning, involving “constructing the envi-
ronments which afford not only learning of the world but also learning of
descriptions of the world. . . . Thus teaching is a rhetorical activity: it me-
diates learning, allowing students to acquire knowledge of someone else’s
way of experiencing the world” and suggests the following teaching strategy
[106, p. 77]:
“Discursive: teacher’s and student’s conceptions should each be continually
accessible to the other; teacher and student must agree to learn goals for
the topic; the teacher must provide a discussion environment for the topic
goal, within which students can generate and receive feedback on descrip-
tions appropriate to the topic goal;
Adaptive: the teacher has the responsibility to use the relationship between
their own and the student’s conception to determine the task focus of the
continuing dialogue; the student has the responsibility to use the feedback
from their work on the task and relate it to their conception;
Interactive: the teacher must provide a task environment within which stu-
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dents can act on, generate and receive feedback on actions appropriate to
the task goal; the students must act to achieve the task goal; the teacher
must provide meaningful intrinsic feedback on their actions that relates to
the nature of the task goal;
Reflective: the teacher must support the process in which students link
the feedback on their actions to the topic goal for every level of descrip-
tion within the topic structure; the student must reflect on the task goal,
their action on it, and the feedback they received, and link this to their
description of their conception of the topic goal.”

Moving towards learner-centered education inspired approaches, which
unify educational methodology, like pedagogical design patterns [107] to
strengthen their positions within the scope of university education. Why is
this methodology important? The next remark should be made here. First,
CS, contrary to physics or mathematics, as a scientific discipline is still on its
way to clarify and develop its theoretical foundations [108], therefore sharing
educational experience and the best practices is of primary importance for
practitioners in this field; next, the accessible best practices could present
different innovative ideas and approaches [109–112].

Discursive, adaptive, interactive and reflective ways of teaching, which
are described in this section, give a pathway and inspiration for practical
applications in engineering, CS, and SC education.

3.5 Model-based approaches in education

3.5.1 Introduction

Model-based approaches are the focus of our study. There are several rea-
sons for such an attitude.
(1) First, models are considered as mental models, and mental models and

their simulations provide theoretical foundations of the model-based
approach to instructional technology;

(2) Next, computer models are the main elements of the model-based
teaching methods. Such teaching methods are based on model-based
simulations (cognitive artifacts) students should develop.

(3) Finally, scientific models are at the center of the educational technology
that is based on teaching SI. Therefore, this complex nature of models
allows us to use a universal approach for construction of an integrated
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educational environment using DSR techniques (computer models and
simulations are considered as cognitive artifacts).

First, the description of the model-centered approach to instruction is pre-
sented. Next, the model-based approach in CS education is covered, and
finally, simulations and scientific simulation-based approach in general is
discussed.

3.5.2 Model-centered co-instruction and co-mediated construc-
tionism

The general description of models, as related to education, is based on Peirce
pragmatism [39] and further neo-pragmatic studies [113, 3, 114] (from [3,
p. 44]): “a model is a limited reproduction of reality, characterized by at
least three features:
(1) Representation. Models are always “models of something”, that is,

images, representations of natural or artificial originals, which in turn
can be models of something else;

(2) Reduction. Models generally do not capture all the attributes of the
original, but only attributes considered to be important by the model’s
creators and users.

(2) Pragmatism. Models are not copies of their originals. They have a
substitution function for
(a) specific individuals who must understand and/or act using the

model, during
(b) specific time intervals, and
(c) within the limitations of specific ideal or real operations.”

Gibbons introduced a model-centered instruction in 2001 [26]. The fol-
lowing main principles are important:
(1) Learner’s experience is obtained by interacting with models;
(2) Learner solves scientific and engineering problems using simulation on

models;
(3) Problems are presented in a constructed sequence;
(4) Specific instructional goals are specified;
(5) All necessary information within a solution environment is provided.
There is a sort of contradiction between such educational aims as achiev-

ing formal course requirements in the form of tests or exams and focusing
on learner-centered educational methods [115]. Model-centered instruction
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could be a solution for this contradiction. At the same time, an important
idea to be considered is a so-called process of “co-construction” of knowledge
[115]. Such an attitude also influences educational approach to instruction,
therefore, the term “co-mediated” instruction as a cognitive enhancement
of a “mediated” teaching style [106] is proposed. This is very important
from the model-based and simulation-based teaching perspectives, as an
educational process based on model making requires an appropriate educa-
tional environment to be constructed and implemented in practice. Such
educational environment is based not only on explicitly formulated knowl-
edge, but also on expertise and tacit knowledge, which could be transferred
only in the form of co-constructs using the proposed co-mediated learning
technology (see Figure 11, adapted from [115, p. 25]).
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Figure 11: Relations between cognitive and technological approaches. Adapted
from [115, p. 25]

Another important topic to discuss is the way students construct or im-
prove their mental models. The fundamental approach proposed by Piaget
[23] stresses the importance of persons’ dissatisfaction with initial mental
models. Such dissatisfaction will motivate individuals to improve or re-
place the existing model with a new one. Therefore, the main educational
task is the so-called “conceptual change”. This is a challenging task, as
students come with their own perceptions, conceptions or misconceptions,
which could resist the process of conceptual change of the models. While
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Paget focused on constructivism, Vygotsky [116] stresses an importance of
the social environment for the construction of knowledge. This leads, espe-
cially as related to CSE, to Papert’s constructionism [24], and stresses the
importance of the construction of an appropriate learning environment that
enables teamwork and implements problem-solving educational methods.

The next point to study is the theory of mental modeling. The mental
modeling theory could fill in some gaps of the described constructivist and
social-constructivist approaches [115]. The most important fact here is that
mental models, as opposed to classical deductive reasoning, are constructed
by the process of “informal reasoning” [117, 118]. How are such models
constructed? Johnson-Laird [27] proposes an explanation of reasoning by
simulation and improvement of existing models. Such type of “simulation”
reasoning states in some kind of opposition to classical deductive reasoning
and positivistic approach in general [115]. Gentner and Clement [119] stress
the importance of decompositions during the process of reasoning. Such
decomposition could simplify the implication of so-called “target” model
– the aim of the reasoning process. All these presented theories led to a
model-based instructional theory. The theory focuses on the process of con-
struction or modification of mental models. However, there is still a gap
between theoretical constructions and practical applications of the theory
[115, 120]. This is especially true if real educational environments with
a close interconnection between learners and educators are to be encoun-
tered. To overcome these difficulties, as it was already mentioned, Clement
proposed the so-called “model-based-co-construction” [115] which aims to
integrate social and cognitive elements. The key idea is to incorporate the
so-called “learning pathway” into the educational process (see Figure 12,
reprinted from [115, p. 34]). This allows students to go through the process
of constructing of models.

The concept of the evolution of models named “generation, evaluation,
and modification cycles” or, in other words, the outline of the process of
the improvement of the models generated during the learning process is
proposed by Clement (see Figure 13, reprinted from [115, p. 35]).

3.5.3 Model-based education

Millard et al. [121] propose model facilitated learning using “interactive sim-
ulations”. The authors present a modern computer technology powered by
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Figure 13: GEM (generation, evaluation, modification) cycle. Reprinted from
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“promising methodology” based on “system dynamics”. “Supportable expe-
riences include the construction of interactive . . .models as well as their use
for hypothesis testing and experimentation”. Lehrer and Schauble [122] re-
fer to the experiments with different representations of the model: “Student
learning is enhanced when students have multiple opportunities to invent
and revise models and then to compare the explanatory adequacy of dif-
ferent models”. L. Xue et al. [123] introduce “teaching reform ideas in the
scientific computing education by means of modeling and simulation”. The
authors suggest “. . . the use of the modeling and simulation to deal with the
actual problem of programming, simulating, data analyzing . . . ”. Model-
centered learning is used in mathematics education. Plenty of models are
constructed using “Geogebra” software [124]. Models play the central role
in Science Education [115, 125]. The model-centered approach for simula-
tions and learning is presented in [3]. For the purpose of this study, one
historical view on models is very inspiring [126]: the models are presented
in the form of relations between different states of the dynamic system Si

and its model Mi (see Figure 14 (reprinted from [3, p. 43]), where µ is a
correspondence rule to translate the state to its model, µ−1 – the inverse
rule, C and C ′ – the relevant maps.
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[3, p. 43]

Therefore, the model to be useful, the next composition should take
place:

µ−1 � C
′
� µ = C (1)

The next interesting point is a general approach to education with mod-
els, which serve as a basis for imitational experiments. Figure 15 (adapted
from [3, p. 53]) presents a general view on the process.
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Computational
model

Simulation
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Educational
design cycle

Figure 15: Main outputs of a modeling and simulation process. Adapted from
[3, p. 53]

The process includes the next steps: the project description, conceptual
model, computational model, simulation program. This concept provides
us the pathway for developing of learning objects for a model-based edu-
cation. First, the relevant conceptual model should be developed. This
model should be a universal one and include different specification possi-
bilities. Based on this conceptual model, a set of computational models
should be developed and provided. Each of such computational models
could be implemented for one or another computer architecture. As the
last step, simulation programs could be used for the further improvement
of the learner knowledge. Model-based simulations are widely used in engi-
neering practice as well [127].
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3.6 Simulations-centered approach

3.6.1 Scientific models and model-based scientific simulations

This century is going to be the “age of computer simulations” [128, p. 9].
Simulations play an extremely important role in all fields of engineering
and science [3, p. 1]: “Science is, therefore, the realm that pushes the tech-
nological limits of simulation to their extremes. In fact, simulations of
galaxy formations, molecular dynamics, protein unfolding, ocean currents,
and aerodynamic design require the use of advanced numerical algorithms
and parallel computers located in powerful data processing centers. Fur-
thermore, simulation is not only transforming scientific practice, but it is
also leading scientists and philosophers of science to re-examine relations be-
tween models, theories, and experiments”. There is a strong belief of wider
use of simulation as an educational method. The word “simulation” im-
plies many different meanings and types of simulations, including so-called
“experimental” simulations like a flight simulator. Within the scope of this
research word “simulation” means the following types of simulations [3,
p. 4]: model-based simulations, based on the construction of the theoretical
model of a system (also known as “theoretical simulations”).

Simulations and games overlap to some degree. This is even clearly ex-
pressed for serious games, which become more and more popular in educa-
tion [129, 130]. Both model-based educational simulations and simulation-
based serious games include such features as an explicitly formulated goal
of simulation, rules of simulation and use a clearly stated educational task
as a basis for the design. Figure 16 (adapted from [3, p. 6]) presents the
relation between model-based educational simulations and serious games.

Model-based 
simulations

Serious gamesSimulations-based
serious games

Figure 16: Serious games and simulations. Adapted from [3, p. 6]

How could scientific models be defined? Jadrich [131, p. 12] defines and
describes the meaning of a scientific model as follows:
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• “Scientific models are human creations meant to represent entities and
phenomena in the physical world;
• Scientific models are not singular. Multiple models can exist to describe
a single entity or phenomenon, and no single model ever fully and
exactly represents reality;
• Scientific models must have a measure of consistency with existing data
or evidence. They must be used for both explaining current observa-
tions and predict future ones;
• Scientific models are judged on both how simple they are and how well
they can be used to explain and predict natural phenomena.”

The presented definition is important for the purpose of our study due
to the following. First, scientific models are artifacts. It could be stated
that scientific models are cognitive artifacts of a special type that serves as
intermediates between the researcher’s cognitive activities and the subject of
study. Next, these relations are universal for all fields of science; therefore,
the presented definitions of models could be valid for any scientific subject of
study. This universality could ground the possible solution for the unifying
approach to the interdisciplinary education. The universal language or at
least the universal alphabet enhancing SI in all fields of science needed to
be developed. s

It is necessary to distinguish between static and dynamic models. Tradi-
tionally, the only dynamic model is associated with representing changes in
time, while static model serves for representing relations and the time vari-
able is not presented. For example, the model of a fully stochastic system is
based on laws of probability. Obviously, such model does not include time
variables in its descriptions. However, one could not describe such a model
as static. Generally, the distinction between the static and dynamic models
is not so obvious. If a person who interacts with a simulation is included,
even “static” models could be mentally animated [3, p. 37].

3.6.2 Simulation: The definition

The definition for a model-based simulation is based on the following mean-
ings [3].
(1) The first important part is the meaning of a system. A system is a

collection of different elements whose combination yields results that
are unobtainable by the elements alone. Therefore, the system is more
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than a sum of its parts;
(2) The next important definition is the definition of a model. A model is

a simplified representation of a real or imagined system;
(3) Finally, a simulation based on (1) and (2) could be defined: a simulation

is an interactive representation of the system to be studied based on a
model of the system.

This definition has a broader meaning than a traditional view on simu-
lations as on a dynamic set of interactive representations. Fundamentally,
model-based simulations are related to students’ cognitive activities and to
the process of constructing appropriate mental models. Landriscina [3, p. 6]
provides the following explanation: “These definitions allow us to imagine
a series of epistemic transitions, from a reality or an idea to a system, from
the system to a model, and from the model to a simulation. Although these
entities are conceptual in nature, during the construction process of a simu-
lation, they become cognitive artifacts, such as physical models, data files,
written descriptions, visual representations, mathematical formulas, formal
specifications, and computer programs. Moreover, the above definition em-
phasis on the interactive nature of simulation distinguishes it from other
forms of knowledge representation and focuses on its potential for creating
a relation of interpenetration and synergy between a human mind and a
computer.”

This approach to simulations also enhances learning related cognitive
processes, facilitates modification, construction or replacement of the rele-
vant cognitive structures [132, 133].

These processes [3, p. 7] include enhancement of “. . . cognitive processes
that are crucial to learning, such as:
• selecting key information;
• organizing this information into a cognitive structure;
• integrating this new information into previous knowledge;
• accessing and creating appropriate analogies and metaphors;
• generating inferences;
• reorganizing cognitive structures.”
An alternative cybernetics approach is based on engineering traditions.

It has its roots in the technique to present any system in the form of a
“black box” with specified behavior. Generally, the purposes of a simula-
tion are to observe the dynamic behavior of a model of the real system; thus
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a person, especially with an engineering background, could consider simu-
lation as something surplus, sophisticated and not essential, especially for
educational needs. A model could be considered as more important than its
simulation and one could limit the educational task only to modeling. At
the same time, it is usual to equal simulations with Information and Com-
munication Technologies (ITC) tools, thus, the effectiveness of such the
“traditionally understood” and based on simulations educational process
could be doubtful. Within the scope of this study, the focus on simulation
making and not on simulation using is made, although the role of simulation
as an ITC tool is not rejected. Focusing on simulation making activities
and simulation-using activities could become an alternative in some cases
depending on the practical teaching environment.

Implementing the engineering point of view, modeling and simulation
could be defined in a more general way as follows [134]: modeling as the
relation between real systems and models, and simulation as the relation be-
tween models and computers. The heart of simulation is a model. From the
engineering or pragmatic positions, a model could be defined as [134, 135]:
“A model is a description of some system intended to predict what happens
if certain actions are taken”. Some concepts of modeling could be defined
[134, 136]. First, a set of model components should be specified. Each com-
ponent is described by the set of input, output and state variables. Then
the experimental frame is defined as a set of all descriptive variables. There
could be different experimental frames defined, depending on the chosen
simplification level [136, 137]. The relations between models, experimen-
tal frames and simulation are presented in Figure 17 (reprinted from [134,
p. 3]).

3.6.3 Simulative scientific reasoning

Nersessian [28, p. 128] proposes a model-based scientific reasoning based
on simulations of mental models: “in certain problem-solving tasks, people
reason by constructing an internal iconic model of the situations, events,
and processes that in dynamic cases can be manipulated through simula-
tion. Such a mental model is an organized unit of knowledge that embodies
representations of spatiotemporal relations, representations of situations,
entities, and processes, as well as representations of other pertinent infor-
mation, such as causal structure. The reasoning is carried out by means
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Figure 17: Relation between models, experimental frames and simulation.
Reprinted from [134, p. 3]

of model construction and manipulation. In the processes of constructing,
manipulating, and revising mental models, information in various formats,
including linguistic, formulaic, visual, auditory, and kinesthetic, can be used
to construct and animate the model.”

Generally, the mental model corresponds to the conceptual model, which
is constructed at the first stage implementing model-based simulation ac-
tivities. The properly designed teaching process should implement a kind of
mapping between model-based cognitive simulations and model-based com-
puter simulations designed during an educational activity. This mapping
could be provided by the teacher also in the form of co-mediated learn-
ing. The possible relation between computer simulation and model-based
cognitive simulation is presented in Figure 18 (adapted from [2, p. 148]).

Co-mediated teaching

Mental
simulation

Co-mediated learning

Computer
simulation

The Learner

Computational
modelCognitive model

Figure 18: Relation between mental and computer-based simulations. Adapted
from [2, p. 148]
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3.7 Formalization: Learning objects for scientific
computing and computer science education

3.7.1 Introduction

In this section, an observation of Learning Objects (LO) in general and
software-based LO in particular is done. Why is it important for us? The
concept of LO, as opposite to Pedagogical Patterns (PP), focus on teaching
techniques and didactic activities, while PP are more related to educational
technology and instruction. As the main result of this study is a teaching
method based on an artifact – simulation (that is made by students) in
the form of computer software, LO could serve as a wrapper for this or
as a building block for an instructional unit. Generally, LO are associated
with e-learning content, but for the purpose of our study LO are considered
as more universal and covering simulation-based activities as well. At the
same time, LO could provide universality for teachers as, depending on
the specification of particular LO, teachers could also use them for the
simulation-using type of activities as well.

3.7.2 Classification of learning objects

The definition of the learning object needs to be clarified, as, in spite of
numerous literature on the topic, various interpretations of the concept still
exist. D. Churchill [138] provides “a classification that potentially brings
together various perspectives of what a learning object may be. Six unique
types of learning objects are proposed and discussed: presentation, practice,
simulation, conceptual models, information and contextual representation
objects”. The author proposes the next definition of the learning object
[138]: “a learning object is a representation designed to afford uses in dif-
ferent educational contexts”.

For the purpose of this study, two types of the learning objects are of
primary importance. The first one is simulation learning objects [138]:
“They allow a learner to explore, usually by trial and error, operational
aspects of a system, carry on a task that the system supports, and develop
a mental model of that system’s functionalities. Although fidelity is often
high in simulations, development of skills is hardly ever completed and
learners must usually move to a real system to complete their practice to
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genuine competency level. However, by the time a learner shifts to the real
system, he or she would already have constructed a mental model of the
system’s functionalities and operational possibilities. This is particularly
effective when learning to use the real system requires an understanding
beyond being able to operate it (e.g., understanding how a system works)
and when the real system is expensive, unavailable or available in limited
number, or learning to operate it is costly and possibly dangerous”.

The next is a conceptual model [138]: “. . . is a type of a learning object
that represents one or more related concepts or ideas, usually in an interac-
tive and visual way. It might be appropriate to think of a conceptual model
as a representation of a cognitive resource existing in the mind of a subject
matter expert, as a useful conceptual knowledge that aids decision-making,
disciplinary problem-solving and discipline-specific thinking.”

These two models are of primary importance for the purpose of our study.
An appropriate combination of these two models is considered as an appro-
priate solution for the construction of advanced learning objects, which rep-
resent SC and programming concepts and allow simulations and practical
experiments with such conceptual models.

3.7.3 Learning objects for computer science education

Nugent et al. [139] describe an approach to design, develop, and validate
learning objects for the Computer Science One (CS1) course. The authors
focus on learning object for teaching classes and objects: “Each LO is self-
contained and by design, the length of the content section is kept short
to retain student interest. . . . Each learning object covers a core CS topic
addressed by four components:
(1) A brief tutorial or explanation including definitions, rules, and princi-

ples;
(2) A set of real-world examples illustrates key concepts and includes work-

ing examples and problems, models, and sample code;
(3) A set of practice exercises provides important active experiences to the

student, with constructive feedback to student responses;
(4) A set of problems graded by the computer provides a final assessment.”
As it could be seen from the description, the authors use models and sam-
ple code as a part of the learning object. In the model-centered approach
the model would become the “center” of the learning object and the pre-
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sented sample code provide a platform for the constructivist approach to
the arrangement of the learning process.

Miller et al. [140] evaluate the use of leaning objects in CS1 education.
The paper “. . . provide a high-level overview of our LO deployment”. The
authors’ findings include:
• “students using LOs have significantly higher assessment scores than
the control group;
• several student attributes are significant predictors of learning;
• active learning has a significant effect on student assessment scores;
• and feedback does not have a significant effect, but there are variables
with significant moderating effects”.

Here the authors stress the importance of the active learning and the rel-
evantly designed educational process. Therefore, the properly constructed
learning objects support the constructivist paradigm in education with bet-
ter educational results. The modern CS education faces many challenges
while trying to find the best and optimal way of providing the relevant
teaching content. Educators discuss the benefits of one or another pro-
gramming language to be the first one of study programming, the benefits,
and drawbacks of various didactic approaches. The properly constructed
learning object could be a solution in this case. Matthiasdotir [141] states
that “learning objects with their visualization may be considered a feasible
support”. The author reports about the sufficiently increased motivation
of novice programmers in studying programming, thus concentrating the
efforts of the teaching staff in developing and deploying learning objects for
programming education could cause a sufficient improvement of an educa-
tional process.

3.7.4 Software program as a learning object

For the purpose of our study, the concept of the software program as a
learning object is one of the most important. Vytautas Štuikys describes
the meaning in his fundamental research [33, p. 13] (CS – Computer Science,
LO – Learning Objects): “. . . the CS content and its delivery as CS s are
specific with respect to many attributes as follows:
• The large body of teaching content in CS is programs (algorithms) or
their parts such as data structures.
• Program as an LO is abstract. The essence of the topic to be learned is
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hidden and the cognition process requires a good understanding of other
topics such as the computer architecture, LO and Internet. There-
fore, students, especially novices, have difficulties in comprehending
the essence to be taught.
• In contrast to the other type of LOs, a program is an executable speci-
fication with the well-formed internal structure. The program can pro-
duce not only data because of calculation but also the other program
as a new LO.
• The program is a soft thing. There are practically unlimited opportu-
nities for its change, modification, and adaptation or even for visualiza-
tion of the algorithm behavior. Transferring to the different e-learning
environments is easy.
• For the learning purposes, programs can be incorporated into other
things (such as educational toys, robots, etc.) to enable them to per-
form the real-life processes (such as the physical items moving, carrying
or finding by a robot, etc.).
• Teaching in CS (e.g. programming) can be seen as a problem solving (as
it takes place, e.g. in mathematics) to enable the creation of a flexible
means to the testing and self-testing of the acquired knowledge.
• LOs to teaching in CS can be also viewed as a tool to provide research-
ing with the nearly unlimited possibility for experimentation in various
domains such as design, automation, gamification and many more.”

Therefore, the roles of the programs are twofold. The programs are nat-
urally presented in the scope of an EC. On the other hand, the programs
are the learning objects by themselves. Therefore, one of the questions to
study is: what is the difference between these two instances of the software
program and how practically and efficiently to design the piece of a pro-
gram when considering it as a learning object. Another point of interest
is how to design an appropriate learning object within constructivist and
constructionist paradigms.

3.7.5 E-learning and the concept of software learning objects

For the purpose of our study, e-learning is understood as a universal
paradigm of a modern learning using technological tools. The process-based
view on e-learning is presented in Figure 19 (adapted from: [33, p. 7]).

The conception of LO has been developed by Štuikys introducing gener-
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Figure 19: E-learning model. Adapted from: [33, p. 7]

ative LO and SLO [33]. Under the presented framework a learning content
should be developed taking into account the surrounding socio-technical
environment, thus in a universal form which allows such features of the
learning content like flexibility, adaptability, reusability, and interoperabil-
ity [33, p. 20]. The learning content is naturally based on LOs. Under the
presented framework, LOs are considered as a part of the learning content.
Therefore, the design of the SLOs should be aimed at the specification,
which enables smart incorporation of the components into the learning con-
tent environment. Institute of Electrical and Electronics Engineers (IEEE)
provides the most general definition of the LO stating that LO is any en-
tity, digital or non-digital, which can be used, re-used or referenced during
technology supported learning [33, p. 9]. Below, some theoretical aspects
of SLOs are presented. This will serve us as a grounding theory for the
development of simulation smart learning objects.

The following features of SLOs are of primary importance for the purpose
of our study [33, p. 20]:
• “Learning context is implemented using a priority-based model;
• Priority based model enables learning variability, which is explicitly
implemented via generative aspects of the learning content;
• Generative aspects enable refactoring, which is implemented via multi-
stage models;
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• Multi-teaching environments are also supported.”

3.7.6 Concepts of reusability and repurposing

One of the most important features of any LO is reusability. There are two
general aspects of reusability [33, p. 15]: managerial (social) and techno-
logical. Within the scope of the research, the most technological aspects
will be covered. Štuikys [33, p. 15] describes two technological approaches:
component-based reuse and generative reuse. The next remark should be
made. If the component based approach does not explicitly require au-
tomation process to be presented enabling reuse features, on the contrary,
generative reuse implies automatic generation of instances. Consequently,
generative LO should be designed with the process of some kind of auto-
matic refactoring in mind. Therefore, learning context should allow the
implementation of such procedures via learning variability issues and a pos-
sibility to distinguish generative aspects of the LO. The reasonable question
arises within this aspect... is it always possible? Are there any requirements
for the learning context to be generative friendly? Another topic possible
for discussion is the topic of repurposing of LOs. If the problem of reusing
mainly concentrates on LO features and their adaptation within the same
learning context, repurposing [142], means an adaptation of LO to a dif-
ferent learning context or to a subcontext. This is another strategy. For
example, if the idea of recurrent algorithms is considered to be introduced?
How to construct an appropriate LO, enabling context repurposing? Why
is this needed? Examples will be presented in the following sections, but
the main idea is that using different contexts the understanding could be
achieved better and at the same time this could enable us to use the con-
structionist approach to learning.

To resume, there are two general ideas: reuse and repurposing. Štuikys
proposes “smartification” of the Generative Learning Objects (GLO) aimed
to reuse (via meta-featuring) and the idea of repurposing of LO is left be-
hind the scene. For the purpose of our study, the problem repurposing is of
primary importance. For repurposing of LO, not only generative features
for LO parameters generation should be provided, but also the generative
features for generation of a LO structure. Several points should be men-
tioned in this regard. First, is it generally possible to design such a meta-
structured LO? According to [142, p. 3], a properly designed LO should be
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designed as optimum cohesive and decoupled; therefore a meta-structured
LO could possibly become too complex and unpractical. Next, how to
consider a possible variation of learning contexts? Such variation could
also imply changes in requirements, thus, again, such meta-structured LO
will become too complex and possibly unpractical. The idea of solving the
described problem is following: it should be moved from a priority-based
context model to [33, p. 20] to a multi-context model as a higher level of
abstraction. Such a multi-context model will include priority-based models
as sub-models.

3.8 Modelling concepts and formalization rules

3.8.1 Modeling concepts of the computer science learning do-
main

Two main approaches could be mentioned: the model-driven engineering
approach and product line engineering approach, which are based on object-
oriented modeling and feature-based modeling accordingly [33, p. 77]. Meta-
model represents domain concepts, while platform-specific meta-models are
created using transformations of meta-models. Feature-based modeling
could be practically implemented using feature diagrams. Feature dia-
grams could specify possible features of the generative meta analysis of
domain features proceeding with further implementations of such LO using
meta-programming techniques [33, p. 78]. The proposed feature-modeling
method is based on the next main principles and specific requirements [33,
p. 81]:
(1) “requirements for specification of domain models (scope, boundaries,

transformation);
(2) general requirements for verification of models and for a technology of

practical model;
(3) feature modeling should be started with the planning and formulating

the objectives and role of the model;
(4) various requirements for the collection of models like priorities, hierar-

chies, intersections and others;
(5) internal structure of specific models could be clarified, for example,

such sub-models as context (even implicitly implemented) and based
models.”
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Štuikys proposes two basic methods to construct the model: Feature-
oriented Domain Analysis (FODA) and Scope-Commonality-Variability
(SCV) methods. There are three basic types of features proposed: manda-
tory, optional and alternative. FODA principles apply to [33, p. 81]: “ (1)
domain boundaries and context identification; (2) modelling of the context
by feature; (3) modelling of subdomains within the boundaries of features.”

3.8.2 Formalization rules for feature modelling

The propositional logic for expression of feature logic is presented below.
Let P be the parent feature and the sets {C1, . . . , Cn} are children features
of P . Then the feature relationships could be specified as follows [33, p. 84]:

(P ⇔ ∨1≤i≤nCi) ∧i<j (¬Ci ∨ ¬Cj)(XOR relationship)
(P ⇔ ∨1≤i≤nCi)(OR relationship)
¬K ∨ ¬F (constraint < mutex >)
¬K ∨ F (constraint < Require >)

The formalization rules give us a way to develop generative user interfaces
and GLOs. At present, the theory of GLOs is only at the starting point.
Generative functions are often included using selective interfaces and use
the corresponding “frozen” structure of the provided solutions.

Since we focus on simulation making activities, in our case the complexity
of the internal structure of the provided learning objects is great, therefore
the described modeling method can not fulfill the generating tasks in full.
This approach requires further study and development for application to
focused on simulation making learning processes, and it is positioned as a
topic for further research.

3.9 Scientific inquiry and its place in engineering ed-
ucation

3.9.1 Introduction

An approach that is based on teaching SI is considered as important for
the purpose of this study. This can become a kind of universal basis for
the integration and unification of the university STEM curriculum. Such
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integration could be based on SCE. Scientific Computing Education can be
viewed in a universal way and opposite to the approach to SC as a com-
pletely technical discipline with emphasis on computations. This universal
method, in turn, is based on the approach to SI as on research activities
based on the development of simulations [131].

3.9.2 Teaching scientific inquiry

First, the question should be answered: what is SI and why it is important
for all levels of education. There is a strong opinion [131, 143, 144] that stu-
dents should not only learn about science and scientific methods but should
be able “. . . do science. This vision for science teaching stems directly from
the educational imperative to develop scientifically literate students” [131,
p. 3]. As it is clear, students cannot become scientifically literate if they
are not involved in practical scientific activities. Moreover, this is definitely
true for students of all levels of educational programs at school as well as
universities. Implementing scientific inquiry based educational technology
is a comprehensive and challenging task [131, 145]. Learning scientific con-
tent corresponds to the highest levels of Bloom’s taxonomy. “Consequently,
learning to think and act like a scientist is much more difficult to do than
just learning about scientific content” [131]. How could SI be defined? First,
what constitutes SI? Several approaches could be presented:
(1) SI begins with a scientific question;
(2) hands-on activity;
(3) a set of specific methods and practices used by scientists;
(4) a set of reasoning strategies or skills needed while driving a scientific

process.
The main common feature of the presented approaches to the definition

of the SI is that all these definitions are process-oriented as they attempt
to define SI by describing the activities of scientists. Another solution is to
define SI using the result-oriented approach [131, p. 9]

What is the primary goal of scientific activity? We share the opinion [131,
p. 10], [28, 146] that the primary goal of science are scientific models and
the aim of any scientific work is to develop, test, and modify the scientific
model of the subject of study is shared. Generally, we could name the
process of development, testing, evaluating and modification of a model as
simulation. The reason for this is the following. In any case, such operations
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with the model should take place within the time so this could be described
as simulative modeling process or simply simulation. Why do we focus
on this? The reason will be clear after looking closer into the nature of
the simulation. The scientific activity of designing (developing, testing,
evaluating and modification) simulations as artifacts are closely connected
to the cognitive activity of mental simulations and simulative reasoning [28].
Summarizing, SI could be defined as an activity of designing of scientific
simulations and the aim of scientific work is to design the model-based
scientific simulations.

3.10 Design Science Research

Design Science Research plays a very important role within this study.
(1) First, the DSR methodology is used as the research methodology for

this research. The outline of DSR as the research methodology will be
provided in further sections.

(2) Next, DSR could be considered as a part of educational technology (as
one of the possible methodologies for instructional design). This will be
described in section named “Example of applications of Design Science
Research for education technology”.

(3) And finally, and this is the main focus of this study, DSR could be
considered as a part of a teaching technique for creation of artifacts
– imitation models within the scope of students’ activities of making
model-based simulations for SI centered SC education.

The latter application is a kind of a truncated form of the “standard”
DSR methodology, which is used in a situated educational environment un-
der co-mediation of a teacher. Therefore, students here are considered as a
kind of “quasi” researchers. They act within provided an artificial educa-
tional environment, use pre-provided slice (as result of seamless approach)
of theoretical concepts, improve a faceted and predesigned model, make con-
clusions and propose (guided by a teacher) further improvements of their
earlier created artifacts (in form of model-based simulations). Certainly, if
there are such ambitions, an educator could design the teaching process in
a manner that will try to reduce the difference between this adapted DSR
methodology and the “real” one. However, this is a rather challenging task,
it could be considered for advanced courses and more prepared students.
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3.10.1 Design Science Research, its foundations and connections
to the fields of science

Science, in general, could be divided into formal science like logic or classi-
cal mathematics and factual science, which describes, explains and predicts
phenomena and is validated when provides empirical evidence. Factual
science is divided into natural and social sciences. Natural science is in-
terested in objects or phenomena and the main research activities are to
analyze the nature of these and the reasons for them being so [20]. Social
science describes and reflects the society and individuals. Research con-
ducted in social science is usually question based and it is focused on the
researchers’ view on the problem in the study, so it is subjective in its na-
ture [20, 147]. Social science could focus on descriptions with attention to a
quantitative approach. Another focus, for example in management science,
is on solutions to given problems or on artifacts creation [20].

The concept of Design Science as Science of Artificial was first introduced
by Simon [35]. Table 5 presents the main characteristics of different type of
science (from [20, p. 13]). As it could be seen from the presented synthesis,
design science is focusing on practical solutions and artifacts. As it was
described in the previous sections, the mediating role of a teacher could
determine the view to the teaching process as to a managing activity [148–
150]. Under this approach the DSR could be considered as a promising
technique for managing of the teaching process [151].

The motivating reason for any research could vary from research oriented
to solving theoretical problems and with no or minor concern to practical
applications or applied research focused on practical solutions [152]. Gen-
erally, design means creation (or invention) of some new artifacts and its
implementation into the area of application. This could be done under exist-
ing or non-existing (innovative design) theoretical backgrounds [11, p. 10].
If Design Research (DR) focuses on the question of how to design arti-
facts, DSR focuses on the problem of using design as a research method
[11, p. 13]. Therefore, DSR could be positioned as a well-formalized teach-
ing technique that implements learning through building of an educational
paradigm. This is important for the purpose of this study and it will be
discussed in more detail in the next subsection.
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Table 5: Synthesis – natural sciences, social sciences, and design science.
Reprinted from [20, p. 13]

Characteristic Natural Sci-
ences

Social sciences Design sciences

Purpose To understand
complex phenom-
ena. To discover
how things are
and to justify
why they are this
way

To describe, un-
derstand, and re-
flect on human
beings and their
actions

To design; to pro-
duce systems that
do not yet exists;
to modify exist-
ing situations to
achieve better re-
sults. Focus on
solutions.

Research goal To explore, de-
scribe, explain,
and predict

To explore, de-
scribe, explain,
and predict

To prescribe. Re-
search is oriented
towards solving
problems

Examples of ar-
eas tht usually
employ each of
these scientific
paradigms

Physics, chem-
istry, biology

Anthropology,
economics, pol-
itics, sociology,
history

Medicine, engi-
neering, manage-
ment

3.10.2 Design Science Research and applications for information
systems and computer science research

Design Science Research offers a practical methodology for the creation of
innovative artifacts. This is important for the purposes of our study as
the proper methodology provide a way for innovations in the technology of
education. The key meanings in this are innovations and artifacts. As a
methodology, DSR is of primary importance for CS, ITC and related ed-
ucation in the field. As it was mentioned earlier in this study, there is a
strong demand for solid theoretical foundations for ITC and CS as it is
related to university education. At the same time, ITC as well as CS are
mostly practical activities dealing with various practical engineering solu-
tions, thus DSR gives grounds for innovations and provide solutions for a
technological breakthrough in these fields. Another advantage is that DSR
provides a unifying approach for innovations and this is extremely important
in such strongly interdisciplinary field like SC education, which as a disci-
pline strongly overlaps with ITC and CS. Resuming the above-mentioned
statements, SC education provides an interdisciplinary environment for in-
novations and DSR provides a methodology for these innovations to take
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place.
Another important feature of DSR should be stressed as well. The main

focus of the DSR methodology is “to teach research” [11]. As it was dis-
cussed in the previous sections, the priority of SC education is to teach
SI, to teach how to solve scientific problems or to teach research as well.
Therefore, the educational task and an appropriate method strongly corre-
late. Below a brief description of the DSR as related to ITC and CS and
research methods in these fields is provided.

Why is there a need for the methodology for the research in ITC and CS?
For example, the traditional “pragmatic method” could serve as a solution,
that is an important research questions could be formulated, inquiring the
community for appropriate research methods, investigate the prior research
in the field, check with our colleagues for the relevant knowledge, and look
for acceptable information [11]. But such a traditional method will not
properly work for ITC and CS. First of all the reason for this is in the
interdisciplinary roots or “multi-paradigmatic” nature of ITC and CS.

Vaishnavi and Kuechler write ([11, p. 2]): “We believe researchers in
ITC fields need a thorough grounding in each of the variety of research
philosophies and techniques practiced in their field, and it simply is not
practical for any student to undertake a multi-year apprenticeship in each
of the major ITC research paradigms. Moreover, DSR as practiced in ITC
fields is significantly different from the design-based research practiced in
other fields (such as architecture or industrial design); the need for and
manner of validation of research results, for example, is more emphasized
in Information System (IS), Human-Computer Interface (HCI), and many
branches of software engineering due to the grounding of those fields in
management science, psychology, and other statistically based descriptive
disciplines”.

Therefore summarising, IS and CS are examples of “multi-paradigmatic”
environments. To go further, an artifact is the main point of our interest
providing us a target for a design process. Therefore, the design could be
described as related to the artifact and its inner structure and an outer
environment “crafting” process [11]. The next question is needed to be
answered: can design be research? The answer is affirmative as both IS
and CS are focusing on artifacts [153] as resulting entities of the research
activities in the fields. A model for DSR process focuses on the contribution
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of new knowledge to be produced and consists of the following steps [11,
p. 14]:
(1) First, is the awareness of a problem. This may come from different

sources including scientific literature, reports, and projects;
(2) Second, is a suggestion or proposal based on beliefs and possible solu-

tions of how to solve or improve the problem discovered in Phase 1;
(3) Next, is the development phase. Here the novelty should be involved.

There are no requirements for a formal proof nor should innovative
construction of an artifact be introduced. The novelty is in the process
of the design. For example, some learning objects based on sample
software could be developed. In such a case, the innovation in principles
which found the process of the design is important under the DSR
paradigm;

(4) Later, the evaluation phase follows. Evaluation criteria are not always
explicitly specified, but the design process should lead to the solution
of the problem formulated in Phase 1. If not, and this is almost the
case, the process should be continued from one of the previous steps as
is shown in Figure 20 (adapted from [11, p. 15]);

(5) Finally, a conclusion should be provided.
It is important that knowledge gained in the effort of the process is “firm”

and could be used and applied as generalized knowledge. Therefore, com-
munication possibly in the form of journal or conference papers is important
at this stage [10].

To position itself as a methodology in general, DSR should be aware
and specify universal reasoning techniques. This is also important for prac-
ticing teachers and instructional designers, especially if DSR is intend to
use within the scope of teaching techniques. Figure 21 (adapted from [11,
p. 17]) presents the cognitive aspects of the DSR process.

Generally, the output of DSR should be design science knowledge. De-
pending on the maturity of the problem and solution domains, the output
could be classified into inventions, adaptations, improvements, and routine
design; there the latter is not considered as possible knowledge contribution.
This classification is important for the purpose of this study, as it should be
adapted to the needs of an educational process. The contribution of DSR
is presented in Figure 22 (reprinted from [11, p. 19]).

What are the outputs of DSR? These are [154]: (1) constructs; (2) mod-
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Figure 22: DSR knowledge contribution framework. Reprinted from [11, p. 19]

Table 6: DSR outputs. Reprinted from [11, p. 20]

Output Description
1 Constructs The conceptual vocabulary of a domain
2 Models Sets of propositions of statements expressing relationships

between constructs
3 Frameworks Real or conceptual guides to serve as support or guide
4 Architectures High level structures of systems
5 Design Prin-

ciples
Core principles and concepts to guide design

6 Methods Set of steps used to perform tasks how_to knowledge
7 Instantiations Situated implementations in certain environments that do

or do not operationalize constructs, models, methods, and
other abstract artifacts; in the latter case such knowledge
remains tacit

8 Design Theo-
ries

A prescriptive set of statements on how to do something to
achieve a certain objective. A theory usually includes other
abstract artifacts such as constructs, models, frameworks,
architectures, Design Principles, and design methods

els; (3) methods; (4) frameworks; (5) architectures; (6) Design Principles;
(7) instantiations; and (8) better theories. Table 6 summarizes the outputs
of DSR (reprinted from [11, p. 20]).

3.10.3 Example of the applications of Design Science Research
for education technology

The educational research technology incorporates various methodologies
and techniques. Some are better formalized, others are based on teacher
expertize. Therefore, educational research technology is multi-paradigmatic
in its nature [155]. At the same time, teaching technology becomes multi
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paradigmatic as well as modern teaching process incorporates various tech-
niques and teaching methods and is always a combination of them that is
used in practice [151, p. 3]. Another factor is that teaching is always a
two-way process. Students come with preconceptions, and the role of the
teacher is to detect and properly reflect existing situations. Teaching takes
place in the social environment, and such social and cultural factors should
be taken into account as well. All these factors make the modern teaching
technology rather complex and challenging to develop. One of the possible
recipes of how these problems could be solved is proposed by Laurillard
[151, p. 211]. “Teacher should act as design scientists implementing the
following strategy:
(1) keep improving their practice;
(2) have a principled way of designing and testing improvements in prac-

tice;
(3) build on the work of others;
(4) represent and share their pedagogic practice, the outcomes they

achieved, and how these related to the elements of their design.”
As it was already mentioned, communication and evaluation are impor-

tant in DSR. At the same time, the achieved knowledge should be formalized
and generalized. Laurillard [151] suggests the form of pedagogical patterns
to be used for formalization. Pedagogical patterns as artifacts could form
a basis for the implementation of methods of DSR to educational technol-
ogy. Figure 23 (adapted from [151, p. 225]) presents a research cycle for
the learner-centered approach to educational technology.

3.11 Conclusions

The context provides a clear set of its features, enabling further imple-
mentation of domain-specific models. These features could be specified as
follows:
(1) interdisciplinarity enabling features; this is important for specifying the

educational policy in general;
(2) constructionist educational approaches and the relevant features; these

enable a proper direction for positioning of educational technologies in
general, design and specification of instructional design approaches in
particular;
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Figure 23: DSR cycle in the constructionist approach to educational technology.
Adapted from [151, p. 225]

(3) model-based approaches; simulation-centered approaches; these fea-
tures clarify the directions for development of constructionist educa-
tional methods;

(4) SLOs – clarify the description and specifications for LO as related to
CS education in general and SLOs as related to SCE in particular;

(5) specification of SI related context provides a background for model-
based and simulation-centred approaches;

(6) specification of DSR and its features within the context of the research;
this enables further development and implementation of the eapplica-
tions of the DSR methodology in the research context and the domains
in the study.

4 Meta analysis of the domain features of
the scientific computing educational do-
main based on the TPACK model

4.1 Introduction

Štuikys proposes the next models for modelling a CS domain to specify:
learning objectives, learning motivation, CS teaching content, technology
used in CS e-learning. The set of properties for the presented model are
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provided [33, p. 93]:
• “properties of heterogeneity of CS domain, resulting to be represented
by a number of a semantically identical and re-configurable feature
models;
• two types of models: base and context model are presented with priority
relation defined;
• SCV features specification is promoted;
• domain-based and feature-based semantic correctness are introduced;
• the list of characteristics to evaluate models is introduced”.

For the purpose of our research, it is important to stress that the CS and SC
domains are closely related. Scientific Computing as the activity of making
simulation relies on software and hardware solutions, or in other words,
relay on the CS domain. Generally, it could be considered as a higher-level
domain for the CS domain as it was presented in the above sections. The
next idea seems to be very important for the purpose of our study as well.
The proposed methodology [33, p. 97] could be considered as the mapping
from of the problem domain (educational concept) to the solution domain
(feature based concepts). Figure 24 (adapted from [38, p. 11]) presents a
methodology for a feature model design.

4.2 Pedagogical content domain model

4.2.1 Educational technology for the scientific computing educa-
tion

4.2.1.1 Interdisciplinary curricula: Existing approaches and per-
spectives for enhancements

First, we provide a general insight on the university curricula highlight-
ing topics which are related to interdisciplinarity. The university curricula
development is based on the next domains [156, 157]:
• educational philosophy, educational paradigms;
• didactics and epistemological perspectives;
• learning outcomes and course structure;
• assessment principles;
• organization of the learning process;
• instruction and teaching methods;
• educational technology and institutional organization;
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78



• limitations and perspectives.
Philosophy of education and educational paradigms can differ. It is im-

portant to indicate the assumptions for these aspects. We promote pragma-
tism [158] and postmodernism [159], especially given the obvious difficulties
in developing interdisciplinary curricula. This attitude allows us to teach
flexibility and learner-centered approaches to learning, and the importance
of this will be seen in the following sections. In addition, it is important to
emphasize that scientific research based on poststructuralism or postmod-
ernism is universal and does not enter into a single discipline [160].

Didactics and epistemological perspectives are the following areas for
study. Traditionally, methods of obtaining knowledge are linear, step by
step or deeper methods of understanding. This is applicable to a discipline-
oriented curriculum. Interdisciplinary knowledge is mainly based on social
and institutional solutions and is not linear in nature. It is important to
arrange the curricula in such a way that various epistemological ideas cross
the boundaries of the various fields of knowledge [157]. In addition to ex-
panding the epistemological perspectives, an interdisciplinary approach to
curriculum development must take into account social, cultural and eco-
nomic factors. The degrees obtained at such interdisciplinary courses could
practically improve the income of students [161]. At the same time, this
clearly corresponds to previously given philosophical assumptions. Another
important task is to understand the epistemic nature of interdisciplinary
knowledge. It is known [162] that cognitive processes which are involved
into interdisciplinary based inquiry include, besides others, and a cogni-
tive process of building integrations where such “. . . integrative devices in-
clude complex explanation and a focus on multiple causes for a multifaceted
phenomenon” [157]. We will consider the described principle of designing
“multifaceted” EC in the following sections.

Learning outcomes and the structure of the course should be based on
the consideration of the interdisciplinary nature of knowledge. Knowledge
develops as part of human contact and interaction [157]. Such interaction
within the university community should be clearly indicated at the stage
of curriculum development. Student learning outcomes include: flexible
thinking, improved cognitive skills, tolerance for ambiguity, the ability to
synthesize information, improve critical thinking skills [163]. The biggest
problem is that interdisciplinary knowledge is usually not sufficiently struc-
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tured. It is not always possible to determine the appropriate boundaries of
knowledge. Disciplines develop in their own way. Understanding and pro-
cessing knowledge related to another discipline is quite a challenge for the
student and the teacher [164]. Therefore, there is a need for non-traditional
approaches to structuring an interdisciplinary course.

Assessment principles should be developed taking into account the struc-
ture of interdisciplinary knowledge. A solution (and at the same time a
challenge) might arise in view of the integrative nature of interdisciplinar-
ity. Therefore, the main skill is the ability to integrate a different type
of knowledge. Thus, the assessment can be based on an assessment of
the improvement in the skills and cognitive abilities of students, including
originality, non-traditional thinking skills, computational thinking skills [7],
critical thinking skills, problem solving ability, the ability to synthesize and
evaluate new information [164].

Organization of the learning process could be based on teamwork, the
participation of students in discussions of interdisciplinary teams, design
and research activities. This can happen through educational units that
are integrated into the existing organizational structure of the university,
such as autonomous colleges, cluster colleges, interdisciplinary departments,
centers and institutes. At the same time, there may be non-traditional
approaches, such as training communities, mass open online courses and
multi-contact consortia [164].

Instruction and teaching methods for the interdisciplinary learning in-
clude the following processes [165, 157]: problem identification; definition
of problem knowledge; clarification of relevant epistemological concepts; in-
tegrating interdisciplinary understanding. The nature of interdisciplinary
knowledge contributes to team-oriented teaching technologies and project-
based teaching methods. At the same time, online learning methods and
computer enhancements can improve students’ understanding and motiva-
tion. [166].

Educational technology and institutional organization should be adapted
for the needs of interdisciplinarity. The solution could be: interdisci-
plinary learning groups; interdisciplinary learning environments; interdis-
ciplinary doctoral programs; university center for interdisciplinary teaching
and learning; training for e-technologies; alternative assessment techniques
[157].
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The reason for the limitations can be: institutional constraints; com-
plexity of interdisciplinary integration; difficulties in developing the course.
Motivation and prospects can include a holistic view of knowledge and in-
tegrative learning strategies [157].

4.2.1.2 A unifying approach for development of interdisciplinary
curricula

One of the most important questions to answer is if it is possible to develop
an interdisciplinary university curriculum using unifying approaches. Why
is it so important? Educational institutions nowadays, for obvious reasons,
struggle for the improvement of their scientific input, thus stressing the im-
portance of the interdisciplinary research. This allows crossing the bound-
aries of the traditional science and increasing competitiveness [167, 168].
At the same time, there are various difficulties and obstacles in that way
[169]. The need is to develop a unifying approach to the curriculum. Such
approach could be based on SC education (see Figure 25).

Figure 25: Interdisciplinary approach to university education

Generally, traditions in model-based simulations are based on different
paradigms, which historically came from various different scientific schools
and directions. There is no universal approach to modeling and simula-
tions from the technical perspective. Every paradigm uses its own set of
background theories and assumptions [3]. At the same time, such educa-
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tional goals of simulation-based education as improvements of computa-
tional thinking, critical thinking, and problem-solving skills are quite uni-
versal [103, 170].

It could be possible to develop an interdisciplinary university curriculum
based on these universal goals and focusing on SI using the model-based
simulation approach. This could support a unification approach to teach-
ing different sciences via looking for similarities in modeling and simulation
paradigms. Such similarities could serve as bridges, which interconnect
various disciplines. Another possibility for unification lies in the context
of system modeling and simulation science. This approach, as opposed to
traditional and based on theoretical backgrounds approach, is completely
application oriented and focuses on practical solutions in various fields of
applications. Experts in the field of system analysis could highlight the
relevant expertise, which could be used by students. Students could incor-
porate this knowledge into their own simulation building activities. As to
developing instructional strategies, the unifying approach could be found
incorporating the model-centered approach to instructions [3].

4.2.1.3 Possible approaches to interdisciplinary instructional de-
sign

The main aspects to be considered in the process of instructional design for
the interdisciplinary curriculum are:
(1) degree of interaction of people outside the same disciplinary commu-

nity;
(2) degree of integration between knowledge bodies relevant to disciplines;
(3) the presence of a comprehensive problem, theme or topic, which stim-

ulates interdisciplinary interaction [171].
The key point of the presented definition is the existence of a compre-

hensive problem, therefore the type of knowledge studied by the interdis-
ciplinary curriculum is a priori by its nature. Interdisciplinarity examines
issues and problems that do not exist within the disciplines [157], so it
is possible that there are no available training resources. The model for
instructional design should be project-oriented and research-oriented. The
main task is to provide a formal instruction based on a formal approach and
methods. The generalized view on interdisciplinary instruction is provided
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in Figure 26 (adapted from [172, p. 4]).

Pre-planned study
resources

No

Yes

Exist?

Projects,
Research

Instructional unit

Type of
knowledge

A Posteriori

A Priori

SI centered,
model-based

education,
didactic tools

Overarching
problem, topic,

theme

Model-based
educational tools

Instruction

Interdisciplinary
approach

Figure 26: The generalized view on interdisciplinary instruction. Adapted from
[172, p. 4]

The presented approach to the instruction, focused on the scientific in-
quiry, contains only guidelines for further implementation in the process of
practical instructional designing. This approach requires further investiga-
tion and is positioned as a topic for further research.

4.2.1.4 Scientific computing education: The scope and defini-
tions revisited

The definitions of SC and SC education are going to be analyzed and re-
vised, taking into account the previously presented descriptions. First, the
following definition (first modification of definition provided by Golub [66])
is proposed: “Scientific computing is a scientific discipline of conducting
(designing and implementing) scientific inquiry (in the field of interest) via
computer simulations.”

Two central meanings of the presented definition should be discussed:
(1) SI and
(2) computer simulations.
First, thre is a need to revise the meaning of the scientific inquiry that

was described earlier in this study. It should be revised as a result oriented
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activity. Jadrich [131] suggests defining SI as an activity of creation, testing,
and refinement of scientific models. Generally, this definition corresponds
well with the purpose of our studies, although the next remark should be
made here. Testing of models generally means in practice one or other types
of simulations or computer simulations in particular. Therefore, it could
be refered to the earlier presented definition of so-called “model-based”
simulations [3]. The revised definition is:

“Scientific inquiry is an activity of conducting scientific model-based sim-
ulations”.

Accordingly, SI in the field of computing could be defined as an activity
of conducting model-based computer simulations. Therefore, the earlier
proposed definition could be revised as follows:

“Scientific computing is a scientific discipline of conducting scientific in-
quiry using computers”.

The following remark should be made here. The area of interest is not
specified. Actually, the presented definition could be applied for any area in
which simulations could take place including multidisciplinary areas. The
focus in the presented definition is the model. The provided definition is
rather broad. It could be applied to any field, including interdisciplinary,
which accepts simulation. Consequently, SC education could be defined as
an educational process in the field of SC.

The model becomes the central part under the revised definition of the
SC, therefore the process of scientific activity converts here to the process of
designing artifacts in general or designing computer simulations in partic-
ular. The research methodology that could be implemented is DSR, which
allows unifying the process of research for SC thus providing new opportu-
nities for scientists, educators, and policymakers. The DSR cycle [9], could
be related to SC as following:
• Environment

– organizational Systems supporting infrastructure and organiza-
tional structure for simulations;

– technical systems hardware, software as related to simulations;
– DSR design appropriate models including conceptual model, math-
ematical model, computational model, simulation solutions and
process simulations

• Foundations
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– theories in the field of SI, theories in the field of computations and
simulations.

Under the previous definitions, the main attention to teaching SC is
shifted from the traditional approach like focusing on various internal parts
as presented in Figure 27 to focusing on the overall process of DSR in gen-
eral. The main teaching task could be formulated as how to teach students
to conduct SI using computers. It is clear that this new paradigm also
includes all steps of the previous definition but the main difference is that
this new paradigm systematizes the field and provides the unified research
method DSR. The aim of the educator is to develop an integrated educa-
tional environment as presented in Figure 27 (adapted from [3, p. 145]).

Integrated  
Instructionl unit

Integrated Educational
Environment

Simulation-based 
Learning 

 Environment
Simulation 
Program 

Figure 27: Levels of instructional structure for SC education. Adapted from [3,
p. 145]

4.2.1.5 Teaching Design Science Research for scientific comput-
ing education

The presented paradigm provides us a way for developing of educational
technology for SC. The main teaching goal is now shifting from teaching
students about how scientists do scientific research to teaching how to do
scientific research using simulations and computers. Generally, this ap-
proach closely corresponds with the earlier described definition of SI as a
model making activity [131, 146]. The classical view on how design is con-
ducted in engineering is presented in Figure 28 (reprinted from [20, p. 75]).
Attention should be paid to the following. Design Science Research as a
methodology for creating innovative artifacts. Therefore, this should be the
focus of teaching. In practice, it means a continuing process of improv-
ing the simulation first provided to the student. Therefore, the suggested
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teaching scheme is the following. The model improvement cycle should be
imprinted into the learning environment as an integral part of it. Such
learning environment could be named the DSR enabling learning environ-
ment. How is it possible to construct such environment? The method of a
multifaceted simulation is proposed. Such simulation should be based on
multifaceted models and the teaching process actually become a process of
“turning the model” enabling various planes of the model to be discovered.

Analysis Requirements Synthesis Simulation

Evaluation

Provisional 
solution

proposals

Conditional
predictions

Value of the solution 
proposals

Decision

Definition of
solution

Problem

Yes

No

Figure 28: Design cycle by Eekels and Roozenburg. Reprinted from [20, p. 75]

An analog with floodlighting a multifaceted three-dimensional object
with a stationary projector could be provided. Therefore, to understand
what the flood-lighted object looks like, an activity as turning the object in
space should be undertaken. One could achieve full understanding about
the external structure of the object only after it is turned and observed
all around. To construct such the DSR enabling learning environment is
rather a complex and challenging task. First of all the problem should be
transformed into a multifaceted problem. In addition, this is not decompo-
sition, as decomposition is mainly related to the internal structure, but a
process of faceting the initial problem. Such process is presented in Figure
29. Solving each of subproblems should allow, by “turning” the task, to
enable further observations. This approach could be observed from episte-
mological perspectives as well. It allows including serious gaming elements
into the learning process which simulates students’ curiosity and motivates
students for further studies.

86



Figure 29: Faceting the initial problem

Taking into account the presented scheme the earlier presented design
cycle should be adapted to the needs of the educational process (see Fig-
ure 30).
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Figure 30: Applications of the Design Cycle model for Scientific Inquiry-Centered
education

4.2.2 Didactic aspects of scientific computing education

4.2.2.1 Outline of the Computational Pedagogy approach

Computational pedagogy could be mentioned as an example of one pos-
sible approach to STEM education, especially for the introductory level
[173–177]. This approach differs from the presented earlier organizational
approach and focuses on didactic schemes, general computational thinking
skills, and practical abilities to conduct simulations. This approach could
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be considered as a kind of a unifying approach for CS and STEM education.
Traditionally, a deductive approach is considered as the most applicable for
teaching scientific topics (see Figure 31, reprinted from [174, p. 3]). Such
an approach is considered to be demotivating for students, especially for
topics where sufficient theoretical background and a large amount of pre-
knowledge are required [174, 178].

Deductive

Inductive

Abstract knowledge

Body of knowledge and details

Figure 31: Direction of informational flow in deductive and inductive pedagogy.
Adapted from [174, p. 3]

On the contrary, an inductive approach is promoted as such an alter-
native that could improve students’ positive attitude to learning science.
“The inductive approach to instruction, by contrast, first presents students
with a problem, a case, or data from an experiment. Students are then
guided to explore underlying facts, issues, and the like. As the culminat-
ing step, students are led to acquire on their own an understanding of the
underlying concept or organizing principle [179]. Inquiry-guided learning,
problem-based learning, and project based learning are all among forms
of inductive instruction [180]. While empirical evidence suggests that the
inductive approach to instruction is superior and that it fosters greater in-
tellectual growth [179] prudent educators should take advantage of different
approaches of teaching” (from [174, p. 4]).

To overcome the described problems of the deductive approach,
“Modeling-and simulation-based computational pedagogy” [174, p. 4] is of-
fered. Such pedagogy allows “cycle back and forth between the inductive
and deductive approaches to learning” [174, p. 4] with the assistance of
modeling and simulation tools. This is a very promising approach, espe-
cially for K-12 or starting university levels. At the same time, modeling
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and simulation approach is promoted as an example of the constructivist
approach.

The theoretical foundations of Computational Pedagogy are based on
the concept of cognitive retrieval presented by Brown et al. [181]. This
so-called “interleaved retrieval” practice forms a cognitive foundation for
the interdisciplinary computational pedagogical content knowledge. “Inter-
leaving retrieval practices by weaving together multi-disciplinary features
around a common topic (i.e., interdisciplinary education) have great ad-
vantages for gaining deep and lasting knowledge” [176, p. 2]. The process
of a model-based reasoning is presented as an inductive/deductive cycle of
modeling and retrieval of the models (see Figure 32, reprinted from [176,
p. 3]). This process “is consistent with the dual deductive and inductive
process of computational modeling and simulation” [182, p. 4]. By using
modeling and simulation, the learner could receive a feedback from the
simulation environment, thus promoting his or her construction of knowl-
edge. “Creating a model through a step-wise process and running it at
each stage of the development has the added advantage that learners get
immediate feedback about their work. It may be used in situations when
learning about the underlying theories and mathematical concepts that are
important. Through this process, learners can be led to develop an un-
derstanding of scientific reductionism that studying a system or solving a
complex problem requires breaking the system into its components or the
complex problem into smaller chunks (decomposition). Using models and
simulations, learners become actively engaged in‘doing’, rather than pas-
sively ‘receiving’ knowledge. In so doing, the learner becomes the center
of the learning process, allowing self-interpretation of the problem and re-
vise it if necessary, mediated by own biases, beliefs, preconceptions, prior
knowledge and observations” [182, p. 6].

4.2.2.2 The problems of the presented Computational Pedagogy
approach

First, from the educational perspective, there is a big difference between
simulation making and simulation using activities [3]. Moreover, there are
many doubts about the effectiveness of the simulation-using tools for en-
hancing learner’s motivation and its conceptual understanding of scientific
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Figure 32: Scientific methodology of modeling-testing-remodeling process used
in conducting research. Reprinted from [174, p. 3]

topics [183, p. 2]. The described problems will be covered in more detail.
Generally, the practical implementation of a simulation in the form of soft-
ware could be considered as an example of a cognitive artifact. Such an
artifact could be considered from different points of view. “When a person
uses an artifact to accomplish some task, the outside observer sees the sys-
tem view, the total structure of person plus artifact in accomplishing that
task. The person, however, sees the personal view: how the artifact has
affected the task to be performed. Under the system view on a cognitive
artifact, we see the entire system composed of the person, the task, and
the artifact. Seen from this perspective, the artifact enhances cognition,
therefore, with the aid of the artifact, a system can accomplish more than
without the artifact. Under the personal view on a cognitive artifact, that
of the individual person who must use the artifact, the view of the task
has changed: thus, the artifact does not enhance cognition it changes the
task. New things have to be learned and old procedures and information
may no longer be required: The person’s cognitive abilities are unchanged”
(see Figure 33 and Figure 34, adapted from [184, p. 3]).

Norman provides the following illustrative example [184, p. 3]: consider a
“todo” list. Such a checklist, for example, developed for aircraft pilots, from
the system point of view, improve pilots’ cognitive abilities by enhancing the
memory of pilots. Therefore, from the system perspectives, this is a memory
enhancer. From the pilot perspectives or from the personal view, using a
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Figure 33: System view of a cognitive artifact. Adapted from [184, p. 3]
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Figure 34: Personal view of a cognitive artifact. Adapted from [184, p. 3]

list is just another task requiring a different type of activity. Without a list,
a person should remember all the “todo” tasks. For using the list, the next
task should be performed:
(1) the construction of the list (in the described case is done beforehand

by the third person);
(2) remembering to consult the list;
(3) reading and interpreting the items of the list.
To resume, if from the system (read educator) view the cognitive abilities
are enhanced, from the personal (the learner’s) view (if considering the
person is involved in to only (2) and (3) types of activities) his cognitive
abilities are degraded as instead of trying remembering the list items, the
person now should remember only to consult the list. Such type of memory
degradation is clearly seen in the daily practices of education. Maybe this
is one of the reasons for the present popular movement towards educational
technology without a computer [185, 186]. As related to simulations as ITC
tools, simulations, as cognitive artifacts from the user perspective, could be
very harmful and demotivated. It is obvious that there is a kind of a shift
in tasks and cognitive processes involved into the process of a simulation,
therefore, educational simulations (the ones, which are intended to use in a
simulation-using manner) should be carefully developed and tested [187].
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4.2.2.3 Abductive reasoning as the key to discovery and innova-
tions

From the point of view of educational technology, as related to academic
teaching, the psychology of situated cognition provides recommendations of
how the learning environment should be constructed. Obviously, there is
a clear distinction “between natural environments which afford the learn-
ing of ‘percepts’ in everyday life, and unnatural environments” [106, p. 20].
Relying on the positions of Pragmatism, simulation could be considered as
a tool for “grounding” the learner to such artificial environment in terms of
grounded cognition [188, 189]. Using computer simulations could be con-
sidered as a kind of grounding via situated simulations [188, 190]. How this
grounding could be practically achieved? Simulation based learning could
be described from the positions of progression of mental models [3, p. 196]:
“. . . beginning with a student’s initial model of an examined system and
developing into a target conceptual model-presumably the same one un-
derlying the simulation’s computational model. Moreover, to arrive at the
target model, students must first develop their own intermediate concep-
tual models, which are mental models expressed as cognitive artifacts” (see
Figure 35, adapted from [3, p. 197]).

Mental
simulation

Computational
model 

Mental model

Computer
Simulation

Conceptual
model

Figure 35: The mediating role of conceptual models. Adapted from [3, p. 197]

The presented approach is focusing on a conceptual model as on an inter-
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mediate for grounding to take place. How could such conceptual models be
developed? Attention schould be paid to the following. Conceptual models
are based on mental models, so first,the following corresponding question
should be asked: how a mental model is developed by the human brain.
The approach, presented by Thagard, considering “mental models as rep-
resentations consisting of patterns of activation in populations of neurons”
[31, p. 444] is refered to. This cognitive model-based approach allows to
overcome the limitations of sentential models of theoretical abduction [29],
[30, p. 31] and expand Peirce [39] ideas of how mental models can “con-
tribute explanatory reasoning” going beyond verbal information and in-
cluding “visual, olfactory, tactile, auditory, gustatory, and even kinesthetic
representations” [31, p. 449]. Considering mental representations as pat-
terns of firing in neural populations, the process of constructing of mental
models could be presented as a chain of patterns developing by the process
of causal correlations [31, p. 452]. Such an approach could be used to pro-
vide explanations of how abduction could generate new ideas. The neural
model of abduction presented by Thagard and Stewart [32] implements a
fully multimodal convolutional model of “creative conceptual combination”
describing “many kinds of creativity and innovation, including scientific dis-
covery, technological invention, social innovation, and artistic imagination”
[31, p. 453]. The human brain is adapted to powerful learning mechanisms:
“One of these learning mechanisms is an abductive inference, which leads
people to respond to surprising observations with a search for hypothe-
ses that can explain them. Like all cognitive processes, this search must
be constrained by contextual factors such as triggering conditions that cut
down the number of new conceptual combinations that are performed” [31,
p. 458]. It is obvious that such triggering conditions use circumscription
in the form of a previous experience [191] for eliminating the inapplicable
transactions.

4.2.2.4 Enhancing modeling process by circumscription and ab-
ductive reasoning

To formalize the presented approach, the model of modeling diagram that
describes how students produce their models as mental and as expressed
ones [192], will be used. The presented approach considers modeling as
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a “non-linear creative process comprised of multiple and complexes stages
mainly concerning with acquiring information about the entity that is being
modelled (from empirical observations and/or from previous knowledge);
producing a mental model of it; expressing that model in an adequate mode
of representation, testing it (through mental and empirical experimentation)
and evaluating its scope and limitations” [193, p. 32]. Figure 36 (reprinted
from [193, p. 33]) presents the described diagram.

Figure 36: “Model of modelling” diagram. Reprinted from [193, p. 33]

From the perspectives of cognitive reasoning, the presented “model of
modeling” could be aggregated as follows. First, the propositional phase is
needed for the generalization of existing information by the inductive rea-
soning process. Next, the process of production of mental models that are
based on the existing information requires a kind of hypothetical model-
based reasoning to be involved, therefore, as it was described earlier, a kind
of abduction (or grounded abduction in this particular case) needs to be
implemented in such a case. The next steps are based on such classical rea-
soning method as deduction requiring some form of conceptualizations via
an empirical design process. Finally, all these processes are based on exist-
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ing knowledge and skills, which provide a sort of constraints in the form of
circumscriptive reasoning. This practical model, as related to modeling and
simulation in education, is generalized by Franco Landriscina and presented
in Figure 37 (adapted from [3, p. 204]) in a modified version adding the de-
scribed reasoning methods. The processes of abduction and circumscription
are extremely important, as they provide a plane dividing simulation using
educational methods from simulation making educational methods.

Figure 37: The epistemic cycle. Adapted from [3, p. 204]

The presented approach provides a clear picture of the common practice
of eliminating abduction and circumscription from the educational process.
This a kind of a usual practice that is based on complete reliance on ITC
tools as on a sort of magic wand could totally defocus the educational goals
from focusing on teaching SI and scientific reasoning to simply training ad-
ditional skills of using ITC tools. Obviously, the practical implementation
of the described approach is not a trivial task. This requires as additional
efforts for pre- and post-training of STEM teachers as well as additional edu-
cational programs to be developed. Moreover, the lack of practical examples
for such kind of activities stimulates a strong movement for education with-
out computers like presented by Bell et al. [194], that is, behind-the-scenes,
a movement for introducing abduction and circumscription into pedagogical
practice. Another reason for such popular “anti-computational” movement
could be a strong influence of “classical” instructional techniques, a sort
of “Instructionism vs Constructionism” as it was defined by Papert and
Harel [25, p. 9]: “Instructionism vs Constructionism looks like a split about
strategies for education: two ways of thinking about the transmission of
knowledge. But behind this, there is a split that goes beyond the acqui-
sition of knowledge to touch on the nature of knowledge and the nature
of knowing. There is a huge difference in status between these two splits.

95



The first is, in itself, a technical matter that belongs in an educational
school course on ‘methods’. The second is what ought properly to be called
‘epistemological’.”

4.2.2.5 Enhancing Computational pedagogy by Design Science
Research

The methodology of a DSR gives a pathway for formalization of SI centered
approach that is based on developing of model-based scientific simulations.
This methodology provides a set of analytical techniques, which are based
on circumscription and abduction reasoning. The structure of DSR (see
Figure 20, Figure 21) very clearly corresponds with the presented educa-
tional models (see Figure 36, Figure 36). This mapping could provide a set
of formalisms for practical implementations of DSR as a set of educational
tools. The purpose of DSR as an educational tool is twofold:
(1) First, to formalize the process of design model-based simulations as

cognitive artifacts. For this educational purpose, the set of DSR tech-
niques is truncated and adapted for the educational needs. The learner
is immersed in a kind of “quasi” scientific research environment, satis-
fying SI by designing a set of simulations based on provided models of
one or another type (see Figure 15). Therefore, a practical algorithm
is provided for such a case. The most important remark is the next:
the learner should gain a clear understanding of the meaning “rigor”
(as applied to this educational scientific research environment and fu-
ture “real” scientific research). In this educational case, the word rigor
means rigorous following of algorithm steps and teacher instructions;

(2) Next, to introduce DSR as a practical design tool for the future stu-
dents’ scientific activity. For this purpose, an example of one or DSR
formalism could be introduced to the students. Such an introduction
will provide a clear understanding of the method and its possible future
(research) and present (educational tool) applications.

As an example, the methodological guidelines for instructional technol-
ogy are presented in Table 7.
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Table 7: Formalization for the methodology

Abbreviation Name
(R) Introduction stage
(R → I) → Information sources
(R → P) → The importance of the problem
(R → A) → Possible practical applications
(R → O) → Detailed formalization of the research question
(A) Analytical stage
(A→ C) → The causes of the problem
(A→ R) → Functional requirements
(A→ P) → Expected performance
(A→ O) → Operational requirements
(A→ H) → Formal review
(A→ F) → Factorization
(I) Implementation stage
(I→ P) → Proposition
(I→M) → Design
(I→ I) → Implementation and coding
(I→ E) → Evaluation
(I→ C) → Clarification
(I→ S) → Summarizing and conclusions
(I→ G) → Generalization
(I→ F) → Final report

The process of implementation based on the provided guidelines is pre-
sented in Figure 38 (adapted from [20, p. 118]) which describes the appli-
cation of DSR as an SI centered educational tool.

The research question R is provided by an educator in the form of a
project or a problem to be studied in detail [195–197]. The learner should
start with developing some definitions and generalizations and specify how
the system to be modeled should be defined (from reality to a system,
identification of the problem). This identification should be provided in the
form of definite and clear answers to the next questions (adapted from [20,
p. 118]):

(RI) - what are the sources of information?
(RP) - why does problem seem to be important?
(RA) - what are possible practical applications of the problem?
(RO) - the output of the step, should be a detailed formalization of the

research question.
The next step (awareness of the problem) (A) is to systematize the prob-

lem in the form of relations with the outer structure and impacts of the
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Figure 38: SI centered educational tool. Adapted from [20, p. 118]
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environment:
(AC) what are the causes of the problem?
(AR) what are functional requirements?
(AP) what is the expected performance?
(AO) what are operational requirements? As related to simulations, the pos-

sible modelling and computing resources should be studied in detail.
(AH) Then, a formal review based on the previous study should be provided

and approved by an educator.
(AF) The fourth step is to provide the generalization (factorization) of the

previous studies in the next form: what class of similar problems could
be named?

The final step (implementation) (I) is to propose a practically imple-
mentable solution for the problem:

(IP) The learner starts from proposition for the simulation solution (from
system to model, the representation process): how to implement a
simulation solution for the previously formulated problem

(IM) After, the design process for a specific cognitive artifact for the pre-
sented problem has to be solved: what are possible models of the sys-
tem?

(II) Then, the implementation phase follows (from model to simulation, the
exploration process): what is the practical solution for simulation?

(IE) Evaluation phase follows the next. In this phase, the learner runs the
simulation on the computer and evaluates the results.

(IC) After, the clarification of the problem could be done and the steps are
repeated if needed.

(IS) Finally, the learner summarizes the problem and
(IG) provides a kind of generalizations in the form of
(IF) the final report. All these steps provide a formal basis for project-based

research in the form of developing of model-based scientific simulations.
The presented approach provides a practical educational methodology

for the constructionist project-based learning. The aim of the presented
methodology is to support the universal approach to the university STEM
education, thus enabling a common basis for interdisciplinarity and inno-
vations. Relying on Computational Pedagogy, abduction and circumscrip-
tion could be next introduced into the practice of the educational process.
This is important for a modern scientific environment as this enables cre-
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ations and scientific innovations. At the same time, such well-developed
approaches as a model-based approach to instruction and DSR are imple-
mented in the form of scientific-inquiry centered pedagogy for university
STEM education. The model-based approach provides a solid foundation
for teaching via development of model-based scientific simulations, enhanc-
ing scientific-inquiry and project-based constructionist teaching methods.
Design Science Research provides clear formalization in the form of univer-
sal educational techniques. Under these considerations, students could act
within an interdisciplinary group as quasi-researchers generating hypothe-
ses, designing simulations, evaluating the results and using DSR techniques.
Teachers should provide a quasi-research environment in the form of pre-
designed multifaceted models, educational instructions, and seamless theo-
retical backgrounds. Figure 39 presents an outline of the methodology in
the form of a feature model.

4.3 Domain model of the educational content

4.3.1 Designing content for Scientific Computing education

The simulation-based learning environment requires a systematic approach
to design its content. The designer should enable a smooth pathway from
the concept of the learning environment to practical solutions of problems,
which students could simulate using computers. The key factor, which is
important here, is to “understand the ways in which simulation can foster
learning in so many different contexts” [3]. An appropriate way of learning
is only the way of learning by building simulations as opposed to the way of
learning by using simulations. Landriscina [3, p. 99] provides the following
explanation: “. . . students must use either a programming language or the
features of a given modeling and simulation software environment to build
a simulation model on their own. To achieve this aim, they must:
(a) analyze a specific system;
(b) develop a conceptual model of it;
(c) create a computational model;
(d) implement the computational model as a simulation program;
(e) conduct numerical experiments on it to validate the computation

model;
(f) Lastly, they can use the simulation program to solve a problem or
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Figure 39: Feature model for DSR and SI centered pedagogy for grounding the
learner’s cognitive models in the form of a concept map
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understand the causes of the phenomenon under study.”
Each of these activities requires understanding, reasoning, and prediction

abilities and the construction of mental models thereby. Building a simula-
tion model is a challenging task in itself; also this is a challenging task in an
instructional context. The pre-knowledge of students differs. In such a case,
an educator could provide a preprogrammed model for simulations and shift
the educational process from simulation-making to simulation-using, which
is not so effective as the previous one, but supports a “mediated” style of
teaching [106, p. 21] and fits the previously described teaching strategy.
Generally, the role of instructional support is extremely important, as the
main goal, besides training particular students’ skills, is to develop stu-
dents’ understanding of the provided concepts. This instructional support
includes [3, p. 100] background information, questions, hints, explanations,
exploration guides, exercises, graphing tools, planning tools. However, an
important observation is that this support should be provided “on the fly”
and using a seamless approach, as previously described. Therefore, the “tra-
ditional” style, which is mainly oriented to requirements for prerequisites,
should be transformed to the seamless style, with instructional support
provided in parallel. At the same time, such transformations will improve
students’ motivational factors (Figure 40, adapted from [3, p. 101]).

Computational 
model 

Functional components

Instructional supports

Computational 
model 

Functional components

Instructional supports

Computational 
model 

Functional components

Instructional supports

Figure 40: Seamless instructional support. Adapted from [3, p. 101]
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This concept is closely related to the concept of “microworld” intoduced
by Seymour Papert [24, 3] and to the similar concept of synthetic environ-
ments [3, 198–200]. The main difference is that simulation-based environ-
ments are artifact-centered and have a clear focus aimed at the central role
of an artifact in the form of a model for simulations. It is also important
to stress the difference between simulation using and simulation building
activities. The difference is clearly seen if a well-known analogy or the so-
called “black box” model will be applied. Franko Landrisina [3], as opposed
to a “black box” as a model of learning by using simulations, suggests a
“glass box” as a model describing learning activities of simulation-building.

Another important issue to be considered is the problem of the cognitive
opacity of simulation models [3]. This problem, as refers to SC education,
brings a new insight to the earlier discussed so-called “situated learning”
approach [106, 201]. The situated environment should be designed in a
manner which enables using a set of “rendering” the model features, as well
as in the form of instructional design tools that brings such features into
the environment. This is an absolutely challenging task, as it also requires
teacher expertise to be transformed into a set of instructions. Moreover,
this requirement is based on the prediction that such expertise is presented
explicitely [202, 203]: “. . . these two are not sharply divided. While tacit
knowledge can be possessed by itself, explicit knowledge must rely on being
tacitly understood and applied. Hence all knowledge is either tacit or rooted
in tacit knowledge”.

It is important to stress, that namely knowledge but not skills be consid-
ered as “tacit”. In spite of a seeming contradiction, namely, knowledge, re-
lated to cognitive concepts, involves such cognitive dimensions as schemata,
paradigms, mental models, etc. [203]. Is it possible to make this knowl-
edge explicitly available? It could be possible by practical experience or
interaction with experts [203] and in the context of educational environ-
ment – teachers. Therefore, the mediating role of a teacher becomes even
more important. A teacher should focus not only on mediating the situated
learning environment but also on transferring his personal and best prac-
tice expertise in the field of model-based simulations. At the same time,
simulation-based learning involves an epistemic interplay among different
kinds of students’ mental models which are developed during simulation ac-
tivities [3]. Therefore, a well-designed learning process should be aware of
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the process of constructing students’ mental models (see Figure 41, adapted
from [2, p. 29]).

Figure 41: Epistemic cycle of a simulation and mental model. Adapted from [2,
p. 29]

The focus of education is moved to the improvement of students’ skills
of building simulation models. These skills should provide universal pre-
requisites for the complete educational environment. At the same time, the
content of CS, information, and communication technology courses could
be revised focusing on modeling and simulation solutions. The model by
itself should be designed as a multifaceted model with emphasis on teaching
students and using didactic approach which is based on DSR methodology
requirements. The multifaceted feature of the model allows students to
construct their knowledge in a constructionist manner, enabling students
group work and collaborations and bringing gaming elements into learning.

4.3.2 Main design principles for the model-based scientific in-
quiry centered Scientific Computing introductory content

First, accents of SC education should be refocused on teaching the basic
principles of model-based simulations and training the skills enabling stu-
dents to develop model-based simulations. This means not narrowing but,
on the contrary, widening the scope of the curricula. At the same time,
this unifies and integrates the complete educational environment, enables
the constructionist approach to learning, brings possibilities of gamification
into the learning process. Designing the content, an integrated approach
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considering all phases of SI should be undertaken. As an example it could
be provided a class of models, which could be based on recurrent equations
of the next form:

n+ 1 = f(n, n− 1, . . . ) (2)

The simplest example is Fibonacci numbers. The recurrence definition
of Fibonacci numbers is:

F (n+ 1) = F (n− 1) + F (n− 2), n > 2;F (1) = F (2) = 1 (3)

In spite of its simple form, these examples become a basis of the whole
unit focused on modeling scientific problems, which are based on recur-
rences, including stochastic recurrences. First, a scientific problem, for ex-
ample like analysis of the population growth problem (P) [204, p. 71], [205,
p. 311], [206] should be formulated. The recursive programming model could
solve it. Therefore, to find a solution, students could develop a simple simu-
lation in the form of a recursive program that calculates Fibonacci numbers.
To facet the model, some additional feature should be incorporated. For
example, the problem (P1) could be modified by asking about the time the
population should be k times bigger than the population of humans. Now,
students should think about the improvement of the previous model and
make a horizontal step in the educational design cycle. It could be so that
recursive solution will not suite due to the lack of computational resources
and this will force students to look for another solution as an explicit form
of Fibonacci (P2) (Binet’s formula):

F (n) = (1 +
√

5)n − (1−
√

5)n

2n
√

5
(4)

The next possible step is to introduce the Fibonacci primes. So the mod-
ified problem (P3) could be formulated as the modification of (P2) with
constraints on the population number allowing only prime Fibonacci values
for the number of population. In such a case, students will be forced to im-
plement parallelization techniques into their previously developed models.

The second step is to involve optimization and to modify the problem into
the next form: k(t)→ max within provided computational resources (P4).
Students could be asked to represent the dependence k(t) graphically. For
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better-prepared students, the emphasis on probability, stochastics [207] and
analogs of Fibonacci series (P5) could be placed [205, 206]. The stochastic
Fibonacci model for the evolution of populations whose members undergo
an immaturity phase could be presented. Let ξi(n), i ∈ N+, n ∈ N be
independent identically distributed random variables of generating function:

f(z) =
∑
k∈N

pkz
k, 0 < m = f ′(1) <∞ (5)

Let X(0) and X(1) be independent random variables that are also in-
dependent of ξ. The stochastic Fibonacci model is defined as follows [205,
p. 311]:

X(n+ 2)−X(n− 1) =


X(n)∑
l=1

ξl(n), if X(n) > 0, n ∈ N ;

0, if X(n) = 0, n ∈ N .
(6)

Obviously, the particular case ξi(n) = X(0) = X(1) = 1 a.s. i ∈ N+, n ∈
N is nothing but the Fibonacci sequence. This allows introduction to
stochastic experiments and stochastic modeling including stochastic pro-
cesses and the Monte Carlo method [208, 209]. As an example, the next
problem (P6) to prove ergodicity of the described stochastic process [207]
could be formulated. The described process is considered as mean-square
ergodic in the first moment if

lim
n→∞

n∑
0
X(n)

n
= E[X(n)] (7)

where E[X(n)] is the constant mean. The ergodicity in the second mo-
ment could be studied as well

lim
n→∞

n∑
o

[(X(n+ 1)− E[X(n)])(X(n)− E[X(n)])]
n

=

= E[(X(n+ 1)− E[X(n)])(X(n)− E[X(n)])] (8)

Such modifications or “faceting” of the problem introduce gamification
features into the learning process and facilitates the constructionist ap-
proach to learning. It is important to stress here, that this simply for-
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mulated example incorporates the main features of the model-centered sci-
entific inquiry-based education as focus on model-based simulations and
seamless approach to theoretical backgrounds. During the design of the
artifact in the form of a simulation model, students are forced to use the
design cycles and other DSR analytic techniques starting from formulat-
ing the hypothesis and providing working solutions for simulations. At
the same time, the multifaceted feature of the model allows students to
construct their knowledge in the constructionist manner, enabling students
group work and collaborations and bringing gaming elements into learning.
Figure 42 presents the summary of the presented DP.

4.4 Domain model of the technological content

Technological Content domain model is of primary importance. The reason
for such attitude is twofold.
(1) First, technology plays an important role for providing a platform for

experiments with computers, including modelling, simulation and par-
allelization topics;

(2) next, the technology itself is a topic to be included in to the curriculum,
especially for studying parallelization.

Technological domain consists of several major parts like:
(1) hardware platforms for computations;
(2) software tools for implementation of algorithms;
(3) software engineering topics and technologies.
Hardware platforms for calculations include various computational plat-

forms. Here the most important are the big data processing feature and
parallelization enabling features:
(1) the type of the processing unit (usually Complex Instruction Set Com-

puting (CISC));
(2) the type of the computational architecture (as related to the topic of

parallelization);
(3) Details of various processing architectures: SISD, SIMD, MISD,

MIMD;
(4) Details of MIMD architectures: Uniform Memory Access (UMA),

NUMA solutions.
(5) Details of hybrid HPCC architecture.
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Formulate an universal generalized model like a model of  a stochastic
recurrence. Specify a generalized view on the class of problems

Specify the conceptual model for a definite class of problems

Provide a general view on the model including generalized
mathematical model

Facet the initial model. Specify a class of conceptual sub-models

Provide an introductory (initial) problem or the next model  using the
previously specified  class of sub-models. Specify Scientific Inquiry

related aspects for the provided model

Develop (adopt) the mathematical model for the initial problem.
Introduce the required theoretical material.

Introduce computational model and algorithms  

Provide the relevant educational Software Learning Object enabling
simulation making students' activity

Introduce the relevant hardware and software topics

Specify the content of a Scientific Inquiry enabling educational tools:
specify instruction guidelines, provide didactic tools, specify

communication channels

NO

YES

The concluding 
  sub-model?

Develop dissemination of the simulation
results enabling activity

START

STOP

Figure 42: Summary of the design principles for the model based SI centered LR
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Software tools for implementation of algorithms include various paral-
lelization specific software tools:
(1) shared memory parallelization tools;
(2) distributed memory parallelization tools;
(3) platforms specific operation systems;
(4) platforms specific command languages;
(5) SC specific tools: randomization tools, matrix and vector computa-

tions; big-data visualization tools;
(6) Platform (computational, visualization, simulation) specific program-

ming languages and tools.
Software engineering topics and technologies include software develop-

ment methods. This is especially relevant for implicit parallelization tech-
niques and techniques based on the functional approach to programming.
Such methods include:
(1) model-based approach to software engineering (parallelization);
(2) software engineering approaches to scientific computing methods and

algorithms;
(3) software engineering approaches to big data processing including data

storage and visualization aspects.

4.5 Implementation of the models

4.5.1 Introduction

The following examples are more complex and use queueing networks and
stochastics. Basic principles of queueing networks [210–213] are easy to
understand and could become a foundation for various problems and simu-
lation experiments.

4.5.2 Python for model-based and simulation-centered education

The system of queues in series provides us with the kernel for the devel-
opment of a relevant model-centered simulation framework, which could
become as a basis for an integrated instructional unit. Such framework
includes basic meanings, such as: probability and distributions, basic of
queueing and other theoretical topics, as well as more complex theoretical
results and methods [4]. The basic meanings include:
(R) Randomness:
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(1) random numbers;
(2) random numbers’ distributions;
(3) generators of random numbers;
(4) Central Limit Theorem.

(P) Python programming constructions:
(1) decorators;
(2) coroutines;
(3) yield expressions.

(T) Results that are more complex include theoretical facts such as:
(1) queues series specifications and parameters like the sojourn time of

the customer;
(2) recurrent equation for calculating the sojourn time;
(3) stochastic simulation methods and multiprocessing techniques.

In Figure 43 (reprinted from [4, p. 45]) a general scheme of the described
educational framework is provided. All these theoretical and programming
structures allow the learner to carry out experiments with different models
of the system of queues in series.

The aim of such experimentations is twofold. First, it enables the learner
to understand the next sequence, which is important in any scientific re-
search:
(1) theoretical facts to be studied;
(2) conceptual model;
(3) mathematical model;
(4) algorithms and programming constructions;
(5) computational model;
(6) stochastic simulation and observation of simulation results.
That will give the whole picture of the scope of the general scientific re-
search to the learner (see Figure 44, reprinted from [4, p. 45]). Then it
forces a deep understanding of stochastic simulations and basic program-
ming constructions like multiprocessing and parallel programming. Such
competencies are of primary importance in the field of SC.

The presented framework provides three computer models of the system
of queues in series. Each of these models is rather different from its phi-
losophy and key features. Although the aim of each of these models is to
statistically model and investigate the main parameters of the system of
queues in series, the ideas which stay behind the scene of these models,
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are completely different. A comparison of these basic ideas will help the
learner to understand the main fundamentals that lie behind the parallel
calculations, multiprocessing statistical modeling and simulation.
(1) The first model is based on real-time recordings and it is defined as

an imitative model. It uses the Python multiprocessing module. The
precision of this model depends on the precision and resolution of the
time() method. It could be rather low in the case of various general-
purpose operating systems and rather high in the case of the Real
Time Operation System (RTOS). The learner could modify this model
using the earlier presented recurrent equation (for the sojourn time
calculations) and compare the results in both cases.

(2) The next model calculates the sojourn time of the customer and is based
on stochastic simulations [6]. The model does not use multiprocessing
directly. It emulates multiprocessing by using Python yield expressions.

(3) The last model presented here uses the Python MPI mpi4py module.
From now, MPI techniques for statistical modeling could be used, and
this could enhance Monte Carlo simulations by implementing addi-
tional trials [4].

Figure 43: Integrated model-based framework. Reprinted from [4, p. 45]

In general, the task for the learner is to provide a series of experiments
with the presented models and to obtain the experimental proof of the law
of the iterated logarithm for the sojourn time of the customer in the case
of the system of queues in series. An overview of the educational aspects is
presented in Figure 45.
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Figure 44: The model of the Educational Research. Reprinted from [4, p. 45]

4.5.3 Stochastic simulations of queueing systems using the C,
MPI, and OpenMP tools

The next approach, which is based on the same theoretical foundations as
the previously presented one, is a framework for learning parallelization [5].
The framework provides a set of programming models. It is based on the
task of stochastic simulations of the provided theoretical model of the sys-
tem of queues in series. The system of queues in series is selected due to the
simplicity of the primary definitions and wide possibilities for paralleliza-
tion. Different parallelization techniques are implemented for programming
the model. That allows carrying out a series of experiments with different
programming models, comparing the results, and investigating the effec-
tiveness of parallelization and different parallelization methods. Such par-
allelization methods include shared memory, distributed memory, and hy-
brid parallelization. These methods are implemented by MPI and OpenMP
APIs. Figure 46 (reprinted from [5, p. 2]) presents the model-centered ap-
proach to the introduction into SC and parallel programming. The other
important task, to be solved within the scope of this research, is to develop
DP for constructing of learning objects for learning parallelization. Such
DP should be based on the relevant theoretical constructions and provide a
basis for practical implementations. An overview of the educational aspects
is presented in Figure 47.

4.5.4 Further improvements

The following possible improvements could be implemented.
(m) Models:

(m1) wider class of queueing networks could be involved in the modeling
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Figure 45: Educational aspects of the Python based Scientific Computing
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Figure 46: Model-based framework for teaching parallelization. Reprinted from
[5, p. 2]

process;
(m2) additional types of models, as imitational models could be devel-

oped;
(m3) additional types of computational features could be implemented;
(m4) theoretical backgrounds for computational techniques could be re-

vised and improved.
(t) Technologies:

(t1) specifications for appropriate learning objects could be revised;
(t2) requirements for the integration and unification of an educational

environment could be provided.
(i) Instruction:

(i1) theoretical foundations for instructional design should be adapted;
(i2) practical recommendations for instructional design should be pro-

vided.
(e) Educational policy:

(e1) additional studies for SC integration are needed;
(e2) additional studies for the implementation of multi-disciplinary cur-

riculum are needed.
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Figure 47: Educational aspects of the C and HPCC based Scientific Computing
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4.6 Generalized feature model

Summarizing, the feature model could be implemented in the form of a con-
ceptual map diagram. Implemented reasoning schemes provide an outline
of concepts and meanings used during the assertions:
1. Scientific computing education:

(a) Revision of definitions (the main focus is on SI and research, not
on content);

(b) Model centered approach;
(c) From conceptual model to computer model (could be in the form

of software – possible approach software as a learning object);
(d) Teaching how to do research;
(e) Teaching SI by how to make models and conduct experiments with

models;
(f) Teaching of how to make model-based simulations;
(g) Seamless approach to theoretical prerequisites;
(h) DSR for improvement of models (as a teaching method);
(i) Educational task: improvements of the model-based simulation

(with the aim to find a solution to the scientific problem);
(j) Students as “quasi” researchers;
(k) Educators provide an artificial environment for this “primary” re-

search;
(l) Main focus on models and simulations (on artifacts);

(m) Inquiry-based, constructionist, and research-based education;
(n) DSR-based education.

2. Interdisciplinary education:
(a) Focus on research in the field of interest;
(b) Doing research;
(c) Solving scientific problems by SI;
(d) Making scientific model-based simulation.

3. The research context:
(a) Practical examples of implementations;
(b) DSR formalisms;
(c) Evaluation;
(d) Dissemination;
(e) Published papers.
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Figure 48: Generalized model of the Sceintific Computing Education

The generalized model of SI centered SC education is presented in Figure
48. The concept map of the related features is presented in Figure 49. The
list of concepts covered in the research include:
1. Cognitive artifact;
2. Case Studies;
3. Computational Model;
4. Conceptual Model;
5. Design Science Research;
6. Dissemination;
7. Educational technology;
8. Evaluation of models;
9. Formalization;
10. Computer Hardware;
11. Instructional Design;
12. Instructional Patterns;
13. Interdisciplinary University Research;
14. Learning Object;
15. Mathematical Model;
16. Model (in general);
17. Model-based Scientific Simulations;
18. Pedagogical Patterns;
19. PhD Research;
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Figure 49: Generalized feature model in the form of a concept map
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20. Publications;
21. Sample Software;
22. Scientific inquiry;
23. Simulational Reasoning;
24. Teaching Research methods;
25. Teaching Interdisciplinary Curriculum;
26. Teaching Methods;
27. Teaching Scientific Computing;
28. Teaching STEM, Engineering;
29. Theoretical prerequisites.

4.7 Conclusions

The section provides the detailed analysis of the SCE focusing on PC, EC,
and TC domains. Analyzing PC, educational technology aspects, instruc-
tional design aspects and didactic aspects of PC domain were studied. As
the result of the study DSR based educational methods are provided. An-
alyzing EC, the main DP of model-based SI centered introductory content
are provided. As the summarizing result of this study – the generalized fea-
ture model for SI centered SCE was implemented in the form of a concept
map.

5 Development of computational models for
teaching of parallelization

5.1 Introduction

5.1.1 Parallelism and parallelization: Advantages and disadvan-
tages

Why is parallelism needed and what are advantages and disadvantages of
parallelism? First, many real-world domains are parallel by their nature.
For example, many scientific problems, as the one which is mentioned above,
business and numeric applications model a parallel world, although the clas-
sical approach to programming requires to sequentialise solutions to such
problems. Next, parallel computers are more reliable, as even in case of
failures, computations are continued, while in a less efficient manner. Fur-
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ther, clearly, there is no limit to computational power. Powerful enough
uniprocessor architectures require expensive engineering solutions to be im-
plemented and are limited by a size and physical constraints. Multiprocessor
solutions could implement smaller computational devices, therefore deter-
mining more effective and at the same time cost-effective solutions. On the
other hand, there are some problems, arising with the parallel computations.
Skillicorn stresses that parallelism [44, p. 5]: “. . . introduces additional de-
grees of freedom into the space of programs, and into the space of archi-
tectures and machines.” Solutions and algorithms become more difficult in
the implementation as “. . . humans consciousness appears to be basically
sequential . . . The challenge is to provide suitable abstractions that either
match our sequential style of thinking, or make use of other parts of our
brain which are parallel. For example, the activity lights on the front panels
of several commercial multiprocessors allow us to capture the behavior of
the running system using the parallelism of the human object recognition
system.”

5.1.2 Computer architectures

The current state of parallelism could be described as follows [44]:
“. . . architectures specific programming of parallel machines is rapidly
maturing, and the tools used for it are becoming sophisticated; while
architecture-independent programming of parallel machines is just begin-
ning to develop as a plausible long-term direction”. The two key elements
of the conventional computational system are the processor and the mem-
ory [214]. Figure 50 (reprinted from [214, p. 1]) represents the memory-
processor interconnection known as the Von Neumann model of compu-
tation. The classical taxonomy of parallel computers is presented in Fig-

Memory

Processor

Instruction Data

Figure 50: Memory-processor interconnection. Reprinted from [214, p. 1]
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ure 51 (adapted from [215, p. 3]). The present-day taxonomy of parallel

Parallel computers

SIMD MIMD

Vector Array

Pipeline Multiprocessor

Figure 51: A simple taxonomy of parallel computers. Adapted from [215, p. 3]

architectures is presented in Figure 52 (reprinted from [214, p. 5]). This
taxonomy also includes hybrid architectures as well. Modern classification

MIMD

SIMD

MISD

Hybrid

Multiprocessors

Multicomputers

Data Flow Machines

Array Processors

Pipeline Vector Processors

Pipeline Vector Processors

Systolic Arrays

SIMD-MIMD Machines

MIMD-SIMD Machines

Figure 52: Taxonomy of parallel processing architectures. Reprinted from [214,
p. 5]

of parallel computers include: SISD (Single Instruction, Single Data that is
uniprocessors), SIMD (Single Instruction, Multiple Data), MISD (Multiple
Instruction, Single Data) and MIMD (Multiple Instruction, Multiple Data),
where MIMD is divided into two main classes, depending on the relation-
ship of memory and processors: Shared-memory and Distributed-memory
sub-classes. Shared-memory, or tightly-coupled, MIMD architectures al-
low any processor to access any memory module through a central switch.
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Distributed-memory, or loosely-coupled, MIMD architectures connect indi-
vidual processors with their own memory modules and implement access to
remote memory by messages passed among processors [44]. SISD comput-
ers have one Central Processing Unit (CPU) that executes one instruction
at a time (single instruction stream) and fetches or stores one item of data
at a time (single data stream). The dominating concepts today are the
SIMD and MIMD variants [216]. Figure 53 presents a general structure
of an SISD architecture (reprinted from [214, p. 2]). SIMD machines have
one Control Unit that executes a single instruction stream, but they have
more than one Processing Element. The control unit generates the control
signals for all of the processing elements, which execute the same operation
on different data items (thus multiple data stream), meaning that they exe-
cute programs in a lock-step mode, in which each processing element has its
own data stream. Figure 54 (reprinted from [214, p. 2]) presents a general
view of an SIMD architecture [214]. MISD machines could execute several

Control Unit Arithmetic
Processor

Memory

Instruction Results Data
Stream

Figure 53: SISD architecture. Reprinted from [214, p. 2]

Control Unit

Processing
element1

Processing
element2

Processing
elementn

. . . 

Control signals Control signals

Figure 54: SIMD architecture. Reprinted from [214, p. 2]

different programs on the same data item. Figure 55 (reprinted from [214,
p. 4] ) represents the general structure of an MISD architecture and Figure
56 (reprinted from [214, p. 5]) represents the general structure of an MIMD
architecture [214].

It is clear that each of architectures requires its own way for related soft-
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Figure 55: MISD architecture. Reprinted from [214, p. 4]
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Figure 56: MIMD architecture. Reprinted from [214, p. 5]

ware development. Therefore, such an architecture-specific way of software
development is dominating and programming models were successfully de-
veloped for each architecture class: lockstep execution for SIMD machines,
test-and-set instructions for managing access in shared-memory machines,
and message passing and channels for distributed-memory machines. Lan-
guages, algorithms, compiler technology, and in some cases whole applica-
tion areas, have grown up around each architectural style [44].

MIMD architectures are of the main interest within the scope of our
research. MIMD could be divided into two main groups: shared memory
or uniform memory access system Uniform Memory Access (UMA) and
distributed memory access systems or non-uniform memory access system
Non Uniform Memory Access (NUMA) are presented in Figure 57 (reprinted
from [214, p. 24]) and Figure 58 (reprinted from [214, p. 25]).

5.1.3 Hybrid parallel HPC Platforms

To improve performance, hybrid platforms which employ both shared and
distributed memory architectures are implemented. The shared memory
component usually is a shared memory multiprocessor socket or can be a
shared memory machine and/or Graphics Processing Unit (GPU). The dis-
tributed memory component is the networking of multiple shared memory
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Figure 57: MIMD UMA architecture. Reprinted from [214, p. 24]
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Figure 58: MIMD NUMA architecture. Reprinted from [214, p. 25]

units. Therefore, network communications of one or another type are re-
quired to move data from one unit to another. This could be a high-speed
inter-computer network or internal inter-socket bus. “Current trends seem
to indicate that this type of memory architecture will continue to prevail
and increase at the high end of computing for the foreseeable future” [217].
Figure 59 (reprinted from [217, p. 17]) presents a schematic view of hybrid
architecture. By using hybrid platforms it is possible to implement differ-
ent explicit parallelization techniques from usual sequence programming to
shared memory, distributed memory, and hybrid parallelization techniques.

CPU CPU

CPU CPU
Memory

network

CPU CPU

CPU CPU
Memory

CPU CPU

CPU CPU
Memory

CPU CPU

CPU CPU
Memory

Figure 59: Hybrid distributed-shared memory platform. Adapted from [217,
p. 17]
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5.1.4 Model-centered approach to parallelization

From the point of view of an educator, this is also a challenge; such an
approach also requires different and platform-specific learning objects to
be developed, a different didactic approach to teaching to be implemented
and different learning content to be prepared. Architecture-specific paral-
lel computing is quite sophisticated by its engineering and used technology
as well as teaching parallel computing is really a challenge for educators
and learners [44, p. 7]: “The problem lies in the differences between the
styles of parallel software that have grown up around each kind of archi-
tecture. . . . At the heart of the problem is the tight connection between
programming style and target architecture. As long as software contains
embedded assumptions about properties of architectures, it is difficult to
migrate it. This tight connection also makes software development difficult
for programmers, since using a different style of architecture means learning
a whole new style of writing programs and a new collection of programming
idioms. The mismatch between parallel architectures and parallel software
can be handled by the development of a model of parallel computation that
is abstract enough to avoid this tight coupling. Such a model must conceal
architectural details as they change while remaining sufficiently concrete
that program efficiency is maintained. In essence, such a model describes
an abstract machine, to which software development can be targeted, and
which can be efficiently emulated on parallel architectures. A model then
acts as the boundary between rapidly-changing architectures and long-lived
software, decoupling software design issues from implementation issues.”
Figure 60 (adapted from [44, p. 8]) represents the role of a model of parallel
computation.

Software

MODEL

Arch1 Arch2 Arch3

Programmer

Implementer

Figure 60: Role of a Model of Parallel Computation. Adapted from [44, p. 8]

As it could be seen from the presented figure, a suitable model should
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be independent of architecture; even the implemented solutions cannot be
equally effective for all architectures. Another important feature is so-called
“intellectual abstractness” [44]. Modern computer architectures are sophis-
ticated enough, so appropriate programming solutions are complicated and
too complex for the human mind. A suitable model must provide an ab-
straction for such details of parallelism as decomposition, mapping, commu-
nication, and synchronization. Other issues to be considered are a software
development methodology, cost measures techniques, scale or granularity
issues, and effectiveness of implementation issue.

5.1.5 Parallelization techniques

Software parallelization methods could be divided into two main groups:
explicit parallelization and implicit parallelization methods. The main idea
of implicit parallelization is to develop a universal and architecture inde-
pendent model (mainly using functional programming techniques) and pro-
vide an automatic architecture dependent implementation for the developed
model. That is why parallelization techniques are “hidden” in the model.
Generally, for the implementation of implicit parallelization techniques,
more sophisticated approaches for developing of the software models [44]
are needed to be used. Explicit parallelization techniques use definite and
software dependent implementation methods. To implement parallelization
on shared memory systems, mainly OpenMP – Open Multi-Processing is
used. OpenMP as an API supports multi-platform shared memory multi-
processing programming for some programming languages. MPI – Message
Passing Interface is “de facto” standard for distributed memory systems.

There are several ways of implementing parallel programming using clus-
ters of Symmetric Multiprocessing (SMP) nodes or other types of hybrid
systems. Implementing models, one can use pure MPI or pure OMP tech-
niques. Another solution is to use a hybrid approach combining MPI and
OpenMP [218].

5.2 Implicit parallelization models

5.2.1 Implicit parallelization with skeletons

Skeletons give a possibility for the implementation of implicit and possi-
bly automatic parallelization techniques [219, 220, 44, 221]. Map-reduce
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skeleton, for example, map-reduce skeleton in Haskell based Eden environ-
ment consists of Map, Parallel Map and Farm skeletons. Map functional is
defined as follows:

map :: (a→ b)→ [a]→ [b]
mapf [ ] = [ ]
mapf(x : xs) = (fx) : (mapfxs)

Parallel Map (parMap) is defined next, where the Eden-specific type
context (Trans a, Trans b) indicates that both types a and b must belong
to the Eden Trans type class of transmissible values [221]:

parMap :: (Trans a, Trans b) ⇒ (a → b) → [a] → [b]

Parallel Map evaluation scheme is presented in Figure 61 (reprinted from
[221, p. 5]).

Figure 61: Basic map evaluation scheme. Reprinted from [221, p. 5]

The case when the number of list elements is higher than the number of
available processors could be evaluated using Farm skeleton [221]:

farm :: (Trans a, Trans b) ⇒
([a] → [[a]]) - distribute
→ ([[b]]→ [b]) - combine
→ (a→ b)→ [a]→ [b] - map interface

farm distribute combine f

= combine ◦ (parMap(mapf)) ◦ distribute
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Parallel Farm evaluation scheme is presented in Figure 62 (reprinted from
[221, p. 6]).

Figure 62: Parallel Farm evaluation scheme. Reprinted from [221, p. 6]

If a reduction is executed after the application of map Map-reduce skele-
ton could be used [221]:

parMapRedr :: (Trans a, Trans b) ⇒
(b → b → b) → b → (a → b) → [a] → b

parMapRedr g e f

= if noPe == 1 then mapRedr g e f xs else
(foldr g e) ◦ (parMap (mapRedr g e f)) ◦ (splitIntoN noPe)

Parallel Map-reduce evaluation scheme is presented in Figure 63
(reprinted from [221, p. 8]).

5.2.2 Implicit methods for the parallelization of linear stochastic
recurrences

Generally, the linear stochastic recurrence could be written in the form:

x0 = B0

xi = (xi−1 ⊗ Ai)⊕Bi, 1 ≤ i ≤ n

Here Ai, 1 ≤ i ≤ n and Bi, 0 ≤ i ≤ n are mutually independent and in pairs
identically distributed random variables of general form.
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Figure 63: Parallel Map-reduce evaluation scheme. Reprinted from [221, p. 8]

There is no possibility to calculate the values of xi, 0 ≤ i ≤ n directly, as
xi has random values, which depend on the realization of random variables
A and B. A possible solution is to use the Monte Carlo method to generate
a set of sample values for every random variable and to use these the non-
random values for calculations. Generally, if the underlying type for random
variables A and B is defined as RA and RB accordingly, the underlying type
for variable x is defined A, then using data type notation the solution could
be written in the following form. First, a set of sample values for coefficients
A and B should be calculated: mcA :: R̃A → RA∗, where (RA)∗ is a notion
for a list with underlying type RA. Next, a list map functional could be used,
enabling the recurrence formula of a form τR :: RA × RA → A to a set of
realizations of random variables, and last, a list reduce functional \	 could
be applied (if needed) in order to obtain the result. Summarizing, there is a
solution in the form of composition: \	◦(τR∗)◦(mcAOmcA) :: R̃A×R̃A → A,
where we denote (f∗) as a list map functional for the function f , R̃A∗
and RA∗ a list with underlying type R̃A and RA, (◦) for composition of
operations, and (O) for polynomial compositions of functionals. As it is
seen from section 5.2.1, such compositions allow us to use parallel map-
reduce evaluation scheme.

At the next step, the τR operation for computing recurrences [44, p. 104]
could be clarified. First, in the case of computing xn value, τR = x⊗ /b0⊕y
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could be defined as:

x⊗ /b0 ⊕ y =


b0, if #x(= #y) = 0;

b0 ⊗ π1A⊕ π2A, if #x(= #y) 6= 0.
where

A = �/(x
j

;y),

a ; b = (a, b),
(a, b)� (c, d) = (a⊗ c, b⊗ c⊕ d),

π1(a, b) = a, and π2(a, b) = b

Summarizing, the computational model could be presented as
\	 ◦ τR ∗ ◦ (mcAOmcA) :: R̃A × R̃A → A. The evaluation strategy
for HPC clusters is the next:
(1) first, a parallel Map parMap for mcA to distribute RA∗ among evalu-

ation nodes should be used:

(Trans R̃A, T rans RA) ⇒ (R̃A → RA∗)→ (R̃A → RA∗)
→ (R̃A∗ → RA ∗ ∗)O(R̃A∗ → RA ∗ ∗)

(2) next, the parallel MapRedr parMapRedr for (\	, e,⊗/b0⊕), where we
denote a unit for reduction functional as e, to evaluate recurrence in
each node and make a reduction (if needed) could be used:

(Trans RA∗, T rans A) ⇒ (RA → RA → RA)→ (RA → RA → A)
→ RA∗ → RA∗ → A

Further development of the implicit model is out of the scope of this
research, therefore explicit models will be considered in detail in the next
section.

5.3 Explicit parallelization models

5.3.1 Introduction

Explicit parallelization models are based on distributed and shared paral-
lelization tools such as MPI and OpenMP tools. First, the general descrip-
tion of non-linear models for stochastic recurrences will be provided.
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(1) We define random vectors an = (a1
n, a

2
n, . . . , a

p
n) and bn =

(b1
n, b

2
n, . . . , b

p
n), n = 1, 2, . . . , where sequences of random variables ain

and bin, i = 1, 2, . . . , p are independent and consists of independent
and identically distributed (within each sequence). We consider ain,
i = 1, 2, . . . , p; n = 1, 2, . . . , distributed identically as random variable
a with distribution function A(x) = P(a < x) and bin, i = 1, 2, . . . , p;
n = 1, 2, . . . , distributed identically as random variable b with distri-
bution function B(x) = P(b < x).
We define a first order non-linear stochastic recurrence relations for the
random vector xn = (x1

n, x
2
n, . . . , x

p
n), n = 1, 2, . . . :

xi+1
j+1 = f(xij+1, x

i+1
j , ai+1

j+1, b
i+1
j+1),

xi1 = f ′(ai1, bi1), x1
j = f ′′(a1

j , b
1
j), i = 1, 2, . . . , p; j = 1, 2, . . . , where

f(x), f ′(x), f ′′(x) define non-linear functions of random variables.
(2) The defined vector xn is characterized by its components, and its length

is p. Generally, it is not possible to find analytic solutions for random
components of xn vector. We could be interested in integral parameters
of one or another form. For example, it could be interesting to find
stochastic characteristics like distribution of g(xi′1 , xi

′

2 , . . . , x
i′

j′), where
g() is a non-linear function of random variables. To solve the problem
indirectly, the Monte Carlo sampling method could be used.

(3) Monte Carlo sampling [222–224] is based on the next assumptions.
Considering random variable a with distribution function A(x) =
P(a < x) we define the k − th moment (if exists) as ak = Mak =∫∞
0 akdA(x). By U[0,1] we define the uniform distribution function, by
A− – the generalized inverse of A [223]:

A−(u) = inf{x;A(x) ≥ u}, u ∈ [0, 1].

The following lemma could be proved [223, p. 36]:

Lemma 5.1
If U ∼ U[0,1], then random variable A−(U) has the distribution A.

Proof. For all u ∈ [0, 1] and for all x ∈ A−([0, 1]) the generalized inverse
satisfies

A(A−(u)) ≥ u and A−(A(u)) ≤ x.
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Therefore,

{(u, v) : A−(u) ≤ x} = {(u, v) : A(x) ≥ u}

and
P(A−(u) ≤ x) = P(U ≤ A(x)) = A(x).

Using the method, in order to generate samples of random variable
a ∼ A, one should generate U according to U[0,1] and then make the
transformation of the form x = A−(u). Using such transformation, a
set of non-random samples of a random variable a: (a′, a′′, . . . ) could
be generated.

(4) The next important point to consider is the strong law of large numbers
[225]. The strong law of large numbers states that the sample average
converges almost surely to the expected value [225]:

X̄n
a.s.−→ µ when n→∞.

That is,
Pr
(

lim
n→∞ X̄n = µ

)
= 1.

This means that as the number of trials n goes to infinity, the probabil-
ity that the average of the observations is equal to the expected value
will be equal to one.

(5) The previously considered Monte Carlo method and Strong Law of
Large Numbers allow us to define a computational model for non-
linear stochastic recurrences of a general form. Let us define random
variables a and b with distribution functions A(x) and B(x) accord-
ingly. We could define a non random matrix of Monte Carlo samples
for variables aij and bij defined earlier, as an = (a1

n, a2
n, . . . , apn) and

bn = (b1
n,b2

n, . . . ,bpn) , where aij and bij are by non-random sample
vectors aij = ((aij)1, (aij)2, . . . , (aij)m) and bij = ((bij)1, (bij)2, . . . , (bij)m).
Using these definitions the model for non-linear stochastic recur-
rences of a general form could be defined as follows. We define a
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sample matrix xn = (x1
n,x2

n, . . . ,xpn), n = 1, 2, . . . , where xij =
((xij)1, (xij)2, . . . , (xij)m) - sample vector, and

(xi+1
j+1)k = f((xij+1)k, (xi+1

j )k, (ai+1
j+1)k, (bi+1

j+1)k),∀k ≤ m (9)

where
(xi1)k = f ′((ai1)k, (bi1)k); (x1

j)k = f ′′((a1
j)k, (b1

j)k), i = 1, 2, . . . , p; j =
1, 2, . . . , ∀k ≤ m, where f(x), f ′(x), f ′′(x) define non-linear component
functions of non-random samples.

Consider the case, then p � 0, n � 0, m � 0. A big amount of
computational resources are needed for modelling the above recurrences,
thus parallelization techniques are needed to achieve sufficient values for
p, n,m parameters.

5.3.2 Sequence model

The Sequence model is rather straightforward. No parallelization is imple-
mented. Programming construction of inline for cycles is used. Algorithm
(in ALGOL type pseudo-code) is presented in Algorithm 5.1.

Algorithm 5.1 Sequence programming model
global p, n,m

procedure CalculateSample(seed, λ)
s← randomSample← (seed, λ)
return (s)

procedure CalculateRecurrence(i, j, k)
comment: Init random generator: Seed, DistributionParameter
a← CalculateSample(Seed,DistributionParameter);
b← CalculateSample(Seed,DistributionParameter);
(xij)

k ← f((xij)
k
, a, b)

main
for k ← 1 to m

do


(xij)

k ← initialization
for j ← 1 to n
do for i← 1 to p{
CalculateRecurrence(i, j, k)

output ((xij)
k)
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5.3.3 Distributed memory model

Distributed memory model uses MPI tools for parallelization. Algorithm in
the form of pseudo-code is presented in Algorithm 5.2.

Algorithm 5.2 Distributed memory model
global p, n,m

procedure ProcessRecurrence(np, pid, seed, λ)
for k ← 1 to m/np

do



(xij)
k ← initialization

for j ← 1 to n
for i← 1 to p

do


a← randomSample← (λ, seed)
b← randomSmple← (λ, seed)
(xij)

k ← f((xij)
k
, a, b)

comment:Gathering results from each MPI

overallResultsArray ← (xij)
k

if pid == InitialProcessNr
then output (overallResultsArray)

main
MPI ← initMPI
Random← initRandomGenerator
a, b, x← initV ariables
comment: Call ProcessRecurrence with parameters
PAR = {NumberOfProcesses, ProcessId, Seed, StochasticsParameter}{

do ProcessRecurrence(PAR)
MPI ← finalizeMPI

5.3.4 Shared memory model

Shared memory model uses OpenMP tools for parallelization. Algorithm in
the form of pseudo-code is presented in Algorithm 5.3.

5.3.5 Hybrid model

Hybrid programming model uses MPI tools as well as OpenMP tools for
parallelization. The algorithm in the form of pseudo-code is presented in
Algorithm 5.4.
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Algorithm 5.3 Shared memory model
global p, n,m

main
a, b, x← initV ariables
OpenMP ← initOpenMP (numOfThreads)← privateV ariables(thid, i, j, k)
OpenMP ← sharedV aribales(overallResultsArray)
Random← initRandomGenerator
comment: Starting parallel region. Fork a team of threads

do for k ← 1 to m/numOfThreads

do



(xij)
k ← initialization

for j ← 1 to n
for i← 1 to p

do


a← randomSample← (λ, seed)
b← randomSmple← (λ, seed)
(xij)

k ← f((xij)
k
, a, b)

comment: gather results from each Thread

overallResultsArray ← (xij)
k

comment: Ending parallel region
output (overallResultsArray)
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Algorithm 5.4 Hybrid programming model
global p, n,m

procedure ProcessRecurrence(np, pid, seed, λ)
(xi

j)
k
, a, b← initV alues

repeat

do if pid! = startP idID
then MPI ← dataFromPreviousMPINode

OpenMP ← initOpenMP (numOfThreads)← privateV ariables(thid, i, j, k)
OpenMP ← sharedV aribales(overallResultsArray)
comment: Starting parallel region. Fork a team of threads

do for k ← 1 to m/(numOfThreads ∗ np)

do



(xi
j)

k ← initialization
Random← initRandomGenerator
for j ← 1 to n
for i← 1 to p

do


a← randomSample← (λ, seed)
b← randomSmple← (λ, seed)
(xi

j)
k ← f((xi

j)
k
, a, b)

comment: gather results from each Thread

overallResultsArray ← (xi
j)

k

comment: Ending parallel region
until pid! = lastP idID
comment:Distributing MPI results
if pid! = lastP idID
then distributrData←MPI

if pid == InitialProcessNr

then

 do overallResultsArray ← (xi
j)

k

output (overallResultsArray)

main
MPI ← initMPI
Random← initRandomGenerator
a, b, x← initV ariables
comment: Call ProcessRecurrence with parameters
PAR = {NumberOfProcesses, ProcessId, Seed, StochasticsParameter}{

do ProcessRecurrence(PAR)
MPI ← finalizeMPI
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5.4 Conclusions

The meta-models and algorithms presented in this section provide a com-
prehensive background for developing of application-specific models, which
will be presented in the next sections.
(1) First, such computational platforms as HPC cluster allow different

algorithms and programming techniques to be implemented during
parallelization. These include shared memory, distributed memory, and
hybrid memory solutions. For application in the study, HPC serves as
a universal platform, allowing different parallelization techniques to
be tested using this definite platform for computations. This allows
implementing benchmarking for different programming solutions, thus
increasing students’ motivations and implementing the constructionist
approach to learning.

(2) Next, stochastic recurrences of a general type provide a suitable model
for computations. This could be used to model definite application
areas. Incorporating stochastic into the model, one could test multidi-
mensional parallelization techniques, using the Monte Carlo modeling
method.

(3) Finally, the model-centered approach could be used for design and fur-
ther development of SLOs for teaching parallelization. This approach
is suitable both for implicit and explicit parallelization methods.

6 Experimental research: Educational im-
plementations

6.1 Introduction

This section presents an approach to designing software learning objects
based on the real-world scientific problem solved by the author. First, the
description of the real scientific task and the method for the simulation is
presented. Later, two case studies (practical applications), based on the
described theoretical results are presented [4, 5]. Both applications require
the same theoretical prerequisites from such fields as probability and oper-
ational research. The first application uses Python programming language
for software development. It could be employed as an educational tool
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within a scientific inquiry-based introductory course for statistical meth-
ods or stochastic. The second application is based on the same theoretical
foundations as first presented. It uses advanced computational techniques
and C programming language for programming of models. This application
could be employed for the teaching of scientific computations within a SC
course. These models were positively evaluated by reviewers and published
in Scientific Programming Journal (the journal is cited in Clarivate Ana-
lytics Master journals list http://mjl.clarivate.com/cgi-bin/jrnlst/
jlresults.cgi?PC=D&ISSN=1058-9244).

6.2 Experiment planning

The general view of the computational experiment is presented in Figure
64 and includes the System itself, Problem statement, Mathematical model
of the system, Computational model, and Simulation experiment. In more
detail:
(S) SYSTEM: Queueing in series system;
(P) PROBLEM STATEMENT: Limit theorem of the system of queues in

series under over-traffic condition;
(M) MATHEMATICAL MODEL: Monte Carlo modelling; Stochastic re-

currence based algorithmic solution;
(C) COMPUTATIONAL MODEL: Hardware, Software tools dependent

Computational model CM;
(SI) SIMULATION: Computational experiment based on CM for HPCC.

The computational model (see Figure 65) is hardware and software de-
pendent. It provides a basis for designing SLOs in the following manner:

(CM) COMPUTATIONAL MODEL CM: Stochastic Recurrence model of
Queues in Series

(SM) A SET OF SUB-MODELS: Model CM is divided into sub-models:
{SCM1, SCM2, SCM3, ....}

(L) A SET OF LEARNING RESOURCES: A set of sub-models is projected
to a set of LR in the form of SLOs.
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Figure 64: Computational experiment planning process

Figure 65: Learning resources design process
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6.3 Experiment design

6.3.1 Statement of the problem

The object of this research in the sphere of queueing theory is the law of
the iterated logarithm under the conditions of heavy traffic and with load
factor more than one for queues in series. In the paper [6], the law of the
iterated logarithm is proved for the values of important probabilistic char-
acteristics of the queueing system, like the sojourn time of a customer, and
the maximum of the sojourn time of a customer. It is also proved that the
sojourn time of a customer can be approximated by some recurrent func-
tional. The results of statistical simulations for various system parameters
and distributions are provided as well. The laws of the iterated logarithm
(LIL) are considered for investigating the sojourn time of a customer for the
system of queues in series. The queue in series is a queueing system which
consists of the series of single servicing nodes and in which a customer does
not visit the same queueing node twice.

We investigate here a k-phase system of queues in series (i.e., after a
customer has been served in the j-th phase of the queue, he goes to the
j + 1-st phase of the queue, and, after the customer has been served in the
k-th phase of the queue, he leaves the queue). Let us denote by rjn the time
of arrival of the n-th customer to the node number j; by τ jn = rjn+1 − rjn

– an interarrival time to the node number j, j ≥ 1 ( if j = 1, τ 1
n = τn

means interarrival time to the system); by sjn – the service time of the n-th
customer in the j-th phase; let interarrival times {τn} at queues in series
and service times {sjn} in each phase of the queue for j = 1, 2, · · · , k be
mutually independent identically distributed random variables. Let denote
E as the first moment for any random variable (if exists).

Next, denote by vjn the waiting time of the n-th customer in the j-th
phase of the queue; wjn = ∑j

i=1(vin + sin) stands for the sojourn time of the
n-th customer (time, which the n-th customer spent in the queueing system
until the j-th phase), j = 1, 2, . . . , k. By tjn we denote the sojourn time of
the customer in the node number j, that is tjn = vjn + sjn. Vectors t̂n = {tjn},
ŝn = {sjn}, and v̂n = {vjn} will denote the sojourn, servicing and waiting
time for each node accordingly.

We consider such a modified system of queues in series in which sjn =
0, j = 1, 2, . . . , k, n ≥ k. Thus, further we can investigate only the modified

140



system of queues in series and admit that n ≥ k.
When j = 1, 2, . . . , k, let

δj,n =
 sjn−(j−1) − τn, if n ≥ k

0, if n < k.

Let us define αj = Eδj,n, α0 ≡ 0, Dτn = σ2
0, Dsjn = σ2

j , σ̃
2
j = σ2

0 + σ2
j ,

s0
n = τn, j = 1, 2, . . . , k, δ̂n = max

1≤j≤k
max

0≤l≤2n
|δj,l|, [x] as the integer part of

number x.
We admit that the following conditions are fulfilled:
there exists a constant γ > 0 such that

sup
n≥1

E|sjn|4+γ<∞, j = 0, 1, 2, . . . , k (10)

and
αk > αk−1 > · · · > α1 > 0. (11)

At first we investigate LIL for the sojourn time of a customer in the
system of queues in series. The following theorem could be proved [6]:

Theorem 6.1 (The law of the iterated logarithm for the sojourn time of a
customer [6])
If conditions (10) and (11) are fulfilled, then

P
(

lim
n→∞

wjn − αj · n
σ̃j · a(n) = 1

)
= P

(
lim
n→∞

wjn − αj · n
σ̃j · a(n) = −1

)
= 1,

j = 1, 2, . . . , k and a(n) =
√

2n ln lnn. 2

6.3.2 Algorithmic solution

This section provides necessary theoretical background for creating of the
computational model for modeling of the system of queueies in series. Such
models allow us to study the behavior of the system of queueies in series in
various (including overloading) conditions. The first result (Theorem 6.2)
provides a general insight and example of application of the mathematical
method for stochastic analysis of the system of queues in series. This could
be used as an aim for SI focused teaching within the practical study of
the system of queues in series using simulation making activities. The
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next result (Theorem 6.3) provides a solution for the development of more
efficient (linear) computational model (in case of overloading). This result
is generalized as Proposition 6.5.

Let us, as it was described earlier, define n ∈ N as the number of the
arrival; independent random variables sjn, j ≥ 0 as interrarival times (case
j = 0) and service times, and be identically distributed with distribution
functions identical to the distribution function of random variable sj, that
is sj(x) = P (sj < x). Let us accordingly denote moments for variables sj

as
M(sj)k =

∫ ∞
0

(sj)kds(x).

Let us denote as t̂(x) a vector of distributions of the sojourn time of
the customer in each servicing node, that is t̂n(x) = {tjn(x)}, and sjn(x) =
P (sjn < x), j ≥ 0, ŝn(x) = {sjn(x)}, and vjn(x) = P (vjn < x), v̂n(x) =
{vjn(x)} – distributions and distribution vectors of the service time and
waiting time for the n− th customer in a j − th node.

Theorem 6.2 (On the distribution of the sojourn time for GI/G/1 queues
in series)
If the series sjn, j ≥ 0 fulfill the earlier provided conditions, and the condition

αk < αk−1 < · · · < α1 < 0. (12)

holds, there exists a vector of cumulative limit distribution functions of
the sojourn time for GI/G/1 queues in series, so that

lim
n→∞ t̂n(x) = t̂(x).

Proof. 1. First, consider the first node of the system. It could be proved
(see for example [45, p. 170]) that under theorem conditions and if
α1 < 0 the limit distribution function of the waiting time for the node
of type GI/G/1 exists:

lim
n→∞ v

1
n(x) = v1(x), ∀x > 0.

As t1n = s1
n + v1

n, so t1n(x) = P (t1n < x) = P (s1
n + v1

n < x), where s1
n and
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v1
n are independent random variables. In this case

t1n(x) =
∫ ∞
−∞

v1
n(x− y)ds1(y)

and

t1(x) = lim
n→∞ t

1
n(x) = lim

n→∞

∫ ∞
−∞

v1
n(x− y)ds1(y) =

∫ ∞
−∞

v1(x− y)ds1(y).

From x− y > 0 we have

t1(x) =
∫ ∞
−∞

v1(x−y)ds1(y) =
∫ x

−∞
v1(x−y)ds1(y) =

∫ ∞
0
v1(x)ds1(x−y).

2. Consider j = i, such that i > 1 and i < k. Assume that for j = i

the result holds, that is under conditions: τ in, n = 1, 2, . . . and sin, n =
1, 2, . . . are independent random variables with distributions functions
equal to the distribution function of variables τ i, that is τ i(x) = P (τ i <
x) and si, that is si(x) = P (si < x) and with moments (if exists)
denoted as aik = M(τ i)k and sik = M(si)k accordingly – there exists
a limit distribution ti(x) = limn→∞ t

i
n(x), ∀x > 0. Interarrival time for

node i+ 1 is equal τ i+1
n = sin+1 +max(0, τ in − tin) = sin+1 + (τ in − tin)+

.

(a) First, let us denote as ηin = (τ in − tin)+. In this case
we have ηin(x) = P ((τ in − tin)+ < x) x>0= P (τ in −
tin < x) = − ∫∞0 tin(x+ y)dτ i(y) and passing to the limit
ηi(x) = limn→∞ η

i
n(x) = − limn→∞

∫∞
0 tin(x+ y)dτ i(y) =

− ∫∞0 ti(x+ y)dτ i(y),∀x > 0 as limn→∞ t
i
n(x+ y) = ti(x+ y) exists

according to preconditions.
(b) Next, τ i+1

n = sin+1 + ηin. Variables sin+1 and ηin are indepen-
dent random variables, continuing, τ i+1

n (x) = P (τ i+1
n < x) =

P (sin+1 + ηin < x) = ∫∞
0 sin(x− y)dηi(y), and passing to the

limit τ i+1(x) = limn→∞ τ
i+1
n (x) = limn→∞

∫∞
0 sin(x+ y)dηi(y) =∫∞

0 si(x+ y)dηi(y), ∀x > 0. Variables τ̀n = τ i+1
n and s̀n = si+1

n

are independent random variables with limit distribution func-
tions τ i+1(x) and si+1(x) accordingly. From Preconditions (12)
as Eτ in ≥ Esin > Esi+1

n – the result follows from Part 1 of the
theorem.

3. Combining the above cases, the theorem result follows by induc-
tion on j.
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Theorem 6.3 (On the distribution of the sojourn time for GI/G/1 the
system of queues in series under overloading conditions)
If series sjn, j ≥ 0 fulfill the earlier provided conditions, and the condition

αk ≥ αk−1 ≥ · · · ≥ α1 ≥ 0. (13)

holds, a vector of cumulative limit distribution functions of the sojourn
time for GI/G/1 the system of queues in series do not exist, and

lim
n→∞ t̂n(x) = t̂(x) ≡ 0,∀x.

Proof. If the Condition (13) holds, then it follows, that for any node j the
system of queues in series will be under overloading conditions, that is for
any node j variables τ̀n and s̀n will be in relation, such that E(τ̀n− s̀n) < 0.
1. First, consider the first node of the system. It could be proved (see

for example [45, p. 175]), that condition α1 > 0 defines that for
any x, limn→∞ v

1
n(x) = v1(x) ≡ 0,∀x. From this, and from t1(x) =∫∞

0 v1(x)ds1(x− y) we have t1(x) ≡ 0,∀x.
2. Consider conditions of Section 2 of Theorem 6.2. Under conditions

(13), the limit value of the variable (τ in − tin)+ will be equal to 0, that
is limn→∞(τ in − tin)+ = 0. In such a case, τ i+1(x) = limn→∞ τ

i+1
n (x) =

limn→∞{sin+1(x)+(τ in(x)− tin(x))+} = limn→∞ s
i
n+1(x) = si(x), and we

could describe the node i + 1 as the node of type GI/G/1 with limit
interarrival rate τ̀ = τ i+1(x) = limn→∞ τ

i+1
n = limn→∞ s

i
n+1 = si(x).

As variables τ̀n and s̀n = si+1
n are independent random variables with

limit distribution functions si(x) and si+1(x) accordingly, the result
follows from precondition 13 (αi+1 ≥ αi) and Part 1 of the theorem.

3. Combining the above cases, the theorem result follows by induc-
tion on j.

Proposition 6.4 (The general form of recurrence equation for calculations
of the sojourn time of a customer)
Under earlier described conditions, let us denote by tjn the time of arrival
of the n-th customer; by sjn– the service time of the n-th customer in the
j-th node; τ jn = tjn − tjn−1; j = 1, 2, · · · , k; n = 1, 2, · · · , N ; τn = τ 1

n. The
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following recurrence equation for the sojourn time wjn of the n-th customer
up to node j is valid [45, p. 180]:

wjn = wj−1
n + sjn + max (wjn−1 − wj−1

n − τn, 0);
j = 1, 2, · · · , k;n = 1, 2, · · · , N ;

wj0 = 0,∀j;w0
n = 0,∀n.

(14)

Proof. It is true that if the time τn + wj−1
n ≥ wjn−1, the waiting time in the

j-th phase of the n-th customer is 0. In the case of τn + wj−1
n < wjn−1, the

waiting time in the j-th phase of the n-th customer is vnj = wjn−1−wj−1
n −τn

and wjn = wj−1
n +vnj +sjn. Taking into account the above two cases, we finally

have the proposition result.

The problem of the solution provided in Proposition 6.4 is that the solu-
tion is not linear and is complicated to implement in practice, taking into
account the implementation on parallel machines. The earlier provided re-
sults of Theorem 6.2 and Theorem 6.3 give us a possibility to generalize the
recurrence (14) linearizing its non linear part.

Proposition 6.5 (The parametric form of recurrence equation for calcula-
tions of the sojourn time of a customer under overloading conditions)
Let us define by α̂ = {α1, α2, . . . αk} – vector of parameters α. Under condi-
tions of the Proposition 6.4 the recurrence equation (14) could be presented
in the next parametric form:

wjn = f ′ ∗ (1−P′) + f ′′ ∗P′ (15)

where

f ′ is a non linear function of a general form (14);
f ′′ is a linear function such as: f ′′(ŵ, ŝ, τ̂) = wj−1

n + sjn + τn,

j = 1, 2, · · · , k; n = 1, 2, · · · , N ; wj0 = 0,∀j; w0
n = 0, ∀n

P′ : α̂→ {0, 1} – are vector α̂ predicate of the form (13).

Proof. The proof is rather straightforward. It is clear that depending on the
value of the predicate either linear or non-linear part is vanishing. Therefore
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we should analyze the value of P′.
(1) The case P′ ≡ false follows from the results of the Proposition 6.4;
(2) Finally, if P′ ≡ true, this means that the conditions of Theorem 6.3

hold. Under these conditions limn→∞t̂n(x) = t̂(x) ≡ 0,∀x, that means
that a non linear part of f ′ > 0, ∀n→∞. The result of the proposition
follows.

6.3.3 Benchmarking

The provided below benchmarking is based on counting of the number of
assembler instructions for a reduced instruction set style processor. First,
the number of instructions for non-linear model is calculated, next,the num-
ber of instructions for linear model is calculated. The results in the form
of assembler pseudo-code are presented in Algorithms 6.1 and 6.2. As it is
seen from the presented pseudo-codes the linear version is at least 2.6 times
more effective as it is implemented on machines with Reduced Instruction
Set Computing (RISC) processors architectures.

Algorithm 6.1 Benchmarking for the non-linear model
global wjn, sjn, wjnmin, wjminn, taun,max

main
max = wjnmin− wjminn− taun;

00 : BCF 03.5
01 : MOV F 21,W
02 : SUBWF 23,W
03 : MOVWF 78
04 : MOV F 24,W
05 : SUBWF 78,W
06 : MOVWF 25

if(max < 0) max = 0;
07 : BTFSS 25.7
08 : GOTO 10
09 : CLRF 25

wjn = wjminn+ sjn+max;
10 : MOV F 22,W
11 : ADDWF 21,W
12 : ADDWF 25,W
13 : MOVWF 20
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Algorithm 6.2 Benchmarking for the linear model
global wjn,wjnmin, sjn, taun

main
wjn = wjminn+ sjn+ taun;

01 : BCF 03.5
02 : MOV F 22,W
03 : ADDWF 21,W
04 : ADDWF 24,W
05 : MOVWF 20

6.3.4 Modeling results

The material presented in this section is based on the content of Section
7 of the publication [6]. In this section, the results of statistical modeling
of the sojourn time of a customer in the system of queues in series under
overloading conditions are presented. Specifically, we are interested in ex-
ploring the adequacy of the theoretical results presented earlier. We also
pay special attention to Condition (2) as we consider it as the substan-
tial condition for the relevant proof of the theoretical results such as the
law of the iterated logarithm for the sojourn time of a customer. Here we
also describe technical resources we used for modeling and brief analyses of
modeling algorithms. For statistical modeling of a customer’s interarrival
and serving time, we use exponentially distributed random variables with
the parameter λz = Eτn for the customers interarrival time simulation,
and with the parameter λjs = Esjn for the simulation of the serving time
in the j-th phase of the system of queues in series. We integrate model-
ing results using the Monte Carlo simulation technique by selecting limit
values of the simulated sojourn time. For implementing simulation algo-
rithms, we use parallel computing techniques powered by the HPC cluster
of Vilnius University http://kedras.mif.vu.lt/itc/. The cluster uses
the Debian GNU/Linux 6.0 operating system(OS). The cluster resource
management is implemented by SLURM – The Simple Linux Utility for
Resource Management https://computing.llnl.gov/linux/slurm/. For
implementing parallel programming techniques we use MPI interface Open
MPI implementation http://www.open-mpi.org/faq/?category=slurm.
Other available resources, used during the implementation of the modeling
results, are gcc-4.4 4.4.5-8 the GNU C programming language compiler;
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gsl-bin 1.14+dfsg-1 GNU Scientific Library (GSL) binary package; python
2.6.6-3+squeeze-7 interactive high-level object-oriented language (default
version); python-numpy 1:1.4.1-5 – Numerical Python (adds a fast array fa-
cility to the Python language); python-matplotlib 0.99.3-1 – Python based
plotting system in a style similar to Matlab.

The main algorithm is written in C using parallel program-
ming techniques. For generating a random number sequence of
interarrival and serving times, we use the GSL library provided
second-generation ranlux generator gsl_rng_ranlxs2 with the rate
of 253k doubles/sec http://www.gnu.org/software/gsl/manual/html_
node/Random-Number-Generator-Performance.html. Software for data
preparation and processing of the results is implemented in Python using
numpy and matplotlib extensions. The possibility of using the cluster re-
sources allowed us to obtain sufficient simulation parameters with the total
number of customers up to 1010, the total number of serving phases up to
210 and the total number of sequences in simulations up to 100.

The main results of the simulation are presented in Figures 66–77. Here
we consider the validity of Condition (2). First, we provide the results of
statistical modelings for exponentially distributed interarrival and service
times. We clarify the results for a different number of phases. Afterward,
we provide the results for the mixed distributions. In this case, we consider
the interarrival time as exponentially distributed and the service time as χ
- squared distributed. The procedure of evaluation of the results is based
on the visual evaluation of simulation plots. We consider the simulation
results as valid if each line, which represents one simulation trial, is within
the approximation lines, determined by the iterated algorithm law. In such
a case we claim that the law of the iterated algorithm, as it is stated in
Theorem 6.1, is valid.
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Figure 66: Simulation results for the system of queues in series with 210 phases
and 10 Monte Carlo trials. Exponential distribution

Figure 67: Simulation results for the system of queues in series with 210 phases
and 50 Monte Carlo trials. Exponential distribution

Figure 68: Simulation results for the system of queues in series with 210 phases
and 100 Monte Carlo trials. Exponential distribution. Reprinted from [6, p. 18]
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Figure 69: Simulation results for the system of queues in series with 28 phases
and 10 Monte Carlo trials. Exponential distribution

Figure 70: Simulation results for the system of queues in series with 28 phases
and 50 Monte Carlo trials. Exponential distribution

Figure 71: Simulation results for the system of queues in series with 28 phases
and 100 Monte Carlo trials. Exponential distribution. Reprinted from [6, p. 18]
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Figure 72: Simulation results for the system of queues in series with 23 phases
and 10 Monte Carlo trials. Exponential distribution

Figure 73: Simulation results for the system of queues in series with 23 phases
and 50 Monte Carlo trials. Exponential distribution

Figure 74: Simulation results for the system of queues in series with 23 phases
and 100 Monte Carlo trials. Exponential distribution. Reprinted from [6, p. 19]
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Figure 75: Simulation results for the system of queues in series with 22 phases
and 10 Monte Carlo trials. Mixed distribution

Figure 76: Simulation results for the system of queues in series with 22 phases
and 50 Monte Carlo trials. Mixed distribution

Figure 77: Simulation results for the system of queues in series with 22 phases
and 100 Monte Carlo trials. Mixed distribution. Reprinted from [6, p. 19]
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As we can see from the presented figures, in all the cases of simulation tri-
als for randomly selected interrarival and service times, the relevant Monte
Carlo simulation lines are inside the limits defined by the approximation
results.

As a plan for future research, in spite of the sufficient values of the sim-
ulation parameters, we would like to proceed by increasing the number of
trials and the number of phases in the computational model. In this partic-
ular research, the number of trials was limited by the number of available
processors of the computer cluster. So we could improve the parallel algo-
rithm to make it less dependent on the availability of the cluster resources.
Another step could be the simulation of the probability distribution of the
sojourn time on the exit of the queues in series. Here we could calculate the
main distribution parameters and prepare plots for visual control. Finally,
we could proceed with the simulation of a multi-server system of queues in
series and investigate the validity of the relevant theoretical results. In the
conclusion of this section, taking into account the validity of Condition (11)
we state the correlation of simulation and approximation results of the LIL
for the sojourn time of a customer in the system of queues in series under
overloading conditions.

6.4 Case study of the model-based approaches to
teaching interdisciplinary curricula: Python
based simulation models

6.4.1 Theoretical basics

The material of this section is mainly based on the results of the publica-
tion [4]. We present a brief description of the key topics of an introductory
curriculum in scientific computing. These topics include randomness with
random numbers and distributions, stochastic simulations and multipro-
cessing. We use a simple model of throwing a die or a number of dice. The
main task of these experiments is to provide an experimental proof of the
Central Limit Theorem. These models and experiments with such models
also enhance the learner’s understanding of pseudo-and quasi-random num-
ber generators and the exponential distribution. That could provide basic
ideas for more advanced experiments with the model of queueing systems.
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6.4.2 Random numbers and distributions

All probability topics could be traditionally considered difficult to under-
stand and are always within the scope of interests of international educa-
tion scholars [226]. At the same time, such topics are very important in
scientific research [227]. The Model-Centered Approach makes it easier to
understand the material. The model we are studying is a simple model of
throwing a die or a specific number of dice. We start with one die and
continue experimenting with more dice.

The aim of these introductory experiments is rather complex. We not
only introduce probability and distributions but also we simultaneously
introduce stochastic simulations and parallel computing. We also take one-
step towards scientific research as we introduce the experimental proof of
the Central Limit Theorem.

We begin with the introduction of random number generators leaving
distributions behind the scene. We then explain uniform random numbers.
Discussions about true randomness or quasi-randomness [228, 229] could
follow. For advanced learners, the task to carry out a number of exper-
iments with pseudo-randomness and the Python pseudo-random module
could be presented. As an introductory step, the assignment for the learner
is to increase the number of trials and supervise the results of simulations.
In the next steps, we proceed to more sophisticated experiments and paral-
lel calculations. We use the Python random module for simulations and the
mpi4py for parallel programming. The Python random module implements
pseudo-random number generators for various distributions. For example,
random.randint(a, b) returns a random integer N such that a ≤ N ≤ b

and random.expovariate(lambd) returns exponentially distributed random
numbers with the parameter ‘lambda’. One should refer to Python docu-
mentation for specific details. The programming model of a single die is
presented in Figure 78 (reprinted from [4, p. 39]). The results of a simula-
tion in the case of a single die are presented in in Figure 79 (reprinted from
[4, p. 39]).

Next, we proceed to the case of two dice. The main idea at this point
is to explain the Central Limit Theorem by experimenting with different
numbers of dice. Figure 80 (reprinted from [4, p. 40]) represents this idea.

The learner proceeds by modifying the two-dice code that enables him
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Figure 78: Python single die model. Reprinted from [4, p. 39]

Figure 79: Simulation results for a single die. Reprinted from [4, p. 39]
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Figure 80: Comparison of the probability density functions. Reprinted from [4,
p. 40]

to start a multi-dice case. The code is analogical to the one die code except
for the two instructions presented below:

list_of_values.append(random.randint(1,6) + random.randint(1,6))
...
pylab.hist(list_of_values, pylab.arange(1.5,13.5,1.0) )
...

The results of a simulation in the two dice case are presented in Figure
81 (reprinted from [4, p. 40]).

Figure 81: Two-dice case. Reprinted from [4, p. 40]
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We can now proceed to normal distribution. The task here is to show how
the above multi-dice case correlates with the normal distribution. Another
task would be to introduce the mean and deviation. The code is similar to
the one-die case except for the instruction used below:

...
list_of_values.append(random.normalvariate(7,2.4))
...

The results of a simulation for normal distribution are presented in Fig-
ure 82 (reprinted from [4, p. 40]).

Figure 82: Simulation results for normal distribution. Reprinted from [4, p. 40]

The final step is to introduce the exponential distribution. One always
uses the exponential distribution for simulating interarrival times of cus-
tomers in queueing systems of various types. The model of the exponen-
tial distribution and the results of a simulation are presented in Figure 83
(reprinted from [4, p. 41]) and Figure 84 (reprinted from [4, p. 40]).

6.4.3 Stochastic simulation

Stochastic simulation is of primary importance in the field of SC . We fo-
cus on Monte Carlo methods [227, 230, 231]. After the model has been
constructed, we could generate random variables and experiment with dif-
ferent parameters of the system. In the scope of this section, the point of
the Monte Carlo experiments is to repeat the trials of our model many times
with a view to accumulate and integrate the overall results. The simplest
application was described in the previous subsection. If we increase the
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Figure 83: Python model for the exponential distribution. Reprinted from [4,
p. 40]

Figure 84: Simulation results for the exponential distribution. Reprinted from
[4, p. 40]
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number of trials, we increase the preciseness of simulation results. Here the
learner should carry out a certain number of experiments using this sim-
ple model by increasing the number of trials. By increasing the number of
dice and the number of trials, the learner will face relatively long calcula-
tion times. It could be a good motivation to use parallel calculations. The
Python model of multiple dice is presented in Figure 85 and the result of a
simulation is presented in Figure 86 (reprinted from [4, p. 41]).

Figure 85: Python model of multiple dice. Reprinted from [4, p. 41]

As a next step, a set of more comprehensive problems like modeling of
various queueing systems could be introduced for the learner. A brief in-
troduction to the classification of queueing systems is presented in the next
section of this study. The learner begins with the modeling of M/M/1 sys-
tem or a more complex queueing system. The basic meanings of stochastic
processes might be introduced at this step as well. As a possible example,
the problem of investigation of the output process could be offered. One can
prove that for M/M/1 system the output is again the Poisson process. So
the problem of gathering data and plotting the output empirical histogram
might be presented.

159



Figure 86: Simulation results of multiple dice. Reprinted from [4, p. 41]

6.4.4 Systems of queues in series and stochastic simulation

6.4.4.1 Queueing systems

Below we provide an introductory description of queueing systems that
consider modeling and stochastic simulation positions. A simple queueing
system consists of one server that provides service for arriving customers.
The general scheme of the simple queueing system is presented in Figure
87 (reprinted from [4, p. 41]).

Figure 87: The simple queueing system. Reprinted from [4, p. 42]

In general, the queueing system consists of one or more servers that
provide service to arriving customers. This could also include one or more
servicing phases with one or more servers in each phase. Arriving customers
who find all the servers busy join one or more queues in front of the servers.
Many applications can be modeled as queueing systems, such as manufac-
turing systems, communication systems, maintenance systems, and so on.
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An overall queueing system could be characterized by three main compo-
nents: the Arrival process, the Service mechanism, and the Queue discipline.
Arrivals may come from one or several limited or unlimited sources.

The arrival process describes how customers arrive at the system. We
denote by αi the interarrival time between the arrivals of the (i − 1) and
i− th customer, the expected inter-arrival time (or mean) by E(α) and the
arrival frequency by

λ = 1
E(α)

We denote by s the number of servers in the queueing system. The service
mechanism is specified by that number. Each server has its own queue as
well as the probability distribution of customer service time. We denote by
si the service time of the i− th customer, by E(s) the mean service time of
a customer and by

µ = 1
E(s)

the service rate of a server.
The rule that any server uses to choose the next customer from the queue

is called the queue discipline of a queueing system. The most used queue
disciplines are: Priority – customers are served in the order of their impor-
tance; FIFO – customers are served on the First-in First-out basis; LIFO –
customers are served on the Last-in Last-out basis. The extended Kendall
classification of queuing systems uses 6 symbols: A/B/s/q/c/p where A is
the distribution of intervals between arrivals, B is the distribution of service
duration, s is the number of servers, q is the queuing discipline (omitted
for FIFO), c is the system capacity (omitted for unlimited queues), p is
the number of possible customers (omitted for open systems) [232, 233].
For example, M/M/1 states for Poisson input, one exponential server, one
unlimited FIFO queue, and unlimited customer population.

Queueing systems are used for modeling and research in various fields of
engineering and science. For example, we could model and study manufac-
turing or transport systems using the queueing theory. Here the requests
for service are considered as customers and the maintenance procedure as
a service mechanism. The other examples are computer systems (terminal
requests and server response accordingly), a computer multi-disk memory
system (data writing/reading requests, shared disk controller), a trunked
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radio system (telephone signals, repeaters), local area computer network
(requests, channel) [234]. In biology, one could employ a queueing theory
to model an enzymatic system (proteins, common enzyme) [235]. In bio-
chemistry, one could implement a queueing network model to study the
regulatory circuit of the lac operon [236].

6.4.4.2 Why the system of queues in series

We consider a queueing system as a system of queues in series – it consists
of more than one server, which is joined consequentially, and as unlimited –
with an unlimited calling population. The interarrival time and the service
time are both independent and exponentially distributed variables. The
Queue discipline is endless FIFO. A multiphase queueing system naturally
maps to a multicore computer topology. As we see in later sections of this
report, such a model could be easily programmed, studied and modified.
The model also allows a comparative study of different approaches to mul-
tiprocessing. The model of the system of queues in series is presented in
Figure 100.

6.4.4.3 Theoretical framework

In the case of statistical modeling, we always face the problem of the com-
puter code verification. Therefore, it is always an open question if there are
any errors in our program or algorithm. The model is not fully analytical
and each time we run the program, we have different inputs and outputs.
So, to verify the correctness of the code or algorithm, a different (from that
one we use in the case of fully deterministic input data) approach is needed.
To solve this question, we could apply some theoretical results, which could
be found in the scientific literature. Such results give us a base for output
data analysis and verification as well as for solving the problem of the cor-
rectness of the modeling results [6]. We will investigate the sojourn time
of the customer in the system of queues in series. The theoretical result of
modeling is provided in 6.1 of this study.

6.4.4.4 Statistical modeling

After the model has been constructed, we could arrange a number of exper-
iments with that model. This allows us to investigate certain parameters
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of the system we study. We could simulate random variables with an ex-
pected mean and calculate (using the recurrent equation presented below)
the values needed to study. These values will be random as well (we have
randomness in the input data of our model – interarrival times and serving
times). Afterward, we can calculate some parameters of such random val-
ues (variables) as mean or probability distribution. We call this method as
statistical modeling due to the randomness presented in the model. If more
reliable results are needed, we must repeat the experiments with our model
and then integrate the results i.e. calculate integral characteristics like a
mean or a standard deviation. This is called the Monte Carlo method and
it was described earlier in this study.

6.4.4.5 Recurrent equation

In order to design the modeling algorithm of the previously described queue-
ing system, some additional mathematical constructions should be intro-
duced. Our goal is to calculate and investigate the sojourn time of the
customer number n in the system of queues in series of k phases. Recurrent
equation (14) for calculation of the sojourn time could be provided [45].
This enables the implementation of the necessary algorithms since all the
basic theoretical results have been introduced.

6.4.5 Python for multiprocessing

Python as a programming language is very popular among scien-
tists and educators and could be an attractive solution for solving
scientifically oriented tasks http://www.linuxjournal.com/magazine/
use-python-scientific-computing [237]. Python provides a powerful
platform for modeling and simulations including graphical options, a wide
amount of mathematical and statistical packages as well as packages for
multiprocessing. For time consumable solutions, Python and C codes could
be combined. All that allows us to implement a powerful modeling platform
for statistical modeling and processing of the results of the data. The key
Python concepts which are important for modeling are decorators, corou-
tines, yield expressions, multiprocessing, and queues [238]. Although there
are several ways of organizing the inter-process communication, we start
with using queues, as it is very natural in the context of the queueing sys-
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tems. The simple example of the advantage of using multiprocessing in
order to increase the efficiency of the programming code is provided below.
The learner could proceed with improvements to the provided model by us-
ing parallel calculations on super-computers or computer clusters [239, 240].
On the one hand, multiprocessing will allow us to map the model of the
system of queues in series to the resources of a multicore computer and on
the other hand, we could use multiprocessing to perform a number of Monte
Carlo trials in parallel. We present these two approaches in the next sec-
tions. For motivated learners, a brief introduction to multiprocessing with
Python presented below could be provided. We start by using the mpi4py
module. It is important to show the learner the general idea of how MPI
works. It simply copies the provided program to a number of the proces-
sor kernels, specified by the user, and integrates the results after using the
gather() method. The sample Python code (see Figure 88, reprinted from
[4, p. 41]) and simulation results (see Figure 89, reprinted from [4, p. 41])
are presented.

6.4.6 Experiments with the models

In this section, we provide three computer models of the system of queues in
series. Each of these models is rather different from its philosophy and key
features. Although the aim of each of these models is to statistically model
and investigate the main parameters of the system of queues in series, the
ideas which stay behind the scene of these models, are completely different.
A comparison of these basic ideas will help the learner to understand the
main fundamentals that lie behind the parallel calculations, multiprocessing
statistical modeling and simulation.

The first model presented by us is based on the real-time recordings and
we call it an imitative model. It uses the Python multiprocessing module.
The precision of this model depends on the precision and resolution of the
time() method. It could be rather low in the case of various general-purpose
operating systems and rather high in the case of the RTOS. The learner
could modify this model using the earlier presented recurrent equation (for
the sojourn time calculations) and compare the results in both cases.

The next model calculates the sojourn time of the customer and is based
on stochastic simulations. The model does not use multiprocessing directly.
It emulates multiprocessing by using Python yield expressions. The last
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Figure 88: Python model for the advanced normal distribution with MPI.
Reprinted from [4, p. 44]
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Figure 89: Normal distribution with MPI. Reprinted from [4, p. 44]

model presented here uses the Python MPI mpi4py module. Now we use
real MPI techniques for statistical modeling and could enhance Monte Carlo
simulations by additional trials. In general, the task for the learner is to
provide a series of experiments with the presented models and to obtain the
experimental proof of the law of the iterated logarithm for the sojourn time
of the customer in the case of the system of queues in series.

6.4.7 The imitative model based on multiprocessing of services

Below we present the imitative model. The main issue to study is the
difference between the imitative and statistical models. Another impor-
tant question is the correctness or precision of the imitative model. It is
also important to solve the question of verification of the presented model.
The learner could study and compare modeling results depending on vari-
ous modeling parameters such as interarrival and servicing frequencies, the
numbers of customers and services. The general schema of the model is
presented in Figure 90 (reprinted from [4, p. 46]).

The programming code (see Figure 91, reprinted from [4, p. 47]) consists
of two main parts. The first one is directly intended for calculations and the
next one is for plotting of the results. The module for calculations contains
three main functions: producer() – for producing customers and putting
them to the first queue; server() – for serving the customers; consumer()
– for finalizing the results. This programming model is based on realistic
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Figure 90: The Imitative Model. Reprinted from [4, p. 46]

simulations and uses no mathematical equations for calculations. Its preci-
sion depends on the precision of the Python timing module and generally
varies depending on the operating system. Servers are distributed between
various processes inside the multiprocessing system.

Questions to be studied:
• How are global variables shared between processes?
• How will the processes, associated with different servers terminate?
• How is the informational flow between various processes transferred?
• What about the correctness of the model?
• What about the efficiency of the model? How long does it take for
different processes to exchange information?

Now we can print the results using the Python matplotlib module and
we can visually analyze the results after the plot is prepared. We can
see (see Figure 92, reprinted from [4, p. 47]) that the model needs further
improvements. Therefore, we can proceed with a more powerful model.

6.4.8 The single process statistical model

The main features of the statistical model are as follows: now we use the
recurrent equation for exact calculations of the customer’s sojourn time; we
process all the data in a single process using Python specific coroutine func-
tions; we proceed with a definite number of Monte Carlo simulations for a
better validity of the calculations. This model gives us “exact” calculations
of the sojourn time. The general schema of the model is presented in Fig-
ure 93 (reprinted from [4, p. 47]). The learner could study the differences
between the imitative and statistical models.
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Figure 91: Python based solution for the imitative model based on multiprocess-
ing of services. Reprinted from [4, p. 47]

Figure 92: Simulation results for the imitative model. Reprinted from [4, p. 47]
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Figure 93: Simulation process for the imitative model. Reprinted from [4, p. 47]

The computer code for implementing of the above model is presented
in Figure 94. The simulation results are presented in Figure 95 (reprinted
from [4, p. 41]).

6.4.9 Statistical model strengthened by MPI

The next step is to strengthen our model using the Python MPI module –
mpi4py. It allows us to proceed with more Monte Carlo simulations and
using computer cluster for running and testing the model. The next step
could be a further improvement of the model by using the C program-
ming language, “real” MPI or Simplified Wrapper and Interface Generator
(SWIG) technology for Python. This model is almost identical to the previ-
ous model with the only difference that it uses mpi4py for multiprocessing
and integrating the results (see Figure 96, reprinted from [4, p. 41]).

In addition to the previous model, several additional modules need to be
imported. The print results() function also needs to be rewritten, because
we now have more trials. We should also rewrite the main part of the
program. In Figure 97 (reprinted from [4, p. 49]) we present only that part
of the computer code which differs from the code of the previous model.
The results of the simulation are presented in Figure 98 (reprinted from [4,
p. 50]). The use case model of the presented LR in the form of a concept
map is presented in Figure 99. Design Science Research considerations
concerning the presented use case are discussed in detail in sections 4.2.1.4
and 4.2.2 of this thesis.
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Figure 94: Python based solution for the single process statistical model.
Reprinted from [4, p. 48]
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Figure 95: Simulation results for the single process statistical model. Reprinted
from [4, p. 49]

Figure 96: The MPI statistical model. Reprinted from [4, p. 49]
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Figure 97: Python based solution for statistical model strengthened by MPI.
Reprinted from [4, p. 49]
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Figure 98: Simulation results for MPI statistical model. Reprinted from [4, p. 50]

6.4.10 Conclusions

6.4.10.1 Introduction

In this section, a number of models for model-centered learning are pro-
vided. These models enable the learner to conduct a series of experiments
and enhance the understanding of the discipline in the study. There are
several difficulty levels of the presented models and experiments with such
models. The first level is the basic one. It introduces randomness and en-
ables primary understanding of the scope of the scientific research. The
next one is more sophisticated and enables a deep understanding of parallel
programming and stochastic simulations. The relevant theoretical knowl-
edge is provided on demand and as supporting material for the learner’s
activities. This provides a constructivist framework for the model-centered
introduction to the topic. Finally, we would like to provide recommenda-
tions for further study and improvements of the models.

6.4.10.2 Linearity of the model and statistical parameters of the
queueing system

The model of the system of queues in series provided in this study is not
linear [45]. It is obvious from the recurrent equation since it contains a
nonlinear mathematical function max. If we want to obtain correct model-
ing results, especially in the case of calculating the statistical parameters of
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Figure 99: The use case model of the presented learning resources for teaching
introductory stochastics
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the queueing system, we must use a partially linear model for calculations.
This is particularly important for non-heavy traffic systems as in this case
we could make rather great mistakes in calculations.

6.4.10.3 Extensions of Python modules and parallel program-
ming with C

For the skillful learners, it could be interesting to proceed with improve-
ments in the efficiency of the programming code. That could be done by
extending Python modules with C implemented functions using the SWIG
technology. Learners could improve the code and speed-up calculations us-
ing Cython or C programming languages, “real” MPI technology and High
Throughput Computing (HTC) cluster possibilities [239–241].

6.4.10.4 Efficiency of the programming solutions and further
work

In this section, the learner could study the efficiency of various program-
ming solutions. This topic is particularly important for any programming
model, which is based on parallel calculations. In this case, learners could
study the effectiveness of different programming models and could try to im-
prove algorithms gradually. The key point here is to investigate the ratio of
the amount of information flow and calculations for different programming
processes. Such a ratio is important when constructing the most effective
programming model for parallel calculations. Another interesting topic is
to study possible mappings of the algorithm structure to the HTC cluster
structure. As a further task for investigations, the authors consider studies
of queueing networks to be introduced to the learner, modeled, and ana-
lyzed. The comparatively complex nature of queueing networks and a va-
riety of applications requires more comprehensive programming techniques
to be involved. This provides a good basic platform for the introduction
of such general programming concepts like inheritance, encapsulation, and
polymorphism. On the other hand, the basic theoretical CS constructions
needed to be introduced as well. Besides all these, the modeling and statis-
tics simulation of queueing networks requires more advanced probability
topics to be presented, more computational resources to be occupied and
provide the real SC environment and good motivation for the advanced

175



learner.

6.5 Case study of the model-based approaches to
teach scientific computing: C based simulation
models for teaching programming and paralleliza-
tion

6.5.1 System of queues in series and stochastic simulations

The material of this subsection is mainly based on the results of the pub-
lication [5]. A generalized system of queues in series consists of a number
of servicing phases that provide service for arriving customers. The ar-
riving customers move through the phases step-by-step from entrance to
exit. If the servicing phase is busy with servicing the previous customer,
the current customer waits in the queue in front of the servicing phase.
The extended Kendall classification of queueing systems uses 6 symbols:
A/B/s/q/c/p where A is the distribution of intervals between arrivals, B
is the distribution of service duration, s is the number of servers, q is the
queueing discipline (omitted for FIFO – first in first out), c is the system
capacity (omitted for unlimited queues), p is the number of possible cus-
tomers (omitted for open systems) [233, 232]. For example, M/M/1 states
for Poisson input, one exponential server, one unlimited FIFO queue, and
unlimited customer population. The interarrival and servicing times both
are independent random variables. We are interested in the sojourn time
of the customer in the system and its distribution. The general schema of
the system of queues in series is presented in Figure 100 (reprinted from
[5, p. 3]).

Figure 100: System of queues in series. Reprinted from [5, p. 3]

We consider both interarrival and servicing times as exponentially dis-
tributed random variables. Depending on the parameters of the exponen-
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tial distributions, we distinguish different traffic conditions for the observed
queueing system. That includes ordinary traffic, critical traffic, or heavy
traffic conditions. We are interested to investigate the distribution of the
sojourn time for these different cases [45, 242] and we will use Monte Carlo
simulations for collecting the relevant data.

6.5.2 Recurrent equation for the calculation of sojourn time

In order to design the modeling algorithm of the previously described queue-
ing system, some additional mathematical constructions should be intro-
duced. Our goal is to calculate and investigate the sojourn time of the
customer number n in the system of queues in series of k phases. We can
prove the parametric recurrent equation (15) for calculation of the sojourn
time. This enables the implementation of the necessary algorithms since all
the basic theoretical results have been introduced.

6.5.3 Theoretical background: Parallel computing

In this research, we emphasize multiple instructions, multiple data MIMD
parallel architecture and presume the HPC cluster as a target platform for
calculations. Such a platform allows us to study different parallelization
techniques and implement share-memory, distributed-memory as well as
hybrid memory solutions. The main goal of parallelization is to reduce the
program execution time by using the multiprocessor cluster architecture.
It also enables us to increase the number of Monte Carlo simulation trials
during the statistical simulation of the queueing system and to achieve
more accurate results in an experimental construction of the sojourn time
distribution. To implement parallelization, we use OpenMP tools for the
shared-memory model, MPI tools for the distributed memory model, and
the hybrid technique for the hybrid memory model.

For the shared-memory decomposition, we use tasks and the dynamic
decomposition technique in the case of the pipeline (transversal) decompo-
sition, and the loop decomposition technique in the case of threads (lon-
gitudinal) decomposition. For the distributed memory decomposition, we
use the standard message parsing MPI tools. For the hybrid decomposi-
tion, we use the shared memory (loop decomposition) for the longitudinal
decomposition and MPI for the pipeline decomposition.
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6.5.4 Parallelization for the systems of queues in series

Statistical sampling for modelling the sojourn time distribution (Figure 101,
reprinted from [5, p. 4]) presents the general schema of the imitational
experiment on the queueing system.

Figure 101: Statistical sampling for modelling of distribution of the sojourn time.
Reprinted from [5, p. 4]

The programming model of the system of queues in series is based on
the recurrent equation, presented in one of the upper sections. The Monte
Carlo simulation method is used to obtain the statistical sampling for mod-
eling the sojourn time distribution on the exit of the system. To intro-
duce the topics as decomposition and granularity we present a space model
of the simulation process of the queueing system. First, we start with
a one-dimensional model. The one-dimensional model allows introducing
a sequential programming model with no parallelism and could serve as
a basic model for further improvements. Afterward, we proceed with a
two-dimensional model. Such a model allows introducing the programming
models for the longitudinal decomposition. As the last step, we introduce
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a three-dimensional space model. Such a model allows constructing the
programming models for the transversal and hybrid decompositions.

6.5.5 Stochastic simulations and longitudinal decomposition

One of the solutions is to use the longitudinal decomposition (trials) and
to parallelize the Monte Carlo trials. Thus, we can map each or a group
of trials depending on the preferred granularity and the total number of
desired trials. The schema of the longitudinal decomposition is presented
in Figure 102 (reprinted from [5, p. 7]). A three dimensional model of the
longitudinal decomposition is presented in Figure 103 (reprinted from [5,
p. 7]).

Figure 102: Longitudinal decomposition. Reprinted from [5, p. 7]

Figure 103: Three dimensional model of the longitudinal decomposition.
Reprinted from [5, p. 7]
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6.5.6 Pipelining and transversal decomposition

In another dimension (customers), the parallelization technique is not as
straightforward as it was in the previous case of parallelization of the sta-
tistical trials dimension. There arises a difficulty as we have the pipelining
structure of the algorithm. This is obvious: the customer moves through
the system from the previous to current servicing phase; we need to have
all the data from the previous stage for calculations at the current stage.
We use the transversal decomposition and the number of customers in each
stage depends on the preferred granularity and the total number of cus-
tomers. Figure 104 (reprinted from [5, p. 7]) presents the decomposition in
the case of the customer’s dimension.

Figure 104: Transversal decomposition. Reprinted from [5, p. 7]

6.5.7 Shared memory implementation

The shared memory implementation is based on the OpenMP tools. The
loop parallelization technique is used for the longitudinal decomposition.
For the transversal decomposition, the OpenMP tasking model and dynamic
scheduling are used.

6.5.8 Distributed memory implementation

The distributed-memory implementation is based on MPI tools. In both
cases, i.e. longitudinal and transversal decompositions, the message-parsing
interface provides synchronization tools and there is no need for additional
programming constructions.
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6.5.9 Hybrid models and HPC

Hybrid models provide a natural solution to computational platforms, based
on high-performance computer clusters. It uses MPI tools to perform a
decomposition and OpenMP tools for multithreading.

6.5.10 Dynamic and static scheduling

Pipelining requires dynamic scheduling since there is a connection between
various nodes in the pipeline. In the shared-memory case, we must take care
of scheduling. If we use the OpenMP tasking model, the relevant approach
could be twofold. First, it is possible to obtain a dynamic scheduling by
monitoring a critical shared-memory resource and using a task yielding
construction. The other one is to use the dynamic task creation technique.
In the case of MPI, synchronization is performed by the interface system,
and then there is no need for additional programming constructions.

6.5.11 Sequential programming model

The flowchart of the sequential program model is presented in Figure 105
(reprinted from [5, p. 8]). The algorithm uses the recurrent equation and
cycles for modeling the queueing system phases, customers, and statistical
trials.

Figure 105: Sequential mode. Reprinted from [5, p. 8]

The program model of the sequential approach uses the programming
language C and GSL (GNU scientific library) and it is presented in Ap-
pendix A.1 of this thesis including the comments.
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6.5.12 Programming model for distributed-memory paralleliza-
tion

6.5.12.1 Longitudinal decomposition

The programming model for the distributed memory parallelization is based
on MPI tools and it is optimal for the multicore/multimode computer archi-
tecture. All the processes receive a full copy of the programming code and
the rooting is made by using the number of the process. The flowchart of the
longitudinal decomposition is presented in Figure 106 (reprinted from [5,
p. 8]). The programming language C model with the comments is presented
in Appendix A.2.

Figure 106: Distributed memory longitudinal decomposition. Reprinted from [5,
p. 8]

6.5.12.2 Transversal decomposition

The flowchart for the transversal decomposition is presented in Figure 107
(reprinted from [5, p. 8]). Processes are attached to the customer’s axis,
which is divided into chunks. We use a mutual message parsing technique
and MPI is responsible for scheduling. In order to provide the desired
granularity, statistical trials are divided into the relevant chunks. The
model coded in programming language C with comments is presented in
Appendix A.3.
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Figure 107: Distributed memory transversal decomposition. Reprinted from [5,
p. 8]

6.5.13 Programming model for shared-memory parallelization

6.5.13.1 Longitudinal decomposition

In the case of the shared memory model, the OpenMP loop parallelization is
the natural solution to the longitudinal decomposition. The scope of Monte
Carlo trials is divided into chunks and each of such chunks is attached to
the relevant thread. The flowchart of the shared memory model is presented
in Figure 108 (reprinted from [5, p. 12]).

Figure 108: Shared memory longitudinal decomposition. Reprinted from [5,
p. 12]

The programming model for the shared-memory longitudinal decompo-
sition uses the programming language C, GSL (GNU scientific library), and
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OpenMP libraries. The model and comments are presented in Appendix A.4
of this thesis.

6.5.13.2 Transversal decomposition

One of the most comprehensive programming models is the model of the
shared-memory pipelining. We use the transversal decomposition to con-
struct such a model. The model uses the OpenMP tasking technique and
dynamic scheduling of tasks. The scheduler plays the central role in the
model and it is responsible for creating new tasks and finishing the pro-
gram, after completing all the tasks. Each task uses its own random gener-
ator, which allows avoiding time-consuming critical sections. The flowchart
is presented in Figure 109 (reprinted from [5, p. 12]). The programming
model for the shared memory transversal decomposition uses C program-
ming language, GSL (GNU scientific library), and OpenMP libraries. The
model and comments are presented in Appendix A.5 and Appendix A.6 of
this thesis.

Figure 109: Shared memory transversal decomposition. Reprinted from [5, p. 12]

6.5.14 Programming model for hybrid parallelization

The MPI transversal decomposition model could be transformed into a hy-
brid model by adding the OpenMP threads to the OpenMP trials axis.
The flowchart of the hybrid model is presented in Figure 110 (reprinted
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from [5, p. 12]). The programming model with comments is presented in
Appendix A.7.

6.5.15 Use case model

The use case model of the presented LR in the form of a concept map is
presented in Figure 111. Design Science Research considerations concerning
the presented use case model are discussed in detail in sections 4.2.1.4 and
4.2.2 of this thesis.

Figure 110: Hybrid decomposition. Reprinted from [5, p. 12]

6.5.16 Conclusions

6.5.16.1 Theoretical and programming models: The basis of the
model-centered approach

The study provides a number of programming models for the introduction to
scientific and parallel computing. All these programming models: sequen-
tial, distributed-memory, distributed-memory pipelining, shared-memory,
shared-memory pipelining, and the hybrid model are based on statistical
simulations of the theoretical model of the system of queues in series. After
providing a theoretical background to the learner and explaining the main
features of the theoretical model, we start experiments with programming
models. The relevant problems could be provided to the learners. These
could include the comparative investigation of the effectiveness of program-
ming models, taking into account different computational platforms as well
as different input parameters of the queueing system. For the advanced
learner, the emphasis could be put on a variation of the parameters of
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Figure 111: The use case model of the presented learning resources for teaching
programming and parallelization
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inter-arrival and servicing time exponential distributions, moving from the
heavy traffic to the non-heavy traffic case, since that could fundamentally
change the distribution of the sojourn time of the customer.

6.5.16.2 Introduction to scientific computing: Research tasks,
research methods

While investigating the theoretical model, studying the recurrent equation,
and experimenting with the input parameters of the queueing system, we
introduce the scientific research tasks and methods. It includes studying the
distribution of the sojourn time of the customer, varying the parameters of
inter-arrival and servicing time exponential distributions, comparing the
results, analyzing the provided theoretical constructions as well as studying
of the Monte Carlo method for statistical simulations, which is one of the
basic methods in studying the topics related with probability.

6.5.16.3 Introduction to parallel computing: Terminology and
methodology

Studying and experimenting with the programming models, the intro-
duction to parallel computing terminology and methodology is provided.
It includes the basic concepts such as shared and distributed-memory
parallelization techniques, homogenous and heterogeneous computational
platforms, HPC and multicore programming and it explains scheduling,
mapping, and granularity. Using MPI and OpenMP tools, we introduce
OpenMP tasking, MPI programming methods, synchronization, load bal-
ancing, decomposition techniques and other important topics of parallel
computing.

6.5.16.4 Problems: Studying effectiveness, debugging and
benchmarking

We could enhance the learner’s understanding by providing a set of problems
such as debugging, benchmarking, and comparative studying of the effec-
tiveness of programming models. That includes the variation of different
computing platforms for one of the models as well as testing different mod-
els for a definite platform. It could be done by applying a single processor,
multicore, multiprocessor machines and computer clusters. As an example,
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the model with efficient results achieved by a single-processor machine could
be inefficient on other platforms. When modifying the model, the relevant
debugging tools and methods must be implemented. So the learner could
proceed by modifying the model i.e. changing the distribution parameters
and tuning the granularity.

6.5.16.5 Further studies: Queueing networks for constructing of
learning objects

The theory of queueing systems renders wide possibilities for relevant the-
oretical constructions. The next obvious step could be studies of queue-
ing networks of various types including open, closed or mixed networks,
constructing the relevant learning objects, and investigating the respective
theoretical and programming models.

6.6 Conclusions

This section provides a comprehensive review of experimental applications
of stochastic recurrences, applied to modeling of the system of queues in
series under various stochastic parameters. The developed theory for mod-
eling of the system of queues in series allows experiments with big data
applications to be implemented. At the same time, this real-live scientific
application provides a suitable background for learning objects for teaching
scientific computing to be designed and implemented. Such LO are im-
plemented in the form of programming models which implement SLOs for
topics in the study. The model-centered approach allows implementing a
universal platform for teaching introductory statistics and parallelization.

7 Evaluation of the developed educational
solutions

7.1 Specification of the developed sample learning re-
sources

We propose expert evaluation of the developed Design Principles and the
Supportive Application and Integration Methodology (DPSAIM). The eval-
uation based on DSR requirements was done in Sections 1.5 and 1.6 of the
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research. This additional evaluation is aimed at providing an expert view
on the developed DPSAIM in the form of expertise from educational tech-
nology and teaching and LR design perspectives.

To evaluate the developed educational solutions we propose to implement
the indirect method for evaluation – to evaluate the provided sample LR as
cognitive artefacts – the output of the design process using the developed
DPSAIM: LR and SLOs for Teaching Introductory Stochastic (SLOFTIS)
and LR and SLOs for Teaching Advanced Parallelization (SLOFTAP). The
provided LR could be considered as a set of teaching/learning material,
including SLOs in the form of programming models and supportive material
in the form of methodology including the relevant constructs, models, and
frameworks. The supportive methodology has to be specified as:
(C) Content: SLOFTIS see Section 6.4; SLOFTAP see Section 6.5;
(I) Instruction: See Fig. 39;
(D) Didactics: See Fig. 38;
(T) Technology: See Fig. 39, Fig. 49.

Below we provide a more detailed specification of the designed sample
resources (see Table 8 and Table 9).

Table 8: Description of SLOFTIS parameters

No Description Implementation
1 Constructs (R) Randomness: random numbers; random number dis-

tributions; random numbers generators; Central Limit
Theorem.
(P) Python programming constructions: decorators;
coroutines; yield expressions.
(T) Results that are more complex include theoretical
facts such as: queueing in series specifications and pa-
rameters like the sojourn time of the customer; the recur-
rent equation for calculating the sojourn time; stochastic
simulation methods and multiprocessing techniques.
(I) SI specific concepts: theoretical facts to be stud-
ied; conceptual model; mathematical model; algorithms
and programming constructions; computational model;
stochastic simulation and observation of simulation re-
sults.
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Table 8: Description of SLOFTIS parameters

2 Models &
SLO

Models and the relevant SLO:
For introductory stochastics: Python single die model;
Python multi-dice model; Python model for exponential
distribution;
For Python multiprocessing: Python model for the ad-
vanced normal distribution with MPI;
For stochastic recurrences (the system of queues in se-
ries): Imitative model based on multiprocessing of ser-
vices; Simulative model with Python yield expressions;
Simulative model with Python MPI;

Table 9: Description of SLOFTAP parameters

No
Description Implementation

1 Constructs (Q) Queueing in series systems: Queueing basics;
Queueing parameters; Monte Carlo experiment;
(C) Parallel computing: hardware platforms; soft-
ware tools;
(S) Stochastics: stochastic recurrence, algorithmic
solutions for queueing in series systems;
(M) Modelling techniques: longitudinal system de-
composition; transversal system decomposition;

2 Models &
SLO

Sequential programming model; Distributed mem-
ory programming model; Distributed memory
pipeline model; Shared memory programming
model; Shared memory static pipeline program-
ming model; Shared memory dynamic programming
model; Hybrid programming model.

7.2 Evaluation scheme

The developed LR consist of an interactive part in the form of SLOs and
supportive educational resources. The evaluation scheme could be designed
based on the evaluation of the interactive part – SLOs and could be based on
the presented general approaches to evaluation of interactive LO [243] with
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some extent as related to SLOs. We propose the next evaluation scheme as
presented in Table 10.

Table 10: DPSAIM evaluation scheme

No Name Description Literature
To evaluate the developed LR from the perspectives of:

1 Compatibility with the
objectives of the LO de-
sign

Reusability; Interoperability;
Durability; Accessibility

[244]

2 LO taxonomies Redeker; Finlay; Churchill [245],
[246],[138]

3 LO standards IEEE Standard for Learning
Object Metadata (IEEE Std
1484.12.1 - 2002)

[247]

4 Application of quality
measurement metrics

Defude & Farhat:
M1 – number of concepts in the
LO content;
M2 – upper level concept - lower
level concept (in content);
M3 – number of concepts in LO
prerequisite;
M4 – upper level concept - lower
level concept (in prerequisite);
M5 – number of concepts with
educational state set to “high” in
the LO prerequisites;
M6 – number of items set to
null or default value in the ed-
ucational characteristics;
M7 – number of nodes at the
concrete level of the composition
graph;
M8 – number of occurrences of
the LO into existing complex
LO;
M9 – number of levels between
the abstract level and the con-
crete level of the composition
graph;
M10 – number of delivering
graphs of the LO;
M11 – number of ALT nodes
and of query nodes (for inten-
tional LO)

[248]

5 Possible disadvantages or limitations
6 Possibility of further development

191



7.3 Evaluation results

7.3.1 Evaluation from the perspectives of compatibility with the
objectives of the LO design

The evaluation from the perspectives of compatibility with the objectives
of th LO design is presented in Table 11

Table 11: Compatibility with the objectives of the LO design

No Description Requirements Evaluation
1 Reusability Learning content

modularized into
small units of
instruction suit-
able for assem-
bly and reassem-
bly into a variety
of courses

Could be used interchangeably or
as the whole set depending on
the grade and curriculum require-
ments. SLOFTIS include 3 pro-
gramming models in the form of
SLOs; SLOFTAP Include 6 pro-
gramming models in the form of
SLOs.

2 Interoperability Instructional
units that in-
teroperate with
each other
regardless of
developer or
learning man-
agement system

Interoperation is set into the struc-
ture of the LR and is based on
the model-centered approach. The
central model is the model of the
Monte Carlo experiment for the
system of queues in series.

3 Durability Units of in-
struction that
withstand ever
evolving delivery
and presentation
technologies
without becom-
ing unusable

SLOs could be used with differ-
ent technologies by using the rele-
vant system dependent translators
or compilers.

4 Accessibility Learning content
that is available
anywhere, any
time-learning
content that
can be discov-
ered and reused
across networks

SLOs could be distributed via
GitHub technology including the
supportive material.
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7.3.2 Evaluation from the perspectives of LO taxonomies

The evaluation from the perspectives of LO taxonomies is presented in
Table 12.

Table 12: Compatibility with LO taxonomies

No Description Correspondence to the Require-
ments

Evaluation

1 Redeker Internally interactive learning objects
integrate the learner in the human-
computer-interaction. The learner
is either Competency based training
(CBT) guided – albeit in a mini-CBT
sequence – or is given the framework
of his or her activities via simulation

SLOFTIS,
SLOFTAP

2 Finlay Application-based, which require the
learner to respond with some reasoned
action

SLOFTIS,
SLOFTAP

3 Churchill Simulation object: Representation of
some real-life system or process;
Conceptual model: Representation of
a key concept or related concepts of
subject matter;
Information object: Display of infor-
mation organized and represented with
modalities

SLOFTIS,
SLOFTAP

7.3.3 Evaluation from the perspectives of LO standards

The evaluation from the perspectives of LO standards is presented in Ta-
ble 13.

Table 13: Compatibility with LO standards

No Name Explanation (as
in standard)

Value Space
(as in stan-
dard)

Explanation (as
related to SLOs)

1.7 Structure Underlying orga-
nizational struc-
ture of this learn-
ing object

1: collection
– a set of
objects with
no specified
relationship
between them

SLOFTIS, SLOF-
TAP
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Table 13: Compatibility with LO standards

1.8 Aggregation
Level

The functional
granularity of this
learning object

2: a collection
of level 1 learn-
ing objects,
e.g., a lesson;
3: a collection
of level 2 learn-
ing objects,
e.g., a course.

2. If SLO is a lesson
unit
3. If a set of SLO is
a course unit

5.1 Interactivity
Type

Predominant
mode of learning
supported by this
learning project

active Simulations making
based active learning

5.3 Interactivity
Level

The degree of
interactivity char-
acterizing this
learning object.
Interactivity

high
very high

Simulations making
based interactive
learning

5.4 Semantic
Density

The degree of
conciseness of a
learning object

high
very high

Educational software
with high level se-
mantic density

5.5 Intended
End User

Role

Principal user(s)
for which this
learning object
was designed,
most dominant
first

teacher
learner

Could be used by a
teacher (designer) of
or by a learner

5.6 Context The principal en-
vironment within
which the learn-
ing and use of this
learning object is
intended to take
place

school
higher educa-
tion

Advances secondary
(SLOFTIS) and
innovative university
education (SLOF-
TAP)

5.7 Typical
Age Range

Age of the typical
intended user

18- Advances secondary
and innovative uni-
versity education

5.8 Difficulty How hard it is
to work with
or through this
learning object
for the typical
intended target
audience

easy
medium
difficult

SLOFTIS – easy,
medium;
SLOFTAP – diffi-
cult.
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7.3.4 Evaluation from the perspectives of quality measurement
metrics

The evaluation from the perspectives of quality measurement metrics is
presented in Table 14.

Table 14: Compatibility with quality measurement metrics of the LO design

No Description Metrics Evaluation
Q1 quality of the

content
M1,M2 M1: number of concepts in the

SLOFTIS, SLOFTAP content – high;
M2: upper level concept – lower level
concept (in content): middle

Q2 quality of the
LO

considering
prerequisites

M3, M4, M5 M3: number of concepts in SLO pre-
requisites: SLOFTIS – low, SLOFTAP
– middle; SLO corresponds to seamless
approach to theoretical prerequisites;
M4: upper level concept – lower level
concept (in prerequisites): middle;
M5: number of concepts with educa-
tional state set to “high” in the LO
prerequisites: SLOFTIS – low; SLOF-
TAP – middle;

Q3 quality of the
description

M6 Sample SLOs are presented as a
demonstration of the developed DP.
The supportive methodology of ap-
plication and integration is provided.
The number of default values is low

Q4 quality of the
LO

considering
reusing

M1, M7, M8 A model-centered approach allow LR
to be reused in a flexible sequence

Q5 quality of the
LO

considering
structural
complexity

M7, M9 Structural scheme for SLOFTIS – lin-
ear, SLOFTAP – star

Q6 quality of the
LO

considering
adaptation

M10, M11 Both high

7.3.5 Evaluation from the perspectives of possible disadvantages
or limitations

The next possible difficulties could be specified:
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• Possible difficulties of practical adaptation and integration: although
model-centered approach provides adaptive features for developed so-
lutions, this practical adaptation could require a certain level of com-
petences from the educator or designer of the curriculum topics;
• Possible difficulties of implementation: as explicit modeling solutions
are platform dependent, there is a need for the relevant hardware plat-
forms as, for example, HPC clusters to be involved into educational
process.

7.3.6 Evaluation from the perspectives of possibility of furthe
development

The possibility for further development include possible improvements for
models, technologies, methods of instruction, educational technology as is
specified in Section 4.5.4. In addition, further development could be as
follows: there is no cost-calculus developed for the efficiency of provided
programming models; more comprehensive models like programming mod-
els and the relevant SLOs for queuing networks could be developed; implicit
prallelization models and the relevant LR could be studied in detail and de-
veloped.

7.4 Expert evaluation

7.4.1 Questionnaire

The evaluation provided by experts is based on the high-level expertise in
the field of design, implementation, application and integration of educa-
tional resources. To provide expertise the next questions are to be answered:
(G) Evaluation of the developed educational solutions in general

(1) What are the advantages and perspectives (if any) of the developed
Design Principles and the Supportive Application and Integration
Methodology (DPSAIM)?

(2) Does the provided evaluation scheme correspond to the evaluation
of the developed DPSAIM?

(3) What is the general opinion or comments (if any) on the research?
(E) The evaluation of the developed sample resources (SLOs)

(1) Are the developed LR – DPSAIM – compatible with the objectives
of the DPSAIM design?
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(2) Does the developed SLOs meet LO taxonomies?
(3) Does the developed SLOs meet the most important characteristics

defined in the LO standards?
(4) Can standard quality measurement metrics for the developed SLOs

be used?
(5) What are the disadvantages or limitations of the developed SLOs?
(6) What could be further development of the solutions outlined in the

research?
(A) Additional evaluation topics

(1) What are (if any) additional evaluation criteria?
(S) Supplement expertise

(1) What are (if any) supplement expert opinions (advantages, dis-
advantages) on the provided educational solutions in general and
possible implementations in particular?

(2) What are (if any) supplement expert opinions (advantages, disad-
vantages) on the provided sample LR?

The sample form of questionnaire for expert evaluation is provided in
Appendices B.1.

7.4.2 Evaluation Summary

Evaluation summary is provided in Appendices B.2. The expert evaluation
was provided by a number of experts. Experts indicated their expertise in
various fields of informatics.

7.4.2.1 Evaluation of the expertise level

(1) As a field of the research interests experts indicated: Didactics, in-
formatics education – 100%; Technology (software tools, engineering)
– 80%; Programming (languages, solutions, tools) – 80%; Didactics,
teachers’ training – 60%; Educational solutions in general – 60%; In-
struction (design, application) – 40%; Theory (algorithms, mathemat-
ical models) – 20%; Technology (hardware, platforms) – 20%.

(2) As an area of teaching, training: Programming (languages, solutions,
tools) – 80%; Technology (software tools, engineering) – 80%; Pro-
gramming (languages, solutions, tools) – 80%; Didactics, informatics
education – 80%; Didactics, teachers’ training – 80%; Educational so-

197



lutions in general – 60%; Instruction (design, application) – 40%; The-
ory (algorithms, mathematical models) – 20%; Technology (hardware,
platforms) – 20%.

(3) As an area of educational material application, development, adapta-
tion: Technology (software tools, engineering) – 100%; Didactics, in-
formatics education – 100%; Programming (languages, solutions, tools)
– 80%; Didactics, teachers’ training – 80%; Educational solutions in
general – 60%; Instruction (design, application) – 60%; Theory (al-
gorithms, mathematical models) – 20%; Technology (hardware, plat-
forms) – 20%.

(4) Experts indicated the experiences level in the research experience more
than 10 years – 80% and more than 4 years – 20%. The indicated
teaching experience level is more than 10 years for all experts. The
number of research items for 100% of experts is more than 15 reviewed
research publications.

The conclusion on the level of the expertise: all experts could provide a
high level of expertise in the field of informatics and informatics engineering
education. We could describe the generalized portrait of the experts as high
competence experts in the filed of informatics, informatics engineering and
programming education.

7.4.2.2 Evaluation of the developed educational solutions in gen-
eral

(1) As an advantages and perspectives of the developed DPSAIM all the
experts indicated:
Practically applicable for novice university level – 100%; Improves
learner understanding – 100%; Could be included into teacher’s toolkit
– 100%; Provides constructionist educational toolkit – 100%; Covers
important educational topics – 100%; The most of the experts experts
indicated: Provides solutions for modern educational issues – 80%;
Practically applicable for high secondary level – 80%; Could be further
developed by the teacher – 80%.

(2) All experts indicated the correspondence of the provided evaluation
scheme to the evaluation of the developed DPSAIM – 100%.

(3) All (100%) of the experts indicated a general opinion or comments
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on the research as Agree or Strongly agree for the next items related
to the research: Correspondence of the internal structure; The rele-
vance of the research topic; The correspondence of the implemented
research methodology; The novelty of the developed educational solu-
tions; Correspondence of the theoretical grounding; The relevance and
correspondence of the experimental research and case studies; Corre-
spondence of the literature review. The major part of experts (80%)
indicated: The novelty of the developed technological solutions; the
correspondence of the volume of the research.

The conclusion on the evaluation of the developed educational solutions
in general: experts provided highly positive evaluation of the developed
educational solutions. The general level of positive evaluation is 94.4%.

7.4.2.3 Evaluation of the developed sample resources

(1) Experts indicated the compatibility of the developed DPSAIM with the
objectives of the design: Reusability – 100%; Interoperability – 100%;
Durability – 100%; Accessibility – 100%.

(2) Experts indicated the compatibility with Churchill’s taxonomy as fol-
lows. Experts indicated: Simulation object – 100%; Contextual repre-
sentation – 100%; Information object – 100%; Practice object – 80%;
Presentation objects Practice object – 80%; Conceptual model Practice
object – 80%.

(3) Experts indicated the compatibility with Redeker’s taxonomy as fol-
lows. All experts indicated: Internally interactive – 80%. Some experts
indicated: Receptive – 80%; Cooperative – 80%.

(4) Experts indicated the compatibility with Finlay’s taxonomy as fol-
lows. All experts indicated: Application-based – 100%; Individualised
– 100%. Some experts indicated: Theory-based – 80%; Cooperative –
40%.

(5) Experts provided the evaluation from the perspectives of quality mea-
surement metrics as follows. All experts indicated: high level for quality
of the content (Q1); from middle to high level for: quality of the LO
considering prerequisites(Q2), quality of the description (Q3), quality
of the LO considering reusing (Q4), quality of the LO considering struc-
tural complexity (Q5), quality of the LO considering adaptation (Q6).
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The conclusion on the evaluation of the developed sample resources: the
developed learning resources are compatible with LO taxonomies; quality
measurement metrics is applicable for the developed LR, all experts evalu-
ated the sample resources from middle to high.

7.4.2.4 Evaluation of the developed sample resources from re-
quirements indicated in learning objects

(1) The experts evaluated the underlying organizational structure of this
learning object (1.7) as atomic – 60%; collection – 40%; hierarchical –
60%. None of the experts evaluated as linear – 0%.

(2) The functional granularity of this learning object (1.8). The experts
evaluated it as the smallest level of aggregation – 40%; a collection of
level 1 learning objects – 80%; a collection of level 2 learning objects –
60%. Some experts evaluated as the largest level of granularity – 20%.

(3) Interactivity Type (5.1). The experts evaluated as active interactivity
– 60%; mixed interactivity type – 80%. None of the experts evaluated
as expositive interactivity.

(4) Interactivity Level (5.3). Most of the experts evaluated it as high or
very high – 80%; Some experts evaluated as middle – 20%.

(5) Semantic Density (5.4). All experts evaluated as high – 100%.
(6) User Role (5.5). The experts indicated a user role as a teacher – 60%;

an author – 20%; a learner – 80%; a manager – 20%.
(7) Context(5.6). The experts indicated: higher education – 60%; school

level – 60%; training – 60%.
(8) Typical Age Range(5.7). Most experts indicated 18 and more years

(novice university) – 60%; some experts indicated 15-16 years (pri-
mary school) – 40%; 16-18 years (secondary school) – 40%; 12-14 years
(primary school) – 20%; 7-11 years (primary school) – 20%.

(9) Difficulty (5.8). Most experts indicated middle level – 80%. Some
experts indicated high level of difficulty – 20%;

The conclusion on the evaluation of the developed sample resources from
requirements indicated in LOs standards: the developed learning resources
could be evaluated in accordance with the requirements of the LOs stan-
dards. It was possible for all experts to evaluate the provided educational
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solutions using the requirements of the standard.

7.4.2.5 Evaluation from the perspectives of possible disadvan-
tages or limitations and possibility of further develop-
ment

(1) Most experts indicated a level of possible possible disadvantages or
limitations from middle to low – 80%.
All experts indicated the high or very high level of possibility of further
development – 100%.

Conclusion: there is a need of further possible improvements of the de-
veloped LR and additional research in the field of study.

7.4.2.6 Additional evaluation topics

(E) Some experts indicated the need of additional evaluation criteria:
(1) Pedagogical experiment in real setting: students’ engagement eval-

uation according to Bloom’s (revised Bloom’s) taxonomy, students’
computational thinking skills evaluation.

(2) Applicability and efficiency of the LO in the real context (teaching
environment), learning outcomes measurement.

(3) Extensive set of evaluation criteria has already been presented by
the author.

(S) Some experts indicated a supplement expert opinion (advantages, dis-
advantages, opinion, recommendations, etc.) on the provided educa-
tional solutions and sample learning resources:
(1) In my opinion, SLOs are very useful and effective in modeling

real-world phenomena that are difficult to illustrate by real ex-
periments; as a tool to develop computational thinking skills; as
introduction to artificial intelligence concept. The use of SLOs can
be started at secondary school level not only in computer science,
but also in mathematics, social (economics) and natural (physics,
biology, chemistry) sciences. The SLOs can play the important role
in inquiry-based learning and enlarge the possibilities of STEM at
schools. Potential difficulties are associated with the preparation
of teachers to incorporate SLOs into education.

(2) Valuable solutions, very well grounded and structured.
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Conclusion: There is a very positive expert opinion on the developed LR.

7.4.3 Conclusions

The expert evaluation has been done on various aspects of the developed
learning resources, such as formal approaches to evaluation like correspon-
dence to standards, semi-formal approaches like correspondence to tax-
onomies and quality metrics and personal expert opinion on general quality
of the research and quality of developed educational solutions. The level of
the provided expertise which is based on scientific and educational experi-
ence of experts is high or very high. Concluding, it is possible to state that
the provided research results in the form of the developed DPSAIM have
very positive expert evaluation.

8 Conclusions
Concluding, as a result of the comprehensive study the next solutions and
implementations are proposed:
(1) the constructionist approach for Scientific Computing Education (SCE)

is studied in detail and adapted for the needs of the university curricu-
lum in general and STEM university curriculum in particular, focusing
on interdisciplinary and research-based education;

(2) the TPACK model, as related to the SCE within the university cur-
riculum, is studied in detail and the relevant meta analysis of domain
features is implemented in the form of feature models of various levels.
Such study provides an appropriate background for implementation of
the research tasks;

(3) the innovative Design Principles and the Supportive Application and
Integration Methodology (DPSAIM) for teaching and learning SC,
which covers such major parts of the educational system like edu-
cational technology, instructional design, didactic tools, and educa-
tional approaches is studied in detail and implemented. The pro-
posed methodology allows enhancing university interdisciplinary curric-
ula through problem-solving and research-based educational methods;

(4) the appropriate didactic approach for SC education has been studied in
detail and implemented in the form of practical LR. Such LR include a
set of programming models and educational tools in the form of SLOs.
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The design approach and the structure of the relevant SLO is based
on a model-based paradigm, enabling the implementation of the SI
centered educational methods;

(5) the implemented comprehensive programming model for the computa-
tional study of stochastic recurrences provides a theoretical background
for the relevant implementation of the LR. These LR (in the form of
programming models and SLOs), besides their focus on such theoreti-
cal topics like introductory stochastics, basic probability distributions,
limit theorems, queuing systems also provide practical knowledge of
using and implementing the relevant hardware and software specific
parallelization methodologies;

(6) the practical value of using proposed educational tools in the educa-
tional practice is enabling simulation-making and SI centered approach
to teaching and learning processes. These tools promote practical
knowledge of the relevant parallelization techniques, including HPC
computational platforms and big-data-related topics, focusing on sim-
ulation making and SI enabling practical students’ activities;

(7) the innovative computational model for experimental study of the law
of the iterated logarithm for the system of queues in series under over-
loading conditions has been developed. It is shown that under certain
conditions it is possible to use at least a 2.6 times more efficient para-
metric recurrent solution if it is implemented on processors with RISC
architecture;

(8) the developed computational model enable to conduct a comprehensive
study of the system of queues in series under overloading conditions.
This study is based on the computer simulation of the system. The
simulation results are obtained within the constraint on available com-
putational resources for the following configurations of the system and
modeling experiment: (1) M/M/1 system of queues in series with 210

servicing phases, 1E+7 number of customers, 1E+2 Monte Carlo tri-
als; (2) M/M/1 system with 28 servicing phases, 1E+8 number of cus-
tomers, 1E+2 Monte Carlo trials; (3) M/M/1 system with 23 servicing
phases, 1E+10 number of customers, 1E+2 Monte Carlo trials; (4)
M/χ2/1 system with 22 servicing phases, 1E+9 number of customers,
1E+2 Monte Carlo trials. The results of the simulation confirm the
theoretical assumptions with the significance level equal to 0.01;
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(9) the developed educational solutions and sample learning resources were
evaluated by the high level experts in the field of informatics educa-
tion and informatics engineering with a very positive outcome of the
evaluation results. The level of the confidence interval is 90%.
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Appendices

A Implementation of SLOs
A.1 Sequential programming model

1 #include <stdio.h>
2 #include <math.h>
3 #include <gsl/gsl_rng.h>
4 #include <gsl/gsl_randist.h>
5
6 #define OUT_FILE "out_seq.txt"
7
8
9 #define MC 100 //number of Monte-Carlo simulations

10 #define N 1000 // clients
11 #define M 5 // servicing phases
12
13 int lambda[M + 1] = {0}; //distribution parameter
14 double tau = 0; //interaarival time
15 double st = 0; //sojourn time
//sojorn time of the previous customer in each phase
16 double st_prev[M] = {0};
17 double results[MC] = {0};
18
19 int main(int argc, char *argv[]) {
20
21 gsl_rng * ran; //random generator
22 gsl_rng_env_setup();
23 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
24
25 lambda[0] = 30000;
26 for (int i = 1; i < M; i++)lambda[i] = lambda[i - 1] - 25000 / M;
27 lambda[M] = 5000;
28
29
30 for (unsigned j = 0; j < MC; j++) {
31 tau = gsl_ran_exponential(ran, 1.0 / (double) lambda[0]);
32 st = 0;
33 for (unsigned k = 0; k < M; k++) st_prev[k] = 0.;
34
35 for (unsigned i = 0; i < N; i++) {
36 for (unsigned t = 0; t < M; t++) {
37 //recurrent equation
38 st += gsl_ran_exponential(ran, 1.0 / lambda[t + 1])

+ fmax(0.0, st_prev[t] - st - tau);
39 st_prev[t] = st;
40 }
41 }
42 results [j] = st;
43 }
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44
45 FILE *fp;
46 const char DATA_FILE[] = OUT_FILE;
47 fp = fopen(DATA_FILE, "w");
48 fprintf(fp, "%d%s%d%s%d\n", N, ",", lambda[0], ",", lambda[M]);
49 for (int j = 0; j < MC - 1; j++) fprintf(fp, "%f%s", results[j], ",");
50 fprintf(fp, "%f\n", results[MC - 1]);
51 fclose(fp);
52 gsl_rng_free(ran);
53 }

A.2 Distributed memory programming model

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5 #include <gsl/gsl_rng.h>
6 #include <gsl/gsl_randist.h>
7 #include "mpi.h"
8
9 #define OUT_FILE "out_mpi.txt"

10 #define MC 100 //number of Monte-Carlo (MC) simulations in each process
11 #define N 10000 // number of clients
12 #define M 5 //number of phases
13 #define NP 10 //number of MPI processes
14
15 void print_results(double *results, double time, int *lambda) {
16
17 FILE *fp;
18 const char DATA_FILE[] = OUT_FILE;
19 fp = fopen(DATA_FILE, "w");
20 fprintf(fp, "%d%s%d%s%d%s%d\n", N, ",", M, ",", lambda[0], ",",

lambda[M]);
21 time = MPI_Wtime() - time;
22 fprintf(fp, "%f\n", time);
23 for (int i = 0; i < MC * NP - 1; i++) fprintf(fp, "%f%s",

results[i], ",");
24 fprintf(fp, "%f\n", results[MC * NP - 1]);
25 fclose(fp);
26 }
27
28 void process(int numprocs, int myid, gsl_rng * ran, int * lambda) {
29 double time = MPI_Wtime(); //start time
30 double tau[MC] = {0}; //interarrival time
31 double st[MC] = {0}; //sojourn time
32 double st_prev[M][MC] = {
33 {0}
34 }; //sojourn time of the previous customer in each phase
35 double results[MC * NP] = {0}; // overall results
36
37 for (int j = 0; j < MC; j++) {
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//init each MC trial
38 tau[j] = gsl_ran_exponential(ran, 1.0 / lambda[0]);
39 st[j] = 0;
40 for (int i = 0; i < M; i++)
41 for (int j = 0; j < MC; j++) st_prev[i][j] = 0.;
42 for (int i = 0; i < N; i++) {
43 for (int t = 0; t < M; t++) {
44 //recurrent equation
45 st[j] += gsl_ran_exponential(ran, 1.0 / lambda[t + 1])
46 + fmax(0.0, st_prev[t][j] - st[j] - tau[j]);
47 st_prev[t][j] = st[j];
48 }
49 }
50 }
51 MPI_Gather(&st, MC, MPI_DOUBLE, &results, MC, MPI_DOUBLE, 0,

MPI_COMM_WORLD);
52 if (myid == 0) {
53 print_results(&results[0], time, &lambda[0]);
54 }
55 }
56
57 int main(int argc, char *argv[]) {
58 int namelen;
59 char processor_name[MPI_MAX_PROCESSOR_NAME];
60 int numprocs;
61 int myid;
62 gsl_rng * ran; //random generator
63 int lambda[M + 1] = {0}; //parameter of the exponential distribution
64
65 //init mpi
66 MPI_Init(&argc, &argv);
67 MPI_Comm_size(MPI_COMM_WORLD, &(numprocs));
68 MPI_Comm_rank(MPI_COMM_WORLD, &(myid));
69 MPI_Get_processor_name(processor_name, &namelen);
70
71 //init parameter for the exponential distribution
72 lambda[0] = 30000;
73 for (int i = 1; i < M; i++)lambda[i] = lambda[i - 1] - 25000 / M;
74 lambda[M] = 5000;
75
76 fprintf(stdout, "Process %d of %d is on %s\n", myid, numprocs,

processor_name);
77 fflush(stdout);
78
79 //init random generator
80 gsl_rng_env_setup();
81 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
82 gsl_rng_set(ran, (long) (myid)*22);
83
84 //process
85 process(numprocs, myid, ran, lambda);
86
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87 //finish
88 gsl_rng_free(ran);
89 MPI_Finalize();
90 return (0);
91 }

A.3 Distributed memory pipeline model

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5 #include <gsl/gsl_rng.h>
6 #include <gsl/gsl_randist.h>
7 #include "mpi.h"
8
9 #define OUT_FILE "out_mpi_pipe.txt"

10 #define PIPE_MSG 0 // next pipe node
11 #define END_MSG 1 // finish
12 #define MC 10 //number of Monte-Carlo (MC) simulations in each chunk
13 #define NP 10 //number of processes (client axis)
14 #define CMC 100 //number of MC chunks
15 #define N 1000 // number of clients
16 #define M 5 //number of phases
17
18 void print_results(double *results, double time, int *lambda) {
19
20 FILE *fp;
21 const char DATA_FILE[] = OUT_FILE;
22 fp = fopen(DATA_FILE, "w");
23 fprintf(fp, "%d%s%d%s%d%s%d\n", N, ",", M, ",", lambda[0], ",",

lambda[M]);
24 time = MPI_Wtime() - time;
25 fprintf(fp, "%f\n", time);
26 for (int i = 0; i < MC * CMC - 1; i++) fprintf(fp, "%f%s",

results[i], ",");
27 fprintf(fp, "%f\n", results[MC * CMC - 1]);
28 fclose(fp);
29 }
30
31 void node(int numprocs, int myid, gsl_rng * ran, int * lambda) {
32 int nmcb = 0;
33 int nmcb_id = 0;
34 int i, j, k, t, u, v;
35 double time = MPI_Wtime(); //start time
36 MPI_Status Status;
37
38 double tau[MC] = {0}; //interarrival time
39 double st[MC] = {0}; //sojourn time

//sojourn time of the previous customer in each phase
40 double st_prev[M][MC] = {{0}};
41 double results[MC * CMC] = {0}; // overall results
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42
43 while (1) {
44 nmcb_id = CMC; // aux var. to omit the cycle
45 if (myid != 0) { //receive data from the previous node
46 MPI_Recv(&tau, MC, MPI_DOUBLE, myid - 1, MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
47 if (Status.MPI_TAG == END_MSG) break;
48 MPI_Recv(&st, MC, MPI_DOUBLE, myid - 1, MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
49 MPI_Recv(&st_prev, MC*M, MPI_DOUBLE, myid - 1, MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
50 //eliminate below for for other than the main thread
51 nmcb_id = 1;
52 }
53
54 //nmbc- Number of MC batches( for the main process)
55 for (k = 0; k < nmcb_id; k++) {
56 for (j = 0; j < MC; j++) {
57 if (myid == 0) { //init each MC trial (main process)
58 tau[j] = gsl_ran_exponential(ran, 1.0 / lambda[0]);
59 st[j] = 0;
60 for (u = 0; u < M; u++)
61 for (v = 0; v < MC; v++) st_prev[u][v] = 0.;
62 }
63
64 for (i = 0; i < N / numprocs; i++) {
65 for (t = 0; t < M; t++) {
66 //recurrent equation
67 st[j] += gsl_ran_exponential(ran, 1.0 /

lambda[t + 1]) + fmax(0.0,st_prev[t][j] - st[j] - tau[j]);
68 st_prev[t][j] = st[j];
69 }
70 }
71 results[j + MC * nmcb] = st[j];
72 }
73 nmcb++;
74
75 if (myid != numprocs - 1) {
76 //if not the last process send data to the next process
77 MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1, PIPE_MSG,

MPI_COMM_WORLD);
78 MPI_Send(&st, MC, MPI_DOUBLE, myid + 1, PIPE_MSG,

MPI_COMM_WORLD);
79 MPI_Send(&st_prev, MC*M, MPI_DOUBLE, myid + 1, PIPE_MSG,

MPI_COMM_WORLD);
80 }
81 }
82 //if the main process - go out of while cycle
83 if (myid == 0)break;
84 }
85 //if finished - send the end msg. to the next pipe node
86 if (myid != numprocs - 1)
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87 MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1, END_MSG, MPI_COMM_WORLD);
88 //if last process - send results
89 if (myid == numprocs - 1)
90 MPI_Send(&results, MC * CMC, MPI_DOUBLE, 0, PIPE_MSG,

MPI_COMM_WORLD);
91 //print results
92 if (myid == 0) {
93 MPI_Recv(&results, MC*CMC, MPI_DOUBLE, numprocs - 1, MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
94 print_results(&results[0], time, &lambda[0]);
95 }
96 }
97
98 int main(int argc, char *argv[]) {
99 int namelen;

100 char processor_name[MPI_MAX_PROCESSOR_NAME];
101 int numprocs;
102 int myid;
103 gsl_rng * ran; //random generator
104 int lambda[M + 1] = {0}; //parameter of the exponential distribution
105
106 //init MPI
107 MPI_Init(&argc, &argv);
108 MPI_Comm_size(MPI_COMM_WORLD, &(numprocs));
109 MPI_Comm_rank(MPI_COMM_WORLD, &(myid));
110 MPI_Get_processor_name(processor_name, &namelen);
111
112 //init parameter for the exponential distribution
113 lambda[0] = 30000;
114 for (int i = 1; i < M; i++)lambda[i] = lambda[i - 1] - 25000 / M;
115 lambda[M] = 5000;
116
117 fprintf(stdout, "Process %d of %d is on %s\n", myid, numprocs,

processor_name);
118 fflush(stdout);
119
120 //init random generator
121 gsl_rng_env_setup();
122 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
123 gsl_rng_set(ran, (long) (myid)*22);
124
125 //process
126 node(numprocs, myid, ran, lambda);
127
128 //finish
129 gsl_rng_free(ran);
130 MPI_Finalize();
131 return (0);
132 }
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A.4 Shared memory programming model

1 #include <stdio.h>
2 #include <math.h>
3 #include <gsl/gsl_rng.h>
4 #include <gsl/gsl_randist.h>
5 #include <omp.h>
6
7 #define OPENMP 12 //number of OpenMP threads
8 #define OUT_FILE "out_openmp.txt"
9 #define MC 200 //number of Monte-Carlo simulations in one thread

10 #define N 10000 // number of clients
11 #define M 5 // number of phases
12
13
14 int lambda[M + 1] = {0}; //parameters of the exponential distribution
15 double tau = 0; //interarrival time
16 double st = 0; //sojourn time
17 double st_prev[M] = {0}; //sojourn time for the previous client

// results- sojourn time for all threads trials
18 double results[MC*OPENMP] = {0};

//results- sojourn time for each thread trial
19 double th_results[MC] = {0};
20 gsl_rng * ran; //random generator
21
22 int main(int argc, char *argv[]) {
23 lambda[0] = 30000;
24 for (int i = 1; i < M; i++)lambda[i] = lambda[i - 1] - 25000 / M;
25 lambda[M] = 5000;
26 unsigned long int i, t, j;
27 int th_id; //thread number
28
29 #pragma omp parallel num_threads(OPENMP) private(th_id,ran,j,i,t,tau,

st,st_prev) \
30 firstprivate(th_results) shared(results,lambda)
31 {
32 th_id = omp_get_thread_num();
33
34 //printf("Hello World from thread %d\n", th_id);
35
36 gsl_rng_env_setup();
37 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
38 gsl_rng_set(ran, (long) th_id * 22); //seed
39 for (j = 0; j < MC; j++) {
40 tau = gsl_ran_exponential(ran, 1.0 / lambda[0]);
41 st = 0.;
42 for (i = 0; i < M; i++) st_prev[i] = 0.;
43
44 for (i = 0; i < N; i++) {
45 for (t = 0; t < M; t++) {
46 //recurrent equation
47 st += gsl_ran_exponential(ran, 1.0 / lambda[t + 1])
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+ fmax(0.0,st_prev[t] - st - tau);
48 st_prev[t] = st;
49 }
50 }
51 th_results [j] = st;
52 }
53 for (i = 0; i < MC; i++) results[i + th_id * MC] = th_results [i];
54 gsl_rng_free(ran);
55 }
56 //printing results
57 FILE *fp;
58 const char DATA_FILE[] = OUT_FILE;
59 fp = fopen(DATA_FILE, "w");
60 fprintf(fp, "%d%s%d%s%d\n", N, ",", lambda[0], ",", lambda[M]);
61 for (i = 0; i < MC * OPENMP - 1; i++) fprintf(fp, "%f%s", results[i],

",");
62 fprintf(fp, "%f\n", results[MC * OPENMP - 1]);
63 fclose(fp);
64 return EXIT_SUCCESS;
65 }

A.5 Shared memory static pipeline programming model

1 #include <stdio.h>
2 #include <math.h>
3 #include <time.h>
4 #include <gsl/gsl_rng.h>
5 #include <gsl/gsl_randist.h>
6 #include <omp.h>
7
8 #define OUT_FILE "out_omp_pipe_static.txt"
9

10 #define MC 10000 //total number of Monte-Carlo (MC) simulations
11 #define CMC 1000 // chunks per MC axis
12 #define N 10000 // total number of clients
13 #define M 5 // total number of phases
14 #define CN 1000 // chunks per clients axis
15
16 #define OPENMP 12 //OMP threads
17
18 int lambda[M + 1] = {0}; // parameters of exponential distributions
19 double tau[MC] = {0}; // interarrival time for each MC trial
20 double st[MC] = {0}; // sojourn time for each MC trial
21 double st_prev[MC][M] = {{0}}; // sojourn time of the previous client
22 // for each MC trial and each phase
23 int flag[CMC] = {0}; // aux variable - each MC chunk flag
24 int task_counter[CMC] = {0}; // aux variable - each MC chunk counter
25
26 int main(int argc, char *argv[]) {
27 time_t t1, t2;
28 t1 = time(NULL);
29
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30 //init exponential distribution parameters(heavy traffic case)
31 lambda[0] = 30000;
32 for (int i = 1; i < M; i++)lambda[i] = lambda[i - 1] - 25000 / M;
33 lambda[M] = 5000;
34
35 gsl_rng * ran; //random generator
36 gsl_rng_env_setup();
37 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
38 gsl_rng_set(ran, (long) (CN * CMC + 10)*22.); //seed
39
40 // set interarrival time for each MC trial
41 for (int i = 0; i < MC; i++)
42 tau[i] = gsl_ran_exponential(ran, 1.0 / lambda[0]);
43 gsl_rng_free(ran);
44
45 omp_set_num_threads(OPENMP);
46 #pragma omp parallel //start threads
47 {
48 #pragma omp single //one thread to create tasks
49 {
50 int i, j, t, c; //aux variables
51 int v = 0; // local variable - MC chunk number
52 int sum = 0; // local variable - overall number of tasks

//flag variable to stop external while cycle
53 int while_flag = 1;
54
55 // static task creation in each of MC chunks
56 while (while_flag) { //create many many tasks
57
58 #pragma omp task default(none) private(i,j,t,c,ran) \
59 firstprivate(tau,lambda,v,gsl_rng_ranlxs2,flag) shared(st,st_prev,

task_counter)
60
61 if (!flag[v]) {
62 #pragma omp taskyield //suspend this task if previous task had not

finished
63 }
64 flag[v] = 1;
65
66 gsl_rng * ran; //random generator for this task
67 gsl_rng_env_setup();
68 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
69 gsl_rng_set(ran, (long) (task_counter[v] + v * CN)*22.);

/*seed with
70 the task number*/
71
72 for (j = 0; j < MC / CMC; j++) {
73 c = j + v * (MC / CMC); // MC trial number
74 for (i = 0; i < N / CN; i++) {
75 for (t = 0; t < M; t++) {
76 //reccurrent equation
77 st[c] += gsl_ran_exponential(ran, 1.0 /
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lambda[t + 1])
78 + fmax(0.0, st_prev[c][t] - st[c] - tau[c]);
79 st_prev[c][t] = st[c];
80 }
81 }
82 }
83 // end of the current task
84 gsl_rng_free(ran);
85 task_counter[v]++;
86 if (task_counter[v] != CN) flag[v] = 0;
87 v++;
88 if (v == CMC) v = 0; // again a new loop
89 sum = 0;
90 for (i = 0; i < CMC; i++) sum += task_counter[i];
91 if (sum == CN * CMC) while_flag = 0;
92 }
93 }
94 }
95
96 //print results
97 FILE *fp;
98 const char DATA_FILE[] = OUT_FILE;
99 fp = fopen(DATA_FILE, "w");

100 fprintf(fp,"%d%s%d%s%d%s%d\n",N,",",M,",",lambda[0],",",lambda[M]);
101 t2 = time(NULL);
102 fprintf(fp, "%f\n", difftime(t2, t1));
103 for (int j = 0; j < MC - 1; j++) fprintf(fp, "%f%s", st[j], ",");
104 fprintf(fp, "%f\n", st[MC - 1]);
105 fclose(fp);
106 }

A.6 Shared memory dynamic programming model

1 #include <stdio.h>
2 #include <math.h>
3 #include <time.h>
4 #include <gsl/gsl_rng.h>
5 #include <gsl/gsl_randist.h>
6 #include <omp.h>
7
8 #define OUT_FILE "out_omp_pipe.txt"
9 #define MC 10000 //total number of Monte-Carlo (MC) simulations

10 #define CMC 100 // chunks per MC axis
11 #define N 10000 // total number of clients
12 #define M 5 // total number of phases
13 #define CN 100 // chunks per clients axis
14 #define OPENMP 12 //OMP threads
15
16
17 int lambda[M + 1] = {0}; // parameters of exponential distributions
18 double tau[MC] = {0}; //interarrival time for each MC trial
19 double st[MC] = {0}; // sojourn time
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20 // sojourn time of the previous client for each MC trial and each phase
21 double st_prev[MC][M] = {{0}};
22 int flag[CMC] = {0}; // aux variable - each MC chunk flag
23 int task_counter[CMC] = {0}; // aux variable - each MC chunk counter
24
25 int main(int argc, char *argv[]) {
26 time_t t1, t2;
27 t1 = time(NULL);
28 lambda[0] = 30000; // exponential distribution parameters
29 for (int i = 1; i < M; i++)lambda[i] = lambda[i - 1] - 25000 / M;
30 lambda[M] = 5000;
31
32 gsl_rng * ran; //random generator
33 gsl_rng_env_setup();
34 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
35 gsl_rng_set(ran, (long) (CN * CMC + 10)*22.); //seed
36
37 // set interarrival time for each MC trial
38 for (int i = 0; i < MC; i++)
39 tau[i] = gsl_ran_exponential(ran, 1.0 / lambda[0]);
40 gsl_rng_free(ran);
41
42 omp_set_num_threads(OPENMP);
43 #pragma omp parallel //start threads
44 {
45 #pragma omp single //one thread to create tasks
46 {
47 int i, j, t, c; //aux variables
48 int v = 0; // local variable - MC chunk number
49 int sum = 0; // local variable - number of tasks
50 int while_flag = 1; // var. to stop external while
51
52 // dynamic task creation in each of MC chunks
53 while (while_flag) {
54 if (!flag[v]) {
55 flag[v] = 1;
56 //create a new task if previous task had finished
57 #pragma omp task default(none) private(i,j,t,c,ran) \
58 firstprivate(tau,lambda,v,gsl_rng_ranlxs2) shared(st,st_prev,flag,

task_counter)
59 {
60 gsl_rng * ran; //random generator for this task
61 gsl_rng_env_setup();
62 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
63 //seed with the task number
64 gsl_rng_set(ran,(long)(task_counter[v]+v*CN)*22.);
65
66 for (j = 0; j < MC / CMC; j++) {
67 c = j + v * (MC / CMC); // MC trial number
68 for (i = 0; i < N / CN; i++) {
69 for (t = 0; t < M; t++) {
70 //recurrent equation
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71 st[c] += gsl_ran_exponential(ran,
72 1.0 / lambda[t + 1]) + fmax(0.0, st_prev[c][t] - st[c] - tau[c]);
73 st_prev[c][t] = st[c];
74 }
75 }
76 }
77 // end of the current task
78 gsl_rng_free(ran);
79 task_counter[v]++;
80 flag[v] = 0;
81 }
82 }
83
84 // if all tasks of this chunk of Monte-Carlo trials
85 // had finished -then stop this chunk
86 // v numbered MC chunk is over
87 if (task_counter[v] == CN) flag[v] = 1;
88 v++;
89 if (v == CMC) v = 0; // again a new loop
90 sum = 0; // variable to test all chunks
91 for (i = 0; i < CMC; i++) sum += task_counter[i];
92 // if all task had finished - exit while cycle
93 if (sum == CN * CMC) while_flag = 0;
94 }
95 }
96 }
97
98 //print results
99 FILE *fp;

100 const char DATA_FILE[] = OUT_FILE;
101 fp = fopen(DATA_FILE, "w");
102 fprintf(fp,"%d%s%d%s%d%s%d\n",N,",",M,",",lambda[0],",",lambda[M]);
103 t2 = time(NULL);
104 fprintf(fp, "%f\n", difftime(t2, t1));
105 for (int j = 0; j < MC - 1; j++) fprintf(fp, "%f%s", st[j], ",");
106 fprintf(fp, "%f\n", st[MC - 1]);
107 fclose(fp);
108 return (0);
109 }

A.7 Hybrid programming model

1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include <unistd.h>
5 #include <gsl/gsl_rng.h>
6 #include <gsl/gsl_randist.h>
7 #include <omp.h>
8 #include "mpi.h"
9

10 #define OUT_FILE "out_hybrid.txt"
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11 #define PIPE_MSG 0 // next pipe node
12 #define END_MSG 1 // finish
13 #define OPENMP 12 //number of OMP threads
14
15 #define MC 100 //number of Monte-Carlo (MC) simulations in each chunk
16 #define NP 10 //number of processes (client axis)
17 #define CMC 100 //number of MC chunks
18 #define N 1000 // number of clients
19 #define M 5 //number of phases
20
21 void print_results(double *results, double time, int *lambda) {
22 FILE *fp;
23 const char DATA_FILE[] = OUT_FILE;
24 fp = fopen(DATA_FILE, "w");
25 fprintf(fp,"%d%s%d%s%d%s%d\n",N,",",M,",",lambda[0],",",lambda[M]);
26 time = MPI_Wtime() - time;
27 fprintf(fp, "%f\n", time);
28 for (int i = 0; i < MC * CMC - 1; i++)

fprintf(fp, "%f%s", results[i], ",");
29 fprintf(fp, "%f\n", results[MC * CMC - 1]);
30 fclose(fp);
31 }
32
33 void node(int numprocs, int myid, gsl_rng * ran, int * lambda) {
34 int nmcb = 0; //nmbc - number of MC batches
35 int nmcb_id = 0;
36 int i, j, k, t, u, v;
37 double time = MPI_Wtime(); //program start time
38 MPI_Status Status;
39
40 double tau[MC] = {0}; //interarrival time
41 double st[MC] = {0}; //sojourn time

//sojourn time of the previous customer in each phase
42 double st_prev[M][MC] = {{0}};
43 double results[MC * CMC] = {0}; // overall results
44 double temp; // aux variable
45 while (1) {
46 nmcb_id = CMC; // aux var. to omit the cycle
47
48 if (myid != 0) { //receive data from the previous node
49 MPI_Recv(&tau, MC, MPI_DOUBLE, myid - 1, MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
50 if (Status.MPI_TAG == END_MSG) break;
51 MPI_Recv(&st, MC, MPI_DOUBLE, myid - 1, MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
52 MPI_Recv(&st_prev, MC*M, MPI_DOUBLE, myid - 1, MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
53 //eliminate below for in case of not the main thread
54 nmcb_id = 1;
55 }
56
57
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58 for (k = 0; k < nmcb_id; k++) {
59 omp_set_num_threads(OPENMP);
60 {
61 #pragma omp parallel for default(shared) private(j,i,t,u,v)
62 for (j = 0; j < MC; j++) {
63 if (myid == 0) { //init each MC trial (main process)
64 #pragma omp critical
65 {
66 tau[j] = gsl_ran_exponential(ran, 1.0 / lambda[0]);
67 }
68 st[j] = 0;
69 for (u = 0; u < M; u++)
70 for (v = 0; v < MC; v++) st_prev[u][v] = 0.;
71 }
72
73 for (i = 0; i < N / NP; i++) {
74 for (t = 0; t < M; t++) {
75 //recurrent equation
76 temp = gsl_ran_exponential(ran,1.0/lambda[t + 1]);
77 #pragma omp critical
78 {
79 temp = gsl_ran_exponential(ran,1.0/lambda[t + 1]);
80 }
81 st[j] += temp + fmax(0.0, st_prev[t][j] - st[j] -tau[j]);
82 st_prev[t][j] = st[j];
83 }
84 }
85 results[j + MC * nmcb] = st[j];
86 }
87 }
88 nmcb++;
89
90 if (myid != numprocs - 1) {
91 //if not the last process send data to the next process
92 MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1, PIPE_MSG,

MPI_COMM_WORLD);
93 MPI_Send(&st, MC, MPI_DOUBLE, myid + 1, PIPE_MSG,

MPI_COMM_WORLD);
94 MPI_Send(&st_prev, MC*M, MPI_DOUBLE, myid + 1, PIPE_MSG,

MPI_COMM_WORLD);
95 }
96 }
97 //if the main process - go out of while cycle
98 if (myid == 0)break;
99 }

100 //if finished - send the end message to the next pipe node
101 if (myid != numprocs - 1)MPI_Send(&tau, MC, MPI_DOUBLE, myid + 1,

END_MSG, MPI_COMM_WORLD);
102 //if last process - send results
103 if (myid == numprocs - 1) MPI_Send(&results,MC*CMC,MPI_DOUBLE,0,

PIPE_MSG, MPI_COMM_WORLD);
104 //print results
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105 if (myid == 0) {
106 MPI_Recv(&results,MC*CMC,MPI_DOUBLE,numprocs - 1,MPI_ANY_TAG,

MPI_COMM_WORLD, &Status);
107 print_results(&results[0], time, &lambda[0]);
108 }
109 }
110
111 int main(int argc, char *argv[]) {
112 int namelen;
113 char processor_name[MPI_MAX_PROCESSOR_NAME];
114 int numprocs;
115 int myid;
116 gsl_rng * ran; //random generator
117 //parameter for the exponential distribution
118 int lambda[M + 1] = {0};
119
120 //init mpi
121 MPI_Init(&argc, &argv);
122 MPI_Comm_size(MPI_COMM_WORLD, &(numprocs));
123 MPI_Comm_rank(MPI_COMM_WORLD, &(myid));
124 MPI_Get_processor_name(processor_name, &namelen);
125
126 //init parameter for the exponential distribution
127 lambda[0] = 30000;
128 for (int i = 1; i < M; i++)lambda[i] = lambda[i - 1] - 25000 / M;
129 lambda[M] = 5000;
130
131 fprintf(stdout,"Process %d of %d is on %s\n",myid,

numprocs,processor_name);
132 fflush(stdout);
133
134 //init random generator
135 gsl_rng_env_setup();
136 ran = gsl_rng_alloc(gsl_rng_ranlxs2);
137 gsl_rng_set(ran, (long) (myid)*22);
138
139 //process
140 node(numprocs, myid, ran, lambda);
141
142 //finish
143 gsl_rng_free(ran);
144 MPI_Finalize();
145 return (0);
146 }
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DPSAIM expert evaluation
Please evaluate the Design Principles and Supportive application and integration methodology for 
SOFTWARE LEARNING OBJECTS FOR SCIENTIFIC 
COMPUTING EDUCATION: TEACHING SCIENTIFIC INQUIRY 
WITH RECURRENCE BASED STOCHASTIC MODELS

1. Please indicate your field of expertise Informatics (Computer Science)
Check all that apply.

Theory
(algorithms,

mathematical
models)

Technology
(hardware,
platforms)

Technology
(software

tools,
engineering)

Programming
(languages,
solutions,

tools)

Didactic,
informatics
education

Didactic,
teachers'
training

Instruction
(design,

application)

Educational
solutions in

general

Not
relevant

Field of the
research
interests
Area of teaching,
training
Educational
material
application,
development,
adaptation

2. Please indicate your level of expertise (experience, years)
Mark only one oval per row.

Not relevant -3 4-10 10-

Research experience
Teaching experience
Experience in using, developing,
adaptation of LOs

3. Please indicate your level of expertise (number of research items)
Mark only one oval per row.

-5 5-10 10-15 15-

Please indicate

Evaluation of the developed educational solutions in general

4. What are advantages and perspectives (if any) of the developed Design Principles and
Supportive Application and Integration Methodology (DPSAIM)?
Mark only one oval per row.

Strongly
disagree Disagree Neither agree nor

disagree Agree Strongly
agree

Practically applicable for
high secondary level
Practically applicable for
novice university level
Improves learner
understanding
Could be included into
teacher's toolkit
Could be further developed
by the teacher
Provides Constructionist
educational toolkit
Covers important
educational topics
Provides solutions for
modern educational issues

5. Does the provided evaluation scheme corresponds to the evaluation of the developed DPSAIM?
Mark only one oval per row.

Strongly
disagree Disagree Neither agree nor

disagree Agree Strongly
agree

Please evaluate

B Expert evaluation
B.1 Questionnaire form
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6. What is the general opinion or comments (if any) on the Research?
Mark only one oval per row.

Strongly
disagree Disagree Neither agree nor

disagree Agree Strongly
agree

Correspondence of the
volume of the research
Correspondence of the
internal structure
The relevance of the
research topic
The correspondence of the
implemented research
methodology
The novelty of the
developed educational
solutions
The novelty of the
developed technological
solutions
Correspondence of the
theoretical grounding
The relevance and
correspondence of the
experimental research and
case studies
Correspondence of the
literature review

The evaluation of the developed sample resources (Software
Learning Objects)

7. Are the developed learning resources - DPSAIM - compatible with the objectives of the DPSAIM
design?
Mark only one oval per row.

Strongly
disagree Disagree Neither agree nor

disagree Agree Strongly
agree

Reusability
Interoperability
Durability
Accessibility

Goals of LOs Design

Churchill LOs taxonomiey
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8. Does the developed SLOs meet LO Churchill taxonomie?
Mark only one oval per row.

Strongly
disagree Disagree Neither agree nor

disagree Agree Strongly
agree

Presentation objects
Practice object
Simulation object
Conceptual model
Information object
Contextual
representation

9. Does the developed SLOs meet LO Redeker taxonomie?
Mark only one oval per row.

Strongly
disagree Disagree Neither agree nor

disagree Agree Strongly
agree

Receptive
Internally
interactive
Cooperative

Redeker LO taxonomie

Finlay LOs taxonomie

y

y

y

y
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10. Does the developed SLOs meet LO Finlay taxonomie?
Mark only one oval per row.

Strongly
disagree Disagree Neither agree nor

disagree Agree Strongly
agree

Theory-based
Cooperative
Application-
based
Individualised

11. The evaluation from the perspectives of quality measurement metrics
Mark only one oval per row.

Not relevant Low Middle High

Q1: quality of the content
Q2: quality of the LO considering
prerequisites
Q3: quality of the description
Q4: quality of the LO considering
reusing
Q5: quality of the LO considering
structural complexity
Q6: quality of the LO considering
adaptation

Does the developed SLOs meet the most important characteristics
defined in the LO standards?

12. Underlying organizational structure of this learning object (1.7)
Check all that apply.

 atomic: an object that is indivisible (in this context)

 collection: a set of objects with no specified relationship between them

 hierarchical: a set of objects whose relationships can be represented by a tree structure.

 linear: a set of objects that are fully ordered. (Example: A set of objects that are connected by
“previous” and “next” relationships.)

LO quality measurement metrics

y
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13. The functional granularity of this learning object. (1.8)
Check all that apply.

 1: the smallest level of aggregation, e.g., raw media data or fragments.

 2: a collection of level 1 learning objects, e.g., a lesson.

 3: a collection of level 2 learning objects, e.g., a course.

 4: the largest level of granularity, e.g., a set of courses that lead to a certificate.

14. 5.1. Interactivity Type. Predominant mode of learning supported by this learning project.
Check all that apply.

 “Active” learning (e.g., learning by doing) is supported by content that directly induces productive
action by the learner. An active learning object prompts the learner for semantically meaningful input or
for some other kind of productive action or decision, not necessarily performed within the learning
object's framework. Active documents include simulations, questionnaires, and exercises.

 “Expositive” learning (e.g., passive learning) occurs when the learner's job mainly consists of
absorbing the content exposed to him (generally through text, mages or sound). An expositive learning
object displays information but does not prompt the learner for any semantically meaningful input.
Expositive documents include essays, video clips, all kinds of graphical material, and hypertext
documents

 When a learning object blends the active and expositive interactivity types, then its interactivity
type is “mixed.”

15. 5.3. Interactivity Level. The degree of interactivity characterizing this learning object. The degree
of interactivity characterizing this learning object. Interactivity in this context refers to the
degree to which the learner can influence the aspect or behavior of the learning object.
Mark only one oval per row.

Very low Low Middle High Very high

Please indicate

16. 5.4. Semantic Density. The degree of conciseness of a learning object. The semantic density of a
learning object may be estimated in terms of its size, span, or—in the case of self-timed
resources such as audio or video—duration. The semantic density of a learning object is
independent of its difficulty. It is best illustrated with examples of expositive material, although
it can be used with active resources as well.
Mark only one oval per row.

Very Low Low Middle High Very high

Please indicate

17. 5.5. User Role. Principal user(s) for which this learning object was designed, most dominant
first.
Check all that apply.

 Teacher

 Author

 Learner

 Manager

 Other: 

18. 5.6. Context The principal environment within which the learning and use of this learning object
is intended to take place.
Check all that apply.

 School

 Higher education

 Training

 Other
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Powered by

19. 5.7. Typical Age Range. Age of the typical intended user.This data element shall refer to
developmental age, if that would be different from chronological age.
Check all that apply.

 7-11 primary school

 12-14 primary school (5-8 school class)

 15-16 primary school (9-10 school class)

 16-18 secondary school (11-12 school class)

 18- novice university

20. 5.8 Difficulty How hard it is to work with or through this learning object for the typical intended
target audience.
Mark only one oval per row.

Very low Low Middle High Very High

Please indicate

The evaluation from the perspectives of possible disadvantages or
limitations

21. Please evaluate possible influence of disadvantages and limitations on application and quality
of provided solutions
Mark only one oval per row.

Very low Low Middle High Very hgh

Please indicate

The evaluation from the perspectives of possibility of further
development

22. Please evaluate possibility of further development
Mark only one oval per row.

Very low Low Middle High Very high

Please indicate

Additional evaluation topics.

23. What are (if any) additional evaluation criteria?
 

 

 

 

 

24. What are (if any) a supplement expert opinion (advantages, disadvantages, opinion,
recommendations, etc.) on the provided educational solutions and sample learning resources?
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measurement metrics [Q3: quality of the descri…

20%

80% High
80%

Middle
20%

The evaluation from the perspectives of quality
measurement metrics [Q4: quality of the LO co…

40%

60%
Middle

60%

High
40%

The evaluation from the perspectives of quality
measurement metrics [Q5: quality of the LO co…

25%

75% Middle
75%

High
25%

y? y?

y?

y?
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The evaluation from the perspectives of quality
measurement metrics [Q6: quality of the LO co…

40%

60%
Middle

60%

High
40%

Underlying organizational structure of this
learning object (1.7) atomic: an object that is in…

40%

20%

20%

20%

hierarchical: a set of
objects whose

relationships can be
represented by a

tree structure.
40%atomic: an object

that is indivisible (in
this context)
20%

The functional granularity of this learning object
(1.8) 1: the smallest level of aggregation, e.g., r…

40%

20%

20%

20%

2: a collection of
level 1 learning
objects, e.g., a

lesson.
40%

1: the smallest level
of aggregation, e.g.,
raw media data or
fragments., 2: a
collection of level 1
learning objects,
e.g., a lesson., 3: a
collection of level 2
learning objects,…

Interactivity Type. Predominant mode of learning
supported by this learning project (5.1) “Active…

40%

20%

40%

When a learning
object blends the

active and
expositive

interactivity types,
then its interactivity

type is “mixed.”
40%

“Active” learning
(e.g., learning by
doing) is supported
by content that
directly induces
productive action by
the learner. An
active learning
object prompts the
learner for seman…

Interactivity Level. The degree of interactivity
characterizing this learning object. The degree…

20%

20% 60%
High
60%

Middle
20%

Very high
20%

High

Semantic Density. The degree of conciseness of a le

User Role. Principal user(s) for which this
learning object was designed, most dominant fi…

40%

20%

20%

20%

Learner
40%

Teacher
20%

Teacher, Author,
Learner, Manager
20%

Teacher, Learner
20%

Context. The principal environment within which
the learning and use of this learning object is in…

40%

20%

40%

Higher education
40%

School
40%

School, Higher
education, Training
20%
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Typical Age Range. Age of the typical intended
user.This data element shall refer to developme…

40%

20%

20%

20%

18- novice
university

40%

15-16 primary
school (9-10 school
class)
20%

16-18 secondary
school (11-12
school class), 18-
novice university
20%

Difficulty. How hard it is to work with or through
this learning object for the typical intended targ…

20%

80% Middle
80%

High
20%

Please evaluate possible influence of
disadvantages and limitations on application a…

25%

25%

50%
Middle

50%

Low
25%

Very low
25%

Please evaluate possibility of further
development [Please indicate] High

20%

80% High
80%

Very high
20%

What are (if any) additional evaluation criteria?

33.3%33.3%

33.3%

Extensive set of
evaluatin criteria

has already been
presented by the

author.
33.3%

Pedagogical
experiment in real
setting: students'
engagement
evaluation
according to
Bloom's (revised
Bloom's) taxonomy,
students'
computational thi…

What are (if any) a supplement expert opinion
(advantages, disadvantages, opinion, recomme…

50% 50%

In my opinion, SLOs
are very useful and

effective in
modeling real-world
phenomena that are

difficult to illustrate
by real experiments;

as tool to develop
computational

thinking skills; as i…

Valuable solutions,
very well grounded
and structured
50%
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