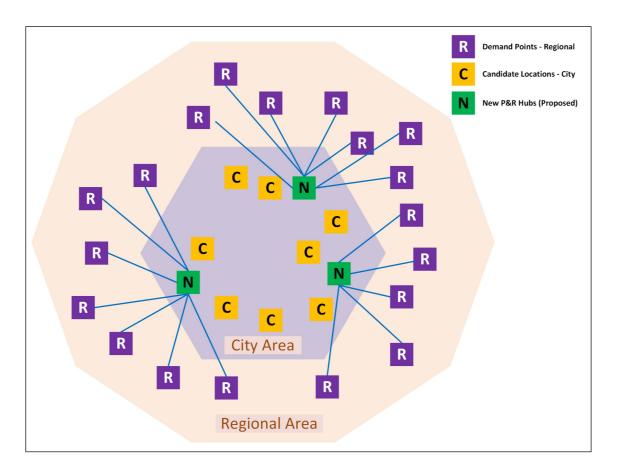
Multi-Agent System for Location of Park-and-Ride Hubs

Sathuta Sellapperuma, Algirdas Lančinskas, DMSTI, Vilnius University

{sathuta.sellapperuma, algirdas.lancinskas}@mif.vu.lt

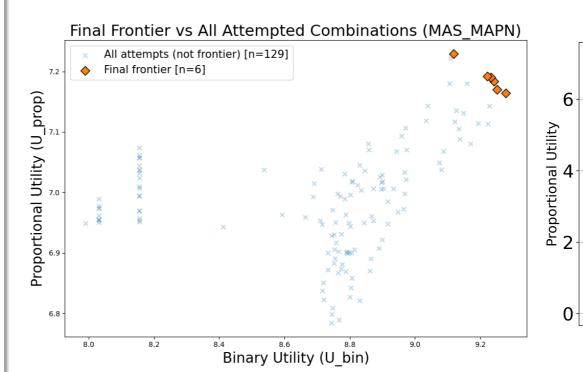
Introduction and Problem Statement

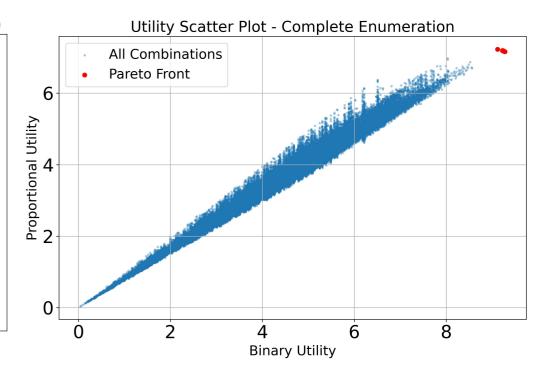
- ► Goal: Identify robust locations for new Park-and-Ride (P&R) hubs in urban networks.
- ▶ **Problem:** Customer choices may shift between models (uncertainty).
- ▶ **Objective:** Maximise both binary and proportional objectives and ensure solutions stay optimal under both behaviours.



Results and Validation

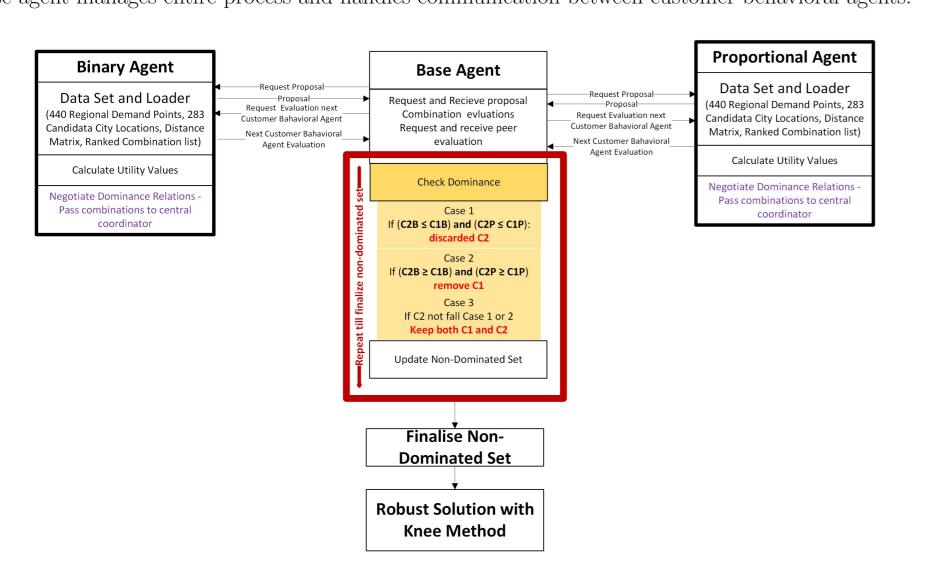
- ► Locations for 3 new P&R hubass, 6 test instances with different city qualities data sets.
- ▶ Demand points: 440 in Vilnius and 283 in the region of Vilnius.





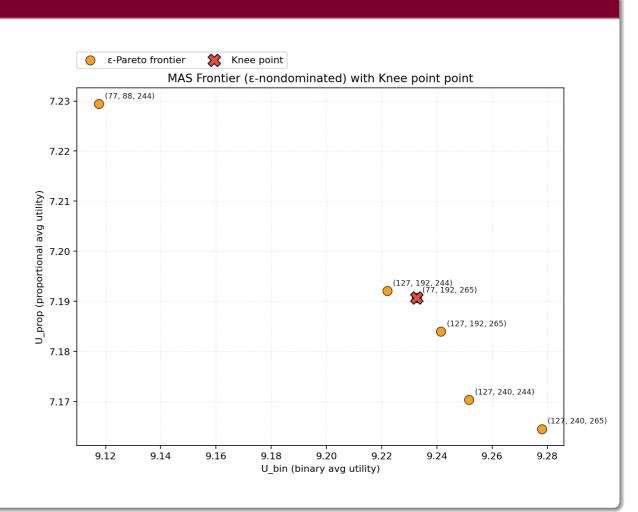
Multi-Agent System

- ▶ Multi-Agent System (MAS) uses Mediated Alternating-Proposal Negotiation (MAPN). Behavioral agents propose and evaluate solutions, while the base agent (mediator) manages the set of non-dominated solutions.
- ► Customer behavioral agents (Binary, Proportional) explores search space and propose solutions.
- ▶ Base agent manages entire process and handles communication between customer behavioral agents.



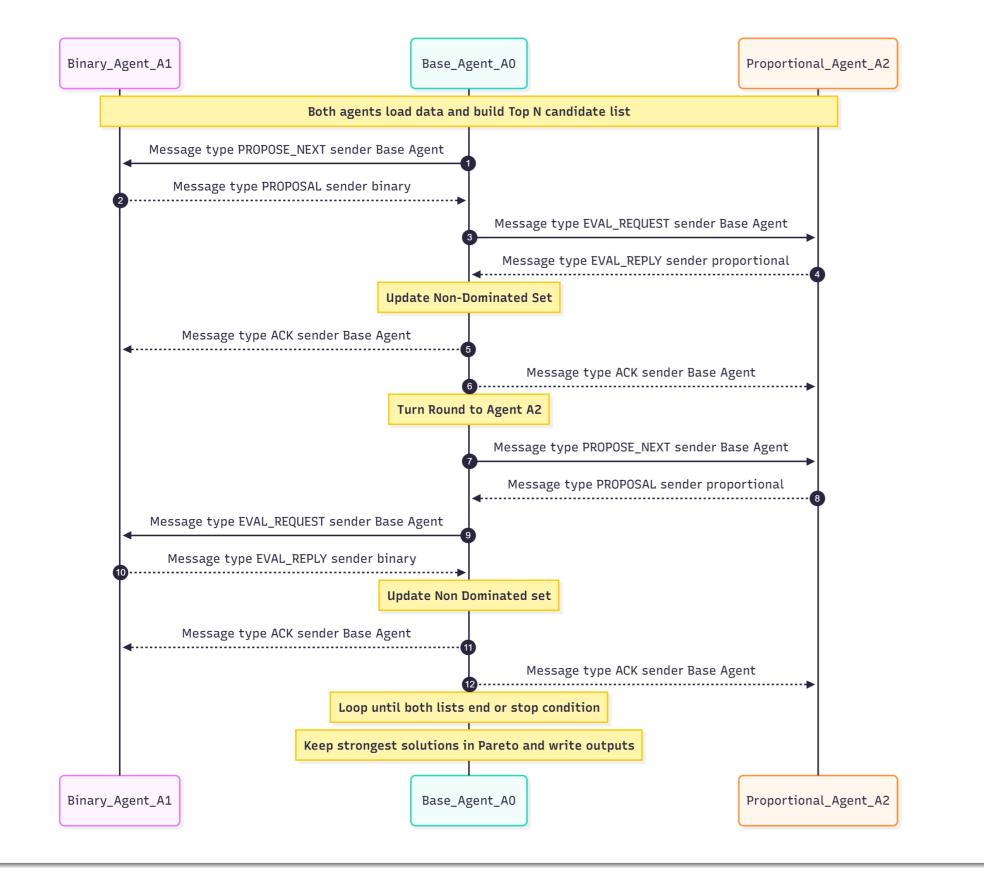
Robust Solution Selection

- ► After MAS negotiation, six **robust selection methods** were applied on the
 Pareto frontier:
 - ▶ $Distance\text{-}based \rightarrow Manhattan, Euclidean,$ (Chebyshev)
- ightharpoonup Ranking-based
 ightarrow TOPSIS, VIKOR
- ightharpoonup Curvature-based ightharpoonup Knee Point



Agent Communication

- ► Lightweight FIPA-ACL protocol with 6 fields: performative, sender, receiver, content, reply_with, and in_reply_to
- ▶ Performative types: pn, pr, erq, erp, ack, nack.



Agent Learning Logic

The Objective

- ightharpoonup The agent must select locations for new facilities from a set S of location candidates.
- ► The objective is
 - (1) to maximize the utility function U(S) and
 - (2) to rank candidate locations according to their fitness.

Ranking of Candidate Locations

- ► All candidate locations have rank values.
- ▶ Ranks represent probability to sample a candidate to form a solution.
- ▶ Ranks are automatically adjusted at runtime of the algorithm.

Sampling Candidate Locations

► Candidates are chosen one-by-one using a softmax probability with max shift:

$$P(i|S) = \frac{\exp(R_i - R_{max})}{\sum_{j \notin S} \exp(R_j - R_{max})}$$

 R_i is the rank of *i*-th candidate location; S is the set of candidates already selected; $R_{max} = \max_{j \notin S} R_j$.

Reward and Advantage

- ▶ After constructing a full set S, the agent receives reward Rwd = U(S).
- ▶ The advantage compares this reward to the baseline Adv = Rwd B.
- ▶ The baseline is updated by $B \leftarrow (1 \beta) \cdot B + \beta \cdot Rwd$, where $\beta \in (0, 1]$.

Learning Update

 \blacktriangleright For each selected location i with sampling probability p_i the rank is updated by

$$R_i \leftarrow R_i + \alpha \cdot Adv(1 - p_i)$$
, where $\alpha \in (0, 1]$.

▶ Over time, the agent learns to prefer locations that improve utility.

Final Decision

▶ After the training phase, the agent constructs the final solution using a greedy rule:

 S^* = the set of n candidates with the highest rank values.

