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Introduction and Problem Statement Results and Validation

| » Locations for 3 new P&R hubass, 6 test instances with different city qualities data sets.
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Robust Solution with » The agent must select locations for new facilities from a set S of location candidates.
Knee Method
» The objective is
(1) to maximize the utility function U(S) and

(2) to rank candidate locations according to their fitness.
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. . : » All candidate locations have rank values.
» Lightweight FIPA-ACL protocol with 6 fields:
performative, sender, receiver, content, reply with, and in reply to » Ranks represent probability to sample a candidate to form a solution.
> Performative types: pn, pr, erq, erp, ack, nack. » Ranks are automatically adjusted at runtime of the algorithm.
Sampling Candidate Locations
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! ! ! » Candidates are chosen one-by-one using a softmax probability with max shift:
Both agents load data and build Top N candidate list
Message type PROPOSE_NEXT sender Base Agent $ (R R ) RZ 15 the rank Of Z_th Candldate lOCatIOIl;
< y €X 1~ Llmax : :
P(i|S) = L S is the set of candidates already selected;
Message type PROPOSAL sender hinary ngs eXp( j max)
e """""""""""""""""""""""""""""""""""" > Rmam — man¢S R]
Message type EVAL_REQUEST sender Base Agent
g Reward and Advantage
Message type EVAL_REPLY sender proportional
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Update Non-Dominated Set » After constructing a full set S, the agent receives reward Rwd = U(S).
Message type ACK sender Base Agent . .
e s » The advantage compares this reward to the baseline Adv = Rwd — B.
Message type ACK sender Base Agent
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arn Round to Agent A2 » The baseline is updated by B < (1 — ) - B+ 8 - Rwd, where § € (0, 1].
Message type PROPOSE_NEXT sender Base Agent Learning Update
Message type PROPOSAL sender proportional
S © » For each selected location ¢ with sampling probability p; the rank is updated by
Message type EVAL_REQUEST sender Base Agent
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s s e » Over time, the agent learns to prefer locations that improve utility.
Message type ACK sender Base Agent
S Final Decision
Message type ACK sender Base Agent
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Loop until both lists end or stop condition » After the training phase, the agent constructs the final solution using a greedy rule:
I
Keep strongest solutions in Pareto and write outputs
| S* = the set of n candidates with the highest rank values.
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