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Motivation Introduction
Estimation of the remaining useful life (RUL) of bearings is usually Our research focuses on analyzing the remaining useful life of bearing based on their vibrational signals. A unique approach to this
performed using various methods, including machine learning, problem is the introduction of an algebraic techniques (in particular — Hankel matrices) a rather novel idea in predictive diagnostics.
eptropy-based, or other more orlless Classical mgthods. This study By applying a fixed sliding window to vibration data, we can construct Hankel matrices and find their so called feature — pseudo-
aims to use the ranks of the associated Hankel matrix. rank (Fig. 1). Being a numerical feature, it represents bearings’ RUL (or health condition which is essentially the inverse of RUL,
Algebraic techniques in predictive diagnostics are still less common, depending on what exactly needs to be estimated) at any given time. The question arises during practical applications: how to
although some applications of Hankel matrices, for example, have estimate the pseudo-rank? Thus we introduce a methodology to solve this problem.
received more attention recently [2, 3, 4]. Algebraic approach is a topic of the ongoing research and will further be developed for problems in predictive diagnostics.
Actual vs. Predicted RUL for B3, Dataset Actual vs. Predicted RUL for B3, Dataset
2.0 Predicted vs. Actual (B3;) L 10041 © Predicted vs. Actual (B31) _
At the beginning At the beginning 907 --- Perfect Prediction // ——=- Perfect Prediction 7
1.5 80 0 P4 °
801 <
109 60 —_1 P <g> )
7 80 Y
| 70 £
E (7)) ’ [7)] g}%c&)
£ oo | 20 -3 8 0. 8 SN
0 -4 ‘ |E| =0.03 ;U ,/ § 60 - @ % S,’axgoé'o&%‘j%;
] 0 100 200 300 400 500 0 100 200 300 400 500 3 504 8 _e® o Sontte ¢ 2
: f 2 2 O S
' At the end At the end 7 . B o8 & \“/09 ot % ¢
: 20 £ 40, £ APz, X 1 LA
-1.51 / B ,/ 40 @ % m’»% gg;;‘/‘/é\o Q\é@w\ “e0®
a 7 2 @%@ P ® ®
30 _—05 y S %% o & %,
-2.0 ‘ : P "L‘ 30 /,” " QO; qug;o:; . VC o
520 l!3\—1.0 %OEO '@ S
Ag—3 Ag—2 Ag-1| Ak Ag+1 Apyp| Ak+3  Ok+a  Og4s 10 2 s 201 20| oggf®
k-2 Q-1 Qg |Ak+1 Ak4+2  Og43|Agysa Qg5 gt . o - el =003 NIk
Ag—-1 9% Ap+1 1Ag+2  Ag43 Q44| AQgys Qg6 Ag+7 0 100 200 300 400 500 0 100 200 300 400 500 10 20 30 40 50 60 70 80 90 20 20 60 80 100
J J Actual Values Actual Values
Fig. 1 Moving windows produces subsequences which Fig. 2. A threshold on the average differences of Fig. 3. Prediction of RUL for B3, dataset (validation) Fig. 4 . Prediction of RUL for B3; dataset
are then transformed into associated Hankel matrices. adjacent singular values is employed for rank estimation. with the multidimensional model trained on B;;,. (training) with the multidimensional model.
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RUL prediction starts by evaluating bearings vibration at any given o ]
time moment. Then, one needs to find the rank of the associated B (0x2m
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vibrational data (exact formal ranks of a sequence does not exist due
to the presence Of nOiSG)_ L S S S I S S o"é’le'o(’n'o;r'z;g“ A T 'o"Fio;’e'o;:r’-n'zg LS Y
The solution of the rank estimation problem is demonstrated with the e G Fig. 5. Evolution of Hankel matrix pseudo-rank values for testing

dataset B3, (left) and for training dataset B, (right). Optimal

data from experimental latform PRONOSTIA 1. Here,
P P 1) parameters (m,w, e) = (500,13,0.03).

accelerometers measures bearings’ accelarations a,, a, along Ox and
Oy axes respectively. The value of accelaration changes over time and
begins to show noticeable increase in standard deviation for small
RUL values. The experiment is conducted with custom ball bearings.
Conditions of the experiment are: 1500 rpm and 5000 N load.

The optimal values for m, ¢, w are determined by particle
swarm optimization, minimizing prediction accuracy M.

Since the bearing’'s data files includes the timestamps of the data Moptr Eoptr Wopt = argg}gi,rvlv M(m, e,w)
reglstereq they are used ’Fo dgtermlne bearln.g‘s RUL. Despite the.dat.a //P 1D model. A perceptron is used (3 hidden layers having 32,
being registered in two directions, only the first one (along Ox axis) is 16, 8 neurons respectively).

considered here.

The feature of interest is the pseudo-rank r of the sequence {a;}}-,. It
is usually found by counting the number of singular values g;, j = 1,m,
which are greater than a threshold ¢. Our variation is to compare

{|o; —aj_1|}:_n=1to ¢ instead. The first index j at which the moving

* Input: ry.
i Output: RULk = tend — tk'
ND model. A custom functional ANN architecture is used.

starts (1)

* InpUt: (rk—N+1:rk—N+2""irk)-
° Output: RULk = tond — Ck-
The target function in both cases is the same:

B (7x<15)
C (7>

average of the difference (of window w) is less than & three times in a
row is considered 7, = r({a;}}¢™2): = j (Fig. 2).
M(m,e,w) = MSE (RULEf”‘”, RULEC““”“”)

Fig. 6. Optimal configuration Numerical experiments suggest that in real applications the

batch <inon of artificial neuron network e _ _
i (ANN). parameters needs to be optimized for a particular bearing
: -~ (output J even if experiment parameters are the same.
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Fig. 7. Complete workflow of the data preprocessing, model optimization and RUL prediction.

Discussion

Prediction of RUL is only viable at the end of bearing’s lifetime if 1D model is used. Only then r, shows a stable tendency to Refe rences
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