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Introduction

An electrocardiogram (ECG) measures electrical signals from the heart to capture vari-
ous cardiovascular conditions. Distinct patterns can be identified in ECG signals during
the development of arrhythmias. The growing availability of single-lead Holter devices

MIT-BIH Arrhythmia Database

Table: Beat Counts of the MIT-BIH Arrhythmia Database by AAMI Class and DS1/DS2 split with adherence
to AAMI labels and inter patient paradigm

enables continuous cardiac monitoring and supports earlier arrhythmia detection using G‘L(\:I’grﬁ:zss D (Tralzén§162et) SCEELS | DI (Tesngssget) Beats Tot9aOI :32e;ts
deep learning [1]. Since abnormal heartbeats occur rarely, even in patients diagnosed : ’ : :
with arrhythmia, data used for training models are imbalanced, leading to poor general- S (Suprgventrlcular) A s =t
ization and robustness [2]. To circumvent this, data augmentation is utilized to mitigate v (Ven_t”CLilar) 3,788 3,21 7,009
label balancing issues. This study is split into two parts: F (Fusion)™ 415 388 803

Q (Unclassified)* 8 7 15
« Literature review of data augmentation techniques and preprocessing methods; Total 51,013 49,705 100,718

« Empirical study of Synthetic Minority Over-sampling Technique (SMOTE) and Denois-

ing Diffusion Probabilistic Model (DDPM) models to improve the accuracy of arrhythmia

beat classification.

Literature Review

Table: Literature review results.

“Note: Q-class beats are excluded from training, while F beats from evaluation, allowing
the analysis to focus on clinically relevant minority classes, particularly the S-class.

Classifier

2D-CNN-BILSTM classifier was chosen for the classification task:
* Inputs: the raw beat segment, a QRS complex mask, and R—R interval features.

Ref. | Preprocessing Segmentation | Augmentation | Classifier Accuracy _ _
[3] | Butterworth Beat seg., | Auxiliary Clas-|LC-CNN 99.22%, « A 3-layer 2D-CNN with a BILSTM. Concurrently, R—R features are embedded from 3D
BP convert to | sifier GAN to 16D.
image « A 2-layer MLP is used for the class assignment.
[4] | Butterworth Beat seg. BC-GAN MISEResNet-| 99.93% Training process: 15 epochs with Focal Loss (No augmentation; DDPM weights: N-0.08,
BP BiLSTM S-0.72, V-0.15, F-0.05; SMOTE weights: N-0.24, S-0.47, V-0.24, F—0.06). Because
[5] |- Beat seg., | Multimodality | Multimodality | 98.83% the F class received a very small effective weight, the model did not learn this class
convert to | Data Feature reliably; therefore, F-class performance is omitted from the results section.
image Matching- Encoding,
Based Fusing, Sof- .
max Data augmentation methods
61 |- Beat seg. TCGAN Multi-scale | 94.69% - SMOTE with k neighbors set to 3 was utilized to augment the beat-level segment vector
gofgl'clj\/l i with concatenated RR features.
7] [Wavelet de-5-10s s6 Stretchin dl-al ih | 95.48% « DDPM architecture consists of a 1D U-Net with skip connections and ResBlock1D.
. g . 9 " P e Generated signals were filtered to have at least 0.3 correlation with their original signal.
noising scaling, Gaus-| GNN- Example of the generated signals:
sian noise BiLSTM '
[8] | Butterworth Beat segqg. K-means un-| MB-MHA- 98.75%
BP, 75Core dersampling + TCN S beat (corr=0.91, mse=0.178) V beat (corr=0.99, mse=0.025)
normalization SMOTE 2.0 | 5
[9] Min-Max nor-|10s seg., SMOTE, CNN SMOTE: 55 . 1
malization norm., beat| ADASYN 94.75%, ' /\j |
seg. ADASYN: 0.0+ | fpe—e e e 0t g
05.78% . -
[10] |- SRl g EICr)ng,SNAN HeE ;;mzeGAN:+ 0 50 100 150 200 0 50 100 150 200
’ ) . — Real Synthetic
DDPM 12.8, EC-
GAN: 93.8 Figure: Generated S and V beats using DDPM
+ 5.1,
DDPM:
69.2 + 18.6 Results
[11] |- Beat seg., | DCGAN, 2D-CNN Normal
convert to | CGAN, class: Table: Classification performance per class using different augmentation methods.
image WGAN-GP 77.9%; Method Class Precision Recall Fi-score Overall Acc.
SO _ No augmentation (Z-score) N 0.96 0.98 0.97 0.93
mal class:
93.1% S 0.28 0.33 0.30
Vv 0.92 0.77 0.84
. SMOTE (Min-Max) N 0.95 0.80 0.86 0.77
Insights S 011 033  0.16
* Preprocessing and segmentation: Filtering and denoising steps are rarely used, but Vv 0.75 0.77 0.76
Bytterworth bandpass filtgrs followed by Z-score or Min-Max normalization coupled DDPM (Z-score) N 0.96 0.97 0.97 0.94
with beat-level segmentation are the standard. 3 0.40 0.31 0.35
- Augmentation: Generative Adversarial Networks (GANs) have replaced traditional v O. - O. - O. -

methods (like SMOTE) as the most common approach for data augmentation.
» The highest accuracy of 99.83% was achieved using BC-GAN (which uses both BiL-
STMs and CBAM modules) for data augmentation.
» An emerging trend of converting beats to images and augmenting data with an Auxiliary
Classifier GAN resulted in an accuracy of 99.22%.
For further research, SMOTE was chosen as a baseline for augmentation and DDPM for
its novelty in ECG signal augmentation and its capability to generate realistic waveforms.

Conclusions and Future Work
 Classifier trained on SMOTE-augmented data performed worse (Overall Acc. — 77%)
than the baseline - classifier with no augmentation (Overall Acc. — 93%).

« The DDPM method increased S-beat precision by 12% and F1-score by 5% compared
to the baseline method.

 Focal loss with stronger class weighting can partially alleviate class imbalance.
Future work includes:

« Enhancing temporal feature extraction within the classifier architecture;

« Experimenting with GAN-based approaches for data augmentation;

* Incorporating longer ECG segments during training and augmentation to capture richer
temporal dynamics.
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Figure: Overview of the ECG classification pipeline.
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