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Introduction
An electrocardiogram (ECG) measures electrical signals from the heart to capture vari-
ous cardiovascular conditions. Distinct patterns can be identified in ECG signals during
the development of arrhythmias. The growing availability of single-lead Holter devices
enables continuous cardiac monitoring and supports earlier arrhythmia detection using
deep learning [1]. Since abnormal heartbeats occur rarely, even in patients diagnosed
with arrhythmia, data used for training models are imbalanced, leading to poor general-
ization and robustness [2]. To circumvent this, data augmentation is utilized to mitigate
label balancing issues. This study is split into two parts:

• Literature review of data augmentation techniques and preprocessing methods;
• Empirical study of Synthetic Minority Over-sampling Technique (SMOTE) and Denois-

ing Diffusion Probabilistic Model (DDPM) models to improve the accuracy of arrhythmia
beat classification.

Literature Review

Table: Literature review results.

Ref. Preprocessing Segmentation Augmentation Classifier Accuracy
[3] Butterworth

BP
Beat seg.,
convert to
image

Auxiliary Clas-
sifier GAN

LC-CNN 99.22%

[4] Butterworth
BP

Beat seg. BC-GAN MISEResNet-
BiLSTM

99.93%

[5] - Beat seg.,
convert to
image

Multimodality
Data
Matching-
Based

Multimodality
Feature
Encoding,
Fusing, Sof-
max

98.83%

[6] - Beat seg. TCGAN Multi-scale
Conv1d +
Bi-LSTM

94.69%

[7] Wavelet de-
noising

5-10s seg. Stretching,
scaling, Gaus-
sian noise

dual path
CNN-
BiLSTM

95.48%

[8] Butterworth
BP, zscore
normalization

Beat seg. K-means un-
dersampling +
SMOTE

MB-MHA-
TCN

98.75%

[9] Min-Max nor-
malization

10s seg.,
norm., beat
seg.

SMOTE,
ADASYN

CNN SMOTE:
94.75%,
ADASYN:
95.78%

[10] - Beat seg. TimeGAN,
ECGAN,
DDPM

t-SNE TimeGAN:
79.2 ±
12.8, EC-
GAN: 93.8
± 5.1,
DDPM:
69.2 ± 18.6

[11] - Beat seg.,
convert to
image

DCGAN,
CGAN,
WGAN-GP

2D-CNN Normal
class:
77.9%;
Abnor-
mal class:
93.1%

Insights
• Preprocessing and segmentation: Filtering and denoising steps are rarely used, but

Butterworth bandpass filters followed by Z-score or Min-Max normalization coupled
with beat-level segmentation are the standard.

• Augmentation: Generative Adversarial Networks (GANs) have replaced traditional
methods (like SMOTE) as the most common approach for data augmentation.

• The highest accuracy of 99.83% was achieved using BC-GAN (which uses both BiL-
STMs and CBAM modules) for data augmentation.

• An emerging trend of converting beats to images and augmenting data with an Auxiliary
Classifier GAN resulted in an accuracy of 99.22%.

For further research, SMOTE was chosen as a baseline for augmentation and DDPM for
its novelty in ECG signal augmentation and its capability to generate realistic waveforms.

Pipeline

Figure: Overview of the ECG classification pipeline.

MIT-BIH Arrhythmia Database

Table: Beat Counts of the MIT-BIH Arrhythmia Database by AAMI Class and DS1/DS2 split with adherence
to AAMI labels and inter patient paradigm

AAMI Class DS1 (Training Set) Beats DS2 (Testing Set) Beats Total Beats
N (Normal) 45,866 44,259 90,125
S (Supraventricular) 944 1,837 2,781
V (Ventricular) 3,788 3,221 7,009
F (Fusion)* 415 388 803
Q (Unclassified)* 8 7 15
Total 51,013 49,705 100,718

*Note: Q-class beats are excluded from training, while F beats from evaluation, allowing
the analysis to focus on clinically relevant minority classes, particularly the S-class.

Classifier
2D-CNN-BiLSTM classifier was chosen for the classification task:
• Inputs: the raw beat segment, a QRS complex mask, and R–R interval features.
• A 3-layer 2D-CNN with a BiLSTM. Concurrently, R–R features are embedded from 3D

to 16D.
• A 2-layer MLP is used for the class assignment.

Training process: 15 epochs with Focal Loss (No augmentation; DDPM weights: N–0.08,
S–0.72, V–0.15, F–0.05; SMOTE weights: N–0.24, S–0.47, V–0.24, F–0.06). Because
the F class received a very small effective weight, the model did not learn this class
reliably; therefore, F-class performance is omitted from the results section.

Data augmentation methods
• SMOTE with k neighbors set to 3 was utilized to augment the beat-level segment vector

with concatenated RR features.
• DDPM architecture consists of a 1D U-Net with skip connections and ResBlock1D.

Generated signals were filtered to have at least 0.3 correlation with their original signal.
Example of the generated signals:

Figure: Generated S and V beats using DDPM

Results

Table: Classification performance per class using different augmentation methods.

Method Class Precision Recall F1-score Overall Acc.
No augmentation (Z-score) N 0.96 0.98 0.97 0.93

S 0.28 0.33 0.30
V 0.92 0.77 0.84

SMOTE (Min-Max) N 0.95 0.80 0.86 0.77
S 0.11 0.33 0.16
V 0.75 0.77 0.76

DDPM (Z-score) N 0.96 0.97 0.97 0.94
S 0.40 0.31 0.35
V 0.85 0.92 0.88

Conclusions and Future Work
• Classifier trained on SMOTE-augmented data performed worse (Overall Acc. – 77%)

than the baseline - classifier with no augmentation (Overall Acc. – 93%).
• The DDPM method increased S-beat precision by 12% and F1-score by 5% compared

to the baseline method.
• Focal loss with stronger class weighting can partially alleviate class imbalance.

Future work includes:
• Enhancing temporal feature extraction within the classifier architecture;
• Experimenting with GAN-based approaches for data augmentation;
• Incorporating longer ECG segments during training and augmentation to capture richer

temporal dynamics.
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