EVALUATING RECOMMENDATION APPROACHES FOR EMPLOYEE BENEFIT PERSONALIZATION

AUTHORS:

Eglė Rimkienėegle.rimkiene@vdu.lt

Marius Marmakas marius.marmakas@vdu.lt Rimantė Povilavičienė rimante.povilaviciene@vdu.lt

Justinas Juozas Dainauskas justinas.dainauskas@vdu.lt

Tomas Krilavičius tomas.krilavicius@vdu.lt

CONCLUSIONS

achieves

ALS results are more

ALS is simpler to train and

stable across different

data windows and sparsity

tune, as it uses matrix

factorization rather than a

broader coverage, but its

accuracy and ranking

quality remain lower in this

improves with larger K,

though overall scores

• Two-Tower performance

Overall: ALS best satisfies the

practical requirements of this

system, providing accurate,

consistent, and deployment-

Tower remains a promising

employee-benefit

Two-

remain below ALS.

settings.

conditions.

complex

Two-Tower

context.

ready

iterations.

architecture.

Precision, Recall, F1, and

NDCG across all Top-K

higher

neural

provides

1 INTRODUCTION

Employee benefit platforms offer budgets that employees can spend across many categories, but the large number of options can be overwhelming and lead to irrelevant suggestions. This reduces satisfaction, lowers provider visibility, and leaves budgets unused. Therefore, a key question arises: which recommendation methods best balance efficiency, personalization, and fairness in this context?

3 METHODS

Alternating Least Squares (ALS):

A matrix-factorization method

Two-Tower model:

A neural retrieval architecture

2 GOAL

To identify which recommendation method—**ALS** or **Two-Tower**—delivers the best balance of accuracy, personalization, and coverage for employee benefit platforms.

DATA SOURCES

Relational database

Purchases

Mixpanel

Viewed Benefit,
Press on benefit,
Press purchase in
budget selection
modal, Press
check out in
purchase

4 EXPERIMENTS

No	Purchase history (DB)	Mixpanel events
1	$2022-10-01 \rightarrow 2024-09-30 (2 \text{ yrs})$	2024-04-01 → 2024-09-30 (6 mo)
2	2022-10-01 → 2024-09-30 (2 yrs)	2024-07-01 → 2024-09-30 (3 mo)
3	2022-10-01 → 2024-09-30 (2 yrs)	2024-09-01 → 2024-09-30 (1 mo)
4	2023-10-01 → 2024-09-30 (1 yr)	2024-04-01 → 2024-09-30 (6 mo)
5	$2023-10-01 \rightarrow 2024-09-30 (1 \text{ yr})$	2024-07-01 → 2024-09-30 (3 mo)
6	$2023-10-01 \rightarrow 2024-09-30 (1 \text{ yr})$	2024-09-01 → 2024-09-30 (1 mo)

Experiments with varying training windows were performed to assess temporal stability and the impact of data sparsity. The data from 2024-10-01 to 2024-11-19 was held out for testing to objectively evaluate how well the model generalizes to unseen, recent user behavior.

direction for improving coldstart coverage in future

recommendations.

• Hybrid models (ALS +

FUTURE PLANS

- Cold-start improvements
- Fairness analysis

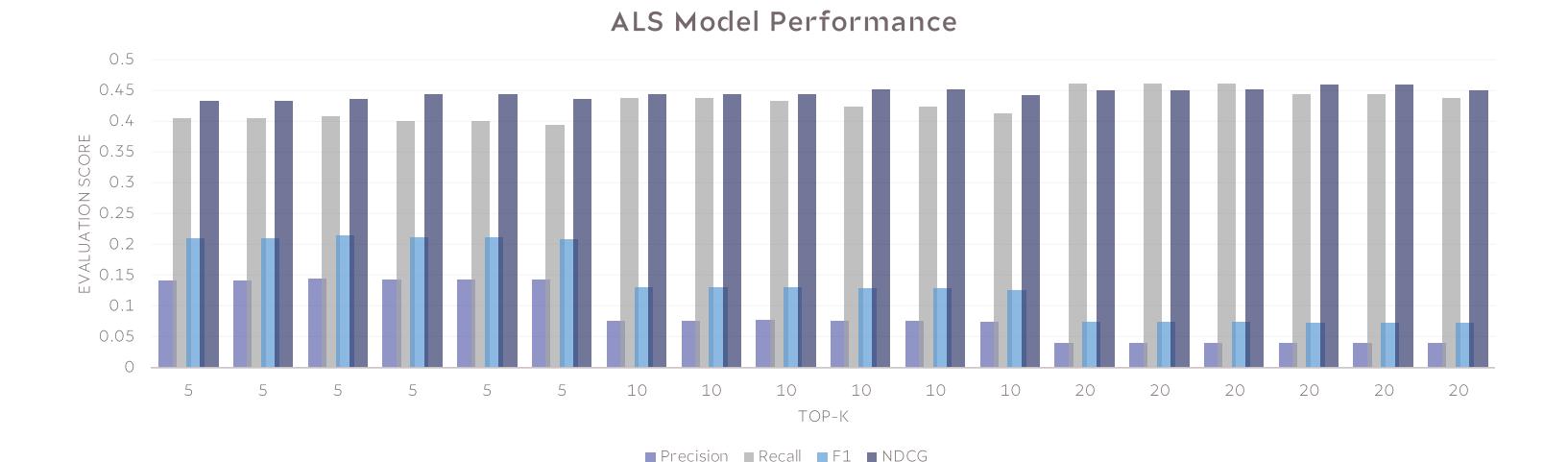
embeddings)

- Online A/B testing
- Deployment optimizations

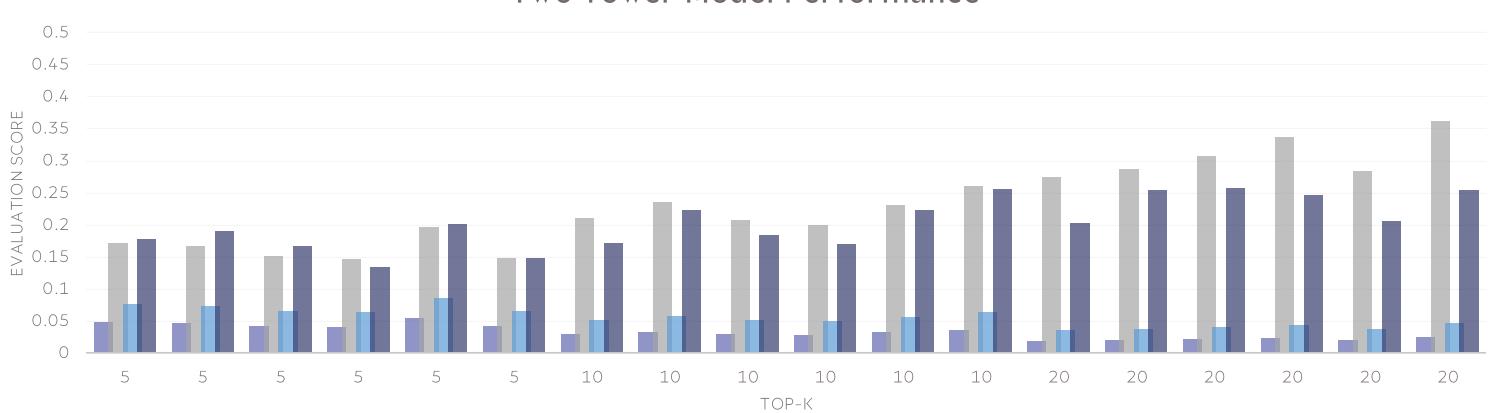
lenme

CENTRE
FOR APPLIED
RESEARCH
AND
DEVELOPMENT

5 RESULTS



Two Tower Model Performance



■ Precision ■ Recall ■ F1 ■ NDCG