AI AND SMARTWATCHES FOR EATING BEHAVIOUR DETECTION: SUPPORTING DEMENTIA CAREGIVERS

AUTHORS:

Gabrielė Kasputytė gabriele.kasputyte@vdu.lt

Danylo Abramov danylo.abramov@vdu.lt

Paulius Savickas

Anton Volčok

Deividas Valiuška

Tomas Krilavičius

paulius.savickas@vdu.lt anton.volcok@vdu.lt deividas.valiuska@vdu.lt tomas.krilavicius@vdu.lt

MOTIVATION

- Aging populations and neurodegenerative diseases (e.g., Alzheimer's, dementia) increase the need for continuous monitoring of daily activities, including nutrition.
- Elderly and cognitively impaired individuals frequently experience irregular or unnoticed eating episodes.
- · Traditional dietary monitoring relies on selfreporting or caregiver observation, which is often inaccurate, burdensome, or not feasible

GOAL

 Develop an Al-based system that detects eating behaviour using smartwatch accelerometer and gyroscope data in real time with minimal user involvement.

SYSTEM WORKFLOW

Data Collection

- Garmin smartwatch
 - Accelerometer + Gyroscope
- FIT files (real-life activities)

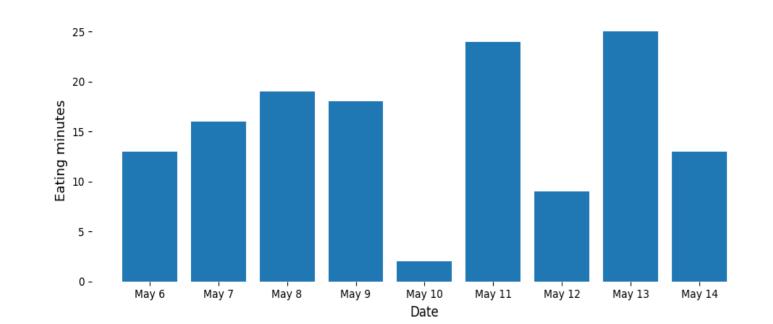
Preprocessing

- FIT decoding (250ms)
- Sync + clean
- Normalization

Windowing 30 / 60 / 90 s windows Eating vs Other

Machine Learning Methods

- Features: 36 stats
- Selection: SHAP (15 best)
- Models: LR, KNN, SVM, RF, GBM


Deep Learning Methods

- Aggregation: 250 ms / 500 ms / 1 s
- Input: raw sequences
- Models: LSTM, GRU, 1D-CNN, CNN-LSTM

MODEL PERFORMANCE

Model	Туре	Window / Input	F1-score	Precision	Recall
Random Forest	ML	90 s	0.907	0.961	0.859
Gradient Boosting	ML	60 s	0.893	0.924	0.865
SVM (RBF)	ML	30 s	0.874	0.881	0.874
KNN	ML	30 s	0.867	0.824	0.915
Logistic Regression	ML	30 s	0.833	0.858	0.809
CNN-LSTM	DL	30 s	0.85	0.84	0.86
GRU	DL	30 s	0.82	0.82	0.83
LSTM	DL	30 s	0.81	0.79	0.83
1D-CNN	DL	30 s	0.80	0.78	0.82

DAILY PREDICTIONS

FUNDING

This project is funded by the European Union's NextGenerationEU program, No. 02-018-K-0499.

CONCLUSIONS

- The results demonstrate that eating behaviour can be automatically and reliably detected using inertial data from sensor smartwatches, without the need for.
- Overall, manual logging or user interaction the proposed approach is feasible for continuous, noninvasive monitoring eating activity and holds potential for strong supporting dementia care, rehabilitation, and nutrition personalized management.

FUTURE PLANS

- Future work will focus on the dataset, expanding evaluating the system in real-life long-term scenarios, and exploring personalized model adaptations for different users.
- Additionally, we plan to develop a full prototype for real-time caregiver monitoring and validate its effectiveness in clinical and home-care environments.

Sust/\In Liv Work

BALTIC INTELLIGENCE SOLUTIONS

CARD

CENTRE FOR APPLIED RESEARCH AND DEVELOPMENT